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Abstract. The main approaches currently used to construct identity
based encryption (IBE) schemes are based on bilinear mappings, quadratic
residues and lattices. Among them, the most attractive approach is the
one based on quadratic residues, due to the fact that the underlying
security assumption is a well understood hard problem. The first such
IBE scheme was constructed by Cocks and some of its deficiencies were
addressed in subsequent works. In this paper, we will focus on two con-
structions that address the anonymity problem inherent in Cocks’ scheme
and we will tackle some of their incomplete theoretical claims. More pre-
cisely, we rigorously study Clear et. al and Zhao et. al ’s schemes and give
accurate probabilities of successful decryption and identity detection in
the non-anonymized version of the schemes. Also, in the case of Zhao
et. al ’s scheme, we give a proper description of the underlying security
assumptions.
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1 Introduction

From a desire to avoiding several issues4 inherent to public-key cryptography,
Shamir came up in 1984 with an interesting and novel concept: identity based
encryption [12]. In the IBE model, a user’s public key is simply derived from
some of the user’s personal data such as his e-mail address, his phone number
or even his personal address.

Unfortunately, the construction of a practical IBE scheme was postponed
until 2001, when two such schemes where proposed. The first one was proposed
by Boneh and Franklin [4] and is based on bilinear maps. Shortly, using a different
approach, Cocks proposed a scheme based on quadratic residues [8]. Despite the

4 e.g management of trust, public key recovery



simplicity of his idea, a disadvantage of the scheme is that it has a large ciphertext
per plaintext ratio. More precisely, to encrypt one bit we have to transmit two
large integers.

As pointed out in [4], Cocks’ proposal does not provide anonymity in the sense
of Bellare et al. [2]. Concretely, Galbraith devised a test that can distinguish
which identity was used to create a given Cocks-like ciphertext. The test has
been thoroughly analyzed in [1, 13]. Despite this impediment, several schemes
that achieve anonymity have been proposed in the literature [1, 5, 7, 9, 11,15].

In terms of ciphertext expansion, the most efficient anonymous proposal is
the one described by Boneh, Gentry and Hamburg [5]. However, encryption
time is quartic in the security parameters, and thus makes the scheme very
inefficient. Two years later, Ateniese and Gasti [1] propose a practical scheme
that achieves anonymity. Moreover, the scheme is universally anonymous (i.e.
the anonymization process is independent of encryption and requires only access
to the user’s id). The scheme is further improved by Schipor [11]. By using a
trial and error method, he manages to shrink the size of Ateniese and Gasti-type
ciphertexts.

A xor-homomorphic variant, that is also universally anonymous, was pro-
posed by Clear et al. [6, 7]. By switching to polynomials, they where able to
show that scheme has an underlying algebraic structure. This structure was later
studied and simplified by Joye [9]. As a consequence, he managed to improve
both the speed and ciphertext expansion of Clear et al.’s IBE scheme. Using
an earlier study [13], Nica and Ţiplea [10] reassess Joye’s proposal and provide
a simpler description of the scheme. By taking a different approach, Zhao et
al. [15] manage to further speed-up encryption. Unfortunately, they have twice
the ciphertext expansion compared to Joye’s scheme.

In this paper we reevaluate some of the claims made by Clear et al. [6,7] and
Zhao et al. [15] regarding their proposals. More precisely, we rigorously formulate
and prove some of the claims made by these authors. Thus, providing the reader
with a better understanding of the intrinsic algebraic structures in both schemes.

Structure of the paper. We introduce notations and definitions used throughout
the paper in Section 2. The extension of Galbraith’s test to polynomial rings
is rigorously studied in Section 3. In Sections 4 and 5 we apply our results to
obtain precise characterizations of Clear et al. and Zhao et al. IBE schemes. We
conclude with Section 6.

2 Preliminaries

Notations. Throughout the paper, λ denotes a security parameter. Also, the
notation |S| denotes the cardinality of a set S. The action of selecting a random

element x from a sample space X is denoted by x
$←− X, while x← y represents

the assignment of value y to variable x. The probability of the event E to happen
is denoted by Pr[E]. The quotient of the integer division of a by n, assuming
n 6= 0, is denoted a div n.



The Jacobi symbol of an integer a modulo an integer n is represented by
Jn(a). We let QRn and QNRn be the set of quadratic and, respectively, non-
quadratic residues modulo n. Also, Jn denotes the sets of integers modulo n with
Jacobi symbol 1.

2.1 Identity-based encryption

An IBE scheme consists of four probabilistic polynomial-time (PPT) algorithms:
Setup, KeyGen, Enc and Dec. The first one takes as input a security parameter
and outputs the system’s public parameters together with a master key. The
KeyGen algorithm takes as input an identity id together with the public param-
eters and the master key and outputs a private key associated to id. The Enc
algorithm, starting with a message m, an identity id, and the public parameters,
encrypts m into some ciphertext c (the encryption key is id or some binary string
derived from id). The last algorithm decrypts c into m by using the private key
associated to id.

Definition 1 (Anonymity and Indistinguishability under Selective Iden-
tity and Chosen Plaintext Attacks - anon-ind-id-cpa). The anon-ind-
id-cpa security of an IBE scheme S is formulated by means of the following
game between a challenger C and an adversary A:

Setup(λ): The challenger C generates the public parameters pp and sends them
to adversary A, while keeping the master key msk to himself.

Queries: The adversary issues a finite number of adaptive queries. A query can
be one of the following types:

– Private key query. When A requests a query for an identity, the chal-
lenger runs the KeyGen algorithm and returns the resulting private key
to A.

– Encryption query. Adversary A can issue only one query of this type. He
sends C two pairs (id0,m0) and (id1,m1) consisting of two equal length
plaintexts m0 and m1 and two identities id0 and id1. The challenger flips
a coin b ∈ {0, 1} and encrypts mb using idb. The resulting ciphertext c
is sent to the adversary. The following restrictions are in place: private
key queries for id0 and id1 must never be issued.

Guess: In this phase, the adversary outputs a guess b′ ∈ {0, 1}. He wins the
game, if b′ = b.

