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ABSTRACT
Classic Byzantine fault tolerant (BFT) protocols are designed for

a specific timing model, most often one of the following: synchro-

nous, asynchronous or partially synchronous. It is well known that

the timing model and fault tolerance threshold present inherent

trade-offs. Synchronous protocols tolerate up to 𝑛/2 Byzantine

faults, while asynchronous or partially synchronous protocols tol-

erate only up to 𝑛/3 Byzantine faults. In this work, we generalize

the fault thresholds of BFT and introduce a new problem called

multi-threshold BFT. Multi-threshold BFT has four separate fault

thresholds for safety and liveness under synchrony and asynchrony

(or partial-synchrony), respectively. Decomposing the fault thresh-

olds in this way allows us to design protocols that provide mean-

ingful fault tolerance under both synchrony and asynchrony (or

partial synchrony). We establish tight fault thresholds bounds for

multi-threshold BFT and present protocols achieving them. As an

example, we show a BFT state machine replication (SMR) protocol

that tolerates up to 2𝑛/3 faults for safety under synchrony while

tolerating up to 𝑛/3 faults for other scenarios (liveness under syn-
chrony as well as safety and liveness under partial synchrony). This

is strictly stronger than classic partially synchronous SMR proto-

cols. We also present a general framework to transform known

partially synchronous or asynchronous BFT SMR protocols to ad-

ditionally enjoy the optimal 2𝑛/3 fault tolerance for safety under

synchrony.
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1 INTRODUCTION
Byzantine fault-tolerance (BFT) is a fundamental problem in dis-

tributed systems [34, 44, 45]. It also serves as the algorithmic foun-

dation of blockchain [40], which replicates a ledger across mutually

distrusting organizations. Designing efficient BFT protocols is of

both theoretical and practical interests today.

The classic BFT protocol design first selects a timing assump-

tion, usually from the three models below: synchrony, asynchrony,

or partially synchrony. It is well known that there is an inherent

trade-off between the timing model and the fault threshold. Syn-

chronous BFT protocols [20, 45] tolerate up to 𝑓 < 𝑛 or 𝑓 < 𝑛/2
Byzantine faults (depending on the variant of the problem) but

break down when the network is not synchronous. On the flip side,

asynchronous or partially synchronous protocols tolerate network

asynchrony but tolerate only up to 𝑓 < 𝑛/3 Byzantine faults [22].
This motivates the following natural question:

Can we design BFT protocols that enjoy more than one-third fault-
tolerance under synchrony while at the same time tolerating some
(ideally one-third) faults in asynchrony or partial synchrony?

This question was recently studied and partially answered in

a series of elegant works by Blum et al. [7–9]. They showed it is

possible for a BFT protocol to simultaneously tolerate 𝑓𝑎 < 𝑛/3
faults under asynchrony and 𝑓𝑎 ≤ 𝑓𝑠 < 𝑛/2 faults under synchrony,
if and only if 2𝑓𝑠 + 𝑓𝑎 < 𝑛. Clearly, the bound 2𝑓𝑠 + 𝑓𝑎 < 𝑛 im-

plies that 𝑓𝑠 and 𝑓𝑎 are always lower than what is achievable in

a single timing model, i.e., 𝑓𝑠 < 𝑛/2 for synchrony and 𝑓𝑎 < 𝑛/3
for asynchrony/partial synchrony. In other words, their protocol

provides an interesting trade-off but cannot strictly improve classic

single-model protocols. And they showed that this is inherent with

the standard BFT definition.

In this work, we further generalize the BFT problem to circum-

vent the above barrier.We separate the fault tolerance thresholds for

each timing model and for safety and liveness, two well-established

properties of distributed algorithms. This generalization gives us a

new insight on BFT: it is possible to improve safety under synchrony

while preserving the other fault thresholds, i.e., liveness under syn-

chrony and safety/liveness under asynchrony (or partial synchrony).

At the technical level, we combine the techniques of state-of-the-art

synchronous and asynchronous (or partially synchronous) proto-

cols. The outcome is a class of simple and efficient solutions with

optimal fault tolerance that are strictly stronger than classic single-

model protocols. More specifically, we show a protocol tolerating

2𝑛/3 faults for safety under synchrony while tolerating 𝑛/3 faults
for liveness under synchrony and safety/liveness under asynchrony

(or partial synchrony). In comparison, existing asynchronous (or

partially synchronous) protocols tolerate 𝑛/3 faults for both safety

and liveness, for both synchrony and asynchrony (or partial syn-

chrony).

This higher safety under synchrony can be very useful as it helps

disincentivize rational players from attacking the system. If they do

not have control over the network infrastructure, they would need

to persuade a very large fraction of nodes to collude with them in

order to succeed in breaking safety.

Multi-threshold BFT. We introduce multi-threshold BFT (or MT-

BFT for short), a generalized notion of the BFT where the fault

tolerance thresholds are defined separately for safety and liveness

under synchrony and asynchrony (or partial synchrony). The MT-

BFT protocol is parameterized by four thresholds 𝛽𝑎, 𝛾𝑎, 𝛽𝑠 , 𝛾𝑠 . The

protocol achieves safety in the presence of 𝛽𝑎 faults and liveness

in the presence of 𝛾𝑎 faults in an asynchronous (or partially syn-

chronous) network; at the same time, the protocol achieves safety

in the presence of 𝛽𝑠 faults and liveness in the presence of 𝛾𝑠 faults

in a synchronous network.
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It is worth noting that the problem considered in Blum et al.

can be viewed as a special form of the more general problem we

introduce here, with the restriction of 𝛽𝑎 = 𝛾𝑎 = 𝑓𝑎 and 𝛽𝑠 = 𝛾𝑠 = 𝑓𝑠 .

Tight fault tolerance bounds of MT-BFT RBC. To motivate the

MT-BFT model, we first consider reliable broadcast (RBC), which

is a simple and standard variant of consensus problems. We show

that MT-BFT RBC can be achieved if and only if 2𝛾𝑠 + 𝛽𝑎 < 𝑛.

Namely, there is an inherent trade-off between the asynchronous

(or partially synchronous) safety threshold 𝛽𝑎 and the synchronous

liveness threshold 𝛾𝑠 . This result is already very interesting. Notice

that there is no trade-off between the asynchronous (or partially

synchronous) safety (i.e., 𝛽𝑎) and the synchronous safety (i.e., 𝛽𝑠 ).

Thus, it means that we can design a BFT protocol that enjoys an

arbitrary high (even 𝛽𝑠 = 𝑛−1) synchronous safety while preserving
the fault tolerance of classic protocols in asynchrony (or partially

synchrony) with 𝛽𝑎 = 𝛾𝑎 < 𝑛/3.

Tight fault tolerance bounds of MT-BFT SMR. Next, we ap-

ply the idea to state machine replication (SMR), which is a practi-

cal formulation of the consensus problem (and it is the interface

blockchains provide). Notably, the fault tolerance thresholds for

BFT SMR differ slightly from the previous ones for RBC because

SMR protocols must provide public verifiability, i.e., external clients

can verify the correctness of the committed ledger. We show that

with this public (external) verifiability requirement, an additional

constraint comes in: we need 𝛽𝑠 + 𝛾𝑠 < 𝑛.

This extra condition means that BFT SMR cannot tolerate arbi-

trarily high fault for synchronous safety. This is not surprising as

it is well known BFT SMR can tolerate at most 𝑓 < 𝑛/2 faults [45],
unlike Byzantine broadcast which does not require public verifiabil-

ity and may tolerate an arbitrarily number of faults. As easily seen,

this 𝑓 < 𝑛/2 bound for SMR is a special form of our new bound

with the restriction of 𝛽𝑠 = 𝑓𝑠 = 𝑓 .

Nonetheless, one can still achieve a safety threshold of up to

𝛽𝑠 < 𝑛 − 𝛾𝑠 while preserving the partial synchronous fault toler-

ance. We present a simple MT-BFT SMR protocol that can achieve

optimal thresholds in the dual timing model of synchrony and

partial synchrony. An interesting point in the design space is to

achieve 𝛽𝑠 < 2𝑛/3 tolerance for safety under synchrony while

preserving the tolerance for partial synchrony and liveness at

𝛽𝑎 = 𝛾𝑎 = 𝛾𝑠 < 𝑛/3. This is strictly stronger than classic asyn-

chronous or partially synchronous protocols.

In addition, our protocol allows tuning parameter on the optimal

trade-off curve to best suit the application. For example, one can

prioritize safety (e.g., 𝛽𝑎 < 𝑛/2, 𝛽𝑠 < 3𝑛/4) at the cost of liveness
(e.g., 𝛾𝑎 = 𝛾𝑠 < 𝑛/4) for safety critical applications. One can also

prioritize the synchronous setting (e.g., 𝛾𝑠 < 9𝑛/20, 𝛽𝑠 < 11𝑛/20)
while tolerating a small number of faults (e.g., 𝛽𝑎 = 𝛾𝑎 < 𝑛/10)
anticipating occasional network failure.

A framework to upgrade to optimal synchronous safety. Af-
ter giving customized new protocols above, we devise a general

framework to transform existing protocols to ourMT-BFT paradigm

with optimal synchronous safety. To elaborate, the framework con-

verts any MT-BFT SMR protocol parameterized by (𝛽 ′𝑎, 𝛾 ′𝑎, 𝛽 ′𝑠 , 𝛾 ′𝑠 )
into a MT-BFT SMR protocol with optimal synchronous safety

𝛽𝑠 = 𝑛 − 𝛾 ′𝑠 − 1 tolerating the same thresholds otherwise, i.e.,

𝛽𝑎 = 𝛽 ′𝑎 , 𝛾𝑎 = 𝛾 ′𝑎 , and 𝛾𝑠 = 𝛾 ′𝑠 . Existing partially synchronous,

e.g., PBFT [14], HotStuff [47], and asynchronous protocols, e.g.,

HoneyBadgerBFT [38], BEAT [21], Dumbo [26], can be viewed as

MT-BFT SMR protocols with 𝛽 ′𝑎 = 𝛾 ′𝑎 = 𝛽 ′𝑠 = 𝛾 ′𝑠 < 𝑛/3. Hence, they
can be upgraded to tolerate an optimal 𝛽𝑠 < 2𝑛/3 while preserving
other thresholds 𝛽𝑎 = 𝛾𝑎 = 𝛾𝑠 < 𝑛/3. The framework requires

only two communication steps and a synchronous waiting step in

addition to running the underlying protocol. This helps improve

the resilience of these existing protocols in more versatile scenarios

with minimum overhead.

Summary of contributions. In summary, this paper provides the

following results.

(1) We introduce multi-threshold BFT (MT-BFT), a generalized ver-

sion of the BFT problem with separate thresholds for safety

and liveness under synchrony and asynchrony (or partial syn-

chrony) (Section 2.2).

(2) We establish tight bounds on the fault tolerance thresholds

for MT-BFT reliable broadcast (Section 3) and state machine

replication (Section 4).

(3) We present a framework to convert existing partially synchro-

nous or asynchronous BFT SMR protocols to additionally enjoy

optimal synchronous safety fault tolerance (Section 5).

