
Technical report: CoPHEE: Co-processor for
Partially Homomorphic Encrypted Execution

Mohammed Nabeel1, Mohammed Ashraf1, Eduardo Chielle1, Nektarios G.
Tsoutsos2 and Michail Maniatakos1

1 Center for Cyber Security, New York University Abu Dhabi,
2 Electrical and Computer Engineering Department, University of Delaware

Abstract. This technical report provides extensive information for designing, imple-
menting, fabricating, and validating CoPHEE: A Co-Processor for Partially Homo-
morphic Encrypted Execution, complementing the publication appearing in the 2019
IEEE Hardware-Oriented Security and Trust symposium [NAC+19].

Keywords: Data Privacy, Encrypted Execution, Partially-Homomorphic Encryption,
Hardware Root-of-Trust, ASIC.

1 CoPHEE Design Flow Overview
Chip overview CoPHEE is a hardware accelerator for partially homomorphic encryption
and can also serve as a hardware root of trust for Cryptoleq [MTM16]. CoPHEE assists
the host processor with the calculation of complex modular arithmetic like modular
multiplication, modular exponentiation, and modular inverse, for operand size 64-bit to
2048-bit. In addition, it calculates the great common divisor (GCD) of two numbers and
generates random numbers. The host processor communicates with CoPHEE through a
UART (Universal Asynchronous Receiver-Transmitter) interface. CoPHEE is implemented
employing Industry standard Netlist –to- GDSII flow using commerical electronic design
and aAutomation (EDA) tools from Synopsys and Cadence, before sending it for fabrication
at Global Foundries facility using the 65 nm technology node. Typically, a technology
node refers to the gate length of the transistor. We used the Multi Project Wafer (MPW)
service from MOSIS to fabricate the chip. The frequency target for our fabricated chip is
100 Mhz (due to the maximum speed of the IO pads, as it will be explained later). The
chip has two voltage supplies, 3.3 V for the IO pads and 1.2 V for the logic core. As shown
in Figure 1, the chip can be divided into two regions: logic core area and IO pad area. All
the functions are implemented in the logic core area. The IO pad area contains the IO
pads which are connected to the pins of the chip package to interface the logic core with
the external world. The packaging of the chip is done with Dual in-line Package (DIP)
(Figure 16). We decided to use DIP as it is very easy to plug-in to breadboard, hence
easier to prototype.

Design Flow Chip design is composed of various interdependent steps. Performing them
in sequence provides a highly efficient and robust design. Most of the steps use Computer-
Aided Design (CAD) tools extensively. At high level, the design flow can be divided into
front-end and back-end design flow. The front-end design flow can be further divided into
design (this Section) and verification (Section 2). The back-end design flow is discussed in
Section 4.

2
Technical report: CoPHEE: Co-processor for Partially Homomorphic Encrypted

Execution

Figure 1: Pad and core area of a chip. VDDIO: voltage supply to IO pad. VDDC: voltage
supply to core. VSS: ground.

1. Chip specification: the first step in a design flow is defining the chip specification.
For this, a Product Requirement Document (PRD) is created, where it mentions
all features that the chip should support, as well as its performance requirement
and physical aspects, like the maximum die area. In the case of CoPHEE, the PRD
requires support for all the arithmetic operations for large numbers that Cryptoleq
needs (modular multiplication, modular exponentiation, greater common divisor,
modular inverse) and security-related functions (random number generator and
secure multiplexer) to accelerate processing on encrypted data and/or serve as a
root of trust. In addition, a way for the host computer communicates to the chip
for requesting operations and reading their results should also be included. Other
parameters that should be accounted for are: 1) the die area limit defined by the
foundry. In our case, it is 9mm2. 2) the maximum clock frequency that the chip can
run. In CoPHEE, that frequency is 100 MHz. It is due to an architectural decision of
supplying the clock externally to avoid complex integration of clock sources on chip
and limitations of the IO pad.

2. Architectural design: the next step consists of coming up with the chip architec-
ture that performs the required functions by respecting the constraints mentioned in
the PRD. For example, coming up with the functional blocks to perform the required
tasks and their interconnection, defining clock input, debug features and how the
handshake and data transfer with external devices should be done.

3. System modeling: system modeling is an optional step. In this step, a software
model of the chip with the expected functionality is created. This software model
serves as reference to the logical design, in order to compare the hardware correctness
and performance. We did our system modeling using python which replicates the
exact functionality intended in the chip.

4. Logical design: with the architectural design and system model as reference, the
logic design of the chip is constructed through implementation in the Register Transfer
Level (RTL) code using a High Level Description Language (HDL), like Verilog or
VHDL. Both languages are equally powerful, but since the EDA tools used in the
development of this chip have a better support for Verilog, we decided to write our
RTL code using it.

In the following sections, we give a top-down breakdown of the logic design with the
help of RTL-like algorithms that we adapted from software implementations, wherever
necessary.

Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G. Tsoutsos and
Michail Maniatakos 3

Figure 2: IO pins of CoPHEE and how it is connected to host computer.

1.1 External interface
The external interface is the set of the package pins where the IO pads of the chip are
connected. Figure 2 shows the main IO pins of CoPHEE and how they interface with the
host computer. Table 1 describes each of those pins. Through the receiver line RX of the
UART interface, the host computer programs the value of the operands and then triggers
the desired operation (e.g. modular multiplication).

The UART interface has a default baud rate of 1/25000 of the input clock frequency
(Clk). The proportion 1/2500 was chosen as the post-silicon validation plan, considering
that the clock provided to CoPHEE will be 24 Mhz. Thus, we get the baud rate of 9600 bps,
which is supported by the majority of the devices. The transaction size supported is 8 bit
without parity. The UART block waits for a read or write signature to start any operation.
A signature consists of an 8-bit pattern (read: 0x4D, write: 0x34). Once the block receives
a read signature from the host computer, the next four 8-bit data are treated as single
word representing a 32-bit read address. When a write signature is received, and the
address is passed, the UART block expects another 32 bits write data. The main reasons
for choosing UART, which is a slow interface, as the communication interface with host
computer is due to its less complex design, easy connection to a computer, and facilitated
testing during FPGA verification and post-silicon validation compared to faster alternates
like SPI or more complex interfaces like USB.

Starting an operation Through the UART interface, an operation is triggered when
the trigger bit is set. Once that happens, CoPHEE starts the execution of the required
operation, and when the operation finishes, CoPHEE sets the interrupt line HostIRQ to
inform the host that the operation has been completed. Once the host computer receives
this interrupt, it reads the result of the operation via UART using the transmitter line
TX, and clears the interrupt HostIRQ. There is also a GPIO to assist with debugging and
post-silicon validation.

1.2 Internal data flow
Typically, in any System on Chip (SoC), different design blocks communicate with each
other using a well defined protocol called bus protocol. Figure 3 shows the internal
bus architecture diagram of CoPHEE. It is a single-master two-slave system. The master
communicates to the slaves using a 32-bit AHB-Lite bus protocol [Lim]. We have made
the AHB-Lite design parameterizable to facilitate the addition of masters or slaves to
the bus. A master is the design block that can initiate a transaction, while a slave can
only respond to it. In CoPHEE, the UART is the only master in the bus and the slaves

4
Technical report: CoPHEE: Co-processor for Partially Homomorphic Encrypted

Execution

Table 1: IO pin description of CoPHEE.
IO
Pin Direction Description

VDDIO in 3.3V voltage supply for IO pads
VDDC in 1.2V voltage supply for the core logic
VSS in ground supply for IO pads and core logic
nRESET in active low reset
Clk in clock input (max. frequency: 100 Mhz)
RX in UART receive line from host
TX out UART transmit line to host
HostIRQ out interrupt to the host processor
GPIO out for post-silicon debugging

Figure 3: Bus architecture diagram of CoPHEE. Resets and clock are connected to all blocks
(their connections are not shown).

are the configuration registers unit and GPIO (General Purpose IO). The GPIO is added
mainly to assist debugging and verification. One can blink an LED through GPIO to signal
an error during a regressive testing. The configuration registers unit is the slave which
contains the registers for the key, modulus, operands, triggering an operation, result of an
operation, and the status of the operation. Table 2 shows the 39 Configuration Registers
of CoPHEE. Our configuration registers map to the 0x4002_0000 – 0x4002_FFFF memory
range, while the GPIO maps to the 0x4003_0000 – 0x4003_FFFF range. In our design,
the memory base address follows the ARM Cortex M series memory map convention for
peripheral addresses.

