Faster indifferentiable hashing to elliptic $\mathbb{F}_{q^{2}}$-curves

Dmitrii Koshelev ${ }^{1}$
Computer sciences and networks department, Télécom Paris

Abstract

Let \mathbb{F}_{q} be a finite field and $E: y^{2}=x^{3}+a x+b$ be an elliptic $\mathbb{F}_{q^{2}}$-curve of $j(E) \notin \mathbb{F}_{q}$. This article provides a new constant-time hash function $\mathcal{H}:\{0,1\}^{*} \rightarrow E\left(\mathbb{F}_{q^{2}}\right)$ indifferentiable from a random oracle. Furthermore, \mathcal{H} can be computed with the cost of 3 exponentiations in \mathbb{F}_{q}. In comparison, the actively used (indifferentiable constant-time) simplified SWU hash function to $E\left(\mathbb{F}_{q^{2}}\right)$ computes 2 exponentiations in $\mathbb{F}_{q^{2}}$, i.e., it costs 4 ones in \mathbb{F}_{q}. In pairing-based cryptography one often uses the hashing to elliptic $\mathbb{F}_{q^{2}}$-curves $E_{b}: y^{2}=x^{3}+b$ (of j-invariant 0) having an $\mathbb{F}_{q^{2}}$-isogeny $\tau: E \rightarrow E_{b}$ of small degree. Therefore the composition $\tau \circ \mathcal{H}:\{0,1\}^{*} \rightarrow \tau\left(E\left(\mathbb{F}_{q^{2}}\right)\right)$ is also an indifferentiable constant-time hash function.

Key words: constant-time implementation, hashing to elliptic and hyperelliptic curves, indifferentiability from a random oracle, isogenies, pairing-based cryptography, Weil restriction.

Introduction

Suppose there is the subgroup $G \subset E_{b}\left(\mathbb{F}_{q^{2}}\right)$ of a large prime order $\ell \mid N:=\# E_{b}\left(\mathbb{F}_{q^{2}}\right)$. As is well known, only groups of such order are used in discrete logarithm cryptography. Many protocols of pairing-based cryptography [1] use a hash function $\mathcal{H}:\{0,1\}^{*} \rightarrow G$ indifferentiable from a random oracle [2, Definition 2]. In particular, \mathcal{H} should be constant-time, i.e., the computation time of its value is independent of an input argument. The latter is necessary to be protected against timing attacks $[1, \S 8.2 .2, \S 12.1 .1]$. A survey of this kind of hashing is well represented in $[1, \S 8]$, [3].

It is sufficient to find a hash function $\mathcal{H}:\{0,1\}^{*} \rightarrow E_{b}\left(\mathbb{F}_{q^{2}}\right)$. Indeed, one of quick methods $[1, \S 8.5]$ can be applied for computing the cofactor multiplication $[N / \ell]: E_{b}\left(\mathbb{F}_{q^{2}}\right) \rightarrow G$. This process obviously preserves the indifferentiability property. By the way, in practice q is always a prime such that $q \equiv 3(\bmod 4)$, i.e., $i:=\sqrt{-1} \notin \mathbb{F}_{q}$ in order to accelerate the arithmetic of the field $\mathbb{F}_{q^{2}}$ (see, e.g., $[1, \S 5.2 .1]$).

Many hash functions \mathcal{H} are induced from some map $h: \mathbb{F}_{q^{2}} \rightarrow E_{b}\left(\mathbb{F}_{q^{2}}\right)$, called encoding, such that $\# \operatorname{Im}(h)=\Theta\left(q^{2}\right)$. In turn, $q^{2} \approx \# E_{b}\left(\mathbb{F}_{q^{2}}\right)$ according to the Hasse inequality [4, Theorem V.1.1]. In other words, h should cover most $\mathbb{F}_{q^{2}}$-points of E_{b}. However there are no surjective encodings h for ordinary (i.e., non-supersingular) curves E_{b} (cf. [1, §8.3.2]). As is well known $[1, \S 4]$, only such curves are interesting in pairing-based cryptography at the moment. Thus the trivial composition $h \circ \eta$ with a hash function $\eta:\{0,1\}^{*} \rightarrow \mathbb{F}_{q^{2}}$ is not indifferentiable.

[^0]Instead, it is often considered the composition $\mathcal{H}:=h^{\otimes 2} \circ \eta^{2}$ of the map

$$
h^{\otimes 2}: \mathbb{F}_{q^{2}}^{2} \rightarrow E_{b}\left(\mathbb{F}_{q^{2}}\right) \quad\left(t_{0}, t_{1}\right) \mapsto h\left(t_{0}\right)+h\left(t_{1}\right)
$$

(also called encoding) and the hash function

$$
\eta^{2}:\{0,1\}^{*} \rightarrow \mathbb{F}_{q^{2}}^{2} \quad m \mapsto(\eta(m \mid 0), \eta(m \mid 1)),
$$

where \mid is the concatenation operation. In this case, the indifferentiability of \mathcal{H} follows from [2, Theorem 1] if η is so and $h^{\otimes 2}$ is admissible in the sense of [2, Definition 4].