2 MULTI-THRESHOLD BFT
2.1 Preliminaries

Reliable broadcast (RBC). In reliable broadcast (RBC), a desig-

nated sender 𝑟𝑠 looks to broadcast an input value 𝑏𝑖𝑛 to a set of 𝑛

replicas, and each replica outputs a value. A RBC protocol needs to

achieve the following safety and liveness properties.

(1) Safety.
(a) Consistency. If two honest replicas output values 𝑏 and 𝑏 ′,

respectively, then 𝑏 = 𝑏 ′.
(b) Integrity. If the designated sender is honest, no honest

replica outputs a value 𝑏 ≠ 𝑏𝑖𝑛 .

(2) Liveness.
(a) Validity. If the designated sender is honest, then all honest

replicas output some value.

(b) Totality. If an honest replica commits a value, all honest

replicas output some value.

We remark that the standard RBC validity property says “if the

designated sender is honest, all honest replicas output the sender’s

value”. It has both safety and liveness components, so we separate it

into integrity and validity following [17]. While this separation may

look verbose at first glance, it follows the convention that safety

captures “nothing bad happens” and liveness captures “something

happens”.

State machine replication (SMR). The problem we are more in-

terested in is the state machine replication (SMR) problem [14, 45].

A SMR protocol uses a number of servers, called replicas, to provide

an abstraction of a single non-faulty server . A SMR protocol or-

ders transactions from clients into a totally ordered list that grows

in length, called a log. Replicas and clients repeatedly output new

transactions at increasing positions of the log. Since a SMR protocol

ultimately services clients, it needs to provide public verifiability.
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Namely, there is a predefined Boolean function Verify; a replica or a
client outputs a log of transactions log = [𝑡𝑥0, 𝑡𝑥1, ...𝑡𝑥 𝑗 ] if and only
if there is a publicly verifiable proof 𝜋 such that Verify(log, 𝜋) = 1.

A SMR protocol then provides the following safety and liveness:

(1) Safety. If [𝑡𝑥0, 𝑡𝑥1, ..., 𝑡𝑥 𝑗 ] and [𝑡𝑥 ′
0
, 𝑡𝑥 ′

1
, ..., 𝑡𝑥 ′

𝑗 ′] are output by
two honest replicas or clients, then 𝑡𝑥𝑖 = 𝑡𝑥 ′

𝑖
for all 𝑖 ≤ min( 𝑗, 𝑗 ′).

(2) Liveness. If a transaction 𝑡𝑥 is input to at least one honest

replica, then every honest replica eventually outputs a log con-

taining 𝑡𝑥 .

Although some prior works [2, 47] do not explicitly mention

the public verifiability property in their SMR definitions, they all

implicitly achieve it. A typical way to achieve it is to have a client

collect signatures on the log from 𝑓 + 1 replicas, which serve as a

publicly verifiable proof for the log.

It is easy to see that a SMR protocol solves RBC by outputting

a transaction signed by the sender that resides at the smallest log

height. We will elaborate on this in Section 4.1. Therefore, an im-

possibility result for RBC applies to SMR as well.

Timing model. The three most common network timing models

in distributed computing are synchrony, asynchrony, and partially

synchrony. In a synchronous network, every message sent by an

honest replica will be received by the recipient within a known up-

per bound Δ. If there is no such bound on the communication delay,

the network is said to be asynchronous. A partially synchronous

network has both synchronous and asynchronous periods. For con-

venience, it is usually assumed that the network is asynchronous

at first, but becomes synchronous after an unknown time called

global stabilization time (GST) denoted 𝑇𝑔 [22].

Even in the synchronous model, our protocols do not assume any

synchronized clocks across replicas, which is commonly assumed

in lock-step synchronous protocols such as Blum et al. where all

replicas do each operation at the same time. We only assume that

each replica’s locally measured Δ time is a correct upper bound for

the network delay.

Faultmodel.Weassume Byzantine faults that can behave arbitrary.

All protocols presented in this paper tolerate adaptive corruption

that can happen anytime during the protocol execution. A replica

that is not faulty throughout the execution is said to be honest and

faithfully execute the protocol.

Other assumptions. We assume the use of digital signatures and

public-key infrastructure (PKI) for the set of replicas, i.e., the public-

keys of all replicas are known to all replicas and clients. We use the

notation ⟨𝑥⟩𝑟 to denote a message 𝑥 signed by a replica 𝑟 . We also

assume a cryptographic hash function 𝐻 . As is commonly done in

BFT protocols, we abstract away the details of cryptography and

assume they are ideal.

2.2 Multi-Threshold BFT
We introduce multi-threshold BFT (MT-BFT), a generalized defi-

nition of the BFT problem that separates the fault tolerance for

safety and liveness under synchrony and asynchrony (or partially

synchrony), and capture the trade-offs between them. To elaborate,

a multi-threshold BFT protocol is parameterized by four thresholds

0 < 𝛽𝑎, 𝛾𝑎, 𝛽𝑠 , 𝛾𝑠 < 𝑛 and achieves the following two guarantees

simultaneously.

(1) Safety in the presence of 𝛽𝑎 faults and liveness in the pres-

ence of 𝛾𝑎 faults in an asynchronous (or partially synchronous)

network.

(2) Safety in the presence of 𝛽𝑠 faults and liveness in the presence

of 𝛾𝑠 faults in a synchronous network.

Note that the synchronous model is clearly a stronger assump-

tion (hence easier problem) than the asynchronous (or partially

synchronous) model. Thus, we always have 𝛽𝑎 ≤ 𝛽𝑠 and 𝛾𝑎 ≤ 𝛾𝑠 .

We also note that this paper focuses on the 𝛾 ≤ 𝛽 case. This means

safety is considered more important than liveness as it takes more

adversarial nodes to break safety than to break liveness. This is con-

sistent with the philosophy of partial synchrony: safety is always

maintained whereas liveness is achieved only under good condi-

tions. We remark that the case 𝛾 > 𝛽 means replicas are allowed to

make progress in a unsafe manner (e.g., output conflicting values).

It may make sense if the protocol has some notion of “recovering”

capability where unsafe decisions are eventually resolved, but we

have not seen a clear formalization for such a notion and we leave

it as future work.

When we consider asynchrony together with synchrony, we

refer to the dual timing model as the async-sync model; likewise,

when we consider partial synchrony together with synchrony, we

refer to the dual timing model as the psync-sync model. Existing

asynchronous [26, 38] (or partially synchronous [14, 47]) BFT proto-

cols are alreadyMT-BFT protocols in the async-sync (or psync-sync)

model with 𝛽𝑎 = 𝛾𝑎 = 𝛽𝑠 = 𝛾𝑠 < 𝑛/3.

3 TIGHT FAULT TOLERANCE BOUND OF
MT-BFT RELIABLE BROADCAST

This section establishes a tight bound on the fault thresholds of

MT-BFT for reliable broadcast (RBC). As mentioned before, the

impossibility result below applies to SMR as SMR implies RBC.

3.1 Fault Tolerance Limit of MT-BFT RBC
We first show that any MT-BFT protocol has an inherent trade-off

between the asynchronous safety and the synchronous liveness

formulated as 𝛽𝑎 + 2𝛾𝑠 < 𝑛. Although the proof is a straightforward

extension of the Blum et al. [7, 8] and a classic proof by Dwork et

al. [22], we show the proof in detail to showcase the roles of the

different thresholds in the proof. To strengthen the result, we prove

the lower bound in the psync-sync model.

Theorem 3.1. There does not exist a MT-BFT RBC protocol such
that for a certain 𝑛 > 0, its threshold parameters satisfy 𝛽𝑎 + 2𝛾𝑠 ≥ 𝑛.

Proof. Suppose for the sake of contradiction that there exists

a MT-BFT RBC protocol whose fault threshold parameters satisfy

𝛽𝑎 + 2𝛾𝑠 = 𝑛 (the proof can be easily extended to 𝛽𝑎 + 2𝛾𝑠 > 𝑛). We

consider a network with three partitions 𝑃 , 𝑄 , and 𝑅, with sizes

|𝑃 | = |𝑅 | = 𝛾𝑠 > 0 and |𝑄 | = 𝛽𝑎 > 0. The designated sender 𝑟𝑠 is in

𝑄 . Consider the three executions below.

In the first execution (W1), the network is synchronous and all

messages are instantly delivered. All replicas in 𝑃 crash, i.e., do

not send any message to other replicas. The sender 𝑟𝑠 has an input

value 𝑏1. Since the protocol achieves liveness in the presence of 𝛾𝑠
faults, all replicas in 𝑅 output 𝑏1 at some time 𝑇1.
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The second execution (W2) is symmetric to the first one. The

network is synchronous, all messages are instantly delivered, and

all replicas in 𝑅 crash. The sender 𝑟𝑠 has an input value 𝑏2 ≠ 𝑏1.

Since the protocol achieves liveness in the presence of 𝛾𝑠 faults, all

replicas in 𝑃 output 𝑏2 at some time 𝑇2.

In the third execution (W3), the network is partially synchronous

and 𝑇𝑔 > max{𝑇1,𝑇2}. All replicas in 𝑄 are Byzantine. 𝑄 behave

towards 𝑅 and 𝑃 as in W1 and W2, respectively. All messages

between 𝑃 and 𝑅 are delayed by 𝑇𝑔 , but all other messages are

instantly delivered. Then, replicas in 𝑅 cannot distinguish W1 and

W3 by 𝑇1 < 𝑇𝑔 , and they output 𝑏1 as in W1. Similarly, replicas in

𝑃 cannot distinguish W2 and W3 by 𝑇2 < 𝑇𝑔 , and they they output

𝑏2 ≠ 𝑏1 as in W2. This violates the supposition that the protocol

achieve consistency against |𝑄 | = 𝛽𝑎 Byzantine faults. □

As mentioned, the bound above is a straightforward general-

ization of the bound proven by Blum et al [7, 8], which shows

no protocol can tolerate 𝑓𝑎 Byzantine faults under asynchrony

(i.e., 𝑓𝑎 = 𝛽𝑎 = 𝛾𝑎) and 𝑓𝑠 Byzantine faults under synchrony (i.e.,

𝑓𝑠 = 𝛽𝑠 = 𝛾𝑠 ) if 𝑓𝑎 + 2𝑓𝑠 ≥ 𝑛. But once we separate fault tolerance

for safety and liveness, an interesting and crucial observation is

that 𝛽𝑎 and 𝛽𝑠 do not constrain each other. This means we may

achieve a higher synchronous safety tolerance independent of the

asynchronous safety tolerance.

3.2 A MT-BFT RBC Protocol with Optimal
Fault Tolerance

We present a MT-BFT RBC protocol with optimal fault tolerance

in the async-sync model. The protocol supports any parameter

choices within the feasible region. Namely, a protocol designer can

first pick 𝛾𝑠 < 𝑛/2. Then, other parameters are determined as

(1) 𝛽𝑎 = 𝑛 − 2𝛾𝑠 − 1

(2) 𝛽𝑠 = 𝑛 − 1

(3) 𝛾𝑎 = min{𝛽𝑎, 𝛾𝑠 }
This is optimal given Theorem 3.1 and also establishes the tightness

of Theorem 3.1.