The advantage of an adversary A attacking an IBE scheme is defined as

IBEAdvA,S(λ) = |Pr[b = b′]− 1/2|

where the probability is computed over the random bits used by C and A. An IBE
scheme is anon-ind-id-cpa secure, if for any PPT adversary A the advantage
IBEAdvA,S(λ) is negligible. If we consider id0 = id1 in the above game, we
obtain the concept of ind-id-cpa security.



We further state the security assumption used to prove the security of the
IBE schemes mentioned in this paper.

Definition 2 (Quadratic Residuosity - qr). Choose two large prime num-
bers p, q ≥ 2λ and compute n = pq. Let A be a PPT algorithm that returns 1 on
input (x, n) if x ∈ QRn. We define

ADV qr
A (λ) =

∣∣∣Pr[A(x, n) = 1|x $←− QRn]− Pr[A(x, n) = 1|x $←− Jn \QRn]
∣∣∣ .

The Quadratic Residuosity assumption states that for any PPT algorithm A
the advantage ADV qr

A (λ) is negligible.

3 Generalized Galbraith’s Test

According to [1,3], Galbraith developed a test which shows that Cocks’ scheme [8]
is not anonymous. A straightforward generalization of Galbraith’s test to the ring
Zn[x]/(x2−R) was introduced in [6,7]. More precisely, we define the generalized
Galbraith test as

GTn(R, f0x+ f1) = Jn(f21 − f20R),

where R ∈ Jn and f0x+ f1 ∈ Zn[x]/(x2 −R).
The authors of [6,7] briefly describe some aspects of the generalized version of

the test, but some of their claims were not rigorously formulated and/or proved.
More precisely, they assume that f0, f1 ∈ Z∗n and this is not always the case5.
Remark that when f0, f1 ∈ Z∗n, the generalized Galbraith test is identical to the
original Galbraith test.

In this limited scenario, Clear et al. prove that their scheme is anonymous
by reducing their security proof to some result from [1, 13]. Although is not
explicitly mentioned in [6, 7], using the results from [1, 13] we can also compute
the success probability of Galbraith’s test when we choose to use Clear et al.’s
IBE scheme without implementing the anonymization technique.

The generalized Galbraith test is also used in [15] to show that their scheme
is not anonymous. Although the authors also assume that f0, f1 ∈ Z∗n, they do
not compute the test’s success probability for their IBE scheme and in this case
the probability cannot be derived from [1,13].

Motivated by these applications, we further study the generalized Galbraith
test without any restrictions. More precisely, our goals are to better understand
the behaviour of the test and to develop the exact success probabilities for the
test against Clear et al.’s and Zhao et al.’s non-anonymized IBE schemes.

Let p and q be two primes and n = pq be their product. In this section we
will study the cardinalities of the following sets

P `p(R) = {f0x+ f1 ∈ Zp[x]/(x2 −R) | Jp(f21 − f20R) = `}
P 0
n(R) = {f0x+ f1 ∈ Zn[x]/(x2 −R) | Jn(f21 − f20R) = 0}

P `1,`2n (R) = {f0x+ f1 ∈ Zn[x]/(x2 −R) | Jp(f21 − f20R) = `1, Jq(f
2
1 − f20R) = `2},

5 since we are working with polynomials from Zn[x]/(x2−R) and not Z∗
n[x]/(x2−R)



where ` ∈ {−1, 0, 1} and `1, `2 ∈ {−1, 1}.
Before stating our results, we first present a lemma from [13] that further

helps us compute our desired cardinalities.

Lemma 1 ( [13]). Let p > 2 be a prime, k = p div 4, and R ∈ Z∗p. Then,

|QRp(a+QRp)| =

{
k − 1, if p = 4k + 1 and R ∈ QRp
k, if p = 4k + 1 and R ∈ QNRp, or p = 4k + 3.

Now let us compute the cardinality of P `p .

Lemma 2. The following statements are true

1. If R ∈ QNRp then |P 0
p (R)| = 1, else |P 0

p (R)| = 2p− 1.
2. If R ∈ QNRp then |P 1

p (R)| = (p2 − 1)/2, else |P 1
p (R)| = (p− 1)2/2.

3. If R ∈ QNRp then |P−1p (R)| = (p2 − 1)/2, else |P−1p (R)| = (p− 1)2/2.

Proof. To prove the first statement, we simply have to count the elements that
satisfy f21 ≡ f20R mod p. If R ∈ QNRp, our single option is f0 = f1 = 0.
Otherwise, for each non-zero value of f20 we have two distinct f1 values. Hence,
we obtain 2(p− 1) possibilities.

Now we will prove the second statement. When f0, f1 6≡ 0 mod p, we can
rewrite f21 − f20R as c2−R, where c ≡ f−10 f1 mod p. Using Lemma 1, we obtain
that the number of possibilities is{

k − 1, if p = 4k + 1 and R ∈ QRp
k, if p = 4k + 1 and R ∈ QNRp, or p = 4k + 3.

When f0 ≡ 0 mod p, we obtain that Jp(f
2
1 ) = 1 and this is true only if

f1 6≡ 0 mod p. Hence, we obtain p− 1 possibilities.
In the case f1 ≡ 0 mod p, we obtain that Jp(−f20R) = 1, and thus f0 6≡

0 mod p. When −R ∈ QRp, we obtain p− 1 possibilities and when −R ∈ QNRp
we have none.

Adding all the possibilities we obtain
(p− 1)[(p− 5)/2 + 2] = (p− 1)2/2 if p = 4k + 1 and R ∈ QRp
(p− 1)[(p− 1)/2 + 1] = (p2 − 1)/2 if p = 4k + 1 and R ∈ QNRp
(p− 1)[(p− 3)/2 + 1] = (p− 1)2/2 if p = 4k + 3 and R ∈ QRp
(p− 1)[(p− 3)/2 + 2] = (p2 − 1)/2 if p = 4k + 3 and R ∈ QNRp

The last statement is obtained by subtracting the cardinalities of P 0
p (R) and

P 1
p (R) from |Z[x]/(x2 −R)|. ut

Using the Chinese remainder theorem, we obtain the following cardinalities.

