Faster indifferentiable hashing to elliptic \mathbb{F}_{q^2} -curves

Dmitrii Koshelev¹

Computer sciences and networks department, Télécom Paris

Abstract. Let \mathbb{F}_q be a finite field and $E: y^2 = x^3 + ax + b$ be an elliptic \mathbb{F}_{q^2} -curve of $j(E) \notin \mathbb{F}_q$. This article provides a new constant-time hash function $\mathcal{H}: \{0,1\}^* \to E(\mathbb{F}_{q^2})$ indifferentiable from a random oracle. Furthermore, \mathcal{H} can be computed with the cost of 3 exponentiations in \mathbb{F}_q . In comparison, the actively used (indifferentiable constant-time) simplified SWU hash function to $E(\mathbb{F}_{q^2})$ computes 2 exponentiations in \mathbb{F}_{q^2} , i.e., it costs 4 ones in \mathbb{F}_q . In pairing-based cryptography one often uses the hashing to elliptic \mathbb{F}_{q^2} -curves $E_b: y^2 = x^3 + b$ (of j-invariant 0) having an \mathbb{F}_{q^2} -isogeny $\tau: E \to E_b$ of small degree. Therefore the composition $\tau \circ \mathcal{H}: \{0,1\}^* \to \tau(E(\mathbb{F}_{q^2}))$ is also an indifferentiable constant-time hash function.

Key words: constant-time implementation, hashing to elliptic and hyperelliptic curves, indifferentiability from a random oracle, isogenies, pairing-based cryptography, Weil restriction.

Introduction

Suppose there is the subgroup $G \subset E_b(\mathbb{F}_{q^2})$ of a large prime order $\ell \mid N := \#E_b(\mathbb{F}_{q^2})$. As is well known, only groups of such order are used in discrete logarithm cryptography. Many protocols of pairing-based cryptography [1] use a hash function $\mathcal{H} \colon \{0,1\}^* \to G$ indifferentiable from a random oracle [2, Definition 2]. In particular, \mathcal{H} should be constant-time, i.e., the computation time of its value is independent of an input argument. The latter is necessary to be protected against timing attacks [1, §8.2.2, §12.1.1]. A survey of this kind of hashing is well represented in [1, §8], [3].

It is sufficient to find a hash function $\mathcal{H}: \{0,1\}^* \to E_b(\mathbb{F}_{q^2})$. Indeed, one of quick methods $[1, \S 8.5]$ can be applied for computing the cofactor multiplication $[N/\ell]: E_b(\mathbb{F}_{q^2}) \to G$. This process obviously preserves the indifferentiability property. By the way, in practice q is almost always a prime such that $q \equiv 3 \pmod{4}$, i.e., $i := \sqrt{-1} \notin \mathbb{F}_q$ in order to accelerate the arithmetic of the field \mathbb{F}_{q^2} (see, e.g., $[1, \S 5.2.1]$).

Many hash functions \mathcal{H} are induced from some map $h: \mathbb{F}_{q^2} \to E_b(\mathbb{F}_{q^2})$, called *encoding*, such that $\#\mathrm{Im}(h) = \Theta(q^2)$. In turn, $q^2 \approx \#E_b(\mathbb{F}_{q^2})$ according to the Hasse inequality [4, Theorem V.1.1]. In other words, h should cover most \mathbb{F}_{q^2} -points of E_b . However there are no surjective encodings h for *ordinary* (i.e., *non-supersingular*) curves E_b (cf. [1, §8.3.2]). As is well known [1, §4], only such curves are interesting in pairing-based cryptography at the moment. Thus the trivial composition $h \circ \eta$ with a hash function $\eta: \{0,1\}^* \to \mathbb{F}_{q^2}$ is not indifferentiable.

¹web page: https://www.researchgate.net/profile/Dimitri_Koshelev email: dishport@yandex.ru

Instead, it is often considered the composition $\mathcal{H}:=h^{\otimes 2}\circ\eta^2$ of the map

$$h^{\otimes 2} \colon \mathbb{F}_{q^2}^2 \to E_b(\mathbb{F}_{q^2}) \qquad (t_0, t_1) \mapsto h(t_0) + h(t_1)$$

(also called encoding) and the hash function

$$\eta^2 : \{0,1\}^* \to \mathbb{F}_{q^2}^2 \qquad m \mapsto (\eta(m|0), \, \eta(m|1)),$$

where | is the concatenation operation. In this case, the indifferentiability of \mathcal{H} follows from [2, Theorem 1] if η is so and $h^{\otimes 2}$ is admissible in the sense of [2, Definition 4].

