
Optimized Implementation of SM4 on
AVR Microcontrollers, RISC-V Processors, and

ARM Processors

No Author Given

No Institute Given

Abstract. The SM4 block cipher is a Chinese domestic crpytographic
that was introduced in 2003. Since the algorithm was developed for the
use in wireless sensor networks, it is mandated in the Chinese National
Standard for Wireless LAN WAPI (Wired Authentication and Privacy
Infrastructure). The SM4 block cipher uses a 128-bit block size and a 32-
bit round key. This consists of 32 rounds and one reverse translation R.
In this paper, we present the optimized implementation of the SM4 block
cipher on 8-bit AVR microcontrollers, which are widely used in wireless
sensor devices, the optimized implementation of the SM4 block cipher
on 32-bit RISC-V processors, which are open-source based computer ar-
chitectures, and the optimized implementation of SM4 on 64-bit ARM
processors with the parallel computation, which are widely used in smart-
phone and tablet. In the AVR microcontroller, it is implemented in three
versions, including speed-optimization, memory-optimization, and code-
optimization. As a result, speed-optimization, memory-optimization, and
code-optimization achieved 205.2 cycles per byte, 213.3 cycles per byte
and 207.4 cycles per byte, respectively. This is faster than the reference
implementation written in C (1670.7 cycles per byte). The implementa-
tion on 32-bit RISC-V processors 128.8 cycles per byte. This is faster
than the reference C code implementation (345.7 cycles per byte). The
implementation on 64-bit ARM processors is 8.62 cycles per byte. This
is faster than the reference C code implementation (120.07 cycles per
byte).

Keywords: 8-bit AVR Microcontrollers · 32-bit RISC-V Processors ·
64-bit ARM Processors · Software Implementation · SM4 Block Cipher.

1 Introduction

A number of sensor nodes are used to collect the data in wireless sensor net-
works. Tiny sensor nodes have limited computation resources, such as computing
power, memory size, and battery life. Since cryptographic algorithms are based
on complicated operations, it is difficult to achieve the high availability for wire-
less sensor networks in secure packets. To resolve this problem, lightweight block
cipher algorithms have been proposed. Lightweight cryptography algorithms re-
quire low resources than ordinary cryptographic algorithms. The SM4 block ci-

2 No Author Given

pher is one of the lightweight block cipher, which is Chinese National Standard
for wireless LAN WAPI (Wired Authentication and Privacy Infrastructure). [1]

In this paper, we propose optimized implementations of the SM4 block cipher
on low-end 8-bit AVR microcontrollers, 32-bit RISC-V processors and high-end
64-bit ARM processors. Main contributions are as follow:

1.1 Contributions

– Optimized implementations of the SM4 block cipher on 8-bit AVR
microcontrollers. We implemented the SM4 block cipher on low-end AVR
microcontrollers. SM4 block cipher requires the 128-bit block size, while AVR
microcontrollers only support 8-bit wise general purpose registers. Therefore,
the efficient register allocation should be considered. We proposed the op-
timal register allocation. Furthermore, the SM4 block cipher requires the
32-bit wise rotation operation, while 8-bit wise operations are performed on
AVR microcontrollers. We suggested the optimized implementation of 32-bit
wise rotation on 8-bit development environments.

– Optimized implementations of the SM4 block cipher on 32-bit
RISC-V Processors. RISC-V is an open-source based computer architec-
ture that supports new instruction sets for operations. This paper presents
the first optimized implementation of SM4 on 32-bit RISC-V processors. In
particular, we optimized S-Box operations with RISC-V instructions.

– Parallel implementations of the SM4 block cipher on 64-bit ARM
Processors. 64-bit ARM processors support SIMD (Single Instruction Mul-
tiple Data) features, which can process the data in a parallel way. We propose
the parallel implementation of the SM4 block cipher in 12-way approaches.
This implementation encrypts 12 plaintext blocks at once through SIMD in-
structions. For the optimal implementation, we introduce the vector register
allocation plan with arrangement and efficient instructions for the optimized
parallel implementation.