Corollary 1. The following statements are true



1. If R ∈ Jn \ QRn then |P 0
n(R)| = p2 + q2 − 1, else |P 0

n(R)| = (2p − 1)q2 +
(2q − 1)(p− 1)2.

2. If R ∈ Jn \ QRn then |P `1,`2n (R)| = (p2 − 1)(q2 − 1)/4, else |P `1,`2n (R)| =
(p− 1)2(q − 1)2/4.

Let h(x) be a polynomial such that GTn(R, h(x)) = −1 and A ⊆ Zn[x]/(x2−
R) a set of polynomials. We further define the set

Tn(R, h(x), A) = {h(x) · f(x) | f(x) ∈ A}.

Lemma 3. The following identity holds |Tp(R, h(x), A)| = |A|.

Proof. IfR ∈ QNRp then the polynomial x2−R is irreducible. Hence, Zp[x]/(x2−
R) is a field. Therefore, h(x) only permutes the set A.

When R ∈ QRp we distinguish two case. When h(x)−1 exists, then we again
have a permutation of the set. Otherwise, h(x) has the form h(x) = t(x± r), for
a t ∈ Z∗p. But in this case we obtain that (tr)2 − t2R = 0 and this contradicts
our assumption (i.e GTn(R, h(x)) = −1). Hence, h(x)−1 always exists. ut

Corollary 2. The following identity holds |Tn(R, h(x), A)| = |A|.

We further present a lemma that states that the generalized Galbraith test is
“multiplicative”. This lemma stays at the base of the anonymization technique
described in [6, 7].

Lemma 4 ( [6, 7]). Let e(x) ≡ f(x) · g(x) mod x2 −R. Then GTn(R, e(x)) =
GTn(R, f(x)) ·GTn(R, g(x)).

4 Clear et al. IBE scheme

4.1 Scheme Description

Clear et al. [6] were the first to study the algebraic structure of Cocks’ ci-
phertexts. A more in depth study of the underlying structure can be found
in [9,10,13]. As a result of Clear et al.’s study, the authors managed to describe
a partially homomorphic IBE scheme [6] and later they improve the scheme such
that is also anonymous [7].

We further present a slightly improved version of Clear et al.’s IBE scheme.
We start by presenting the non-anonymized version.

Setup(λ): Given a security parameter λ, generate two primes p, q > 2λ and
compute their product n = pq. The public parameters are pp = {n, u,H,H ′}
and the master secret key is msk = {p, q}, where u ∈ Zn such that Jp(u) =
Jq(u) = −1, H : {0, 1}∗ → Jn and H ′ : {0, 1}∗ → Zn(x)/(x2 − R) are two
cryptographic hash functions. Note that H ′ must also satisfy the property
that for any identity id ∈ {0, 1}∗, R ← H(id) and h(x) ← H ′(id), it holds
that

GTn(R, h(x)) = GTn(uR, h(x)) = −1.



KeyGen(pp,msk, id): Let R = H(id). If R ∈ QRn, then compute r ≡ R1/2 mod
n. Otherwise, computes r ≡ (uR)1/2 mod n. The private key is r.

Enc(pp, id,m): On inputting pp, an identity id and a message m ∈ {−1, 1},
compute the hash value R = H(id) and randomly choose two polynomials
f(x), f(x) of degree 1 from Zn[x] such that Jn(f1) = Jn(f1) = m, where
f1 = f(0) and f1 = f(0). Also, calculate

g(x) ≡ f−11 · f(x)2 mod (x2 −R) and g(x) ≡ (f1)−1 · f(x)2 mod (x2 − uR).

Return the ciphertext C = (g(x), g(x)).

Dec(r, C): On input pp, a secret key r and a ciphertext C = (c(x), c(x)), com-
pute

m′ =

{
Jn(c(r)) if r2 ≡ H(id) mod n;

Jn(c(r)) otherwise.

Correctness : The correctness of the decryption algorithm follows by noticing
that when r2 ≡ H(id) mod n we have

m′ = Jn(c(r)) = Jn(f−11 · f(r)2) = Jn(f−11 ) = m.

When r2 ≡ uH(id) mod n, we can proceed similarly.

Using the generalized Galbraith test, it can be shown that the scheme is not
anonymous (see Section 4.2). Hence, we need to upgrade the scheme with an
anonymization algorithm. We further describe the method as presented in [6,7].
Note that the Anon algorithm anonymizes the ciphertext, while the DeAnon
reverses the process.

Anon(pp, id, C): Given the public parameters pp, an identity id and a ciphertext
C = (c(x), c(x)), compute R = H(id) and h(x) = H ′(id). Also, generate two
random bits v1, v2 ∈ {0, 1} and calculate

g(x) ≡ g(x) · h(x)v1 mod (x2 −R)

g(x) ≡ g(x) · h(x)v2 mod (x2 − uR).

Return the anonymized ciphertext C ′ = (g(x), g(x)).

DeAnon(pp, id, C) On input pp, a secret key r and a ciphertext C = (c(x), c(x)),
compute R = H(id), h(x) = H ′(id) and

g(x) ≡ g(x) · h(x)(1−w1)/2 mod (x2 −R)

g(x) ≡ g(x) · h(x)(1−w2)/2 mod (x2 − uR),

where w1 = GTn(R, c(x)) and w2 = GTn(R, c(x)). Return the non-anonymized
ciphertext C ′ = (g(x), g(x)).



Previous Analysis. Let f(x) = ax+b, where a ∈ Zn and b ∈ Z∗n. Note that Jn(b)
is our message. Then

b−1 · f(x)2 ≡ b−1 · (a2R2 + b2 + 2abx) ≡ a2b−1R2 + b+ 2ax mod x2 −R.

In the IBE scheme presented in [6], the authors select random polynomials
f(x) until GTn(R, f(x)) = 1. Also, when proving the security of their scheme,
they also impose an additional restriction, that a2b−1R2 + b ∈ Z∗n. In the up-
dated version of the scheme [7], the authors simply generate polynomials until
a2b−1R2 + b ∈ Z∗n. Using these restrictions, we can reduce the generalized ver-
sion of Galbraith’s test to the original version. But, in reality we should not be
able to distinguish the polynomials generated by the IBE scheme from random
polynomials from Z[x]/(x2 −R). For this reason, in our version we removed the
requirement a2b−1R2 + b ∈ Z∗n and as we shall see next we can prove that we
cannot distinguish these polynomials from random ones.