1.3 Design blocks
CoPHEE implements a set of modular arithmetic hardware accelerators: 1) an interleaved
modular multiplier, 2) a binary extended greater common divisor (GCD) algorithm, which

Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G. Tsoutsos and
Michail Maniatakos 5

Table 2: CoPHEE Configuration Registers.

Register Name Description Bit
Size

UARTMTX_PAD_CTL IO Pad control for UART TX 32
UARTMRX_PAD_CTL IO Pad control for UART RX 32
HOSTIRQ_PAD_CTL IO pad control for Host Interrupt 32
GPIO0_PAD_CTL IO pad control for GPIO 32
UARTM_BAUD_CTL Baud control for UART 32
UARTM_CTL UART control (parity, polarity, etc.) 32
SPARE0 Reserved register 32
SPARE1 Reserved register 32
SPARE2 Reserved register 32
CLEQCTL2 Log2 of N 32
SIGNATURE Stores Chip ID 32
CLCTLP Trigger bits for modular blocks 32
CLCTL Control bits 32
CLSTATUS Flag bits (busy, inverse error, etc.) 32
N Modulus N 1024
NSQ Square of N 2048
ARGA Argument A for modular blocks 2048
ARGB Argument B for modular blocks 2048
ARGC Argument C for modular blocks 2048
RAND0 Random number 0 for secure mux 1024
RAND1 Random number 1 for secure mux 1024
GFUNC_RES_ADDR Result register for secure multiplexer 2048
MUL_RES Result register for multiplication 2048
EXP_RES Result register for exponentiation 2048
INV_RES Result register for inversion 2048
DBG_REG Debug register 2048

calculates the GCD of two operands and the modular inverse of the first operand with
second operand considered as modulus, and 3) a modular exponentiation unit based on the
Montgomery multiplier [MVOV96]. The chip also comprises of a True Random Number
Generator (TRNG) and the Secure multiplexer for selecting on encrypted data. This
section gives design details about each block.

1.3.1 Modular multiplier

We have implemented the classical interleaved modular multiplier [MVOV96]. We chose
this algorithm since other modular multiplication algorithms, like the Montgomery multi-
plication, need to convert the operands into a different domain before doing the actual
multiplication, thus, nullifying any performance benefit from a faster multiplication.

As described in Algorithm 1, the module takes two operands X and Y as input along
with the modulus M , and outputs the result R, where R = XY mod M . Once X, Y , and
M are programmed at their corresponding location in the configuration registers, the host
processor sets the trigger input En to high during one clock cycle upon which the modular
multiplier starts the operation. Afterwards, in every clock cycle (given by the input Clk) Y
is multiplied by the least significant bit (LSB) of X. The multiplication is just a selection,
adding Y in case the LSB of X is 1 or zero, otherwise. X is then shifted right by one
position. Each multiplication produces an intermediary result which is accumulated to the
result of previous cycles. After each multiplication and accumulation (and in the same

6
Technical report: CoPHEE: Co-processor for Partially Homomorphic Encrypted

Execution

Algorithm 1: Classical Interleaved Modular Multiplier
1 INPUT: X[N-1 :0], Y[N-1 :0], M[N-1 :0], En, Clk;
2 OUTPUT: R[N-1 :0], Done;
3 if En == 1 @ Positive edge of Clk then
4 R = Y*X[0];
5 X = X >> 1;
6 while Any of the bit is 1 in X @ Positive edge of Clk do
7 R = (R << 1) + Y*X[0];
8 if R > M then
9 if R > 2M then

10 R = R - 2M;
11 else
12 R = R - M;
13 end
14 end
15 X = X >> 1;
16 end
17 Done = 1;
18 end

cycle), the result goes through a modular reduction. The modular multiplier stops once it
reaches the most significant bit of X set to 1 (which, as discussed in the threat model, can
leak information through timing and power side channels). Finally, the output Done is
asserted as high during one clock cycle to inform the configuration register slave that the
final result is ready at output R.

1.3.2 Modular exponentiation

We used the Montgomery multiplier [MVOV96] in order to implement the modular
exponentiation. The main advantage of the Montgomery multiplication is regarding
modular reductions. While modular reduction in the classical interleaved modular multiplier
is achieved through subtractions, the Montgomery modular multiplier does it using a right
shift operation, which enables it to run much faster. However, the operands need to be
converted to the Montgomery domain before performing the Montgomery multiplication.
In order to do the conversion, the operands are multiplied by a modular reduced version of
2N , where N is the bit width of the modulus. Since it is necessary to convert the operands
to and back from the Montgomery domain, it is only beneficial to use the Montgomery
multiplication in the modular exponentiation, which executes several multiplications before
converting the result back from the Montgomery domain.

Algorithm 2 presents the Montgomery multiplication. Whenever the En goes high
for one clock cycle, the block starts the operation where, in each cycle, the input Y is
multiplied by LSB of the input X and, then, added to the result of the previous cycle
shifted right by one position. Another operandM is also added to the result if the previous
result (unshifted) is odd, i.e., if its LSB is 1. It is important to notice that the addition Y
+ M is pre-calculated, meaning that the algorithm does not have more than one addition
per clock cycle. Subtraction is required in the interleaved modular multiplication for
the modular reduction, while in the Montgomery modular multiplication, the modular
reduction is achieved by the right shift of the previous result (line 8). That is the main
reason why the Montgomery multiplier is faster than the interleaved multiplier. X is
shifted right in parallel to the addition.

The modular exponentiation operates in three stages. Figure 4 shows the modular
exponentiation block. In the first stage, the input X (the base of the exponentiation) is

Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G. Tsoutsos and
Michail Maniatakos 7

Algorithm 2: Montgomery Multiplier
1 INPUT: X[N-1 :0], Y[N-1 :0], M[N-1 :0], En, Clk;
2 OUTPUT: R[N-1 :0], Done;
3 if En == 1 @ Positive edge of Clk then
4 R = Y*X[0] + X[0]*Y[0]*M;
5 X = X >> 1;
6 cnt = N-1;
7 while Any of the bits is 1 in cnt @ Positive edge of Clk do
8 R = (R >> 1) + Y*X[0] + R[0]*M;
9 X = X >> 1;

10 cnt = cnt - 1;
11 end
12 if R > M then
13 R = R - M;
14 end
15 Done = 1;
16 end

Figure 4: Modular exponentiation block.

converted to the Montgomery domain through a modular multiplication with 2N modM ,
where N is the bit width of the modulus M . Then, the second stage the exponentiation is
performed using the right to left binary exponentiation [MVOV96], presented in Algorithm
3. The controller implements this algorithm, where it controls the operands entering
the Montgomery multiplier depending upon the value of each bits in E (exponent). The
controller scans through each bits of the E starting from its LSB and, for every bit
regardless of its value, it does repeated squaring of the input X using the Montgomery
multiplier until it reaches the most significant bit (MSB) of E with value 1 (line 9).
The final result of the exponentiation in the Montgomery domain is the Montgomery
multiplication of all the repeated squared values S whenever the bits in E is 1 (line 7).
At the end of the binary exponentiation, we have the value of XE in the Montgomery
domain. To convert back from the Montgomery domain, the controller block triggers the
Montgomery multiplier by multiplying the result by 1 (line 12).