There is the so-called SWU encoding [1, §8.3.4], which is applicable to any elliptic \mathbb{F}_{q^2} curve (not necessarily of j-invariant 0). Nevertheless, it generally requires the computation
of 2 Legendre symbols (i.e., quadratic residuosity tests) in \mathbb{F}_q . Unfortunately, this operation
(as well as the inversion one in \mathbb{F}_q) is vulnerable to timing attacks if it is not implemented as
an exponentiation in \mathbb{F}_q (see, e.g., [1, §2.2.9, §5.1.6]). But the latter is known to be a fairly
laborious operation.

There is also the *simplified SWU encoding* [2, §7], which, on the contrary, can be implemented without Legendre symbols at all by virtue of [5, §2]. This encoding exists for all elliptic curves E whose $j(E) \neq 0$. The most difficult case j(E) = 1728 is processed in [6]. In turn, the quite popular *Elligator 2 encoding* [7, §5] (very similar in nature) is appropriate for E_b only in the case $\sqrt[3]{b} \in \mathbb{F}_{q^2}$, that is $2 \mid N$.

Sometimes it is possible to use an \mathbb{F}_{q^2} -isogeny $\tau \colon E \to E_b$ of small degree (the Wahby–Boneh approach [8]). For example, the curve BLS12-381 [8, §2.1] (whose b = 4(1+i) and $\lceil \log_2(q) \rceil = 381$) has such an isogeny of degree 3 for which $j(E) = -2^{15}3 \cdot 5^3$. Today, this curve is a defacto standard in the real-world pairing-based cryptography [9, §4.1.3]. More precisely, the encoding to $E_b(\mathbb{F}_{q^2})$ can be constructed simply as the composition $\tau \circ h$, where $h \colon \mathbb{F}_{q^2} \to E(\mathbb{F}_{q^2})$ is any one. It is clear that $(\tau \circ h)^{\otimes 2} = \tau \circ h^{\otimes 2}$ is admissible as an encoding to the subgroup $\tau(E(\mathbb{F}_{q^2})) \subset E_b(\mathbb{F}_{q^2})$. Since ℓ is large, actually $G \subset \tau(E(\mathbb{F}_{q^2}))$.

We show in §1 that under the conditions $2 \nmid \#E(\mathbb{F}_{q^2})$ and $j(E) \not\in \mathbb{F}_q$ there is a 2-sheeted cover $\varphi_0 \colon H \to E$ from a real (split) hyperelliptic \mathbb{F}_q -curve H (see, e.g., [10, §10.1.1]) of geometric genus 2. Then in §2 we construct a very simple encoding $h \colon \mathbb{F}_q \to H(\mathbb{F}_q)$ (2) such that the map

$$h^{\otimes 3} : \mathbb{F}_q^3 \to J(\mathbb{F}_q) \qquad (x_0, x_1, x_2) \mapsto h(x_0) + h(x_1) + h(x_2)$$

is admissible, where J is the Jacobian of H. Encodings to similar hyperelliptic curves are discussed in [11], [12].

Thus we automatically get the encoding $\varphi_0 \circ h \colon \mathbb{F}_q \to E(\mathbb{F}_{q^2})$. Moreover, by virtue of Theorem 1 its cubic power $(\varphi_0 \circ h)^{\otimes 3} \colon \mathbb{F}_q^3 \to E(\mathbb{F}_{q^2})$ is also admissible. As above, its composition with the indifferentiable hash function

$$\eta^3 \colon \{0,1\}^* \to \mathbb{F}_q^3 \qquad m \mapsto (\eta(m|00), \ \eta(m|01), \ \eta(m|10)),$$

where $\eta: \{0,1\}^* \to \mathbb{F}_q$, gives such one to $E(\mathbb{F}_{q^2})$.

In other terms, we construct an \mathbb{F}_q -isogeny $\phi := \theta^{-1} \circ \varphi \colon J \to R$ (with the kernel $(\mathbb{Z}/2)^2$) to the Weil restriction R (see, e.g., [10, §5.7]) of E with respect to the extension $\mathbb{F}_{q^2}/\mathbb{F}_q$, where φ (resp. θ^{-1}) is defined in §1 (resp. [6, §1]). Formulas of such an isogeny are found in [13] based on the classical result [14]. Of course, one can apply these formulas for the hashing

instead of ours (1), which are derived differently. By the way, it is preferable to use $(\varphi_0 \circ h)^{\otimes 3}$ rather than $\phi \circ h^{\otimes 3}$, because the addition in $E(\mathbb{F}_{q^2}) = R(\mathbb{F}_q)$ seems to be much more efficient than in $J(\mathbb{F}_q)$ (see [10, §10.4.2]).

