
A Permissionless Proof-of-Stake Blockchain
with Best-Possible Unpredictability

(or, How to Mimic Bitcoin via Proof-of-Stake)
∗

Lei Fan
†

Jonathan Katz
‡

Phuc �ai
§

Hong-Sheng Zhou
¶

May 23, 2021

Abstract

To eliminate the unnecessary waste of energy and computing power in Bitcoin, in this paper, we develop

a novel proof-of-stake consensus in the permissionless se�ing. Among other features, our design achieves

the “best possible” unpredictability for permissionless proof-of-stake protocols. As shown by Brown-Cohen et

al (EC 2019), unpredictability property is critical for proof-of-stake consensus in the rational se�ing; the �ip

side of unpredictability property, i.e., predictability can be abused by the a�ackers for launching strengthened

version of multiple a�acks such as sel�sh-mining and bribing, against proof-of-stake systems.

We are inspired by Bitcoin’s “block-by-block” design, and we show that a direct and natural mimic of

Bitcoin’s design via proof-of-stake is secure if the majority 73% of stake is honest. Our result relies on an

interesting upper bound of extending proof-of-stake blockchain we establish: players (who may extend all

chains) can generate blockchain at most 2.72× faster than playing the basic strategy of extending the longest

chain.

We introduce a novel strategy called “D-distance-greedy” strategy, which enables us to construct a class

of secure proof-of-stake blockchain protocols, against an arbitrary adversary, even assuming much smaller

(than 73% of) stake is honest. To enable a thorough security analysis in the cryptographic se�ing, we develop

several new techniques: for example, to show the chain growth property, we represent the chain extension

process via a Markov chain, and then develop a random walk on the Markov chain; to prove the common

pre�x property, we introduce a new concept called “virtual chains”, and then present a reduction from the

regular version of common pre�x to “common pre�x w.r.t. virtual chains”.

Finally, we note that, ours is the �rst “block-by-block” style of proof-of-stake in the permissionless se�ing,

naturally mimicking Bitcoin’s design; it turns out that this feature, again allows us to achieve the “best possible”

unpredictability property. Other existing provably secure permissionless proof-of-stake solutions are all in an

“epoch-by-epoch” style, and thus cannot achieve the best possible unpredictability.

∗

�is is replacement of earlier versions of the work [30, 31, 29]. Several technical issues in previous versions have been addressed;

please see Section 6.3 for details.

†

Shanghai Jiaotong University, Email: fanlei@sjtu.edu.cn

‡

University of Maryland, Email: jkatz@cs.umd.edu

§

Virginia Commonwealth University, Email: thaipd@vcu.edu

¶

Virginia Commonwealth University, Email: hszhou@vcu.edu

Contents
1 Introduction 1

1.1 Our result . 2

1.2 Technical roadmap . 2

2 Security Model (in the Cryptographic Setting) 6
2.1 Blockchain protocol executions . 6

2.2 Security properties . 7

3 Proof-of-stake Core-chain, the Basic Version 7
3.1 Our core-chain protocol . 8

3.2 Security analysis, high-level ideas . 9

3.3 Proofs ideas of the security analysis . 10

4 Greedy Strategies, and an Improved Version 11
4.1 Greedy strategies . 12

4.2 �e modi�ed core-chain protocol Πcore◦
. 13

4.3 Security analysis . 14

5 (Un)Predictability in the Rational Setting 19

6 Related Work 21
6.1 Cryptocurrency and proof-of-work . 21

6.2 Proof-of-stake . 21

6.3 Earlier versions of this work . 23

A Supplemental Material for Section 3 27
A.1 �e probability of generating blocks in a round . 27

A.2 More materials for e�ective stake of the adversary . 27

A.3 Security analysis for the basic version of core-chain protocol . 30

B Supplemental Material for Section 4 35
B.1 Achieving chain growth with ∆ = 1 . 35

B.2 Achieving chain growth with arbitrary ∆ . 40

B.3 Achieving common pre�x . 41

B.4 Achieving chain quality . 44

B.5 Empirical ampli�cation ratio . 44

C From Core-chain to Blockchain 44
C.1 Ledger and transactions . 45

C.2 Main blockchain protocol . 46

C.3 Analysis of blockchain protocol . 47

D Defending against Adaptive Registration 49
D.1 �e modi�ed blockchain protocol Πmain•

. 49

D.2 Security analysis . 52

E Extensions 54

F Additional Attacks 54

G Additional Preliminaries 55

1 Introduction

Cryptocurrencies like Bitcoin [47] have proven to be a phenomenal success. �e underlying techniques hold

huge promise to change the future of �nancial transactions, and eventually the way people and companies com-

pute, collaborate, and interact. At the heart of these cryptocurrency systems are distributed blockchain pro-

tocols, jointly executed by a large-scale peer-to-peer network of nodes (players) via the so-called proof-of-work
(PoW) mechanism [26, 4]. �ese blockchain protocols implement a highly trustworthy, append-only, and always-

available public ledger, which can then be used to implement a global payment system (as in Bitcoin) or a global

computer (as in Ethereum [15]). Bitcoin’s design has unique permissionless features: the protocol can be executed

in an open network environment in which all miners/players are allowed to join/leave the protocol execution at

any moment they want. �e protocol has very low communication complexity and can scale to a large network

of nodes.

Proof-of-work mechanism. In Bitcoin, the players follow a consensus protocol to maintain a growing list

of records, called transactions. �e transactions are stored in blocks that are via cryptographic hashes. More

concretely, the player, who can �nd a valid solution (a random nonce) to solve the hash-based proof-of-work
puzzle will become the block producer and has the right to generate the next block. �e newly generated block

will be appended to the longest chain by including the hash value of the last block on the longest chain. Here,

to �nd the solutions of the hash-based proof-of-work puzzles, proof-of-work based system has “wasted” a huge

amount of computing resources over the past several years.

From proof-of-work to proof-of-stake. It is de�nitely desirable to utilize alternative resources such as coins
(also called stakes) to secure a blockchain. If successful, the new system will be “green” in the sense that it does

not require a huge amount of computing power to back up its security. A�empts have been made: proof-of-

stake (PoS) mechanisms have been widely discussed in the cryptocurrency community (e.g., [1, 44, 55, 9]). In

a nutshell, in a proof-of-stake based blockchain protocol, players are expected to prove ownership of a certain

number of stakes (coins); only the players that can provide such a proof are allowed to participate in the process

of maintaining the blockchain. In order to extend the chain, the players make a�empt to �nd the solutions of

the hash-based proof-of-stake puzzles. Here, the solutions are generated based on the information of the stakes, a

time step (round number), and a public randomness. �us, the computational cost to �nd the solutions are very

“cheap”.

From ad hoc to rigorous designs. While proof-of-stake (PoS) mechanisms have been widely discussed in the

cryptocurrency community (e.g., [1, 44, 55, 9]), these designs are carried out in an ad hoc style. We note that, this

is the same for proof-of-work based blockchain design: the original Bitcoin design is indeed in an ad hoc style.

Recent trend is to follow a rigorous approach: security concerns are carefully de�ned and the designed protocols

are mathmatically analyzed.

Notable e�orts include the work by Garay et al [33] (and later improved by Pass et al [49]), for analyzing

proof-of-work based blockchain in Bitcoin in the cryptographic se�ing where the malicious players could deviate

from the protocol arbitrarily, while honest players always stick to the protocol instructions. �ere, it has been

demonstrated that Bitcoin blockchain can achieve important security properties called common pre�x, chain

quality, and chain growth; see Section 2.2 for the de�nitions. In addition, research e�orts have been made for

proof-of-stake based blockchain protocols; e.g., [23, 22].

In the rational se�ing, rigorous research e�orts have been carried out, too. For example, in this se�ing,

Brown-Cohen et al. [14], recently studied the security property called unpredictability for proof-of-stake proto-

cols. Note that, now all players are rational in the sense of seeking the maximum bene�t. Intuitively, the �ip

side of this security property, i.e., predictability means that (certain) protocol players are aware that they will be

selected to generate blocks of blockchain, before they actually generate the blocks. �is “power” of predictability

can be abused by the a�ackers so that they can reduce the di�culty/cost of performing many a�acks such as

sel�sh-mining, or bribing. As a result, the consensus protocol becomes more vulnerable. Ideally, we expect a

1

proof-of-stake protocol can achieve the (best possible) unpredictability property so that the a�acks based on the

predictability can be addressed as much as possible.

At this point, we ask the following research question:

Is that possible to design a permissionless proof-of-stake blockchain which achieve

1. the fundamental security properties such as common pre�x, chain quality, and chain growth, in
the cryptographic se�ing, and

2. the best possible unpredictability in the rational se�ing,

at the same time ?

1.1 Our result

We give an a�rmative answer to the above research question. We are inspired by Bitcoin’s design of “per block”,

or “block-by-block” consensus. We remark that, except that our design here, good proof-of-stake solutions al-

ready exist in the permissionless se�ing, however, they all in the “per epoch”, or “epoch-by-epoch” format. �is

immediately implies that, these solutions cannot achieve best possible unpredicatability in the rational se�ing.

While mimicking Bitcoin’s “per block” design may give us a good starting point, it turns out it is non-trivial to

develop a “per block” version for proof of stake. We thus highlight some design and analysis techniques here, and

in next subsection we will illustrate the details. We show that a direct and natural mimic of Bitcoin’s design via

proof-of-stake is secure if the majority 73% of stake is honest. Our result relies on an interesting upper bound of

extending proof-of-stake blockchain we establish: players (who may extend all chains) can generate blockchain

at most 2.7 times faster than playing the basic strategy of extending the longest chain.

We introduce a novel design strategy called “D-distance-greedy” strategy, which enables us to construct a

class of secure proof-of-stake blockchain protocols, against an arbitrary adversary, even assuming much smaller

amount of stake is honest. To enable a thorough security analysis in the cryptographic se�ing, we develop

several new analysis techniques: to show the chain growth property, we represent the chain extension process

via a Markov chain, and then develop a random walk on the Markov chain; to prove the common pre�x property,

we introduce a new concept called “virtual chains”, and then present a reduction from the regular version of

common pre�x to “common pre�x w.r.t. virtual chains”;

1.2 Technical roadmap

Warm-up: Bitcoin’s design and proof-of-work (PoW) based core-chain. We �rst brie�y review Bitcoin’s

design ideas [47]. �e blockchain consists of a chain of ordered blocks B0,B1,B2, . . ., and PoW-players in each

round (or time slot) a�empt to extend the blockchain with a new block by solving hash-based proof-of-work puz-

zles [26, 4]. �e puzzle for each miner is de�ned by (1) the “context”, i.e., the latest block in the longest blockchain

in the miner’s view, and (2) the “payload”, i.e., the set of valid transactions to be included in the new block; and

a valid puzzle solution1
to the problem is de�ned by a hash inequality. More concretely, assume the longest

blockchain for a miner consists of B0,B1,B2, . . . ,Bi, and Bi is the latest block. �e miner now a�empts to �nd

a valid puzzle solution nonce which can satisfy the following hash inequality: H(hash(Bi), payload , nonce) < T,

where H : {0, 1}∗ → {0, 1}κ and hash : {0, 1}∗ → {0, 1}κ are two hash functions, payload ∈ {0, 1}∗ de-

notes the set of valid transactions to be included in the new block, and T ∈ [1..2κ] denotes the target of proof-

of-work puzzle di�culty (which speci�es how di�cult to identify a puzzle solution). In the case that a new

valid solution, nonce, is identi�ed, such a solution can be used for de�ning a new valid block Bi+1 as follows:

Bi+1 := 〈hi, payload , nonce〉, where hi := hash(Bi). �en the new block Bi+1 will be revealed by the miner,

1

�e payload can be considered as part of the solution.

2

and broadcasted to the network and then accepted by the remaining miners in the system. (Note that, the above

description is oversimpli�ed.)

We may consider a further simpli�ed version of the above blockchain protocol, called Bitcoin core-chain
protocol. In the core-chain protocol, the payload will be ignored, and now puzzle is based onH(hash(Bi), nonce) <
T, and the new block Bi+1 is de�ned as Bi+1 := 〈hi, nonce〉. (We o�en call the blocks in a blockchain protocol,

blocks, while the blocks in a core-chain protocol, block-cores.)
Next, we describe our construction ideas. To make our presentation accessible, we start with a direct mimic

of Bitcoin’s design, and present the basic version of our proof-of-stake based core-chain protocol, Πcore
; then we

improve this basic version step by step.

Step 1,Πcore: Proof-of-stake (PoS) based core-chain, the basic version. We intend to mimic Bitcoin’s design.

Our proof-of-stake based protocol will be maintained by PoS-players (i.e., stakeholders); We �rst consider the

basic strategy that all honest players make a�empts to extend the longest chain with a new block. Our design is

very similar to that in Bitcoin design: the context here consists of the latest block-core in the longest core-chain,

the payload in the core-chain is empty, the puzzle solution consists of the current time, a PoS-player’s veri�cation

key and his signature of the context. More concretely, assume the longest core-chain for a PoS-player consists of

the following ordered block-cores, B1,B2, . . . ,Bi; let r denote the current time step (or round number); consider

a unique digital signature scheme
2

[46] (uKeyGen, uKeyVer, uSign, uVerify), and assume the PoS-player holds

the signing-veri�cation key pair (sk, pk). If the PoS-player is chosen, then the following hash inequality holds:

H(hash(Bi), r, pk, σ) < T, where σ := uSign
sk

(hi, r), and hi := hash(Bi). Here, 〈r, pk, σ, 〉 can be considered as

the solution of the hash-based proof-of-work puzzle. �e new block-coreBi+1 is de�ned asBi+1 := 〈hi, r, pk, σ〉.
Note that, the unforgeability of the unique signature scheme will ensure that, a malicious PoS-player will

not be able to forge a signature for a given context. Further, the uniqueness of the unique signature scheme will

ensure that the malicious PoS-player will generate exactly one valid signature for the given context. When the

adversary (1) follows the basic strategy, i.e., extending the single chain, and (2) has all stakes registered without

being aware of the state of protocol execution, then our protocol can be viewed as a proof-of-stake analogy of

Bitcoin; in each round, a PoS player, which can be malicious or honest, will generate exactly one solution for a

given context. �e security properties i.e., chain growth, chain quality, and common pre�x can be demonstrated

similarly as in Bitcoin consensus [33, 50].

However, in the proof-of-stake se�ing, it is very cheap to extend a chain. Some proof-of-stake players may

follow a strategy to extend all chains, expecting to obtain additional advantage for extending the best chain. �is

introduces di�culty for security analysis. Furthermore, an arbitrary adversary can choose to extend some critical

chains and seek a more sophisticated a�ack. For example, the adversary may extend the weaker/shorter chains

only; this could create a scenario that, two (or multiple) chains take turns to be the best chain; as a consequence,

the common pre�x property may not be achieved. �us, it is extremely challenging to defend against an arbitrary

adversary.

Interestingly, we demonstrate a very useful upper bound: if a PoS player extends all chains, then the player

can improve his/her chance of extending chains with a factor at most e where e ≈ 2.718. Intuitively, we model

the chain extension of the adversary as a random tree. To bound the growth rate of the chain that a generated by

the adversary, we �rst bound the number of branches in the random tree. �en, based on the number of branches

and the growth rate of each branch, we can bound the maximum length of all branches in the random tree. �is

upper bound allows us to develop secure core-chain protocols, and we have the following theorem. See Section 3

for more details.

�eorem 1.1 (informal). Consider core-chain protocol Πcore where all honest players follow the basic strategy of
extending the longest chain, while malicious players follow an arbitrary strategy; in addition, all players have their
stakes registered without being aware of the state of the protocol execution. Assume the involved signature scheme

2

We use the unique digital signature scheme to ensure the deterministic of the solution.

3

is a secure unique digital signature scheme. If more than 73% stakes are honest, then the protocol Πcore can achieve
chain growth, chain quality, and common pre�x properties.

Step 2, Πcore◦: Improved version via distance-greedy strategy. We now show how to deal with an arbitrary
adversary via smaller portion of honest stakes. Our key observation is that, honest players play a carefully
designed strategy of extending the chains. �is is non-trivial: as discussed before, an arbitrary adversary could

break the common pre�x property by extending the weaker chains.

We introduce a novel, “D-distance-greedy” (where D is a positive integer) strategy. A D-distance-greedy player

will make a�empts to extend a set of best chains; these chains are very “close” to the best chain. We say a chain

is “close” to the best chain i� a�er removing the last D blocks from the best chain, we can obtain a pre�x of

that chain. In other words, all the chains in the set of best chains share a common pre�x that can be obtained

by removing the last D blocks from the best chain. Note that, by following the D-distance-greedy strategy, the

honest miners extend the chain set that share the same pre�x. �e D-distance-greedy strategy can have common

pre�x property enabled, which can e�ectively defend against an arbitrary adversary. If majority of stakes are

honest, then the protocol can achieve the security properties. We can have the following theorem. See Section 4

for more details.

�eorem 1.2 (informal). Consider core-chain protocol Πcore◦ where honest players follow the 2-distance-greedy
strategy (resp., 0-distance-greedy strategy) while adversarial players follow an arbitrary strategy; in addition, all
players have their stakes registered without being aware of the state of the protocol execution. Assume the involved
signature scheme is a secure unique digital signature scheme. If more than 66.2% stakes (resp., 73% stakes) are
honest, then the protocol Πcore◦ can achieve chain growth, chain quality, and common pre�x properties.

We remark that the security analysis of our protocol is highly non-trivial. For chain growth property, in the

existing protocols, as the honest players only extend a single longest chain, the analysis of the chain growth

is quite straightforward. Roughly speaking, the chain growth equals the number of blocks that are generated

by honest players. In our protocol, the honest players are allowed to extend multiple chains that are “close” to

the longest chain. While this helps to defend against nothing-at-stake a�acks, it also causes di�culty in the

analysis. Even when the honest players generate new blocks, the length of the longest chain may not necessarily

increase. To analyze the chain growth property, we develop a random work in a Markov chain that consists of

multiple states, where each state represents the number rounds that has passed since the previous longest chain

is generated. Intuitively, the set of best chains, that is extended by the honest players, grows bigger through time.

�us, a�er each round, we move to a state that represents a bigger set of best chains in the Markov chain. Until a

new longest chain is generated, some of the chains will be removed from the set of best chains (since the length of

the best chain increases, a�er removing the last D blocks from the best chain, we cannot obtain a pre�x of those

chains). Note that, the probability that the honest players can create a new longest chain is proportional to the

number of good chains, i.e., the chain that have the same length with the current longest chain in the set of best

chain. �us, we can use the Markov chain to approximate the chain growth of the honest players. Furthermore,

to capture the network delay, we introduce “delayed states” into the Markov chain.

In the previous analysis for Bitcoin’s proof-of-work consensus [33, 49], the key observation to prove common

pre�x property is that the honest players only contribute at most one block at a block height. �us, to break

common pre�x property, the adversary must generate more blocks than the honest players do. �is is impossible

since the honest players control the majority of mining power. However, our proof-of-stake protocol allows the

players to extend from multiple chains to defend against nothing-at-stake a�acks. �is will make the analysis

more di�cult since the honest players may contribute more than one block at a block height. �us, we introduce a

new concept of virtual block set and virtual chains. Jumping ahead, we can prove the common pre�x of the virtual

chain due to the fact that honest players contribute at most one virtual block set in a block height. In detail, a

virtual block set consists of multiple blocks with the same height that are “close” to each other. Here, we say two

blocks are “close” if the chains from the genesis block to those two blocks are “close”, i.e., a�er removing the last

4

D blocks from a chain, we can obtain a pre�x of the other chain. Similar to the normal chain, the virtual chain

consists of multiple virtual block sets that are linked together. As we mentioned above, on each block height,

there is at most one honest virtual block set. (Here, we say a virtual block set is honest if the �rst generated

block in the virtual block set is generated by an honest player.) �us, to break the common pre�x property,

the adversary needs to generate more virtual block sets than the honest players. �is requires the adversary to

control the majority of the stakes (which contradicts to our assumption). Finally, since the blocks in the same

virtual block set are “close”, we can show common pre�x w.r.t. the virtual chains implies the regular common

pre�x property.

Step 3, Πmain: From the core-chain to a blockchain. In this step, we will “upgrade” the core-chain protocol to

a regular blockchain protocol so that payload (e.g., the transactions) can be included. Intuitively, the core-chain

can be viewed as a (biased) randomness beacon; we can use the beacon to select a PoS-player to generate a new

block so that the blockchain can be extended. More concretely, once a new block-core Bi+1 is generated by a

PoS-player (in the core-chain protocol), then the PoS-player is selected for generating the new block B̃i+1, in

the following format: B̃i+1 = 〈hash(B̃i),Bi+1, Xi+1, p̃k, σ̃〉, where σ̃ ← Sign
s̃k

(h̃i,Bi+1, Xi) , Xi+1 is payload

and h̃i := hash(B̃i), and Bi+1 := 〈hi, r, pk, σ〉. Here the PoS-player holds two pairs of keys, i.e., (sk, pk)
of the unique signature scheme (uKeyGen, uSign, uVerify), and (s̃k, p̃k) of a regular

3
digital signature scheme

(KeyGen,Sign,Verify). Now we a�ach each block to the core-chain via the corresponding block-core; we can

reduce the security of the blockchain protocol to the security of the core-chain protocol. Please also see Figure 8

in Appendix for a pictorial illustration. Finally, we have the theorem; See Section C for more details.

Step 4, Πmain•: Securing the core-chain further, against adaptive stake registration. �e protocol Πcore◦

above is expected to be executed in a less realistic se�ing where all players must have their stakes registered

without being aware of the state of the protocol execution. Recall that the hash inequalityH(context , solution) <
T is used in the process of extending the chains. In reality, an adversary may have a stake registered based on
the state of the protocol execution. More concretely, the adversary can play a “rejection re-sampling” strategy

to generate keys, and then have his/her stake registered adaptively: the adversary �rst runs the key generation

algorithm to obtain a key-pair (pk, sk), and then checks if the corresponding (pk, σ) is a valid solution to the

hash inequality; if not, the adversary re-samples a new key-pair. �is adaptive stake registration strategy enables

the adversary (to be selected) to extend the chains with much higher probability. To address this concern, we

introduce new ideas to our protocol design: to extend the chains with new blocks, a player must have his/her stake

registered a speci�ed number of rounds earlier. Now, the players do not know about the state of the blockchain

when they can start extending the chain. �us, they cannot perform the “rejection re-sampling” strategy to

increase their chance of creating new blocks. See Section D for more details.

Best possible unpredictability. We now move to the security analysis from the cryptographic se�ing to the

rational se�ing in which all players are seeking the maximum utility. Brown-Cohen et al have demonstrated

that it is important to achieve unpredictability property [14], as we discussed before. In Section 5, we show

that our design can achieve the best possible unpredictability. Our design, is the �rst “block-by-block” style of

proof-of-stake in the permissionless se�ing, closely mimicking Bitcoin’s design; this feature, allows us to achieve

the “best possible” unpredictability property. In contrast, other existing provably secure permissionless proof-of-

stake protocols (e.g., [42, 23, 5, 7, 22]), are all in a “epoch-by-epoch” style; the players can be c-predictable, where

c is the number of blocks in an epoch, and thus they cannot achieve the best possible unpredictability. Indeed,

at the beginning of any epoch, the public randomness is known by all players. �us, the players can predict

whether or not they can generate new blocks in that epoch.

Organization. �e remaining of the paper is organized as follows. In Section 2, we introduce an analysis

framework for proof-of-stake protocols. In Section 3, we construct the basic version of our proof-of-stake based

3

To achieve adaptive security, this regular digital signature scheme will be replaced by a forward-secure digital signature scheme [8].

We remark that, the core-chain protocols, i.e., the protocols without having payload included, in previous steps are adaptively secure.