There is the so-called $S W U$ encoding $[1, \S 8.3 .4]$, which is applicable to any elliptic $\mathbb{F}_{q^{2}}$ curve (not necessarily of j-invariant 0). Nevertheless, it generally requires the computation of 2 Legendre symbols (i.e., quadratic residuosity tests) in \mathbb{F}_{q}. Unfortunately, this operation (as well as the inversion one in \mathbb{F}_{q}) is vulnerable to timing attacks if it is not implemented as an exponentiation in \mathbb{F}_{q} (see, e.g., $[1, \S 2.2 .9, \S 5.1 .6]$). But the latter is known to be a fairly laborious operation.

There is also the simplified $S W U$ encoding $[2, \S 7]$, which, on the contrary, can be implemented without Legendre symbols at all by virtue of [5, §2]. This encoding exists for all elliptic curves E whose $j(E) \neq 0$. The most difficult case $j(E)=1728$ is processed in [6]. In turn, the quite popular Elligator 2 encoding [7, §5] (very similar in nature) is appropriate for E_{b} only in the case $\sqrt[3]{b} \in \mathbb{F}_{q^{2}}$, that is $2 \mid N$.

Sometimes it is possible to use an $\mathbb{F}_{q^{2}}$ isogeny $\tau: E \rightarrow E_{b}$ of small degree (the WahbyBoneh approach [8]). For example, the curve BLS12-381 [8, §2.1] (whose $b=4(1+i)$ and $\left.\left\lceil\log _{2}(q)\right\rceil=381\right)$ has such an isogeny of degree 3 for which $j(E)=-2^{15} 3 \cdot 5^{3}$. Today, this curve is a de facto standard in the real-world pairing-based cryptography [9, §4.1.3]. More precisely, the encoding to $E_{b}\left(\mathbb{F}_{q^{2}}\right)$ can be constructed simply as the composition $\tau \circ h$, where $h: \mathbb{F}_{q^{2}} \rightarrow E\left(\mathbb{F}_{q^{2}}\right)$ is any one. It is clear that $(\tau \circ h)^{\otimes 2}=\tau \circ h^{\otimes 2}$ is admissible as an encoding to the subgroup $\tau\left(E\left(\mathbb{F}_{q^{2}}\right)\right) \subset E_{b}\left(\mathbb{F}_{q^{2}}\right)$. Since ℓ is large, actually $G \subset \tau\left(E\left(\mathbb{F}_{q^{2}}\right)\right)$.

We show in $\S 1$ that under the conditions $2 \nmid \# E\left(\mathbb{F}_{q^{2}}\right)$ and $j(E) \notin \mathbb{F}_{q}$ there is a 2-sheeted cover $\varphi_{0}: H \rightarrow E$ from a real (split) hyperelliptic \mathbb{F}_{q}-curve H (see, e.g., [10, §10.1.1]) of geometric genus 2 . Then in $\S 2$ we construct a very simple encoding $h: \mathbb{F}_{q} \rightarrow H\left(\mathbb{F}_{q}\right)(2)$ such that the map

$$
h^{\otimes 3}: \mathbb{F}_{q}^{3} \rightarrow J\left(\mathbb{F}_{q}\right) \quad\left(x_{0}, x_{1}, x_{2}\right) \mapsto h\left(x_{0}\right)+h\left(x_{1}\right)+h\left(x_{2}\right)
$$

is admissible, where J is the Jacobian of H. Encodings to similar hyperelliptic curves are discussed in [11], [12].

Thus we automatically get the encoding $\varphi_{0} \circ h: \mathbb{F}_{q} \rightarrow E\left(\mathbb{F}_{q^{2}}\right)$. Moreover, by virtue of Theorem 1 its cubic power $\left(\varphi_{0} \circ h\right)^{\otimes 3}: \mathbb{F}_{q}^{3} \rightarrow E\left(\mathbb{F}_{q^{2}}\right)$ is also admissible. As above, its composition with the indifferentiable hash function

$$
\eta^{3}:\{0,1\}^{*} \rightarrow \mathbb{F}_{q}^{3} \quad m \mapsto(\eta(m \mid 00), \eta(m \mid 01), \eta(m \mid 10)),
$$

where $\eta:\{0,1\}^{*} \rightarrow \mathbb{F}_{q}$, gives such one to $E\left(\mathbb{F}_{q^{2}}\right)$.
In other terms, we construct an \mathbb{F}_{q}-isogeny $\phi:=\theta^{-1} \circ \varphi: J \rightarrow R$ (with the kernel $\left.(\mathbb{Z} / 2)^{2}\right)$ to the Weil restriction R (see, e.g., $[10, \S 5.7]$) of E with respect to the extension $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$, where φ (resp. θ^{-1}) is defined in $\S 1$ (resp. $[6, \S 1]$). Formulas of such an isogeny are found in [13] based on the classical result [14]. Of course, one can apply these formulas for the hashing
instead of ours (1), which are derived differently. By the way, it is preferable to use $\left(\varphi_{0} \circ h\right)^{\otimes 3}$ rather than $\phi \circ h^{\otimes 3}$, because the addition in $E\left(\mathbb{F}_{q^{2}}\right)=R\left(\mathbb{F}_{q}\right)$ seems to be much more efficient than in $J\left(\mathbb{F}_{q}\right)$ (see [10, §10.4.2]).

