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Abstract

Protocols that make use of oblivious transfer (OT) rarely require just one instance. Usually
a batch of OTs is required — notably, when generating base OTs for OT extension. There is
a natural way to optimize 2-round OT protocols when generating a batch, by reusing certain
protocol messages across all instances. In this work we show that this batch optimization is
error-prone. We catalog many implementations and papers that have an incorrect treatment of
this batch optimization, some of them leading to catastrophic leakage in OT extension protocols.

We provide a full treatment of how to properly optimize recent 2-round OT protocols for the
batch setting. Along the way we show several performance improvements to the OT protocol
of McQuoid, Rosulek, and Roy (ACM CCS 2020). In particular, we show an extremely simple
OT construction that may be of pedagogical interest.

1 Introduction

Oblivious transfer (OT) is a fundamental primitive for cryptographic protocols. It is well-known
that OT cannot be constructed in a black-box way from symmetric-key primitives [IR90]. Never-
theless, it is possible to generate a large number of OTs from symmetric-key primitives and a small
number of “base OTs”, thanks to an idea called OT extension [Bea96]. OT extension to generate
a polynomially large number N of OTs means that the marginal cost of OTs involves only cheap
symmetric-key operations. Modern OT extension protocols [IKNP03, KK13, ALSZ13, KOS15] can
generate millions of OTs per second.

OT extension protocols require κ (e.g., 128) base OTs, and yet most base-OT protocols in
the literature are described in terms of a single OT instance. Obviously any single-instance OT
protocol can be invoked κ times to produce base OTs; however, this overlooks the possibility of
optimizations for the batch setting. In this work we provide a full treatment of the batch setting
for recent leading OT protocols.

1.1 Overview of Our Results

There is a natural way to optimize certain 2-round OT protocols for the batch setting. When the
OT sender is first to speak, it is natural to reuse their protocol message for all OT instances in the
batch. We call this method näıve batching.

We show that näıve batching is very often insecure. Not only does näıve batching fail to
achieve an appropriate security notion, it is also demonstrably unsuitable as the base OTs for
certain OT extension protocols. Specifically, we show a serious attack on the 1-out-of-N OT
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Sender Receiver
(input c ∈ {0, 1})

a← KA.R
A = KA.msg1(a) A

b← KA.R
B = KA.msg2(b, A)

B̃ = Π(B)⊕ c

m0 := KA.key1(a,Π
−1(B̃)) mc = KA.key2(b, A)

m1 := KA.key1(a,Π
−1(B̃ ⊕ 1))

Figure 1: Our simple 1-of-2 random OT protocol. Π± is an ideal permutation and KA is a 2-message
key agreement whose “B-messages” are pseudorandom bit strings.

extension protocol of Orrù, Orsini, and Scholl [OOS17], when its base OTs are generated with
näıve batching. Unfortunately, we find näıve (or similarly improper) batching appearing in several
protocol libraries [Rin, CMR, Kel20, Sma] and in several papers [CO15, HL17, CSW20].

We then give a complete treatment of how to correctly optimize leading OT protocols for the
batch setting. Fortunately it is simple and cheap to fix näıve batching, although the complete secu-
rity analysis requires care. We show how to correctly optimize the recent OT protocol of McQuoid,
Rosulek, and Roy [MRR20] for the batch setting. As we show, the Masny-Rindal protocol [MR19]
is a special case of the McQuoid-Rosulek-Roy protocol, and our analysis applies to that protocol
as well. A comparison of our protocol to existing work is shown in Table 1.

Finally, we present several new improvements to the McQuoid-Rosulek-Roy (MRR) protocol.
Their OT protocol is actually an oblivious PRF protocol: the sender learns a pseudorandom func-
tion F , the receiver chooses point x and learns F (x). Such a protocol yields 1-out-of-n [random]
OT by letting F (1), . . . , F (n) be the n OT values, of which the receiver can learn only one. Their
protocol supports F with domain {0, 1}∗ (i.e., 1-out-of-n OT for any n).

• The MRR protocol revolves around an object called a programmable-once public func-
tion (POPF). A POPF with domain [n] leads to a protocol for 1-out-of-n endemic OT.
MRR describe a new POPF with domain {0, 1}∗, leading to their OPRF protocol. But this is
overkill for the case of 1-out-of-2 OT, which is all that is needed for OT extension. We show
several improved POPF constructions for small domains (such as n = 2). One particularly
interesting POPF is in the ideal random permutation model1 and is inspired by the Even-
Mansour block cipher construction [EM93]. When we instantiate MRR with this new POPF,
we obtain an endemic OT protocol that is incredibly simple to describe. The protocol is not
only efficient, but may be have pedagogical value as well. See Figure 1.

• The MRR protocol constructs endemic OT from a POPF and a key agreement (KA) protocol.
These two components must be compatible, and in [MRR20] this was achieved at the cost of
some nontrivial additional overhead — either hash-to-curve operations or Elligator [BHKL13]
encoding steps. In this work, we suggest an alternative based on a trick due to Möller [Möl04].
Möller-DHKA avoids complicated encodings and the need for hash-to-curve operations in the
protocol. It also avoids curve point addition, allowing us to use Montgomery Ladders to
multiply, which are more efficient. It requires doubling the length of the sender’s protocol

1Like the random oracle model, all parties have access to a random permutation on {0, 1}2κ, and its inverse!
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Scheme Assumption Setup Flows Exp (sender/receiver) Comm (sender/receiver)

SimplestOT [CO15] Gap-CDH PRO 2 1f (m+ 1)v / mf mv 1G / mG
BlazingOT [CSW20] CDH ORO 3 1f (m+ 1)v / mf mv mκ+ 1G / 2κ+mG
EndemicOT [MR19] DDH PRO 2 2mf 2mv / mf mv 2mG / 2mG
EndemicOT [MR19] iDDH PRO 1 mf 2mv / mf mv mG / 2mG
Ours (MasnyRindal) ODH PRO 1 2fM 2mvM / mfM mvM 2G / 2mG
Ours (EKE/EvenMansour) ODH IC 1 2fM 2mvM / mfM mvM 2G / mG
Ours (Feistel) ODH PRO 1 2fM 2mvM / mfM mvM 2G / mG

Table 1: Comparison of m-instance random 1-of-2 OT protocols. “Exp” denotes exponentiations
(f = fixed-base, v = variable-base, fM = fixed-base Montgomery, vM = variable-base Montgomery).
“Comm” denotes communication (G = one group element). PRO = programmable random oracle;
ORO = observable random oracle; IC = ideal cipher.

message; however, in the batch setting it is exactly this sender’s message that is reused across
all OT instances in the batch, so the effect of doubling its size is minimal.