4.2 New Analysis

We first study the cardinality of the set

Dn(R) = {b−1(ax+ b)2 mod x2 −R | a ∈ Zn, b ∈ Z∗n},

which contains the polynomials generated by the scheme presented in Section 4.1.
Note that we further consider that R 6= 0. Otherwise, we can trivially recover b
by computing f(0).

Lemma 5. If R ∈ QNRp then |Dp(R)| = (p2 − 1)/2, otherwise |Dp(R)| =
(p− 1)(p+ 3)/2.

Proof. Rewriting b−1(ax+ b)2 = d−1(cx+ d)2 we obtain

a2dR+ b2d ≡ c2bR+ d2b mod p

2abd ≡ 2cdb mod p.

From the second equation we obtain a ≡ c mod p. Keeping this in mind, the first
equation becomes (d− b)(a2R − bd) ≡ 0 mod p. If a ≡ 0 mod p, then we obtain
that d ≡ b mod p since b, d ∈ Z∗p. Else, either d ≡ b mod p or d ≡ b−1a2R mod p.

We further consider a 6≡ 0 mod p. If R ∈ QNRp then b 6≡ b−1a2R mod p,
otherwise from b ≡ ±aR1/2 mod p we obtain b ≡ b−1a2R mod p. Therefore, if
R ∈ QNRp we obtain that |Dp(R)| = (p−1)(p−1)/2 +p−1 = (p−1)(p+ 1)/2.
Otherwise, we obtain |Dp(R)| = [(p− 3)/2 + 2](p− 1) + p− 1 = (p− 1)(p+ 3)/2.

ut

Corollary 3. If R ∈ Jn\QRn then |Dn(R)| = (p2−1)(q2−1)/4 and if R ∈ QRn
then |Dn(R)| = (p− 1)(p+ 3)(q − 1)(q + 3)/4.

Now, we consider the set of ciphertexts that can be correctly decrypted

D∗n(R) = {b−1(ax+ b)2 mod x2 −R | a ∈ Zn; b, ar + b ∈ Z∗n}.



Lemma 6. When R ∈ QRp we have |D∗p(R)| = (p2 − 1)/2.

Proof. From ar + b ≡ 0 mod p we obtain a ≡ −br−1 mod p since r, b ∈ Z∗n.
Looking at the proof of Lemma 5, we observe that in the case a ≡ 0 mod p the
sets are not affected by the added restriction since −br−1 6≡ 0 mod p. When
a 6≡ 0 mod p, the only case that is affected is b ≡ −ar mod p. Therefore, we
obtain our desired result. ut

Corollary 4. If R ∈ QRn then |D∗n(R)| = (p2 − 1)(q2 − 1)/4.

Corollary 5. The probability of correct decryption is 1−O(1/n).

Proof. From Corollaries 3 and 4 we obtain that the probability is

|D∗n(R)|
|Dn(R)|

=
(p+ 1)(q + 1)

(p+ 3)(q + 3)
' 1−O

(
1

n

)
.

ut

Now we will study ciphertexts with a given generalized Galbraith value. Thus,
we define

D`
p(R) = {f0x+ f1 ∈ Dp(R) | Jp(f21 − f20R) = `}

D0
n(R) = {f0x+ f1 ∈ Dn(R) | Jn(f21 − f20R) = 0}

D1
n(R) = {f0x+ f1 ∈ Dn(R) | Jp(f21 − f20R) = Jq(f

2
1 − f20R) = 1},

where ` ∈ {0, 1}.

Lemma 7. The following statements are true

1. If R ∈ QNRp then |D0
p(R)| = 0, else |D0

p(R)| = 2(p− 1).
2. If R ∈ QNRp then |D1

p(R)| = (p2 − 1)/2, else |D1
p(R)| = (p− 1)2/2.

Proof. Since f ∈ D0
p(R) we have (a2b−1R + b)2 − 4a2R ≡ 0 mod p. This is

equivalent with a2b−1R − b ≡ 0 mod p. If R ∈ QNRp, then D0
p(R) = ∅. Oth-

erwise, we obtain (ar − b)(ar + b) ≡ 0 mod p. Thus, we can rewrite the set as
D0
p(R) = {2ar(x± r) | a ∈ Z∗p}.

We further count the distinct elements of D0
p(R). From 2a(x ± r) ≡ 2c(x ±

r) mod x2−R we obtain a ≡ ±c mod p. From 2a(x+ r) ≡ 2c(x− r) mod x2−R
we obtain a(x + r) + c(−x + r) ≡ 0 mod x2 − R. Hence, we obtain a = c = 0
which is impossible. Thus, the cardinality of D0

p(R) is 2(p− 1).
The last statement results from observing that all the elements from Dp(R)

have the Jacobi symbol Jp(f
2
1 − f20R) either 1 or 0 when R ∈ QRp. Hence, using

Lemma 5 we obtain our result. ut

Corollary 6. The following statements are true

1. If R ∈ Jn \QRn then |D0
n(R)| = 0, else if R ∈ QRn |D0

n(R)| = (p− 1)(q −
1)(p+ q + 2).



2. If R ∈ Jn \ QRn then |D1
n(R)| = (p2 − 1)(q2 − 1)/4, else if R ∈ QRn

|D1
n(R)| = (p− 1)2(q − 1)2/4.

Now we can proper analyze the efficiency of the generalized Galbraith test.

Corollary 7. The probability that a ciphertexts f(x) produced by the scheme
from Section 4.1 has GTn(R, f(x)) = 1 is 1−O(1/n).

Proof. According to Corollaries 4 and 6 we have

|D1
n(R)|

|Dn(R)|
=

{
1 if R ∈ Jn \QRn
(p+1)(q+1)
(p+3)(q+3) ' 1 +O

(
1
n

)
if R ∈ QRn.

ut

Corollary 8. The generalized Galbraith test can detect ciphertexts produced by
the scheme from Section 4.1 with a probability of 1/2 +O(1/n).