The simplified SWU encoding h computes 1 square root in \mathbb{F}_{q^2} , hence the corresponding hash function \mathcal{H} (as well as $h^{\otimes 2}$) computes 2 ones. The fact is that evaluating η is incomparably faster [3, §5]. In turn, 1 square root in \mathbb{F}_{q^2} costs 2 ones in \mathbb{F}_q according to [1, Algorithm 5.18]. The inversion operation and quadratic test in this algorithm are not taken into account by the same reason as in [5, §2]. As is well known, a square root in \mathbb{F}_q can be represented as an exponentiation in \mathbb{F}_q if $q \equiv 3 \pmod{4}$. In total, \mathcal{H} is implementable with the cost of 4 exponentiations in \mathbb{F}_q , although this is not remarked in [8, §4.2]. In comparison, the new hash function performs 3 square roots (i.e., exponentiations) in \mathbb{F}_q .

In particular, applying the latter to the widely used *BLS multi-signature* (aggregate signature) [15] with n different messages, the verifier should compute only 3n exponentiations in \mathbb{F}_q rather than 4n ones during the hashing phase. The author was recently informed that $n \approx 16000$ in the famous blockchain Ethereum, which, like many others, uses the curve BLS12-381.

We suppose that $N = \#E(\mathbb{F}_{q^2})$ is odd just to be definite, that is this condition can be omitted if desired. We restrict ourselves to this case, because it is the most difficult and BLS12-381 satisfies it. The more essential requirement consists in the fact that $j(E) \notin \mathbb{F}_q$ (cf. Lemma 1). Fortunately, as shown in the computer algebra system Magma [16] the mentioned curve is \mathbb{F}_{q^2} -isogenous (with the help of an isogeny of degree 7) to the curve E with

$$j(E) = -3802283679744000\sqrt{21} - 17424252776448000,$$

where $\sqrt{21} \notin \mathbb{F}_q$. Our code [16] also generates the coefficients of H, φ_0 and E, τ in the generic case.

1 Two-sheeted cover $\varphi_0 \colon H \to E$

Consider a finite field \mathbb{F}_q of characteristic > 3 and elliptic \mathbb{F}_{q^2} -curves

$$E = E^{(0)}: y^2 = f_0(x) := x^3 + ax + b,$$
 $E^{(1)}: y^2 = f_1(x) := x^3 + a^q x + b^q.$

They are obviously \mathbb{F}_{q^2} -isogenous by means of the Frobenius morphism Fr. If $j(E) \in \mathbb{F}_q$ (that is $j(E) = j(E^{(1)})$), then, in addition, there is an $\overline{\mathbb{F}_q}$ -isomorphism

$$\sigma \colon E \cong E^{(1)} \qquad (x,y) \mapsto (\lambda^2 x, \lambda^3 y),$$

where

$$\lambda := \begin{cases} a^{(q-1)/4} = b^{(q-1)/6} & \text{if} \quad j(E) \not\in \{0, 1728\}, \text{ i.e., } ab \neq 0, \\ a^{(q-1)/4} & \text{if} \quad j(E) = 1728, \text{ i.e., } b = 0, \\ b^{(q-1)/6} & \text{if} \quad j(E) = 0, \text{ i.e., } a = 0. \end{cases}$$

Moreover, $\lambda \in \mathbb{F}_{q^2}$ whenever $ab \neq 0$, because $\lambda = \lambda^3/\lambda^2 = (b/a)^{(q-1)/2}$. The same is true if b = 0 and $q \equiv 1 \pmod{4}$ (resp. a = 0 and $q \equiv 1 \pmod{3}$).

Further, put $A := E \times E^{(1)}$ with the projections $pr_k : A \to E^{(k)}$ for $k \in \mathbb{Z}/2$. As it will become clear later, we need to work with π -invariant objects, where

$$\pi: A \xrightarrow{\sim} A \qquad (P_0, P_1) \mapsto (\operatorname{Fr}(P_1), \operatorname{Fr}(P_0))$$

is the "twisted" Frobenius endomorphism.

Consider the decompositions

$$f_0(x) = (x - r_0)(x - r_1)(x - r_2),$$
 $f_1(x) = (x - r_0^q)(x - r_1^q)(x - r_2^q),$

where

$$0 = r_0 + r_1 + r_2,$$
 $a = r_0 r_1 + r_0 r_2 + r_1 r_2,$ $b = -r_0 r_1 r_2.$

We will study the most difficult situation when $r_j \notin \mathbb{F}_{q^2}$ for $j \in \mathbb{Z}/3$ or, without lost of generality, $r_j^{q^2} = r_{j+1}$. For instance, the case b = 0 is excluded from our consideration.

