
Grover on SM3

Gyeongju Song1, Kyungbae Jang1, Hyunji Kim1,
Wai-Kong Lee2, Zhi Hu3, and Hwajeong Seo1[0000−0003−0069−9061]

1IT Department, Hansung University, Seoul (02876), South Korea,
{thdrudwn98, starj1023, khj1594012, hwajeong84}@gmail.com

2Department of Computer Engineering,
Gachon University, Seongnam, Incheon (13120), Korea,

waikonglee@gachon.ac.kr 3Central South University, China,
huzhi math@csu.edu.cn

Abstract. The Grover search algorithm accelerates the key search on
the symmetric key cipher and the pre-image attack on the hash function.
In order to perform the Grover search algorithm, the target algorithm
should be implemented in a quantum circuit. With this motivation, we
propose an optimal SM3 hash function in a quantum circuit. We focused
on minimizing the use of qubits together with reducing the use of quan-
tum gates. To do this, an on-the-fly approach is utilized for message
expansion and compression function. In particular, the previous value is
restored and used without allocating new qubits in the permutation oper-
ation. Finally, we estimate quantum resources required for the quantum
pre-image attack based on the proposed SM3 hash function implemen-
tation in the quantum circuit.

Keywords: Quantum Computer · Grover Algorithm · SM3 Hash Func-
tion.

1 Introduction

Quantum computers can solve specific problems in quantum algorithms much
faster than classical computers. Two representative quantum algorithms that
work on quantum computers are Shor’s algorithm [1] and Grover’s algorithm [2].
Shor’s algorithm makes RSA (Rivest–Shamir–Adleman) and ECC (Elliptic Curve
Cryptography), the most commonly used public key cryptography, vulnerable.
Integer factorization and discrete logarithm problems used in RSA and ECC
are infeasible in classical computers. However, quantum computers using Shor’s
algorithm solve these problems within a polynomial time. In order to prevent
this attack, NIST (National Institute of Standards and Technology) is working
on a standardizing post-quantum cryptography. In the standardization process,
various post-quantum algorithms have been submitted. The Grover’s algorithm
accelerates finding the specific data in databases and brute force attacks. If O(n)
queries were required in the brute force attack, it can be reduced to O(

√
n)

queries by using the Grover’s algorithm. In cryptography, the Grover’s algo-
rithm lowers the n-bit security level symmetric key cipher and hash function to
n
2 -bit (i.e. half) for key search and pre-image attack.

2 Song et al.

In recent years, it is an active research field to optimize and implement sym-
metric key ciphers [3–10] and hash functions [11] as quantum circuits in order to
minimize quantum resources required for the Grover’s algorithm. In [12], quan-
tum cryptanalysis benchmarking was performed by comparing resources required
to attack public key cryptography, symmetric key cryptography, and hash func-
tion. In the quantum circuit optimization, it is important to reduce qubits and
quantum gates. Among them, the most important thing is to reduce the required
qubits. As the number of qubits increases, quantum computers become more dif-
ficult to operate in a practical manner. International companies, such as IBM,
Google, and Honeywell, are in the process of increasing the number of qubits for
high computing quantum computers.

In this paper, we focused on minimizing qubits required to implement the
SM3 hash function in a quantum circuit, while at the same time reducing the
complexity of quantum gates. The existing message expansion function was di-
vided into first extension and second extension. The compression function was
divided into first compression and second compression, and then mixed and used.
Through this method, the total number of qubits used was reduced by reusing
the qubits used in the message. In the permutation operation, the value was
returned through the CNOT-gate repetition rather than using a qubit to store
the original value. As a result, we achieved an optimal quantum circuit of the
SM3 hash function. In this paper, we used 2,176 qubits for storing the extended
message (Wj (j = 0, 1, ..., 67)), 32 qubits for the T constant to be used for the
update, and 256 qubits for the register update and output of the final hash
value. It also used 32 qubits for permutation operations, 1 qubit for ripple-carry
addition, and 224 qubits for AND and OR operations.

1.1 Contribution

– First implementation of the SM3 hash function in a quantum cir-
cuit To the best of our knowledge, this is the first implementation of the
SM3 hash function in a quantum circuit. We obtained the optimal quantum
circuit by minimizing the use of qubits together with reducing the quantum
gate complexity.