Protocol description and intuition. The protocol is given in Fig-

ure 1. The protocol follows the common quorum-based design. An

available quorum of honest replicas vote for a proposal 𝑏 from the

sender, forming a quorum-certificate C(𝑏). As our protocol requires
a quorum availability under both synchrony and asynchrony, we

naturally use a quorum of |C| = 𝑛 −𝛾𝑠 (note that 𝛾𝑠 ≥ 𝛾𝑎). This eas-

ily achieves validity property of the protocol. The integrity property

is also easily achieved by checking a sender’s signature on the value.

The core of the protocol combines respective techniques of purely

asynchronous and purely synchronous protocols and make them

work with the optimal thresholds above to achieve consistency and

totality. We elaborate more in detail below.

Asynchronous quorum intersection. Existing asynchronous pro-
tocols rely on a quorum intersection argument to achieve consis-

tency. In short, two quorums of 2𝑓 + 1 replicas out of 𝑛 = 3𝑓 + 1

intersect at at least 𝑓 + 1 replicas. This rules out conflicting quorum
certificates. Then, totality is achieved by having replicas forward

certificates to make other replicas output the same value.

As can be expected from the proof, the quorum intersection

argument works in the optimal thresholds 𝛽𝑎 = 𝑛 − 2𝛾𝑠 − 1. Two

quorums of 𝑛−𝛾𝑠 replicas intersect at 2(𝑛−𝛾𝑠 ) −𝑛 = 𝛽𝑎 +1 replicas,
ruling out conflicting certificates. This guarantees both consistency

and totality under asynchrony.

Synchronous equivocation-checking. The common approach

for synchronous BFT protocols to achieve consistency under minor-

ity corruption is equivocation-checking. In short, replicas, before

outputting, forward the sender’s proposal and wait for Δ to rule out

sender equivocation [4]. Our protocol builds on this technique to

achieve consistency. But we need a little tweak for liveness. A sim-

ple equivocation check achieves consistency because a replica stops

outputting if it detects equivocation. A faulty sender can exploit this

to break liveness (in particular totality): after some honest repica

outputs a value, the sender rushes to send a conflicting proposal

to another honest replica to stop it from outputting. To prevent

this attack, we perform equivocation check on both proposals and

certificates. We first perform equivocation check on proposal to

rule out conflicting votes among honest replicas. Then, after re-

ceiving a certificate, we perform equivocation check on certificates

to rule out conflicting decisions. The latter easily achieves consis-

tency with an arbitrary 𝛽𝑠 < 𝑛 faults even if there are conflicting

certificates as replicas just stop outputting. When there are fewer

than 𝛾𝑠 faults, we can additionally show that conflicting certificates

cannot exist. Note that a quorum of 𝑛 − 𝛾𝑠 replicas have at least

an honest replica (because 𝛾𝑠 < 𝑛/2). Hence, if an honest replica

outputs a value, no honest replica votes for other values. Faulty

replicas cannot stop honest replicas from outputting. This ensures

totality with 𝛾𝑠 faults.

Correctness of the protocol.We prove safety and liveness under

synchrony and asychrony under respective fault thresholds.

Lemma 3.2 (Safety). If the network is synchronous and there are
at most 𝛽𝑠 = 𝑛 − 1 faults, then safety holds.

Proof. Since a replica outputs a value 𝑏 only if it receives

⟨propose, 𝑏⟩𝑟𝑠 signed by the sender, integrity holds. We next prove

consistency. Suppose for the sake of contradiction that honest repli-

cas output two different values 𝑏 and 𝑏 ′. Let 𝑟 and 𝑟 ′ be the first
honest replicas that have voted for 𝑏 and 𝑏 ′ at time 𝑡 and 𝑡 ′, respec-
tively. Without loss of generality, we assume 𝑡 ≤ 𝑡 ′. As 𝑟 outputs 𝑏
at 𝑡 , it must have received and broadcast C(𝑏) at 𝑡−Δ. Then, all hon-
est replicas including 𝑟 ′ must have received it by 𝑡 ≤ 𝑡 ′. Therefore,
𝑟 ′ could not have outputted 𝑏 ′ ≠ 𝑏 at 𝑡 ′, a contradiction. □

Lemma 3.3 (Liveness). If the network is synchronous and there
are at most 𝛾𝑠 faults, then liveness holds.

Proof. We first prove that, if two certificates C(𝑏) and C(𝑏 ′)
are both formed, then 𝑏 = 𝑏 ′. Suppose for the sake of contradiction
that C(𝑏) and C(𝑏 ′) for two different values 𝑏 and 𝑏 ′ are both

formed. As 𝑛−𝛾𝑠 > 𝛾𝑠 , both values must have been voted by honest

replicas. Let 𝑟 and 𝑟 ′ be the first honest replicas that have voted for

𝑏 and 𝑏 ′ at time 𝑡 and 𝑡 ′, respectively. Without loss of generality,

we assume 𝑡 ≤ 𝑡 ′. As 𝑟 votes for 𝑏 at 𝑡 , it must have received and

broadcast ⟨propose, 𝑏⟩𝑟𝑠 at 𝑡 −Δ. Then, all honest replicas including
𝑟 ′ must have received it by 𝑡 ≤ 𝑡 ′. Therefore, 𝑟 ′ could not have

voted for 𝑏 ′ ≠ 𝑏 at 𝑡 ′, a contradiction.
An honest designated sender broadcasts ⟨propose, 𝑏𝑖𝑛⟩𝑟𝑠 , and all

𝑛 − 𝛾𝑠 honest replicas vote for 𝑏𝑖𝑛 forming a certificate C(𝑏𝑖𝑛). As
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Each replica 𝑟 runs the following steps to output a value.

(1) Propose. At the beginning of the execution, if 𝑟 = 𝑟𝑠 , broadcasts its input value 𝑏𝑖𝑛 in the form of ⟨propose, 𝑏𝑖𝑛⟩𝑟 .
(2) Vote. Upon receiving the first ⟨propose, 𝑏⟩𝑟𝑠 , broadcast it and wait for Δ. Then, if it has not received ⟨propose, 𝑏 ′⟩𝑟𝑠 for 𝑏 ≠ 𝑏,

broadcast ⟨vote, 𝑏⟩𝑟 .
(3) Output. Upon receiving a quorum of 𝑛 − 𝛾𝑠 ⟨vote, 𝑏⟩∗ denoted C(𝑏), broadcast them and wait for Δ. Then, if it has not received

C(𝑏 ′) for a different value 𝑏 ′ ≠ 𝑏 and it has received ⟨propose, 𝑏⟩𝑟𝑠 , output the value 𝑏.

Figure 1: An optimal multi-threshold BFT RBC protocol.

no conflicting certificate exists, all honest replicas output the value

𝑏𝑖𝑛 . Thus, the validity holds.

If an honest replica outputs a value 𝑏, then it must have received

and broadcast C(𝑏), which is received by all honest replicas. As no

conflicting certificate exists, all honest replicas output the value 𝑏.

Thus, the totality holds. □

Lemma 3.4 (Safety). If the network is asynchronous and there are
at most 𝛽𝑎 faults, then safety holds.

Proof. Integrity proof is identical to Lemma 3.2. We prove con-

sistency. Suppose for the sake of contradiction that honest replicas

output two different values 𝑏 and 𝑏 ′, then two certificates C(𝑏)
and C(𝑏 ′) are both formed. Let 𝐶 and 𝐶 ′

be the two sets of 𝑛 − 𝛾𝑠
replicas that have voted for 𝑏 and 𝑏 ′. As 𝐶 and 𝐶 ′

intersect at

2(𝑛−𝛾𝑠 ) −𝑛 = 𝛽𝑎 + 1 replicas, at least an honest replicas must have

voted for both values, a contradiction. □

Lemma 3.5 (Liveness). If the network is under asynchrony and
there are at most 𝛾𝑎 faults, then liveness holds.

Proof. Due to a quorum-intersection argument like the proof of

Lemma 3.4 in the presence of𝛾𝑎 ≤ 𝛽𝑎 faults, there cannot be conflict-

ing certificates. The rest of the proof is identical to Lemma 3.3. □

Efficiency.When the leader is honest, the latency of the protocol is

two rounds plus 2Δ time; under synchrony, it can be written as 2Δ+
2𝛿 where 𝛿 is the actual network delay and is usually significantly

smaller than the conservative delay bound Δ. Our protocol requires
𝑂 (𝑛2) messages, matching that of the Bracha’s broadcast [10]. The

communication complexity (in bits) of our protocol is 𝑂 (𝑛3) as
replicas send certificates containing 𝑂 (𝑛) signatures. This is more

expensive than Bracha’s 𝑂 (𝑛2) RBC. It can be reduced to 𝑂 (𝑛2)
using threshold signatures [13, 25].

4 TIGHT FAULT TOLERANCE BOUND ON
MT-BFT SMR IN THE PSYNC-SYNC MODEL

This section establishes a tight bound on the fault thresholds of

MT-BFT for state machine replication in the psync-sync model.

4.1 Fault Tolerance Limit of MT-BFT SMR
As mentioned before, a SMR protocol can solve RBC under the

same condition. Suppose we have a SMR protocol. The 𝑛 replicas

participating in the RBC execution run the SMR protocol. The

designated sender 𝑟𝑠 generates a transaction containing the signed

input value ⟨𝑏𝑖𝑛⟩𝑟𝑠 . A replica outputs the first transaction in the

SMR log that is signed by the sender 𝑟𝑠 . That is, when a replica

outputs in SMR a log [𝑡𝑥1, 𝑡𝑥2, ..𝑡𝑥𝑙 ] where 𝑡𝑥𝑖 is ⟨𝑏⟩𝑟𝑠 and no 𝑡𝑥 𝑗
( 𝑗 < 𝑖) is signed by 𝑟𝑠 , then the replica outputs 𝑏 in RBC. The safety

and liveness of RBC easily follow from the safety and liveness of

SMR. Therefore, the constraint 𝛽𝑎 + 2𝛾𝑠 < 𝑛 in Theorem 3.1 applies

to SMR as well.

However, this is not the full picture for SMR. We show that

for MT-BFT SMR, due to the need for public verifiability, another

constraint exists between safety and liveness under synchrony

formulated as 𝛽𝑠 + 𝑓𝑠 < 𝑛.

Public verifiability. To prove this bound, we introduce a variant

of RBC called publicly verifiable reliable broadcast (PVRBC). The

only difference from the regular RBC in Section 2.1 is that we add

the public verifiability property to RBC. As in the case of SMR, this

means there is a predefined Boolean function Verify and a replica

outputs a value 𝑏 if and only if it obtains a publicly verifiable proof

𝜋 such that Verify(𝑏, 𝜋) = 1. We can still use the aforementioned re-

duction to solve PVRBC using SMR, so a negative result for PVRBC

also applies to SMR.

Now we show the bound 𝛽𝑠 + 𝑓𝑠 < 𝑛 for MT-BFT PVRBC below.

Theorem 4.1. There does not exist a MT-BFT PVRBC protocol such
that for a certain 𝑛 > 0, its threshold parameters satisfy 𝛽𝑠 + 𝛾𝑠 ≥ 𝑛.