1.3.3 Modular inverse

The modular inverse of one number in relation to another exists when the two numbers
are co-prime, i.e., their great common divisor (GCD) is 1. A well-known algorithm for

8
Technical report: CoPHEE: Co-processor for Partially Homomorphic Encrypted

Execution

Algorithm 3: Binary Exponentiation followed by exiting Montgomery Domain
1 INPUT: X[N-1 :0], E[N-1 :0], M[N-1 :0], En, Clk;
2 OUTPUT: R[N-1 :0];
3 R = 1;
4 S = X;
5 while Any of the bits is 1 in E do
6 if E[0] == 1 then
7 R = Montgomery multiplication of R and S ;
8 end
9 S = Montgomery mutiplication of S and S;

10 E = E >> 1;
11 end
12 R = Montgomery multiplication of R and 1.

calculating the GCD and modular inverse is the Binary Extended GCD [MVOV96]. This
algorithm calculates the GCD of two numbers and the inverse of the first argument in
relation to the second, as one can see in Algorithm 4. Similar to other modules, this block
also starts operating once the host processor toggles the input En after programming the
inputs X (number to be inverted) and M (modulus). The goal of the algorithm is to find
A and B in Equation 1, where G is the GCD of X and M . If G is 1 then A is the modular
inverse of X with modulus M .

A ∗X +B ∗M = G (1)

Given X and M , we create two instances of Equation 1, as listed in Equations 2 and 3,
where the initial values of the set {Ax, Bx, Ay, By} are {1, 0, 0, 1}, which means that the
initial values of set {Xg, Yg} are {X,M}, as stated at line 3 of Algorithm 4.

Xg = Ax ∗X +Bx ∗M (2)

Yg = Ay ∗X +By ∗M (3)

The algorithm then iterates doing the following three steps:

1. While both Xg and Yg are even, divide them by 2 and multiply the GCD G by 2.

2. If only one of them is divisible by 2, their corresponding equation is divided by 2.
In this case, if any of the coefficients in the equation is not divisible by 2, we add
X ∗Y −X ∗Y to the right side of the equation and restructure the equation to make
it in the form A ∗ X + B ∗ Y , as shown in lines 15 and 23 of Algorithm 4. Then,
both coefficients become divisible by 2.

3. When both Xg and Yg are not divisible by 2, the algorithm checks if Xg is greater
than Yg. If so, the Equation 2 is updated by subtracting itself from the Equation 3.
Otherwise, the Equation 3 is updated by subtracting itself from the Equation 2.

Once Xg and Yg are equal, the algorithm terminates. The output G contains the GCD
of {X,M} and the output Done is set to high for one clock cycle to inform that the process
has ended. If the GCD is 1 then the modular inverse of X with respect to M is available
in the output INV .

1.3.4 Random number generator

The host processor can either directly send a random number to CoPHEE or it can use the
True Random Number Generator (TRNG) module implemented in the chip. The TRNG

Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G. Tsoutsos and
Michail Maniatakos 9

Algorithm 4: Binary Extended GCD
1 INPUT: X[N-1 :0], M[N-1 :0], En, Clk;
2 OUTPUT: G[N-1 :0], INV[N-1 :0] Done;
3 G = Not(X[0] | Y [0]); Xg = X; Yg = M ; Ax = 1; Bx = 0; Ay = 0; By = 1;
4 if En == 1 @ Positive edge of Clk then
5 while Xg[0] == Yg[0] == 0 @ Positive edge of Clk do
6 Xg = X � 1; Yg = Y � 1; G = 2 ∗G;
7 end
8 while Xg! = Yg do
9 while Xg[0] == 0 @ Positive edge of Clk do

10 Xg = Xg � 1;
11 if Ax[0] == Bx[0] == 0 then
12 Ax = Ax � 1; Bx = Bx � 1;
13 else
14 Ax = (Ax + Y)� 1; Bx = (Bx −X)� 1;
15 end
16 end
17 while Yg[0] == 0 @ Positive edge of Clk do
18 Yg = Yg � 1;
19 if Ay[0] == By[0] == 0 then
20 Ay = Ay � 1; By = By � 1;
21 else
22 Ay = (Ay + Y)� 1; By = (By −X)� 1;
23 end
24 end
25 if Xg > Yg then
26 Xg = Xg − Yg; Ax = Ax −Ay; Bx = Bx −By;
27 else
28 Yg = Yg −Xg; Ay = Ay −Ax; By = By −Bx;
29 end
30 G = Xg � G; INV = Ax; Done = 1;
31 end
32 end

design is based on bi-stable circuit [EHK+03]. There are 16 individual TRNG blocks spread
across the chip, as shown in Fig. 12, to improve randomness by exploiting the process
variations of the chip. As mentioned in [EHK+03], a random number stream is generated
after XORing the 16 individual TRNG blocks. The output of the XOR is post-processed
using Von Neumann corrector to remove possible 0/1 bias. It is also possible to bypass
the Von Neumann corrector. After this step, the least significant bit (LSB) of the random
number is set to 1 to make sure the random number is odd. Then, a GCD between the
random number and N is performed to check if they are co-prime (when the GCD is 1).
If they are not co-prime, then the random number is incremented by 2 until the GCD
becomes 1.

As explained in Section 1.3.5, the random number is used by the secure multiplexer to
re-encrypt zero or the second input. To make sure that the output of the secure multiplexer
is not repeated, the random number needs to be updated after every operation of the
secure multiplexer. As generating a random number using the TRNG is time consuming,
once the random number is generated and used, the next random number is calculated
by squaring the existing random number, as shown in Equation 4, where R and Rnew

represent the existing and the new random number, respectively, and M the modulus. A
explicit request is necessary in order to generate a new random number using the TRNG
unit.

10
Technical report: CoPHEE: Co-processor for Partially Homomorphic Encrypted

Execution

Algorithm 5: Secure Multiplexer
1 INPUT: X[N-1 :0], Y[N-1 :0], FKF[N-1 :0], RAND0[N-1 :0], RAND1[N-1 :0], M[N-1 :0] En,

Clk;
2 OUTPUT: R[N-1 :0];
3 if En == 1 @ Positive edge of Clk then
4 RAND0 = Modular Exponentiation of RAND0 with exponent

√
M ;

5 RAND1 = Modular Exponentiation of RAND1 with exponent
√

M ;
6 D = Modular Exponentiation of X with exponent F KF ;
7 end
8 if D <= 0 then
9 R = Modular multiplication of RAND0 and RAND1 ;

10 else
11 R = Modular multiplication of RAND0 and Y;
12 end

Rnew = R2 mod M (4)

1.3.5 Secure multiplexer

The Cryptoleq secure multiplexer is essentially a state machine which makes use of all
the above mentioned blocks. As mentioned in Algorithm 5, the secure multiplexer takes two
inputs X and Y along with a function of the private key FKF and two random numbers
RAND0 and RAND1, and checks (at line 8) the sign of the decryption of X (calculated
at line 6). If it is less than or equal to zero, the output R receives the re-encryption of zero,
else the output receives the re-encryption of Y . Both lines 4 and 5 produce an encryption
of zero. The reason for having two encryptions of zero is to ensure that both conditions of
the leq test produce similar power and timing characteristics1. In addition, for every
call to the secure multiplexer, two new random numbers are generated, so that consecutive
executions of the secure multiplexer do not produce the same output. This prevents any
eavesdropping attack that tries to infer information about the ciphertexts by comparing
the inputs and outputs.