– Efficient design of SM3 operations in a quantum circuit We reduced
the use of qubits by dividing expansion function and compression function
of the original SM3 hash function and mixing them. Permutation operations
were also performed with minimum qubits.

– Quantum resource estimation of the Grover search algorithm for
the SM3 hash function We evaluate quantum resources for the quantum
pre-image attack to the SM3 hash function. The quantum programming
tool, namely IBM ProjectQ [13], is used to evaluate the proposed SM3 hash
function in quantum circuits.

Grover on SM3 3

2 Related Work

2.1 SM3 Hash Function

The hash function completely changes the output value with only small changes
in the input value, thus ensuring the integrity by detecting errors in the message.
The hash function efficiently generates the hashed message, allowing it to be
digitally signed and verified, and to generate and verify messages. The SM3 hash
function is operated in units of 32 words and finally outputs a hash value of 256
bits. After increasing the message length using padding, the message expansion
calculation is performed by the following Equation 1 to expand the message to
W0,W1, ...,W67, W ′0, ...,W

′
63.

Wj ← Pj(Wj−16 ⊕Wj−9 ⊕ (Wi−3 ≪ 15))⊕ (Wj−13 ≪ 7)⊕Wj−6
W ′j = Wj ⊕Wj+4, (16 ≤ j ≤ 67)

(1)

The message expansion function expands the message block B(i) to 132 words
(W0,W1, ...,W67, W ′0, ...,W

′
63). First, the existing message block B(i) is divided

into 16 words W0,W1, ...W15 and expanded to W16, ...,W67 using this. The ex-
tended message makes W0,W1, ...W67, W ′0,W

′
1, ...W

′
63 through the equation 1.

The extended 132 word message is updated to registers (A, B, C, D, E, F , G,
H) through the compression function. Registers (A, B, C, D, E, F , G, H) are
32 bits each, and initial values are stored. The final hash value is generated by
performing the XOR operation to the updated register value with the previous
register value through the compression function.

Algorithm 1 Compression function of the SM3 hash function.

Input: W0,W1, ...,W67,W
′
1, ...,W

′
63.

Output: 32-qubits-register A,B,C,D,E, F,G,H after the message compression.
1: for j = 0 to 63 do
2: SS1← ((A ≪ 12) + E + (Tj ≪ (j mod 32)) ≪ 7
3: SS2← SS1⊕ (A ≪ 12)
4: TT1← FFj(A,B,C) + D + SS2 + W ′j
5: TT2← GGj(E,F,G) + H + SS1 + wj

6: D ← C
7: C ← B ≪ 9
8: B ← A
9: A← TT1

10: H ← G
11: G← F ≪ 19
12: F ← E
13: E ← P0(TT2)
14: end for
15: V (i + 1)← ABCDEFGH ⊕ V (i)
16: return A,B,C,D,E, F,G,H

4 Song et al.

The compression function proceeds to V (i+1) = CF (V (i), B(i)), i = 0, ..., n−1
with the message of 132 words expanded in the message expansion function and
the previous 256 bits value as parameters. SS1, SS2, TT1, TT2 are intermediate
variables of 32 bits, and T in the SS1 updates process contains the initial value
of 32 bits. FF and GG function are Boolean functions that perform XOR, AND,
and OR operations of parameters and output a value of 32 bits. FF and GG are
used to update TT1 and TT2. The equation 2 is the calculation of FF and GG
functions.

FFj(X,Y, Z) = X ⊕ Y ⊕ Z, 0 ≤ j ≤ 15
FFj(X,Y, Z) = (X ∧ Y) ∨ (X ∧ Y) ∨ (Y ∧ Z), 16 ≤ j ≤ 63

GGj(X,Y, Z) = X ⊕ Y ⊕ Z, 0 ≤ j ≤ 15
GGj(X,Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z), 16 ≤ j ≤ 63

(2)

In the compression function, the last register value is stored by updating the
register by 64 times, and the final hash value of 256-bits is generated through
an XOR operation with the register before the update.