Proof. Suppose for the sake of contradiction there exists a MT-

BFT PVRBC protocol whose threshold parameters satisfy 𝛽𝑠 +𝛾𝑠 = 𝑛

for a certain 𝑛 > 0 (trivially extended for 𝛽𝑠 + 𝛾𝑠 > 𝑛). Suppose the

network consists of two partitions 𝑃 and 𝑄 with size 𝛾𝑠 > 0 and

𝛽𝑠 > 0, respectively. A designated sender 𝑟𝑠 is in 𝑄 . In this setting,

there are three possible executions below.

In the first execution (W1), all replicas are honest. The sender 𝑟𝑠
has an input value 𝑏. By the liveness, every honest replica outputs

𝑏, i.e., obtains a proof 𝜋 such that Verify(𝑏, 𝜋) = 1.

In the second execution (W2), all 𝛾𝑠 replicas in 𝑃 crash. The

sender 𝑟𝑠 has an input value 𝑏 ′ ≠ 𝑏. By the liveness in the presence

of 𝛾𝑠 faults, every honest replica outputs 𝑏 ′, i.e., obtains a proof 𝜋 ′

such that Verify(𝑏 ′, 𝜋 ′) = 1.

In the third execution (W3), all 𝛽𝑠 replicas in 𝑄 are Byzantine. 𝑄

behave towards 𝑃 as in W1. Replicas in 𝑃 cannot distinguish W1

and W3, so they behave as in W1. Thus, Byzantine replicas in 𝑄

can obtain 𝜋 such that Verify(𝑏, 𝜋) = 1. On the other hand, 𝑄 can

simulate the execution of W2 in which 𝑃 crash. Thus, Byzantine

replicas in 𝑄 can also generate 𝜋 ′
such that Verify(𝑏 ′, 𝜋) = 1. This

means honest replicas can receive proofs 𝜋 and 𝜋 ′
for two different

values 𝑏 ≠ 𝑏 ′ such that Verify(𝑏, 𝜋) = 1 and Verify(𝑏 ′, 𝜋 ′) = 1. This

violates consistency. However, as the number of faults is |𝑄 | = 𝛽𝑠 ,

consistency should hold. This is a contradiction. □
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The extra constraint shows that BFT SMR can achieve higher

(though not perfect) synchronous safety at the cost of synchronous

liveness. This observation helps us find new improvements to classic

asynchronous and partially synchronous protocols to potentially

tolerate 𝛽𝑠 < 2𝑛/3 for synchronous safety.
A remark on Schneider [45]. It has been stated, without a proof,

that BFT SMR can tolerate only 𝑓 < 𝑛/2 faults due to the need

for public verifiability [45]. While intuition is clear for this claim,

we are not aware of a rigorous proof for it. We observe that it is a

special form of our Theorem 4.1 with a restriction of 𝑡 = 𝛽𝑠 = 𝛾𝑠 .

So we have provided a rigorous proof for this well-known result.

4.2 A MT-BFT SMR Protocol with Optimal
Fault Tolerance

We present a MT-BFT SMR protocol with optimal fault tolerance in

the psync-sync model. Our protocol allows any parameter choice

within the optimal trade-offs. Namely, a protocol designer can first

pick 𝛾𝑠 < 𝑛/2. Then, other parameters are determined as follows

(1) 𝛽𝑎 = 𝑛 − 2𝛾𝑠 − 1

(2) 𝛽𝑠 = 𝑛 − 𝛾𝑠 − 1

(3) 𝛾𝑎 = min{𝛽𝑎, 𝛾𝑠 }
This is optimal given Theorem 3.1 and 4.1 and also establish the

tightness of the bounds for MT-BFT SMR in the psync-sync model.

Commit and public verifiability. When proving a negative re-

sult, we had to use the most general definition of SMR. But in de-

signing a protocol, we can use a set of safety and liveness conditions

convenient for us as long as they are sufficient for SMR. Towards this

end, we introduce the batching technique and the commit operation
that are widely used in the SMR literature [2, 11, 14, 31, 35, 45, 47].

Note that batching transactions into blocks is compatible with

the SMR definition in Section 2.1 where each position contains

a single transaction. Transactions within a block are totally or-

dered, so a log of blocks can be flattened into a log of transactions.

For example, suppose we have a log of blocks [𝐵0, 𝐵1, . . .] with
𝐵0 = [𝑡𝑥0,1, 𝑡𝑥0,2, . . . , 𝑡𝑥0,ℓ0 ] and 𝐵1 = [𝑡𝑥1,1, 𝑡𝑥1,2, . . . , 𝑡𝑥1,ℓ1 ]. This
can be interpreted as a log of transactions [𝑡𝑥0,1, 𝑡𝑥0,2, . . . , 𝑡𝑥0,ℓ0 ,
𝑡𝑥1,1, 𝑡𝑥1,2, . . . , 𝑡𝑥1,ℓ1 , . . .]. The publicly verifiable proof for a block

serves as the publicly verifiable proof for each transaction in that

block.

When a replica commits a new block, it broadcasts a signature on

the block. With some foresight, we will adopt the recent paradigm

of chained SMR in which the last block of a log uniquely identifies

the entire log, and hence signing a block is equivalent to signing the

the entire log up to the block. Then, a set of signatures on a block

from 𝑛 − 𝛾𝑠 = 𝛽𝑠 + 1 replicas forms a publicly verifiable proof for

the log up to that block. Hereafter, when designing new protocols,

we aim at achieving the following safety and liveness properties.

(1) Safety. If two honest replicas commit two logs [𝐵0, 𝐵1, ..., 𝐵 𝑗 ]
and [𝐵′

0
, 𝐵′

1
, ..., 𝐵′

𝑗 ′], then 𝐵𝑖 = 𝐵′
𝑖
for all 𝑖 ≤ min( 𝑗, 𝑗 ′).

(2) Liveness. Every transaction is eventually committed by all

honest replicas.

The above safety and liveness allow us to focus on replicas and

deal with clients and public verifiability easily in a single extra step.

This is sufficient for the safety and liveness for SMR defined in

Section 2.1. Simply observe that at least one honest replica must

commit a log in order for the log to have a publicly verifiable proof;

If all honest replicas commit a log, all honest replicas will obtain a

publicly verifiable proof for it.

Intuitive overview of the protocol.At a high level, we combine a

partially synchronous SMR protocol (PBFT [14]) and a synchronous

SMR protocol (Sync HotStuff [2]). These two protocols share a

similar view-by-view construction. In the steady state of each view,

a leader 𝐿 proposes a value to the next log position and replicas vote

and commit the value. When no progress is being made (possibly

because of a faulty leader), replicas replace the leader and enter the

next view using a view change procedure.

We further observe that these two protocols also share two fun-

damental steps in achieving safety despite their different timing

models and fault thresholds. In particular, they both need to guar-

antee safety within a view and across views. Let |C| be the quorum
size; |C| = 2𝑓 + 1 out of 𝑛 = 3𝑓 + 1 in PBFT and |C| = 𝑓 + 1 out of

𝑛 = 2𝑓 +1 in Sync HotStuff, where 𝑓 is the fault tolerance threshold.

(P1) consistency within a view: If an honest replica commits a

value 𝑏 in view 𝑣 , no conflicting value 𝑏 ′ has a certificate in view 𝑣 .

(P2) consistency across views: If an honest replica commits a

value 𝑏 in view 𝑣 , more than 𝑛 − |C| honest replicas receive a

certificate of 𝑏 from view 𝑣 before entering the next view 𝑣 + 1.

PBFT achieves P1 using the standard quorum intersection tech-

nique. With up to 𝑓 Byzantine faults out of 𝑛 = 3𝑓 + 1 replicas, two

quorums of |C| = 2𝑓 + 1 replicas intersect at at least one honest

replica (because 2|C|−𝑛 = 𝑓 +1). Having two conflicting certificates
from the same view would imply that an honest replica voted for

two equivocating proposals, which cannot happen. For P2, PBFT

uses two rounds of voting, so an honest replica commits a value

only after |C| = 2𝑓 + 1 replicas (at least 𝑓 + 1 honest) voted for the

certificate of that value.

Sync HotStuff, on the other hand, cannot rely on quorum inter-

section because it tolerates 𝑓 Byzantine faults out of 𝑛 = 2𝑓 + 1

replicas. Instead, it uses synchronous waiting periods to achieve

these properties. An honest replica 𝑟 commits a value only after

waiting for 2Δ time and detecting no leader equivocation or view-

change. The equivocation check makes sure no honest replica votes

for conflicting values. This rules out conflicting certificates in this

view, achieving P1. Checking view-change of other replicas makes

sure no honest replica enters the next view early. This leaves enough

time for all honest replicas to receive (from 𝑟 ) a certificate for the

committed value before entering the next view, achieving P2.

Combining PBFT and Sync HotStuff. Our key observation is

that the orthogonal techniques of PBFT and Sync HotStuff are

compatible under the three constraints at the beginning of this

section and a quorum size |C| = 𝑛 − 𝛾𝑠 , as we elaborate below.

PBFT’s quorum intersection ensures that two quorums of size

𝑛 − 𝛾𝑠 intersect at 2(𝑛 − 𝛾𝑠 ) − 𝑛 = 𝑛 − 2𝛾𝑠 = 𝛽𝑎 + 1 replicas. Under

partial synchrony, this ensures P1 with up to 𝛽𝑎 faults, which is our

target fault threshold for partially synchronous safety. Moreoever,

a quorum of |C| = 𝑛 − 𝛾𝑠 = 𝛾𝑠 + 𝛽𝑎 + 1 replicas contains at least

𝛾𝑠 +1 > 𝑛− |C| honest replicas, so PBFT’s two-phase voting ensures
P2 under partial synchrony.

Under synchrony, we can show the 2Δ waiting periods ensure

that P1 and P2 still hold. When an honest replica commits a value,
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the 2Δ waiting period before commit still ensures that no honest

replica votes for a conflicting value, hence ruling out a conflicting

certificate (P1 holds) under 𝛽𝑠 faults because |C| = 𝑛 − 𝛾𝑠 = 𝛽𝑠 + 1.

Similarly, the 2Δ waiting period in view change ensures that all

𝑛 − 𝛽𝑠 = 𝛾𝑠 + 1 > 𝑛 − |C| honest replicas receive a certificate before
entering the next view (P2 holds).

Therefore, combining the techniques of PBFT and Sync HotStuff

seamlessly with a quorum size of |C| = 𝑛 −𝛾𝑠 gives a MT-BFT SMR

protocol with optimal fault thresholds.

4.3 Protocol Description

Block chaining. Following recent BFT protocols [2, 47], we uti-

lize the “block chaining” paradigm to simplify the protocol. In the

steady state protocol, the leader proposes a block containing a list

of transactions and a hash digest of the previous block. Thus, a

block determinies a unique hash chain for all previous blocks in

the log. Any chains starts at a hard-coded genesis block, and the

distance from the genesis block to a block 𝐵 in the chain is called

the height of block 𝐵. A block of height 𝑘 , denoted 𝐵𝑘 , is formatted

as (𝑑𝑘 , 𝐻 (𝐵𝑘−1)) where 𝑑𝑘 is a set of transactions and 𝐻 (𝐵𝑘−1) is
the hash of the predecessor block 𝐵𝑘−1. The genesis block 𝐵0 can

be written as 𝐵0 = (⊥,⊥). We say a block 𝐵𝑘 = (𝑑𝑘 , ℎ𝑘−1) is valid
if (i) it is the genesis block or (ii) there is a valid block 𝐵𝑘−1 and
ℎ𝑘−1 = 𝐻 (𝐵𝑘−1). We say a block 𝐵𝑘 extends 𝐵𝑙 if 𝐵𝑘 = 𝐵𝑙 or 𝐵𝑘 is a

descendant of 𝐵𝑙 . If two blocks do not extend one another, we say

they conflict with each other. Conflicting blocks can occur due to

network asynchrony or faulty leaders. If two conflicting blocks are

signed in the same view by the same leader, they form a proof of

leader equivocation.