The simplified SWU encoding h computes 1 square root in $\mathbb{F}_{q^{2}}$, hence the corresponding hash function \mathcal{H} (as well as $h^{\otimes 2}$) computes 2 ones. The fact is that evaluating η is incomparably faster $[3, \S 5]$. In turn, 1 square root in $\mathbb{F}_{q^{2}}$ costs 2 ones in \mathbb{F}_{q} according to [1, Algorithm 5.18]. The inversion operation and quadratic test in this algorithm are not taken into account by the same reason as in $[5, \S 2]$. As is well known, a square root in \mathbb{F}_{q} can be represented as an exponentiation in \mathbb{F}_{q} if $q \equiv 3(\bmod 4)$. In total, \mathcal{H} is implementable with the cost of 4 exponentiations in \mathbb{F}_{q}, although this is not remarked in [8, §4.2]. In comparison, the new hash function performs 3 square roots (i.e., exponentiations) in \mathbb{F}_{q}.

In particular, applying the latter to the widely used BLS multi-signature (aggregate signature) [15] with n different messages, the verifier should compute only $3 n$ exponentiations in \mathbb{F}_{q} rather than $4 n$ ones during the hashing phase. The author was recently informed that $n \approx 16000$ in the famous blockchain Ethereum, which, like many others, uses the curve BLS12-381.

We suppose that $N=\# E\left(\mathbb{F}_{q^{2}}\right)$ is odd just to be definite, that is this condition can be omitted if desired. We restrict ourselves to this case, because it is the most difficult and BLS12-381 satisfies it. The more essential requirement consists in the fact that $j(E) \notin \mathbb{F}_{q}$ (cf. Lemma 1). Fortunately, as shown in the computer algebra system Magma [16] the mentioned curve is $\mathbb{F}_{q^{2}}$-isogenous (with the help of an isogeny of degree 7) to the curve E with

$$
j(E)=-3802283679744000 \sqrt{21}-17424252776448000
$$

where $\sqrt{21} \notin \mathbb{F}_{q}$. Our code [16] also generates the coefficients of H, φ_{0} and E, τ in the generic case.

1 Two-sheeted cover $\varphi_{0}: H \rightarrow E$

Consider a finite field \mathbb{F}_{q} of characteristic >3 and elliptic $\mathbb{F}_{q^{2}}$-curves

$$
E=E^{(0)}: y^{2}=f_{0}(x):=x^{3}+a x+b, \quad E^{(1)}: y^{2}=f_{1}(x):=x^{3}+a^{q} x+b^{q}
$$

They are obviously $\mathbb{F}_{q^{2}}$-isogenous by means of the Frobenius morphism Fr. If $j(E) \in \mathbb{F}_{q}$ (that is $j(E)=j\left(E^{(1)}\right)$), then, in addition, there is an $\overline{\mathbb{F}_{q}}$-isomorphism

$$
\sigma: E \xrightarrow{\sim} E^{(1)} \quad(x, y) \mapsto\left(\lambda^{2} x, \lambda^{3} y\right),
$$

where

$$
\lambda:= \begin{cases}a^{(q-1) / 4}=b^{(q-1) / 6} & \text { if } \quad j(E) \notin\{0,1728\}, \text { i.e., } a b \neq 0, \\ a^{(q-1) / 4} & \text { if } \quad j(E)=1728, \text { i.e., } b=0, \\ b^{(q-1) / 6} & \text { if } \quad j(E)=0, \text { i.e., } a=0 .\end{cases}
$$

Moreover, $\lambda \in \mathbb{F}_{q^{2}}$ whenever $a b \neq 0$, because $\lambda=\lambda^{3} / \lambda^{2}=(b / a)^{(q-1) / 2}$. The same is true if $b=0$ and $q \equiv 1(\bmod 4)($ resp. $a=0$ and $q \equiv 1(\bmod 3))$.

Further, put $A:=E \times E^{(1)}$ with the projections $p r_{k}: A \rightarrow E^{(k)}$ for $k \in \mathbb{Z} / 2$. As it will become clear later, we need to work with π-invariant objects, where

$$
\pi: A \xrightarrow{\sim} A \quad\left(P_{0}, P_{1}\right) \mapsto\left(\operatorname{Fr}\left(P_{1}\right), \operatorname{Fr}\left(P_{0}\right)\right)
$$

is the "twisted" Frobenius endomorphism.
Consider the decompositions

$$
f_{0}(x)=\left(x-r_{0}\right)\left(x-r_{1}\right)\left(x-r_{2}\right), \quad f_{1}(x)=\left(x-r_{0}^{q}\right)\left(x-r_{1}^{q}\right)\left(x-r_{2}^{q}\right),
$$

where

$$
0=r_{0}+r_{1}+r_{2}, \quad a=r_{0} r_{1}+r_{0} r_{2}+r_{1} r_{2}, \quad b=-r_{0} r_{1} r_{2} .
$$

We will study the most difficult situation when $r_{j} \notin \mathbb{F}_{q^{2}}$ for $j \in \mathbb{Z} / 3$ or, without lost of generality, $r_{j}^{q^{2}}=r_{j+1}$. For instance, the case $b=0$ is excluded from our consideration.