5

core-chain protocol, and then provide the security analysis ideas. In Section 4, we investigate greedy strategies,

and develop a modi�ed proof-of-stake based core-chain protocol to defend against an arbitrary adversary. �en

we provide more details for the analysis of the modi�ed core-chain protocol against an arbitrary adversary. In

Section 5, discuss the predictability of our protocol, compare with existing protocols, and some predictability-

based a�acks. In Appendix C, we upgrade the core-chain protocol to a full-�edged blockchain protocol. In

Appendix D, we improve the modi�ed core-chain protocol further; the players are allowed to register their key-

pairs adaptively. In Appendix E, many extensions are provided. In Appendix F, we provide discussions on other

a�acks on our design.

2 Security Model (in the Cryptographic Setting)

In order to study the security of Bitcoin-like proof-of-work based protocols, Garay et al. [33] proposed a cryp-

tographic framework and showed that (a simpli�ed version of) Bitcoin protocol can achieve several important

security properties. �en, Pass et al. [49] strengthened Garay et al.’s analysis by considering a more realistic com-

munication network (i.e., partially synchronous network) in which messages from honest players can be delayed

with a bounded number of rounds. Below we de�ne a framework for analyzing proof-of-stake based blockchain

protocols. We note that we take many formulation ideas from the previous framework [33, 49].

2.1 Blockchain protocol executions

�e execution of proof-of-stake blockchain protocol Following Cane�i’s formulation of the “real world”

executions [17], we present an abstract model for proof-of-stake (PoS) blockchain protocol Π in the hybrid world

of the partially synchronous network communication functionality and some setup functionality.

We consider the execution of blockchain protocol Π that is directed by an environment Z(1κ) (where κ is a

security parameter), which activates a set P of PoS-players. Agreement on the �rst, so-called genesis block, is a

necessary condition in all common blockchains for the parties to achieve eventual consensus. �is block includes

the identities (e.g., public keys) and stake distribution of the player at the beginning of the protocol execution.

During the protocol execution the stake distribution can be changed when transactions are added to the ledger.

�e environment Z can “manage” protocol players through an adversary A that can dynamically corrupt

honest parties. More concretely, the protocol execution proceeds as follows. Each party in the execution is

initialized with an initial state including all initial public information e.g., a genesis block. �e environment Z

�rst actives the adversary A and provides instructions for the adversary. �e execution proceeds in rounds, and

in each round, a protocol party could be activated by the environment or the functionalities. Players are equipped

with (roughly synchronized) clocks that indicate the current round.

In each round r, each PoS-player P ∈ P, with a local state stater (note that state originally includes the

initial state), proceeds as follows. When PoS-player P is activated by the environment Z with the input x from

the environment, and potentially P receives subroutine output message (Message,P ′,m) for any P ′ ∈ P, from

the network, the PoS-player P interacts with the setup functionality and receives some output y .

Next, the PoS-player P executes the protocol Π on input its local state state , the current round r, an input

from the environment x , the value y received from the setup functionality, and the message m received from the

network; and then P obtains an updated local state stater+1 and an outgoing message m′, i.e.,{stater+1,m′} ←
Π(stater, r, x , y ,m). A�er that, P broadcast the message m′ to the network. Note that, messages are broadcasted

by an honest player are guaranteed to arrive at all other honest players within a maximum delay of ∆.

At any round r of the execution, Z can send message (Corrupt,P), where P ∈ P, to adversary A. �en A

will have access to the party’s local state and control P . Let EXECΠ,A,Z be a random variable denoting the joint

VIEW of all parties (i.e., all their inputs, random coins and messages received) in the above protocol execution;

note that this joint view fully determines the execution.

6

For simplicity, we focus on the idealized “�at” model where all PoS-players have the same number of stakes.

In section E, we discuss how to extend our main results in the idealized �at, static di�culty model to the more

realistic non-�at, adaptive di�culty se�ing. Protocol players are allowed to join the protocol execution

EXECΠ,A,Z. In the current version of our modeling, we assume that when (honest) PoS-players leave the protocol

execution, they will erase their own local internal information.
4

2.2 Security properties

Blockchain basics. A blockchain C consists of a sequence of ` concatenated blocks B0‖B1‖B2‖ · · · ‖B`, where

` ≥ 0 and B0 is the initial block (genesis block). We use len(C) to denote blockchain length, i.e., the number of

blocks in blockchain C; and here len(C) = `. We use sub blockchain (or subchain) for referring to segment of

a chain; here for example, C[0, `] refers to an entire blockchain, whereas C[j,m], with j ≥ 0 and m ≤ ` would

refer to a sub blockchain Bj‖ · · · ‖Bm. We use C[i] to denote the i-th block, Bi in blockchain C; here i denotes

the block height of Bi in chain C. If blockchain C is a pre�x of another blockchain C1, we write C � C1. If a chain

C is truncated the last κ blocks, we write C[¬κ].

For some A,Z, consider some VIEW in the support of EXEC(ΠV ,C)(A,Z, κ). We use the notation |VIEW| to

denote the number of rounds in the execution, VIEWr to denote the pre�x of VIEW up until round r, statei(VIEW)
denote the local state of player i in VIEW, Ci(VIEW) = C(statei(VIEW)) and Cri (VIEW) = Ci(VIEWr).

Chain growth, common pre�x, and chain quality. Previously, several fundamental security properties for

proof-of-work blockchain protocols have been de�ned: common pre�x property [33, 49], chain quality property
[33], and chain growth property [40]. Intuitively, the chain growth property states that the chains of honest players

should grow linearly to the number of rounds. �e common pre�x property indicates the consistency of any two

honest chains except the last κ blocks. �e chain quality property, aims at indicating the number of honest blocks’

contributions that are contained in a su�ciently long and continuous part of an honest chain. Speci�cally, for

parameters ` ∈ N and µ ∈ (0, 1), the ratio of honest input contributions in a continuous part of an honest chain

has a lower bounded µ. We follow the same path to de�ne the security properties for proof-of-stake blockchain

protocols. �e de�nitions for these properties are formally given as follows.

De�nition 2.1 (Chain growth). Consider a blockchain protocolΠwith a setP of players. �e chain growth property
with parameter g ∈ R, states: for any honest player P1 with local chain C1 at round r1, and honest player P2 with
local chain C2 at round r2, where P1,P2 ∈ P and r2 > r1, in the execution EXECΠ,A,Z, it holds that len(C2) −
len(C1) ≥ g(r2 − r1).

De�nition 2.2 (Common pre�x). Consider a blockchain protocol Π with a set P of players. �e common pre�x
property states the following: for any honest player P1 adopting local chain C1 at round r1, and honest player
P adopting local chain C at round r, in the execution EXECΠ,A,Z, where P1,P ∈ P and r ≤ r1, it holds that
C[¬κ] � C1.

De�nition 2.3 (Chain quality). Consider a blockchain protocol Π with a setP of players. �e chain quality property
with parameters µ, `, where µ ∈ R and ` ∈ N, states: for any honest player P ∈ P, with local chain C in round r,
in EXECΠ,A,Z, it holds, for large enough ` consecutive blocks of C, the ratio of honest blocks is at least µ.

3 Proof-of-stake Core-chain, the Basic Version

In this section, we describe the basic version of our core-chain protocol. Similar to Bitcoin design, to generate

new blocks, the players make a�empts to solve hash-based PoS puzzles, where the context consists of the latest

4

Players may sell their own secrete keys; this is out of scope of this paper.

7

block-core in the longest core-chain and the solution consists of the current time, a PoS-player’s veri�cation key

and the signature of the context.

In the analysis, we prove that our basic protocol is secure if 73% of the stake is honest. Note that, all players

including the adversary, must have their stake registered before the protocol execution starts. (Jumping ahead,

in Section 4 we present a be�er protocol, which is secure if 66.2% of the stake is honest. In Appendix D, we show

how to allow new players to join the system during the protocol execution.)

3.1 Our core-chain protocol

We now describe the core-chain protocol Πcore
; Please also refer to Algorithm 1 for details. In our design, the

following building blocks are used: 1) a unique digital signature scheme (uKeyGen, uKeyVer, uSign, uVerify);

2) hash functions H, hash for implementing hash inequality based puzzle and pointing to the previous block,

respectively. In high level, a PoS-player in the initialization phase, has itself registered to the system; then the

player participates in the process of extending the blockchain, along with other players.

Initialization. Given an (initial) group of PoS-players P = {P1,P2, . . . ,Pn}, a security parameter κ, and

a unique digital signature scheme (uKeyGen, uKeyVer, uSign, uVerify), the initialization is as follows: each

PoS-player Pj ∈ P generates a key pair (skj , pkj) ← uKeyGen(1κ), publishes the public key pkj and keeps

skj secret. �e public keys are stored in the genesis block of the blockchain system; let B0 denote the gen-

esis block. In addition, an independent randomness rand ∈ {0, 1}κ will also be stored in B0. �at is B0 =
〈(pk1, pk2, · · · , pkn), rand〉. Note that, in this section, we consider that only the players who have been regis-

tered in the initialization (i.e., those whose public keys have been recorded on the genesis block) can extend the

chain. Jumping ahead, in Appendix D, we will turn to consider how to have new players to join the system during

the protocol execution.

Algorithm 1: Protocol Πcore

State : At round r, the PoS-player P ∈ P, with key pair (sk, pk) and local state state , proceeds as follows.

1 Let C be the set of core-chains in the local state state
2 Compute Cbest := BestCore(C, r)
3 ` := len(Cbest), prev := hash(Cbest[`])
4 σ := uSign(sk, 〈prev , r〉)
5 if H(prev , r, pk, σ) < T then
6 Create new block B := 〈prev , r, pk, σ〉
7 C := Cbest‖B
8 Broadcast C

Blockchain extension. Based on the genesis block B0, a blockchain in the format of B0‖B1‖B2‖ . . . ‖Bi, can

be generated, round by round. �e honest players always select the longest chain to extend. Let r denote

the current time (or round number). If the PoS-player P is chosen, then the following hash inequality holds:

H(hi, r, pk, σ) < T, where σ := uSign(sk, 〈hi, r〉), and hi := hash(Bi). �e new block-core Bi+1 is de�ned

as Bi+1 := 〈hi, r, pk, σ〉. In our protocol, the chain must be associated with a strictly increasing sequence of

round. More concretely, let ` be the length of core-chain Cbest. In our design, only the elected PoS-players are

allowed to generate new block-cores (to extend the core-chain). Now, each registered PoS-player P will work on

the right “context” which consists of the latest block-core in the longest core-chain and the current time; formally

context := 〈prev , r〉 where prev is the hash value of the last block in the longest core chain, and r denotes

the current time. �e PoS-player P , that has a key pair (sk, pk), checks if the following hash inequality is sat-

is�ed: H(prev , r, pk, σ) < T, where H : {0, 1}∗ → {0, 1}κ is a hash function, σ := uSign(sk, 〈prev , r〉) is the

solution, and T is the di�culty parameter. If the PoS-player P solves the hash inequality, it creates a new block

B = 〈prev , r, pk, σ〉, updates his local core-chain C and then broadcasts the local core-chain to the network. We

8

note that, in our protocol, we use a unique signature scheme to guarantee that, each player can only generate

exactly one solution in each round.

Algorithm 2: procedure BestCore
Input : A chain set C, round r.

Output: �e best chain Cbest.
1 for C ∈ C do
2 Parse C into B0‖B1‖ · · · ‖B`
3 for i ∈ [1, `] do
4 Parse Bi into 〈prev i, ri, pki, σi〉
5 if h(Bi−1) 6= prev i or H(prev i, ri, pki, σi) ≥ T or uVerify(pki, 〈prev i, ri〉, σi) = 0 or ri > r then
6 Remove C from C

7 Set Cbest be the longest core-chain in C′

�e best core-chain procedure. Our proof-of-stake core-chain protocol Πcore
uses the procedure BestCore to single

out the best valid core-chain from a set of core-chains. Now we describe the rules of selecting the best core-chain.

Roughly speaking, a core-chain is the best one if it is the current longest valid core-chain. �e procedure BestCore
takes as input, a core-chain set C and the current time information r. Intuitively, the procedure validates all

C ∈ C, then �nds the valid longest core-chain. In more detail, BestCore proceeds as follows. On input the

current set of core-chains C and the current time information r, and for each core-chain C, the procedure then

evaluates every core-block of the core-chain C sequentially. Let ` be the length of C. Starting from the head of C,

for every block-core C[i], for all i ∈ [`], in the core-chain C, the BestCore procedure (1) ensures that C[i] is linked

to the previous block-core C[i−1] correctly, (2) tests if the hash inequality is correct, and (3) tests if the signature

generated by that PoS-player is correct. A�er the validation, procedure BestCore set the best valid core-chain as

the longest one. (See Algorithm 2 for more details.)

3.2 Security analysis, high-level ideas

Let p = T
2κ be the probability that a given (honest or malicious) player creates a new block from a given chain in

a round. Recall that in protocol Πcore
, for a given chain, each player use the unique signature scheme to generate

a signature on the current context which consists of the last block of the chain and the round number. �en, based

on the signature, the player checks whether or not the hash inequality is satis�ed. If yes, the player can generate

a new block. Note that, a malicious player could make a�empts to generate multiple “quali�ed” signatures;

once succeeded, he can provide the hash inequalities with “quali�ed” inputs, for multiple times, with the goal

of increasing his probability of generating a new block. Fortunately, the unforgeability of the unique signature

scheme ensures that the malicious player cannot forge any “quali�ed” signatures, and the uniqueness property

of the unique signature scheme ensures that the malicious player can generate exactly one valid signature on the

current context. �us, all players, including the honest and the malicious players, have (approximately) the same

probability (i.e., p) to create a new block for the current context of a given chain. Please see Appendix A.1 for

more details.

Let n be the number of players and ρ be the fraction of malicious players in the protocol execution. �e

probability that honest players create a new block in a round is α0 = 1− (1−p)n(1−ρ)
. Similarly, the probability

that the adversary creates a new block from a given chain is β = 1 − (1 − p)nρ. We remark that, α0 and β are

proportional to the stakes of the honest and of the malicious players, respectively. Indeed, as np � 1, we have,

α0 ≈ n(1− ρ)p and β ≈ nρp. �us,
α0
β ≈

1−ρ
ρ .

Note that, in our model, it takes up to ∆ rounds for an honest player to broadcast a message to all other

honest players. �us, the probability that honest players create a new block may slightly reduce. We denote

α = α0
1+∆α0

as the discounted probability of α0. (We will brie�y discuss the discounted probability in the Chain

growth paragraph of this section. �e detailed calculation steps can be found in Appendix A.3.1.)

9

Now, we turn to consider the adversarial strategies. An adversary may consider di�erent strategies to break

the security of the blockchain system. Since the computational cost to extend the chain in proof-of-stake protocol

is “very cheap”, an adversary can choose an arbitrary set of chain to extend in each round. Note that, an arbitrary

adversary cannot extend the chain faster than an adversary who extends all possible chains in each round.

Let β◦ be the e�ective stake of the adversary, i.e., the probability that the adversary can extend a new block on

the longest chain in each round. Recall that the computational cost to �nd the solutions are very cheap. �us, the

adversary may extend from multiple chain to amplify its stake. Jumping ahead, we will later show in Lemma 3.2

that β◦ ≤ 2.718β. Under the assumption that α > β◦ (i.e., 73% of total stakes is honest), protocol Πcore
is secure.

We are ready to state our theorem for our core-chain protocol Πcore
.

�eorem 3.1 (�eorem 1.1, restated). Consider core-chain protocol Πcore in the presence of an arbitrary adversary,
and assume (uKeyGen, uKeyVer, uSign, uVerify) is a unique digital signature scheme. If α = λβ◦, λ > 1, then the
protocol Πcore can achieve chain growth, chain quality, and common pre�x properties.

Here, we �rst demonstrate an upper bound to show the comparison between players who extend all chains

and “naive” players (who extend only one chain in each round). Note that, depend on the strategy, the adversary

only extend a small set of chains instead of all chains. However, the arbitrary adversary cannot extend the chain

faster than a player, who extend all chains. Next, using similar arguments as in [50], we can prove �eorem 3.1.

3.2.1 A bound for e�ective stake of the adversary

First, we show a very interesting lemma (i.e., Lemma 3.2) that the e�ective stake of any arbitrary strategy is

bounded by a factor e (the base of natural logarithm), compare with the stake of a restricted adversary, who only

extends one chain in one round.

Lemma 3.2. Consider core-chain protocol Πcore◦. Assume that malicious players can generate a new block with
probability β in a round. Assume that the malicious players could follow any arbitrary strategy to extend a core-
chain C1 at round r1 into C2 at round r2, where r2 > r1. For some ε > 0, we have Pr

[
len(C2) − len(C1) <

(1 + ε)β◦ · T
]
≥ 1− e−Ω(T) where T = r2 − r1, β◦ = eβ, and e = 2.72 is the base of natural logarithm.

Intuitively, if protocol players follow any arbitrary strategy and extend all chains, one of the relatively shorter

chains will become the longest chain with certain probability; that means, the longest chain will be extended

faster. However, we note that, the shorter the chain is, the lower the probability of being extended into the

longest chain is; collectively, the longest chain will strictly increase but will be bounded by a constant factor. We

model the chain extension of the adversary as a random tree. To bound the growth rate of the chain, we �rst

bound the number of branches in the random tree. �en, based on the number of branches and the growth rate

of each branch, we can bound the maximum length of all branches in the random tree. We present the detail

proof in Appendix A.2.

3.3 Proofs ideas of the security analysis

Here, we describe the high-level proof ideas to achieve the security properties. �e proof details can be found in

Appendix A.3.

Chain growth In order to calculate the chain growth rate, we consider the worst case for the honest players. �e

best strategy for the malicious players is to delay all of the messages from the honest players to discount the stakes

of honest players. We use α to denote the discounted number of block-cores that honest players can generate. We

have α = α0
1+∆α0

. (�e calculation steps can be found in Appendix A.3.1.) We use a hybrid execution to formalize

the worst delay se�ing in the formal proof. In the hybrid execution, the malicious players contribute nothing

to the chain growth and delay all honest messages to decrease the chain growth rate. In the real execution, the

probability that an honest player is chosen will not be lower than that in the hybrid execution. �e message from

10

malicious players will not decrease the chain growth that contributed by honest players. �erefore, the chain

growth rate is not worse than that in the hybrid execution. (Please see more detail on Appendix A.3.2)

Lemma 3.3 (Chain growth). Consider an execution of core-chain protocol Πcore, where an honest PoS-player P1 is
with best local core-chain C1 in round r1, and an honest PoS-player P2 with best local core-chain C2 in round r2, and
r2 > r1. �en we have Pr

[
len(C2)− len(C1) ≥ g · t

]
≥ 1− e−Ω(t) where t = r2 − r1, g = (1− δ)α, and δ > 0.

Common pre�x Note that the honest players will work on the same best core-chain in most rounds. We also

assume the majority of PoS-players are honest, so that other chain will not grow as fast as the longest chain.

Together, we have that the public best chain is longer than any other core-chains a�er a su�cient long time

period. All of the honest players will converge on the best public chain with high probability except the last

several block-cores. (Please see more detail on Appendix A.3.3)

Lemma 3.4 (Common pre�x). Assume that α = λβ◦, and λ > 1. Consider an execution of core-chain protocol
Πcore, where two honest PoS-players, P in round r and P1 in round r1, with the local best core-chains C and C1,
respectively, where r1 ≥ r. �en we have Pr [C[¬κ] � C1] ≥ 1− e−Ω(κ).

Chain quality In order to reduce the chain quality, the best strategy for malicious parties is to generate as many

block-cores as they can. When the honest players generate and broadcast a new block-core, they will try to send

out another one to compete with the honest one. We focus on the worst case that the malicious players win

all of the competition. During any t consecutive rounds, the chain growth rate is αt on average. �e malicious

players will contribute β◦t block-cores. �e chain quality will remain at least 1− β◦

α . (Please see more detail on

Appendix A.3.4)

Lemma 3.5 (Chain quality). Assume α = λβ◦, and λ > 1. Consider an execution of core-chain protocol Πcore,
where an honest PoS-player is with core-chain C. If among ` consecutive block-cores in C, there are `good block-cores

that are generated by honest PoS-players, then we have Pr
[
`good

` ≥ µ
]
≥ 1− e−Ω(`) where µ = 1− (1 + δ) 1

λ , and
δ > 0.

4 Greedy Strategies, and an Improved Version

In the previous section (Section 3), we have described a protocol that is secure if 73% of the stake is honest (and

27% is malicious). In this section, we will present a be�er protocol, which is secure if 66.2% of the stake is

honest. Similar to that in the previous section, we assume all protocol players have their stakes registered before

the protocol execution starts. Jumping ahead, in Section D, this assumption will be eliminated, and we will show

how to improve our core-chain design further so that it can be executed in a more realistic se�ing.

We remark that the security analysis on chain growth and common pre�x properties of our protocol is highly

non-trivial. (Based on the security analysis of chain growth, the security analysis on chain quality will be similar

to the existing analysis in [50].) For chain growth property, we model the chain extension as a Markov chain

in which arbitrary adversarial behaviors and network delays can be captured. For common pre�x property, we

introduce a new concept called “virtual chains”, and we show the common pre�x for the virtual chains, and

further show this will imply the regular common pre�x property.

Before going to the technical details, we describe the organization of this section: In subsection 4.1 we in-

troduce a distance-greedy strategy in which protocol players make a�empts to extend a set of chains that are

“close” to the best chain. �en, in subsection 4.2 we describe the details of our protocol using the distance-greedy

strategy. Finally, in subsection 4.3, we analyze the security of our protocol.

11

4.1 Greedy strategies

We remark that, in a proof-of-stake protocol, the computational cost to extend the chains can be “very cheap”.

�us, a proof-of-stake players may take a greedy strategy to extend the core-chains in a protocol execution:

instead of extending a single best chain, the players are allowed to extend a set of best chains, expecting to extend

the best chain faster. Note that, the set of best chains should be carefully chosen; otherwise, the protocol may

not secure. In our greedy strategy, the honest player extend the set of chains that share the same common pre�x

a�er removing the last few blocks. With this strategy, the security of the protocol is guaranteed. Next, we will

formally study greedy strategy.

Distance-greedy strategies. We �rst introduce distance-greedy strategies for honest protocol players. Consider

a blockchain protocol execution. In each player’s local view, there are multiple chains, which can be viewed as

a tree. More concretely, the genesis block is the root of the tree, and each path from the root to another node is

essentially a chain. �e tree will “grow”: the length of each existing chain may increase, and new chains may

be created, round a�er round. Before giving the formal de�nition for distance-greedy strategies, we de�ne the

“distance” between two chains in a tree.

De�nition 4.1 (Distance between two chains). Here we de�ne the distance between two chains C and C1. Let chain
C with length `, be a targeted chain, and let C1 with length `1, be a branch chain. We use distance(branch chain→
target chain), i.e., distance(C1 → C) to denote the distance between the target chain C and the branch C1. More
formally, if d is the smallest non-negative integer so that C1[0, `1 − d] � C, then we say the distance let d be a non-
negative integer. We say the distance between the target chain C and the branch C1 is d, and we write distance(C1 →
C) = d.

Remark 4.2. We note that the distance of chain C from chain C1 is di�erent from the distance of C1 from C, and it
is very possible that distance(C → C1) 6= distance(C1 → C). For example, in Figure 1, the distance of C from C1 is
4, i.e. distance(C → C1) = 4, while the distance of C1 from C is 2, i.e., distance(C1 → C) = 2. We also note that the
distance of C from itself is always 0, i.e., distance(C → C) = 0.

 ଵ ଶ ଷ ସ ହ

ଶ
ᇱ

ଷ
ᇱ

Figure 1: �e distance between two chains C = B0‖B1‖B2‖B3‖B4‖B5 and C1 = B0‖B1‖B ′2‖B ′3. (�e distance

from C1 to C is distance(C1 → C) = 2; the distance from C to C1 is distance(C → C1) = 4).