2.2 Quantum Computing

Quantum computers utilize quantum mechanics phenomena, such as superpo-
sition and entanglement. The classical computer has bit, while the quantum
computer has qubit that can superpose 0 and 1. In other words, the qubit has
both values in the probability of being 0 and 1 and it is determined when it is
measured.

As shown in Figure 1, quantum circuits also have quantum logic gates, such
as digital logic gates in digital circuits. The quantum gate can control the state
of the qubit. The X gate is a quantum logic gate that corresponds to the NOT
gate of a digital logic gate. The probability that the state of qubit becomes 0 is
changed to the probability that it is determined as 1. The CNOT gate is a gate
that represents an entangled state in which one qubit affects another qubit. It
performs a NOT gate operation for the second qubit when the first qubit is 1. If
the first qubit is 1, the NOT gate is applied to the second qubit. Otherwise, the
second qubit is the output as it is. With the Toffoli gate, states of two qubits
affect the state of one qubit. If the first two qubits among the three qubits are
1, a NOT operation is performed for the third qubit. Otherwise, the value of the
third qubit is not changed.

In addition, there is a Hadamard gate, which puts qubits in a superposition
state, and a SWAP gate, which changes the state of two qubits. The Toffoli gate
is an expensive gate. X gate and CNOT gate are relatively inexpensive than the
Toffoli gate. Since quantum computers with a large number of qubits are not
currently developed, quantum circuits must be designed in the consideration of
resources, such as qubits and quantum gates.

There are platforms for quantum computing, such as IBM’s ProjectQ, Qiskit,
or Microsoft’s Q#. These platforms provide quantum gates, a variety of libraries,

Grover on SM3 5

and simulators. Through the Qiskit platform, it is possible to use real quantum
processors in the cloud platform. As such, quantum computing technologies are
actively being developed, including the development of various quantum com-
puting platforms and quantum languages.

X0 1

X

X

X

X

Reverse

X 𝑐𝑐

𝑏
𝑎

𝑏

𝑎

∨

X0 1

𝑎 X ~𝑎

Fig. 1: CNOT gate, Toffoli gate, X gate, and OR gate in quantum gates.

2.3 Grover Search Algorithm

The Grover search algorithm [2] is a quantum algorithm that searches a space
with n elements to find the input data that generates the output of a particular
function. On a classic computer, n searches are required to search an unsorted
database. Since the Grover search algorithm can find the answer by searching for
the
√
n, the time complexity is reduced from O(n) to O(

√
n). In other words, the

Grover algorithm threatens the symmetric key cryptography because it shortens
the time required for brute force attacks.

The Grover search algorithm consists of oracle and diffusion operator, and
steps are as follows. First, Hadamard gates are applied to qubits. The oracle
function f(x) returns 1 when the x is the answer, and inverts the phase of qubits
representing the answer. Then, the diffusion operator amplifies the amplitude of
inverted qubits through the oracle, increasing the probability of becoming the
answer. Through repeating the oracle and diffusion process, the probability of
the answer is over the threshold. Finally, the value of x that exceeds the threshold
becomes the answer. The overall structure of the Grover search algorithm when
the answer x = 01 is shown in Figure 2.

6 Song et al.

H

H

H

H

Oracle
!(#)

Diffusion
operator

|00 |01 |10 |11 |00 |01 |10 |11|00 |01 |10 |11

operator

operator

operator

H

H

H

H

Oracle
!(#)

Diffusion
operator

|00 |01 |10 |11 |00 |01 |10 |11|00 |01 |10 |11

H

H

H

H

Oracle
!(#)

Diffusion
operator

|00 |01 |10 |11 |00 |01 |10 |11|00 |01 |10 |11

H

H

H

H

Oracle
!(#)

Diffusion
operator

|00 |01 |10 |11 |00 |01 |10 |11|00 |01 |10 |11

Oracle Diffusion
operator

Fig. 2: Grover search algorithm (answer x = 01).