We are interested in the isomorphism $\chi \colon E[2] \cong E^{(1)}[2]$ defined by the bijection $r_j \mapsto r_{j+1}^q$. Its graph $\Gamma \simeq (\mathbb{Z}/2)^2$ is clearly π -invariant, hence the corresponding isogeny $\widehat{\varphi}' \colon A \to A/\Gamma$ is also π -invariant. Here A/Γ is a principally polarized abelian surface (details see, e.g., in [17, §1]). The isomorphism χ is said to be reducible if A/Γ is $\overline{\mathbb{F}_q}$ -isomorphic (as PPAS) to the direct product of 2 elliptic curves.

Lemma 1. The following statements are equivalent:

- 1. χ is reducible;
- 2. χ is the restriction to E[2] of an $\overline{\mathbb{F}_q}$ -isomorphism $E \cong E^{(1)}$;
- 3. $j(E) \in \mathbb{F}_q$ and moreover $q \equiv 1 \pmod{3}$ if j(E) = 0.

Proof. Concerning the equivalence of the first two statements see [18, Proposition 3]. Let's prove that of the last two. We start from the implication $3 \Rightarrow 2$. The existence of the isomorphism σ implies that $f_1(\lambda^2 r_j) = 0$. In the case $\lambda^2 r_0 = r_1^q$ we get $\lambda^2 r_j = r_{j+1}^q$, because $\lambda \in \mathbb{F}_{q^2}$.

If $\lambda^2 r_0 = r_0^q$, then similarly $\lambda^2 r_j = r_j^q$. Therefore $\lambda^{2q} r_j^q = r_{j+1}$ and hence $\lambda^{2(q+1)} r_j = r_{j+1}$. As a result, $\lambda^{2(q+1)} = \omega \in \mathbb{F}_q$, where $\omega^2 + \omega + 1 = 0$. In other words, a = 0 and $r_j = -\omega^j \sqrt[3]{b}$. Since $r_j = \omega r_{j+2}$, we have $\omega \lambda^2 r_{j+2} = r_j^q$, that is $\omega \lambda^2 r_j = r_{j+1}^q$. The case $\lambda^2 r_0 = r_2^q$ is processed in the same way.

The inverse implication $(2 \Rightarrow 3)$ is not trivial only for j(E) = 0. Suppose the opposite: $q \equiv 2 \pmod{3}$ or, equivalently, $\omega^q = \omega^2$. We see that

$$\frac{r_{j+1}^q}{\lambda^2 r_j} = \frac{\omega^{j+2} (\sqrt[3]{b})^q}{\lambda^2 \sqrt[3]{b}} = \frac{\omega^{j+2} b^{(q-1)/3}}{\lambda^2} = \omega^{j+2+\ell}$$

for some fixed $\ell \in \mathbb{Z}/3$. Since this cubic root depends on j, we come to a contradiction.

In accordance with [4, Example V.4.4] the condition $q \equiv 1 \pmod{3}$ is fulfilled if E is an ordinary curve of j(E) = 0.

Hereafter we assume that χ is irreducible, i.e., $J' := A/\Gamma$ is the Jacobian of some hyperelliptic curve H' of geometric genus 2. Applying [18, Proposition 4] to χ , we obtain, modulo notation, the following explicit formulas (verified in [16]):

$$R_0 := \frac{(r_0 - r_2)^2}{(r_1 - r_0)^q} + \frac{(r_1 - r_0)^2}{(r_2 - r_1)^q} + \frac{(r_2 - r_1)^2}{(r_0 - r_2)^q}, \qquad R_1 := r_0(r_0 - r_2)^q + r_1(r_1 - r_0)^q + r_2(r_2 - r_1)^q;$$

 $A := \Delta^q R_0 / R_1$, where $\Delta = -(4a^3 + 27b^2)$ is the discriminant of E;

$$A_0 := A(r_0 - r_1)(r_1 - r_2), \qquad A_1 := A(r_1 - r_2)(r_2 - r_0), \qquad A_2 := A(r_2 - r_0)(r_0 - r_1);$$