1.3.6 Other blocks

The following additional blocks are also present in CoPHEE in order to assist with commu-
nication and control: 1) UART master, to interface with the external host computer, 2)
configuration registers unit, to store the operands, modulus and results, 3) GPIO, to assist
debugging in the post-silicon validation, and 4) AHB bus interconnect, to transfer data
inside the chip, where the UART is the master and the configuration registers unit and
GPIOs are the slaves.

The main purpose of the UART master block is to convert the read and write commands
from the host processor to the AHB read and write protocol. As discussed in Section
1.1, during a reading request, the UART master receives a read signature followed by a
32-bit address. Once it receives the address, it initiate an AHB read transaction with this
address on the bus and waits for a response from the slave. The slave responds with a
32-bit data that is transmitted to the host computer. During a write command, the UART
master initiates an AHB write transaction passing a 32-bit address and data.

1While we refrained from side-channel resistant versions for the other units, since they are well-
documented in the literature, we made an effort to make Cryptoleq’s secure multiplexer side-channel
resistant since it is a completely new operation.

Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G. Tsoutsos and
Michail Maniatakos 11

The configuration registers unit consists of 32-bit byte-addressable registers. There are
around 800 registers in the unit, some of which are readable and writable (e.g. operands,
modulus), while some are only readable (e.g. result) and others are only writable (e.g.
operation trigger). The AHB-Lite bus matrix interconnect supports a single master and
two slaves. The main logics in the AHB bus are the decoder logic that identifies the
master’s accesses to slaves, and the muxing logic, which multiplexes the data read and the
ready signal from the slaves.

2 Verification
Once the logic design is complete, it is necessary to verify if the RTL code meets the
specifications of the architecture document and system model. This process is called
Verification. Figure 5 shows a typical structure of the testbench where the Design
Under Test (DUT) is applied with required stimulus by the stimulus generator and the
DUT response is verified by the monitor. As summarized in Table 3, the functional
verification is done in three phases:

1. Block-level simulation: each individual modular arithmetic block is tested indi-
vidually in the first phase through simulation, where stimulus from the testbench
are applied directly to the inputs of the design block and the response is checked for
correctness.

2. Top-level simulation: in the second phase of the verification, the blocks are
verified from the top level, i.e., the DUT is the HDL description of CoPHEE. Here,
the stimulus is generated by the Bus Function Model (BFM) for UART. BFM for
UART is part of the top level testbench and takes care of the UART protocol needed
to communicate with CoPHEE. In order to accelerate testing, the baud rate of the
UART is set to 1/4 of the system clock, much faster than the original design (around
1/10000). This phase is also simulation-based. The testbench written in Verilog
is simulated using the industry standard simulation tool Synopsys VCS. As the
modulus size is as big as 2048 bits, it is impossible to do an exhaustive test. To cope
with that, we use the function $random to generate random stimulus to increase the
confidence of the verification.

3. FPGA-based validation: the main limitation of simulation-based verification is the
slow runtime. Thus, running an exhaustive test through simulation is infeasible.
Therefore, once we have confidence in simulation-based verification, we move to
a FPGA-based validation for a more exhaustive test, since the runtime is much
shorter. However, due to size limitations of the FPGA in conjuction with our 2048-
bit modules, it is impossible to accommodate the whole 2048-bit CoPHEE design.
Hence, we implemented a scaled-down version of CoPHEE, where maximum data-width
supported is 256 bits. The CoPHEE RTL is written in such a way that the width is a
parameter which accepts any power of two greater than 32. We utilized the Digilent
Nexys 4 during testing. We have opted for this board after the resource requirement
reported by Xiling Vivado synthesis tool for 512-bit data exceeded the capacity of
the Kintex-7 and Virtex 5 FPGA boards. Our option was to scale-down to 256-bit
data, which fits in the Nexys 4. Thus, we decided for this board, since it is less
complex than the Kintex-7 and Virtex 5. One of the slide switch in the Nexys 4 is
used as reset. The board has an on-board FTDI chip for USB to UART interface
which is used to communicate with CoPHEE. The validation setup, written in Python,
runs in the Linux terminal. It programs random operands and modulus, triggers
all function units, and compares the result to the one calculated in software. The
advantage of the FPGA-based validation is that the the same setup can be used

12
Technical report: CoPHEE: Co-processor for Partially Homomorphic Encrypted

Execution

Table 3: Pre-silicon verification phases.
Verification

phases
Stimulus
generation

Design
under test

Modulus
size (bit) Runtime

block-level Verilog testbench arithmetic blocks up to 2048 slow
top-level Verilog testbench CoPHEE top-level up to 2048 very slow
FPGA Python code CoPHEE top-level up to 256 fast

Figure 5: High-level view of the testbench.

for the post-silicon validation. The maximum frequency we could run the design in
the FPGA is 25 Mhz, and the UART baud rate used for testing is 9600 bps. This
frequency is generated by dividing the 100 Mhz crystal oscillator clock provided in
Nexys 4 board.

3 Synthesis
Synthesis is the process of converting a circuit from its RTL code into logic gates, known
as gate-level netlist. This process is typically automated using synthesis tools. Besides the
RTL code, the synthesis tool requires a list of constraints along with a standard cell library.
The constraints contain information about area, clock frequency, and power. The standard
cell library is a collection of low-level electronic logic functions, such as logic gates and
memory elements. In addition to mapping the RTL code into logic gates, the synthesis
tools also optimizes the netlist to ensure that the circuit meets the targeted frequency,
area, and power. Following the synthesis, a verification process is performed in order to
verify if the tool has correctly generated the gate-level netlist.

The CoPHEE RTL code is synthesized using a 65nm standard cell library from Global
Foundries and a clock constraint of 100 Mhz. As the UART and GPIOs are the only
interfaces of CoPHEE (i.e., both are asynchronous), there is no specific IO timing constraint.
Following common practices, the standard cell library used for synthesis was the one
characterized for the worst voltage (1.08V), temperature (125C), resistance, and capacitance.
Synthesizing with such a library ensures that we can achieve the target frequency.

For synthesis, we used the Synopsys Design Compiler (DC), while for post-synthesis and
formal verification we used the Cadence Conformal, and we were able to ensure that the
RTL code and the synthesized netlist are functionally equivalent. In Table 4 we presents
the area and timing estimations of the major CoPHEE blocks after synthesis. The largest
design is the binary extended GCD, followed by the configuration registers that store a
total of 2.73 KB. As expected, the modular multiplier and the modular exponentiation
unit are roughly the same size, and the rest of the modules occupy significantly less area.

4 Physical Design
Physical Design is the process of layout implementation and analysis of a design netlist
ensuring to certain user and foundry that specific constraints are met in order for the chip

Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G. Tsoutsos and
Michail Maniatakos 13

Table 4: Post-synthesis area and timing estimations.

Blocks
Area
(um2)

Worst path
delay (ns)

Configuration registers 512,724 4.770
Binary extended GCD 548,454 9.433
Interleaved mod. multiplier 315,487 9.374
Modular exponentiation 304,064 9.389
AHB bus 1,261 4.850
UART master 3,466 4.930
TRNG 28,658 NA

to be fabricated. The physical design can be subdivided into PnR (Place and Route) and
SignOff Analysis. Sections 4.1 and 4.2 describe them in detail. The inputs to physical
design process can be broadly classified into two types: design-related and technology-
related. The design-related files are the design netlist and the constraints. We obtained
the netlist in the Verilog format and the constraints in the Synopsys Design Constraint
(SDC) format after the synthesis from Synopsys Design Compiler. The technology-related
files are:

• Technology: this file is specific to the technology and contain basic information
related to the physical implementation. It contains, for example, various metal/via
layers, their width, pitch, preferred routing direction, etc.