Each view is identified by a monotonically increasing integer

denoted 𝑣 ≥ 1, and has a leader 𝐿 selected in a round robin manner

(e.g., 𝑣 mod 𝑛). In each view 𝑣 , the steady state protocol (Figure

2) runs the following steps in iterations. Note that each step is

triggered by an “upon” event and is hence non-blocking. Thus,

subsequent blocks 𝐵𝑘+1, 𝐵𝑘+2 can be proposed before the previous

block 𝐵𝑘 is committed.

Propose.The leader𝐿 of view 𝑣 proposes a block𝐵𝑘 = (𝑑𝑘 , 𝐻 (𝐵𝑘−1))
in the form of ⟨propose, 𝐵𝑘 , C𝑣 (𝐵𝑘−1), 𝑣⟩𝐿 . The certificate in the pro-
posal must be the certificate for the predecessor 𝐵𝑘−1 in the current

view 𝑣 . In the steady state, the leader 𝐿 proposes 𝐵𝑘 upon receiving

C𝑣 (𝐵𝑘−1) for its previous proposal 𝐵𝑘−1 in the current view. For

the first proposal after entering view 𝑣 , the certificate C𝑣 (𝐵𝑘−1) is
formed during the view change protocol and will be described later.

Vote. Upon receiving a valid proposal ⟨propose, 𝐵𝑘 , C𝑣 (𝐵𝑘−1), 𝑣⟩𝐿
by the leader 𝐿 of the current view 𝑣 , a replica 𝑟 votes for the block

𝐵𝑘 in the form of ⟨vote, 𝐵𝑘 , 𝑣⟩𝑟 , if the replica has not received an

equivocating proposal signed by 𝐿 in the current view 𝑣 .

Certificates and ranking. A quorum of |C| = 𝑛 − 𝛾𝑠 votes form

a quorum certificate (or certificate for short). This is the key ingre-

dient of many SMR protocols including ours. To elaborate, each

replica 𝑟 votes for a block 𝐵𝑘 (at height 𝑘 proposed by the leader

of the current view 𝑣 in the form of ⟨vote, 𝐵𝑘 , 𝑣⟩𝑟 . A quorum of

⟨vote, 𝐵𝑘 , 𝑣⟩∗ messages from distinct replicas form a certificate for

block 𝐵𝑘 in view 𝑣 , denoted C𝑣 (𝐵𝑘 ). We say a block 𝐵𝑘 is certified

in view 𝑣 if the certificate C𝑣 (𝐵𝑘 ) is formed. Certificates are ranked

first by view number and then by height. For example, C𝑣 (𝐵𝑘 ) is
ranked higher than C𝑣−1 (𝐵𝑘+1) but lower than C𝑣 (𝐵𝑘+1).

Pre-commit. Upon receiving a certificate C𝑣 (𝐵𝑘 ), a replica 𝑟 for-
wards it to all other replicas. Then, after waiting for 2Δ, it broadcasts
⟨commit, 𝐵𝑘 , 𝑣⟩𝑟 . The 2Δ waiting step helps maintain consistency

both within a view and across views (i.e., P1 and P2) under syn-

chrony as in Sync HotStuff. The commit message corresponds to

the second vote in PBFT, which helps maintain consistency across

views (i.e., P2) under partial synchrony.

Commit. Finally, upon collecting a quorum of ⟨commit, 𝐵𝑘 , 𝑣⟩∗, a
replica forwards them to all other replicas, and commits the block

𝐵𝑘 . As we mentioned before, a replica commits a log by broad-

casting a signature on the log instead of each block or transaction.

However, as all blocks are chained by hash references, the block

𝐵𝑘 works as a snapshot of the log that consists of 𝐵𝑘 and all its

ancestors. Therefore, we hereafter say a replica commits a block/log

interchangeably.

The view change protocol (Figure 3) monitors the progress in

the steady state and changes the view when the leader exhibits a

faulty behavior or replicas fail to make progress.

Blame. A replica blame the view by broadcasting ⟨blame, 𝑣⟩𝑟 if it
detects leader equivocation or suspects the leader is misbehaving

such as stalling progress or censoring transactions. A transaction

𝑡𝑥 is considered to be censored if it has not been committed by

max{𝑇𝑡𝑥 ,𝑇𝑣} + Λ where 𝑇𝑡𝑥 is the time it receives 𝑡𝑥 , and 𝑇𝑣 is the

time it starts view 𝑣 , and Λ is a given time (the specific value is

discussed later). In the case of the leader’s equivocation, the replica

forwards the two equivocating proposals to all other replicas as

proof of misbehavior of the current leader, and stops all processes

in the steady state of view 𝑣 .

Status.Aquorum of distinct ⟨blame, 𝑣⟩∗ is called a blame-certificate

for view 𝑣 , denoted B𝑣 . Upon receiving B𝑣 , a replica 𝑟 forwards it

to all other replicas, and stops all processes in the steady state of

view 𝑣 . Then, the replica 𝑟 sets a variable lock𝑟 to a highest ranked

certificate to lock on and sends it to the leader 𝐿′ of the next view
𝑣 + 1 in a message ⟨status, lock𝑟 , 𝑣⟩𝑟 . At this point, replica 𝑟 starts
the new view 𝑣 + 1.

New-View. A quorum of ⟨status, lock, 𝑣⟩∗ messages form a status-

certificate, denotedS𝑣 . Upon receivingS𝑣 , the new leader 𝐿′ of view
𝑣 + 1 picks a highest certificate lock𝑣+1 among S𝑣 , and broadcasts

⟨new-view, lock𝑣+1,S𝑣, 𝑣 + 1⟩𝐿′ . One status message in S𝑣 must

come from an honest replica. Since more than𝑛−|C| honest replicas
lock on all blocks committed till the previous view 𝑣 (by P2), the

selected highest certificate lock𝑣+1 always extends all committed

blocks.

First-Vote. Upon receiving a first ⟨new-view, C𝑣′′ (𝐵𝑘′),S𝑣, 𝑣 +1⟩𝐿′ ,
a replica 𝑟 first checks that the selected certificate C𝑣′′ (𝐵𝑘′) has a
highest rank in S𝑣 . If the check passes, a replica 𝑟 forwards it to all

other replicas and sends ⟨vote, 𝐵𝑘′, 𝑣 + 1⟩𝑟 . This step forms the first

certificate in the new view 𝑣 + 1 that all subsequent proposals in

view 𝑣 + 1 should extend.
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Let 𝑣 be the view number and replica 𝐿 be the leader of the view 𝑣 . While in view 𝑣 , a replica 𝑟 runs the following steps in iterations:

(1) Propose. Upon receiving C𝑣 (𝐵𝑘−1), if 𝑟 = 𝐿, broadcast ⟨propose, 𝐵𝑘 , C𝑣 (𝐵𝑘−1), 𝑣⟩𝐿 where 𝐵𝑘 extends 𝐵𝑘−1.

(2) Vote. Upon receiving a valid proposal ⟨propose, 𝐵𝑘 , C𝑣 (𝐵𝑘−1), 𝑣⟩𝐿 , if it has not detected equivocation in the current view 𝑣 ,

broadcast the proposal and ⟨vote, 𝐵𝑘 , 𝑣⟩𝑟 .
(3) Pre-commit. Upon receiving C𝑣 (𝐵𝑘 ), broadcast it, wait for 2Δ, and broadcast ⟨commit, 𝐵𝑘 , 𝑣⟩𝑟 .
(4) Commit. Upon receiving a quorum of ⟨commit, 𝐵𝑘 , 𝑣⟩∗, forward them, and commit 𝐵𝑘 and all its ancestors.

Figure 2: An optimal multi-threshold BFT SMR – steady state protocol.

Let 𝑣 be the view number and replica 𝐿 and 𝐿′ be the leader of the view 𝑣 and 𝑣 ′, respectively. A replica 𝑟 run the following in view 𝑣 .

(1) Blame.When either two conditions below holds, broadcast ⟨blame, 𝑣⟩𝑟 .
(a) The replica 𝑟 cannot commit a transaction 𝑡𝑥 by max{𝑇𝑡𝑥 ,𝑇𝑣} + Λ where 𝑇𝑡𝑥 is the time it receives 𝑡𝑥 , and 𝑇𝑣 is the time it

starts view 𝑣 , and Λ is a given time-out.

(b) The replica 𝑟 receives two equivocating proposals.

In the third case, broadcasts the two proposals, and stop all processes in the steady state of view 𝑣 immediately.

(2) Status. Upon receiving B𝑣 , broadcast it, stop all processes in the steady state of view 𝑣 , and send ⟨status, lock𝑟 , 𝑣⟩𝑟 to 𝐿′ where
lock𝑟 is the highest certificate known to 𝑟 . Enter the next view 𝑣 + 1.

(3) New-View. Upon receiving a quorum of ⟨status, lock, 𝑣⟩∗ denoted S𝑣 , if 𝑟 = 𝐿′, broadcast ⟨new-view, lock𝑣+1,S𝑣, 𝑣 + 1⟩𝐿′ , where
lock𝑣+1 is a highest certificate in S𝑣 .

(4) First-Vote Upon receiving the first ⟨new-view, C𝑣′ (𝐵𝑘′),S𝑣, 𝑣 + 1⟩𝐿′ , broadcast it and ⟨vote, 𝐵𝑘′, 𝑣 + 1⟩𝑟 , if C𝑣′ (𝐵𝑘′) is the highest
certificate in S𝑣 .

Figure 3: An optimal multi-threshold BFT SMR – view change protocol.

4.4 Correctness of the Protocol
We prove the safety and liveness of the protocol. We say a replica

directly commits a block 𝐵𝑘 in a view 𝑣 if it is due to the replica

receiving a quorum of 𝑛 − 𝛾𝑠 ⟨commit, 𝐵𝑘 , 𝑣⟩. If a replica commits

a block 𝐵𝑘 as a result of directly committing one of its descendant,

then we say 𝐵𝑘 is indirectly committed.

Safety under partial synchrony.We prove safety under partial

synchrony in the presence of at most 𝛽𝑎 faulty replicas.

Lemma 4.2 (Consistency within a View). If two certificates
C𝑣 (𝐵𝑘 ) and C𝑣 (𝐵𝑙 ) from the same view 𝑣 exist, then 𝐵𝑘 and 𝐵𝑙 do
not conflict with each other.