2 Backgrounds

2.1 SM4 Block Cipher

The SM4 block cipher is one of a China domestic crpytographic algorithm, which
was first published in 2003. It was a cryptographic standard issued by the OS-
CCA (Office of State Commercial Crpytography Administration) [2]. Table 1
shows the list of SM4 parameters. The left of Figure 1 describes encryption
tasks for the SM4 block cipher.

The SM4 block cipher consists of 4 computations; Round function (F), Per-
mutations (T and T’), Nonlinear transformation (tau), Linear transformations
(L) and (L’), and S-box (S).

SM4 on AVR, RISC-V and ARM 3

Table 1. Parameters for the SM4 block cipher.

Block size Round key size Rounds (Encryption) Rounds (Key schedule)

128-bit 32-bit 32 32

Xi RKi Xi+1 Xi+2 Xi+3

T

Xi+1 Xi+2 Xi+3 Xi+4

128-bit Plaintext

Round Function #1

...

Round Function #32

Reverse Transformation R

128-bit Ciphertext

Fig. 1. Encryption flow of the SM4 block cipher and the round function structure.

Round function (F). The plaintext of the SM4 block cipher is divided in four
32-bit units, called X. Round function (F) requires 5 arguments, which are X0,
X1, X2, and X3, and round key. F can be defined as the following equation.

F(X0, X1, X2, X3, rk) = X0 ⊕ T(X1 ⊕ X2 ⊕ X3 ⊕, rk)

The right of Figure 1 represents the Round function F structure.

Permutations T and T’. T is the permutation function that requires 32-bit in-
put values, and makes 32-bit outputs. It has the reversible feature. Permutations
T and T’ consists of tau and L.

Nonlinear transformation tau. The nonlinear transformation (tau) uses 4
S-boxes, which needs 32-bit inputs and returns 32-bit outputs. It is performed in
a parallel way. Each input value does not affect each other. Nonlinear transfor-
mation tau can be represented as follow, where A and B are 32-bit input value
and 32-bit output value, respectively. The type of ai and bi is a 8-bit wise string.

A = (a0, a1, a2, a3); tau(A) = (S(a0), S(a1), S(a2), S(a3));
(b0, b1, b2, b3) = tau(A); B = (b0, b1, b2, b3);

Linear transformations L, and L’. Linear transformations (L, and L’) mainly
perform rotate operations. Input values from output of tau, and operates 32-bit
wise. L, and L’ are can be defined as follow, where B is 32-bit input value, and
ROTL represents the rotation to the left operation.

L(B) = B ⊕ (ROTL(B, 2)) ⊕ (ROTL(B, 10)) ⊕ (ROTL(B, 18)) ⊕ (ROTL(B, 24))
L’(B) = B ⊕ (ROTL(B, 13)) ⊕ (ROTL(B, 23))

4 No Author Given

S-box S. The S-box (S) transforms the 8-bit input value to the 8-bit output
value with the S-box table. Input values are from the nonlinear transformation
(tau).

2.2 Target Processor: 8-bit Low-end AVR Microcontrollers.

AVR microcontroller is the 8-bit based Harvard architecture, which is widely
used for wireless sensor networks. It has 32 8-bit general purpose registers and
133 instructions. Most of instructions are taken less than 4 clock cycles [3]. We
evaluated the performance on ATmega128. This is the one of 8-bit AVR micro-
controller family. It has 128KB of programmable flash memory, 4KB internal
SRAM, 4KB EEPROM, and 64KB optional external memory space [4]. AVR
registers are denoted as R0 to R31. Some registers have special features as fol-
lows:

– ZERO register: R1 is the zero register that always represents 0 value.
However, it can be used freely for general purposes. This R1 register should
be zeroed at the end of the operation.

– Callee saved registers: R2-R17 and R28-R29 are callee saved registers (i.e.
non-volatile registers). These registers saved important values (i.e. long-lived
values and data from callee). These must be preserved in the stack before it
is used.

– Pointer address registers: R26-R31 can be used as a pointer address by
combining two registers. When these are used for the pointer address, these
are written as X (R26-R27), Y (R28-R29), Z (R30-R31) notation. R28-R29 are
also callee saved registers.