Finally, we show how our batch OT protocol can be used as the base OTs in 2-round OT
extension.

2 Preliminaries

2.1 Endemic OT

We use the security definitions for universally composable OT suggested by [MR19], which are a
convenient middle-ground between random OT and chosen-message OT. An OT protocol results
in outputs r0, r1 for the sender and rc for the receiver (who has choice bit c). In endemic OT, a
corrupt party may choose their own OT outputs, and all other OT outputs are chosen uniformly
by the functionality. Hence, a corrupt sender can choose both r0 and r1. A corrupt receiver can
choose rc and the functionality will ensure that r1−c is uniform.

As shown in [MR19], OT extension protocols are secure if the base OTs satisfy this notion of
endemic OT.

In this work we consider the batch setting, in which the parties wish to generate a batch of n
OTs at once. In Figure 2 we present a functionality that realizes n instances of OT with endemic
security.

3 Problems With Näıve Batching

3.1 Näıve Batching

Consider an abstract 2-round protocol for (endemic) OT, with the following syntax:
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Functionality FbatchEOT

The functionality FbatchEOT is parameterized by the length of the OT strings ` and the number n
of OTs in the batch. It interacts with two parties, a sender S and a receiver R via the following
queries:

On input (ready, (r̃1,0, r̃1,1, . . . , r̃n,0, r̃n,1)) from S, with r̃i,c ∈ {0, 1}`:

• If S is corrupt, and there has been no previous ready command from S, then internally
record ri,c = r̃i,c for all i ∈ [n], c ∈ {0, 1}. Otherwise do nothing.

On input (ready, (c1, . . . cn) ∈ {0, 1}n, (r̃1, . . . , r̃n)) from R, with r̃i ∈ {0, 1}`:

• Do nothing if there has been a previous ready query from R.

• Internally record (c1, . . . cn)

• If R is corrupt, then internally record ri,ci = r̃i for each i ∈ [n].

After receiving ready queries from both S and R:

• For all i ∈ [n], c ∈ {0, 1}, if ri,c is not already defined, then sample ri,c ← {0, 1}`.

• Output (r1,c1 , . . . , rn,cn) to R and ((r1,0, r1,1), . . . , (rn,0, rn,1)) to S.

Figure 2: Batch Endemic 1-out-of-2 Oblivious Transfer functionality FbatchEOT. Adapted from the
endemic OT functionality of [MR19].

Sender Receiver (input c ∈ {0, 1})
sS ← {0, 1}κ
mS = OT.msgS(sS)

mS

sR ← {0, 1}κ
mR = OT.msgR(sR,mS , c)

mR

(r0, r1) = OT.outS(sS ,mR) rc = OT.outR(sR,mS , c)

In such a protocol, the sender’s message mS is clearly independent of the receiver’s influence.
In many protocols mS is also a message from a KA protocol, and it is well-known that in many
KA constructions a single KA message can be reused for many KA instances. These observations
suggest the following optimization for generating a batch of n OTs:

Sender Receiver (inputs {ci}i∈[n])
sS ← {0, 1}κ
mS = OT.msgS(sS)

mS

for i ∈ [n]:
sR,i ← {0, 1}κ
mR,i = OT.msgR(sR,i,mS , ci)

mR,1, . . . ,mR,n

for i ∈ [n]: for i ∈ [n]:
(ri,0, ri,1) = OT.outS(sS ,mR,i) ri,ci = OT.outR(sR,i,mS , ci)
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We call this protocol transformation näıve batching. Note that this protocol reuses OT.outR in
such a way that disallows for internal domain separation.

Lemma 1. Näıve batching does not securely realize batch endemic OT (Figure 2).

Proof. The attack is simple: a corrupt receiver simply sends mR,1 = · · · = mR,n. As a result, the
sender must compute (r1,0, r1,1) = · · · = (rn,0, rn,1). There is no way for the simulator to influence
the sender’s output in this way in the ideal model, hence this constitutes an attack.

Why not trivially patch this attack? The attack is for the receiver to send the same OT
response for all instances. We could simply tell the sender to abort if it receives any repeated OT
responses.

However, the simple attack that we have described is only the tip of the iceberg. In all of the
2-round OT protocols that we consider, a corrupt receiver can induce more complicated correlations
among the OT values. For example, a receiver can act honestly in the first OT instance to learn
r1,0. Then r1,1 is unknown to the receiver. But there is a more sophisticated strategy for the
receiver to force the ratio r1,1/r2,0 to be a certain value. (The details of this strategy depend on
the details of a specific base OT protocol, so we defer them to Appendix A.)

Based on this kind of attack, one might wish to weaken the endemic OT functionality. Why
not allow the simulator to specify these kinds of correlations in the ideal model? Even this will not
work, because the attack is perfectly indistinguishable from honest behavior by the receiver. Thus,
there is simply no way for the simulator to distinguish this kind of an attack (where the receiver
must learn r1,1/r2,0) vs. honest behavior (where the receiver must learn r2,0).

For these reasons, we believe there is no way to closely capture the security of näıve batching
in a UC ideal functionality.

3.2 Implications for OT Extension

Since the main application for batch OTs is as base OTs for OT extension, it is natural to wonder
whether the simple attack above jeopardizes the security of OT extension. It has been established
that OT extension can be securely realized from base OTs with weakened security. For example,
[CSW20] show that certain input-dependent aborts in the base OTs do not harm the security of
OT extension.

We show that out simple attack on näıve batching indeed compromises security of some OT ex-
tension protocols. Specifically, we consider the protocol of Orrù, Orsini, and Scholl (OOS) [OOS17].
This OT extension protocol generates many instances of 1-out-of-2t OT, where in each one the
sender obtains r1, . . . , r2t and the receiver learns only rc, where c is an input. It will be convenient
to consider c to be an element of {0, 1}t in the natural way.

The OOS protocol is secure when the base OTs securely realize endemic batch OT; see [MR19]
for details. However, it loses security when using näıve batching to generate its base OTs.

Lemma 2. The OOS protocol [OOS17] is demonstrably insecure when its base OTs are instantiated
via näıve batching.

Proof. The complete details of OOS can be found in [OOS17]. We sketch the relevant details of
their protocol here.

Let Alice be the OOS sender (with no inputs) and Bob be the OOS receiver (with choice value
ci ∈ {0, 1}t for the ith OT instance). The protocol proceeds as follows:
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• The parties run ` base OT instances, with Alice acting as receiver and Bob acting as sender.
Bob obtains base-OT outputs (k1,0, k1,1), . . . , (k`,0, k`,1). Alice’s inputs and outputs are not
relevant here.