We are interested in the isomorphism $\chi: E[2] \xrightarrow{\sim} E^{(1)}[2]$ defined by the bijection $r_{j} \mapsto r_{j+1}^{q}$. Its graph $\Gamma \simeq(\mathbb{Z} / 2)^{2}$ is clearly π-invariant, hence the corresponding isogeny $\widehat{\varphi}^{\prime}: A \rightarrow A / \Gamma$ is also π-invariant. Here A / Γ is a principally polarized abelian surface (details see, e.g., in [17, $\S 1]$). The isomorphism χ is said to be reducible if A / Γ is $\overline{\mathbb{F}_{q}}$-isomorphic (as PPAS) to the direct product of 2 elliptic curves.

Lemma 1. The following statements are equivalent:

1. χ is reducible;

2. χ is the restriction to $E[2]$ of an $\overline{\mathbb{F}_{q}}$-isomorphism $E \xrightarrow{\hookrightarrow} E^{(1)}$;
3. $j(E) \in \mathbb{F}_{q}$ and moreover $q \equiv 1(\bmod 3)$ if $j(E)=0$.

Proof. Concerning the equivalence of the first two statements see [18, Proposition 3]. Let's prove that of the last two. We start from the implication $3 \Rightarrow 2$. The existence of the isomorphism σ implies that $f_{1}\left(\lambda^{2} r_{j}\right)=0$. In the case $\lambda^{2} r_{0}=r_{1}^{q}$ we get $\lambda^{2} r_{j}=r_{j+1}^{q}$, because $\lambda \in \mathbb{F}_{q^{2}}$.

If $\lambda^{2} r_{0}=r_{0}^{q}$, then similarly $\lambda^{2} r_{j}=r_{j}^{q}$. Therefore $\lambda^{2 q} r_{j}^{q}=r_{j+1}$ and hence $\lambda^{2(q+1)} r_{j}=r_{j+1}$. As a result, $\lambda^{2(q+1)}=\omega \in \mathbb{F}_{q}$, where $\omega^{2}+\omega+1=0$. In other words, $a=0$ and $r_{j}=-\omega^{j} \sqrt[3]{b}$. Since $r_{j}=\omega r_{j+2}$, we have $\omega \lambda^{2} r_{j+2}=r_{j}^{q}$, that is $\omega \lambda^{2} r_{j}=r_{j+1}^{q}$. The case $\lambda^{2} r_{0}=r_{2}^{q}$ is processed in the same way.

The inverse implication $(2 \Rightarrow 3)$ is not trivial only for $j(E)=0$. Suppose the opposite: $q \equiv 2(\bmod 3)$ or, equivalently, $\omega^{q}=\omega^{2}$. We see that

$$
\frac{r_{j+1}^{q}}{\lambda^{2} r_{j}}=\frac{\omega^{j+2}(\sqrt[3]{b})^{q}}{\lambda^{2} \sqrt[3]{b}}=\frac{\omega^{j+2} b^{(q-1) / 3}}{\lambda^{2}}=\omega^{j+2+\ell}
$$

for some fixed $\ell \in \mathbb{Z} / 3$. Since this cubic root depends on j, we come to a contradiction.
In accordance with [4, Example V.4.4] the condition $q \equiv 1(\bmod 3)$ is fulfilled if E is an ordinary curve of $j(E)=0$.

Hereafter we assume that χ is irreducible, i.e., $J^{\prime}:=A / \Gamma$ is the Jacobian of some hyperelliptic curve H^{\prime} of geometric genus 2. Applying [18, Proposition 4] to χ, we obtain, modulo notation, the following explicit formulas (verified in [16]):
$R_{0}:=\frac{\left(r_{0}-r_{2}\right)^{2}}{\left(r_{1}-r_{0}\right)^{q}}+\frac{\left(r_{1}-r_{0}\right)^{2}}{\left(r_{2}-r_{1}\right)^{q}}+\frac{\left(r_{2}-r_{1}\right)^{2}}{\left(r_{0}-r_{2}\right)^{q}}, \quad R_{1}:=r_{0}\left(r_{0}-r_{2}\right)^{q}+r_{1}\left(r_{1}-r_{0}\right)^{q}+r_{2}\left(r_{2}-r_{1}\right)^{q} ;$
$A:=\Delta^{q} R_{0} / R_{1}$, where $\Delta=-\left(4 a^{3}+27 b^{2}\right)$ is the discriminant of E;

$$
A_{0}:=A\left(r_{0}-r_{1}\right)\left(r_{1}-r_{2}\right), \quad A_{1}:=A\left(r_{1}-r_{2}\right)\left(r_{2}-r_{0}\right), \quad A_{2}:=A\left(r_{2}-r_{0}\right)\left(r_{0}-r_{1}\right)
$$

Note that $A_{j}^{q^{2}}=A_{j+1}$. Finally, the hyperelliptic curve is given by the equation

$$
H^{\prime}: y^{2}=f^{\prime}(x):=-\left(A_{0} x^{2}+A_{1}^{q}\right)\left(A_{1} x^{2}+A_{2}^{q}\right)\left(A_{2} x^{2}+A_{0}^{q}\right)
$$