2.3 Target Processor: 32-bit RISC-V Processors.

RISC-V is a new computer CPU structure under development at UC Berkeley
since 2010. It is not just for academic or research purposes, but for commer-
cialization in the industrial world. The main feature of the RISC-V processor is
that the basic instruction set is provided by the consortium, but there are no
restrictions on the extended instructions that users can add. Therefore, when
utilizing this, it is possible to increase the speed of the target application service
by customizing the RISC-V processor. In this paper, the 32-bit structure RV32I
used for performance comparison provides 32-bit registers 32 (x0-x31) [5].

2.4 Target Processor: 64-bit High-end ARM Processors.

ARMv8-A is the next generation ARM architecture of ARMv7, simply called
ARMv8. It has two architectures, which are 32-bit AArch32 and 64-bit AArch64.
In this paper, we targeted the AArch64 architecture, in short A64. A64 has 32
64-bit general purpose scalar registers that can handle 32-bit, and 64-bit data. In
addition, there are 32 128-bit vector registers, it can be utilized for the parallel
implementation with SIMD [6]. We used vector registers to implement the SM4
block cipher in a parallel way.

SM4 on AVR, RISC-V and ARM 5

2.5 Related works.

In this section, we introduce optimized implementations of block ciphers on
embedded processors. In [8], the revised version of CHAM was optimized on
8-bit AVR microcontrollers. In [8], they suggested optimized 8-bit wise rota-
tion and 32-bit wise rotation. This implementation utilized the pre-calculation
technique with the counter mode of operation. In [7], parallel implementa-
tions are presented. In [9], the optimized ARIA block cipher was presented.
They optimized primitive operations, including rotation operation, a subsitute-
layer, and a diffusion-layer on the low-end AVR microcontroller. In [10], they
proposed the compact implementation of PRESENT block cipher, which is in-
troduced in CHES’07 [11]. It optimally implemented the PRESENT through
pre-computation technique. In [12], the compact implementation of AES (Ad-
vanced Encryption Standard) block cipher on Intel processors was presented
(i.e. FACE). This implementation applied pre-computation technique that pre-
calculate repetitive values, and reused them. In ICISC’19, they proposed opti-
mized implementation of FACE on the AVR microcontroller was presented [13].
It extended the pre-computation to the round 3. The implementation is also
secure against CPA (Correlation Power Analysis).

3 Optimized Implementation of the SM4 Block Cipher

In this Section, we introduce the optimized implementation of the SM4 block ci-
pher on 8-bit AVR microcontrollers, 32-bit RISC-V processors, and 64-bit ARM
processors. The optimal performance is achieved through efficient register allo-
cation and instruction techniques.

3.1 8-bit Low-end AVR Microcontrollers

Instruction set. AVR microcontrollers have useful instruction sets. Generally
instructions take 1 or 2 clock cycles. Instructions used to implement the opti-
mized SM4 block cipher are summarized in Table 2 [7].

Register utilization. For the optimized implementation, we efficiently allo-
cated registers. Detailed descriptions are as follows:

– X blocks. In Section 2.1, the SM4 block cipher stores 128-bit plaintext into 4
32-bit X. However, 8-bit AVR microcontrollers have 8-bit wise registers that
can only represent the 8-bit data. Four registers are required to handle one
32-bit X. As a result, there are 4 X that quarters of plaintext. 16 registers
are required to store the whole plaintext.

– Round key, and T input/output. Each F requires a 32-bit round key.
4 8-bit registers used to save the round key. The round key is used as the
input value of T by performing the XOR operation with X blocks. Therefore,
round key registers are also used to store parameters or results of T.

6 No Author Given

Table 2. Summarized instruction set of AVR microcontrollers for optimized SM4 block
cipher. Rd: Destination register, Rr: Source register.

Instruction Operands Description Operation #Clock

ADD Rd, Rr Add without Carry Rd ← Rd + Rr 1

ADC Rd, Rr Add with Carry Rd ← Rd + Rr + C 1

EOR Rd, Rr Exclusive OR Rd ← Rd ⊕ Rr 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd 1

LSL Rd Logical Shift Left C | Rd ← Rd << 1 1

ROL Rd Rotate Left Through Carry C | Rd ← Rd << 1 || C 1

MOV Rd, Rr Copy Register Rd ← Rr 1

MOVW Rd, Rr Copy Register Word Rd + 1:Rd ← Rr + 1:Rr 1

LD Rd, X(or Y, Z) Load Indirect Rd ← X(or Y, Z) 2

LPM Rd, Z Load Program Memory Rd ← (Z) 3

ST X(or Y, Z), Rr Store Indirect X(or Y, Z) ← Rr 2

PUSH Rr Push Register on Stack STACK ← Rr 2

POP Rd Pop Register from Stack Rd ← STACK 2

X blocks Address pointerRound key Temporary valuesZERO

Fig. 2. Register allocation for the SM4.