Note that $A_j^{q^2} = A_{j+1}$. Finally, the hyperelliptic curve is given by the equation

$$H': y^2 = f'(x) := -(A_0x^2 + A_1^q)(A_1x^2 + A_2^q)(A_2x^2 + A_0^q).$$

Besides, there are 2-sheeted covers

$$\varphi_0': H' \to E$$
 $(x,y) \mapsto (c/x^2 + d, ey/x^3), \qquad \varphi_1': H' \to E^{(1)} \qquad (x,y) \mapsto (c^q x^2 + d^q, e^q y),$

where

$$c := -A^{q-1} \frac{R_1}{R_0}, \qquad d := \left(r_0 \frac{(r_2 - r_1)^2}{(r_0 - r_2)^q} + r_1 \frac{(r_0 - r_2)^2}{(r_1 - r_0)^q} + r_2 \frac{(r_1 - r_0)^2}{(r_2 - r_1)^q} \right) / R_0, \qquad e := \frac{\Delta^q}{A^3}.$$

It is easy to prove that the isogeny $\varphi': J' \to A$, dual to $\widehat{\varphi}'$, is the natural extension of the morphism

$$(\varphi_0', \varphi_1') \colon H' \to A \qquad P \mapsto (\varphi_0'(P), \varphi_1'(P)).$$

It is an example of degenerate *Richelot isogeny* [19, §8.3].

The covers φ_k' are nothing but the natural maps $\varphi_0'\colon H'\to H'/-\alpha\simeq E$ and $\varphi_1'\colon H'\to H'/\alpha\simeq E^{(1)}$ under the involutions

$$\pm \alpha \colon H' \xrightarrow{\sim} H' \qquad (x,y) \to (-x, \pm y).$$

And through (φ'_0, φ'_1) the latter trivially correspond to

$$\pm \alpha \colon A \cong A \qquad (P_0, P_1) \mapsto (\mp P_0, \pm P_1).$$

As usual, H' has the smooth model $Y^2 = F'(X, Z) := Z^6 f'(X/Z)$ in the weighted projective space $\mathbb{P}(1,3,1)$ with the coordinates (X:Y:Z), where x=X/Z, $y=Y/Z^3$. The correct analogue of the "twisted" Frobenius endomorphism on H' is the map

$$\pi\colon H'\to H' \qquad (X:Y:Z)\mapsto (Z^q:Y^q:X^q),$$

because under this definition the morphism (φ'_0, φ'_1) (and hence φ') is π -invariant.

For the sake of simplicity throughout the rest of the article $q \equiv 3 \pmod 4$, that is $i := \sqrt{-1} \notin \mathbb{F}_q$. Although further formulas can be easily modified in the opposite case, choosing any quadratic non-residue in \mathbb{F}_q instead of -1. It is readily checked that $H: Y^2 =$

F'(X+iZ,X-iZ) is an \mathbb{F}_q -curve. In other terms, $\psi^{-1} \circ \pi \circ \psi$ is the "ordinary" Frobenius endomorphism on H, where

$$\psi \colon H \xrightarrow{\sim} H' \qquad (X : Y : Z) \mapsto (X + iZ : Y : X - iZ),$$

$$\psi^{-1} \colon H' \xrightarrow{\sim} H \qquad (X : Y : Z) \mapsto \left(\frac{X + Z}{2} : Y : \frac{X - Z}{2i}\right).$$

Denote by J the Jacobian of H. Let us keep the notation for the natural extensions $\psi \colon J \cong J'$ and $\psi^{-1} \colon J' \cong J$. Of course, they are still mutually inverse. Also, put $\varphi := \varphi' \circ \psi \colon J \to A$. Introduce new constants $c_k, d_k, e_k \in \mathbb{F}_q$ such that

$$c = c_0 + c_1 i,$$
 $d = d_0 + d_1 i,$ $e = e_0 + e_1 i.$

Using Magma [16], we check that the compositions $\varphi_k := \varphi'_k \circ \psi = pr_k \circ \varphi|_H$ are equal to

$$\varphi_k \colon H \to E^{(k)}$$
 $(x, y) \mapsto (x_0 + (-1)^k x_1 i, y_0 + (-1)^k y_1 i),$

where

$$x_{k} := \frac{c_{k}(x^{4} - 6x^{2} + 1) + (-1)^{k} 4c_{k+1}x(x^{2} - 1)}{(x^{2} + 1)^{2}} + d_{k},$$

$$y_{k} := \frac{e_{k}x(x^{2} - 3) + (-1)^{k} e_{k+1}(3x^{2} - 1)}{(x^{2} + 1)^{3}}y.$$
(1)

It is worth stressing that $x_k, y_k \in \mathbb{F}_q(H)$.