Besides, there are 2-sheeted covers
$\varphi_{0}^{\prime}: H^{\prime} \rightarrow E \quad(x, y) \mapsto\left(c / x^{2}+d, e y / x^{3}\right), \quad \varphi_{1}^{\prime}: H^{\prime} \rightarrow E^{(1)} \quad(x, y) \mapsto\left(c^{q} x^{2}+d^{q}, e^{q} y\right)$,
where

$$
c:=-A^{q-1} \frac{R_{1}}{R_{0}}, \quad d:=\left(r_{0} \frac{\left(r_{2}-r_{1}\right)^{2}}{\left(r_{0}-r_{2}\right)^{q}}+r_{1} \frac{\left(r_{0}-r_{2}\right)^{2}}{\left(r_{1}-r_{0}\right)^{q}}+r_{2} \frac{\left(r_{1}-r_{0}\right)^{2}}{\left(r_{2}-r_{1}\right)^{q}}\right) / R_{0}, \quad e:=\frac{\Delta^{q}}{A^{3}}
$$

It is easy to prove that the isogeny $\varphi^{\prime}: J^{\prime} \rightarrow A$, dual to $\widehat{\varphi}^{\prime}$, is the natural extension of the morphism

$$
\left(\varphi_{0}^{\prime}, \varphi_{1}^{\prime}\right): H^{\prime} \rightarrow A \quad P \mapsto\left(\varphi_{0}^{\prime}(P), \varphi_{1}^{\prime}(P)\right)
$$

It is an example of degenerate Richelot isogeny [19, §8.3].
The covers φ_{k}^{\prime} are nothing but the natural maps $\varphi_{0}^{\prime}: H^{\prime} \rightarrow H^{\prime} /-\alpha \simeq E$ and $\varphi_{1}^{\prime}: H^{\prime} \rightarrow$ $H^{\prime} / \alpha \simeq E^{(1)}$ under the involutions

$$
\pm \alpha: H^{\prime} \xrightarrow{\leadsto} H^{\prime} \quad(x, y) \rightarrow(-x, \pm y) .
$$

And through $\left(\varphi_{0}^{\prime}, \varphi_{1}^{\prime}\right)$ the latter trivially correspond to

$$
\pm \alpha: A \xrightarrow{\sim} A \quad\left(P_{0}, P_{1}\right) \mapsto\left(\mp P_{0}, \pm P_{1}\right)
$$

As usual, H^{\prime} has the smooth model $Y^{2}=F^{\prime}(X, Z):=Z^{6} f^{\prime}(X / Z)$ in the weighted projective space $\mathbb{P}(1,3,1)$ with the coordinates $(X: Y: Z)$, where $x=X / Z, y=Y / Z^{3}$. The correct analogue of the "twisted" Frobenius endomorphism on H^{\prime} is the map

$$
\pi: H^{\prime} \rightarrow H^{\prime} \quad(X: Y: Z) \mapsto\left(Z^{q}: Y^{q}: X^{q}\right)
$$

because under this definition the morphism $\left(\varphi_{0}^{\prime}, \varphi_{1}^{\prime}\right)$ (and hence φ^{\prime}) is π-invariant.
For the sake of simplicity throughout the rest of this article $q \equiv 3(\bmod 4)$, that is $i:=$ $\sqrt{-1} \notin \mathbb{F}_{q}$. It is readily checked that $H: Y^{2}=F^{\prime}(X+i Z, X-i Z)$ is an \mathbb{F}_{q}-curve. In other terms, $\psi^{-1} \circ \pi \circ \psi$ is the "ordinary" Frobenius endomorphism on H, where

$$
\begin{array}{ll}
\psi: H \xrightarrow{\rightarrow} H^{\prime} & (X: Y: Z) \mapsto(X+i Z: Y: X-i Z), \\
\psi^{-1}: H^{\prime} \xrightarrow{\leadsto} H & (X: Y: Z) \mapsto\left(\frac{X+Z}{2}: Y: \frac{X-Z}{2 i}\right) .
\end{array}
$$

Denote by J the Jacobian of H. Let us keep the notation for the natural extensions $\psi: J \xrightarrow{\hookrightarrow} J^{\prime}$ and $\psi^{-1}: J^{\prime} \simeq J$. Of course, they are still mutually inverse. Also, put $\varphi:=\varphi^{\prime} \circ \psi: J \rightarrow A$.

Introduce new constants $c_{k}, d_{k}, e_{k} \in \mathbb{F}_{q}$ such that

$$
c=c_{0}+c_{1} i, \quad d=d_{0}+d_{1} i, \quad e=e_{0}+e_{1} i .
$$

Using Magma [16], we check that the compositions $\varphi_{k}:=\varphi_{k}^{\prime} \circ \psi=\left.p r_{k} \circ \varphi\right|_{H}$ are equal to

$$
\varphi_{k}: H \rightarrow E^{(k)} \quad(x, y) \mapsto\left(x_{0}+(-1)^{k} x_{1} i, y_{0}+(-1)^{k} y_{1} i\right)
$$

where

$$
\begin{align*}
& x_{k}:=\frac{c_{k}\left(x^{4}-6 x^{2}+1\right)+(-1)^{k} 4 c_{k+1} x\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}+d_{k}, \\
& y_{k}:=\frac{e_{k} x\left(x^{2}-3\right)+(-1)^{k} e_{k+1}\left(3 x^{2}-1\right)}{\left(x^{2}+1\right)^{3}} y . \tag{1}
\end{align*}
$$