– Nonlinear operation. The nonlinear transformation (tau) performs the
rotation operation. 8 registers are required for result and intermediate values
of rotation. 4 out of 8 registers store the tau output result.

– Address pointer. In order to load the value into a register on AVR micro-
controllers, it should be accessed through the address pointer. In this case,
there are 3 kinds of values for the function call; Plaintext, Round key, and
S-box values. We allocate X pointer for loading plaintext, and storing cipher-
text, Y pointer for Round key, and Z pointer for S-box values. Especially,
the X pointer address (R26 and R27) do not need to during round functions.
These registers are used to store temporary values. The R30 register is al-
ways fixed to 0 value, because it stored the lower address of S-Box. This can
be used to the temporary ZERO register.

– Loop index. Using the CPI instruction, it is possible to compare a register
value with a constant value. To implement the loop statement, it requires
only one register to store loop index. This register is shared with the tempo-
rary value register. It needs to preserve an index value on the stack. It can
be implement through PUSH and POP instructions.

Figure 2 shows the whole register allocation. Each rectangle represents 8-bit
register. Two-colored registers are used for multiple purposes.

SM4 on AVR, RISC-V and ARM 7

Table 3. Optimized 32-bit wise rotation operation on 8-bit environments where i and
j represent specific registers.

32-bit ROL1 32-bit ROL8 32-bit ROL16 32-bit ROL24

LSL Ri

ROL Ri+1

ROL Ri+2

ROL Ri+3

ADC Ri, ZERO

MOV Ri, Rj+3

MOV Ri+1, Rj

MOV Ri+2, Rj+1

MOV Ri+3, Rj+2

MOVW Ri, Rj+2

MOVW Ri+2, Rj

MOV Ri, Rj+1

MOV Ri+1, Rj+2

MOV Ri+2, Rj+3

MOV Ri+3, Rj

5 cycles 4 cycles 2 cycles 4 cycles

Optimized implementation of 32-bit wise rotation. The rotation of the
SM4 block cipher is 32-bit wise operation, but AVR microcontrollers perform
only 8-bit wise. 32-bit wise rotation can be implemented with following instruc-
tions; LSL, ROL, ADC, MOV, and MOVW. Each rotation can be implemented fol-
lowing Table 3. When input and output values of the 8 or 16 rotation operation
are in the same register, it needs one temporary register. This takes more clock
cycles. We separated input and output registers. This makes results of rotation
in different registers. This implementation eliminates the temporary register,
and takes less clock cycles to transfer values to the temporary register than the
previous method.

Efficient S-Box implementation. In this paper, there are three optimization
perspectives on AVR microcontrollers (speed-optimization, memory-optimization,
and code-optimization). In terms of speed-optimization, storing the S-box in
RAM is effective. The LD instruction loads the S-Box value with 2 clock cycles.
This can get the S-Box value, quickly. On the other hand, for the memory-
optimization perspective, S-Box can be saved to flash memory. In Section 2.2,
it was confirmed that the AVR microcontroller has larger flash memory than
RAM. Therefore, the memory-optimized implementation can be useful in situ-
ations where the lack of RAM. The memory-optimization can be implemented
with the LPM instruction, which takes 3 clock cycles. As a result, the memory-
optimization takes a longer executing time than the speed-optimization. For the
case of code-optimization, we utilized the looped implementation, which sacri-
ficed the performance but achieved the optimal code size.

3.2 32-bit RISC-V Processors

32-bit RISC-V processor supports 32-bit wise instructions. This is useful to per-
form 32-bit wise operations of SM4. For the optimal implementation in RISC-V,
we propose Rotation optimization and efficient S-Box implementation.