• When extending to n OTs, Bob constructs two n× ` matrices K and R as follows:

– The jth column of K is PRG(kj,0)⊕ PRG(kj,1).

– The ith row of R is C(ci) where C : {0, 1}t → {0, 1}` is a suitable binary error correcting
code (the details of which are not relevant here).

Bob sends K ⊕R to Alice.

These details of OOS are enough to understand the attack. A corrupt Alice will attack the base
OTs (in the role of OT receiver as above) so that all ki,0’s are the same and all ki,1’s are the same.
As a result, every column of K is identical. In other words, every row of K is either 0` or 1`.

Then the ith row of Bob’s matrix K ⊕ R is either C(ci) or its complement. This means that
if c, c′ ∈ {0, 1}t are any two choices for Bob whose codewords are not bitwise complements of each
other, then Alice can distinguish between Bob having choice c vs c′ in each extended OT. For some
choices of C, learning C(x) up to complement uniquely reveals x. This attack results in almost
complete leakage of Bob’s private input.

What if C is a repetition code? C is a binary error-correcting code, the simplest of which
is the repetition code C : {0, 1} → {0, 1}`. This corresponds to the case of t = 1, and hence
1-out-of-2 OT extension. Specifically, instantiating OOS with a repetition code collapses it to the
Keller-Orsini-Scholl 1-out-of-2 OT extension protocol (KOS) [KOS15].

In this case the only two codewords are 0` and 1`. Since these are bitwise complements of
one another, it is not clear that our attack leads to any security problems. The rows of matrix R
(encoding Bob’s private input) are masked by either 0` or 1`, depending on a bit that is unknown
to Alice. We are not sure whether a more sophisticated attack on the base OTs (even for a specific
näıvely batched OT) can break KOS OT extension.

3.3 Problematic Batching Found in the Wild

Looking ahead, the fix for näıve batching is simple and essentially free (although the security
analysis of the fix requires some care, as we show in the next sections). In Diffie-Hellman-based OT
protocols, the OT outputs r0, r1 are computed by taking a (random oracle) hash of a Diffie-Hellman
value. The fix is to include the OT index in that key derivation — i.e., instead of r0 = H(sid, gab),
use r0 = H(sid, gab, i) in the ith OT instance in the batch. That way, even if all gab values are
identical (or correlated strangely), the final OT values are independently random.

Given that both the attack and the fix are so simple, one may wonder whether this problem
is well-known. In fact, we found problems related to OT batching in many libraries that imple-
ment malicious-secure OT extension.2 We focus on the implications for the overall OT extension
protocols, which are minor in most cases. However, the consequences would be more severe for
developers that directly access the base-OT functionalities of these libraries.

• The libote OT extension library [Rin] implements Masny-Rindal [MR19] base OTs and
applies näıve batching. The original Masny-Rindal paper considers only the single-instance

2We notified the maintainers of these libraries about the issues and the suggested fix. By the time of writing, all
maintainers have either already fixed or planned to fix their handling of batch OTs.
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setting and does not discuss security of the batch setting under näıve batching. In some
configurations, the libote implementation of OOS indeed uses these näıvely batched base
OTs, thus falling victim to our attack. Other configurations use a hybrid approach, first
näıvely batching 128 base OTs, then using KOS to extend to 512 OTs, and using those 512
OTs as base for OOS. As mentioned above, we are not aware of any explicit attack on KOS
extension, but our observations merely raise some concerns about its security with näıvely
batched OTs.

• The swanky MPC library [CMR] implements the Chou-Orlandi protocol and reuses the
sender’s message, but uses good domain separation in key derivation.3 However, it allows
the sender’s protocol message to be reused across several batches, while the domain separa-
tion is local to the batch! In other words, parties could execute two batches of OTs, and
the receiver could cause the batches to produce identical outputs, by replaying its protocol
messages.

In this library’s implementation of OT extension, they first apply the transformation in
[MR19] from endemic OT to uniform-message OT on the base OTs. This prevents the receiver
from forcing OT extension to operate on identical base OTs. If not for this additional step,
even KOS OT extension would leak information across different batches. As it is, only the
XOR of PRG seeds is leaked under our attack on näıve batching, which is unlikely to lead to
a concrete attack.

• The mp-spdz [Kel20] and scale-mamba [Sma] library implementations of OT use näıve batch-
ing of Chou-Orlandi base OTs. These libraries implement only KOS and not OOS, and
therefore we know of no concrete attack against their OT extension.

We have also identified problematic handling of OT batching in several papers:

• The Chou-Orlandi OT protocol [CO15] explicitly considers the batch setting and uses näıve
batching to achieve it. As such, the protocol as written is not suitable as the base OT for
certain OT extensions.

• Since security flaws (unrelated to batching) were discovered in the Chou-Orlandi protocol,
several works have attempted to address and repair them. Of those works, both [HL17] and
[CSW20] explicitly consider the batch setting. The paper of Hauck & Loss [HL17] maintains
the näıve batching of the original.

• The “Blazing OT” construction of Canetti, Sarkar, and Wang [CSW20] does not technically
use näıve batching, since it introduces a joint consistency check across all instances in the
batch. However, the key derivation in their base OTs does not include the OT index. This
means that the attack in Lemma 1 has the intended effect: causing all OT instances to give
identical output. The paper only considers a combined protocol with batched Chou-Orlandi
base OTs and KOS OT extension, and as such we are not aware of an explicit attack on their
final OT extension protocol. However, their security analysis does not seem to acknowledge
the possibility of all base OTs giving identical outputs.

We found one instance of totally correct batching, in the implementation of Blazing OT in
emp-toolkit [WMK16], despite correct batching not being described explicitly in the Blazing OT
paper.

3The authors explicitly justify their correct key derivation as a bug in the Chou-Orlandi paper, and reference the
attack in which all base OTs generate identical output. See chou orlandi.rs.
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4 Properly Batching OTs

In this section we describe how to repair näıve batching. We focus on the McQuoid-Rosulek-Roy
(MRR) protocol [MRR20] since it subsumes the Masny-Rindal protocol, and the Chou-Orlandi
protocol does not achieve UC security. As we saw, the main problem is that a corrupt receiver can
force correlations among the OT outputs in different instances — even causing some OT values to
be equal. The solution is to enforce “domain separation” among the different instances. Intuitively,
parties should hash each instance’s OT outputs under a random oracle, with domain separation
(i.e., include the index of that instance in the hash).