Let $(J')^{\pi}$ (resp. A^{π}) be the subgroup of all π -invariant points on J' (resp. A). Obviously, $\psi \colon J(\mathbb{F}_q) \cong (J')^{\pi}$. Besides, $\widehat{\varphi}' \colon A^{\pi} \cong (J')^{\pi}$ (or, equivalently, $\varphi' \colon (J')^{\pi} \cong A^{\pi}$), because $\varphi' \circ \widehat{\varphi}' = [2]$ and $A[2] \cap A^{\pi}$ is the trivial group. Finally, $pr_k \colon A^{\pi} \cong E^{(k)}(\mathbb{F}_{q^2})$ with the inverse maps

$$pr_k^{-1} \colon E^{(k)}(\mathbb{F}_{q^2}) \xrightarrow{\sim} A^{\pi} \qquad pr_0^{-1} \colon P \mapsto (P, \operatorname{Fr}(P)), \qquad pr_1^{-1} \colon P \mapsto (\operatorname{Fr}(P), P).$$

Let's summarize the main result of this paragraph.

Theorem 1. We have the sequence of morphisms

$$H \subset J \xrightarrow{\varphi} A \xrightarrow{pr_k} E^{(k)}$$
 such that $H(\mathbb{F}_q) \subset J(\mathbb{F}_q) \xrightarrow{\varphi} A^{\pi} \xrightarrow{pr_k} E^{(k)}(\mathbb{F}_{q^2}).$

2 Encoding $h: \mathbb{F}_q \to H(\mathbb{F}_q)$

It is shown in [16] that the \mathbb{F}_q -curve H from the previous paragraph has the affine form

$$H: y^2 = f(x) := f_6 x^6 + f_5 x^5 + f_4 x^4 + f_3 x^3 - f_4 x^2 + f_5 x - f_6$$

with the infinite points $\mathcal{O}_{\pm} := (1 : \pm \sqrt{f_6} : 0)$. By virtue of Theorem 1 and the fact that $2 \nmid \#E(\mathbb{F}_{q^2})$ the polynomial f has no \mathbb{F}_q -roots. Indeed, if f(x) = 0 for $x \in \mathbb{F}_q^*$ (resp. x = 0), then $f(-x^{-1}) = 0$ (resp. $f_6 = 0$, i.e., $\mathcal{O}_+ = \mathcal{O}_-$), because $f(-x^{-1}) = -f(x)/x^6$. The equality

 $x = -x^{-1}$ holds only for $x = \pm i \notin \mathbb{F}_q$. Therefore H can not possess the unique Weierstrass \mathbb{F}_q -point. However, as is well known [19, Lemma 8.1.3], two distinct such points give a point from $J[2] \cap J(\mathbb{F}_q)$.

The involutions $\pm \alpha \colon H' \cong H'$ are transformed to ones

$$\pm \alpha \colon H \xrightarrow{\sim} H \qquad (X : Y : Z) \mapsto (-Z : \pm iY : X).$$

In particular, $P_{\pm} := (0, \pm \sqrt{-f_6}) \stackrel{\alpha}{\longleftrightarrow} \mathcal{O}_{\pm}$. Thus we have the encoding

$$h \colon \mathbb{F}_q \to H(\mathbb{F}_q) \qquad x \mapsto \begin{cases} (x,y) & \text{if} \quad y := \sqrt{f(x)} \in \mathbb{F}_q, \\ \alpha(x,y) & \text{if} \quad y \not\in \mathbb{F}_q, \text{ i.e., } iy = \sqrt{-f(x)} \in \mathbb{F}_q. \end{cases}$$

For $n:=(q+1)/4\in\mathbb{N}$ put $g(x):=f(x)^n$. Abusing the notation, we will often just write f, g. Note that $g^2=f^{(q+1)/2}=\left(\frac{f}{q}\right)f$, where $\left(\frac{f}{q}\right)=f^{(q-1)/2}$ is the Legendre symbol. It will be convenient to use the notation

$$X_{\pm} := \{ x \in \mathbb{F}_q^* \mid \sqrt{\pm f} \in \mathbb{F}_q, \text{ i.e., } g^2 = \pm f \}, \qquad S := pr_x^{-1}(X_+),$$

where pr_x is the projection $H \to \mathbb{A}^1_x$. Then $x \mapsto -x^{-1}$ is a bijection between X_+ and X_- .

Unfortunately, in addition to finding the square root the previous definition of h requires to compute the Legendre symbol. However (up to a sign of y) the encoding can be rewritten in the following way:

$$h: \mathbb{F}_q \to H(\mathbb{F}_q) \qquad x \mapsto \begin{cases} \mathcal{O}_+ & \text{if} \quad x = 0 \text{ and } \sqrt{f_6} \in \mathbb{F}_q, \\ (x, g) & \text{if} \quad g^2 = f, \\ (-x^{-1}, gx^{-3}) & \text{if} \quad g^2 = -f. \end{cases}$$
 (2)

In practice, h can be restricted to \mathbb{F}_q^* in order to avoid hitting the point \mathcal{O}_+ . Representing the coordinates of h(x) by their numerators and common denominator (i.e., by 3 elements of \mathbb{F}_q), we get

Remark 1. The encoding h is computed in constant time of an exponentiation in \mathbb{F}_q .