Rotation Optimized Implementation. The rotation operation is not sup-
ported in RISC-V. Therefore, the rotation operation is implemented using the

8 No Author Given

Algorithm 1 Efficient S-Box implementation in RISC-V

Input: S-Box input = T0
Output: S-Box output =

T1
1: SW T0, 0(SP)

2: LBU T1, 3(SP)

3: ADD T0, A2, T1

4: LBU T1, 0(T0)

5: SLLI T1, T1, 24

6: LBU T2, 2(SP)

7: ADD T0, A2, T2

8: LBU T2, 0(T0)

9: SLLI T2, T2, 16

10: XOR T1, T1, T2

11: LBU T2, 1(SP)

12: ADD T0, A2, T2

13: LBU T2, 0(T0)

14: SLLI T2, T2, 8

15: XOR T1, T1, T2

16: LBU T2, 0(SP)

17: ADD T0, A2, T2

18: LBU T2, 0(T0)

19: XOR T1, T1, T2

SLLI, SRLI, and OR instructions. ROL(n) can be implemented by OR the value of
SLLI(n) and SRLI(32 − n).

Efficient S-Box implementation. RISC-V is using 32-bit registers. However,
in S-Box, it is converted to a pre-computed value in bytes. Therefore, it is neces-
sary to convert a 32-bit value by dividing it 8-bit units. For the implementation,
SP (Stack Pointer) and LBU (Load Unsigned Byte) are used. SP has the address
of the current stack, and LBU loads only the 1-byte value of the address pointed
to. The S-Box process is the same as Algorithm 1. In Algorithm 1, the result
value of S-Box is stored in T1, and A2 has the address of S-box.

3.3 64-bit high-end ARM Processors

On the 64-bit ARMv8 processor, the efficient implementation is possible by
using vector registers. When implemented in a parallel-way, 12 plaintexts can
be encrypted at once. Since ARMv8 has 32 vector registers, we utilized these
registers in an optimal way. First, vector registers (v0-v11) are storing plaintext.
Second, vector registers (v12-v15) have intermediate values, and the v15 register
is also used for saving the round key value. Third, v16-v31 registers used for the
S-Box look-up table. The SM4 encryption is performed on ARM processors as
following order; Loading phase, Register transpose step, Round function layer,
and Storing phase.

Instructions summary. Table 4 shows instructions for implementing the SM4
block cipher, in a parallel-way. Most of instructions are vector instructions, ex-
cept the ADR instruction. The ADR instruction is used to the store address of
S-Box table. The ARMv8 processor has 32 128-bit vector register, which can be
calculate in a parallel-way. Some instructions require to specify the memory ar-
rangement. In Table 4, the memory arrangement is omitted for the convenience.

Loading phase. Algorithm 2 shows the implementation of Loading phase.
Using 3 LD1 instructions, 12 128-bit plaintexts are stored in vector registers
(v0-v11). At this point, the post-incremented memory access is used to adjust

SM4 on AVR, RISC-V and ARM 9

Table 4. Instructions set for optimized implementation of the SM4 block cipher; Xd:
destination scalar register, Xn: source scalar register, Vd: destination vector register, Vt:
transferred vector register, Vn, Vm: source vector register.

asm Operands Description Operation

ADR Xd, (Label) Form PC-relative address Xd ← Label

EOR Vd, Vn, Vm Bitwise Exclusive OR Td ← Vn ⊕ Vm

LD1 Vd1-4, (Xn) Load multiple single-element structures Vd1-4 ← (Xn)

LD1R Vt, (Xn) Load single-element and replicate to all lanes Vt ← (Xn)

MOVI Vt, #imm Move Immediate Vt ← #imm

SHL Vd, Vn, #shift Shift Left Vd ← Vn << #shift

SRI Vd, Vn, #shift Shift Right and Insert Vd ← Vn >> #shift

ST1 Vt1-4, (Xn) Store multiple single-element structures (Xn) ← Vt1-4

SUB Vd, Vn, Vm Subtract Vd ← Vn - Vm

TBL Vd, Vn, Vm Table vector Lookup Vd ← Vn[Vm]

TBX Vd, Vn, Vm Table vector lookup extension Vd ← Vn[Vm]

UZP1 Vd, Vn, Vm Unzip vectors primary Vd ← Vn[even], Vm[even]

UZP2 Vd, Vn, Vm Unzip vectors secondary Vd ← Vn[odd], Vm[odd]

Algorithm 2 Loading 12-plaintext in vector instructions.