Proof. According to Corollaries 1 and 3 we have

|Dn(R)|
|P 1,1
n (R) ∪ P−1,−1n (R)|

=

{
1/2 if R ∈ Jn \QRn
(p+3)(q+3)
2(p+1)(q+1) '

1
2 +O

(
1
n

)
if R ∈ QRn.

ut

Lemma 8. The following equality holds D1
p(R) = P 1,1

p (R).

Proof. We will show that P 1,1
p (R) ⊆ D1

p(R) and D1
p(R) ⊆ P 1,1

p (R). Our second
inclusion is trivial because P 1,1

p (R) contains all possible 1-degree polynomials
which have Jacobi symbol equal to 1. Now, let us focus on the first inclusion.
We take a random f = f0x + f1 ∈ P 1,1

p (R) and we search for a pair (a, b) ∈
Zp × Z∗p such that f0x + f1 = b−1(ax + b)2 = 2ax + a2Rb−1 + b. From this we
have f0 ≡ 2a mod p and f1 ≡ a2Rb−1 + b mod p. As a result, we can derive
a ≡ 2−1f0 mod p and b2 − bf1 + 4−1f20R ≡ 0 mod p. Therefore, we obtain ∆ =
f21 − 4 · 4−1f20R = f21 − f20R which has the Jacobi symbol 1 according to the
definition of P 1,1

p (R).

Now let us assume that b ≡ 0 mod p. Then we have f1 ± (f21 − f20R)1/2 ≡
0 mod p. This implies that f20R ≡ 0 mod p. Since, R 6≡ 0 mod p we obtain that
f0 ≡ 0 mod p and implicitly a ≡ 0 mod p. But, when a ≡ 0 mod p we can choose
the other root b ≡ f1 mod p, which is different from 0 since we cannot have both
f0 and f1 equal to 0.

When f0 6≡ 0 mod p, we can choose b as either of the two roots6. Thus, we
obtain that f ∈ D1

p(R). This concludes our proof. ut

Corollary 9. The following equality holds D1
n(R) = P 1,1

n (R).

Corollary 10. Either Tn(R, h(x), D1
n(R)) = P 1,−1

n (R) or Tn(R, h(x), D1
n(R)) =

P−1,1n (R) depending if either GTp(R, h(x)) = 1 or GTq(R, h(x)) = 1.
6 ∆ 6≡ 0 mod p



Proof. We assume without loss of generality that GTp(R, h(x)) = 1. Using Corol-
lary 9 we obtain the following equality Tn(R, h(x), D1

n(R)) = Tn(R, h(x), P 1,1
n (R)).

Since P 1,−1
n (R) contains all the polynomials f(x) with GTn(R, f(x)) = −1

and the generalized Galbraith test is “multiplicative” (see Lemma 4), we have
Tn(R, h(x), P 1,1

n (R)) ⊆ P 1,−1
n (R).

For the second inclusion we use the fact that h(x) has an inverse (see the
proof of Lemma 3). Hence, Tn(R, h(x)−1, P 1,−1

n (R)) ⊆ P 1,1
n (R). This relation

can be rewritten as P 1,−1
n (R) ⊆ Tn(R, h(x), P 1,1

n (R)). This concludes our proof.
ut

Remark 1. Corollary 10 is also proven in [7], but using different techniques. We
chose to reprove it since it follows directly from our analysis.

We further assume without loss of generality that GTp(R, h(x)) = 1.

Corollary 11. Let P+,−
n (R) = P 1,1

n (R) ∪ P 1,−1
n (R) and D̃n(R) = D1

n(R) ∪
Tn(R, h(x), D1

n(R)). Then the distributions

Xn = {f(x) | f(x)
$←− D̃n(R)}

Yn = {f(x) | f(x)
$←− P+,−

n (R)}

are identical.

In order to prove that their anonymization technique is secure, Clear et al.
first established a series of computational indistinguishability results. The one
that we are interested in states that

Zn = {GTn(R, f(x)) | f(x)
$←− D̃n(R)}

is computationally indistinguishable from the uniform distribution U on {−1, 1},
under the qr assumption. In [13], the authors prove a stronger result: the two
distributions are statistically indistinguishable. Since we removed Clear et al.’s
restriction, we need to prove that the statistically indistinguishability still holds.
Using the results developed in this subsection we can prove exactly that.

Theorem 1. The following distribution

Zn = {GTn(R, f(x)) | f(x)
$←− D̃n(R)}

is statistically indistinguishable from the uniform distribution U on {−1, 1}.

Proof. We will show that the statistical distance ∆(Zn, U) between Zn and U is
negligible, where

∆(Zn, U) =
1

2

∑
b∈{−1,1}

| Pr[Zn = b]− Pr[U = b] | .



Let Dn(R) = Tn(R, h(x), Dn(R)) and D
1

n(R) = Tn(R, h(x), D1
n(R)). In order

to compute Pr[Zn = b] we make use of Corollaries 1 and 2. Thus, taking into
account that

Pr[f(x) ∈ Dn(R)] = Pr[f(x) ∈ Dn(R)] = 1/2,

and that f(x)
$←− Dn(R) ∪Dn(R), we obtain

Pr[Zn = 1] = Pr[GTn(R, f(x)) = 1]

= Pr[GTn(R, f(x)) = 1 | f(x) ∈ Dn(R)] · Pr[f(x) ∈ Dn(R)]

+ Pr[GTn(R, f(x)) = 1 | f(x) ∈ Dn(R)] · Pr[f(x) ∈ Dn(R)]

=
1

2
· |D

1
n(R)|

|D̃n(R)|
+

1

2
· |D

1

n(R)|
|D̃n(R)|

=
|D1

n(R)|
|D̃n(R)|

=
1

2
+O

(
1

n

)
.

In a similar way one can obtain

Pr[Zn = −1] =
1

2
+O

(
1

n

)
.

Now, the statistical distance ∆(Zn, U) becomes

∆(Xn, U) =
1

2

(∣∣∣∣12 +O
(

1

n

)
− 1

2

∣∣∣∣+

∣∣∣∣12 +O
(

1

n

)
− 1

2

∣∣∣∣) = O
(

1

n

)
.