A�er explaining the concept of the distance between two chains, we are ready to introduce the distance-greedy

strategies. Intuitively, a player who plays a distance-greedy strategy will make a�empts to extend a set of chains
in which all chains have the following properties: (1) the chain should be very “close” to the best chain, i.e., the

distance from the chain to the best chain must be small; (2) the chain should not fall behind the best chain too

much, i.e., the length of the chain must be big. More formally, we have the following de�nition.

De�nition 4.3 ((D, F)-distance-greedy strategy). Consider a blockchain protocol execution. Let P be a player of
the protocol execution, and T be a tree which consists of chains with the same genesis block, in player P ’s local view.
Let Cbest be the longest chain at round r, where ` = len(Cbest). Consider parameters D and F. De�ne a chain set
Cbest as

Cbest =
{
C
∣∣ distance(Cbest → C) ≤ D

∧
len(C) ≥ `− F

}
12

We say the player is (D, F)-distance-greedy if, for all r, the player makes a�empts to extend all chains C ∈ Cbest.

ଵ

ଷ
ᇱ

ସ
ᇱᇱ

ଶ
ᇱ

ସଷଶ

ଷ
ᇱᇱ

ଵ
ᇱ

ସ
ᇱ

Figure 2: 1-distance-greedy strategy. �e best chain is Cbest = B0‖B1‖B2‖B3‖B4. �e blue number on top of

each block denotes the distance from the best chain Cbest to the chain from the genesis block B0 to that block.

For example, let C = B0‖B1‖B2‖B ′3‖B ′4, we have distance(Cbest → C) = 2. �e honest players will extend from

the bold blocks (B3,B4,B
′′
4).

Remark 4.4 (D-distance-greedy strategy). In the above de�nition, F ≤ D. In the remaining of the paper, for
simplicity we set F := D, and de�ne the best chain set as

Cbest =
{
C
∣∣ distance(Cbest → C) ≤ D

}
and call it D-distance-greedy strategy. In Figure 2, pictorial illustration for the example of 1-distance-greedy strategies
can be found. �e honest players will extend the bold blocks (B3,B4,B

′′
4). We also note that many useful variants of

the above distance greedy strategies can be designed; a fundamental rule here is that, honest players will only extend
the chains which share a common pre�x a�er removing the last few blocks.

4.2 �e modi�ed core-chain protocol Πcore◦

Next, we present a new core-chain protocol Πcore◦
with the goal of defending against adversaries who play any

arbitrary strategies.

Initialization. Similar to the initialization in protocol Πcore
in Section 3, the public keys of an (initial) group

of PoS-players P = {P1,P2, . . . ,Pn} are stored in the genesis block B0, alongside with a randomness rand, i.e.,

B0 = 〈(pk1, pk2, · · · , pkn), rand 〉.

Blockchain extension. �is new protocol is based on the core-chain protocol Πcore
in Section 3 but now the

players follow the D-distance-greedy strategy. (See the pseudocode in Algorithm 3). Instead of extending the

longest chain, the players extend a set of chains Cbest in which, for all chain C ∈ Cbest, the distance from the

best chain Cbest to the chain C does not exceed D, i.e., distance(Cbest → C) ≤ D.

As the honest players extend from multiple chains, the chain growth of honest players will be ampli�ed. In

addition, note that the distances from the best chain to the chains in the set of best chains, are all small than

D; those chains share a common pre�x that can be obtained by removing the last D blocks from the best chain.

Jumping ahead, this property of blockchain extension process, can be used for proving the security of the protocol

Πcore◦
.

�e “best set of core-chains” procedure. �e procedure D-BestCore◦ will output a set of best chains including the

longest (i.e., the best) chain, and several chains that are very close to the longest chain. First, the procedure

D-BestCore◦ uses the procedure BestCore in the protocol Πcore
as a sub-procedure to �nd the best chain. �en,

it iterates through the set of chains in the local state of the player to �nd all the chains in which the distances

from the best chain to those chains do not exceed D.

13

Algorithm 3: Protocol Πcore◦

State : At round r, the PoS-player P ∈ P, with key pair (sk, pk) and local state state , proceeds as follows.

1 Let C be the set of core-chains in the local state state ;

2 Compute Cbest := D-BestCore◦(C, r);

3 for C ∈ Cbest do
4 ` := len(C); prev := h(C[`]);

5 σ := uSign(sk, 〈prev , r〉);

6 if H(prev , r, pk, σ) < T then
7 Create new block B := 〈prev , r, pk, σ〉;
8 C1 := C‖B ;

9 Broadcast C1;

Algorithm 4: procedure D-BestCore◦

Input : A chain set C, round r.

Output: �e best chain set Cbest.

1 Cbest := BestCore(C, r), Cbest := ∅
2 for C ∈ C do
3 if distance(Cbest → C) ≤ D then
4 Cbest := Cbest ∪ {C}
5 Return Cbest

We note that, as the greedy parameter D increases, the set of best chains will become bigger. �us, the honest

players have a be�er opportunities to generate a new longest chain. However, the (computation and storage)

complexity of the protocol is proportional to the greedy parameter D. In practice, we can choose D = 2.

4.3 Security analysis

As in previous section, assuming the underlying scheme (uKeyGen, uKeyVer, uSign, uVerify) is a unique digital

signature scheme, a malicious player for a given context, can create exactly one signature. Note that in previous

section, the security properties of protocol Πcore
have been proven under the assumption of honest majority of

stakes based on the honest stake α and the e�ective stake β◦ of the adversary. Now, we can prove the security

properties of the modi�ed core-chain protocol Πcore◦
but under the assumption of honest majority of e�ective

stakes based on α◦ and β◦. When D = 2, α◦ = 1.39α, protocol Πcore◦
is secure if the at least 66.2% of total stakes

is honest. We have:

�eorem 4.5 (�eorem 1.2, restated). Consider an execution of core-chain protocol Πcore◦: all honest players
follow the D-distance-greedy strategy while adversarial players could follow any arbitrary strategy; in addition,
all players have their stakes registered without being aware of the state of the protocol execution. Assume that
(uKeyGen, uKeyVer, uSign, uVerify) is a unique digital signature scheme. If α◦ = λβ◦, λ > 1, then the protocol
Πcore◦ can achieve chain growth, chain quality, and common pre�x properties.

As we mentioned before, it is highly non trivial to analyze the security properties, chain growth and common
pre�x for our protocol; however, the security analysis for the chain quality of our design is similar to that in [50].

To analysis chain growth property, we construct Markov chain that consists of multiple states, where each

state represents the protocol execution a�er a given number of rounds a�er the previous longest chain is gener-

ated. In each state of the Markov chain, the probability that an honest player can generate a new best chain are

di�erent. Note that, in our analysis, we consider the worst case for the chain growth in which when a new best

chain is generated, the set of best chains only consists of the best chain and its pre�x. At this state, probability

that an honest player can generate a new best chain is α (this equals the probability that an honest player can

14

extend a new block from a single best chain). A�er each round, if the new best chain is not generated, the set

of best chain grows bigger with some certain probability. In this case, we move to the next state in which the

probability that an honest player can generate a best chain is bigger. If the new best chain is not generated, we

move back to the state where the probability that an honest player can generate a best chain is α. In our analysis,

we start with a Markov in synchronous network model, i.e., all messages can be delivered to the honest player in

the end of each round. To capture the network delay, we add some delayed states into the Markov chain. A�er

the new best chain is generated, we move to the delayed states. At the delayed states, the honest players will not

extend the best chain, i.e., the probability that an honest player can generate a best chain is 0.

For common pre�x property, we introduce a new concept of virtual block set and virtual chain. A virtual block

set consists of multiple blocks with the same height that are “close” to each other. Here, we say two blocks are

“close” if the chains from the genesis block to those two blocks are “close”, i.e., a�er removing the last D blocks

from a chain, we can obtain a pre�x of the other chain. �e intuition here is that at each block height, the honest

players extend the blocks from the same virtual block set. �e virtual chain is formed by the virtual block sets.

We say a virtual block set is the previous virtual block set of another virtual block set on the virtual chain if a

block in the �rst virtual block set is the previous block of a block in the other virtual block set. Note that, since

the blocks in the same virtual block set are “close”, each virtual block set only has one previous virtual block set.

In this sense, the virtual chain is very similar to the normal chain. We then prove the common pre�x for the

virtual chains based on the honest virtual block set. Here, we say a virtual block set is honest if the �rst generated

block in the virtual block set is generated by an honest player. On each block height, there is at most one honest

virtual block set. �us, to break the common pre�x property, the adversary needs to generate more virtual block

sets than the honest players. �is requires the adversary to control the majority of the stakes (this contradicts

our assumption). Finally, since the blocks in the same virtual block set are “close”, we can show common pre�x

for the virtual chains implies the regular common pre�x property.

4.3.1 Chain growth

In order to analyze the chain growth property, we construct a Markov chain that experiences transitions between

states according to certain transition probabilities, and then develop a random walk on the constructed Markov

chain. More concretely, in the process of blockchain extension, new blocks are generated and published, and in

some cases, a new longest chain will be generated and published (i.e., certain chain turns into the longest one

in the system a�er the generation of a new block). In the Markov chain that we plan to construct, we consider

and focus on the total number of rounds that has passed since the previous longest chain has been generated and
published. �at is, we use state 0© to denote the state in which, a new longest chain has just been generated and
published; equivalently state 0© re�ects that the protocol execution is now “0 round a�er” the previous longest
chain has been generated and published. Similarly, we use state i©, where i ∈ N, to denote that the protocol

execution is now “i number of rounds a�er” the previous longest chain has been generated and published.

It is easy to see, when the blockchain execution moves from state 0© to state 1©, or from i© to state j©, where

i ∈ N and j = i + 1, no new longest chain will be generated and the length of the longest chain in the system

remains the same. However, when the protocol execution moves back to 0© (say from i© or even from 0©), a new

longest chain will be generated and the length of the longest chain will increase by 1. �e chain growth can be

approximated as the stationary probability of state 0©, i.e., the expected number of occurrences of a particular

state 0© over a long sequence of transitions on the random walk.

Representing chain-extension via Markov chain. We now describe in detail the states and the transition

probabilities on the Markov chain. �e Markov chain consists of m+ 1 states 0©, 1©, . . . ,m©, where m = aD/α is

an integer and aD ≥ 1 is a constant (see Fig. 3). As we mentioned above, state i© represents the protocol execution

i rounds a�er the previous longest chain has been generated and published. Note that, it is possible that the new

longest chain is not published a�erm rounds. �us, the state m© represents the represents the protocol execution

at all the rounds in which the previous longest chain is generated at least m rounds ago. Note that, here, Here,

15

we analyze the chain growth in the execution where all messages from honest players can be broadcasted to all

other honest nodes in ∆ = 1. In Appendix B.2, we will present the analysis for arbitrary ∆ by adding ∆ “delayed

states” in the Markov chain.

0 1

, ,

,

,

,

,

,

Figure 3: �e Markov chain that represents the chain extension process. State i represents protocol execution

i rounds a�er the previous longest chain has been generated and published. At state i, with probability αfi,D,

the honest players can extend the longest chain and we move to state 0©. Additionally, with some probability

wi ≥ 0, the adversary publishes a new longest chain and we move to state 0©.

We recall that the honest players extend all the chains in the set of best chains. At a given round, the proba-

bility to create a new longest chain is proportional with the number of good chains, i.e., the chain that have the

same length with the current longest chain in the set of best chain. To be precise, let round r be the round where

the �rst chain of length ` is generated. At round r, the number of good chains is one (the only good chain is the

longest chain). As the time goes by, the number of good chains slowly increases until a longest chain of length

` + 1 is generated. �e number of good chain again become one. �is process keeps repeating during protocol

execution. Note that, the number of longest chain increases faster as D increases. We denote fi,D (for any integer

i ≥ 0) as the expected number of chains of length ` at round r + 1 + i. �us, the probability that the honest

players create a new chain of length `+ 1 at round r + 1 + i is αfi,D.

Furthermore, the adversary may publish a new longest chain with non-negative probability in each round.

We denote wi (for any integer i ≥ 0) as the probability that the adversary publishes a new chain of length `+ 1
at round r + 1 + i. Note that, when the adversary publish a new longest chain, the best chain set may has less

chains than when an honest player generate a new longest chain. Here, we always consider the worst case where

the best chain set only consists of the longest chain and its pre�x.

For each state i©, the transition probability of going from state i© to state 0© is αfi,D + wi, where wi ≥ 0.

Here, the adversary publish a new longest chain at state i with probability wi ≥ 0. Plus, the probability that

an honest player generates new longest chain is αfi,D. As we mentioned above, when a new longest chain is

generated, we move to the state 0 in the next round. With probability 1 − αfi,D − wi, there is no new longest

chain is generated. �us, for any state i (where 0 ≤ i < m), the transition probability of going from state i©
to state j© (where j = i + 1) is 1 − αfi,D − wi. Recall that, the state m© represents the represents the protocol

execution at all the rounds in which the previous longest chain is generated at least m rounds ago. �us, the

transition probability of going from state m© to state m© is 1− αfm,D − wm.

We remark that, our Markov chain model also can capture the chain growth of the protocol in which the

honest players only extend a single chain [33, 49] (or our protocol Πcore
with D = 0). In this case, we have

fi,D = 1, ∀i ∈ [0..m]. If the adversary does not help to extend the chain, i.e., wi = 0, ∀i ∈ [0..m], at any state,

the probability that a new longest chain is generated is α. �e chain growth now equals α.

Chain growth as a random walk on the Markov chain. We now model the honest chain extension process

from round r′ + 1 to round r′′ (r′′ − r′ = t > 0) as a random walk s1, · · · , st. We start at round r′ + 1 at state

s1. At round r′ + j, state sj is randomly selected based on the transition probabilities of going from state sj−1

to other states.

Let Q = [q0, · · · qm] be the stationary distribution, where qi be the stationary probability of the state i©. We

16

obtain the following equations for the stationary distribution.

∑∞
i=0 qi = 1,

q0 =
∑∞

i=0 qi · (wi + α · fi,D).
qi = qi−1 · (1− (1− wi−1 − α · fi−1,D)),

∀1 ≤ i < m,

qm = qm−1 · (1− (1− wm−1α · fm−1,D))

+qm · (1− (1− wm− α · fm,D))

(1)

From Eq. 1, we have q0 ≥ 1.39α when D = 2. Please see Appendix B.1 for more detail.

4.3.2 Common pre�x

In order to analyze the common pre�x property, we �rst introduce the notion of virtual chains, and then de�ne

the common pre�x property with respecting to the virtual chains. �en we show that the standard common

pre�x property can be reduced to common pre�x w.r.t. virtual chains.

De�ning virtual chains. Based on the de�nition of D-distance-greedy strategy (as in De�nition 4.3), we group

all blocks, that are bounded by a distance D, to a single virtual block set. �e virtual chain is formed by the virtual

block sets. More concretely, consider a local state of a player, we de�ne the virtual block set and virtual chain as

follows.

De�nition 4.6 (Virtual block sets). Let B be the set of all blocks in the local state of the player. We construct a set
V of virtual block sets as follows.

First, set V = ∅.
For each block B ∈ B such that @V ′ ∈ V : B ∈ V ′, let C(B) be the chain from the genesis block to the block
B . We build a virtual block V based on the block B as follows.

• Initialize that V := {B};
• for any block B ′ ∈ B such that len(C(B ′)) = len(C(B)) (B ′ and B have the same block height) and
distance(C(B ′) → C(B)) ≤ D, we set V := V ∪ {B ′}.

We say Vi is the previous virtual block set of Vi+1 i� there exists a block Bi+1 ∈ Vi+1 and a block Bi ∈ Vi
such that Bi is the previous block of Bi+1

De�nition 4.7 (Virtual chain). �e corresponding virtual chain consists of multiple consecutive virtual block sets,
i.e., V = V0‖V1‖ · · · ‖V` (where ` is a non-negative integer) in which for all i ∈ [`], Vi−1 is the previous virtual
block set of Vi.

We say a chain C = B0‖B1‖ · · · ‖B` belongs to the virtual chain V = V0‖V1‖ · · · ‖V` if and only if for all

i ∈ [0..`], Bi ∈ Vi. We write C ∈ V .

De�nition 4.8 (Best virtual chain). �e best virtual chain Vbest is the virtual chain that the best chain Cbest belongs
to, i.e., Cbest ∈ Vbest. (Please see Figure 4 for an example of virtual block sets and the best virtual chain when D = 2.)

Common pre�x property w.r.t. virtual chain. To achieve common pre�x property, we �rst prove the common

pre�x wrt virtual chain. We introduce a new notion of honest virtual block set, where the �rst published block in

the virtual block set is honest. We present the formal de�nition of an honest virtual block set as follows.

17

ଵ ସଷଶ ହ

ଵ

ଶ

ଷ ସ

ହ

Figure 4: �e best virtual chain with D = 2. �e best chain is the red solid blocks, i.e., Cbest = B0‖B1‖ · · · ‖B5.

Each block Bi on the best chain belongs to a virtual block set Vi which is represented by a dash rectangle. Each

virtual block set Vi consists of multiple blocks at the same height that are “close” to the block Bi, i.e., ∀B ′i ∈ Vi,
distance(C(Bi) → C(B ′i)) ≤ D. Here, for all i ∈ [5], the virtual block set Vi−1 is the previous virtual block set of

Vi since Bi−1 is the previous block of Bi. �us, the best virtual chain is Vbest = V0‖V1‖ · · · ‖V5.

De�nition 4.9 (Honest virtual block sets). Let round(B ′) be the round number in the block B ′. Consider a virtual
block setV , let B = arg minB ′∈V round(B ′) be the earliest block inV . We sayV is the honest i� the earliest block
B is generated by an honest player.

Now, we will show that for most of the time, there is at most one honest virtual block set in each block height.

Indeed, since the honest players only extend on the chains that are close to the best chain, unless a new longest

chain is generated, the honest players will not create a new block in which a new virtual block set is created.

(Please see Fig. 5 for an example.) To break common pre�x wrt virtual chain, the adversary must grow a virtual

chain as fast as the virtual chain of honest players. �is contradicts the assumption that the honest players control

more stakes than the adversary.

Add a new block to an
existing virtual block set
on the best virtual chain

Create a new
longest chain

Figure 5: Players extend the set of best chain from Fig. 4, using 2-distance-greedy strategy. �e blue blocks denote

the new blocks. Here, the players generate either a new block to create a new longest chain (that is longer than

the current longest chain) or a new block that is added to an existing virtual block set.

From common pre�x w.r.t. virtual chain, to the standard common pre�x property. Next, we prove common

pre�x property from common pre�x wrt virtual chain. Consider the set of chains where the latest blocks in those

chain belong to a virtual block set. By the de�nition of the virtual block set, all of those chains share the same

common pre�x a�er pruning the last D blocks. �us, if a protocol achieves common pre�x wrt virtual chain, it

also achieves common pre�x property by pruning extra D blocks. Please see Appendix B.3 for the full proof of

common pre�x property.

18

4.3.3 Chain quality

At high level ideas, the malicious players cannot extend the chain as fast as the chain growth. �us, for any κ
consecutive blocks, the must be at least one block that is created by an honest player. Please see Appendix B.4

for more detail.

5 (Un)Predictability in the Rational Setting

In this section, we will investigate the unpredictability property [14] of our design in the rational se�ing; note

that, now all players are rational in the sense of seeking the maximum bene�t. We further note that, the players

do not collaborate and exchange their local states as in [14].

Intuitively, predictability means that (certain) protocol players are aware that they will be selected to generate

blocks of blockchain, before they actually generate the blocks. �is “power” of predictability reduces the di�culty

for a�ackers to perform many a�acks such as sel�sh-mining, or bribing. As a result, the consensus protocol

becomes more vulnerable. Note, the predictability de�nitions here are essentially taken from [14], but rephrased

in our terminology .

Global (un)predictability. We �rst present the formal de�nition of the global predictability. At high-level idea,

global predictability captures that all players in the protocol can predict when a player will be able to produce a

block in the future.

De�nition 5.1 (L-global predictable). Consider a blockchain protocol Π with a set P of players, and integer L > 0.
Consider a player P ∈ P at round r and let C be the best valid chain in the view of P at round r. We say player P is
L-global predictable if at round r, any player P ′ ∈ P can e�ciently predict whether or not player P can generate
the L-th block in the future. In other words, any player P ′ can predict whether or not player P can extend the chain
C′ in which len(C′) ≥ len(C) + L− 1 and C′ is the public chain at some round r′ ≥ r.

Several existing protocols [42, 23, 5, 7] (and our protocols) are well designed, and do not su�er from global

predictability. Indeed, if digital signature is used as part of solution to the hash inequality puzzle, in the process

of selecting players to produce blocks, then, since the remaining protocol players are not aware of who will be

selected, global unpredictability can be achieved.

Local (un)predictability. A weaker version, called local predictability has also been introduced.Intuitively, local

predictability captures that a miner can predict when she/he will be able to produce a block in the future. As our

main focus is local predictability, for simplicity, without otherwise mentioned, we refer to predictability as local

predictability. �e formal de�nition of the (local) predictability is given as follows.

De�nition 5.2 (L-(un)predictable). Consider a blockchain protocol Π with a set P of players, and integer L > 0.
Consider a player P ∈ P at round r and let C be the best valid chain in the view of P at round r. We say player
P is L-predictable if at round r, P can e�ciently predict whether or not she/he can extend the chain C′ in which
len(C′) ≥ len(C) +L− 1 and C′ is the public chain at some round r′ ≥ r. Otherwise, we say P is L-unpredictable.

Best-possible unpredictability. We now show that our protocol achieves best-possible unpredictability in the

rational se�ing. Recall from Observation 1 in [14] shows that in any proof-of-stake protocol, all players can

always predict whether or not they can generate the next block, i.e., they are 1-predictable. In our protocol, with

probability almost 1, the players can only predict whether or not they can generate the next block, i.e., they are

2-unpredictable. Indeed, a player is 2-unpredictable if and only if she/he is the one that generates the next blocks.

�e event occurs with probability
1
n , where n is the number of players.

Lemma 5.3. Consider Πcore◦ protocol, at any round r, a rational player P is 2-unpredictability with the probability
of 1− 1

n , where n is the number of players.

19

Proof. Let C be the best chain at round r. From Def. 5.2, P is 2-unpredictability at round r i� P can predict

whether or not she/he can extend the chain C′ in which len(C′) = len(C) + 1 and C′ is the public chain at some

round r′ ≥ r. In other words, at round r, P needs to know about the chain C′ at round r′. Since players do not

collaborate and exchange their local states, this event only happens when the player P generates the next block

on the chain C to form the chain C′. Since all players have the same probability to extend the chain. �is event

happens with probability of at most
1
n .

On the other hand, in epoch-based proof-of-stake protocols [42, 23, 5, 7, 22], the players can be c-predictable,

where c is the number of blocks in an epoch. (In [42, 23, 5, 22], c = Ω(κ), where κ is the security parameter.

In [7], c is a prede�ned parameter). Indeed, at the beginning of any epoch, the public randomness is known by

all players. �us, the players can predict whether or not they can generate new blocks in that epoch.

Predictability-based a�acks. We now describe the a�acks where the a�ackers that rely of the power of the

predictability. We remark that, here, we mainly discuss the a�acks on the protocols that only allow local pre-

dictability. We also brie�y discuss how to improve the a�acks on the protocols that allow global predictability.

Predictable sel�sh mining a�acks. In a sel�sh mining a�ack, a rational a�acker may not publish its blocks im-

mediately to the rest of the network. �is greatly endangers the fairness of blockchain. Since the proof-of-stake

protocol allows the players to predict weather or not they can generate a few block in the future, proof-of-stake

protocols are more vulnerable to sel�sh mining a�acks. Brown-Cohen et al. [14] presents a predictable sel�sh

mining a�ack in PoS protocols. In this a�ack, for a given integer u > 0, the rational players predict a time period

tu is the time it takes for them to generate the next u blocks. If the probability, that other players cannot generate

u blocks in the time period tu, is big enough, the rational players will hide those u blocks until the last block

(i.e., the u-th block) is generated. With this strategy, with high probability, the blocks of the rational players will

belong to the longest chain.