Input: Memory address = [x1]
Output: Plaintexts = [v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11]
1: LD1.4S v0, v1, v2 ,v3, [x1], #64

2: LD1.4S v4, v5, v6 ,v7, [x1], #64

3: LD1.4S v8, v9, v10 ,v11, [x1], #64

the address pointer offset. Therefore, it is possible to reduce the execution time
for calculating additional addresses. After that, the table look-up of S-Box is
performed through TBL and TBX instructions.

Register transpose step. Algorithm 3 is transpose step with UZP1 and UZP2

instructions in a source code level. The UZP1 instruction reads an even numbered
vector elements from the source register, and stores it to the destination register.
The UZP2 instruction does same operation, but read an odd numbered elements.
In this process, registers are grouped by four and 32-bit blocks are arranged to
be stored in one register. In total, 3 iterations are repeated to align 12 plain-
texts. At the end of encryption, the transpose step is performed once again, to
retrieve vector registers. Figure 3 shows the operation process of UZP1 and UZP2

instructions.

Round function layer. Source codes for Round function layer are shown at
line 1-8 of Algorithm 4, which operates the nonlinear transformation (tau). It
is implemented by TBL and TBX instructions to seek the S-box table. TBL and

10 No Author Given

Algorithm 3 Alignment of the plaintext in vector instructions.

Input: PT0 = [va.4s], PT1 = [vb.4s],
PT2 = [vc.4s], PT3 = [vd.4s]

Output: X0 = [va.4s], X1 = [vb.4s],
X2 = [vc.4s], X3 = [vd.4s]

1: UZP1.4S v12, va, vb
2: UZP2.4S v13, va, vb
3: UZP1.4S v14, vc, vd

4: UZP2.4S v15, vc, vd

5: UZP1.4S va, v12, v14

6: UZP1.4S vb, v13, v15

7: UZP2.4S vc, v12, v14

8: UZP2.4S vd, v13, v15

va PT00 PT01 PT02 PT03 PT10 PT11 PT12 PT13 PT20 PT21 PT22 PT23 PT30 PT31 PT32 PT33

UZP1.4s v12, va, vb PT00 PT02 PT10 PT12 v12

UZP2.4s v13, va, vb PT01 PT03 PT11 PT13 v13

PT20 PT22 PT30 PT32UZP1.4s v14, vc, vd v14

PT21 PT23 PT31 PT33UZP2.4s v15, vc, vd v15

UZP1.4s va, v12, v14 PT00 PT10 PT20 PT30 va

UZP1.4s vb, v13, v15 PT01 PT11 PT21 PT31 vb

UZP2.4s vc, v12, v14 PT02 PT12 PT22 PT32 vc

UZP2.4s vd, v13, v15 PT03 PT13 PT23 PT33 vd

vb vc vd

S
te

p
 #

1

S
te

p
 #

2
Fig. 3. UZP1 and UZP2 instructions process for SM4.

TBX instructions read a value from a vector element in the index source register,
search each result as an index in the byte table of the source table register,
and write the result to the destination register. The first 64 bytes of S-Box is
extracted through the TBL instruction. The TBX instruction searches the table
in the next range of previous TBL instruction. To search for the next branch of
S-Box, subtraction to the value of the index source register by 0x40 and then
using the TBX instruction are performed, subsequently.

In Algorithm 4, line 9-20 shows the source code that implements linear trans-
formations (L) of the round function. The rotation operation is implemented us-
ing the left shift operations SHL and SRI instructions. Using only three registers
(v12, V13, v14,), v15 is used as a temporary register to store the round key
value. In order to use only 3 registers, the rotation operation is performed and
then XOR is performed, immediately.

Storing phase. In the last storing phase, the encryption result is saved. Al-
gorithm 5 is to perform an operation that stores the ciphertext in the memory.
The result value (v0-v11) is stored in the memory address (x0) by 512-bits in
a post incremental method, and 12 ciphertexts are stored by performing a total
of 3 operations.