Since n is exponentially large in the security parameter λ, the statistical distance
is negligible. ut

5 Zhao et al. IBE scheme

5.1 Scheme Description

In [15], the authors introduce two IBE schemes that work with polynomials
modulo n, where n is the product of two primes p, q chosen such that p ≡
−q mod 4. Zhao et al. prove the security of their schemes under the strong qr
assumption7.

Starting from their first scheme, we devised a new scheme from which we
removed the necessity of choosing p ≡ −q mod 4. In this case, the proof from
[15] can be easily adapted to obtain that our scheme is secure under the qr
assumption.

Setup(λ): Given a security parameter λ, generate two primes p, q > 2λ and
compute their product n = pq. Randomly generate two integers u, y ∈ Z
such that Jp(u) = Jq(u) = −1 and Jp(y) = −Jq(y). The public parameters
are pp = {n, u, y,H}, where H : {0, 1}∗ → Jn is a cryptographic hash
function. The master secret key is msk = {p, q}.

7 which is basically the qr assumption with the restriction that p ≡ −q mod 4



KeyGen(pp,msk, id): Let R = H(id). If R ∈ QRn, then compute r ≡ R1/2 mod
n. Otherwise, computes r = (uR)1/2 mod n. The private key is r.

Enc(pp, id,m): On inputting pp, an identity id and a message m ∈ {0, 1},
compute the hash value R = H(id) and randomly chooses two polynomials
f(x), f(x) of degree 1 from Zn[x]. Also, calculate

g(x) = f(x)2 mod (x2 −R) and g(x) = f(x)2 mod (x2 − uR).

Return the ciphertext C = (ym · g(x), ym · g(x)).
Dec(pp, r, C): On input pp, a secret key r and a ciphertext C = (c(x), c(x)),

compute

m′ =

{
Jn(c(r)) if r2 ≡ H(id) mod n;

Jn(c(r)) otherwise.

Correctness : The correctness of the decryption algorithm follows by noticing
that when r2 ≡ H(id) mod n we have

m′ = Jn(c(r)) = Jn(ym · f(r)2) = [Jp(y) · Jq(y)]m = [−Jp(y)2]m = (−1)m,

and thus we can recover the message m. When r2 ≡ uH(id) mod n, we can
proceed similarly.

Although this proposal is not anonymous (see Section 5.2), it can be made
as such by using the same anonymization technique as in Section 4.1.

Previous Work. When p ≡ −q mod 4 and y = −1 we obtain the scheme de-
scribed in [15]. Note that in this case we can choose h(x) = x since GTn(R, x ·
c(x)) = −GTn(R, c(x)). When analyzing the scheme, the authors do not prove
the success probability of decryption and of the generalized Galbraith test against
their first proposal. Also, when computing the size of the ciphertext space, Zhao
et al. managed to prove that it is at least (p− 1)(p− 3)(q− 1)(q− 3)/16 (see the
next section for the exact size). Two other aspects that are not rigorously stated
are: the two complexity assumptions used to prove the anonymity of their second
scheme and their argument that leads to the necessity of these two assumptions.

5.2 New Analysis

We start with studying the cardinality of the following sets

Cn,0(R) = {(ax+ b)2 mod x2 −R | a, b ∈ Zn},
Cn,1(R) = {y(ax+ b)2 mod x2 −R | a, b ∈ Zn},

which contain the polynomials generated by the scheme presented in Section 5.1.
Note that we further consider that R 6= 0. Otherwise, we can trivially recover m
by computing Jn(g(0)) = Jn(ymb2) = Jn(ym) = (−1)m.



Lemma 9. Let R ∈ QRp. If Jp(y) = −1 then Cp,0(R) ∩Cp,1(R) = {0}, else we
have Cp,0(R) = Cp,1(R). We also have |Cp,0(R)| = |Cp,1(R)| = (p+ 1)2/4.

Proof. Let Jp(y) = −1. We first prove that the sets Cp,0(R) ∩ Cp,1(R) = {0}.
Let f(x) ∈ Cp,0(R) ∩ Cp,1(R). Then f(x) ≡ (ax + b)2 mod x2 − R and f(x) ≡
y(cx+ d)2 mod x2 −R for a, b, c, d ∈ Zp. This is identical with

a2R+ b2 ≡ y(c2R+ d2) mod p

2ab ≡ 2cdy mod p

which is equivalent with

(ar + b)2 ≡ y(cr + d)2 mod p

(ar − b)2 ≡ y(cr − d)2 mod p.

If a, b, c, d 6= 0, from any of the equations we obtain that y ∈ QRp. Therefore,
we obtain a contradiction, and thus a = b = c = d = 0.

When Jp(y) = 1, we have

f(x) ≡ y(ax+ b)2 ≡ u2(ax+ b)2 ≡ (uax+ ub)2 mod x2 −R,

where u2 ≡ y mod p. Hence, if f(x) ∈ Cp,1(R) then f(x) ∈ Cp,0(R). Similarly, we
obtain that f(x) ∈ Cp,0(R) then f(x) ∈ Cp,1(R). Therefore, Cp,0(R) = Cp,1(R).

Let f1(x) = (a1x+ b1)2, f2(x) = (a2x+ b2)2 ∈ Cp,0(R). If f1(x) ≡ f2(x) mod
x2 − R, then f1(x)1/2 ≡ ±f2(x)1/2 mod x2 − R. Thus, (a1 ∓ a2)x+ (b1 ∓ b2) ≡
0 mod x2 − R. Therefore, we have a1 ≡ ±a2 mod p and b1 ≡ ±b2 mod p. Note
that for a1 6= 0 we always have a1 6≡ −a1 mod p, and thus we obtain two numbers
that reach the same value when squared. Similarly for b1. Hence, we obtain that
|Cp,0(R)| = [(p − 1)/2 + 1]2 = (p + 1)2/4. Similarly, we obtain |Cp,1(R)| =
(p+ 1)2/4. ut

Corollary 12. Let R ∈ QRn. We assume without loss of generality that Jp(y) =
1. Then |Cn,0(R)| = |Cn,1(R)| = (p+1)2(q+1)2/16. Also, |Cn,0(R)∩Cn,1(R)| =
(p+ 1)2/4 and |Cn,0(R) ∪ Cn,1(R)| = (p+ 1)2(q + 1)2/8− (p+ 1)2/4.