For the protocols that allow global predictability, the a�ackers know when other players can generate new

block. �us, the a�acks only hides its blocks when other players cannot generate u blocks in the time period

tu. Hence, the a�acks can always successfully perform sel�sh-mining a�ack. As the rational players can predict

more blocks in the future, they have more chance to successfully perform predictable sel�sh mining a�acks, thus

increasing the fraction of their blocks on the longest chain. Since our protocol only allow minimal predictability,

we can minimize the a�ect of predictable sel�sh mining a�acks.

Predictable bribing a�acks. In bribery a�acks [7], the a�acker pays players to work on speci�c chains, aiming at

bene�ting the a�acker, e.g., supporting double spending or censorship a�ack . In proof-of-stake protocol, those

a�acks will be more dangerous if the players can predict further in the future. In epoch-based proof-of-stake

protocol, the players can predict whether or not they can create new blocks in the future. �us, at the beginning

of each epoch the a�acker make a�empts to bribe those players, who can new blocks in the future round of the

current epoch. If the a�acker can bribe enough players, it can control the majority of the blocks that are generated

in the epoch. We consider two cases as follows. (Here, con�rmation time is de�ned as the time elapsed between

the moment a transaction is included on the blockchain and the time it is �nally recorded into a con�rmed block.)

Case 1: �e con�rmation time is smaller than the length of each epoch. In this case, the a�acker can perform a

double spending a�ack by issuing some transactions at the beginning of the epoch. At the same time, it

hides all of its blocks. At the end of the epoch, those transactions are con�rmed on the best public chain.

�e a�acker now publishes its hidden blocks and reverts the transactions that are issued at the beginning.

Case 2: �e con�rmation time is bigger than the length of each epoch. �e a�acker can perform a censorship

a�acks to prevent certain transactions from becoming con�rmed. In each epoch, the a�acker perform a

predictable bribing a�ack to control majority of the blocks, i.e., controlling the longest chain. Since all

blocks on the longest chain belong to the a�acker, it can prevent any transaction from being added to the

blockchain.

20

For the protocols that allow global predictability, if the a�acker cannot bribe a player, it can perform a DoS

a�ack on that player to prevent the player to produce the new block (since the a�acker know when the player

will generate the block). �us, even when the a�acker cannot bribe the majority of the players that will generate

blocks in the future, it can still successfully perform the a�ack.

In our block-based proof-of-stake protocol, most of the time, the players can only predict 1 block in the future.

�us, the a�acker does not know which players to bribe. Hence, it cannot perform the predictable bribing a�acks.

6 Related Work

6.1 Cryptocurrency and proof-of-work

�e �rst decentralized currency system, Bitcoin [47], was introduced in 2008, based on moderately-hard crypto-

graphic puzzles (also called proof-of-work puzzles [26, 4]). Please refer to the online course [48] and the survey

[13].

�e security of Bitcoin system has been analyzed in the rational se�ing, e.g., [28, 27, 52, 53, 39, 14]. In the

cryptographic se�ing, e�orts have been made, e.g., [33, 50, 54, 40, 6, 34, 43, 24]. Garay et al [33], and then Pass

et al [50] initialize the rigorous security analysis for the Bitcoin consensus. Several important cryptographic

properties, common pre�x [33, 50], chain quality [33], and chain growth [40], have been considered for proof-of-

work protocols. Badertscher et al [6] provide the analysis in the universal composability framework [18].

6.2 Proof-of-stake

Using coins/stakes to construct cryptocurrency has been intensively considered. Since the inception of the idea

in an online forum [10], several proof-of-stake proposals have been introduced and/or implemented (e.g., [1, 44,

55, 16, 9]). We remark that these proposals are ad hoc without formal security, and it is not clear how to formally

prove the security of these proposals. Very recently, several provably secure proof-of-stake based blockchain

proposals have been developed. More details can be found below.

6.2.1 Bitcoin-like proof-of-stake.

We �rst review Bitcoin-like longest chain based, proof-of-stake consensus proposals; these are closely related

to the results in the current writeup. We note that, all these related proposals are in the format of “epoch by

epoch” which are di�erent from Bitcoin’s format of “block by block”; our proposals are the �rst such proof of

stake protocols, in the format of “block by block”. �ese related proposals include Snow White [22] by Pass and

Shi, Ouroboros Praos [23] and Ouroboros Genesis [5] by Kiayias et al, and a proposal [7] by Bagaria et al.

In Snow White [22], the protocol execution is divided into epochs, where each epoch consists of Ω(κ) blocks

(where, κ is the security parameter). �e players are selected to generate new blocks based on the public key,

the current round number, and the randomness of the current epoch (via a hash inequality). If the players are

elected to generate new blocks, they also need to provide some randomness that will be used to generate the

randomness in the next epoch. �e Snow White protocol can only defend against a “mildly adaptive adversary”,

i.e., a�er the adversary corrupt some players, they remain honest for a mild corruption delay period. We remark

that, the Snow White protocol is based on Pass and Shi’s early proposal, the Sleepy protocol [51] (in which the

new players are not allowed to join the system during the execution) as a starting point. In the Snow White

protocol, new players are allowed to join the system but relies on external trust (e.g., a set of trusted players).

Jumping ahead, this limitation in joining has been eliminated in later proposals, Ouroboros Genesis [5], and our

earlier version [32].

In Ouroboros Praos [23], similar to Snow White, the protocol execution is divided into epochs of Ω(κ) blocks.

In each round of an epoch, the player queries a veri�able random function (VRF) to determine whether it can

21

generate a new block; note that the input of VRF consists of the current round, the public key of the player, and

the randomness of the current epoch. Here, the randomness of the epoch is computed based on the output of

the VRF in the previous epoch. Ouroboros Praos adopt an erasure model to achieve “fully adaptive security”, i.e.,

the adversary can instantly corrupt the players. Note that, the protocol of Ouroboros Praos does not allow new

players to join the system a�er the protocol execution starts. In their follow-up work, Ouroboros Genesis [5],

new players are allowed to join the protocol execution securely.

In Bagaria et al. [7], similar to Ouroboros Praos, the players use a VRF to determine whether or not they can

generate new blocks. However, here, the length of each epoch can be arbitrary. Jumping ahead, this allows a

trade-o� between nothing-at-stake a�acks and predictability a�acks [14]. We will discuss more in the security

analysis in rational se�ing paragraph. �e authors also adopt the technique in [5] and our earlier version [32] to

allow new players to join the system.

Security analysis in cryptographic setting Note that, based on the analysis in [22, 23], the consistency

(i.e. common pre�x property) is guaranteed with error e−Ω(κ)
by removing the last O(κ2) blocks. While in

Bitcoin, the consistency is guaranteed with error e−Ω(κ)
by removing only the last O(κ) blocks. Blum et al.

[11] improves the analysis for the consistency (i.e. common pre�x property) of proof-of-stake based blockchain

protocols in cryptographic se�ing. Now, similar to Bitcoin, the consistency is guaranteed with error e−Ω(κ)

by removing only the last O(κ) blocks. However, in [11], the “multiply honest” rounds (the rounds that have

multiple honest players that can generate new blocks) are treated as “malicious” rounds (the rounds that have at

least one malicious players that can generate new blocks). Kiayias et al. [41] extends the result from [11]. Here,

the ”multiple honest” rounds are treated as ”unique honest” rounds (the rounds that have exactly one honest

player that can generate a new block). Dembo et al. [24] introduces a new technique to analyze the blockchain

protocols (including Bitcoin and proof-of-stake based protocols). �e analysis shows that the best strategy for

the adversary to break consistency is private “double-spend a�ack”, i.e., the adversary does not contribute to the

public best chain and aims to extend a private chain that is longer than the public best chain. We remark that

the analysis in [11, 41, 24] can only be applied for the protocols in which the players only extend a single best

chain. In contrast, the players in our protocol extend a set of best chains instead of the single best chain. �us,

we introduce a new analysis strategy to analyze the security of our protocol.

Security analysis in rational setting Brown-Cohen et al. [14] exploit the security of proof-of-stake based

protocols in a rational se�ing. Contrary to Bitcoin, the proof-of-stake based protocols allow the players to predict

whether or not they can create new blocks in the future. Indeed, in proof-of-work based protocols, the random-

ness is in some sense external to the blockchain. �us, the players cannot predict whether or not they can create

new blocks in the future. On the other hand, in proof-of-stake based protocols, the randomness comes from the

blockchain itself. Hence, the players can predict whether or not they can create a few next block in the future.

We refer to this as predictability. �e predictability allows the adversary to perform many rational a�acks such

as predictable sel�sh mining and predictable bribing.

In [51, 22, 23, 5], the protocol execution consists of multiple epoches, and in each epoch multiple (Ω(κ))

blocks will be generated. Here, the adversary is restricted and cannot amplify its stakes in each epoch. However,

for each player, he can predict all blocks he will generate in the current epoch. �us, their protocols are more

vulnerable to predictability a�acks [14]. In [7], the length of the epoch can be arbitrary. �is allows a trade-o�

between nothing-at-stake a�acks and predictability a�acks. If the length of the epoch increases, the protocol is

more secure against nothing-at-stake a�acks. However, it allows the players to predict more blocks in the future,

i.e., the protocol is more vulnerable to predictability a�acks.

In this work, we propose the �rst “block-by-block” solution with provable security. Note that, in the “epoch-

by-epoch” proof-of-stake protocol, the randomness is extracted from the blocks that have been published an

epoch, i.e., many blocks ago. Meanwhile, in the “block-by-block” proof-of-stake protocol, the randomness is

22

extracted from the previous block. �us, comparing with “epoch-by-epoch” protocols, our protocol can also

defend against nothing-at-stake a�acks while being more resistant to predictability a�acks.

6.2.2 Additional solutions to proof-of-stake

In addition to the Bitcoin-like pure proof-of-stake solutions, there are additional solutions to proof-of-stake

blockchain systems. Several of those solutions have been implemented and deployed in the real world.

Multi-round protocols. Di�erently from Bitcoin-like pure proof-of-stake protocols, which have very low com-

munication complexity, proof-of-stake protocols have been constructed using multiple rounds of communication.

We below list several visible proposals along this line.

Algorand [20, 36] presents an interesting alternative solution. In Algorand, VRF has been used for selecting a

commi�ee of players; for each player, the opportunity to be selected is proportional to the number of coins in the

player’s account. �en, the commi�ee members run a Byzantine Agreement (BA) sub-protocol to jointly generate

a block. Algorand aims to scale to millions of players. According to the report from [36], the commi�ee size can

be multiple thousands; see Fig. 3 in [36]. However, to ensure the security of Algorand, a bigger fraction of players

must be honest, comparing with traditional BA protocols. For example, if the size of the commi�ee is 2, 000, it

requires 80% of honest players to guarantee the security of Algorand. We remark that, the idea of using VRF for

proof-of-stake protocol, has later been adopted in Ouroboros Praos [23] but for Bitcoin-like proof-of-stake.

Ouroboros [42] presents the �rst provably secure proof-of-stake protocol. Ouroboros protocol consists of

multiple epochs in which each epoch consists of multiple round. In each round, a player will be selected as the

leader to generate a new block. �e leader is selected based on the stake distribution, the current round number,

and a random string. Note that, the random string is updated in every epoch via a coin tossing protocol that is

executed by the players.

EOS [2] presents a delegated proof-of-stake protocol in which the token holders (those who hold the token

on the blockchain) may select block producers through a continuous approval voting system. At the beginning

of each round, 21 unique block producers are chosen by preference of votes cast by token holders. �e selected

block producers can create new blocks under the agreement of 15 or more block producers.

D�nity [38] proposes a four-layer consensus protocol. �e players are registered at the �rst layer. �e second

layer provides the randomness for all higher layer. �e blocks are generated at the third layer. In each round,

the protocol ranks the player based on the random beacon of that round. All players can generate new blocks.

However, each block has a di�erent weight. �e weight of the block is assigned based of the rank of the block

procedure at that round. �e best chain is selected as the “heaviest” chain in term of accumulated block weight.

�e forth layer provides fast �nality of the block by using threshold signature.

Hybrid proof-of-stake. Bitcoin-like hybrid proof-of-stake has previously been investigated. In [25], Duong et

al studied hybrid consensus using both proof of stake and proof of work. In [3, 45], Andreina et al studied hybrid

consensus using both proof of stake and trusted hardware (Trusted Execution Environment).

6.3 Earlier versions of this work

We remark that, our project is the �rst proof-of-stake protocol in the format of “block by block”. Except our

solutions here, existing provably secure Bitcoin-like proof-of-stake protocols are all in the format of “epoch by

epoch”. Compared with “epoch by epoch” style, proof-of-stake protocols, it is highly non-trivial to defend against

nothing-at-stake a�acks in the “block-by-block” ones.

�is project was started in 2017, and the �rst version was online July 2017 [30]; �is was concurrent and

independent of Ouroboros Praos [23]. In an early version [31] that submi�ed to Eurocrypt 2018, we provided a

strategy which allows new players to join the proof-of-stake system; allowing new players to securely join the

proof of stake system has been independently investigated in Ouroboros Genesis [5].

23

An anonymous Eurocrypt 2018 reviewer identi�ed an a�ack on the “ fully greedy” strategy in [31]. Here,

the honest players extend the set of chains that are slightly shorter than the best chain. �e adversary makes

a�empts to extend on both chain in private, i.e., the adversary does not publish their block immediately. Note

that, since the length of the two chains are equal, the honest players will extend both chains. However, as the

chain extension process are random, at some given rounds, only one chain get “lucky” and can be extended by

an honest player. When an honest player publishes a new block in a chain, the adversary will release a block

from the other chain to “balance” the length of the two chains. Eventually, the two chains will be diverted and

only share a common block in the ancient past. In a later version [29], this issue was �xed by introducing the

“D-greedy strategy.” We remark that, Bagaria et al in [7], independently identi�ed this a�ack.

Bagaria et al. [7] also pointed out the analysis for the chain growth in [29] is not correct
5
. �e adversary

can slow down the chain growth of honest players by publishing a private chain such that (1) the length of the

private chain equals the length of the public best chain, and (2) there are no public chains (expect the pre�xes of

this private chain) that are “close” to this private chain. In this case, since the private chain and the public best

chain have the same length, the honest players will randomly select a chain as the new best chain. If the honest

players select the private chain as the new best chain, the chain growth of the honest players will be slow down

since the set of best chains only contains a single best chain.

Finally, we note that, in the current version, all issues have been addressed; especially we introduce several

new analysis strategies. In addition, we consider a rational analysis framework by Brown-Cohen et al [14] and

provide the investigation of the unpredictability of our proof-of-stake protocols.

References
[1] NXT whitepaper. 2014. h�ps://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper v122 rev4.pdf.

[2] EOS whitepaper. 2018. h�ps://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md.

[3] S. Andreina, J.-M. Bohli, G. Karame, W. Li, and G. A. Marson. Pots: A secure proof of tee-stake for permissionless

blockchains. IEEE Transactions on Services Computing, 2020.

[4] A. Back. Hashcash — A denial of service counter-measure. 2002. h�p://hashcash.org/papers/hashcash.pdf.

[5] C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas. Ouroboros Genesis: Composable Proof-of-Stake

Blockchains with Dynamic Availability. In CCS, 2018. h�ps://eprint.iacr.org/2018/378.

[6] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction ledger: A composable treatment. In J. Katz

and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356. Springer, Heidelberg, Aug. 2017.

[7] V. Bagaria, A. Dembo, S. Kannan, S. Oh, D. Tse, P. Viswanath, X. Wang, and O. Zeitouni. Proof-of-stake longest chain

protocols: Security vs predictability. arXiv preprint arXiv:1910.02218, 2019.

[8] M. Bellare and S. K. Miner. A forward-secure digital signature scheme. In M. J. Wiener, editor, CRYPTO’99, volume

1666 of LNCS, pages 431–448. Springer, Heidelberg, Aug. 1999.

[9] I. Bentov, A. Gabizon, and A. Mizrahi. Currencies without proof of work. In Bitcoin Workshop, 2016.

[10] Bitcointalk. Proof of stake instead of proof of work. July 2011. Online post by �antumMechanic, available at

h�ps://bitcointalk.org/index.php?topic=27787.0.

[11] E. Blum, A. Kiayias, C. Moore, S. �ader, and A. Russell. �e combinatorics of the longest-chain rule: Linear consis-

tency for proof-of-stake blockchains. In S. Chawla, editor, 31st SODA, pages 1135–1154. ACM-SIAM, Jan. 2020.

[12] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd, editor, ASIACRYPT 2001,

volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, Dec. 2001.

5

�e authors also provide ideas to analyze the chain growth for our protocol. However, the analysis in this work is independent and

di�erence with the one in [7].

24

https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
http://hashcash.org/papers/hashcash.pdf
https://eprint.iacr.org/2018/378
https://bitcointalk.org/index.php?topic=27787.0

[13] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. SoK: Research perspectives and challenges

for bitcoin and cryptocurrencies. In 2015 IEEE Symposium on Security and Privacy, pages 104–121. IEEE Computer

Society Press, May 2015.

[14] J. Brown-Cohen, A. Narayanan, A. Psomas, and S. M. Weinberg. Formal barriers to longest-chain proof-of-stake

protocols. In Proceedings of the 2019 ACM Conference on Economics and Computation, pages 459–473, 2019.

[15] V. Buterin. A Next-Generation Smart Contract and Decentralized Application Platform. 2014. h�ps://github.com/
ethereum/wiki/wiki/White-Paper.

[16] V. Buterin. Understanding serenity, part 2: Casper. 2015. h�ps://blog.ethereum.org/2015/12/28/
understanding-serenity-part-2-casper/.

[17] R. Cane�i. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13(1):143–202, Jan.

2000.

[18] R. Cane�i. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS, pages

136–145. IEEE Computer Society Press, Oct. 2001.

[19] C. L. Canonne. A short note on poisson tail bounds. Retrieved from the website: h�p://www. cs. columbia. edu/ ccanonne,
2017.

[20] J. Chen and S. Micali. Algorand. In arXiv:1607.01341, May 2017. h�p://arxiv.org/abs/1607.01341.

[21] K.-M. Chung, H. Lam, Z. Liu, and M. Mitzenmacher. Cherno�-hoe�ding bounds for markov chains: Generalized and

simpli�ed. arXiv preprint arXiv:1201.0559, 2012.

[22] P. Daian, R. Pass, and E. Shi. Snow white: Robustly recon�gurable consensus and applications to provably secure

proofs of stake. In FC, 2019. h�p://eprint.iacr.org/2016/919.

[23] B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros Praos: An adaptively-secure, semi-synchronous proof-of-stake

blockchain. In EUROCRYPT, 2018. h�p://eprint.iacr.org/2017/573.

[24] A. Dembo, S. Kannan, E. N. Tas, D. Tse, P. Viswanath, X. Wang, and O. Zeitouni. Everything is a race and nakamoto

always wins. In J. Liga�i, X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 20, pages 859–878. ACM Press, Nov. 2020.

[25] T. Duong, L. Fan, J. Katz, P. �ai, and H.-S. Zhou. 2-hop blockchain: Combining proof-of-work and proof-of-stake

securely. In L. Chen, N. Li, K. Liang, and S. A. Schneider, editors, ESORICS 2020, Part II, volume 12309 of LNCS, pages

697–712. Springer, Heidelberg, Sept. 2020.

[26] C. Dwork and M. Naor. Pricing via processing or comba�ing junk mail. In E. F. Brickell, editor, CRYPTO’92, volume

740 of LNCS, pages 139–147. Springer, Heidelberg, Aug. 1993.

[27] I. Eyal. �e miner’s dilemma. In 2015 IEEE Symposium on Security and Privacy, pages 89–103. IEEE Computer Society

Press, May 2015.

[28] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In N. Christin and R. Safavi-Naini, editors,

FC 2014, volume 8437 of LNCS, pages 436–454. Springer, Heidelberg, Mar. 2014.

[29] L. Fan, J. Katz, and H.-S. Zhou. A large-scale proof-of-stake blockchain in the open se�ing, Feb 2019. A version

submi�ed to and presented at Stanford Blockchain Conference 2019.

[30] L. Fan and H.-S. Zhou. A Scalable Proof-of-Stake Blockchain in the Open Se�ing (or, How to Mimic Nakamoto’s Design

via Proof-of-Stake). July 2017. h�ps://eprint.iacr.org/2017/656/.

[31] L. Fan and H.-S. Zhou. A Scalable Proof-of-Stake Blockchain in the Open Se�ing (or, How to Mimic Nakamoto’s Design

via Proof-of-Stake). September 2017. A version submi�ed to Eurocrypt 2018; see h�ps://cryptographylab.bitbucket.
io/pubs/iChing.pdf.

[32] L. Fan and H.-S. Zhou. iChing: A Scalable Proof-of-Stake Blockchain in the Open Se�ing (or, How to Mimic Nakamoto’s

Design via Proof-of-Stake). July 2017. h�ps://eprint.iacr.org/2017/656/20170705:220223.

[33] J. A. Garay, A. Kiayias, and N. Leonardos. �e bitcoin backbone protocol: Analysis and applications. In E. Oswald and

M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–310. Springer, Heidelberg, Apr. 2015.

25

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
http://arxiv.org/abs/1607.01341
http://eprint.iacr.org/2016/919
http://eprint.iacr.org/2017/573
https://eprint.iacr.org/2017/656/
https://cryptographylab.bitbucket.io/pubs/iChing.pdf
https://cryptographylab.bitbucket.io/pubs/iChing.pdf
https://eprint.iacr.org/2017/656/20170705:220223

[34] J. A. Garay, A. Kiayias, and N. Leonardos. �e bitcoin backbone protocol with chains of variable di�culty. In J. Katz

and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 291–323. Springer, Heidelberg, Aug. 2017.

[35] P. Gaži, A. Kiayias, and A. Russell. Stake-bleeding a�acks on proof-of-stake blockchains. In 2018 Crypto Valley Con-
ference on Blockchain Technology (CVCBT), pages 85–92. IEEE, 2018.

[36] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling byzantine agreements for cryptocurren-

cies. In SOSP, 2017. h�ps://eprint.iacr.org/2017/454.

[37] M. Goemans. Cherno� bounds, and some applications. URL h�p://math. mit. edu/goemans/18310S15/cherno�-notes.
pdf, 2015.

[38] T. Hanke, M. Movahedi, and D. Williams. D�nity technology overview series, consensus system. arXiv preprint
arXiv:1805.04548, 2018.

[39] A. Kiayias, E. Koutsoupias, M. Kyropoulou, and Y. Tselekounis. Blockchain mining games. In Proceedings of the 2016
ACM Conference on Economics and Computation (EC), pages 365–382, 2016.

[40] A. Kiayias and G. Panagiotakos. Speed-security tradeo�s in blockchain protocols. Cryptology ePrint Archive, Report

2015/1019, 2015. h�ps://eprint.iacr.org/2015/1019.

[41] A. Kiayias, S. �ader, and A. Russell. Consistency of proof-of-stake blockchains with concurrent honest slot leaders.

arXiv preprint arXiv:2001.06403, 2020.

[42] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain protocol.

In CRYPTO, 2017. h�p://eprint.iacr.org/2016/889.

[43] L. Ki�er, R. Rajaraman, and a. shelat. A be�er method to analyze blockchain consistency. In D. Lie, M. Mannan,

M. Backes, and X. Wang, editors, ACM CCS 2018, pages 729–744. ACM Press, Oct. 2018.

[44] J. Kwon. Tendermint: Consensus without mining. 2014. h�ps://tendermint.com/static/docs/tendermint.pdf.