4 Evaluation

In this Section, we present the evaluation of proposed implementations. The
evaluation is conducted separately for each implementation environment. The
performance evaluation is based on clock cycles per byte (cpb).

SM4 on AVR, RISC-V and ARM 11

Algorithm 4 Round Function of the plaintext in vector instruction.

Input: S-Box input = [va.16b]
Output: S-Box output = [va.16b]
1: MOVI v13.16b, #0x40

2: TBL v12.16b, v16.16b-

v19.16b, va.16b

3: SUB va.16b, va.16b, v13.16b

4: TBX v12.16b, v20.16b-

v23.16b, va.16b

5: SUB va.16b, va.16b, v13.16b

6: TBX v12.16b, v24.16b-

v27.16b, va.16b

7: SUB va.16b, va.16b, v13.16b

8: TBX va.16b, v28.16b-

v31.16b, va.16b

9: SHL.4s v13, v12, #2

10: SRI.4s v13, v12, #30

11: EOR.16b va, v12, v13

12: SHL.4s v13, v12, #10

13: SRI.4s v13, v12, #22

14: EOR.16b va, v13, va
15: SHL.4s v13, v12, #18

16: SRI.4s v13, v12, #14

17: EOR.16b va, v13, va
18: SHL.4s v13, v12, #24

19: SRI.4s v13, v12, #8

20: EOR.16b va, v13, va

Algorithm 5 Storing 12-plaintexts in vector instruction.

Input: Ciphertexts = [v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10 ,v11]
Output: Memory address = [x0]
1: st1.4s v0, v1, v2, v3, [x0], #64

2: st1.4s v4, v5, v6, v7, [x0], #64

3: st1.4s v8, v9, v10, v11, [x0], #64

Table 5. Comparison result on 8-bit AVR microcontrollers. Symbols (s, m, and c)
represent speed, memory, and code-optimized implementations, respectively.

Measurement Reference C This works This workm This workc

Timing [cpb] 1670.69 205.2 213.3 207.4

RAM [bytes] 418 418 162 418

ROM [bytes] 2856 5888 6144 884

4.1 Efficient Implementations of SM4 Block Cipher on 8-bit AVR
Microcontrollers

Proposed implementations are targeted for the ATmega128 processor, which
is one of AVR family. Source codes are implemented over Microchip studio

framework, and compiled -O2 option. Since there are no other SM4 block ci-
pher implementations on AVR microcontrollers. Performance comparisons are
done with reference C code implementations. Comparison results are shown
in Table 5. Reference C code takes 1670.69 cpb (clock cycles per byte), while
the proposed speed-optimization implementation achieved 205.2 cpb, memory-
optimization implementation recorded 213.3 cpb, and code-optimization imple-
mentation reached 207.4 cpb. The reason for result is that the proposed imple-
mentation is implemented in an optimal form using an AVR assembly. In par-
ticular, the efficient rotation is used in the Linear transformation (L), it makes

12 No Author Given

Table 6. Comparison result of execution timing (cycles per byte) on 32-bit RISC-V
processors (left) and 64-bit ARM processors (right).

RISC-V ARM

Reference C This work Reference C This work

345.7 128.8 120.07 8.62

better performance than the reference C code implementation. In addition, it
can be compare each criteria. Speed-optimization achieved best performance
than the others, Memory-optimization requires the least RAM size, and Code-
optimization has the least ROM size.

4.2 Implementations of SM4 Block Cipher on 32-bit RISC-V
Processors

This section analyzes and evaluates the performance of the SM4 encryption im-
plementation on RISC-V. In this paper, Proceed performance measurements on
RISC-V, optimization techniques were not applied. The RISC-V implementation
does not use extensions and relies on the RV32I-based ISA. For the performance
measurement, HiFive1 Rev B development board with 32-bit E31 RISC-V core
was used. Results are shown in left part of Table 6. For the reference code, the
execution timing is 345.7 cpb. The implementation achieved 128.8 cpb, showing
a performance improvement by 2.68×.