3 Proposed Method

3.1 SM3 Hash Function on Quantum Circuit

In the SM3 hash function designed in quantum circuits, we estimate the resource
for applying the Grover’s algorithm based on the message padded with 512 bits.
We propose a method of recycling message qubits by mixing the padded mes-
sage with the message expansion function and the compression function. Two
word messages (Wj ,W

′
j (j = 0, 1, ..., 63)) are included to update the register

once with the compression function. First, we proposed the method to update
W ′j (j = 0, 1, ..., 63) to the Wj (j = 0, 1, ..., 63) message and save qubits through
recycling. Second, it shows how to update and use existing allocation qubits in-
stead of separately allocating qubits for intermediate variables (SS1, SS2, TT1),
and TT2 used by the existing SM3 hash function. Since the qubit cannot be reset,
its own ongoing and ongoing permutation operations require a qubit assignment
for each register update. To prevent this, we saved qubits by not allocating qubits
and replacing the CNOT gates with repetitive tasks.

3.2 Message Expansion

The original SM3 hash function was proposed that outputs a hash function
by expanding a message and then updating a register through a compression
function. However, applying these methods to quantum circuits is inefficient,
because 4,224 qubits are required only for the message expansion. To solve
this problem, we store the padded 512-bit message B in W0,W1, ...,W15 and
update W16,W17, ...,W67 using permutation operations and CNOT gates. Up-
dated values (W0,W17, ...,W67) are used for the first compression function and
then recycled to update the W ′0,W

′
1, ...,W

′
63 in the second compression function

without allocating additional qubits. Therefore, the message expansion function
and the compression function are divided into first message expansion function
and second message expansion function, first compression function and second
compression function respectively, and used in combination. Figure 3 is the con-
figuration of the proposed system.

Grover on SM3 7

First Message Expansion First Compression

Second CompressionSecond Message Expansion

Padding Message

Hash value

Fig. 3: System configuration for the proposed method.

Algorithm 2 First message expansion quantum circuit algorithm.

Input: W0,W1, ...,W15.
Output: W16,W17, ...,W67.
1: Update:
2: for i = 0 to 31 do
3: Wj−16[i]← CNOT(Wj−9[i],Wj−16[i]), j = 16, ..., 67
4: Wj−16[i]← CNOT(Wj−3[(i + 15)%32],Wj−16[i]), j = 16, ..., 67
5: end for
6: Permutationp1(Wj−16)
7: for i = 0 to 31 do
8: Wj [i]← CNOT(Wj−16[i],Wj [i]), j = 16, ..., 67
9: Wj [i]← CNOT(Wj−13[(i + 15)%32],Wj [i]), j = 16, ..., 67

10: Wj [i]← CNOT(Wj−6[(i + 15)%32],Wj [i]), j = 16, ..., 67
11: end for
12: Update(reverse)
13: return W16,W17, ...,W67

Algorithm 2 is the first message expansion quantum circuit that updates
W16,W17, ...,W67. In the first message expansion algorithm, Wj (16 ≤ j ≤ 67)
is generated using W(j−16),W(j−9),W(j−3),W(j−13),W(j−6) (16 ≤ j ≤ 67). Since
qubits cannot perform simple allocation operations, CNOT gate operation values
in line 4 and 5 are stored in W(j−16). Since Wj is generated and the previous
message value should not be changed. The update result value is stored in Wj ,
and the value of W(j−16) changed during the update process is reversed and
returned. The PermutationP1 function in line 5 performs the equation 4. Line
16 reverses lines 2 through 8. Figure 3 shows the progress of the proposed system.
After the first expansion function, the first compression function proceeds. Then,
second expansion function and second compression function are performed.

8 Song et al.

Algorithm 3 Second message expansion quantum circuit algorithm.

Input: Wk,Wk+4, k = 0, ..., 63.
Output: W ′t , t = 0, ..., 63.
1: for i = 0 to 31 do
2: W ′j[i]← CNOT(Wj[i],Wj+4[i]), j = 0, ..., 63
3: end for
4: return W ′t , t = 0, ..., 63

In the second expansion function, the CNOT gate operation is performed
on the message (W0, ...,W67) used in the first compression function, and a new
message (W ′0, ...,W

′
63) is output. In this way, the qubit was reused. The message

(W ′0, ...,W
′
63) generated by the second expansion function is used by the second

compression function.

3.3 Message Compression

The compression function uses an extended message to update the register. Both
W0, ...,W63 and W ′0, ...,W

′
63 are required to use the compression function. After

using W0, ...,W63, we reuse it as W ′0, ...,W
′
63 to reduce the use of qubits. The

first expansion function is executed and the obtained value (W0, ...,W63) is to
run the first compression function. Then, the second expansion function is to
generate the value (W ′0, ...,W

′
63) and performs the second compression function.