Proof. Suppose for the sake of contradiction two conflicting

certificates C𝑣 (𝐵𝑘 ) and C𝑣 (𝐵𝑙 ) both exist, then at least an honest

replica must have voted for both, because two quorums of 𝑛 − 𝛾𝑠
intersect at an honest replica, i.e., 2(𝑛 − 𝛾𝑠 ) − 𝑛 > 𝛽𝑎 . This cannot

happen because an honest replica stops voting in view 𝑣 as soon as

it detects equivocating proposals. □

Lemma 4.3. If an honest replica directly commits a block 𝐵𝑘 in
a view 𝑣 , then at least 𝛾𝑠 + 1 honest replicas receive C𝑣 (𝐵𝑘 ) before
entering view 𝑣 + 1.

Proof. Suppose an honest replica directly commits a block 𝐵𝑘
in a view 𝑣 , then it must have received 𝑛−𝛾𝑠 ⟨commit, 𝐵𝑘 , 𝑣⟩, out of
which at least 𝑛 −𝛾𝑠 − 𝛽𝑎 > 𝛾𝑠 must be from honest replicas. These

𝛾𝑠 + 1 honest replicas must have received the certificate C𝑣 (𝐵𝑘 )
before sending ⟨commit, 𝐵𝑘 , 𝑣⟩ before entering view 𝑣 + 1. □

Lemma 4.4 (Consistency across Views). If an honest replica
directly commits a block 𝐵𝑘 in a view 𝑣 , then for all view 𝑣 ′ ≥ 𝑣 , if a
certificate C𝑣′ (𝐵𝑙 ) exists, then 𝐵𝑙 does not conflict with 𝐵𝑘 .

Proof. We prove by induction on the view number. The base

case (i.e., 𝑣 ′ = 𝑣) follows from Lemma 4.2. We prove for the induc-

tive step (i.e., view 𝑣 ′ + 1). Suppose a certificate C𝑣′+1 (𝐵𝑙 ) exists.
Let 𝐵𝑚 be the block of lowest height in the chain that is certified

in view 𝑣 ′ + 1. Then, at least an honest replica must have voted

for 𝐵𝑚 in the First-Vote phase of the view change protocol. Oth-

erwise, blocks extending 𝐵𝑙 (including 𝐵𝑙 ) could not have been

certified in view 𝑣 ′ + 1, as every valid proposal should contain a

certificate for the previous block in the same view. In the First-Vote

phase, the honest replica must have voted for 𝐵𝑚 in response to

⟨new-view, C𝑣′′ (𝐵𝑚),S, 𝑣 ′+1⟩𝐿′ message from the leader 𝐿′ of view
𝑣 ′ + 1, and C𝑣′′ (𝐵𝑚) (𝑣 ′′ ≤ 𝑣 ′) should be the highest certificate in

S. However, recall that at least 𝛾𝑠 + 1 honest replicas (denoted 𝑅)

receive C𝑣 (𝐵𝑘 ) before entering view 𝑣 + 1 ≤ 𝑣 ′ + 1 (Lemma 4.3).

As 𝑅 and S (|S| ≥ 𝑛 − 𝛾𝑠 ) intersect, C𝑣′′ (𝐵𝑚) should be as highly

ranked as C𝑣 (𝐵𝑘 ). By the inductive hypothesis, 𝐵𝑚 should extend

𝐵𝑘 . Therefore, 𝐵𝑙 (which extends 𝐵𝑚) does not conflict with 𝐵𝑘 . □

Lemma 4.5 (Safety for Replica). Honest replicas do not commit
conflicting blocks.

Proof. Suppose two blocks 𝐵𝑘 and 𝐵𝑘′ are committed due to

directly committed descendants 𝐵𝑙 and 𝐵𝑙 ′ , respectively. As all

directly committed blocks are certified, by Lemma 4.4, 𝐵𝑙 and 𝐵𝑙 ′

do not conflict with each other. Therefore, 𝐵𝑘 and 𝐵𝑘′ are both

ancestors of 𝐵𝑙 (and 𝐵𝑙 ′ ), and do not conflict with each other. □
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Safety under synchrony. We next prove the safety under syn-

chrony, assuming in the presence of at most 𝛽𝑠 faulty replicas.

Lemma 4.6 (Consistency within a View). If an honest replica
directly commits a block 𝐵𝑘 in a view 𝑣 , then a certificate C𝑣 (𝐵𝑙 ) for
a conflicting block 𝐵𝑙 cannot exist.

Proof. Suppose an honest replica directly commits a block 𝐵𝑘
in a view 𝑣 , then it must have received 𝑛 − 𝛾𝑠 ⟨commit, 𝐵𝑘 , 𝑣⟩. At
least one of them is from an honest replica since 𝑛−𝛾𝑠 > 𝛽𝑠 . Let 𝑡 be

the first time when an honest replica (say 𝑟 ) sends ⟨commit, 𝐵𝑘 , 𝑣⟩,
then 𝑟 must have received and broadcasted C𝑣 (𝐵𝑘 ) by 𝑡 − 2Δ. Thus,
all honest replicas must have received C𝑣 (𝐵𝑘 ) by 𝑡 − Δ, and could

not have voted a conflicting block 𝐵𝑙 after that. But if any honest

replica voted for 𝐵𝑙 (and forwarded the proposal of 𝐵𝑙 ) before 𝑡 −Δ,
then 𝑟 must have received the conflicting proposal of 𝐵𝑙 by 𝑡 . Then,

𝑟 would have then stopped all processes in the steady state of view

𝑣 and could not have sent commit for 𝐵𝑘 at 𝑡 , a contradiction. Thus,

no honest replica could not voted for 𝐵𝑙 . As 𝑛 − 𝛾𝑠 > 𝛽𝑠 , there are

not enough votes for 𝐵𝑙 to form C𝑣 (𝐵𝑙 ) □

Lemma 4.7. If an honest replica directly commits a block 𝐵𝑘 in
a view 𝑣 , then at least 𝛾𝑠 + 1 honest replicas receive C𝑣 (𝐵𝑘 ) before
entering the next view 𝑣 + 1.

Proof. Suppose an honest replica directly commits a block 𝐵𝑘
in a view 𝑣 , then it must have received 𝑛 − 𝛾𝑠 ⟨commit, 𝐵𝑘 , 𝑣⟩. At
least one of them is from an honest replica since 𝑛−𝛾𝑠 > 𝛽𝑠 . Let 𝑡 be

the first time when an honest replica (say 𝑟 ) sends ⟨commit, 𝐵𝑘 , 𝑣⟩,
then 𝑟 must have received and broadcasted C𝑣 (𝐵𝑘 ) by 𝑡 − 2Δ. Thus,
all honest replicas must have received C𝑣 (𝐵𝑘 ) by 𝑡−Δ. We just need

to prove that no honest replica has entered the next view before

𝑡 −Δ. Suppose for the sake of contradiction an honest replica enters

the next view 𝑣 + 1 before 𝑡 − Δ, then it must have received and

broadcasted B𝑣 before 𝑡 − Δ. Then, 𝑟 must have received B𝑣 before

𝑡 , and could not have sent commit for 𝐵𝑘 at 𝑡 , a contradiction. Thus,

all 𝑛 − 𝛽𝑠 ≥ 𝛾𝑠 + 1 honest replicas receive C𝑣 (𝐵𝑘 ) before entering
the next view 𝑣 + 1, and the lemma holds. □

The rest of the safety proof under synchrony is the same as the

safety proof under partial synchrony.

Liveness.We prove liveness under partial synchrony when at most

𝛾𝑎 ≤ 𝛾𝑠 replicas are faulty. Liveness under synchrony can be proven

in the same way, and we omit the details of the proof. We prove

that, with a reasonable timeout of Λ = 𝑂 (Δ), every transaction is

eventually committed by all honest replicas.

Lemma 4.8. There exists a timeout Λ = 𝑂 (Δ) such that every
transaction is eventually committed by all honest replicas.

Proof. Let 𝑣𝑔 be the highest view among honest replicas at the

global standardization time 𝑇𝑔 . Then, all honest replicas receive

B𝑣𝑔−1 by 𝑇𝑔 + Δ and enter view 𝑣𝑔 . We first prove that if an honest

replica (say 𝑟 ) permanently stays in a view 𝑣 ≥ 𝑣𝑔 , then every

transaction will eventually be committed by all honest replicas in

view 𝑣 .

If 𝑟 permanently stays in a view 𝑣 ≥ 𝑣𝑔 , then no honest replica

enters a higher view 𝑣 ′ > 𝑣 because that will make 𝑟 eventually

enter view 𝑣 ′ as well. If an honest replica commits a transaction

by committing a block 𝐵𝑘 in view 𝑣 , then the replica must have

received and broadcast a quorum of 𝑛 −𝛾𝑠 ⟨commit, 𝐵𝑘 , 𝑣⟩∗, and all
honest replicas will also commit 𝐵𝑘 and the transaction. Thus, if

any transaction 𝑡𝑥 is not eventually committed by 𝑟 , then it is not

committed in view 𝑣 by any honest replica. Then, all honest replicas

send ⟨blame, 𝑣⟩, receiveB𝑣 , and enter the next view 𝑣 +1. Therefore,
if 𝑟 permanently stays in a view 𝑣 ≥ 𝑣𝑔 , then every transaction is

eventually committed by all honest replicas in view 𝑣 .

To complete the proof, it remains to show such a view indeed

exists. In fact, after the global standardization time, a view 𝑣 with an

honest leader 𝐿 is a view that all honest replicas permanently stay

in. Let 𝑡 be the time when the first honest replica enters this view 𝑣 .

Then, the honest leader 𝐿 collects a quorum of ⟨status, lock, 𝑣 − 1⟩∗,
broadcasts a valid ⟨new-view, C𝑣′ (𝐵𝑘′),S𝑣, 𝑣 + 1⟩𝐿 , and receives a

certificate C𝑣 (𝐵𝑘′), and thus proposes a first block in the view 𝑣

containing all transactions that have not committed yet by 𝑡 +𝑂 (Δ).
After that 𝐿 proposes a new block every 2Δ time (or less) upon

collecting a certificate for the previous proposal. Each proposed

block will collect a quorum of 𝑛 −𝛾𝑠 vote and commit within𝑂 (Δ)
time. Therefore, every honest replica commits every transaction 𝑡𝑥

by max{𝑇𝑣,𝑇𝑡𝑥 } +𝑂 (Δ), and thus stays in view 𝑣 . □

Remark on censorship resistance. Our protocol uses the stan-
dard and widely used stable leader approach of PBFT [14] where a

leader is replaced only if it is believed to be faulty. Thus, the pro-

tocol sets a timeout for each transaction to prevent a faulty leader

from censoring specific transactions. But this approach assumes an

honest leader is able to propose all transactions in time. In practice,

an adversary may create a large number of dummy transactions to

saturate the system and that would create an issue for the stable

leader approach. An alternative is to revolve the leader after every

block proposal such as in HotStuff [47]. The revolving leader ap-

proach offers simpler censorship resistance but is less efficient as a

leader cannot proposal multiple blocks in a non-blocking fashion.