[45] W. Li, S. Andreina, J.-M. Bohli, and G. Karame. Securing proof-of-stake blockchain protocols. In Data Privacy Man-
agement, Cryptocurrencies and Blockchain Technology, pages 297–315. Springer, 2017.

[46] A. Lysyanskaya. Unique signatures and veri�able random functions from the DH-DDH separation. In M. Yung, editor,

CRYPTO 2002, volume 2442 of LNCS, pages 597–612. Springer, Heidelberg, Aug. 2002.

[47] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. h�ps://bitcoin.org/bitcoin.pdf.

[48] A. Narayanan, J. Bonneau, , E. W. Felten, A. Miller, and S. Goldfeder. Bitcoin and cryptocurrency technology. 2015.

h�ps://www.coursera.org/learn/cryptocurrency.

[49] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous networks. In EUROCRYPT,

2017. h�ps://eprint.iacr.org/2016/454.

[50] R. Pass, L. Seeman, and a. shelat. Analysis of the blockchain protocol in asynchronous networks. In J.-S. Coron and

J. B. Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 643–673. Springer, Heidelberg, Apr. / May

2017.

[51] R. Pass and E. Shi. �e sleepy model of consensus. In ASIACRYPT, 2017. h�p://eprint.iacr.org/2016/918.

[52] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal sel�sh mining strategies in bitcoin. In J. Grossklags and

B. Preneel, editors, FC 2016, volume 9603 of LNCS, pages 515–532. Springer, Heidelberg, Feb. 2016.

[53] O. Schrijvers, J. Bonneau, D. Boneh, and T. Roughgarden. Incentive compatibility of bitcoin mining pool reward

functions. In J. Grossklags and B. Preneel, editors, FC 2016, volume 9603 of LNCS, pages 477–498. Springer, Heidelberg,

Feb. 2016.

[54] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in bitcoin. In R. Böhme and T. Okamoto, editors,

FC 2015, volume 8975 of LNCS, pages 507–527. Springer, Heidelberg, Jan. 2015.

[55] P. Vasin. Blackcoin’s proof-of-stake protocol v2. 2014. h�p://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf.

26

https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2016/889
https://tendermint.com/static/docs/tendermint.pdf
https://bitcoin.org/bitcoin.pdf
https://www.coursera.org/learn/cryptocurrency
https://eprint.iacr.org/2016/454
http://eprint.iacr.org/2016/918
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf

A Supplemental Material for Section 3

A.1 �e probability of generating blocks in a round

We �rst show that by using the unique signature scheme, all players have the same probability to generate a new

block from a given core-chain.

Lemma A.1. Consider core-chain protocol Πcore in the presence of an arbitrary adversary, and assume (uKeyGen,
uKeyVer, uSign, uVerify) is a unique digital signature scheme. Consider a chain C at round r. �e probability that
a player Pj ∈ P (where Pj can be honest or malicious) generates a new block from the chain C at round r is p = T

2κ ,
where T is the di�culty parameter.

Proof sketch. Recall in protocol Πcore
that the player Pj can generate a new core-block at round r, if the following

hash inequality is satis�ed:

H(prev , r, pk, σ) < T,

where prev is the hash value of the last block on the chain C, and pk is a public key that has been registered in

the initialization and has been recorded at the genesis block, and σ is a signature on the context 〈prev , r〉, i.e.,

uVerify(pk, 〈prev , r〉, σ) = 1.

Here, the hash function H returns a random value in {0, 1}κ. For each tuple of (prev , r, pk, σ), the probability

that the hash inequality is satis�ed is p = T
2κ . Note that, for a given chain C, the hash value prev is �xed. In any

round r, the player Pj will generate exactly one “quali�ed” signature σ.

Indeed, the unforgeability of the unique signature scheme ensures that the player Pj cannot forge any “qual-

i�ed” signatures without knowing the secret key. Hence, the player Pj can generate the signature by using his

own key pair (skj , pkj). Furthermore, the uniqueness of the unique signature scheme guarantees that for each

key pair, there is exactly one “quali�ed” signature over a context. �erefore, for a given chain C at a round r, the

player Pj can generate exactly one valid tuple (prev , r, pk, σ). In other words, the probability that the player Pj
generates a new block from the chain C at round r is p.

From Lemma A.1, we have the following corollary.

Corollary A.2. Let n be the number of players and ρ be the fraction of malicious players in the protocol execution.
At a given round r, we have

• �e probability that an honest player generates a new block in round r is α0 = 1− (1− p)n(1−ρ).

• Consider a core-chain C, the probability that a malicious player creates a new block from the chain C is β =
1− (1− p)nρ.

A.2 More materials for e�ective stake of the adversary

To maximize the adversarial ampli�cation ratio the adversary extend from all valid chains. However, depend on

the strategy, the adversary may or may not public its chains. We bound the adversarial ampli�cation ratio by

using a branching random walk, in which a set of all chain with the same randomness is considered as a branch.

�e adversarial ampli�cation ratio will later be used to prove the chain quality and common pre�x properties.

Let X ′ is a Poisson random variable with expectation β that represents the number of blocks that are gener-

ated by the adversary in a round, i.e.,

Pr[X ′ = x] = px = e−β · β
x

x!

A�er each round, for a given branch, we add X + 1 new branches with the increasing length 0, 1, · · · , X .

Formally, we describe the chain extension of the adversary as a branching process as follows. At the beginning,

27

there is only one branch of length 0, i.e., Z0 = {0}. Let Zk be the set of all branches at time slot k, where

k ∈ {0, 1, 2, · · · } and Gk be the number of branches in ZK . Let Xk,i be a random variable denoting the random

process in i-th branch in Zk. Here Xk,i are independent and identically distributed random variables of X
(recall that X is a Poisson random variable that has the expected value E[X] = β) , over all k ∈ {0, 1, 2, · · · }
and i ∈ {1, 2, · · · , Gk}. Let `k,i be the length of the i-th branch in Zk. We will add Xk,i + 1 branches with

the length `k,i, `k,i + 1, · · · , `k,i + Xk,i into Zk+1. We denote Lk as the maximum length of all branch in Zk,

i.e.,Lk = maxi∈{1,2,··· ,Gk} `k,i.
�e length of a branch set is equivalent to the increasing length of the longest chain.

Before presenting the detail proofs, we introduce an useful inequality as follows.

Lemma A.3 (�eorem 1 in [19]). Consider a Poisson random variable X that has the expected value λ. We have
the following inequalities.

• For any ε > 0, we have

Pr[X > λ(1 + ε)] ≤ e−
λ2ε2

2λ(1+ε) = e
−λ ε2

2(1+ε)

• For any 0 < ε < 1, we have

Pr[X > λ(1− ε)] ≤ e−λ
ε2

2(1+ε)

Lemma A.4 (�eorem 3 in [37]). Let X1, X2, · · · , Xk be identical independent random variables in range [0, 1]
with expected value λ. �en, for any ε > 0, we have

Pr[
k∑
i=1

Xi < (1 + ε)kλ] ≤ e−Ω(k).

To prove Lemma 3.2, �rst, we bound the number of di�erent branch in the end of the process (See Lemma A.5).

Finally, we use union bound the bound the maximum length of all branches.

Now, we ready to prove the adversarial ampli�cation ratio.

Lemma A.5. Consider the set of branch Zk at time k. For any ε′′ > 0, we have

Pr[Gk > (β + 1)k(1+ε′′)] < e−Ω(k)

Proof. �e expected number of branches that the adversary can create from one branch in one round is β + 1.

�us, for j ∈ 0, 1, · · ·, we haveE[
Gj+1

Gj
] = β+ 1. In other words, we haveE[log(Gj+1)− log(Gj)] = log(β+ 1).

LetQ1, Q2, · · · , Qk be independent and identically distributed random variables with expectation log(β+1).

We have,

logGk =

k∑
j=1

Qj .

�erefore,

Pr[Gk > (β + 1)k(1+ε′′)]

= Pr[log(Gk) > k(1 + ε′′) log(β + 1)]

= Pr[
k∑
j=1

Qj > k(1 + ε′′) log(β + 1)]

<e−Ω(k)
(Lemma A.5).

28

Now, we ready to bound the maximum length of a branch at a time k.

Proof of Lemma 3.2. For any A > 1, we have,

Pr
[
Lk > (1 + ε)kβA

]
= Pr

[
max

i∈{1,2,··· ,Gk}
`k,i > (1 + ε)kβA

]
≤

∑
i∈{1,2,··· ,Gk}

Pr
[
`k,i > (1 + ε)kβA

]
(Union bound)

≤Gk · Pr[Y > (1 + ε)kβA]

≤(β + 1)k(1+ε′′) · Pr[Y > (1 + ε)kβA] (Claim A.5)

We have,

`k,i =

k∑
j=1

X ′j ≤
k∑
j=1

Xj

where Xj be i.i.d. Poisson random variable with expectation β.

Let Y =
∑k

j=1Xj be a Poisson random variable with expectation kβ. From Lemma A.3, we have,

Pr[Y > (1 + ε′)kβ] < e−Ω(k).

�us, we have,

Pr[`k,i > (1 + ε′)kβ] < e−Ω(k),

Since Y is a Poisson random variable with expectation kβ, we have.

Pr[Y = i] = e−kβ
(kβ)i

i!
. (2)

Consider A > 1 such that

A

(
A

e

)A−1

= (β + 1)1/β

⇒A(1+ε′)kβ

(
A

e

)(1+ε′)(A−1)kβ

≤ (β + 1)k(1+ε′)

�us,

A = A(1+ε′)kβ

(
A

e

)(1+ε′)(A−1)kβ

≥
√

2π
√

(1 + ε′)Akβ((1 + ε′)Akβ)(1+ε′)Akβ

√
2π
√

(1 + ε′)kβ((1 + ε′)kβ)(1+ε′)kβ(kβ)(1+ε′)(A−1)kβ

Using Stirling’s approximation, we have

A ≥ ((1 + ε′)Akβ)!

((1 + ε′)kβ)!(kβ)(1+ε′)(A−1)kβ
(3)

29

Combine with Eq. 2, we have,

A ≥ Pr[Y = (1 + ε′)kβ]

Pr[Y = (1 + ε′)Akβ]

⇒ Pr[Y = (1 + ε′)kβ]

Pr[Y = (1 + ε′)Akβ]
≤ (β + 1)k(1+ε′)

Furthermore, for any i ≥ 0, we have,

Pr[Y = (1 + ε′)kβ + i]

Pr[Y = (1 + ε′)kβ + i+ 1]
>

Pr[Y = (1 + ε′)Akβ + i]

Pr[Y = (1 + ε′)Akβ + i+ 1]

⇒ Pr[Y = (1 + ε′)kβ + i]

Pr[Y = (1 + ε′)Akβ + i]
>

Pr[Y = (1 + ε′)kβ + i+ 1]

Pr[Y = (1 + ε′)Akβ + i+ 1]

�us,

Pr[Y = (1 + ε′)kβ

Pr[Y = (1 + ε′)Akβ]
>

∑∞
i=1 Pr[Y = (1 + ε′)kβ + i+ 1]∑∞
i=1 Pr[Y = (1 + ε′)Akβ + i+ 1]

⇒ Pr[Y = (1 + ε′)kβ

Pr[Y = (1 + ε′)Akβ]
>

Pr[Y > (1 + ε′)kβ

Pr[Y > (1 + ε′)Akβ]

⇒ Pr[Y > (1 + ε′)kβ]

Pr[Y > (1 + ε′)Akβ]
≤ (β + 1)k(1+ε′)

⇒(β + 1)k(1+ε′) Pr[Y > (1 + ε′)Akβ] ≥ Pr[Y > (1 + ε′)kβ]

We have,

Pr
[

max
i∈{1,2,··· ,Gk}

`k,i > (1 + ε)kβA
]

≤(β + 1)k(1+ε′) Pr[Y > (1 + ε′)Akβ] + e−Ω(k)

≤Pr[Y > (1 + ε′)kβ] + e−Ω(k)

=e−Ω(k)

A.3 Security analysis for the basic version of core-chain protocol

Our core-chain protocol Πcore
is in the “�at, static di�culty” model in which each PoS-player holds a unit of

stake and the total number of stakeholders is �xed. Let n be the total number of stakeholders in the protocol.

Let p denote the probability that a stakeholder is quali�ed to extend the core-chain in a round. Let ρ denote the

ratio of malicious stake. Let α0 = (1− ρ)np be the expected number of honest stakeholders that are quali�ed in

a round to extend the longest core-chain. Let β0 = ρnp be the expected number of malicious stakeholders that

are quali�ed in a round to extend any chosen core-chain. Let α and β be the e�ective counterparts, respectively

in the network delay se�ing. Here we assume np� 1. �is means the expected number of stakeholders that are

quali�ed to extend a core-chain in a round is much less than 1. Additionally, we assume that α0 = λβ0 where

λ ∈ (1,∞).

We are now ready to state our theorem for our core-chain protocol Πcore
in the presence of an adversary who

extends blockchain via the basic strategy (i.e., extending a single chain).

30

�eorem A.6 (�eorem 1.1, restated). Consider core-chain protocol Πcore where all players follow the simple strat-
egy of extending the longest chain; in addition, all players have their stake registered before the protocol execution
starts. Let α and β be the e�ective expected number of blocks generated by honest and malicious players in a round
respectively. If α = λβ, λ > 1, then the protocol Πcore can achieve chain growth, chain quality, common pre�x and
chain soundness properties.

Basic terms Before giving the details of the security analysis, we de�ne two terms, public chain and honest
successful round, as follows.

De�nition A.7 (Public chain). Consider a round r. We say a chain C is a public chain in round r if such chain C
is known by all honest players in round r.

De�nition A.8 (Honest successful round). We say a round r is an honest successful round, if in the round r, at
least one honest PoS-player is selected to extend the core-chain.

Let pgood be the probability that a round can be an honest successful round. We have pgood = 1−(1−p)(1−ρ)n
.

In the case that np � 1, we have pgood ≈ p(1 − ρ)n. �at is pgood ≈ α0. In the following sections, we assume

the probability that a round is honest successful round is α0 directly.

A.3.1 Analysis with bounded delay

We assume that the malicious parties can delay messages up to ∆ number of rounds. When an honest PoS-player

is quali�ed to generate a new PoS block-core, he will broadcast it to the network and expect all parties to receive

it. �e honest player may not obtain the best PoS core-chain and thus work on a di�erent PoS core-chain. If an

honest player generates a new PoS block-core during the delay time and later receives a be�er PoS block-core

from the network, then this generated PoS block-core will become useless and thus this honest player’s e�ort

during the time window is wasted. In this subsection, we provide a formal analysis for our core-chain protocol

in the presence of the network delay.

Hybrid experiment To analyze the best strategy of the adversary, and the worst scenario that may happen to

the honest players, we consider the following notations.

Let REAL(ω) = EXECΠcore,A,Z(ω) denote the typical execution of Πcore
where

ω is the randomness in the execution,

Messages of honest players may be delayed by at most ∆ rounds.

Let HYBr(ω) = EXECrΠcore,A,Z(ω) denote the hybrid execution as in real execution except that a�er round r,

HYBr(ω) has the following modi�cations from REAL(ω):

�e randomness is �xed to ω as in HYBr(ω),

�e network delays all messages generated by honest PoS-players is exact ∆ rounds,

Remove all new messages sent by the adversary to honest players, and delay currently undelivered messages

from corrupted parties to the maximum of ∆ rounds,

Whenever a chain is being delayed, no honest PoS-players make a�empts to extend that chain

In REAL(ω), the number of honest successful rounds is not less than that in the HYBr(ω). �e following lemma

shows that the chain growth rate in the real execution is not lower than that in the hybrid execution.

In order to distinguish core-chain in HYBr(ω) with in REAL(ω) executions, we use Chybrid to denote it.

Claim A.9. Consider two executions REAL(ω) and HYBr(ω) for all ω, r. For any honest PoS-player P at round r′,
where r′ > r, let C′ denote the PoS core-chain of P at round r′ in the execution REAL(ω) and C′hybrid denote the PoS
core-chain of P at round r′ in the execution HYBr(ω). �en we have len(C′) ≥ len(C′hybrid).

31

Proof. We prove this lemma by induction. We consider the initial state before round r. From the de�nition of

hybrid experiment, all players have same VIEW at round r. We have len(C) ≥ len(Chybrid). We suppose it holds for

all players before round s−1. �e only case that len(Cs) < len(Cshybrid) is the player P received a new core-chain

to extend Cshybrid at round s in HYBr(ω). According to the de�nition of hybrid experiment, this extended PoS

block-core must be generated at round s−∆ by an honest player P∗, that makes len(Cshybrid) = len(Cs−∆
hybrid) + 1.

At the same time, the playerP∗must succeed to extend PoS block-core at round s−∆ inREAL(ω). �is extension

will make Cs−∆
∗ increase by one block. For player P∗ is honest, P must have received the extension at (or before)

round r′. Pu�ing them together, we have len(C′) ≥ len(C′∆).

Analysis in the worst delay setting Note that, the malicious players can delay the messages for at most ∆
rounds. As a consequence, some e�orts from honest players may be wasted. Below we develop a lemma for the

“discount” version of honest players’ e�orts in the execution of HYBr(ω).

ClaimA.10. ConsiderHYBr(ω) where the adversary is allowed to delay messages for at most ∆ rounds. Let α0 > 0
be the expected number of honest stakeholders that are chosen in a round. Let α be the actual probability that a round
s > r is an honest successful round. �en we have that α = α0

1+∆α0
.

Proof. In HYBr(ω), if round r′, where r′ > r, is an honest successful round, then no PoS-players will query

functionality FrCERT in the next ∆ rounds. Now, assume in HYBr(ω), there are c number of honest successful

rounds, from round r to round (r + t), where t > 0. We then have the number of actual working rounds for

honest stakeholders will remain t −∆c. For each round, the probability that it is an honest successful round is

α0. We have α0(t−∆c) = c. �is implies that c = α0t
1+∆α0

. We then have α = α0
1+∆α0

.

Let VIEWr denote the VIEW at round r in REAL(ω) where r > 0. Let len(VIEWr) denote the length of the best

public PoS core-chain in VIEWr . �e following lemma demonstrates that each successful round would contribute

one PoS block-core to the best public PoS core-chain a�er ∆ rounds in an execution of HYBr(ω).

Claim A.11. Consider HYBr(ω). For any honest successful round s, where s > r, it holds that len(VIEWs+∆) −
len(VIEWs) ≥ 1.

Proof. By De�nition A.8, there is at least one honest PoS-player producing a PoS block-core at round s. Let Cshybrid

be the PoS core-chain that is extended by the PoS-player at round s. We have len(Cshybrid) ≥ len(VIEWs). At the

end of round s the honest player will broadcast the extended chain with length len(Cshybrid) + 1. At the end of

round s + ∆, all honest players will receive the extended core-chain, we have len(VIEWs+∆) ≥ len(Cs+∆
hybrid) =

len(Cshybrid) + 1. Pu�ing them together, we have len(VIEWs+∆)− len(VIEWs) ≥ 1.

Corollary A.12. ConsiderHYBr(ω). Assume there are h number of honest successful rounds from round r to round
r + t where t > 0. �en it holds that len(VIEWr+t+∆)− len(VIEWr) ≥ h.

Proof. Let rk be the kth honest successful round where r < rk < r + t and 1 ≤ k ≤ h. From Claim A.11, we

have len(VIEWrk+∆)− len(VIEWrk) ≥ 1. �en we have len(VIEWr+t)− len(VIEWr) ≥
∑h

i=1 (len(VIEWrk+∆)−
len(VIEWrk)) ≥ h.

A.3.2 Achieving chain growth property

We here demonstrate that our core-chain protocol satis�es the growth property (De�nition 2.1). �e concrete

statement to be proved can be found in Lemma 3.3.

Claim A.13. Consider HYBr(ω), and δ > 0. Let X be the number of honest successful rounds from round r to
round r + t, where t > 0. �en we have Pr[X > (1− δ)αt] > 1− e−Ω(t).

32

Proof. Based on Claim A.10, we have that, on average, there are αt number of honest successful rounds in any

t consecutive rounds. By Cherno� bound, we have Pr[X ≤ (1 − δ)αt] ≤ e−δ
2αt/2

. �us, we have Pr[X >
(1− δ)αt] > 1− e−δ2αt/2 = 1− e−Ω(t)

.

ClaimA.14. ConsiderHYBr(ω) and δ > 0. Consider an honest PoS-playerP with the best PoS core-chain Chybrid in
round r, and an honest PoS-playerP ′ with the best PoS core-chain C′hybrid in round r

′, respectively, where r′−r � ∆.
�en we have

Pr
[
len(C′hybrid)− len(Chybrid) ≥ g · t

]
≥ 1− e−Ω(t)

where t = r′ − r and g = (1− δ)α.

Proof. First, we note that Chybrid will be received by all honest players no later than round r+ ∆ because player

P is honest. We have len(Chybrid) ≤ len(VIEWr+∆). Now we consider the chain growth from round r + ∆ to

round r′. For t � ∆, we have t ≈ t − ∆ for simplicity. From Claim A.13, in any t consecutive rounds the

number of honest successful round is more than (1− δ)αtwith the probability at least 1− e−Ω(t)
. Together with

Claim A.11 and Corollary A.12, we have len(VIEWr
′
)− len(VIEWr+∆) ≥ (1− δ)αt. Chain C′hybrid is an valid PoS

core-chain accepted by an honest PoS-playerP ′ at round r′. We have len(C′hybrid) ≥ len(VIEWr
′
). Pu�ing these

together, we get len(C′hybrid)− len(Chybrid) ≥ len(VIEWr
′
)− len(VIEWr+∆) ≥ (1− δ)αt with probability at least

1− e−Ω(t)
. �e corresponding growth rate is g = (1− δ)α.

Reminder of Lemma 3.3. Consider an execution of core-chain protocol Πcore, where an honest PoS-player P1 is
with best local core-chain C1 in round r1, and an honest PoS-player P2 with best local core-chain C2 in round r2, and
r2 > r1. �en we have Pr

[
len(C2)− len(C1) ≥ g · t

]
≥ 1− e−Ω(t) where t = r2 − r1, g = (1− δ)α, and δ > 0.

Proof. In order to distinguish the notation clearly, we use C′hybrid and C′′hybrid to denote the PoS core-chains of the

best core-chains ofP at round r′ and r′′ in the execution ofHYBr(ω). From Claim A.14, we have Pr[len(C′′)hybrid ≥
len(C′)hybrid + g · t] ≥ 1− e−Ω(t)

where t = r′′− r′, in HYBr(ω). We now turn to the core-chain growth property

in EXECΠcore,A,Z. From the de�nition of hybrid execution, we know that all honest players have same initial

status at round r′. We have len(C′) = len(C′hybrid). By Claim A.9, we have len(C′′) ≥ len(C′′hybrid). It follows that,

Pr[len(C′′) ≥ len(C′) + g · t]
≥ Pr[len(C′′hybrid) ≥ len(C′hybrid) + g · t]

≥ 1− e−Ω(t)

(4)

where g = (1− δ)α. �is completes the proof.

A.3.3 Achieving common pre�x property

We now turn to proving the common pre�x property (De�nition 2.2) for the core-chain protocol Πcore
. �e

concrete statement can be found in Lemma 3.4.

Intuitively, from the assumption that honest players control more resource than the malicious ones, we can

see that if the malicious parties maintain a hidden, forked core-chain, and try to extend it by themselves, then

the hidden core-chain will be shorter than the public core-chain. From the assumption α+ β◦ � 1, we see that

in most rounds no new block will be generated. �is means all honest players will have the same view in most

rounds. Since all honest players will extend the same public chain, the public chain will be the longest one.

Actually, we do not need to assume the strategy of malicious players. �e common pre�x property holds for

all adversary model. We only give the proof idea in this section. �e formal proof can be found in the section 4.3.