Lemma 10. Let R ∈ QNRp. Then we have |Cp,0(R)| = (p2+1)/2 and Cp,0(R) =
Cp,1(R).

Proof. Since R ∈ QNRp then Z[x]/(x2 − R) is a field. Let f1(x) = (a1x +
b1)2 6= 0, f2(x) = (a2x+ b2)2 6= 0 ∈ Cp,0(R). If f1(x) ≡ f2(x) mod x2 − R, then
(f1(x)f2(x)−1)2 ≡ 1 mod x2 − R. Thus, f1(x)f2(x)−1 ≡ ±1 mod x2 − R, which
is equivalent with f1(x) ≡ ±f2(x) mod x2 −R. Hence, |Cp,0(R)| = (p2 + 1)/2.

Let f(x) ∈ Cp,0(R) ∩ Cp,1(R). Then f(x) ≡ g(x)2 mod x2 − R and f(x) ≡
yh(x)2 mod x2−R for g(x), h(x) ∈ Zp[x]/(x2−R) \ {0}. This is equivalent with

y ≡ (g(x)h(x)−1)2 ≡ (v + wx)2 ≡ v2 + w2R+ 2vwx mod x2 −R



which translates into

v2 + w2R ≡ y mod p

2vwx ≡ 0 mod p

We either have v = 0 or w = 0. Hence, either w2 ≡ yR−1 mod p or v2 ≡ y mod p.
If Jp(y) = −1 then the second equality lead to a contradiction and hence v = 0
and w ≡ (yR−1)1/2 mod p. This leads to g(x)h(x)−1 ≡ (yR−1)1/2x mod x2−R.
Hence, we obtain that Cp,0(R) = Cp,1(R). If Jp(y) = 1 then the first equality
lead to a contradiction, and thus v ≡ y1/2 mod p and w = 0. This leads to
g(x)h(x)−1 ≡ y1/2 mod x2 −R. Therefore, we obtain our desired result. ut

Corollary 13. Let R ∈ Jn \ QRn. Then Cn,0(R) = Cn,1(R) and |Cn,0(R)| =
(p2 + 1)(q2 + 1)/4.

Now, we consider the sets of ciphertexts that can be correctly decrypted

C∗n,0(R) = {(ax+ b)2 mod x2 −R | a, b ∈ Zn; ar + b ∈ Z∗n},
C∗n,1(R) = {y(ax+ b)2 mod x2 −R | a, b ∈ Zn; ar + b ∈ Z∗n}.

Lemma 11. Let R ∈ QRp. If Jp(y) = −1 then C∗p,0(R) ∩ C∗p,1(R) = ∅, else we
have C∗p,0(R) = C∗p,1(R). We also have |C∗p,0(R)| = |C∗p,1(R)| = (p2 − 1)/4.

Proof. We first note that if a = b = 0, then ax + b 6∈ Z∗n. Using Lemma 9 we
obtain the first statement.

Now, we want to see how many of these pairs are collapsing to the same
polynomial value. Similarly to the proof of Lemma 9, from f1(x) ≡ f2(x) mod
x2 − R we obtain a1 ≡ ±a2 mod p and b1 ≡ ±b2 mod p. These numbers must
also satisfy the restriction b1 6≡ −a1r mod p.

We first consider the case a1 = a2 = 0. Since we have b1 ≡ a1r+b1 ∈ Z∗p, then
there are (p − 1)/2 non-collapsing values for b1. On the other hand, if a1 6= 0,
then for a1 are able to find (p − 1)/2 different non-collapsing values and for b1
we are able to find 2+(p−3)/2 = (p+1)/2 non-collapsing values8. Hence, there
will be (p − 1)(p + 1)/4 such polynomials in C∗p,0(R). Similarly, we obtain that
|C∗p,1(R)| = (p2 − 1)/4. ut

Corollary 14. Let R ∈ QRn. Then |C∗n,0(R)| = |C∗n,1(R)| = (p2−1)(q2−1)/16.
Also, C∗n,0(R) ∩ C∗n,1(R) = ∅ and |C∗n,0(R) ∪ C∗n,1(R)| = (p2 − 1)(q2 − 1)/8.

Corollary 15. The probability of correct decryption is 1 +O(1/n2).

Proof. From Corollaries 12 and 14 we obtain that the probability is

|C∗n,0(R) ∪ C∗n,1(R)|
|Cn,0(R) ∪ Cn,1(R)|

=
(p2 − 1)(q2 − 1)

(p+ 1)2(q + 1)2 − 8δ
' 1 +O

(
1

n2

)
,

where δ ∈ {(p+ 1)2/4, (q + 1)2/4}. ut
8 We have to count the pairs (a1, 0) and (a1, a1r).



Now we will study ciphertexts with a given generalized Galbraith value. Thus,
we define

C`p(R) = {f0x+ f1 ∈ Cp,0(R) ∪ Cp,1(R) | Jp(f21 − f20R) = `},
C0
n(R) = {f0x+ f1 ∈ Cn,0(R) ∪ Cn,1(R) | Jn(f21 − f20R) = 0},

C1
n(R) = {f0x+ f1 ∈ Cn,0(R) ∪ Cn,1(R) | Jp(f21 − f20R) = Jq(f

2
1 − f20R) = `},

where ` ∈ {0, 1}.

Lemma 12. The following statements are true

1. If R ∈ QNRp then |C0
p(R)| = 1, else

|C0
p(R)| =

{
p if Jp(y) = 1,

2p− 1 if Jp(y) = −1.

2. If R ∈ QNRp then |C1
p(R)| = (p2 − 1)/2, else

|C1
p(R)| =

{
(p− 1)2/4 if Jp(y) = 1,

(p− 1)2/2 if Jp(y) = −1.

Proof. Let f = ym(ax + b)2 = ym(a2R + b2 + 2abx), where m ∈ {0, 1}. We
observe that Jn(f21 − f20R) = Jn((a2R + b2)2 − 4a2b2R). Hence, the Jacobi
symbol is independent of y.