4.5 Efficiency
The latency of our protocol is 2Δ+3𝛿 . It almost matches the latency

of Sync HotStuff (2Δ+ 2𝛿). The number of messages sent to commit

a block is 𝑛+3𝑛2, which also close to that of PBFT (𝑛+2𝑛2) and Sync
HotStuff (𝑛+𝑛2). The amount of bits sent to commit a block is𝑂 (𝑛3)
as some message contains a linear number of signatures, which

matches that of Sync HotStuff but is more expensive than PBFT’s

𝑂 (𝑛2) bit complexity. It can be reduced to 𝑂 (𝑛2) using threshold

signatures. Our protocol commits blocks every 2𝛿 as a leader can

propose a subsequent block upon collecting a quorum of votes

for the previous proposal, which also matches that of PBFT and

Sync HotStuff. Therefore, we expect our protocol to have similar

performance as PBFT and Sync HotStuff.

4.6 Parameter Choices
Our protocol allows flexible parameter choices within the trade-offs

between safety and liveness as well as synchronous and partially

synchronous security. There are several characteristic parameter

choices with suited applications.

Strengthen the classic partially synchronous setting.Apromi-

nent parameter choice is 𝛽𝑎 = 𝛾𝑎 = 𝛾𝑠 < 𝑛/3 and 𝛽𝑠 < 2𝑛/3, where
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the protocol has the same thresholds as classic partially synchro-

nous protocols in terms of safety/liveness under partial synchrony

and liveness under synchrony while tolerating a supermajority of

faults for safety under synchrony. Permissioned blockchains [5, 6,

16] and some proof-of-stake cryptocurrencies [12, 24] using par-

tially synchronous BFT protocols can strengthen their security with

our protocol.

Strong safety for safety-critical systems.One can opt for stronger
safety at the cost of liveness. For example, with a liveness threshold

of 𝛾𝑠 = 𝛾𝑎 < 𝑛/4, our protocol tolerates 𝛽𝑎 < 𝑛/2 and 𝛽𝑠 < 3𝑛/4.
Such a parameter choice can be useful in safety-critical applications

such as payment systems with high-value transactions [32].

Highly available BFT tolerating partial synchrony. Another
interesting parameter choice is to favor high availability under

synchrony while tolerating a small fraction of faults under partial-

synchrony. For example, with 𝛾𝑠 < 9𝑛/20 and 𝛽𝑠 < 11𝑛/20 for

synchrony, our protocol tolerates 𝛽𝑎 = 𝛾𝑎 < 𝑛/10 under partial-

synchrony. Such a parameter choice can be used in an environment

where network failures occur occasionally [11, 19, 29].

5 A FRAMEWORK TO UPGRADE TO
OPTIMAL SYNCHRONOUS SAFETY

This section presents a framework to convert any MT-BFT SMR pro-

tocol parameterized by (𝛽 ′𝑎, 𝛾 ′𝑎, 𝛽 ′𝑠 , 𝛾 ′𝑠 ) into a MT-BFT SMR protocol

with a synchronous safety of 𝛽𝑠 = 𝑛 − 𝛾 ′𝑠 − 1 while preserving the

other thresholds 𝛽𝑎 = 𝛽 ′𝑎 , 𝛾𝑎 = 𝛾 ′𝑎 , and 𝛾𝑠 = 𝛾 ′𝑠 . Namely, the frame-

work upgrades a base protocol to enjoy optimal synchronous safety

(due to Theorem 4.1) without compromising other fault thresholds.

Concretely, existing partially synchronous protocols, e.g., PBFT [14],

HotStuff [47], and asychronous protocols, e.g., HoneyBadgerBFT [38],

BEAT [21], Dumbo [26], can be viewed as MT-BFT SMR protocols

with 𝛽𝑎 = 𝛾𝑎 = 𝛽𝑠 = 𝛾𝑠 < 𝑛/3. The framework in this section

upgrades these protocols to enjoy synchronous safety of 𝛽𝑠 < 2𝑛/3
while preserving the other thresholds of 𝛽𝑎 = 𝛾𝑎 = 𝛾𝑠 < 𝑛/3.

5.1 Protocol Description

Intuitive overview. Our key idea is to compose the given base

SMR protocol with a multi-threshold broadcast protocol, such as

the multi-threshold RBC protocol in Section 3.2. The output of the

SMR protocol is like a virtual sender of the RBC: if a party commits

a block in SMR, it treats this block as the proposal it receives from

the sender in the subsequent RBC. A block is committed in the

converted protocol only if it is committed both in the base protocol

and in the RBC protocol.

It is then easy to see that the converted protocol is live if both

the base protocol and the RBC protocol are live, and they commit

the same block. More interestingly, the converted protocol is safe if

either the base protocol or the RBC protocol is safe. From another

angle, in order to break safety in the converted protocol, the adver-

sary needs to break the safety of both the base protocol and the

RBC protocol. This is the key observation that leads to the upgraded

synchronous safety tolerance. Even when the base protocol violates

safety under synchrony, in the presence of 𝑛−𝛾 ′𝑠 −1 > 𝛽 ′𝑠 faults, the
RBC protocol, with its higher synchronous safety tolerance, guards

the safety of the converted protocol.

The other cases are more straightforward. With 𝛾𝑠 ′ faults under
synchrony or 𝛾𝑎′ faults under asynchrony, both the base protocol

and the RBC protocol are safe and live. This also means the base

protocol functions as an honest virtual sender for the RBC. In this

case, by the integrity and validity properties, the RBC protocol

commits the same block as the base protocol. Thus, the converted

protocol achieves both safety and liveness. With 𝛽𝑠 ′ faults under
synchrony or 𝛽𝑎′ faults under asynchrony, both the base protocol

and the RBC protocol are safe (but not necessarily live). The con-

verted protocol is also safe. We remind the readers that we only

consider the case with 𝛾𝑠 ′ ≤ 𝛽𝑠 ′ and 𝛾𝑎′ ≤ 𝛽𝑎′ in this paper. That

means a multi-threshold protocol may enjoy safety without live-

ness; but we do not consider the case in which a protocol enjoys

liveness without safety.

Actual framework with consistent broadcast. An acute reader

may have noticed that we did not use RBC’s totality property in the

above argument. Indeed, totality is not needed and RBC is a slight

overkill. We used RBC in this intuitive overview for convenience

since we have already introduced RBC. In the actual framework,

we use a multi-threshold consistent broadcast, which is a weaker

primitive than RBC as it does not require totality.

The framework is given in Figure 4. Let Π𝑏𝑎𝑠𝑒 be the underlying

base protocol parameterized by (𝛽 ′𝑎, 𝛾 ′𝑎, 𝛽 ′𝑠 , 𝛾 ′𝑠 ). Similar to the RBC

protocol in Section 3.2, we use a quorum-based design with a quo-

rum size of 𝑛−𝛾 ′𝑠 > 𝛾 ′𝑠 +𝛽 ′𝑎 for consistent broadcast. Such a quorum

contains at least one honest replica in the presence of 𝛾 ′𝑠 faults

or 𝛽 ′𝑎 faults. Thus, when the sender is honest, no certificate can

be formed for any value other than the sender’s input. Therefore,

validity and integrity hold. Consistency under synchrony is easily

achieved by a similar synchronous equivocation check mechanism.

As in Section 4, a quorum of ⟨commit, 𝐵𝑘 ⟩∗ messages serves as

proof for the log up to block 𝐵𝑘 .

5.2 Correctness of the Framework
We prove the correctness of the our framework. Let Π𝑏𝑎𝑠𝑒 be the

given base protocol with threshold parameters of (𝛽 ′𝑎, 𝛾 ′𝑎, 𝛽 ′𝑠 , 𝛾 ′𝑠 ).
We prove that the converted protocol achieves the optimal 𝛽𝑠 =

𝑛 − 𝛾 ′𝑠 − 1 while tolerating the same 𝛽𝑎 = 𝛽 ′𝑎 , 𝛾𝑎 = 𝛾 ′𝑎 , and 𝛾𝑠 = 𝛾 ′𝑠 .
Note that the base protocol assumes either an asynchronous or a

partially synchronous network. We will use the asynchronous case

for convenience. The proof below directly applies to the partially

synchronous case.

Lemma 5.1 (Safety). If the network is asynchronous and there are
at most 𝛽 ′𝑎 faults, then safety holds.

Proof. In order for the converted protocol to commit two con-

flicting blocks, they first need to be committed by the base protocol

Π𝑏𝑎𝑠𝑒 , which will not happen under the said condition. □

Lemma 5.2 (Safety). If the network is synchronous and there are
at most 𝑛 − 𝛾 ′𝑠 − 1 faults, then safety holds.

Proof. Suppose for the sake of contradiction that these two

distinct blocks 𝐵𝑘 and 𝐵′
𝑘
are committed at the same height by the

converted protocol. There must be a quorum of𝑛−𝛾 ′𝑠 ⟨commit, 𝐵𝑘 ⟩∗
messages and one of them must be from an honest replica. For

the same reason, there must be a ⟨commit, 𝐵′
𝑘
⟩∗ message from an

10



Let Π𝑏𝑎𝑠𝑒 be the given base protocol parameterized by (𝛽 ′𝑎, 𝛾 ′𝑎, 𝛽 ′𝑠 , 𝛾 ′𝑠 ). A replica 𝑟 runs the following steps in addition to running the base

protocol Π𝑏𝑎𝑠𝑒 . A quorum is |C| = 𝑛 − 𝛾 ′𝑠 .

(1) Vote. Upon committing a block 𝐵𝑘 at height 𝑘 in Π𝑏𝑎𝑠𝑒 , broadcast ⟨vote, 𝐵𝑘 ⟩𝑟 .
(2) Pre-commit. Upon receiving a quorum of ⟨vote, 𝐵𝑘 ⟩𝑟 denoted C(𝐵𝑘 ), broadcast it and wait for Δ. Then, broadcast ⟨commit, 𝐵𝑘 ⟩𝑟 .
(3) Commit. Upon receiving a quorum of ⟨commit, 𝐵𝑘 ⟩∗ and Π𝑏𝑎𝑠𝑒 has committed 𝐵𝑘 , then commit 𝐵𝑘 .

Upon receiving C(𝐵𝑘 ) and C(𝐵′
𝑘
) for conflicting blocks 𝐵𝑘 and 𝐵′

𝑘
, stop all operations above for height 𝑘 immediately.

Figure 4: A framework to convert a MT-BFT SMR protocol with 𝛾 ′𝑠 synchronous liveness into a MT-BFT SMR protoocl with
optimal synchronous safety 𝛽𝑠 = 𝑛 − 𝛾 ′𝑠 − 1.

honest replica. Let 𝑡 be the time when the first honest replica 𝑟 sent

⟨commit, 𝐵𝑘 ⟩𝑟 , and 𝑡 ′ be the time when the first honest replica 𝑟 ′

sent ⟨commit, 𝐵′
𝑘
⟩𝑟 ′ . Without loss of generality, we assume 𝑡 ≤ 𝑡 ′.

Then, 𝑟 must have received and broadcast a certificate C(𝐵𝑘 ) at
𝑡−Δ. It will be received by 𝑟 ′ by time 𝑡 ≤ 𝑡 ′. It would have prevented
𝑟 ′ from sending ⟨commit, 𝐵′

𝑘
⟩𝑟 ′ at 𝑡 ′, a contradiction. □

Lemma 5.3 (Liveness). If the network is asynchronous and there
are at most 𝛾 ′𝑎 , then liveness holds.