However, proving the security of this change requires some care. For example, we cannot
prove security merely from the single-instance security of the OT protocol, since the single-instance
protocol is not being used correctly. Instead, we must use some known structure of the protocol.
The McQuoid-Rosulek-Roy (MRR) protocol derives its outputs from its underlying KA protocol,
and we require stronger properties from that KA. The KA must accept an extra “tag” argument,
so that even if the KA messages are identical, the resulting keys will be different under different
tags.

4.1 Tagged KA

A tagged KA is identical in syntax to a traditional KA, except that the KA.key1 and KA.key2
algorithms take an additional tag argument. Correctness is that for all a, b ∈ KA.R and all tags τ :

KA.key1(a,KA.msg2(b,KA.msg1(a)), τ) = KA.key2(b,KA.msg1(a), τ)

Looking ahead to our batch OT protocol, we will let the tag τ be the index of the OT instance
(e.g., OT instance 1, 2, 3, . . .).

Intuitively, we will require that KA outputs under different tags appear indpendently random.
This should hold not only when the KA protocol messages are identical, but also when the KA
messages (e.g., KA.msg2) are correlated, since we previously observed (Section 3) that the adversary
could induce arbitrary correlations across OT/KA instances.

Definition 3. A tagged KA protocol is tag-non-malleable if a session with tag τ∗ is secure, even
against an eavesdropper that has oracle access to KA.key1(a, ·, ·), provided the eavesdropper never
queries the oracle on tag τ∗. Formally, the following distributions are indistinguishable, for all τ∗

and every PPT A that never queries its oracle with second argument τ∗:

a, b← KA.R
M1 = KA.msg1(a)
M2 = KA.msg2(b,M1)
K = KA.key1(a,M2, τ

∗)

return AKA.key1(a,·,·)(M1,M2,K)

a, b← KA.R
M1 = KA.msg1(a)
M2 = KA.msg2(b,M1)
K ← KA.K
return AKA.key1(a,·,·)(M1,M2,K)

Like [MRR20], we also require the KA protocol to satisfy the following randomness property:

Definition 4. A key agreement protocol has strongly random responses if the honest output of
KA.msg2 is indistinguishable from random, even to an adversary who (perhaps maliciously) gener-
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ated M1. Formally, for all polynomial time A, the following distributions are indistinguishable:

(M1, state)← A()
b← KA.R
M2 = KA.msg2(b,M1)
return (state,M2)

(M1, state)← A()

M2 ← KA.M
return (state,M2)

4.2 Programmable-Once Public Functions

The McQuoid-Rosulek-Roy protocol uses a primitive called programmable-once public functions
(POPFs). We introduce definitions for POPF here, which slightly differ from the original definitions.
We have specialized the definitions for the case of 1-out-of-2 OT4 — [MRR20] define POPFs in a
way that is useful for 1-out-of-N OT (with exponential N) and also password-authenticated key
exchange. In the original POPF definitions, a simulator simulated the random oracle setup in the
service of a single POPF instance; in our batch setting there will be many POPF instances, thus
we must adapt the definitions to explicitly allow simulation of multiple POPFs in a non-interfering
way.

Definition 5. A 1-weak random oracle is a function F : N → O such that the following two
distributions are indistinguishable,

x← N
y := F (x)
return x, y

x← N
y ← O
return x, y

when the adversary does not have access to F other than through these experiments.

Note that F is only allowed to be used once this definition. This makes it an extremely weak
property — it’s even satisfied by universal hashes.

Definition 6 (Syntax). A batch 2-way programmable-once public function (batch 2-
POPF) consists of algorithms:

• Eval :M×{0, 1} → N

• Program : {0, 1} × N →M

Both algorithms access some local setup H — depending on the instantiation, H could consist of
common reference strings, random oracles, ideal ciphers, etc. All parties (adversaries) may access
the setup directly as well, although it is local to a single instance of the batch 2-POPF. The setup
may be stateful (e.g., the “lazy” formulation of a random oracle, which samples outputs on the fly).

A 2-POPF must also include alternative local setups, which are used in different security defi-
nitions:

• HHSim must provide the same interface as H as well as an additional method HSim : N ×N →
M.

4All of the POPFs in this paper have straightforward generalizations to the 1-out-of-N case, for polynomial N ,
and some to exponential N as well, but we restrict ourselves to the 1-out-of-2 case for simplicity.
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• HExtract must provide the same interface as H as well as an additional method Extract : M→
{0, 1}. Extract must not modify the private state of HExtract.

We write AH to denote an algorithm A with oracle access to all methods provided by the setup
H.

Definition 7 (Correctness). A batch 2-POPF satisfies correctness if Eval(φ, x∗) = y∗ with all but
negligible probability, whenever φ← Program(x∗, y∗).

Definition 8 (Security). A batch 2-POPF is secure if it satisfies the following properties:

1. Indistinguishable Local Setups: The local setups H, HHSim and HExtract all implement a
common interface. The setups must be indistinguishable to an adversary that only queries on
this interface. Formally, if A is a polynomial-time algorithm that only queries its setup on
the interface of H then the following probabilities are negligibly close:

Pr[AH() = 1]; Pr[AHHSim() = 1]; Pr[AHExtract() = 1]

2. Honest Simulation: Any φ that is generated honestly as φ ← Program(x∗, y∗), with y∗

chosen uniformly, is indistinguishable from φ generated via the HSim algorithm of HHSim.
Since HSim does not have a “preferred” input x∗, this establishes that an honestly generated
φ hides the x∗ on which it was programmed.

Formally, define the following functions:

real phi(x∗ ∈ {0, 1},D):

(s, y∗)← D
φ← Program(x∗, y∗)
r0 := Eval(φ, 0)
r1 := Eval(φ, 1)
return s, φ, r0, r1

sim phi(x∗ ∈ {0, 1},D):

(s, y∗)← D
rx∗ := y∗

r1−x∗ ← N
φ← HSim(r0, r1)
return s, φ, r0, r1

Then for all polynomial time A,

Pr[AHHSim,real phi() = 1]− Pr[AHHSim,sim phi() = 1]

is negligible. Here we restrict A to always query with D a distribution over {0, 1}∗ ×N such
that the marginal distribution of y∗ is indistinguishable from the uniform distribution over N .
The other component s appears for technical reasons; the reader can think of it as the coins
used to sample y∗.

Note that sim phi calls the HSim method of the local setup, and that A may even query the
HSim method (both the real and ideal experiments use HHSim).