Algorithm 4 and Algorithm 5 are the first compression function and the second
compression function, respectively.

Algorithm 4 First compression quantum circuit algorithm.

Input: 32-qubits-register A,B,C,D,E, F,G,H ,W0, ...,W63.
Output: 32-qubits-register A,B,C,D,E, F,G,H after the first compression.
1: Update:
2: Tj ← (Tj <<< j mod 32) <<< 7, j = 0, .., 63
3: value0← GG
4: value1← FF
5: E ← SS1
6: A← SS2
7: H ← TT2
8: return A,B,C,D,E, F,G,H

SS1 = ((A <<< 12) + E + Tj) <<< 7, j = 0, ..., 63
SS2 = E ⊕ (A <<< 12)
TT1 = FFj + D + A + W ′j
TT2 = GGj + H + SS1 + Wj

(3)

The first compression function given in Algorithm 4 calculates constants re-
quired for the register update. Using qubits as intermediate variables in quantum

Grover on SM3 9

circuits, it consumes a lot of resources. Therefore, the calculation was performed
in the register where the final value will be stored. In the first compression
function, qubits of each 32-bit intermediate constant (SS1, SS2, TT1, and TT2)
were stored. Constants (SS1, SS2, TT1, and TT2) are calculated through the
equation 3. In the first compression function, boolean functions (GG and FF)
are used to calculate the value. GG and FF are calculated as 2, and the final
result is stored in the variables (value0, value1) and used for calculating TT1
and TT2.

The value of existing register E is not used after GG function and SS1
update. Therefore, the value of SS1 is calculated in the register E. Since the
value of the existing register A is not used after the FF function, it is stored and
used in the SS2 value register A. TT2 is updated with the extended message
(W0, ...,W63) and the SS1 value stored in the register E. At this time, the
value of register H is not used after TT2 operation. TT2 value is stored in
register H. As a result, the value of TT2 after the first compression function
is stored in the register (H). Since the extended message (W0, ...,W63) in the
first message expansion function is not use after being used for the TT2 update
in the first compression function. The first compression function is finished and
the message (W ′0, ...,W

′
63) is updated to the message (W0, ...,W63) through the

second expansion function based on the expression equation 1. Finally, we use the
updated message (W ′0, ...,W

′
63) to proceed with the second compression function.

TT1 updates with the extended message (W ′0, ...,W
′
63 and SS2) stored in the

register (A). We use the updated message (W ′0, ...,W
′
63) to proceed with the sec-

ond compression function. TT1 updates with the extended message (W ′0, ...,W
′
63)

and SS2 stored in the register (A). At this time, the value of register (D) is not
used after the TT1 operation. The TT1 value is stored in the register (D). To up-
date the register, original A and E register values are required. Therefore, lines 2
to 6 of the first compression function are reversed. Then, the register H is com-
puted with the permutationP1 operation and all registers are updated through
the swap operation. The swap operation is an operation that only changes the
bit position. For this reason, there is no additional resources.

3.4 Hash Value

After the first expansion function is used, the first compression function, second
expansion function, and second compression function are repeated by 64 times
in order. By completing the iteration, updated registers (A,B,C,D,E, F,G, and
H) are XOR with previous registers (A,B,C,D,E, F,G, and H).

3.5 Permutation

In the SM3 hash function, there are two permutation functions (P0 and P1). The
equation 4 is the expression of P0, P1.

P0(X) = X ⊕ (X ≪ 9)⊕ (X ≪ 17)
P1(X) = X ⊕ (X ≪ 15)⊕ (X ≪ 23)

(4)

10 Song et al.

Algorithm 5 Second compression quantum circuit algorithm.

Input: 32-qubits-register A,B,C,D,
E, F,G,H ,W ′0, ...,W

′
63.

Output: 32-qubits-register A,B,C,D,
E, F,G,H after the second compres-
sion.