Proof. Due to the liveness of Π𝑏𝑎𝑠𝑒 in the presence of 𝛾 ′𝑎 faults,

all honest replicas keep committing new blocks in Π𝑏𝑎𝑠𝑒 . Let 𝐵𝑘 be

a new block committed in Π𝑏𝑎𝑠𝑒 . Then, all honest replicas broadcast

⟨vote, 𝐵𝑘 ⟩, and a certificate C(𝐵𝑘 ) is created. Due to the safety of

Π𝑏𝑎𝑠𝑒 in the presence of𝛾
′
𝑎 ≤ 𝛽 ′𝑎 faults, no honest replica votes for a

conflicting block 𝐵′
𝑘
, and thus a certificate C(𝐵′

𝑘
) cannot be formed.

Therefore, all honest replicas broadcast ⟨commit, 𝐵𝑘 ⟩ and receive a

quorum of ⟨commit, 𝐵𝑘 ⟩∗. Thus, all honest replicas commit 𝐵𝑘 . □

The proof of liveness of the protocol under synchrony is similar.

5.3 Discussions

Overheads added by the framework. In terms of latency, the

framework adds two extra rounds plus a Δ waiting time. In terms

of communication complexity, the framework introduces 3𝑛2 addi-

tional messages; some messages are linear-sized certificates, which

can again be reduced to a constant size using threshold signatures.

Responsiveness. As seen above, our framework (and the protocol

in Sections 3 and 4) is non-responsive, i.e., the latency depends on

a pre-defined estimated bound Δ. We next show that the lack of

responsiveness is inherent if we want higher synchronous safety.

It is well known that any BFT protocol that is safe with 𝑡 faults

cannot commit responsively, i.e., faster than the delay bound Δ, in
the presence of

𝑛−𝑡
2

faults, even if designated sender or the leader

is honest [42, 43]. This bound can be easily generalized to MT-BFT:

no MT-BFT protocol can commit responsively in the presence of

𝑛−𝛽𝑠
2

faults. We prove the bound using RBC as an example.

Theorem 5.4. There does not exists a MT-BFT RBC protocol that
is safe under 𝛽𝑠 Byzantine faults under synchrony, and responsive in
the presence of 𝑛−𝛽𝑠

2
Byzantine faults.

Proof. Suppose for the sake of contradiction that there exists

an MT-BFT RBC protocol that is responsive in the presence of
𝑛−𝛽𝑠
2

Byzantine faults. We consider a network with three partitions 𝑃 ,

𝑄 and 𝑅, with sizes |𝑃 | = |𝑅 | = 𝑛−𝛽𝑠
2

and |𝑄 | = 𝛽𝑠 . The designated

sender 𝑟𝑠 is in 𝑄 . Consider the three executions below.

In the first execution (W1), all messages are instantly delivered

and all replicas in 𝑃 crash. The sender 𝑟𝑠 has an input value 𝑏1.

Since the protocol is responsive in the presence of
𝑛−𝛽𝑠
2

Byzantine

faults, all replicas in 𝑅 commit 𝑏1 within Δ time.

The second execution (W2) is symmetric to the first one. All

messages are instantly delivered and all replicas in 𝑅 crash. The

sender 𝑟𝑠 has an input value𝑏2 ≠ 𝑏1. Since the protocol is responsive

in the presence of
𝑛−𝛽𝑠
2

Byzantine faults, all replicas in 𝑃 commit

𝑏2 within Δ time.

In the third execution (W3), all replicas in 𝑄 are Byzantine. 𝑄

behave towards𝑅 and 𝑃 as inW1 andW2, respectively. All messages

between 𝑃 and 𝑅 are delivered with delay Δ, but all other messages

are instantly delivered. Then, replicas in𝑅 receive nomessages from

𝑃 by time Δ and cannot distinguish W1 and W3 by time Δ. Thus,
they commit 𝑏1 before Δ as in W1. Similarly, replicas in 𝑃 cannot

distinguish W2 and W3 before Δ, and they commit 𝑏2 ≠ 𝑏1 before

Δ as in W2. This violates the supposition that the protocol achieves

consistency in the presence of |𝑄 | = 𝛽𝑠 Byzantine faults. □

Existing partially synchronous protocols such as PBFT, when

viewed as MT-BFT, tolerate 𝛽𝑎 = 𝛽𝑠 < 𝑛/3 faults; thus, they always

satisfy the above condition and, if the leader is honest, can commit

responsively. However, as we achieve 𝛽𝑠 ≥ 𝑛/3 > 𝛽𝑎 , it is inevitable

that the protocol (while live) cannot be responsive in the presence

of 𝑛/3 faults. Nonetheless, our protocols can still be made optimisti-
cally responsive [43], i.e., responsive when the number of actual

faults is less than
𝑛−𝛽𝑠
2

, using techniques in the literature [39, 46].

Higher safety after GST. However, our upgrading framework

actually provides a stronger guarantee than the MT-BFT psync-

sync model defined in Section 2.2. In our definition in Section 2.2,

if the network is partially synchronous, a protocol does not need to

provide higher safety tolerance even after GST. In otherwords, aMT-

BFT protocol only needs to provide higher safety of 𝛽𝑠 only if the

network is synchronous at all time. In comparison, the upgrading

framework in this section provides safety in the presence of 𝛽𝑠 faults

after GST in a partially synchronous network. Let us briefly prove

this. Let 𝑡1 be the first time after GST 𝑇𝑔 that an honest replicas

commits a block 𝐵𝑘 of height 𝑘 . Then all honest replicas receive

C(𝐵𝑘 ) by 𝑡1. Therefore, no honest replicas commit any other block

𝐵′
𝑘
of height 𝑘 after that.
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6 RELATEDWORKS
Byzantine fault-tolerance is a forty-year-old research field in dis-

tributed computing and cryptography. Starting from the celebrated

work of Lemport et al. [34, 44], it has been studied mostly in a

single timing model with one fault threshold. The synchronous

model has been mainly the target of theoretical research, assuming

perfectly synchronized rounds across all parties [1, 20, 23, 30]. Only

recently, following the introduction of Bitcoin, a.k.a., Nakamoto

Consensus [40], which is perhaps the first practical synchronous

protocol, a couple of works have presented synchronous BFT proto-

cols under the non-lockstep model towards practical use [2, 4, 46].

Yet, it seems there remains strong reluctance in the community

to rely on synchrony due to concerns for more severe network

failures. Classic studies of practical BFT have mainly focused on

the partially synchronous protocols favoring their ease of design

and asynchronous safety. Numerous works studied improvements

over PBFT [25, 31, 47]. Other works assume the fully asynchronous

model [3, 21, 26, 36, 38]. However, these protocols tolerate only

𝑓 < 𝑛/3 faults even when the network is under synchrony. Our pri-

mary motivation is to resolve this long-standing dilemma between

the timing assumption and fault tolerance.

Weakly synchronous model. Some recent works have consid-

ered an intermediate model between the synchronous and asyn-

chronous models. Guo et al. [27] introduced the weakly synchronous
model, where a majority of the participants are honest and syn-

chronous, but the remaining minority may be Byzantine or suffer

from a network failure. They presented a Byzantine agreement

protocol in this setting and some other works applying it to BFT

SMR protocols [2, 4, 15]. However, these works still break down if

a majority of the participants experience asynchrony. In contrast,

our protocols are safe against one-third faults even under complete

asynchrony.

Multiple fault thresholds. There have been previous works that

consider different thresholds for different correctness properties in

a single timing model. UpRight [18] is a BFT SMR protocol allowing

different thresholds for safety and liveness in the partially synchro-

nous model. Another recent work [28] studies reliable broadcast

and Byzantine agreement with different fault thresholds for dif-

ferent correctness properties and captures optimal trade-offs be-

tween them in the asynchronousmodel. In comparison, ourMT-BFT

framework captures trade-offs not only between different correct-

ness properties but also between different timing models, notably as

we improve synchronous safety without compromising properties

in asynchrony or partial synchrony.

Dual timing model. The beautiful recent work of Blum et al. [7–

9] is the closest to our work and is the inspiration to our work.

They considered the async-sync dual timing model. They provided

a first and partial answer the above question. However, it does

not completely resolve the above dilemma as it cannot match the

fault tolerance of classic single-model protocols. For example, with

𝛽𝑎 = 𝛾𝑎 < 𝑛/3, their protocol tolerates only 𝛽𝑠 = 𝛾𝑠 < 𝑛/3, which
is the same as classic asynchronous and partially synchronous

protocols, while our protocol tolerates 𝛽𝑠 < 2𝑛/3. Moreover, from

a practical perspective, the construction of their protocol seems

more complicated and works in lockstep rounds. In contrast, our

protocol is simpler and closer to deployed practical protocols.

The XFT protocol [35] also considers the psync-sync dual timing

model. It extends Paxos [33], a popular crash fault-tolerant (CFT)

replication protocol, to tolerate 𝑓 < 𝑛/2 Byzantine faults under

synchrony. However, under partial-synchrony, the protocol does

not tolerate Byzantine faults.

Flexible BFT. Flexible BFT [37] (FBFT) is a recent work that sup-

ports two different timing models and also separates thresholds for

safety and liveness. FBFT also combines some techniques from the

partially synchronous PBFT and the synchronous Sync HotStuff,

like our protocol in Section 4. But the key difference is that FBFT

does not fully combine the two protocols. Instead, it leaves the two

different commit rules untouched, and leaves the responsibility to

each client to choose between the two commit rules according to

its own belief about the network. This is a fundamental difference

in the design goal as FBFT’s goal is to support clients with diverse

beliefs about the network. If a client in FBFT makes an incorrect

assumption about the network, e.g., choose the synchronous com-

mit rule when the network is asynchronous, the protocol does not

provide any guarantees to that client.

In contrast, our protocol in Section 4 combines the two protocols

including their commit rules from different timing models into a

single protocol with a single commit rule. And we maintain the

standard model where clients do not choose their own models or

commit rules. Our protocol provides all clients with safety and live-

ness guarantees under both timing models (though with different

fault thresholds).

Ebb-and-flow. Another recent work called Ebb-and-flow [41] also

takes FBFT’s approach of having two commit rules for two different

models and leaving the responsibility to the clients to choose be-

tween them (though its primary motivation is to support dynamic

availability). Interestingly, if we constrain all clients in Ebb-and-

flow to choose the partially synchronous commit rule, then their

protocol can be regarded as an MT-BFT protocol with 𝛽𝑠 < 𝑛/2
and 𝛽𝑎 = 𝛾𝑎 = 𝛾𝑠 < 𝑛/3, which has a higher but not optimal

synchronous safety threshold.

7 CONCLUSION AND FUTUREWORK
We introduce multi-threshold BFT, a generalized version of the BFT

problem, which defines fault thresholds separately for safety and

liveness under synchrony and asynchrony (or partial-synchrony),

respectively. Our optimal protocols have strictly stronger fault

tolerance than classic BFT protocols. We also present a general

framework to upgrade existing protocols to achieve optimal syn-

chronous safety with minimum overhead. Our customized protocol

in Section 4 that allows generic (i.e., other than 𝛽𝑎 = 𝛾𝑎 = ⌊𝑛−1
3
⌋)

parameter choices works only in the psync-sync model. Therefore,

the tightness of the fault bounds for MT-BFT SMR in the async-sync

model is still open and interesting future work.
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