3. Uncontrollable Outputs: For any φ generated by the adversary, the Extract method of
HExtract can identify an input x∗ such that the adversary has no control over Eval(φ, 1 −
x∗). We say that Eval(φ, 1 − x∗) is beyond the adversary’s control if F (Eval(φ, 1 − x∗)) is
indistinguishable from random, for any 1-weak-RO F .5

5There are 1-weak ROs whose outputs can be distinguished from random when inputs are chosen in a certain
adversarial way. Hence, requiring the RO outputs to remain random is a way of requiring that these values are not
chosen in an adversarial way.
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Formally, the following distributions must be indistinguishable for all polynomial-time A1,A2

and all 1-weak-RO F :

(φ, state)← AHExtract
1 ()

x∗ := Extract(φ)
r := F (Eval(φ, 1− x∗))
return AHExtract

2 (state, r)

(φ, state)← AHExtract
1 ()

r ← N
return AHExtract

2 (state, r)

As above, the left distribution calls the Extract method of the HExtract setup, and the adversary
may query this method as well. Note that A does not have any access to F beyond the one
call provided by this experiment.

The reader may be curious why we forced y∗ to be sampled inside Honest Simulation, instead of
letting the adversary choose it like in [MRR20]. The answer is that otherwise an ideal cipher would
not be a POPF. An adversary could have already run Program(0, y∗) earlier, and because for each
x there is a bijection between values of y and φ, a call to HSim(y∗, r1) would be forced to return
the same φ as before. Ideal ciphers were used as a motivating example for POPFs in [MRR20], so
this is clearly a mistake. Ideal ciphers satisfy our new definition (Section 5.1).

4.3 The Batch OT Protocol

Sender Receiver (with input {ci}i∈[n])
a← KA.R
mS = KA.msg1(a)

mS for i ∈ [n]:
bi ← KA.R
mR,i := KA.msg2(bi,mS)
φi := Program(ci,mR,i)

for i ∈ [n]:
φ1, . . . , φn

for j ∈ {0, 1}: for i ∈ [n]:
ri,j = KA.key1(a,Eval(φi, j), i ‖ j) ri,ci = KA.key2(bi,mS , i ‖ ci)

Figure 3: Our n-batch 1-of-2 Oblivious Transfer protocol.

In Figure 3 we present the batch variant of the OT protocol of [MRR20]. The protocol is
essentially the näıve batching of the single-instance protocol, except we use a tagged KA and use
different tags for each KA output.

Theorem 9. When instantiated with a secure batch POPF and a tag-non-malleable KA scheme
(Definition 3) with strongly random responses (Definition 4), the OT protocol in Figure 3 is a UC
secure batch endemic OT (Figure 2), if the POPF’s output satisfies N = KA.M2.

Proof. Correctness of the POPF and KA clearly show that the protocol is correct in the case where
both parties are honest. When both parties are corrupt, the simulator has direct access to both
parties and can simulate the real protocol by just running it. This leaves the two interesting cases,
where one party is malicious and the other is honest. We prove each case by giving first a simulator,
then a sequence of hybrids showing indistinguishability. The hybrids start from the real world and
end at the ideal world: the simulator composed with an ideal batch endemic OT.
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Simulator for Malicious Sender: The simulator uses HHSim instead of H to implement the local
setup. It then waits until the sender provides its protocol message mS . It creates fresh random
values bi,j ∈ KA.R for i ∈ [n], j ∈ {0, 1}, then computes the KA messages mi,j = KA.msg2(bi,j ,mS).
Then it chooses φi ← HSim(mi,0,mi,1) and sends φ1, . . . , φn as the simulated protocol message from
the honest receiver. Finally, it submits ri,j = KA.key2(bi,j ,mS , i ‖ j) to the ideal functionality, for
i ∈ [n] and j ∈ {0, 1} (as the endemic OT values).

Sequence of Hybrids for Malicious Sender: Starting at the real interaction between malicious
sender and honest receiver:

1. Replace local setup H with HHSim. This change is indistinguishable by the Indistinguishable
Local Setups property of the POPF.

2. Change how φi is generated:

replace
bi ← KA.R
mR,i = KA.msg2(bi,mS)
φi ← Program(ci,mR,i)

with

bi ← KA.R
mi,ci = KA.msg2(bi,mS)
mi,1−ci ← KA.M
φi ← HSim(mi,0,mi,1)

This is indistinguishable by the Honest Simulation property. Recall that this property requires
bi,mi,ci to come from a distribution D over {0, 1}∗ × N where the marginal distribution of
the second element is indistinguishable from uniform. This holds because KA has strongly
random responses.

3. Change how mi,1−ci is sampled:

replace

bi ← KA.R
mi,ci = KA.msg2(bi,mS)
mi,1−ci ← KA.M
φi ← HSim(mi,0,mi,1)

with

bi,0, bi,1 ← KA.R
mi,0 = KA.msg2(bi,0,mS)
mi,1 = KA.msg2(bi,1,mS)
φi ← HSim(mi,0,mi,1)

Later references to bi become references to bi,ci . This is indistinguishable because KA has
strongly random responses.

This final hybrid describes the ideal world. The receiver’s inputs ci are not used to simulate

protocol messages to the sender; they are used only to determine which ri,j
def
= KA.key2(bi,j ,mS) the

receiver takes as output. In the ideal world the simulator sends identically defined ri,j to the ideal
functionality, which uses the receiver’s ci inputs to determine which ones to deliver as the receiver’s
output.

Simulator for Malicious Receiver: The simulator uses HExtract instead of H to implement the
local setup. It generates mS in the same way as an honest sender, and sends it to the corrupted
receiver. When the receiver provides φ1, . . . , φn, the simulator runs ci = Extract(φi) for all i ∈ [n],
and submits them to the ideal functionality. It also computes ri,ci = KA.key1(a,Eval(φi, ci), i ‖ ci),
and submits these to the ideal functionality as well (as the endemic OT values).
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Sequence of Hybrids for Malicious Receiver:

1. Replace local setup H with HExtract, an indistinguishable change.

2. Rearrange how ri,j are computed:

replace
for j ∈ {0, 1}:
ri,j = KA.key1(a,Eval(φi, j), i ‖ j)

with
ci ← Extract(φi)
ri,ci = KA.key1(a,Eval(φi, ci), i ‖ ci)
ri,1−ci = KA.key1(a,Eval(φi, 1− ci), i ‖ 1− ci)

This is indistinguishable because running Extract has no effect on the local setup’s internal
state.

3. For each i ∈ [n] and j ∈ {0, 1}, create an oracle Fi,j = y 7→ KA.key1(a, y, i ‖ j). Then rewrite
the computation of ri,j in terms of these oracles as ri,j = Fi,j(Eval(φi, j)). In Lemma 10 we
show that every oracle Fi,j is a 1-weak random oracle.