It is worth stressing that $x_{k}, y_{k} \in \mathbb{F}_{q}(H)$.
Let $\left(J^{\prime}\right)^{\pi}$ (resp. A^{π}) be the subgroup of all π-invariant points on J^{\prime} (resp. A). Obviously, $\psi: J\left(\mathbb{F}_{q}\right) \xrightarrow{\sim}\left(J^{\prime}\right)^{\pi}$. Besides, $\widehat{\varphi}^{\prime}: A^{\pi} \xrightarrow{\sim}\left(J^{\prime}\right)^{\pi}$ (or, equivalently, $\left.\varphi^{\prime}:\left(J^{\prime}\right)^{\pi} \xrightarrow{\sim} A^{\pi}\right)$, because $\varphi^{\prime} \circ$ $\widehat{\varphi}^{\prime}=[2]$ and $A[2] \cap A^{\pi}$ is the trivial group. Finally, $p r_{k}: A^{\pi} \xrightarrow{\sim} E^{(k)}\left(\mathbb{F}_{q^{2}}\right)$ with the inverse maps

$$
p r_{k}^{-1}: E^{(k)}\left(\mathbb{F}_{q^{2}}\right) \xrightarrow{\sim} A^{\pi} \quad p r_{0}^{-1}: P \mapsto(P, \operatorname{Fr}(P)), \quad p r_{1}^{-1}: P \mapsto(\operatorname{Fr}(P), P) .
$$

Let's summarize the main result of this paragraph.
Theorem 1. We have the sequence of morphisms

$$
H \subset J \xrightarrow{\varphi} A \xrightarrow{p r_{\zeta}} E^{(k)} \quad \text { such that } \quad H\left(\mathbb{F}_{q}\right) \subset J\left(\mathbb{F}_{q}\right) \xrightarrow{\varphi} A^{\pi} \xrightarrow{p r_{k}} E^{(k)}\left(\mathbb{F}_{q^{2}}\right) .
$$

2 Encoding $h: \mathbb{F}_{q} \rightarrow H\left(\mathbb{F}_{q}\right)$

It is shown in [16] that the \mathbb{F}_{q}-curve H from the previous paragraph has the affine form

$$
H: y^{2}=f(x):=f_{6} x^{6}+f_{5} x^{5}+f_{4} x^{4}+f_{3} x^{3}-f_{4} x^{2}+f_{5} x-f_{6}
$$

with the infinite points $\mathcal{O}_{ \pm}:=\left(1: \pm \sqrt{f_{6}}: 0\right)$. By virtue of Theorem 1 and the fact that $2 \nmid \# E\left(\mathbb{F}_{q^{2}}\right)$ the polynomial f has no \mathbb{F}_{q}-roots. Indeed, if $f(x)=0$ for $x \in \mathbb{F}_{q}^{*}$ (resp. $x=0$), then $f\left(-x^{-1}\right)=0$ (resp. $f_{6}=0$, i.e., $\mathcal{O}_{+}=\mathcal{O}_{-}$), because $f\left(-x^{-1}\right)=-f(x) / x^{6}$. The equality $x=-x^{-1}$ holds only for $x= \pm i \notin \mathbb{F}_{q}$. Therefore H can not possess the unique Weierstrass \mathbb{F}_{q}-point. However, as is well known [19, Lemma 8.1.3], two distinct such points give a point from $J[2] \cap J\left(\mathbb{F}_{q}\right)$.

The involutions $\pm \alpha: H^{\prime} \xrightarrow{\sim} H^{\prime}$ are transformed to ones

$$
\pm \alpha: H \xrightarrow{\sim} H \quad(X: Y: Z) \mapsto(-Z: \pm i Y: X) .
$$

In particular, $P_{ \pm}:=\left(0, \pm \sqrt{-f_{6}}\right) \stackrel{\alpha}{\longleftrightarrow} \mathcal{O}_{ \pm}$. Thus we have the encoding

$$
h: \mathbb{F}_{q} \rightarrow H\left(\mathbb{F}_{q}\right) \quad x \mapsto \begin{cases}(x, y) & \text { if } y:=\sqrt{f(x)} \in \mathbb{F}_{q}, \\ \alpha(x, y) & \text { if } y \notin \mathbb{F}_{q}, \text { i.e., } i y=\sqrt{-f(x)} \in \mathbb{F}_{q} .\end{cases}
$$