1: D ← TT1

2: Update of first
compression (reverse)

3: H ← Permutationp0

4: Swap(D,H)

5: B ← B <<< 9
6: F ← F <<< 19

7: Swap(A,H)
8: Swap(B,H)
9: Swap(C,H)

10: Swap(D,H)
11: Swap(E,H)
12: Swap(F,H)
13: Swap(G,H)

14: return A,B,C,D,E, F,G,H

Algorithm 6 Part of the P0 calculation.

Input: a16.
Output: a16 ← a16 ⊕ a7 ⊕ a31.
1: a16 ← CNOT(a7, a16)
2: a16 ← CNOT(a31, a16)
3: a16 ← CNOT(a22, a16)

4: a16 ← CNOT(a14, a16)
5: a16 ← CNOT(a13, a16)
6: a16 ← CNOT(a5, a16)

7: return a16 ← a16 ⊕ a7 ⊕ a31

P0 and P1 permutation operations shift themselves and use the CNOT gate.
If the operation value is saved, it is difficult to find the original qubit value,
causing problems in subsequent operations. In normal cases, original values of
qubits should be stored and used qubits are used. In the P1 operation, a qubit
is to store the value before the operation is allocated. And then, it can be used
again in the next operation through the reverse operation. Therefore, a 32-bit
storage qubit is allocated and used. In the P0 operation, the stored qubit cannot
be reused by the reverse operation. There is a problem that 32 qubits must be
allocated every time and the compression function update should be repeated.
To solve this problem, we used that if the same bit is counted twice as the CNOT
gate, the counting is canceled. As a result, in P0, the permutation operation was
performed through the repeated use of the CNOT gate without allocating a
qubit. The P0, P1 is used in the compression function. Algorithm 6 represents
a part of this operation and Table 1 represents the state that changes as the
operation progresses.

When A = a31, ..., a0 is given and a0 is the most significant bit, the CNOT
gate is executed in the order of a31, ..., a17. It is difficult to find the original a31
required in the calculation of a16. Therefore, the operation to find the existing
value was performed by repeatedly using the CNOT gate. The Algorithm 6

Grover on SM3 11

Table 1: Changes of states during Algorithm 6.
Line Qubit State Line Qubit State

1 a16 a16 ⊕ a7 4 a16 a16 ⊕ a7 ⊕ a31 ⊕ a13 ⊕ a5

2 a16 a16 ⊕ a7 ⊕ a31 ⊕ a22 ⊕ a14 5 a16 a16 ⊕ a7 ⊕ a31 ⊕ a5

3 a16 a16 ⊕ a7 ⊕ a31 ⊕ a14 ⊕ a13 ⊕ a5 6 a16 a16 ⊕ a7 ⊕ a31

computes a16 as part of P0. At this time, the CNOT gate was repeatedly used
to use the original a31, and the state change for each use is shown in the Table
1. Since XOR operation values of a16, a7, a31 should be stored in a16, they are
calculated in order. Since the calculation was performed from a31, the values
of a16 and a7 are preserved. In line 1, XOR values of a16 and a7 are stored in
a16. In line 2, the value of a31 is executed with the XOR operation. At this
time, XOR values of a31, a22, and a14 are stored in a31. Since a22 and a14 are
unnecessary values, we use the CNOT gate once more to cancel them. In line
4, the CNOT gate to a14 to neutralize the value. In line 3, the CNOT gate was
used to neutralize the a22 value. Since XOR operation values of a22, a13, and a5
were stored in a22, only a22 value was obtained by performing a13, a5 and the
CNOT gate in lines 5 and 6.

4 Evaluation

The proposed SM3 quantum circuit implementation is evaluated with the quan-
tum emulator, namely IBM ProjectQ. Among various compilers provided by
ProjectQ, quantum compilers can estimate resources of implemented quantum
circuits. It measures the number of Toffoli gates, CNOT gates, X gates, and
qubits used in a quantum circuit.

We focused on optimizing the quantum gates and qubits for the implementa-
tion of the SM3 quantum circuit. One of important elements of a quantum circuit
is making it work with minimal resources. Currently, the number of qubits avail-
able in quantum computer technology is limited, and it is efficient to reduce
the cost of the gate. Therefore, it can be used as an index to confirm the effi-
ciency of the quantum circuit by comparing the quantum circuit resources of the
SM3 quantum circuit proposed in this paper with other hash functions. Table
2 shows the amount of quantum resources used in the proposed SM3 quantum
circuit. It also shows quantum resources including hash functions (SHA2 and
SHA3) [11] as specified by the US national standard. SHA-256 and proposed
SM3 are evaluated based on 512-bit message block input, and SHA3-256 has the
same resources at all input lengths with a sponge structure.