33

Reminder of Lemma 3.4. Assume that α = λβ◦, and λ > 1. Consider an execution of core-chain protocol Πcore,
where two honest PoS-players, P in round r andP1 in round r1, with the local best core-chains C and C1, respectively,
where r1 ≥ r. �en we have Pr [C[¬κ] � C1] ≥ 1− e−Ω(κ).

�e main proof ideas are as follows: Considering from round r to r1, there are r1 − r rounds totally. Let C1

be the best chain in round r1. We will argue that the malicious players can not fork a chain C from round r with

almost same length of C1. For the network delay ∆ is small, in most rounds all of the honest players will take

the same best chain. �is means that in most rounds the honest players will try to extend the same chain. �at

is only one chain will be extended in a round by honest players. Pu�ing these together, at least one chain of C1

and C will not be extended in more than
r1−r

2 rounds. WLOG, we assume it is C. In these rounds, the best chain

will be extended by honest layers and C will be extended only by malicious players.

We assume α = λβ, where λ > 1. If r1 − r is long, the malicious player can not keep C be extended with

same growing rate with best chain. First, we will build the relationship between length of a core-chain and the

number of rounds.

Claim A.15. Consider REAL(ω), and δ > 0. Let Z be the number of rounds in which ` consecutive block-cores are
generated. �en we have Pr[Z > (1− δ)c`] > 1− e−Ω(`) where c = 1

α+β◦ .

Proof. All players can extend α + β◦ number of PoS block-cores in a round on average. In order to generate

` block-cores, it will consume
`

α+β◦ rounds on average. Let c = 1
α+β◦ , and Z be the number of rounds which

generate the ` consecutive PoS block-cores. For any δ > 0, by using Cherno� bounds, we have Pr[Z ≤ (1 −
δ)c`] ≤ e−δ2c`/3

. �at is, Pr[Z > (1− δ)c`] > 1− e−δ2c`/3 = 1− e−Ω(`)
. �is completes the proof.

De�nition A.16 (Divergent length). Given two di�erent core-chain C1 and C2. Let B be the last common block on
C1 and C2. Let `1 be the length from B to the end of C1 and `2 be the length from B to the end of C2. �e divergent
length of C1 and C2 is ` = max{`1, `2}.

Claim A.17. Let α = λβ◦ , λ > 1 and (α+ β◦)∆� 1, exists δ > 0. Consider REAL(ω). Let C be the best public
core-chain in round r. Let C1 be another valid core-chain which is di�erent with C. Let ` be the divergent length of
C and C1. We have Pr[len(C)− len(C1) > (1− δ)`] > 1− e−Ω(`).

Proof. Suppose the last common block-core of C and C1 is generated in round s = r−t. From Claim A.15, we have

t > (1− δ) `
α+β◦ with probability no less than 1− e−Ω(`)

. Let X = len(C)− len(Cs) be the length growth of best

public core-chain in the t rounds, with Lemma 3.3, we haveX > (1−δ)αtwith probability no less than 1−e−Ω(t)

During the t rounds, all the players will generate (α+ β◦)t block-cores which are longer than core-chain Cs on

average. With the network delay, this will confuse the honest players (α+β◦)∆t rounds on average. �at is the

honest players may contribute to other core-chain during the confusing rounds. Let Y be the block-cores that the

honest players contribute during the confusing rounds. We have Y = (α+β◦)∆tα on average. For (α+β◦)∆�
1, we have Y � X . LetZ be the number of block-cores that malicious players can extend for a core-chain during

the t rounds. We have Z = β◦t on average. With Cherno� bounds, we have Z < (1 + δ)β◦t with probability no

less than 1−e−Ω(t)
. Pu�ing these together, we have Pr[X− (Y +Z) > (1−δ)λ−1

λ+1`] > 1−e−Ω(t) = 1−e−Ω(`)
.

For λ > 1, we have Pr[len(C)− len(C1) > (1−δ)`] = Pr[X− (Y +Z) > (1−δ)`] > 1−e−Ω(`)
. �is completes

the proof.

A.3.4 Achieving chain quality property

�e chain-quality property (De�nition 2.3) ensures that the ratio of blocks from honest players in a continuous

part of longest core-chain has a lower bound. We show that the number of block-cores produced by the adversarial

miners is bounded by the number of their stakes. We demonstrate that the ratio of honest PoS block-cores in

an honest player’s PoS core-chain is under a suitable lower bound in a su�cient number of rounds with an

overwhelming probability.

34

We note that the discussion of chain-quality property is only for the best chain. From the chain growth

property, we know that network delay will discount the e�ective honest stakes. In the following proof, when we

calculate the length of chain we use the α in stead of α0.

Now we consider the contribution from honest players in any consecutive block-cores. If the adversarial

players want to contribute more PoS block-cores on the core-chain, they will try to generate more PoS block-

cores and beat the PoS block-cores from honest players in the competition. �us, the worst case is the adversarial

players make use of all the stakes to generate PoS block-cores and win all of the competition. First, we will prove

the core-chain quality property in any t consecutive rounds.

Claim A.18. Consider REAL(ω), and an honest PoS-player P with PoS core-chain C. Consider ` consecutive PoS
block-cores of C that are generated from round r to round r + t. Assume α = λβ◦ where λ > 1. �en we have
Pr[µ ≥ 1− (1 + δ) 1

λ] > 1− e−Ω(t) for any δ > 0, where µ is the ratio of honest block-cores of the PoS core-chain C.

Proof. Consider the ` consecutive PoS block-cores of C that are generated from round r to round r + t. From

Lemma 3.3, we have Pr[` ≥ (1− δ∗)α · t] ≥ 1− e−Ω(t)
for any δ∗ > 0. Let Y be the number of valid malicious

PoS block-cores which are actually generated in t rounds to extend a core-chain. By Cherno� bound, we have

Pr[Y < (1 + δ′)β◦ · t] > 1− e−Ω(t)

We then have

Pr

[
µ ≥ `− Y

`

]
> 1− e−Ω(t)

�at is, By picking δ∗ and δ′ su�ciently small, we have

Pr

[
µ ≥ 1− (1 + δ)

1

λ

]
> 1− e−Ω(t)

for any δ > 0. �is completes the proof.

Now we are ready to prove the core-chain quality property for consecutive block-cores on a core-chain.

Reminder of Lemma 3.5. Assume α = λβ◦, and λ > 1. Consider an execution of core-chain protocol Πcore,
where an honest PoS-player is with core-chain C. If among ` consecutive block-cores in C, there are `good block-cores

that are generated by honest PoS-players, then we have Pr
[
`good

` ≥ µ
]
≥ 1− e−Ω(`) where µ = 1− (1 + δ) 1

λ , and
δ > 0.

Proof. Let t be the number of rounds that the ` block-cores are generated. From Claim A.15, we have Pr[t >
(1− δ)c`] > 1− e−Ω(`)

. From Claim A.18, the ratio of honest PoS block-cores in t consecutive rounds with ` PoS

block-cores is µ ≥ 1− (1 + δ) 1
λ with probability at least 1− e−Ω(t)

. Pu�ing them together, the probability is at

least 1− e−Ω(`)
. �is completes the proof.

B Supplemental Material for Section 4

Here, we present the full security analyze of our protocol Πcore◦
.

B.1 Achieving chain growth with ∆ = 1

We �rst analyze the chain growth in the execution where all messages from honest players can be broadcasted

to all other honest nodes in ∆ = 1. Here, we use the Markov chain model that we described in Section 4.3.1. As

we mentioned, the chain growth rate in each round is at least equal to the stationary probability of state 0© of

the Markov chain. �us, to analyze the chain growth property, we �rst compute the stationary probability q0 of

state 0©. �en, we use a concentration bound in [21] to prove the chain growth property of protocol Πcore◦
.

35

B.1.1 Expected chain growth

Before we compute stationary probability of state 0©, we compute the expect number of longest chains fi,D for

all i ≥ 0. Recall that at round r, a new longest chain of length ` is generated. Let fi,j (i, j is integers such that

i ≥ 0, 0 ≤ j ≤ D) be the expected number of chains with length `− D + j at round r + i. Here, we consider the

worst case for the honest players in which when a new longest chain is generated at round r, the best chain set

only consists of the longest chain as its pre�x. �us, we have
f0,j ≥ 1,

fi,0 ≥ 1,

fi,j = fi−1,j + fi−1,j−1 · α,∀i > 0, j > 0.

(5)

Hence,

fi,j ≥ 1 +

min(i,j)∑
k=1

(
i

j

)
αk (6)

Now, we are ready to compute compute stationary probability of state 0©. From Eq. 1, we have,

∑m
i=0 qi = 1,

q0 = 1−
∑m

i=1
qi
q0
· α · (fi,D − 1),

qi = q0
∏i−1
j=0(1− α · fj,D), ∀1 ≤ i < m,

qm = qm−1 · (1− (1− α · fm−1,D))

+qm · (1− (1− α · fm,D))

(7)

We now compute the stationary probability q0 when D = 0, 1, 2 as follows.

�e case: D = 0. We have, fi,0 = 1, ∀i ≥ 0. Replace this to the third equation in Eq. 7, we have

α

q0
= 1.

�us, Â◦0 = q0

α = 1

�e case: D = 1. We have, fi,1 = 1 + iα, ∀i ≥ 0. Replace this to the second equation in Eq. 7, we have

α

q0
= 1−

m∑
i=1

qi
q0
· α · (iα)

Let A1 =
∑m

i=1

(
qi
q0
· iα2

)
≥
∑m1

i=1

(
qi
q0
· iα2

)
, where m > m1 = a1/α and a1 ≈ 1.2.

From the second equation of Eq. 7, we have

qi
q0
≈ (1− iα+

i3

3
α3 − i4

12
α4 − i5

12
α5)

36

We have

A1 ≥
m1∑
i=1

(
qi
q0
· iα2

)

≈
m1∑
i=1

(
(1− iα+

i3

3
α3 − i4

12
α4 − i5

12
α5) · iα2

)

=

m1∑
i=1

(
iα2 − i2α3 +

i4

3
α5 − i5

12
α6 − i6

12
α7

)
≈ m2

1

2
α2 − m3

1

3
α3 +

m5
1

15
α5 − m6

1

72
α6 − m5

1

84
α7.

Replace m1 = a1/α, we have,

A1 ≥
a2

1

2
− a3

1

3
+
a5

1

15
− a6

1

72
− a7

1

84
≈ 0.23.

�us, the ampli�cation ratio

Â◦1 =
q0

α
=

1

1−A1
≥ 1

1− 0.23
≈ 1.3.

Here, we require 67.7% honest stake for the protocol to be secure.

�e case: D = 2. We have, fi,2 = 1 + iα+ i·(i−1)
2 α2, ∀i ≥ 0. Replace this to the second equation in Eq. 7, we

have

α

q0
= 1−

m∑
i=1

qi
q0
· α · (iα+

i · (i− 1)

2
α2)

= 1−
m∑
i=1

i−1∏
j=0

(1− α− jα2 − i · (i− 1)

2
α3)

· α · (iα+
i · (i− 1)

2
α2)

≤ 1−
m∑
i=1

i−1∏
j=0

(1− α− jα2 − i · (i− 1)

2
α3)

i · (i− 1)

2
α3

−A1

Let

A2 =

m∑
i=1

i−1∏
j=0

(1− α− jα2 − i · (i− 1)

2
α3)

i · (i− 1)

2
α3

≥
m2∑
i=1

i−1∏
j=0

(1− α− jα2 − i · (i− 1)

2
α3)

i · (i− 1)

2
α3.

where m > m2 = a2/α and a2 ≈ 1.1.

37

We have,

i−1∏
j=0

(1− α− jα2 − i · (i− 1)

2
α3)

≈(1− iα+
i3

6
α3 − i4

24
α4 − i5

24
α5)

�us,

A2 ≥
m1∑
i=1

i−1∏
j=0

(1− α− jα2 − i · (i− 1)

2
α3) · i(i− 1)

2
α3

≈

m1∑
i=1

(
(1− iα+

i3

6
α3 − i4

24
α4 − i5

24
α5) · i(i− 1)

2
α3

)

≈ 1

2

m1∑
i=1

(
i2α3 − i3α4 +

i5

6
α6 − i6

24
α7 − i7

24
α8

)
≈ 1

2

(
m2

2

3
α2 − m3

2

4
α3 +

m5
2

36
α5 − m6

2

168
α6 − m5

2

192
α7

)
.

Replace m2 = a2/α, we have,

A2 ≥
1

2

(
a2

2

3
− a3

2

4
+
a5

2

36
− a6

2

168
− a7

2

192

)
≈ 0.05.

�us, the ampli�cation ratio

Â◦2 =
q0

α
=

1

1−A1 −A2
≥ 1

1− 0.23− 0.05
≈ 1.39. (8)

Here, we require 66.2% honest stake for the protocol to be secure.

B.1.2 Useful de�nitions for the random walk on a Markov chain

Here, we introduce some useful de�nitions in a Markov chain that we will use to prove the chain growth property.

We recall that a Markov chain has a �nite set of states V . For each pair of states i© and j©, there is a transition

probability fi,j of going from state i© to state j©, where for each i,
∑

j∈V fi,j = 1. A random walk in the Markov

chain starts at some state s0. At a given time step, if it is in state si, the next state si+1 is selected randomly with

probability fsi,si+1 .

Normalized conductance. Let S be a subset of states, the normalized conductance Φ(S) of S ratio between

the total conductance of all edges from S to S̄ = V \ S (the complement set of S) over the total of conductance

of all nodes in S, i.e.,

Φ(S) =

∑
i∈S,j∈S̄ qifi,j∑

i∈S qi

�e normalized conductance of the Markov chain, denoted as Φ, is de�ned by

Φ = min
S

Φ(S)

38

Mixing time. For a given ε > 0, the ε-mixing time of a Markov chain is the minimum integer T such that for

any starting distribution, the 1-norm distance between the t-step running average probability distribution and

the stationary distribution is at most ε. �e ε-mixing time of a Markov chain is bounded as follows.

Lemma B.1. �e ε-mixing time of a random walk on a Markov chain is

O

(
ln(1/qmin)

Φ2ε3

)
,

where qmin is the minimum minimum stationary probability of any state.

Lemma B.2 (�eorem 3 in [21]). LetM be an Markov chain with state space [m] and stationary distribution Q.
Let T = T (ε) be its ε-mixing time for ε ≥ 1/8. Let (s1, · · · , st) denote a t-step random walk onM starting from
an initial distribution ϕ on [m], i.e., s1 ← ϕ. Let g : [m]→ [0, 1] be a weight function such that the expected weight
Es←ϕ[g(s)] = µ for all i. De�ne the total weight of the walk (s1, · · · , st) by X ,

∑t
i=1 fi(si). �ere exists some

constant c (which is independent of µ, δ and ε) such that

Pr[X < (1− δ)µt] < c · ‖ϕ‖Q · e−δ
2µt/(72T), for0 < δ < 1.

where, ‖ϕ‖Q =
∑

i∈[m] ϕ
2
i /qi.

B.1.3 Proof of chain growth property

Now, we ready to proof the chain growth property for our protocol Πcore◦
.

Lemma B.3 (Chain growth). Consider core-chain protocol Πcore◦ in the presence of an arbitrary adversary in which
the network delay ∆ = 1. Consider an honest PoS-player P1 with best local PoS core-chain C1 in round r1, and an
honest PoS-playerP2 with best local core-chain C2 in round r2, where r2 > r1. �en we havePr

[
len(C2)−len(C1) ≥

g · t
]
≥ 1− e−Ω(tα) where t = r2 − r1, g = (1− δ)α◦0, α◦0 = Â◦Dα (Â◦2 = 1.39), and δ > 0.

Proof. At round r1 + 1 the random walk starts at a state s1 ← Q where Q is the stationary distribution. Note

that, the random walk goes to state 0© when a new longest chain is generated. In other words, the increasing

length of the longest chain from round r1 to round r2 equal the number of appearances of state 0© in the random

walk. �us, we de�ne the weight function g : [0,m]→ [0, 1] for the random walk to represent the chain growth

as follows,

g(s) =

{
1 if s = 0,

0 if s 6= 0.

We have

Es←Q[g(s)] = q0.

Let X ,
∑t

i=1 fi(si) be the increasing length of the longest chain. From Lemma B.2, we have,

Pr[X < (1− δ)q0t] < c · ‖Q‖Q · e−δ
2q0t/(72T),

where c is a constant, T is ε-mixing time, and ε > 1/8.

Here, we have

‖Q‖Q = O(1), and T = O(1),

�us, we have,

Pr[X < (1− δ)q0t] < e−Ω(tα),

39

B.2 Achieving chain growth with arbitrary ∆

We now modify the Markov chain to deal with the network delay. Intuitively, we add ∆−1 new states to deal with

the network delay. Jumping ahead, the network delay with reduce the chain growth by a fraction of
1

1+(∆−1)Â◦Dα
.

We remark that, here, we analyze the chain growth in the worst delay se�ing in the hybrid experiment in

Appendix A.3.1. Here, the network delay of all messages generated by honest player is exact ∆. �en, from

Claim A.9, we can show that the chain growth of our protocol is lower bounded by the chain growth in the worst

delay se�ing.

Representing chain extension in the presence of network delay, via Markov chain. Similar to the Markov

chain in Fig 3, the Markov chain that represents the chain extension process (see Fig. 6) consists of m + 1 + ∆
states 0©, 1©,· · · ,m© and 1̄©,· · · , ∆̄′©, where ∆′ = ∆− 1, m = aD/α is an integer and aD ≥ 1 is a constant.

0 1

, ,

,
,

,

,

,

Figure 6: �e Markov chain that represents the chain extension process. State i represents the i-th round a�er

a new longest chain is generated. At state i, with probability αfi,D, the honest players can extend the longest

chain and we move to state ∆̄′© (where ∆′ = ∆ − 1). With some probability wi ≥ 0, the adversary publishes a

new longest chain and we move to state ∆̄′©.

For any state i©, the transition probability of going from state i©to state 0© is αfi,D+wi, wherewi ≥ 0. Here,

the adversary publish a new longest chain at state i with probability wi ≥ 0. Plus, the probability that an honest

player generates new longest chain is αfi,D. As we mentioned above, when a new longest chain is generated, we

move to the state ∆̄′© (where ∆′ = ∆ − 1) in the next round. In each delayed stated ī©, with probability 1 we

move to the state j̄© (where j = i− 1) a�er each round.

With probability 1 − αfi,D − wi, there is no new longest chain is generated. �us, for any state i (where

0 ≤ i < m), the transition probability of going from state i© to state j© (where j = i+ 1) is 1− αfi,D −wi. For

state m, the transition probability of going from state m to state m is 1− αfm,D − wm.

Chain growth as a random walk on the Markov chain. We now model the honest chain extend process from

round r1 + 1 to round r2 (r2 − r1 = t > 0) as a random walk s1, · · · , st. We start at round r1 + 1 at state s1. At

round r1 + i, state si is randomly selected transition probabilities of going from state si−1 to other states.

Let q′i be the stationary probability of the state i and Q′ = [q′0, · · · q′m] be the stationary distribution We

40

obtain the following equations for the stationary distribution.

∑∞
i=0 q

′
i +
∑∆−1

i=1 q′ ī = 1,

q′0 =
∑∞

i=0 q
′
i · (wi + α · fi,D),

q′ ī = q′0,∀1 ≤ i ≤ ∆− 1

q′i = q′i−1 · (1− (1− wi−1 − α · fi−1,D)),

∀1 ≤ i < m,

q′m = q′m−1 · (1− (1− wm−1α · fm−1,D))

+q′m · (1− (1− wm− α · fm,D))

(9)

Similar to the analysis in Appendix B.1, the chain growth rate in each round is at least equal to the stationary

probability q′0 of state 0© of the Markov chain. From Eq. 7 and Eq. 9, we have, q′0 = (1
1+(∆−1)q0

)q0.

LemmaB.4 (Chain growth). Consider core-chain protocolΠcore◦ in the presence of an arbitrary adversary. Consider
an honest PoS-player P1 with best local PoS core-chain C1 in round r1, and an honest PoS-player P2 with best local
core-chain C2 in round r2, where r2 > r1. �en we have Pr

[
len(C2) − len(C1) ≥ g · t

]
≥ 1 − e−Ω(tα) where

t = r2 − r1, g = (1− δ)α◦, α◦ =
Â◦Dα

1+∆Â◦Dα
(Â◦2 = 1.39), and δ > 0.

Proof. At round r1 + 1 the random walk starts at a state s1 ← q′ where q′ is the stationary distribution of the

Markov chain. Note that, the random walk goes to state 0© went a new longest chain is generated. In other

words, the increasing length of the longest chain from round r1 to round r2 equal the number of appearances

of state 0© in the random walk. �us, we de�ne the weight function g : [0,m] → [0, 1] for the random walk to

represent the chain growth as follows,

g(s) =

{
1 if s = 0,

0 if s 6= 0.

We have

Es←Q′ [g(s)] = q′0.

Let X ,
∑t

i=1 fi(si) be the increasing length of the longest chain. From Lemma B.2, we have,

Pr[X < (1− δ)q′0t] < c‖Q′‖Q′e−δ
2q′0t/(72T),

where c is a constant, T is ε-mixing time, and ε > 1/8.

Here, we have

‖Q′‖Q′ = O(1), and T = O(1),

�us, we have,

Pr[X < (1− δ)q′0t] < e−Ω(tα),

B.3 Achieving common pre�x

Common pre�x with respect to virtual chains We �rst analyze the common pre�x property wrt virtual

chains. We note that the virtual block sets will be updated through time. �us, we override the equal operator of

virtual block sets as follows.

De�nition B.5 (Equal operator for virtual block sets). Consider two virtual block sets Vi and V ′i at the same block
height i. We say Vi equals V ′i (i.e., Vi = V ′i) if the following constraint is satis�ed.

∀Bi ∈ Vi,∀B ′i ∈ V ′i, distance(C(Bi) → C(B ′i)) ≤ D.

41

Note that, by the de�nition of virtual block sets, the above constraint is equivalent to the following constraint

∀Bi ∈ Vi,∀B ′i ∈ V ′i, distance(C(B ′i) → C(Bi)) ≤ D.

�us, the equal operator for virtual block sets is symmetric. We also write V[i] 6= V ′[i] if the above constraint is

not satis�ed.

De�nition B.6 (Common pre�x wrt virtual chains). Consider a blockchain protocol Π with a set P of players. �e
common pre�x with respect to virtual chains, states the following: for any honest player P ′ adopting a local best
virtual chain V ′ at round r′, and honest player P adopting a local best virtual chain V at round r, in the execution
EXECΠ,A,Z, where P

′,P ∈ P and r ≤ r′, it holds that V[¬κ] � V ′, where V[¬κ] is the virtual chain resulting from
removing the last κ blocks.

Intuitively, the analysis of common pre�x wrt virtual chain is similar to the analysis of common pre�x in

Bitcoin [50] and in protocol Πcore
in Appendix A.3.3. Indeed, the key component to analyze common pre�x is

that for most of the time, the honest players only generate at most one block or virtual block set at a block height.

�is is quite straightforward in Bitcoin. Recall that the honest players always extend on the longest chain. �us,

the honest players only generate two blocks at the same block height if the player, who generates the later block,

has not received the earlier block yet. As the network delay is relatively small (comparing with the time interval

between two blocks), this event rarely occurs. Source text �is is quite straightforward in Bitcoin. Recall that

the honest players always extend on the longest chain. �us, the honest players only generate two blocks at

the same block height if the player, who generates the later block, has not received the earlier block yet. As the

network delay is relatively small (comparing with the time interval between two blocks), this event rarely occurs.

On the other hand, in our protocol, the honest players may extend from multiple chains. Hence, it is likely that

the honest players may generate more than one block in a block height. Fortunately, by the de�nition of virtual

block set, we can show that most of the time the honest players only generate one virtual block set at a block

height (please see Lemma B.7 for the detail proof).

Similar to the argument in Appendix A.3.3, considering from round r to r1, there are r1 − r rounds totally.