• Physical libraries: it includes the physical libraries of all the standard cells and
macros used in the design. These libraries capture the physical description of each
primitive standard cells, macros, IO pads, etc. The physical description involves the
cell size, their pin shapes and locations, etc. These are usually in the LEF (Library
Exchange Format) format.

• Timing libraries: it regards the timing libraries for all the primitives used in
the design. These libraries defines the function along with the area, delay, power,
transition, pin capacitance, setup/hold characteristics of each cell available in the
library. Each logic cell in the physical library should have a corresponding entry in
the timing library for them to be used in the valid timing paths in the design. The
libraries are usually either NLDM (Non Linear Delay Model) or CCS (Composite
Current Source). We used CCS libraries as they are more accurate.

• Interconnect technology: this file is used for parasitic extraction. The file contains
details about RC (parasitic) values of various metal layers and vias. It also captures
the RC for possible variations of width, thickness of metal layers due to variation in
the lithographic processes. This information is needed to extract parasitic of every
net in the design layout, to be used for timing and rail analysis.

• Physical verification rule deck: The DRC (Design Rule Check) rule deck
contains foundry rules of manufacturing to be verified in every design layout for it to
be qualified for tape out. The LVS (Layout Versus Schematic) rule deck defines rules
for device extraction from layout and to compare the layout against the schematic
netlist.

The chip was fabricated using the Multi Project Wafer (MPW) program provided by
Metal Oxide Semiconductor Implementation Service (MOSIS). We chose the metal layer
stack 5_02_00_00_LB from the available different stacks. The metal and via layers are
M1, V1, M2, V2, M3, V3, M4, V4, M5, WT, BA, WA, BB, VV, and LB. These layers
also have preferred routing direction (horizontal or vertical). The tool ensures that it uses
each metal layer in its preferred routing direction most of the time in order have optimal

14
Technical report: CoPHEE: Co-processor for Partially Homomorphic Encrypted

Execution

Table 5: CAD tools used for implementation and analysis.

Stage Tool Vendor

Place and Route IC compiler Synopsys
RC Extraction starRC-XT Synopsys
Static Timing Analysis PrimeTime Synopsys
Rail Analysis PrimeRail Synopsys
Formal Verification Formality Synopsys
Layout strmin and editing Virtuoso Cadence
Physical Design Rule Check PVS Cadence
Layout Versus Schematic PVS Cadence
Signoff fill insertion Calibre Mentor

usage of routing resources. This stack provided us enough signal routing resources in first
5 metal layers and the top two to be used mostly for power/gnd and clock structure. The
layer LB wasn’t used in the layout except for the IO PADs. The external bonding to the
chip during packaging is done using these LB cups on the pads. The Global Foundries
Process Design Kit (GF-PDK) for 65LPE process provided us all the technology-related
files. We got the physical and timing libraries for standard cells from ARM. ARAGIO
supplied us the IO Pad libraries. The chip was implemented flat without any physical
hierarchy. Several CAD tools are available for physical implementation and analysis. Table
5 shows the cad tools we used along with their stages and EDA vendor.

4.1 Place and Route (PnR)
PnR is the first step in physical design and involves various steps like die size estimation,
floor planning, power planning, placement, clock tree synthesis (CTS), routing, and post-
route optimization. Formal verification is also performed at each of these stages to ensure
netlist equivalency.

4.1.1 Die size estimation

Die size estimation is the first stage of PnR, which involves estimating the die and
core area. The estimation starts considering the maximum final utilization (FU) that one
wants to achieve. A layout designer does not want the final utilization to be too high as
a small disturbance from an optimization or ECO (Engineering Change Order) leads to
large disturbance in layout timing, recovering from which will be time consuming and
difficult. Nevertheless, a very relaxed utilization means more silicon and, thus, more cost.
Hence, the designer needs to find a sweet spot which he arrives after multiple iteration
of PnR. It is important to notice that the design utilization often increases during PnR
due to timing and design rule optimization. This growth in utilization is noted for your
design after initial trials and, thus, the initial utilization (IU) is determined. Based on the
aspect ratio and the size and shape of the hard macros in the design, width and height
of the core region is determined, as one can see in Equations 5, 6, 7, and 8, where IU is
the initial utilization, FU is the final utilization, x is the % growth in utilization due to
clock tree synthesis and timing optimization, RCA is the required standard cell area, SA
is the synthesis area, MA is the macro area (including RAMs or any physical IPs), DW
and DH are the die width and height, respectively, CW and CH are the core width and
height, respectively, HIO is the height of the IO PAD, and CIO is the core to IO spacing.

IU = FU/(1 + x/100) (5)

RCA = (SA−MA)/IU (6)

Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G. Tsoutsos and
Michail Maniatakos 15

Figure 6: Chip physical parameters.

Table 6: Layout physical parameters.

Parameter Value

IU (Initial Utilization) 36 %
FU (Final Utilization) 47 %
MA (Macro Area) 0 um2

HIO (IO PAD Height) 120 u
CIO (Core to IO spacing) 110 u
A (Aspect ratio) 1
RCA (Required std cell Area) 1956692.52 um2

CW (Core Width) 2340 u
CH (Core Height) 2340 u
DW (Die Width) 2800 u
DH (Die Height) 2800 u

DW = CW +HIO + CIO (7)

DH = CH +HIO + CIO (8)

Fig. 6 shows the above physical parameters with respect to our layout. Table 6 captures
other relevant details of this stage. The minimum chip size supported by Global Foundries
for 65lpe through MOSIS is 9mm2. This is more than the estimated die size of our chip.
Thus, we decided to use the entire area as there was no reason in reducing the chip area.

4.1.2 Floor planning

Floor planning is the step where an actual layout core and die boundaries are created
(e.g. the location of the IO pads and memory elements). This process is based on the die
size estimation. After the floor planning, the design is ready to be taken to the detailed
placement of standard cells. There could be multiple iterations of floorplan based on the
netlist revision, timing and congestion results from post-placement or routing. The floor
planning usually involves the five following steps:

16
Technical report: CoPHEE: Co-processor for Partially Homomorphic Encrypted

Execution

1. Design import: this involves importing the design netlist and constraints along
with technology LEF, timing and physical libraries of standard cells.

2. Die/core outline creation: here a layout outline is created based on the die size
estimation.

3. Signal and power PAD distribution: this step involves the distribution of signal
and power pads along the periphery following foundry IO guidelines.

4. Placement of hard/soft macros: all the hard macros (RAM/ROM/PLL, etc)
used in the design are then placed mostly manually and sometimes with the guidance
of AMP (Automatic Macro Planning) tools. The macro placement is guided by
data flow in the design and pad/pin distribution. This is followed by hard and
soft placement blockages insertion around the macros to control the placement of
standard cells in narrow channels or close to these macros to avoid routing congestion.

5. ENDCAP and TAPCELL insertion: as per foundry requirement for some technologies,
specific cells named ENDCAP cells are inserted on either edge of the layout. TAP
cells are also inserted in the layout to tie the wells in order to avoid LATCHUP
violations.