4. Change how ri,1−ci is chosen:

replace
ci ← Extract(φi)
ri,ci = Fi,ci(Eval(φi, ci))
ri,1−ci = Fi,ci−1(Eval(φi, 1− ci))

with
ci ← Extract(φi)
ri,ci = Fi,ci(Eval(φi, ci))
ri,1−ci ← KA.K

This change is indistinguishable by the Uncontrollable Outputs property. Since each Fi,j is a
1-weak RO, we can apply the Uncontrollable Outputs property once for each i to make the
change described here.

This final hybrid describes the ideal world. After seeing the receiver’s protocol message, the sim-
ulator extracts ci values and also computes values ri,ci which will be part of the sender’s output.
The other OT values in the sender’s output (ri,1−ci) are sampled uniformly, just as in the ideal
world.

Lemma 10. For any tag-non-malleable key agreement KA with strongly random responses, and
for any set of tags T , the following distribution outputs a key agreement message and a collection
of |T | weak random oracles from KA.M2 to KA.K.

a← KA.R
mS := KA.msg1(a)
for τ ∈ T :
Fτ := x 7→ KA.key1(a, x, τ)

return mS , {Fτ}τ∈T

Proof. We need to show that every Fτ is a weak random oracle. We describe a sequence of hybrids
starting from the real weak random oracle distribution and ending at random.

1. Sample the input x and compute y early, when the oracle Fτ is created rather than when the
weak RO experiment is run.
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2. Instead of sampling x ← KA.M2, sample b ← KA.R and set x = KA.msg2(b,mS). This is
indistinguishable by the strongly random responses property of KA.

3. We are now computing y = KA.key1(a, x, τ) for a random KA message x, then giving oracle
access to KA.key1(a, x

′, τ ′) (from the other oracles Fτ ′), but only for τ ′ 6= τ . This is exactly
the same as the real distribution for a tag-non-malleable KA, so it is indistinguishable to
switch to the random distribution by randomly sampling y ← KA.K instead.

4. Use strongly random responses again, to sample x← KA.M2 and remove b.

5. Delay the sampling of x, y until the 1-weak RO distribution is run.

Our protocol considers an underlying KA with sequential messages. Yet Diffie-Hellman-based
KA protocols have independent messages that can be sent in any order. We call such a KA protocol
1-flow, where KA.msg2(b) is independent of mS . When the KA is 1-flow, the OT protocol can also
be made 1-flow by sending both messages in parallel.

Theorem 11. Our OT protocol (Figure 3) becomes a 1-flow UC secure batch endemic OT when
KA is 1-flow.

Proof. This theorem largely the same as Theorem 9 from the previous one, but with key changes.
In the 1-flow instance, the adversary may rush the other party, requiring them to send their message
first before responding. For malicious receiver the adversary already went last, but it’s different for
malicious sender.

When the sender is corrupt, the simulator instead generates φ1, . . . , φn with HSim before receiv-
ing mS , as each of the receiver’s messages from the key agreement may now be sampled indepen-
dently of the sender’s. The hybrid proof continues as before, after replacing KA.msg2(b,MS) with
KA.msg2(b).

5 New/Improved POPF Constructions

In this section, we describe several suitable POPF constructions for the batch OT protocol.

5.1 Ideal Cipher (EKE)

Our first POPF is inspired by the EKE password-authenticated key exchange protocol of Bellovin
& Merritt [BM92]. POPF was created as a generalization of an ideal cipher in the EKE protocol,
and it is no surprise that in fact an ideal cipher is a POPF. The full definition is in Figure 4. We
are not aware of prior work pointing out the connection between EKE and oblivious transfer. But
it is easy to see that an ideal cipher is useful for OT: the adversary can know the trapdoor to at
most one of E−1(0, φ) and E−1(1, φ).

The local setup H is simply an ideal cipher. Actually, we have defined H in a way that is
indistinguishable from an ideal cipher — it chooses oracle responses uniformly, instead guaranteeing
that each E(x, ·) is a permutation. By a standard PRF/PRP switching lemma, the difference is
indistinguishable, and this choice makes the description of H simpler. HHSim is similar to H, but it
programs E−1 so that Eval(φ, i) = ri, to satisfy the honest simulation property.

In HExtract, Extract(φ) finds the first ideal cipher call that produced φ — either as the input to
an E−1 query or the output of an E query. The idea is that once φ has appeared in some ideal
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M := N

Program(x, y):

return E(x, y)

Eval(φ, x):

return E−1(x, φ)

H
T := empty list
E(x, y):

if ∃φ. (x, y, φ) ∈ T :
return φ

φ←M
append (x, y, φ) to T
return φ

E−1(x, φ):

if ∃y. (x, y, φ) ∈ T :
return y

y ← N
append (x, y, φ) to T
return y

HHSim

T := {}
// E and E−1 are same as in H
HSim(r0, r1):

if ∃x, φ. (x, rx, φ) ∈ T :
return ⊥

φ←M
append (0, r0, φ) to T
append (1, r1, φ) to T
return φ

HExtract

T := {}
// E and E−1 are same as in H
Extract(φ):

find first (x∗, y∗, φ) ∈ T :
return x∗

if none exist:
return 0

Figure 4: Batch 2-POPF based on an ideal cipher.

cipher query, future forward queries to E give output φ only with negligible probability. Hence,
all future calls that involve φ must be of the form E−1(·, φ), meaning that the adversary has no
control over the outputs of these queries (which are outputs of Eval). This is precisely the property
needed for a POPF.

Theorem 12. Figure 4 defines a secure and correct batch 2-POPF with all distinguisher advantages

except for Uncontrollable Outputs bounded by O
(
q2

|N |

)
, when the adversary makes q ideal cipher

lookups. Uncontrollable Outputs instead has advantage bounded by qAdv(wRO) + O
(
q2

|N |

)
, where

Adv(wRO) is the distinguisher advantage against the 1-weak RO F .

Proof. We have deferred the security proofs for the POPF constructions to the appendix. See
Appendix B.1.

5.2 Even-Mansour POPF

In [MRR20] the authors construct a POPF with a 2-round Feistel cipher. Intuitively, a POPF gen-
eralizes an ideal cipher, but is strictly weaker. So while an 8-round Feistel cipher is indifferentiable
from an ideal cipher, a 2-round Feistel cipher suffices for a POPF. Similarly, we suggest a POPF
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M := N := {0, 1}α

Program(x, y):

return Π(y)⊕ x

Eval(φ, x):

return Π−1(φ⊕ x)

H
T := empty list
Π(u):

if ∃v. (u, v) ∈ T :
return v

v ← {0, 1}α
append (u, v) to T
return v

Π−1(v):

if ∃u. (u, v) ∈ T :
return u

u← {0, 1}α
append (u, v) to T
return u

HHSim

T := empty list
// E and E−1 are same as in H
HSim(r0, r1):

if ∃x, φ. (rx, φ⊕ x) ∈ T :
return ⊥

φ← {0, 1}α
append (r0, φ⊕ 0) to T
append (r1, φ⊕ 1) to T
return φ

HExtract

T := empty list
// E and E−1 are same as in H
Extract(φ):

find first (y∗, φ⊕ x∗) ∈ T :
return x∗

if none exist:
return 0

Figure 5: Batch 2-POPF based on an ideal permutation.

based on the Even-Mansour [EM93] construction. While the Even-Mansour construction is not an
ideal cipher unless many rounds are added [DSST17], a single round suffices for a POPF.