The same is true for $\varphi_0 \circ h : \mathbb{F}_q \to E(\mathbb{F}_{q^2})$. Indeed, by definition, $\varphi_0 \circ -\alpha = \varphi_0$, that is $\varphi_0(-x^{-1}, gx^{-3}) = \varphi_0(x, ig)$. Hence we do not have to find x^{-1} before evaluating the covering map φ_0 .

Obviously, $\#h^{-1}(P_{\pm}), \#h^{-1}(\mathcal{O}_{\pm}) \leq 1$. In turn, for any $x_0, x_1 \in X_+$ (or X_-) such that $h(x_0) = h(x_1)$ we have $x_0 = x_1$. However for some $x \in \mathbb{F}_q^*$ maybe $h(x) = h(-x^{-1})$. Therefore we obtain

Lemma 2. For any point $P \in H(\mathbb{F}_q)$ we have $\#h^{-1}(P) \leq 2$ and hence $q/2 \leq \#\text{Im}(h)$.

The last definition of h can be made injective if to set the sign of the y-coordinate more accurately (e.g., as in [8, §2]), but in this case we do not know how to correctly modify the proof of the next theorem. As is easily seen, actually $\#H(\mathbb{F}_q) = q + 1$.

Theorem 2. The encoding $h: \mathbb{F}_q \to H(\mathbb{F}_q)$ is B-well-distributed in the sense of [20, Definition 1], where $B := 18 + O(q^{-1/2})$.

Proof. Consider the functions $f_+ := y$, $f_- := (-1)^n xy$ on the curve H. Notice that $\left(\frac{f_{\pm}}{q}\right) = 1$ whenever $x \in X_{\pm}$ and $y = y\left(h(x)\right)$. Indeed, $\left(\frac{g}{q}\right) = \left(\frac{f}{q}\right)^n = 1$ if $x \in X_+$ (resp. $(-1)^n$ if $x \in X_-$). And for $x \in X_-$ we have $\left(\frac{y}{q}\right) = (-1)^n \left(\frac{x}{q}\right)$. Given a non-trivial character $\chi: J(\mathbb{F}_q) \to \mathbb{C}^*$ we see that

$$\sum_{x \in X_{\pm}} \chi \left(h(x) \right) = \sum_{P \in pr_x^{-1}(X_+)} \frac{1 + \left(\frac{f_{\pm}(P)}{q} \right)}{2} \cdot \chi(P).$$

As a consequence,

$$\left| \sum_{x \in X_{\pm}} \chi \left(h(x) \right) \right| \leqslant \frac{1}{2} \sum_{k \in \{0,1\}} \left| \sum_{P \in H(\mathbb{F}_q)} \left(\frac{f_{\pm}^k(P)}{q} \right) \cdot \chi(P) \right| + O(1).$$

Here notation O(1) is used to avoid handling the set $pr_x^{-1}(\{0,\infty\}) = \{P_{\pm}, \mathcal{O}_{\pm}\}$. According to [20, Theorem 7] and the fact that

$$\deg(f_{+}) = \deg(pr_{y}) = 6, \qquad \deg(f_{-}) = \deg(pr_{x}) + \deg(pr_{y}) = 8$$

(where pr_y is the projection $H \to \mathbb{A}^1_y$) we obtain

$$\left| \sum_{P \in H(\mathbb{F}_q)} \left(\frac{f_{\pm}^k(P)}{q} \right) \cdot \chi(P) \right| \leqslant 2(g(H) - 1 + k \operatorname{deg}(f_{\pm})) \sqrt{q} \leqslant \begin{cases} 2(1 + 6k)\sqrt{q} & \text{for } +, \\ 2(1 + 8k)\sqrt{q} & \text{for } -. \end{cases}$$

Thus

$$\left| \sum_{x \in X_{\pm}} \chi (h(x)) \right| \leqslant O(1) + \begin{cases} 8\sqrt{q} & \text{for } +, \\ 10\sqrt{q} & \text{for } -, \end{cases}$$

and hence

$$\left| \sum_{x \in \mathbb{F}_q} \chi \big(h(x) \big) \right| \leqslant \left| \sum_{x \in X_+} \chi \big(h(x) \big) \right| + \left| \sum_{x \in X_-} \chi \big(h(x) \big) \right| + O(1) \leqslant 18\sqrt{q} + O(1).$$

The theorem is proved.