For $n:=(q+1) / 4 \in \mathbb{N}$ put $g(x):=f(x)^{n}$. Abusing the notation, we will often just write f, g. Note that $g^{2}=f^{(q+1) / 2}=\left(\frac{f}{q}\right) f$, where $\left(\frac{f}{q}\right)=f^{(q-1) / 2}$ is the Legendre symbol. It will be convenient to use the notation

$$
X_{ \pm}:=\left\{x \in \mathbb{F}_{q}^{*} \mid \sqrt{ \pm f} \in \mathbb{F}_{q}, \text { i.e., } g^{2}= \pm f\right\}, \quad S:=p r_{x}^{-1}\left(X_{+}\right)
$$

where $p r_{x}$ is the projection $H \rightarrow \mathbb{A}_{x}^{1}$. Then $x \mapsto-x^{-1}$ is a bijection between X_{+}and X_{-}.
Unfortunately, in addition to finding the square root the previous definition of h requires to compute the Legendre symbol. However (up to a sign of y) the encoding can be rewritten in the following way:

$$
h: \mathbb{F}_{q} \rightarrow H\left(\mathbb{F}_{q}\right) \quad x \mapsto \begin{cases}\mathcal{O}_{+} & \text {if } \quad x=0 \text { and } \sqrt{f_{6}} \in \mathbb{F}_{q} \tag{2}\\ (x, g) & \text { if } \quad g^{2}=f \\ \left(-x^{-1}, g x^{-3}\right) & \text { if } \quad g^{2}=-f .\end{cases}
$$

In practice, h can be restricted to \mathbb{F}_{q}^{*} in order to avoid hitting the point \mathcal{O}_{+}. Representing the coordinates of $h(x)$ by their numerators and denominators (i.e., 4 elements of \mathbb{F}_{q}), we get

Remark 1. The encoding h is computed in constant time of an exponentiation in \mathbb{F}_{q}.
The same is true for $\varphi_{0} \circ h: \mathbb{F}_{q} \rightarrow E\left(\mathbb{F}_{q^{2}}\right)$. Indeed, by definition, $\varphi_{0} \circ-\alpha=\varphi_{0}$, that is $\varphi_{0}\left(-x^{-1}, g x^{-3}\right)=\varphi_{0}(x, i g)$. Hence we do not have to find x^{-1} before evaluating the covering $\operatorname{map} \varphi_{0}$.

Obviously, $\# h^{-1}\left(P_{ \pm}\right), \# h^{-1}\left(\mathcal{O}_{ \pm}\right) \leqslant 1$. In turn, for any $x_{0}, x_{1} \in X_{+}$(or X_{-}) such that $h\left(x_{0}\right)=h\left(x_{1}\right)$ we have $x_{0}=x_{1}$. However for some $x \in \mathbb{F}_{q}^{*}$ maybe $h(x)=h\left(-x^{-1}\right)$. Therefore we obtain

Lemma 2. For any point $P \in H\left(\mathbb{F}_{q}\right)$ we have $\# h^{-1}(P) \leqslant 2$ and hence $q / 2 \leqslant \# \operatorname{Im}(h)$.
The last definition of h can be made injective if to set the sign of the y-coordinate more accurately (e.g., as in $[8, \S 2]$), but in this case we do not know how to correctly modify the proof of the next theorem. As is easily seen, actually $\# H\left(\mathbb{F}_{q}\right)=q+1$.

Theorem 2. The encoding $h: \mathbb{F}_{q} \rightarrow H\left(\mathbb{F}_{q}\right)$ is B-well-distributed in the sense of $[20$, Definition 1], where $B:=18+O\left(q^{-1 / 2}\right)$.

Proof. Consider the functions $f_{+}:=y, f_{-}:=(-1)^{n} x y$ on the curve H. Notice that $\left(\frac{f_{ \pm}}{q}\right)=1$ whenever $x \in X_{ \pm}$and $y=y(h(x))$. Indeed, $\left(\frac{g}{q}\right)=\left(\frac{f}{q}\right)^{n}=1$ if $x \in X_{+}$(resp. $(-1)^{n}$ if $\left.x \in X_{-}\right)$. And for $x \in X_{-}$we have $\left(\frac{y}{q}\right)=(-1)^{n}\left(\frac{x}{q}\right)$. Given a non-trivial character $\chi: J\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{C}^{*}$ we see that

$$
\sum_{x \in X_{ \pm}} \chi(h(x))=\sum_{P \in p r_{x}^{-1}\left(X_{+}\right)} \frac{1+\left(\frac{f_{ \pm}(P)}{q}\right)}{2} \cdot \chi(P) .
$$

As a consequence,

$$
\left|\sum_{x \in X_{ \pm}} \chi(h(x))\right| \leqslant \frac{1}{2} \sum_{k \in\{0,1\}}\left|\sum_{P \in H\left(\mathbb{F}_{q}\right)}\left(\frac{f_{ \pm}^{k}(P)}{q}\right) \cdot \chi(P)\right|+O(1) .
$$

Here notation $O(1)$ is used to avoid handling the set $p r_{x}^{-1}(\{0, \infty\})=\left\{P_{ \pm}, \mathcal{O}_{ \pm}\right\}$. According to [20, Theorem 7] and the fact that

$$
\operatorname{deg}\left(f_{+}\right)=\operatorname{deg}\left(p r_{y}\right)=6, \quad \operatorname{deg}\left(f_{-}\right)=\operatorname{deg}\left(p r_{x}\right)+\operatorname{deg}\left(p r_{y}\right)=8
$$