The construction (Figure 5) is similar to the Ideal Cipher POPF, but with a few changes. The
local setup H is not an ideal cipher, but a simpler ideal random permutation. In the ideal cipher
POPF, every query to the oracles included the x-value (as the key of the cipher). In this Even-
Mansour POPF the value x is used only by xor’ing with the ideal permutation output — it is not
directly available to the simulator (in Extract).

To deal with this challenge, we observe that x can be inferred by the simulator given φ. The
only situation where x is ambiguous given φ is when Π(y1)⊕ x1 = φ = Π(y2)⊕ x2 for distinct bits
x1, x2. This event implies Π(y1)⊕Π(y2) = x1⊕x2 = 1, which is negligibly likely for forward queries
to Π. This turns out to be enough for the simulator to extract. The construction generalizes to
strings x which are significantly shorter than the ideal permutation output.

Theorem 13. Figure 5 defines a secure and correct batch 2-POPF where the distinguisher advan-
tage is O(q22−α) when the adversary makes q ideal permutation lookups, except for Uncontrollable
Outputs which allows an additional advantage of qAdv(wRO).

Proof. We have deferred the POPF security proofs to the appendix. See Appendix B.2.
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M := G2

Program(x, y):

s1−x ← G
sx = y · (Hx(s1−x))−1

return (s0, s1)

Eval((s0, s1), x):

return sx ·Hx(s1−x)

H
record calls in a transcript T
Hx(u):

if ∃v. (v ← Hx(u)) ∈ T :
return v

v ← G
return v

HHSim

record calls in a transcript T
U := empty assoc. array
Hx(u):

if ∃v. (v ← Hx(u)) ∈ T :
return v

if U [x, u] defined:
return U [x, u]

v ← G
return v

HSim(r0, r1):

φ = (s0, s1)←M
U [0, s1] := s−10 · r0
U [1, s0] := s−11 · r1
return φ

HExtract

record calls in a transcript T
// Hx is the same as in H
Extract((s0, s1)):

find first query Hx∗(s1−x∗) in T :
return x∗

if none exist:
return 0

Figure 6: Batch 2-POPF based on the OT constrution of Masny-Rindal [MR19]. Here H0, H1 :
G→ G are random oracles, and (G, ·) is a group.

5.3 Masny-Rindal POPF

This next POPF is inspired by the OT construction of Masny and Rindal [MR19]. Using this
POPF in the context of Figure 3 we see that the Masny-Rindal OT protocol for 1-out-of-2 OT6 is
then a specific instance of our protocol. The description of the POPF can be found in Figure 6.

The local setup H consists of two random oracles H0, H1 whose outputs are a group G. In
the resulting OT protocol, the KA scheme must have protocol messages that reside in this group.
HHSim is similar to H, but it also tracks the values r0, r1 that have been given to HSim(R). To
satisfy the honest simulation property, it further programs the random oracles Hx to be consistent:

Eval(φ, x) = sx ·Hx(s1−x) = sx · (sx)−1 · rx = rx.

HExtract is also very similar to H, but it also tracks chronological order of the oracle queries.
Extract(φ), upon seeing φ = (s0, s1), checks if s1−x∗ was a query to the random oracle Hx∗ , for either
x∗ ∈ {0, 1}. Extract(φ) then chooses the first query (chronologically) and returns the associated x∗,
or chooses x∗ arbitrarily to be 0 if neither call was made. As in the original proof in [MR19] the
main idea is that for the adversary to program φ, they need to query on one of the two sx values in

6Generalizing to 1-out-of-N for polynomial N works the same as in [MR19].
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N := G
M := G× F

Program(x, y):

u← F
t := H(x, u)−1 · y
s := u− ι(t)x
return s, t

Eval((s, t), x):

return H(x, ι(t)x+ s) · t

H
record calls in a transcript T
H(x, u):

if ∃v. (v ← H(x, u)) ∈ T :
return v

v ← G
return v

HHSim

record calls in a transcript T
U := empty assoc. array
H(x, u):

if ∃v. (v ← H(x, u)) ∈ T :
return v

if U [x, u] defined:
return U [x, u]

v ← G
return v

HSim(r0, r1):

(s, t)← G× F
U [0, ι(t) 0 + s] := r0 · t−1
U [1, ι(t) 1 + s] := r1 · t−1
return (s, t)

HExtract

record calls in a transcript T
// H is the same as in H
Extract((s, t)):

find first query H(x∗, ι(t)x∗ + s):
return x∗

if none exist:
return 0

Figure 7: Variant of the Feistel POPF in [MRR20], where one random oracle has been replaced
with multiplication in a finite field F. ι is an injection with an efficient left inverse ι−1, i.e.,
∀t. ι−1(ι(t)) = t.

order to find the other, unless the “other” is sampled independently, in which case the adversary
fails to program.

Theorem 14. Figure 6 defines a secure and correct batch 2-POPF with all distinguisher advantages

except for Uncontrollable Outputs bounded by O
(
q2

|G|

)
when the adversary makes q queries to the

random oracles. Uncontrollable Outputs instead has advantage bounded by q2−q+2
2 Adv(wRO) +

O
(
q2

|G|

)
.

Proof. We have deferred this proof to Appendix B.3.

5.4 Streamlined Feistel POPF

[MRR20] propose a POPF based on 2-round Feistel, in which the φ value is 3κ bits longer than the
underlying value from N . We present an alternative construction (Figure 7) that improves on this

18



when G = N can be represented with less than 3κ bits. This is useful because elliptic curve points
usually can be represented with 2κ bits.

As with MRR20, we need N to be a group G, and the local setup H is a hash function H
mapping into G. However, instead of a second random oracle H ′(x, T ), we use an injection ι from
G into a finite field F. The hash call H ′(x, T ) in one of the Feistel rounds is then replaced with
multiplication ι(T )x. ι is required to have an efficiently computable left inverse ι−1.