In our implementation, after we created a milkyway database (Synopsys database)
using the technology and other libraries, the design netlist and constraints were imported.
The IO pad distribution guidelines were provided in the TCL format before the layout
outline creation. The file contains the order and edge for each IO pad in the design
adhering to IO pad placement guidelines from Global Foundries. Thus, we could distribute
all the IO pads along the edges during die and core boundaries creation. Layout outline
along with IO pad placement is shown in Figure 6. We have 27 IO pads in total, 8 of them
are for VDD/VSS core power/ground supply, 8 DVDD/DVSS for IO power/ground, and
the remaining 11 are signal pads. One supply and one ground pad were enough for us, but
we decided to utilize the empty spaces in the IO pad ring with more of them to make the
power structure robust. The light green rectangular structures in the periphery are the
pads. The empty spaces between the pads are filled with filler pads to maintain continuity
of the internal power/ground and other special signals. These pad fillers can be noticed
in the Figure 7. The tool also creates horizontal structures called rows of equal height
throughout the core region. The height of the each row is dependent on the technology
and this information is picked up by the tool from the technology files provided. These
rows define the legal locations for standard cell placement. ENDCAPs and well tie cells
were then distributed in the core region as per the foundry requirement. Figure 7 also
shows tap/tie cells placed in a staggered fashion in the design layout. Figure 8 shows an
enlarged view of the distribution. We then ran the recommended ZIC (Zero Interconnect
Delay) analysis to check the quality of the input netlist for timing and were good to go.

4.1.3 Power planning

Power planning or power network synthesis (PNS) is the creation of a well designed
power structure to deliver power from the power pads to every standard cells and macros
used in the design. The structure should also ensure that both static and dynamic voltage
drop to each cell in the design is within the recommended range (3.3% static, 5.5% dynamic).
These numbers are based on our prior experience. Having a dense power distribution
keep you safe on voltage drop but consumes lot of routing resources and might make the
design congested or unroutable for other signal nets in the design. Hence power structure
should neither be too aggressive nor relaxed. A few PnR iterations along with rail analysis
(Section 4.2.3) might be needed to finalize the power structure. A power structure consists
of:

Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G. Tsoutsos and
Michail Maniatakos 17

Figure 7: Tap cell distribution.

Figure 8: Tap cell distribution enlarged.

• PG IO pads: Power and Ground IO pads receive power from an external source and
drive the internal power distribution network.

• PG rings: they form a ring of power and ground lines in the higher metal layers
around the core region and are connected to the power pads.

• PG straps: PG straps are the ones that runs horizontally and vertically in power
and ground pairs throughout the core region. They are connected to each other as
well as to the power ring using power via arrays. The frequency of the power straps
can be tuned to generate an optimal power distribution network.

• PG rails: these are rails that runs along the standard cell rows. The metal layer for
rail creation depends on the layer at which the power pins of the standard cells are
designed for, which is defined during the standard cell library development. These
power pins are usually designed to be on the top and bottom edges of the standard
cells and to run horizontally along the rows.

We created a core power ring as seen as the red and white lines around the core in
Figure 9. They are in metal layers BA (red vertical) and BB (white horizontal). The thick

18
Technical report: CoPHEE: Co-processor for Partially Homomorphic Encrypted

Execution

Figure 9: Power network.

Figure 10: Power network M4 M1 enlarged.

white and red lines connects the ring to the pads. We have power straps created in layers
BA, BB, M5 and M4. The mesh structure in Figure 9 inside the core region shows the
power straps distribution. Our PG rails are in M1 and are connected to the power straps
in M4 through power via stack from M4. Please note that the M4 strap runs vertically
(preferred routing direction vertical) and vias can be dropped on every intersection of them
with horizontal M1 rails. Figure 10 shows the via connection from M4 (purple vertical
straps) to M1 (blue horizontal rails). Alternately it is also possible to have straps in M3
and M2 and drop vias from M2 straps to the M1 rails. However, this would increase the
routing congestion and it was discarded.

4.1.4 Placement And Optimization

After floorplanning and power planning, the next challenge is to place the standard cells
in the design netlist in accordance with the foundry and user’s placement constraints.
This process is know as placement. The standard cells should be placed in legal locations
defined by row and site in the technology and should not overlap each other. The CAD

Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G. Tsoutsos and
Michail Maniatakos 19

tool takes care of this and certain checks post-placement can confirm the adherence to
the guidelines. CAD tools consider any specific hard/soft placement blockages created by
the user in the layout while placing the design. If power structure is present in the lower
layers (e.g. M2), the area below these power straps is partially blocked in order to not
create accessibility issues to the pins of the standard cells. Placement also takes standard
cell connectivity, design and library constraints in to consideration. The netlist is further
optimized to fix design rule violations (e.g. the maximum transition, fanout, capacitance,
etc) and for performance, area and power. This involves addition/deletion of buffers,
up-sizing or down-sizing of cells, and also logic restructuring to an extend. The layout
designer evaluates the post-placement timing, area, power and congestion to evaluate the
quality of netlist, floorplan, power plan and, sometimes, the library, in case it is immature.

Prior to the standard cell placement, we grouped and distributed the TRNG module
using bounds/regions in the chip to leverage On Chip Variation (OCV). Bound is a feature
in the tool used to restrict placement of specific cells according to the user specification.
Figure 12 shows the TRNG distribution. The standard cells in the TRNG module were not
allowed to be optimized by the tool. The red highlighted groups of standard cells in the
image compose the TRNG module. After fixing these groups in position, the rest of the
standard cells went through placement and optimization. The design was then analyzed
for timing, congestion, area and power and passed the requirements. We enabled high
threshold voltage (HVT) and regular threshold voltage cells (RVT) during optimization.
HVT are low-leakage high-delay cells and RVT are medium-leakage medium-delay cells.
LVT (low threshold) cells which are high-leakage low-delay cells were used only in the final
timing closure. We used this kind of approach to limit the power leakage as in accordance
to standard practices.

Figure 11 shows the placement distribution of various important modules of the design
after placement. The Binary Extended GCD is presented in red, Interleaved Modular
Multiplier in green, Modular Exponentiation in blue, and purple refers to the remaining
modules. As one can see, the GCD module consumes a good portion of the design and is
confined to right side of the chip. The modular exponentiation and multiplier follows. We
performed a trial placement run by creating specific regions in the chip for these modules.
A region restricts the placement of the module to a specified location of the chip. The
timing results have not turn out to be better than the one provided without regions and,
hence, was discarded.

4.1.5 Clock Tree Synthesis

Clock three synthesis (CTS) is a method that aims at minimizing the insertion delay
and skew through the insertion of buffers or inverters along the clock path. The insertion
delay (ID) of a design is the worst arrival time to the sinks, and the skew is the difference
between the longest and shortest ID.

Nowadays, most of the designs are sequential and they need to be properly clocked for
the desired operation. Without CTS, the clock would usually be a high fanout net (HFN),
which is considered ideal for timing analysis before CTS. Nevertheless, it is important
to create a tree structure on this HFN to deliver the clock signal to all the sequential
elements (sinks) in the design possibly at the same time. Minimizing the ID reduces the
OCV impact and minimizing skew helps in timing closure. Some CAD tools work on
timing closure rather than minimizing skew which involves introducing additional skew in
some paths to improve timing in other paths referred as useful skew.

Prior to the clock tree synthesis, the layout designer needs to decide on the CTS
constraints. Assuming that the layout designer tries to achieve the best ID and skew
possible, we list below some important CTS constraints:

• Non Default Rule (NDR): these are special rules defined to make the clock more

20
Technical report: CoPHEE: Co-processor for Partially Homomorphic Encrypted

Execution

Figure 11: Placement distribution (binary extended GCD: red; interleaved modular
multiplier: green; modular exponentiation: blue; other modules: purple).

Figure 12: TRNG distribution (red).

robust and avoid signal integrity issues in the design.

• Clock Routing Layers: the designer tries to route clock nets mostly in higher layers
as they are less resistive and hence lesser voltage drop. Thus, NDR rules can be
honoured easily. It addition, it does not affect much the signal routing in lower
layers.