Since f ∈ C0
p(R) we have (a2R+ b2)2−4a2b2R ≡ 0 mod p. This is equivalent

with a2R − b2 ≡ 0 mod p. If R ∈ QNRp, then C0
p(R) = {0}. Otherwise, we

obtain (ar − b)(ar + b) ≡ 0 mod p. Thus, we can rewrite the set as C0
p(R) =

{2a2rym(±x+ r) | a ∈ Zp;m ∈ {0, 1}}. Let

C0
p,0(R) = {2a2r(±x+ r) | a ∈ Zp},

C0
p,1(R) = {2a2ry(±x+ r) | a ∈ Zp}.

We further count the distinct elements of C0
p,0(R). From 2a2r(±x + r) ≡

2c2r(±x+ r) mod x2 −R we obtain a ≡ ±c mod p. From the relation 2a2r(x+
r) ≡ 2c2r(−x+ r) mod x2 −R we obtain a2(x+ r) + c2(x− r) ≡ 0 mod x2 −R.
Hence, we obtain a = c = 0. Thus, the cardinality of C0

p,1(R) is p.
Now let us consider the intersection of C0

p,0(R) and C0
p,1(R). From 2a2r(±x+

r) ≡ 2yc2r(±x+ r) mod x2 −R we obtain a ≡ ±yc mod p if Jp(y) = 1 and a =
c = 0 otherwise. Hence, C0

p,0(R) = C0
p,1(R), if Jp(y) = 1 and C0

p,0(R)∩C0
p,1(R) =

{0} otherwise.
The last statement results from observing that all the elements from Cp,0(R)∪

Cp,1(R) have the Jacobi symbol Jp(f
2
1−f20R) either 1 or 0. Hence, using Lemma 9

we obtain our result. ut

Corollary 16. We assume without loss of generality that Jp(y) = 1. Then the
following statements are true



1. If R ∈ Jn \ QRn then |C0
n(R)| = (p2 + q2)/2, else if R ∈ QRn |C0

n(R)| =
(pq + 1)(p+ q)/2− (p+ 1)2/4.

2. If R ∈ Jn \ QRn then |C1
n(R)| = (p2 − 1)(q2 − 1)/4, else if R ∈ QRn

|C1
n(R)| = (p− 1)2(q − 1)2/8.

Corollary 17. The probability that a ciphertexts f(x) produced by the scheme
from Section 5.1 has GTn(R, f(x)) = 1 is 1 +O(1/n2).

Proof. According to Corollaries 12, 13 and 16 we have

|C1
n(R)|

|Cn,0(R) ∪ Cn,1(R)|
=

{
(p2−1)(q2−1)
(p2+1)(q2+1) ' 1 +O

(
1
n2

)
if R ∈ Jn \QRn

(p−1)2(q−1)2
(p+1)2(q+1)2−8δ ' 1 +O

(
1
n2

)
if R ∈ QRn,

where δ ∈ {(p+ 1)2/4, (q + 1)2/4}. ut

Corollary 18. The generalized Galbraith test can detect ciphertexts produced by
the scheme from Section 5.1 with a probability of 1/2+O(1/n2) if R ∈ Jn \QRn
and 1/4 +O(1/n2) if R ∈ QRn.

Proof. According to Corollaries 1, 12 and 13 we have

|Cn(R)|
|P 1,1
n (R) ∪ P−1,−1n (R)|

=

{
(p2+1)(q2+1)
2(p2−1)(q2−1) '

1
2 +O

(
1
n2

)
if R ∈ Jn \QRn

(p+1)2(q+1)2−8δ
4(p−1)2(q−1)2 '

1
4 +O

(
1
n2

)
if R ∈ QRn,

where δ ∈ {(p+ 1)2/4, (q + 1)2/4}. ut

Using our results, we further redo the analysis from [15] and present the
exact assumptions used to prove that the IBE scheme from Section 5.1 can be
anonymized using the technique described in Section 4.1.

Let P+
n (R) = P 1,1

n (R)∪P−1,−1n (R) and Cn(R) = Cn,0(R)∪Cn,1(R). Accord-
ing to Corollaries 1, 12 and 13 we have that |P+

n (R)× P+
n (uR)| = O(p2q2) and

|Cn(R)× Cn(uR)| = O(3p2q2/8− δ), where δ ∈ {p2/4, q2/4}. Since p and q are
large primes we can make the following computational assumption

Assumption 1. For an identity id, the set P+
n (R)×P+

n (uR) is computationally
indistinguishable from the ciphertext space when v1 = v2 = 0 (i.e. Cn(R)×
Cn(uR)).

Let P−n (R) = P 1,−1
n (R)∪ P−1,1n (R). According to Corollaries 1, 2, 12 and 13

we have that |P−n (R)× P−n (uR)| = O(p2q2) and

|Tn(R, h(x), Cn(R))× Tn(uR, h(x), Cn(uR))| = |Cn(R)× Cn(uR)|
= O(3p2q2/8− δ),

where δ ∈ {p2/4, q2/4}. Since p and q are large primes we can make the following
computational assumption

Assumption 2. For an identity id, the set P+
n (R) × P−n (uR) is computation-

ally indistinguishable from the ciphertext space when v1 = v2 = 1 (i.e.
Tn(R, h(x), Cn(R))× Tn(uR, h(x), Cn(uR))).



6 Conclusions

In this paper we reevaluate the extension of Galbraith’s test to the polynomial
ring Zn[x]/(x2−R). By studying its exact behaviour, we were able to perform a
deeper and a more rigorous analysis of Clear et al. and Zhao et al. IBE schemes.
Therefore, we offer the reader a better understanding of these two schemes. To
be more specific, we obtained a precise value for the probability of a successful
decryption, the exact efficiency of the generalized Galbraith test and, in the case
of Zhao et al. IBE scheme, a thorough description of the underlying security
assumptions.

Future Work. In [14], the authors introduce an analog of Galbraith’s test for
higher residues. We believe that a more in depth study of this test can lead to a
simpler description of it and can also help researchers to devise an anonymizing
technique that renders this test ineffective.
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