Let V1 be the best chain in round r1. We will argue that the malicious players can not fork a chain V from round r
with almost same length of V1. We remark that, in protocol Πcore◦

, the honest players extend a set of best chains

instead of the best chain. �us, when an honest player generates a new virtual chain, in the next ∆ the adversary

may minimize the network delay of some chains to increase the chance that an honest player generates a new

di�erent virtual chain at the same length. However, as the network delay ∆ is small, in most rounds, all of the

honest players still take the same best virtual chain. In other words, in most rounds the honest players will try

to extend the same virtual chain. �at is only one virtual chain will be extended in a round by honest players.

Pu�ing these together, at least one virtual chain of V1 and V will not be extended in more than
r1−r

2 rounds.

Without loss of generality, we assume it is V . In these rounds, the best virtual chain will be extended by honest

layers and V will be extended only by malicious players.

We assume α◦ = λβ◦, λ > 1, and δ > 0. If r1 − r is long, the malicious player can not keep V be extended

with same growing rate with best chain. Assume, ∆α◦ � 1, most of the time, there is at most one honest virtual

block set at a block height. Now, we are ready to prove the common pre�x property on virtual chains.

Lemma B.7. Consider an honest player P . Let Vbest = V0‖V1‖ · · · ‖V` (` is the length of the best chain) be the
best virtual chain in the local state of player P at the beginning of round r. If player P generates a new block B
at round r, with block height `′, i.e., len(C(B)) = `′. �en, either `′ = ` + 1 (a new longest chain is generated) or
B ∈ V`′ (the new block belongs to an existing virtual block set).

Proof. Let Cbest be the best chain in the local state of player P at the beginning of round r. From de�nition 4.8,

we have Cbest ∈ C(Vbest). Recall from procedure D-BestCore◦ in Algorithm 4, the set of best chains is consists of

all that chains C′ in which the distance from the best chain Cbest to C′ is smaller than D, i.e.,

Cbest = {C′|distance(Cbest → C′) ≤ D}.

42

Let C be the chain that player P extend at round r by adding the block B . Since the honest players only extend

the chains in the set of best chains, we have, C ∈ Cbest. We consider two case of C as follows.

• len(C) = `. In this case, since the block B is extended from the chain C, we have,

`′ = len(C(B)) = len(C‖B) = `+ 1

• len(C) < `. Since distance(Cbest → C) ≤ D, from De�nition 4.1, we have,

Cbest[0, `− D] � C
⇒Cbest[0, len(C) + 1− D] � C‖B
⇒distance(Cbest[0, len(C) + 1]→ C‖B) ≤ D

⇒distance(C(Cbest[`
′]) → C(B)) ≤ D

Plus, since Cbest belongs to Vbest, we have Cbest[`
′] ∈ V`′ . �us, we have B ∈ V`′ .

Lemma B.8 (Common pre�x wrt virtual chains). Assume α◦ = λβ◦, λ > 1, and δ > 0. Consider an execution
of core-chain protocol Πcore◦ with an arbitrary adversary. Consider two honest players, P in round r with the local
best virtual-chain V , and P ′ in round r′ with the local best virtual-chain V ′, respectively, where r′ ≥ r. �en we
have Pr [V[¬κ] � V ′] ≥ 1− e−Ω(κ).

Proof. Assume, towards a contradiction, V[¬κ] � V ′. Let r0 be the round that the last common virtual block

set of V and V ′ is generated. Since the length of a best virtual chain equals the length of the corresponding best

chain, based on the chain growth property in Lemma B.4, from round r0 to round r, the length of the virtual

chain V increase by at least α◦t, where t = r − r0. We recall from Lemma B.7 that, there is at most one honest

virtual block set at a block height. �us, the adversary needs to create at least α◦t virtual block sets from round

r0 to round r. �is happens with probability less than e−Ω(κ)
.

From common pre�x w.r.t. virtual chain, to the standard common pre�x property. Next, we prove common

pre�x property from common pre�x wrt virtual chain. Consider the set of chains where the latest blocks in those

chain belong to a virtual block set. By the de�nition of the virtual block set, all of those chains share the same

common pre�x a�er pruning the last D blocks. �us, if a protocol achieves common pre�x wrt virtual chain, it

also achieves common pre�x property by pruning extra D blocks.

Lemma B.9 (Common pre�x). Assume α◦ = λβ◦, λ > 1, and δ > 0. Consider an execution of core-chain protocol
Πcore◦ with an arbitrary adversary. Consider two honest players, P in round r with the local best core-chain C, and
P ′ in round r′ with the local best core-chain C′, respectively, where r′ ≥ r. �en we have Pr [C[¬(κ+ D)] � C′] ≥
1− e−Ω(κ).

Proof. LetV be the virtual chain of C andV ′ be the virtual chain of C′. From Lemma B.8, we have Pr [V[¬κ] � V ′] ≥
1− e−Ω(κ)

. From this, we will prove that Pr [C[¬(κ+ D)] � C′] ≥ 1− e−Ω(κ)
.

We will prove by contradiction. More concretely, we will prove that, if C[¬(κ + D)] � C′, then V[¬κ] � V ′.
Let C[i] be the last block a�er pruning κ+ D blocks from C (please also see Figure 7). Since C[¬(κ+ D)] � C′, we

have

distance(C[i]→ C′) > 0

⇒ distance(C[i+ D]→ C′) > D

⇒ Vi+D 6= V ′i+D

⇒ V[¬κ] � V̂

43

𝐶

𝐶′

blocks

is the last
common virtual block

set of and

’

is the last
common block

of and

blocks

Figure 7: If common pre�x property does not hold, i.e., C[¬(κ+ D)] � C′, then common pre�x wrt virtual chain

property does not hold, i.e., V[¬κ] � V ′. Here, C belongs to V and C′ belongs to V ′.

B.4 Achieving chain quality

A D-distance-greedy adversary can extend a chain faster than basic adversary, when D > 0. Intuitively, this will

reduce the chain quality. However, the number of blocks from malicious players on any chain is bounded. If we

assume the honest players extend chains faster than the malicious players, the chain quality property will still

hold as in Lemma 3.5.

Lemma B.10 (Chain quality). Assume α◦ = λβ◦, λ > 1, and δ > 0. Consider an execution of core-chain protocol
Πcore◦ with an arbitrary adversary. Consider an honest PoS-player with PoS core-chain C. Consider that ` consecutive
block-cores of C, where `good block-cores are generated by honest PoS-players. �en we have Pr

[
`good
` ≥ µ

]
≥

1− e−Ω(`) where µ = 1− (1 + δ) 1
λ .

Proof. We prove by contradiction. Assume all block from round r′ to round r′′ are generated by malicious players.

From Lemma B.3, we have, the length of the longest chain from round r′ to round round r′′ increase by at least

(1 − δ)α◦t, where t = r′′ − r′. As all blocks from round r′ to round r′′ are generated by malicious players, the

adversary can grow the chain with the rate (1 − δ)α◦. However, from Lemma 3.2, the adversary can grow the

chain with the rate at most β◦ (a contradiction since β◦ < (1− δ)α◦).

B.5 Empirical ampli�cation ratio

We also run a simulation to compute the ampli�cation ratio. Here, we simulate multiple greedy strategies. For

each strategy, we run in 10000 rounds and the probability to create a new block in a round is 0.01, i.e., if the

players follow 0-distance-greedy strategy, on average, for every 100 rounds, a new block is generated. We run the

simulation 1000 times and take the average results. Table 1 shows the length of the longest chain, the number of

blocks, and the ampli�cation ratio of di�erent strategies. Here ` is the length of the longest chain, i.e., the player,

who follows `-distance-greedy strategy, extends all chains.

C From Core-chain to Blockchain

In this section, we start to extend the core-chain protocol Πcore◦
in Section 4 to a blockchain protocol that realizes

a ledger. Here, the payloads (lists of transactions) will be included in the blocks, We want to emphasize that the

payload cannot be included into the core block directly. If the payload is in the core block, the malicious players

44

Table 1: Simulation of greedy strategies

Strategies Longest Empirical �eoretical

chain ampli�cation ratio ampli�cation ratio

0-distance-greedy 100.6 1 1
2-distance-greedy 162.1 1.62 1.39 (lower bound)

`-distance-greedy 257.5 2.57 2.72 (upper bound)

may try to brute-force di�erent payloads to obtain the solution that satis�es the hash inequality. Furthermore,

the scheme must guarantee that a malicious player cannot change the payload he signed before.

Intuitively, the core-chain can be viewed as a (biased) random beacon to select PoS-players to generate new

blocks with payloads. �e blocks with payloads will also be linked together as a hash chain which is called

main-chain More concretely, consider a best core-chain C = B0‖B1‖ · · · ‖B` with the corresponding main-chain

C̃ = B̃0‖B̃1, · · · ‖B̃` 6
. Once a new block-core B`+1 is generated by a PoS-player, then the same PoS-player is

selected to generate the new block B̃`+1, in the following format B̃`+1 = 〈h̃`,B`+1, X`+1, p̃k, σ̃〉 where σ̃ ←
Sign

s̃k
(h̃`,B`+1, Xi), h̃` := hash(B̃`), and Xi+1 is payload. Here we note that in our blockchain protocol design,

the PoS-player holds two combined pairs of keys, (sk, pk) of the strengthened unique signature scheme (uKeyGen,

uSign, uVerify), and (s̃k, p̃k) of a regular
7

digital signature scheme (KeyGen,Sign, Verify). Now the blocks in

the main blockchain are “glued” with the block-cores in the blockchain, and we can reduce the security of the

blockchain protocol to the security of the blockchain protocol.

Rounds

B̃0

B1 B2 B3 B4

B̃1 B̃2 B̃3 B̃4

. . .

Figure 8: Blockchain structure

Blockchain C̃ consists of initial setup information (i.e., genesis block) B̃0 , and then an ordered sequence of blocks

B̃1, B̃2, B̃3, Here, each block B̃i consists of a block-core Bi and additional information. A core-chain C consists of

the initial setup information B̃0 and the ordered sequence of block-cores B1,B2,B3,

C.1 Ledger and transactions

A ledger consists of multiple accounts in which each account has a number of stakes. To enable the ledger and

transactions, we introduction the following functions.

GenAccount: It returns an account with a public identi�er id and a corresponding secret information ids .

ExtractLedger: It takes input and a main-chain C̃ and returns a ledger L that is extracted from C̃.

ReadLedger: It takes input as a ledger L, a public identi�er id , and returns the current number of stakes that

the account with the identi�er id has in the ledger L.

IssueTran: It takes input as a ledger L, a public identi�er id and a corresponding secret information ids .

�e function IssueTran returns a transaction tx that transfer some stake from the account with the public

6

�e genesis core-block B0 and the genesis block B̃0 are the same

7

We note that, to achieve adaptive security, this regular signature scheme will be replaced by a forward-secure digital signature

scheme [8].

45

identi�er id to other accounts.

VerifyTran: It takes input as a ledger L, a transaction tx, and returns 1 if the transaction tx is valid. Otherwise,

it returns 0

C.2 Main blockchain protocol

We now describe our PoS based blockchain protocol Πmain
. �e blockchain protocol can be viewed as an aug-

mented version of the core-chain protocol in Section 4.

Algorithm 5: Protocol Πmain

State : At round r, the PoS-player P ∈ P, with key pairs (sk, pk), (s̃k, p̃k) and local state state , proceeds as

follows.

1 Let C̃ be the set of local chains in state
2 Let X be the set of transactions in state

3 Compute C̃best ← D-BestMain•(C̃, r)

4 for C̃ ∈ Cbest do
5 ` := len(C̃)
6 Parse C̃ into B̃0‖B̃1‖ · · · ‖B̃`
7 for i from 1 to ` do
8 Parse B̃i into 〈〈h̃i,Bi, Xi〉, p̃ki, σ̃i〉
9 Obtain the core-chain C := B0‖B1‖ · · · ‖B`

10 prev ← h(B`)
11 σ := uSign(sk, 〈prev , r〉)
12 if H(prev , r, pk, σ) < T then
13 Create new block B := 〈prev , r, pk, σ〉
14 LC̃ := ExtractLedger(C̃)
15 Set the payload XC̃ := ∅
16 for tx ∈ X do
17 if VerifyTran(LC̃ , tx) = 1 then
18 Add tx to XC̃
19 h̃ = hash(B̃`)

20 σ̃ ← Sign(s̃k, 〈h̃,B , XC̃〉)
21 B̃ := 〈〈h̃,B , XC̃〉, p̃k, σ̃〉
22 C̃1 = C̃‖B̃
23 Broadcast C̃1

Initialization. Similar to the core-chain protocol, the public keys of the unique digital signature scheme are

stored in the genesis block. However, since another regular digital signature scheme is used, the public keys

of this digital signature scheme are also stored in the genesis block. To be precise, given an (initial) group

of PoS-players P = {P1,P2, . . . ,Pn}, a security parameter κ, a unique digital signature scheme (uKeyGen,
uKeyVer, uSign, uVerify), and a regular digital signature scheme (KeyGen,Sign,Verify), the initialization is as

follows: each PoS-player Pj ∈ P, with an identi�er id j , generates two key pairs (skj , pkj) ← uKeyGen(1κ),

(s̃kj , p̃kj) ← KeyGen(1κ) and keeps skj , s̃kj secret. �e public keys are stored in the genesis block B̃0, along-

side with a randomness rand and an initial ledger Linit, i.e., B̃0 = 〈((pk1, p̃k1), (pk2, p̃k2), · · · , (pkn, p̃kn)),
rand, Linit〉. We remark that, here, the players are independent with the ledger.

Blockchain extension. Similar to the core-chain protocol, for each PoS-player P , once activated by the envi-

ronment at a round, the party P �nds the best valid blockchain C̃best by running the procedure D-BestMain•,
and then updates its local blockchain C̃ := C̃best (see Algorithm 5 for the pseudocode). Note that, the i-th block

46

in blockchain C̃, is in the following format B̃i := 〈〈h̃i−1,Bi, Xi〉,Pi, σ̃i〉. �at means, from B̃i, we can obtain the

i-th block-core Bi. We thus can derive the core-chain C from the blockchain C̃. If the PoS-player P is selected, i.e.,

she/he generates a signature σ for context := 〈h`, r`+1〉, and pass the hash inequality. �en she/he de�nes a new

block-core B`+1 := 〈〈h`, r`〉,P , σ〉, updates his local core-chain C. Once the new block-core B`+1 is generated,

the PoS-player P select a payloadX`+1 that consists of all valid transactions on the chain C̃ in her/his local state.

generates a signature σ̃ for 〈h̃`,B`+1, X`+1〉. �en he can de�ne a new block B̃`+1 := 〈〈h̃`,B`+1, X`+1〉,P , σ̃〉,
and update his local blockchain C̃. He then broadcasts the local blockchain to the network. Please refer to Algo-

rithm 5 for more details of our blockchain protocol.

Algorithm 6: procedure D-BestMain•

Input : A chain set C̃ at round r.

Output: �e best chain set C̃best.

1 for C̃ ∈ C̃ do
2 Parse C̃ into B̃0‖B̃1‖ · · · ‖B̃`
3 for i from 1 to ` do
4 Parse B̃i into 〈〈h̃i,Bi, Xi〉, p̃ki, σ̃i〉
5 if hash(B̃i−1) 6= h̃i or Verify(p̃ki, 〈h̃,Bi, Xi〉, σ̃i) = 0 then
6 Remove C̃ from C̃

7 Li−1 := ExtractLedger(C̃[0, i− 1])
8 for tx ∈ Xi do
9 if VerifyTran(Li−1, tx) = 0 then
10 Remove C̃ from C̃

11 Parse Bi into 〈prev i, ri, pki, σi〉
12 if h(Bi−1) 6= prev i or H(prev i, ri, pki, σi) ≥ T or uVerify(pki, 〈prev i, ri〉, σi) = 0 or ri > r then
13 Remove C̃ from C̃

14 Set C̃best be the longest core-chain in C̃

15 for C̃ ∈ C̃ do
16 if distance(C̃best → C̃) ≤ D then
17 C̃best := C̃best ∪ {C̃}
18 Return C̃best

�e best set of main-chains procedure. �e procedure D-BestMain• will output a set of best main-chains includ-

ing the longest chain, and several chains that are very close to, and slightly (i.e., D blocks) shorter than the

longest chain (see Algorithm 6 for the pseudocode). First, the procedure D-BestMain• iterates through the set

of main-chains C̃ to identify the valid main-chains. To be precise, for each main-chain C̃ ∈ C̃, the procedure

D-BestMain• evaluates every blocks on the main-chain C̃ = B̃0‖B̃1‖ · · · ‖B̃`. For each main-block B̃i, the proce-

dure D-BestMain• (1) veri�es the signature on the payload is correct, (2) veri�es the transactions in the payload

is valid and (3) veri�es the corresponding core-block Bi is correct. �en, it sets the longest valid main-chain as

the best main-chain. Finally, the procedure D-BestMain• iterates through the set of main-chains in the local state

of the player to �nd all the chains in which the distance from the best chain to those chains does not exceed D.

C.3 Analysis of blockchain protocol

As mentioned before, our blockchain protocol Πmain
can be viewed as an augmented version of the core-chain

protocol Πcore◦
in Section 4; each security property of our blockchain protocol can be reduced to the correspond-

ing property of the core-chain protocol. We note that, as in the core-chain protocol Πcore◦
, the security properties

hold under the assumption of honest majority of e�ective stakes based on α◦ and β◦.

�eorem C.1. Consider blockchain protocol Πmain where honest players follow the 2-distance-greedy strategy. As-

47

sume that (uKeyGen, uKeyVer, uSign, uVerify) is a secure unique digital signature scheme, and (KeyGen,Sign,Verify)
is secure digital signature scheme. If α◦ = λβ◦, λ > 1, then the protocol Πmain can achieve chain growth, chain
quality, and common pre�x properties.

From the unforgeability property of the digital signature scheme, we can show that the protocol Πmain
can

achieve the same security as the protocol Πcore◦
. Intuitively, by using the digital signature scheme, we can ensure

that (1) the honest block producers (the players can can generate new core-blocks) can always generate a valid

corresponding blocks and (2) the blocks that are not generated by the block producers of the corresponding core-

blocks are not valid. To be precise, the correctness of signature generation property guarantees that if an honest

player can generate a core-block, she/he can generate a valid block. Furthermore, the unforgeability of signature

generation guarantees that the malicious players cannot generate a block on a core-block that is generated by an

honest players. Note that, from a core-block, the adversary can generate multiple blocks at the same block height
on the main-chain. However, we will show that the adversary cannot take this advantage to break the security

of the protocol Πmain
.

First, we introduce the notion of the corresponding core-chain of a main chain. Intuitively, the corresponding

core-chain of a main chain is the core-chain in which each block on the main-chain is generated from a core-

block on the core-chain. In detail, consider a main-chain C̃ = B̃0‖B̃1‖ · · · ‖B̃`. For all i ∈ [`], we parse B̃i into

〈〈h̃i,Bi, Xi〉, p̃ki, σ̃i〉. �en the corresponding core-chain of C̃ is C = B0‖B1‖ · · · ‖B` (where B0 = B̃0).

Note that, the adversary could generate multiple blocks from the same core-block, and thus generate and

extend multiple main-chains with respect to the same corresponding core-chain. However, an honest player will

extend exactly one main chain; if there are multiple main-chains, the honest player will always choose the best

one to extend. At any moment, if there is an honest player who generates a core-block, the player will extend the

core-chain, and at the same time, generates a single main-chain in the system. We have the following lemmas.

Lemma C.2. Consider core-chain protocol Πmain in the presence of an arbitrary adversary. Assume that (uKeyGen,
uKeyVer, uSign, uVerify) is a secure unique signature scheme and (KeyGen, Sign,Verify) is a secure signature
scheme. Consider a main-chain C̃. Let n be the number of players and ρ be the fraction of malicious players in
the protocol execution. At a given round r, the probability that an honest player generates a new block on the main-
chain C̃ is α0 = 1− (1− p)n(1−ρ).

Proof sketch. Let C be the corresponding core-chain of the main-chain C̃. Consider an honest player Pj that hold

the key pairs (skj , pkj) and (s̃kj , p̃kj). Recall in protocol Πmain
that the player Pj can generate a new block at

round r on the main chain C̃ if

1. Pj can generate a valid core-block B := 〈prev , r, pkj , σ〉 where prev is the hash value of the last block on

C, and σ is a signature on the context 〈prev , r〉.

2. �en, Pj can generate a “quali�ed” signature σ̃ on 〈h̃,B , X〉, i.e., Verify(p̃kj , 〈h̃,B , X〉, σ̃i) = 1, where h̃
is the hash value of the last block on the main-chain C̃ and X is the payload.

From Lemma A.1, the probability that Pj can generate a new core-block on the core-chain C is p. Plus,

the correctness of the signature scheme ensure that Pj can always generate a quali�ed signature. �us, the

probability that the player Pj generates a new block on the main-chain C̃. Here, the number of honest players

is n(1 − ρ). �us, the probability that an honest player generates a new block on the main-chain C̃ is α0 =
1− (1− p)n(1−ρ)

.

Lemma C.3. Consider core-chain protocol Πmain in the presence of an arbitrary adversary. Assume that (uKeyGen,
uKeyVer, uSign, uVerify) is a secure unique signature scheme and (KeyGen, Sign,Verify) is a secure signature
scheme. Consider a set of main-chains C̃ = {C̃1, C̃2, · · · } in which all main-chains C̃i ∈ C̃ have the same cor-
responding core-chain. Let n be the number of players and ρ be the fraction of malicious players in the protocol

48

execution. At a given round r, the probability that a malicious player generates a new block on any main-chain
C̃i ∈ C̃ is β = 1− (1− p)nρ.

Proof sketch. Let C be the corresponding core-chain of all the main chains in C̃. Recall in protocol Πmain
that a

malicious player Pj ∈ P can generate a new block at round r on a main chain C̃i ∈ C̃ if

1. Pj can provide a valid core-block B := 〈prev , r, pk, σ〉 where prev is the hash value of the last block on

C, pk is a public key of the unique digital signature scheme, and σ is a signature on the context 〈prev , r〉.
Note that, contrary to the �rst condition in Lemma C.2, here, the player Pj can use the core-block that is

generated by another player.

2. Similar to the second condition in Lemma C.2, Pj can generate a “quali�ed” signature σ̃ on 〈h̃,B , X〉, i.e.,

Verify(p̃k, 〈h̃,B , X〉, σ̃i) = 1, where h̃ is the hash value of the last block on the main-chain C̃i and X is

the payload. Here, the pair of public keys (pk, p̃k) is registered in the genesis block B̃0.

As we mentioned before, the player Pj can use the core-block that is generated by another player and try to

generate her/his own block on that core-block. Fortunately, in this case, they player Pj will not able to generate a

“quali�ed” signature. Indeed, if the playerPj use the core-blockB := 〈prev , r, pk, σ〉 that is generated by another

player, she/he will not know the corresponding secret keys of (pk, p̃k). �e unforgeability of the signature scheme

ensures that the player Pj cannot forge any “quali�ed” signatures without knowing the secret key.

�erefore, the player Pj can generate a new block at round r on a main chain C̃i ∈ C̃ if and only if Pj
can generate a new core-block on the corresponding core-chain C̃. From Lemma A.1, this event happens with

probability p. Here, the number of malicious players is nρ. �us, the probability that a malicious player generates

a new block on any main-chain C̃i ∈ C̃ is β = 1− (1− p)nρ.

Now, similar to the analysis for protocol Πcore◦
in Appendix B, we can prove that protocol Πmain

can achieve

chain growth, common pre�x and chain quality properties.