(where $p r_{y}$ is the projection $H \rightarrow \mathbb{A}_{y}^{1}$) we obtain

$$
\left|\sum_{P \in H\left(\mathbb{F}_{q}\right)}\left(\frac{f_{ \pm}^{k}(P)}{q}\right) \cdot \chi(P)\right| \leqslant 2\left(g(H)-1+k \operatorname{deg}\left(f_{ \pm}\right)\right) \sqrt{q} \leqslant\left\{\begin{array}{lll}
2(1+6 k) \sqrt{q} & \text { for } & + \\
2(1+8 k) \sqrt{q} & \text { for } & -
\end{array}\right.
$$

Thus

$$
\left|\sum_{x \in X_{ \pm}} \chi(h(x))\right| \leqslant O(1)+\left\{\begin{array}{lll}
8 \sqrt{q} & \text { for } & + \\
10 \sqrt{q} & \text { for } & -
\end{array}\right.
$$

and hence

$$
\left|\sum_{x \in \mathbb{F}_{q}} \chi(h(x))\right| \leqslant\left|\sum_{x \in X_{+}} \chi(h(x))\right|+\left|\sum_{x \in X_{-}} \chi(h(x))\right|+O(1) \leqslant 18 \sqrt{q}+O(1) .
$$

The theorem is proved.
Further, from [10, Exercise 10.7.9], [20, Corollary 4] it immediately follows that
Corollary 1. The distribution on $J\left(\mathbb{F}_{q}\right)$ defined by $h^{\otimes 3}: \mathbb{F}_{q}^{3} \rightarrow J\left(\mathbb{F}_{q}\right)$ is ϵ-statistically indistinguishable [2, Definition 3] from the uniform one, where $\epsilon:=18^{3} q^{-1 / 2}+O\left(q^{-3 / 4}\right)$.

According to Remark 1 the encoding $h^{\otimes 3}$ is computable in constant time of 3 exponentiations in \mathbb{F}_{q}. Finally, it is easily shown that $h^{\otimes 3}$ is also samplable [2, Definition 4]. Therefore we establish

Corollary 2. The encoding $h^{\otimes 3}$ is admissible.

References

[1] N. El Mrabet, M. Joye, Guide to Pairing-Based Cryptography, Cryptography and Network Security Series, Chapman and Hall/CRC, New York, 2017.
[2] E. Brier et al., "Efficient indifferentiable hashing into ordinary elliptic curves", Advances in Cryptology - CRYPTO 2010, LNCS, 6223, ed. T. Rabin, Springer, Berlin, 2010, 237-254.
[3] A. Faz-Hernandez et al., Hashing to elliptic curves, https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve, 2021.
[4] J. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, New York, 2009.
[5] D. Koshelev, Hashing to elliptic curves of $j=0$ and quadratic imaginary orders of class number 2, ePrint IACR 2020/969, 2021.
[6] D. Koshelev, Hashing to elliptic curves of j-invariant 1728, ePrint IACR 2019/1294, accepted in Cryptography and Communications, 2020.
[7] D. Bernstein et al., "Elligator: Elliptic-curve points indistinguishable from uniform random strings", ACM SIGSAC Conference on Computer \& Communications Security, 2013, 967-980.
[8] R. Wahby, D. Boneh, "Fast and simple constant-time hashing to the BLS12-381 elliptic curve", IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019:4, 154-179.
[9] Y. Sakemi et al., Pairing-friendly curves, https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves, 2020.
[10] S. Galbraith, Mathematics of public key cryptography, Cambridge University Press, New York, 2012.
[11] P.-A. Fouque, M. Tibouchi, "Deterministic encoding and hashing to odd hyperelliptic curves", Pairing-Based Cryptography - Pairing 2010, LNCS, 6487, eds. M. Joye, A. Miyaji, A. Otsuka, Springer, Berlin, 2010, 265-277.
[12] P.-A. Fouque, A. Joux, M. Tibouchi, "Injective encodings to elliptic curves", Australasian Conference on Information Security and Privacy, LNCS, 7959, eds. C. Boyd, L. Simpson, Springer, Berlin, 2013, 203-218.
[13] D. Bernstein, T. Lange, "Hyper-and-elliptic-curve cryptography", LMS Journal of Computation and Mathematics, 17:A (2014), 181-202.
[14] J. Scholten, Weil restriction of an elliptic curve over a quadratic extension, https://www.researchgate.net/publication/228946053_Weil_restriction_of_an_elliptic_curve_over_a_quadratic_ extension, 2003.
[15] D. Boneh et al., BLS signatures, https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature, 2020.
[16] D. Koshelev, Magma code, https://github.com/dishport/Faster-indifferentiable-hashing-to-elliptic-Fq2-curves, 2021.
[17] E. Kani, "The number of curves of genus two with elliptic differentials", Journal fur die Reine und Angewandte Mathematik, 485 (1997), 93-122.
[18] E. Howe, F. Leprévost, B. Poonen, "Large torsion subgroups of split Jacobians of curves of genus two or three", Forum Mathematicum, 12:3 (2000), 315-364.
[19] B. Smith, Explicit endomorphisms and correspondences, https://ses.library.usyd.edu.au/handle/2123/1066, 2005.
[20] R. Farashahi et al., "Indifferentiable deterministic hashing to elliptic and hyperelliptic curves", Mathematics of Computation, 82:281 (2013), 491-512.

[^0]: ${ }^{1}$ web page: https://www.researchgate.net/profile/Dimitri_Koshelev email: dishport@yandex.ru