Further, from [10, Exercise 10.7.9], [20, Corollary 4] it immediately follows that

Corollary 1. The distribution on $J(\mathbb{F}_q)$ defined by $h^{\otimes 3} \colon \mathbb{F}_q^3 \to J(\mathbb{F}_q)$ is ϵ -statistically indistinguishable [2, Definition 3] from the uniform one, where $\epsilon := 18^3 q^{-1/2} + O(q^{-3/4})$.

According to Remark 1 the encoding $h^{\otimes 3}$ is computable in constant time of 3 exponentiations in \mathbb{F}_q . Finally, it is easily shown that $h^{\otimes 3}$ is also samplable [2, Definition 4]. Therefore we establish

Corollary 2. The encoding $h^{\otimes 3}$ is admissible.

Acknowledgements. The author expresses his gratitude to Justin Drake for the interest shown in this work and for useful comments on the role of hashing to elliptic curves in blockchain technology.

References

- [1] N. El Mrabet, M. Joye, *Guide to Pairing-Based Cryptography*, Cryptography and Network Security Series, Chapman and Hall/CRC, New York, 2017.
- [2] E. Brier et al., "Efficient indifferentiable hashing into ordinary elliptic curves", Advances in Cryptology CRYPTO 2010, LNCS, **6223**, ed. T. Rabin, Springer, Berlin, 2010, 237–254.
- [3] A. Faz-Hernandez et al., *Hashing to elliptic curves*, https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve, 2021.
- [4] J. Silverman, *The arithmetic of elliptic curves*, Graduate Texts in Mathematics, **106**, Springer, New York, 2009.
- [5] D. Koshelev, Hashing to elliptic curves of j=0 and quadratic imaginary orders of class number 2, ePrint IACR 2020/969, 2021.
- [6] D. Koshelev, *Hashing to elliptic curves of j-invariant* 1728, ePrint IACR 2019/1294, accepted in Cryptography and Communications, 2020.
- [7] D. Bernstein et al., "Elligator: Elliptic-curve points indistinguishable from uniform random strings", ACM SIGSAC Conference on Computer & Communications Security, 2013, 967–980.
- [8] R. Wahby, D. Boneh, "Fast and simple constant-time hashing to the BLS12-381 elliptic curve", IACR Transactions on Cryptographic Hardware and Embedded Systems, 2019:4, 154–179.
- [9] Y. Sakemi et al., *Pairing-friendly curves*, https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves, 2020.
- [10] S. Galbraith, Mathematics of public key cryptography, Cambridge University Press, New York, 2012.
- [11] P.-A. Fouque, M. Tibouchi, "Deterministic encoding and hashing to odd hyperelliptic curves", Pairing-Based Cryptography Pairing 2010, LNCS, **6487**, eds. M. Joye, A. Miyaji, A. Otsuka, Springer, Berlin, 2010, 265–277.
- [12] P.-A. Fouque, A. Joux, M. Tibouchi, "Injective encodings to elliptic curves", Australasian Conference on Information Security and Privacy, LNCS, **7959**, eds. C. Boyd, L. Simpson, Springer, Berlin, 2013, 203–218.
- [13] D. Bernstein, T. Lange, "Hyper-and-elliptic-curve cryptography", LMS Journal of Computation and Mathematics, 17:A (2014), 181–202.
- [14] J. Scholten, Weil restriction of an elliptic curve over a quadratic extension, https://www.researchgate.net/publication/228946053_Weil_restriction_of_an_elliptic_curve_over_a_quadratic_extension, 2003.
- [15] D. Boneh et al., BLS signatures, https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature, 2020.
- [16] D. Koshelev, Magma code, https://github.com/dishport/Faster-indifferentiable-hashing-to-elliptic-Fq2-curves, 2021.
- [17] E. Kani, "The number of curves of genus two with elliptic differentials", Journal fur die Reine und Angewandte Mathematik, 485 (1997), 93–122.
- [18] E. Howe, F. Leprévost, B. Poonen, "Large torsion subgroups of split Jacobians of curves of genus two or three", Forum Mathematicum, 12:3 (2000), 315–364.
- [19] B. Smith, Explicit endomorphisms and correspondences, https://ses.library.usyd.edu.au/han-dle/2123/1066, 2005.
- [20] R. Farashahi et al., "Indifferentiable deterministic hashing to elliptic and hyperelliptic curves", *Mathematics of Computation*, **82**:281 (2013), 491–512.