4.3 Speed-optimization of SM4 Block Cipher on 64-bit ARM
Processors

This section analyzes and evaluates the performance of the SM4 encryption
implementation on ARMv8. It was written using Xcode and the calculation speed
was measured by Apple A13 Bionic. The Apple A13 Bionic is a 64-bit ARM-
based single chip (2.65 GHz) designed by Apple. The performance comparison
is done with the reference code implemented in C language. Results are shown
in right part of Table 6. For the reference code, the execution timing is 120.07
cpb. The proposed implementation achieved 8.62 cpb, showing a performance
improvement by 12.93×.

5 Conclusion

In this paper, we present optimized implementations of the SM4 block cipher
on AVR microcontrollers, RISC-V processors, and ARM processors. With op-
timized implementation techniques, the performance is significantly improved
than previous approaches. We believe that this paper will be helpful to imple-
ment the SM4 block cipher in various environments, including both low-end and
high-end Internet of Things.

SM4 on AVR, RISC-V and ARM 13

References

1. Cheng, H., Ding, Q.: 2012 Second International Conference on Instrumentation,
Measurement, Computer, Communication and Control, pp. 1628–1631. IEEE,
Harbin, China (2012)

2. IETF, https://tools.ietf.org/html/draft-ribose-cfrg-sm4-10. Last accessed
21 April 2018

3. Microchip document, https://ww1.microchip.com/downloads/en/DeviceDoc/

doc2467.pdf. Last accessed 8 Nov 2014
4. Kim, Y.B., Kwon, H.D., An, S.W., Seo, H.J., Seo, C.S.: Efficient Implementation of

ARX-Based Block Ciphers on 8-Bit AVR Microcontrollers. Mathematics 8(10), 22
pages (2020)

5. K. Asanovic, and A. Waterman, “The RISC-V Instruction Set Manual. In Privileged
Architecture, Document Version 20190608-Priv-MSU-Ratified (Vol. 2),” RISC-V
Foundation, 2019

6. Seo, H.J., Liu, Z., Longa, P., Hu, Z.: SIDH on ARM: Faster Modular Multiplications
for Faster Post-Quantum Supersingular Isogeny Key Exchange. IACR Transactions
on Cryptographic Hardware and Embedded Systems 2018(3), 1–20 (2018)

7. Kwon, H.D., An, S.W., Kim, Y.B., Kim, H.J., Choi, S.J., Jang, K.B., Park, J.H.,
Kim, H.J., Seo, S.C., Seo, H.J.: Designing a CHAM Block Cipher on Low-End
Microcontrollers for Internet of Things. Electronics 9(9), 16 pages (2020)

8. Kwon, H.D., Kim, H.J., Choi, S.J., Jang, K.B., Park, J.H., Kim, H.J., Seo,
H.J.: Compact Implementation of CHAM Block Cipher on Low-End Microcon-
trollers. In: You I. (eds) Information Security Applications. WISA 2020. Lec-
ture Notes in Computer Science, vol 12583. pp. 127–141. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-65299-9 10

9. Seo, H.J., Kwon, H.D., Kim, H.J., Park, H.H.: ACE: ARIA-CTR Encryption for
Low-End Embedded Processors. Seonsors 20(13), 15 pages (2020)

10. Kwon, H.D., Kim, Y.B., Seo, S.C., Seo, H.J.: High-Speed Implementation of
PRESENT on AVR Microcontroller. Mathematics 9(4), 15 pages (2021)

11. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In:
Paillier P., Verbauwhede I. (eds.) Cryptographic Hardware and Embedded Systems
- CHES 2007, LNCS, vol. 4727, pp 450–466. Springer, Berlin, Heidelberg (2007)
https://doi.org/10.1007/978-3-540-74735-2 31

12. Park, J.H., Lee, D.H.: FACE: Fast AES CTR mode Encryption Techniques based
on the Reuse of Repetitive Data. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2018(3), 469–499 (2018)

13. Kim, K.H., Choi, S.J., Kwon, H.D., Zhe, L., Seo, H.J.: Fast AES–CTR Mode
Encryption for Low-End Microcontrollers. In: Seo J. (eds.) Information Security and
Cryptology – ICISC 2019, LNCS, vol. 11975, pp 102–114. Springer, Cham (2019)
https://doi.org/10.1007/978-3-030-40921-0 6