• CLK Buffer/Inverter List: the layout designer need to make a decision on the
clock buffers/inverters that should be used for building the clock network. The
first decision is to to pick up the right threshold voltage group and then the proper
driving strength for these buffers/inverters. HVT cells consume less power but are
susceptible to On Chip Variation (OCV) while LVT cells consumes a lot of power.
Hence, generally RVT cells which are a midway between HVT and LVT are used for
CTS.

Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G. Tsoutsos and
Michail Maniatakos 21

Table 7: Buffers/inverters used for CTS

Buffers Inverters

BUFH_X4M_A9TR INV_X4M_A9TR
BUFH_X5M_A9TR INV_X5M_A9TR
BUFH_X6M_A9TR INV_X6M_A9TR
BUFH_X9M_A9TR INV_X9M_A9TR

Table 8: Post-CTS statistics

Parameter Value

clock name HCLK
CTS synthesis corner slow
Number of levels 45
Number of Sinks 67628
Number of clock tree buffers 9921
Global Skew 162 ps
Longest Insertion delay 2.410 ns
Shortest Insertion delay 2.248 ns
Standard cell utilization 43.63 %

We performed CTS using the buffers/inverters listed in Table 7 from the ARM standard
cell library. The middle part of the name indicates the driving strength of the cell (e.g.
X9M). As we discussed in the CTS constraints above, this list of buffers are RVT cells of
medium driving strength helping us to achieve reduced OCV, robust clock network and
less power.

A Non-Default Rule (NDR) of double width and double spacing was created and
assigned to the clock trunk nets. Trunk nets are all the clock nets except those connected
to sinks directly. Clock nets were then routed using metal layers M4, M5, BA, and BB,
and are assigned as soft fixed. Being soft fixed, their change, during signal routing is
restricted and, thus, keep the clock network intact. This was followed by a multi-corner
optimization for fixing design rule violations, setup and hold timing closure. Table 8 shows
post-CTS statistics. It describes important metrics like the insertion delay, skew, clock
tree buffer/inverter count, etc. The layout designer considers these metrics to evaluate
how good is the clock tree. We achieved a decent skew of 162 ps with nominal count of
clock buffers/inverters.

4.1.6 Signal Routing and Optimization

The process of establishing physical connectivity between the gates using available metal
layers, based on the logical connectivity in the design is termed signal routing. A
standard router provided by CAD tools follows all the routing guidelines or rules from
the foundry and ensures that the design is completely routed with no opens or DRC
violations. Congestion, cross-talk, and timing are also important parameters considered
during routing. In the cases where the design is unroutable or ends up with opens or
DRC or timing violations, the reason needs to be identified and suitable fixes applied.
Some fixes may even need to go back to floorplan stage. Then, the design goes again
through various stages and the routing stage to verify the fix. Before routing, parasitics
are estimated based on a basic trial routing. Trial route is often used to estimate timing
and congestion and may differ from actual detail route. This difference leads to deviation
of post route timing results from pre route. In order to recover from any DRV/timing
violation which might have been caused by these routing differences, further round of
optimization involving mostly buffer addition/deletion or up/down sizing is done .

22
Technical report: CoPHEE: Co-processor for Partially Homomorphic Encrypted

Execution

Table 9: Design statistics through PnR

Parameter Initial Place CTS Route

of Standard cells 693333 775548 784795 786526
of Sequential cells 67628 67628 67628 67628
of Combinational cells 625708 707923 717170 718901
of Buffer/Inverter cells 91139 707923 175163 176894
Standard Cell Utilization 35.45 % 43.44 % 46.35 % 46.56 %
of Signal nets 695425 777637 771789 773520
HVT cells 100 % 55.8 % 67.7 % 67.8 %
RVT cells 0 % 44.2 % 32.3 % 32.2 %
Total wire length (µm) NA NA 1242079 46668040

Table 10: Redundant via statistics

Layer # of
multi-cut vias

of total
vias

% of
multi-cut vias

V1 2003289 2579845 77.65
V2 2129266 246275 86.46
V3 688693 869281 79.23
V4 417410 544818 76.61
WT 76473 134395 56.90
WA 59085 100430 58.83

Design for yield requires redundant vias to be inserted wherever possible. Connectivity
between metal layers are made possible with vias or cuts between them. A single via is
enough for establishing the connectivity, but multiple vias for the same connection safe
guard the connection from possible malformation of vias during manufacturing. The white
spaces in the design are then filled with decoupling capacitance fillers and normal standard
cell fillers. Decoupling capacitance (DCAP) fillers are special fillers available in the library
that can store some charge and deliver in case of sudden dynamic requirement of power.

We took the optimized post-CTS database and followed the same procedure described
above to generate a DRC and a timing clean layout database. The analysis stage after
PnR requires the design information to be passed on to it in some specific formats. For
this purpose, we dump the DEF, GDSII, formal netlist and LVS netlist. The DEF (Design
Exchange Format) captures all the design information needed for signoff parasitic extraction.
The GDSII carries the design information for physical verification. Formal netlist is used
for formal verification and the LVS netlist is for LVS in physical verification. Both formal
and LVS netlists are similar, except that the LVS netlist also contains physical-only cells
(e.g. filler cells, tap cells) and the PG pin connections. Table 10 shows the percentage of
redundant vias for various via layers. We were able to achieve more than 75 % conversion
of single to multi-cuts for lower via layers V1, V2, V3, V4, but a lower percentage for
higher layers. Please note that V1 is the via that connects Metal 1 to Metal 2 and so on.
Table 9 shows an interesting design statistics over various stages in the PnR. Please note
the increase in the standard cell count as the design move from initial to final routing
stage. It can be noted as evident from the buffers/inverters count that this is primarily
because of the buffers/inverters inserted in the design to fix design rule violations, clock
tree synthesis and timing fixes. The design started with 100 % HVT cells and ended up
with 67.8 %. They were swapped with RVT cells, also for timing and DRV fixes. Wire
length numbers for CTS captures only clock net wire length while for routing is the entire
nets route lengths.

Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G. Tsoutsos and
Michail Maniatakos 23

4.2 SignOff Analysis
After PnR, SignOff analysis qualifies the design for fabrication. Implementation tools
are less accurate compared to signoff tools. This is primarily because of the trade-off
between turn around time and accuracy. Therefore, SignOff analysis is required for static
timing analysis (STA), physical verification involving DRC and LVS, and rail analysis.
Formal verification is also performed for logic equivalence between the final netlist from
PnR and the initial netlist from synthesis.

4.2.1 Static Timing Analysis

Static timing analysis (STA) is the timing evaluation of the final layout in SignOff
timing tool (primeTimeSI), using an accurate parasitic data from signOff extracter (starRC).
That is necessary because, PnR tools usually uses quick and inaccurate parasitic extraction
for timing evaluation of the layout through out various stages, since an accurate parasitic
extraction takes considerable more time than the normal extraction generally employed by
PnR tools. For that reason, we need to analyze the final layout with signoff extraction
and timing analysis tools.

An STA tool performs timing analysis after reading in the design netlist, an accurate
parasitic data, and timing library in order to create various violation reports. The layout
designer goes through these reports and generate fixes for them if required. The fixes are
implemented in the PnR tool which is followed by a new signoff extraction and STA. This
process is termed Engineering Change Order (ECO).