First, In our SM3 quantum circuits, qubits to be used for the message storage
were reduced by mixing the expansion function and the compression function.
By dividing the expansion function and the compression function into two, mes-
sage qubits used in the first compression function can be reused in the second
compression function.

12 Song et al.

Table 2: Quantum resources required for SHA2 and SHA3 quantum circuits and
the proposed SM3 quantum circuit.

Algorithm Qubits Toffoli gates CNOT gates X gates

SHA2 [11] 2,402 57,184 534,272 –

SHA3 [11] 3,200 84,480 33,269,760 85

Proposed SM3 2,721 43,328 134,144 2,638

Second, in the permutation operation, we found the original value with the
CNOT gate without allocating a bit to store the original value. In this way, we
reduced the number of qubits.

Finally, fewer qubits, Toffoli gates, and CNOT gates are used compared to
SHA2 and SHA3. Based on this optimal quantum circuit, we can minimize quan-
tum resources required for Grover’s search on the SM3 hash function.

5 Conclusion

In this paper, we implemented and optimized the SM3 hash function as a quan-
tum circuit, and estimated required quantum resources. Quantum resources re-
quired for a quantum pre-image attack using the Grover search algorithm are
determined according to the quantum circuit of the target hash function. Uti-
lizing our proposed SM3 quantum circuits, the Grover search algorithm can
be efficiently applied, and its performance is confirmed by comparing it with
quantum resources with other researches. It is expected that the proposed im-
plementation of the SM3 hash function in quantum circuits can be effectively
applied to the Grover search algorithm.

References

1. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer,” SIAM J. Comput., vol. 26, p. 1484–1509, Oct.
1997.

2. L. K. Grover, “A fast quantum mechanical algorithm for database search,” in
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pp. 212–219, 1996.

3. M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt, “Applying Grover’s
algorithm to AES: quantum resource estimates,” in Post-Quantum Cryptography,
pp. 29–43, Springer, 2016.

4. B. Langenberg, H. Pham, and R. Steinwandt, “Reducing the cost of implement-
ing AES as a quantum circuit,” tech. rep., Cryptology ePrint Archive, Report
2019/854, 2019.

5. S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia, “Implementing Grover oracles
for quantum key search on AES and LowMC,” in Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pp. 280–310,
Springer, 2020.

Grover on SM3 13

6. R. Anand, A. Maitra, and S. Mukhopadhyay, “Grover on SIMON,” Quantum In-
formation Processing, vol. 19, no. 9, pp. 1–17, 2020.

7. K. Jang, S. Choi, H. Kwon, and H. Seo, “Grover on SPECK: Quantum resource
estimates.” Cryptology ePrint Archive, Report 2020/640, 2020. https://eprint.

iacr.org/2020/640.
8. K. Jang, H. Kim, S. Eum, and H. Seo, “Grover on GIFT.” Cryptology ePrint

Archive, Report 2020/1405, 2020. https://eprint.iacr.org/2020/1405.
9. L. Schlieper, “In-place implementation of quantum-Gimli,” arXiv preprint

arXiv:2007.06319, 2020.
10. K. Jang, S. Choi, H. Kwon, H. Kim, J. Park, and H. Seo, “Grover on Korean block

ciphers,” Applied Sciences, vol. 10, no. 18, p. 6407, 2020.
11. M. Amy, O. D. Matteo, V. Gheorghiu, M. Mosca, A. Parent, and J. Schanck,

“Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-
3,” 2016.

12. V. Gheorghiu and M. Mosca, “Benchmarking the quantum cryptanalysis of sym-
metric, public-key and hash-based cryptographic schemes,” 2019.

13. D. S. Steiger, T. Häner, and M. Troyer, “ProjectQ: an open source software frame-
work for quantum computing,” Quantum, vol. 2, p. 49, 2018.