D Defending against Adaptive Registration

In previous sections (Sections C), we assume that all players have their stakes registered, before they join the

protocol execution. Let’s provide a brief explanation below. Note that the process of extending the chains is based

on the hash inequality H(context , solution) < T, where solution is in the form of (pk, σ). Since the adversary

now knows the context , he can play a “rejection re-sampling” strategy to generate their keys adaptively. More

concretely, the adversary �rst runs key generation algorithm to obtain a key-pair (pk, sk), and then check if the

corresponding (pk, σ) is a valid solution to the hash inequality; if not, the adversary will repeat the process. By

adopting this strategy, malicious players can signi�cantly increase the probability that they are chosen to extend

the chains. In this section, we propose new ideas to address the rejection re-sampling a�ack; as a result, we

can allow the players to have their stakes registered during the protocol execution. We note that, to maintain the

security, at any round, we require majority of honest stakes (i.e., at least 66.2% of total stake is honest).

D.1 �e modi�ed blockchain protocol Πmain•

To securely enable adaptive registration, the protocol has been modi�ed as follows.

Initialization. Contrary to the protocol Πmain
, the players in protocol Πmain•

are bound with the account

in the ledger. At the beginning, the public keys and the identi�ers of an (initial) group of PoS-players P =
{P1,P2, . . . ,Pn} are stored in the genesis block B0, alongside with a randomness rand and an initial ledger

Linit, i.e., B̃0 = 〈((pk1, p̃k1, id1), (pk2, p̃k2, id2), · · · , (pkn, p̃kn, idn)), rand, Linit〉. Note that, the players needs

49

to have at least st number of stakes in their account to participate in the mining, i.e., ReadLedger(Linit, id i) ≥ st,
for all i ∈ [n].

Blockchain extension. Here, the players extend the chain in the same way as in protocol Πmain
. However, new

player is allowed to join the protocol during the protocol execution.

Algorithm 7: Protocol Πmain•

State : At round r, the PoS-player P ∈ P, with key pairs (sk, pk), (s̃k, p̃k) and local state state , proceeds as

follows.

1 Registration (for a new player):
2 Player P generates two combined pairs pair (sk, pk)← uKeyGen(1κ) and (s̃k, p̃k)← KeyGen(1κ)
3 P broadcasts a registration transaction 〈Registration, pk, p̃k〉
4 Deregistration (for a player who no longer wish to participate in the protocol):
5 P broadcasts a registration transaction 〈De-registration, pk, p̃k〉
6 Extending the set of best chains:
7 Let C̃ be the set of local chains in state
8 Let X be the set of transactions in state

9 Compute C̃best ← D-BestMain•(C̃, r)

10 for C̃ ∈ Cbest do
11 ` := len(C̃)
12 Parse C̃ into B̃0‖B̃1‖ · · · ‖B̃`
13 for i from 1 to ` do
14 Parse B̃i into 〈〈h̃i,Bi, Xi〉, p̃ki, σ̃i〉
15 Obtain the core-chain C := B0‖B1‖ · · · ‖B`
16 prev ← h(B`)
17 σ := uSign(sk, 〈prev , r〉)
18 if H(prev , r, pk, σ) < T then
19 Create new block B := 〈prev , r, pk, σ〉
20 LC̃ := ExtractLedger(C̃)
21 Set the payload XC̃ := ∅
22 for tx ∈ X do
23 if VerifyTran(LC̃ , tx) = 1 then
24 Add tx to XC̃
25 h̃ = hash(B̃`)

26 σ̃ ← Sign(s̃k, 〈h̃,B , XC̃〉)
27 B̃ := 〈〈h̃,B , XC̃〉, p̃k, σ̃〉
28 C̃1 = C̃‖B̃
29 Broadcast C̃1

Adaptive registration. �e players now are allowed to register during the protocol execution. To join the protocol,

player P , with an identi�er id generates two combined pairs pair (sk, pk) ← uKeyGen(1κ) and (s̃k, p̃k) ←
KeyGen(1κ). P keeps sk, s̃k secret, and broadcasts a registration transaction 〈Registration, pk, p̃k, id〉. Upon the

registration transaction is included in a payload of a block, the player is considered as registered. Note that, to

join the protocol, the player P needs to have more than st number of stakes. We remark that, a�er registration,

the players need to reserve st stakes. �e reserved stakes cannot be used for other purposes, e.g., generating

transactions. A�er a new player register on the blockchain, she/he is allowed to extend the chain a�er η blocks.

We refer to the players that are allowed to extend the chain as quali�ed players. We note that, the players who

register before the protocol start, i.e., in the genesis block, are quali�ed to extend the chain with out waiting for

η blocks.

Deregistration. A quali�ed player can deregister if she/he no longer wish to participate in the protocol. To dereg-

50

Algorithm 8: procedure (D, η)-BestMain•

Input : A chain set C̃, round r.

Output: �e best chain set C̃best.

1 for C̃ ∈ C̃ do
2 Parse C̃ into B̃0‖B̃1‖ · · · ‖B̃`;
3 for i from 1 to ` do
4 Parse C̃ into B̃0‖B̃1‖ · · · ‖B̃`
5 for i from 1 to ` do
6 Parse B̃i into 〈〈h̃i,Bi, Xi〉, p̃ki, σ̃i〉
7 if hash(B̃i−1) 6= h̃i or Verify(p̃ki, 〈h̃,Bi, Xi〉, σ̃i) = 0 then
8 Remove C̃ from C̃

9 Li−1 := ExtractLedger(C̃[0, i− 1])
10 for tx ∈ Xi do
11 if VerifyTran(Li−1, tx) = 0 then
12 Remove C̃ from C̃

13 Parse Bi into 〈prev i, ri, pki, σi〉
14 if h(Bi−1) 6= prev i or H(prev i, ri, pki, σi) ≥ T or uVerify(pki, 〈prev i, ri〉, σi) = 0 or ri > r then
15 Remove C̃ from C̃

16 reg := −1
17 for j from i− 1 to 0 do
18 if B̃j contains the deregistration transaction 〈De-registration, pki, p̃ki, id i〉 then
19 Break
20 if B̃j contains the registration transaction 〈Registration, pki, p̃ki, id i〉 then
21 if j > 0 then
22 L′ := ExtractLedger(C̃[0, j − 1])
23 else
24 L′ := Linit
25 if ReadLedger(L′, id i) ≥ st then
26 reg := j
27 Break
28 if reg = −1 or (reg 6= 0 and i− reg < η) then
29 Remove C̃ from C̃

30 Set C̃best be the longest core-chain in C̃′;

31 for C ∈ C do
32 d := distance(C̃ → C̃best);

33 if distance(C̃ → C̃best) > η then
34 Obtain i is the index of last common block of C̃ and C̃best;
35 Parse C̃[i+ η] into 〈〈h̃, 〈prev , r, pk, σ〉, X〉, p̃k, σ̃〉;
36 Parse C̃best[i+ η] into 〈〈h̃ ′, 〈prev ′, r′, pk′, σ′〉, X ′〉, p̃k′, σ̃′〉;
37 if r < r′ then
38 C̃best := C̃;

39 for C ∈ C do
40 if distance(C̃best → C̃) ≤ D then
41 C̃best := C̃best ∪ {C̃};
42 Return Cbest;

ister, the player will broadcast a deregistration transaction 〈De-registration, pk, p̃k, id〉. Upon the deregistration

transaction is included in a payload of a block, the player is considered as deregistered. �e player now can spend

51

the stakes in her/his account.
8

Registration transaction veri�cation. A registration transaction 〈Registration, pk, p̃k, id〉 is consider to be valid

on a chain C if the player with identi�er id has more than st stakes. In detail, let L := ExtractLedger(C) be the

current ledger. We say the registration transaction 〈Registration, pk, p̃k, id〉 is valid if ReadLedger(L, id) ≥ st.

New best chain strategy Instead of selecting the longest chain as the best chain, we compare the chains based

on the creation time of the �rst few blocks a�er the last common block. �at is, for two divergent chains, C and

C′, if max(distance(C → C′), distance(C′ → C)) > η, then whichever chain that generates the η blocks �rst is

the be�er one. (Please see Algorithm 8 for the pseudocode.)

In detail, the procedure (D, η)-BestMain• iterates through the set of main-chains C̃ to identify the valid main-

chains. Note that, only quali�ed players are allowed to extend the chains, procedure (D, η)-BestMain• needs to

verify the block is generated by a quali�ed player. To be precise, for each main-chain C̃ ∈ C̃, the procedure

(D, η)-BestMain• evaluates every block of the main-chain C̃ = B̃0‖B̃1‖ · · · ‖B̃`. For each block B̃i, the procedure

(D, η)-BestMain• (1) veri�es the signature on the payload is correct, (2) veri�es the transactions in the payload is

valid, (3) veri�es the corresponding core-block Bi is correct, and (4) veri�es the key pair in the block belongs to

a quali�ed player, i.e., the key pair is in the genesis block or it is register η blocks ago. Here, to verify if a player

is quali�ed, the procedure (D, η)-BestMain• �rst checks if there exists an deregistration transaction of the player

included on the main-chain. If there exists such transaction, the player is not quali�ed. Otherwise, the procedure

(D, η)-BestMain• �nds the block in which the registration transaction of the player is included. If the block is

genesis block or it was added on the main chain η blocks ago, the player is considered as a quali�ed player. To

select the best main-chain, procedure (D, η)-BestMain• �rst sets the best main-chain C̃best as the longest chain.

�en, it iterates through the set of main-chains, for each main-chain C̃ ∈ C̃, if distance(C̃best → C̃) ≤ D and C̃
generates the �rst η blocks a�er the last common block faster than C̃best, it sets C̃best = C̃. Finally, the procedure

(D, η)-BestMain• iterates through the set of main-chains in the local state of the player to �nd all the chains in

which the distance from the best chain to those chains does not exceed D.

Now, malicious players cannot register a biased key pair for the following η blocks to increase the probability

he will be elected. However, there is still an issue that the malicious players may register a biased key pair for a

round, η blocks later. We will show this issue can be resolved if we further improve the best chain strategy. �e

intuition is that if the malicious players prepare a biased key pair for a public chain, then the honest player will

win some blocks among the η blocks with high probability. �e malicious players cannot predict the signature

of honest players, so he cannot predict the input of the blocks η blocks a�er. �is means that the malicious

players cannot get advantage for η blocks a�er if the chain is public. If the malicious players decide to extend

a hidden blockchain, he can prepare a biased player for a block η blocks a�er. However, he will lose the chain

growth competition for the �rst η blocks. Hence, by using the modi�ed best chain strategy, they adversary cannot

register a biased key pair to generate a be�er chain.

D.2 Security analysis

In this section, we present the security analysis of protocol Πmain•
. We recall that, the security properties of

protocol Πcore◦
have be proven under the assumption of honest majority of e�ective stakes based on α◦ and β◦.

Now, under the same assumption, we will show that our modi�ed core-chain protocol Πmain•
can also achieve

the same properties. Please note that our new adversary is stronger since there is no restriction on how players

are registered with respect to the protocol execution. We have the following theorem:

8

�e adversary may corrupt the players who le� the protocol can control the majority of the stake at a moment in the past. In this

case, the adversary can perform a long-range a�ack can generating a chain from the past. As the adversary controls the majority of the

stake at the moment, it can generate a be�er chain than the current public best chain. Here, we assume the players erase their local state

when they leave the protocol.

52

�eorem D.1. Consider core-chain protocol Πmain• where η = Ω(κ + D), the honest players follow the 2-greedy
strategy while adversarial players could follow any arbitrary strategy. Assume that (uKeyGen, uKeyVer, uSign,
uVerify) is a secure unique digital signature scheme, and (KeyGen,Sign,Verify) is secure digital signature scheme.
If α◦ = λβ◦, λ > 1, then the protocolΠmain• can achieve chain growth, chain quality, and common pre�x properties.

In our modi�ed protocol Πmain•
, malicious players cannot register key pairs so that they can extend the chains

immediately. What the malicious players can do, however, is to register biased key pairs now, and then try to

extend the chains many rounds later. We will prove that malicious players cannot obtain additional advantage

by playing this strategy. First, we will show that the probability that malicious players are able to predict the

latest block of the best public chain is negligible.

Lemma D.2. Let chain C be the best valid public chain with length ` in round r. Suppose the length of best valid
public chain C′ will be `+ η in round r+ t. �e probability that the malicious players predict the last block on chain
C′ in round r is e−Ω(η) at most in round r.

Proof. From chain quality property, we know that the honest players will contribute blocks in the last η blocks

with probability no less than 1 − e−Ω(η)
. Blocks generated by honest players are unpredictable for malicious

players. We have that the malicious players cannot predict any block from honest players before it is published.

Furthermore, he cannot predict the last block of C′ in round r if there is an honest block on chain C′ at last. We

conclude that the malicious players predict the last block of chain C′ in round r is at most e−Ω(η)
.

If malicious players cannot predict the last block of the best chain, then he cannot perform reject-resampling

to select a biased key pair so that the corresponding stakeholder can be chosen in a future round with much

higher probability. From Lemma D.2, we conclude that a malicious player, by playing adaptive key registration

strategy, cannot improve the probability that he is chosen for extending the public chain. Next, we will show that

the malicious players cannot gain advantage, by playing this adaptive strategy, for extending a private (hidden)

chain.

From the modi�ed protocol, we know that the adaptive key generation will not a�ect the �rst η blocks. �at

means, it is not helpful for the adversary to extend the hidden chain, via the adaptive key registration strategy.

Chain growth Honest players in protocol Πmain•
will extend the chains in the same way as that in protocol

Πcore◦
. We note that, the probability of the adversary to create a hidden chain with length η, that is longer than

the public chain, is negligible. �us, the adversary cannot create a private best chain , that are divert more than

η blocks from the current public best chain. Hence, the best chain (selected from both public and private chains)

has bigger or equal length with the public best chain. From Corollary B.3 we have:

CorollaryD.3 (Chain growth). Consider core-chain protocolΠmain• that allows new players to register to the system
adaptively. Consider an honest PoS-player P ′ with best local PoS core-chain C′ in round r′, and an honest PoS-player
P ′′ with best local core-chain C′′ in round r′′, where r′′ > r′. �enwe havePr

[
len(C′′)−len(C′) ≥ g·t

]
≥ 1−e−Ω(t),

where t = r′′ − r′, g = (1− δ)α◦, and δ > 0.

Common pre�x Again, from Lemma D.2, the adversary cannot obtain extra bene�t by playing the adaptive

strategy. �ey cannot produce more blocks by adaptively selecting key pairs. From Corollary B.9 we have:

Corollary D.4 (Common pre�x). Consider α◦ = λβ◦, λ > 1, and δ > 0. Consider core-chain protocol Πmain• that
allows new players to register to the system adaptively. Consider two honest PoS-players,P in round r andP ′ in round
r′, with the local best PoS core-chains C, C′, respectively, where r′ ≥ r. �en we have Pr [C[¬κ] � C′] ≥ 1− e−Ω(κ).

53

Chain quality From Lemma D.2, the adversary cannot obtain additional advantage by playing the adaptive

strategy. �at is, they cannot produce more blocks by adaptively selecting key-pairs and having their stakes

registrated. From Corollary B.10 we have:

Corollary D.5 (Chain quality). Consider α◦ = λβ◦, λ > 1, and δ > 0. Consider core-chain protocol Πmain•

that allows new players to register to the system adaptively. Consider an honest PoS-player with PoS core-chain C.
Consider that ` consecutive block-cores of C, where `good block-cores are generated by honest PoS-players. �en we

have Pr
[
`good
` ≥ µ

]
≥ 1− e−Ω(`), where µ = 1− (1 + δ) 1

λ .

E Extensions

Our design is a natural mimic of Nakamoto’s but via proof-of-stake. We can easily “borrow” many ideas in

Nakamoto’s white paper (and in follow-up papers) to our design.

Blockchainwith adaptive di�culty adjustment In Bitcoin, in order to maintain a steady chain growth rate,

the system adjusts the PoW hash target di�culty adaptively. �e smaller the target, the lower the probability to

get a valid PoW block and vice versa. Our scheme can be extended to support adaptive di�culty easily. As in

Nakamoto’s system, the target di�culty is adjusted every m blocks for some integer m. �e time span of di�culty

adjustment is called an epoch; and let t be the expected time of an epoch. Let ti be the actual time span of the

i-th epoch, and Ti be the target di�culty in the i-th epoch. We have the target di�culty in the (i+ 1)-th epoch

as follows: Ti+1 = ti
t Ti.

From the equation above we can observe that, if ti > t then Ti+1 > Ti and vice-versa. In the case that ti > t,
the stakeholders spend longer time to obtain m blocks; it means the system requires more time than expected for

the i-th epoch; thus, the target di�culty should be increased so that the stakeholders can �nd new blocks faster

in the next epoch. �is negative feedback mechanism makes the system stable. To extend a PoS blockchain, we

modify the hash inequality as H(hash(Bi), r, pk, σ) < Ti. A player will test if he is quali�ed to sign a PoS-block

based on the current target di�culty Ti.

Blockchain in non-�at model Our ideas in previous sections are described in the “�at” model, where all

PoS-players are assumed to hold the same number of stakes (and they are selected as the winning player with

the same probability in each round). In reality, PoS-players have di�erent amounts of stake. We next discuss

how to extend our design ideas properly into this more realistic “non-�at” model. Consider a PoS-player, with

veri�cation-signing key pair (pk, sk), holding v number of stakes. Let Tj denote the target di�culty in the current

epoch, i.e., the j-th epoch. We change the hash inequality as follows:

H(hash(Bi), r, pk, σ) < vTi

It is easy to argue that the winning probability of a PoS-player for generating a new block-core is proportional

to the amount of stake he controls: If the PoS-player puts his v coins in one account, the probability that he is

selected to sign a PoS block is vp; If the PoS-player puts his v coins in v accounts and every account has one stake,

the probability that an account is selected to sign a PoS block is p. �e outputs of hash function are independent

for di�erent veri�cation keys. �e total probability that the PoS-player is selected is 1− (1− p)v ≈ vp.

F Additional Attacks

Posterior corruption (key-selling) attacks In a posterior corruption a�ack, an adversary can a�empt to

corrupt the secret keys of the block producers, i.e., the players that generated blocks, in the history of the system.

Now, the adversary can use those secret keys to rewrite the history of the blockchain.

54

We remark that, in “epoch-by-epoch” proof-of-stake protocols, the adversary can rewrite the history in the

last epoch by buying the majority secret keys of the players that generated blocks in that epoch. Indeed, since

the public randomness is �xed for each epoch, the adversary can use the key of the block producers in the best

chain to generate blocks in a di�erent chain. If the adversary only extends on its chain and does not participate

in extending the best chain, the chain of the adversary can be be�er than the best chain.

On the other hand, in our “block-by-block” proof-of-stake protocol, to rewrite the history, the adversary have

to buy all secret keys of the block producer in the past. As the public randomness of our protocol updates in

every block, even when the adversary control the secret keys of the block procedures in the past, it cannot change

the structure of the core-chain but only the payloads of those blocks. Furthermore, if a player refuses to sell the

secret key, the adversary cannot change the payload of the blocks that are generated before that blocks.

A typical solution to depend against posterior corruption a�acks is using key-evolving cryptography [23].

�e concept behind key-evolving cryptography and is that the lifetime of the key is divided into period for which

a di�erent private key is used, yet the public one remains the same. In this regard, there is a key update algorithm

to derive the new private key from the previous one. �erefore, the period that the signature was issued becomes

an integral part of the whole signature. As a result, even if a key is leaked it cannot be used to re-sign older

messages.

Stake-bleeding attacks Stake-bleeding a�acks [35] is a type of long-range a�acks that cause by the change

of the stake distribution among the players. In detail, adversary does not participate on extending the longest

public chain and makes a�empts to generate a hidden chain. All transactions on the longest public chain will

be included on the hidden chain of the adversary. �e number of stakes that are controlled by the adversary

slowly increases in the hidden chain. In other words, the growth rate of the hidden chain slowly increases while

the growth rate of the best public chain remains the same. Eventually, the hidden chain will be longer than the

longest public chain. We remark that, this a�ack is rather slow. According to [35], if the adversary with 30%
stake need 5.5 year to successfully perform stake-bleeding a�acks.

Our protocol in Section D can defend against stake-bleeding a�acks. Indeed, instead of selecting the longest

chain as the best chain, the players choose the best chain by comparing the creation time of the �rst η blocks

a�er the last common block. �e chain that generates the �rst η blocks faster is considered as the be�er chain.

In the stake-bleeding a�ack we describe above, the adversary cannot claim enough reward to control majority

of stakes within η blocks. �us, the adversary cannot generate the �rst η blocks faster than the honest players.

Hence, the hidden chain of the adversary cannot be the best chain.

G Additional Preliminaries

Digital signature scheme A digital signature scheme consists of three probabilistic polynomial-time algo-

rithms (KeyGen,Sign,Verify) as follows.

�e key generation KeyGen takes as input a security parameter 1κ and outputs a pair of signing-veri�cation

keys (sk, pk).

�e signing algorithm Sign takes as input a signing key sk and a message m and output a signature σ. We

write this as σ ← Sign
sk

(m).

�e veri�cation algorithm Verify takes a veri�cation key pk, a message m, and a signature σ. It outputs 1 if

the signature is correct, and 0 if otherwise. We write this as Verify
pk

(m,σ).

De�nition G.1. We say (KeyGen,Sign,Verify) is a digital signature scheme, if it satis�es:

Correctness of signature generation: For any message x, it holds that

Pr
[

(pk, sk)← KeyGen(1κ);σ := Signsk(x) : Verifypk(x, σ) = 1
]

= 1

55

Unforgeability of signature generation: For all ppt adversary A,

Pr
[

(pk, sk)← KeyGen(1κ); (x, σ)← ASignsk(·)(1κ) : Verifypk(x, σ) = 1 ∧ (x, σ) 6∈ Q
]
≤ negl(κ)

where Q is the history of queries that the adversary A made to signing oracle Signsk(, ·).

Unique signature scheme Unique signature scheme was introduced in [46], which consists of four algo-

rithms, a randomized key generation algorithm uKeyGen, a deterministic key veri�cation algorithm uKeyVer,
a deterministic signing algorithm uSign, and a deterministic veri�cation algorithm uVerify. We expect for each

veri�cation key there exists only one signing key. We also expect for each pair of message and veri�cation key,

there exists only one signature. We have the following de�nition.

De�nition G.2. We say (uKeyGen, uKeyVer, uSign, uVerify) is a unique signature scheme, if it satis�es:

Correctness of key generation: Honestly generated key pair can always be veri�ed. More formally, it holds that

Pr
[

(pk, sk)← uKeyGen(1κ) : uKeyVer(pk, sk) = 1
]

= 1

Uniqueness of signing key: �ere does not exist two di�erent valid signing keys for a veri�cation key. More formally,
for all ppt adversary A, it holds that

Pr
[

(pk, sk1, sk2)← A(1κ) : uKeyVer(pk, sk1) = 1 ∧ uKeyVer(pk, sk2) = 1 ∧ sk1 6= sk2

]
≤ negl(κ)

Correctness of signature generation: For any message x, it holds that

Pr
[

(pk, sk)← uKeyGen(1κ);σ := uSign(sk, x) : uVerify(pk, x, σ) = 1
]
≥ 1− negl(κ)

Uniqueness of signature generation: For all ppt adversary A,

Pr
[

(pk, x, σ1, σ2)← A(1κ) : uVerify(pk, x, σ1) = 1 ∧ uVerify(pk, x, σ2) = 1 ∧ σ1 6= σ2

]
≤ negl(κ)

Unforgeability of signature generation: For all ppt adversary A,

Pr
[

(pk, sk)← uKeyGen(1κ); (x, σ)← AuSign(sk,·)(1κ) : uVerify(pk, x, σ) = 1 ∧ (x, σ) 6∈ Q
]
≤ negl(κ)

where Q is the history of queries that the adversary A made to signing oracle uSign(sk, ·).

Remark G.3 (Instantiations for the unique signature scheme). E�cient instantiations can be found in literature.
For example, the well-known BLS signature [12] can be a good candidate.

56