The parasitcs are extracted from the DEF dumped from final DRC clean layout using
StarRC, a signoff extraction tool.2 That provide us the SPEF (Standard Parasitic Exchange
Format), which is fed into primeTimeSI (a static timing analyzer tool) along with the
netlist for timing analysis. We used an uncertainty of 200ps for setup, and 50ps for hold as
recommended by Global Foundries. The design is also analyzed for design rule violations,
such as the maximum transition, capacitance, and fanout. The few violations we had after
the initial STA were fixed using ECO.
Variation in fabrication parameters can cause the cells to be slow, typical or fast. These
are referred as process corners. A device manufactured in slow process corner would
operate slow while one fabricated in fast process corner would operate fast. In addition
device timing characteristics also varies with change in operating temperature and supply
voltage. Gate delay increases with, increase in temperature and decrease in operating
voltage. Similarly RC (Resistance and Capacitance) of the interconnects are also modelled
for worst, typ and best corners. Hence designer need to analyze timing in all these
possible combinations (scenarios) of process, voltage and temperature and RC corners to
ensure the performance of the chip. Timing libraries for these possible operating voltages
and temperatures are obtained as a part of standard cell library kit. SignOff extraction
generates SPEF for each of the RC corners. Table 11 list various scenarios for which setup
and hold timing were checked before tapeout.

4.2.2 Physical Verification

Physical verification (PV) is the process of verifying the final layout against foundry
manufacturing rules. It involves Design Rule Check (DRC), Layout Versus Schematic (LVS)
and Antenna checks. A clean DRC layout from PnR with no shorts, spacing violation
or opens still need to go through signoff PV in order to to be ready for tapeout. Layout
information dumped in the GDSII format from the final post-route optimized layout is
read by the layout tool (Virtuoso) along with the GDSII files for all the primitives used in

2We scaled the resistance and capacitance by 5% in the PnR tool in order to fix a slight the miscorrelation
that we observed between PnR and STA timing results.

24
Technical report: CoPHEE: Co-processor for Partially Homomorphic Encrypted

Execution

Table 11: Timing scenarios
Process

(P)
Voltage

(V)
Temp.
(◦C) RC Timing

checked
Slow 1.08 125 Worst Setup, hold
Slow 1.08 125 RC best Setup, hold

Typical 1.2 25 RC typical Setup, hold
Fast 1.32 125 RC worst hold
Fast 1.32 125 RC best hold
Fast 1.32 -40 RC worst hold
Fast 1.32 -40 RC best hold

Figure 13: Chip GDS view from Virtuoso.

the design. This process is called streamIn. It merges the information from the primitive
GDS to the design GDS.

The next step is to place a seal ring around the design as per foundry guidelines.
A streamOut process from Virtuoso now dumps a complete design GDS. We take this
GDS through an additional process to insert dummy metal/poly fills to meet the foundry
metal/poly density requirements. This process is done using tool Calibre with the fill
insertion script provided by MOSIS.

The fill GDS obtained from Calibre is merged with the design GDS in virtuoso and
a final design GDS ready for DRC/LVS analysis is written. We used Cadence PVS tool
to run through DRC, LVS and Antenna checks. Any violations noticed were fixed and
the checks rerun to ensure a clean GDS for the tapeout. Figure 13 shows an image of
design layout from Virtuoso after the streamIn process and addition of seal ring. Thin
lines running around the chip boundary with diagonal routing around corners is the seal
ring.

4.2.3 Rail Analysis

Analysis of voltage drop and ground bounce in its static and dynamic operations is termed
rail analysis. If the drop is beyond certain limit, it affects the performance of the
layout. The higher the voltage drop (IR), the higher the delay of gates, causing timing
failure depending on the magnitude of the drop. Any IR violations observed in the analysis
has to be fixed in the implementation tool and re-analyzed. Static drops are usually fixed
by strengthening power structure. Dynamic drop fixes may include downsizing of high

Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G. Tsoutsos and
Michail Maniatakos 25

Figure 14: Chip static rail drop. The red region has the most static drop and the dark
blue the least.

Figure 15: Chip dynamic rail drop.

driving strength cells or placing gates away from them and addition of DCAP (Decoupling
cap) fillers.

We have used the Synopsys primeRail for rail analysis. The milkyway database and
signal parasitics are imported to the tool to perform the analysis. Because we had a robust
power structure, there was no static or dynamic violation. The worst static and dynamic
drop was 10.6 mV and 24 mV, respectively. Figure 14 shows the static effective rail voltage
drop. Legends shows color corresponding to the drop values. Most of our power pads are
situated to the left of the chip and hence the highest static drop is seen to the right side
(red in the image). Dynamic maps are shown in Figure 15. Dynamic drop we observed are
specific to some gates and are seen as red spots in the image.

5 Post-Silicon Validation
Once the chip comes back from the foundry, one needs to verify if it meets all the
specification that it is designed for. This process is known as post-silicon validation.

26
Technical report: CoPHEE: Co-processor for Partially Homomorphic Encrypted

Execution

Figure 16: CoPHEE die in DIP-28 package.

Figure 17: Photo of CoPHEE experimental setup.

In an industry standard chip design flow, where there is a huge volume of chip manufactured,
chips are also tested for manufacturing defects. To assist this test, separate testing circuits
called Design For Testability (DFT) are inserted during design phase. Identifying such
defects, if any, helps fixing the fabrication flow and, thus, improve the yield (less number of
chip with defect). In addition, it helps to ship only working chips to customers. We have
skipped this step of testing for manufacturing defects as our devices are not produced as
part of a high volume manufacturing process, but in a controlled single wafer manufacturing
process. Thus, the chance of having such defects is very low. Moreover, one needs high-end
costly testers for such testing.

Figure 16 shows the CoPHEE chip received from fabrication. CoPHEE was packaged in
a 28 pin DIP, and was connected to a breadboard for silicon bring up and testing. For
interfacing with a host computer, we used a UMFT230XA development board that features
an FTDI chip for USB-to-UART conversion. The UMFT230XA board can provide a 3.3V
supply for the IO pad of CoPHEE, as well as a clock output (used as the clock source of
the chip). Moreover, the required 1.2V supply was generated using a DC-DC adjustable
step-down module that converts the 5V source of the UMFT230XA board. In addition, an
Arduino was responsible for receiving interrupt signals from CoPHEE and for transmitting
these events to the host computer. Our post-silicon validation setup is shown in Fig. 17.

Our post-silicon validation confirmed that the fabricated chip is fully functional, with
a discovered bug in the “debug read” path that reads random numbers and tests their
randomness. Specifically, there was a hard-coded bit-width value in the read path of the
configuration registers, which prevents us from reading the debug register (last register in
the path). Interestingly, this bug escaped our FPGA-based validation, as the latter was
performed on the scaled-down version where the 256 bit-width was incorrectly hard-coded.

Mohammed Nabeel, Mohammed Ashraf, Eduardo Chielle, Nektarios G. Tsoutsos and
Michail Maniatakos 27

References
[EHK+03] Michael Epstein, Laszlo Hars, Raymond Krasinski, Martin Rosner, and Hao

Zheng. Design and implementation of a true random number generator based on
digital circuit artifacts. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 152–165. Springer, 2003.

[Lim] ARM Limited. Amba 3 ahb-lite protocol specification. http:
//infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0033a/
index.html(accessed: 03.27.2018).

[MTM16] Oleg Mazonka, Nektarios Georgios Tsoutsos, and Michail Maniatakos. Cryp-
toleq: A heterogeneous abstract machine for encrypted and unencrypted
computation. IEEE Transactions on Information Forensics and Security,
11(9):2123–2138, 2016.

[MVOV96] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of
Applied Cryptography. CRC press, 1996.

[NAC+19] M. Nabeel, M. Ashraf, E. Chielle, N.G. Tsoutsos, and M. Maniatakos. Cophee:
Co-processor for partially homomorphic encrypted execution. In IEEE
Hardware-Oriented Security and Trust (HOST), 2019.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc .ihi0033a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc .ihi0033a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc .ihi0033a/index.html

	CoPHEE Design Flow Overview
	External interface
	Internal data flow
	Design blocks

	Verification
	Synthesis
	Physical Design
	Place and Route (PnR)
	SignOff Analysis

	Post-Silicon Validation