These changes eliminate the main bad event in the security proof of MRR20, which occurs when
the adversary manages to delay making the H ′ query, which the simulator needs to see in order
to find what T the adversary chose, until after the simulator needs to use T to program H. The
simulator can now find T directly using ι−1.

Theorem 15. The streamlined Feistel POPF in Figure 7 is a secure and correct batch 2-POPF.

The distinguisher advantage is O
(
q2

|G|

)
when the adversary makes q ideal permutation lookups,

except for Uncontrollable Outputs which allows an additional advantage of q2−q+2
2 Adv(wRO).

Proof. We have deferred this proof to Appendix B.4.

The original 2-round Feistel POPF in [MRR20] also satisfies our new definitions. We omit the
proof because it is substantially similar to the proof of Theorem 15, just preserving a few more
ideas from [MRR20].

6 Suitable Key Agreement Choices

Our batched OT protocol requires a tagged KA in which the receiver’s protocol messages are
indistinguishable from the uniform distribution over the domain of the POPF (outputs of Eval). In
this section we discuss several choices for KA, including one not considered in [MRR20] but which
is well-suited to the batch setting.

The main challenge is that traditional DHKA on an elliptic curve is not enough. Under the usual
encoding (the x-coordinate), points on the curve are easily distinguishable from random strings,
while it is more natural to define a POPF operating on strings. Hence, some care is involved in
making the POPF and KA compatible.

6.1 Curve Mappings

In [MRR20], the authors suggest two ways to achieve compatibility between POPF and KA.
One choice is to ensure that the KA protocol messages are uniform bit strings. This can be

done using the Elligator technique of [BHKL13] to encode curve elements. Elligator is an injective
and efficiently invertible function ι from {0, 1}κ to a large subset of the elliptic curve. If some party
wishes to make their KA protocol message a uniform string, they simply sample from points in the
image of ι. This is achieved in practice by re-sampling a DH exponent until the resulting curve
point is in ι({0, 1}κ). If the range of ι is a large fraction of the elliptic curve, then the expected
number of re-samples is small. See Figure 8 for a formal description of tagged Elligator ECDHKA.

Another choice is to ensure that the POPF Eval function only outputs values on the curve. In
the POPF construction of [MRR20] this can be achieved by instantiating a random oracle that
gives outputs in the curve.

Both of these techniques incur nontrivial computational overhead. The elligator approach re-
quires resampling each curve element some constant number of times on average. The state of the
art techniques for hashing-to-curve [BCI+10, FFS+10, TK17] have cost roughly 25% that of an
exponentiation on the curve, and the POPF requires at least 2 hash-to-curve operations per party.
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Sender (tag τ) Receiver (tag τ)
do:

a← Fp b← Fp
A = aG B = bG

while B 6∈ ι({0, 1}κ)
A

B̃ = ι−1(B)

return H(a · ι(B̃), τ) return H(bA, τ)

Figure 8: Tagged Elligator ECDHKA. G is a generator of the curve and ι is the injective Elligator
mapping of [BHKL13].

6.2 Möller Variant of ECDHKA

We now suggest a more efficient approach that is well suited for the batch setting. Before continuing,
let us give a brief review of elliptic curves. For the remainder of this section, we will consider
curves over prime fields with order larger than 3. Further results and descriptions can be found in
Silverman [Sil09].

Definition 16. An elliptic curve Ea,b over a field Fp is defined by a congruence of the form
Y 2 = X3 + aX + b parameterized by elements a, b ∈ Fp such that 4a3 + 27b2 6= 0. The elements of
Ea,b are given by tuples (X,Y ) satisfying the congruence along with a neutral element O, the point
at infinity.

We may equip this set with a group law called the chord-and-tangent law such that we arrive
at a commutative group where the usual Diffie-Hellman problems are believed to be hard.

Definition 17. Given an elliptic curve Ea,b over a field Fp and c ∈ Fp, we may consider the
elliptic curve E′c : cY 2 = X3 + aX + b. If c is a quadratic residue in Fp then E′ is isomorphic to
E, otherwise, E′ is called the (quadratic) twist of E.

As a twist of a given curve is unique up to isomorphism, we may consider, singly, a primary curve
and its twist curve. It follows from the definition that any x ∈ Fp is the abscissa (x-coordinate) of
a point on E or of a point on the twist E′.

Lemma 18. Let c 6= 0 be a quadratic non-residue in the field Fp, and let Ea,b be an elliptic curve
over Fp with twist E′c. Then for every x ∈ Fp:

1. If x3 + ax + b is a non-zero qudratic residue, then (x,±
√
x3 + ax+ b) are points on Ea,b.

Furthermore, (x3 +ax+ b)/c is a quadratic non-residue and x is not the abscissa of any point
on E′c

2. If x3 + ax+ b is a quadratic non-residue, then x is not a point on Ea,b. Furthermore, (x3 +

ax+ b)/c is a quadratic residue and (x,±
√

(x3 + ax+ b)/c) are points on E′c.

3. If x3 + ax+ b = 0, then (x, 0) is a point on Ea,b and E′c.

This idea is of importance as for many curves and applications, only the abscissa of a point is
needed. This means that we can work with bitstrings using the implicit mapping defined above.
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Sender (tag τ) Receiver (tag τ)
a0 ← Fp b← Fp
a1 ← Fp β ← {0, 1}
A0 = a0G0 B = bGβ

A1 = a1G1
A0, A1

Babscissa,sign

if B on the curve:
β = 0

else: β = 1
return H(aβ ·B, τ) return H(b ·Aβ, τ)

Figure 9: Möller tagged ECDHKA. G0 is a generator of the curve and G1 is a generator of its twist.

Furthermore, there are a similar number of points on the twist as there are on the curve. If
one were to toss a coin b ← {0, 1}, and then sample an x-coordinate of a random curve point (if
b = 0) or a random twist point (if b = 1), the result would be statistically close to the uniform
distribution on the set of bitstrings.

Lemma 19 ([CFGP06, Corollary 11]). Given a curve Ea,b and its twist E′c over Fp, where 2q−p <
2q/2 (i.e., p is very close to a power of 2), the following distribution is indistinguishable from the
uniform distribution in {0, 1}q

D = {β ← {0, 1}, x0 ← [Ea,b]abscissa, x1 ← [E′c]abscissa : K = xβ},

with statistical distance

δ =
1

2

∑
x∈Fp

∣∣∣∣ Pr
K←F2q

[K = x]− Pr
K←D

[K = x]

∣∣∣∣ ≤ 1 +
√

2

2q/2
.

This suggests the key agreement approach in Figure 9. The receiver will sample an x-coordinate
as above. The sender cannot anticipate the receiver’s choice, so she prepares a DH message on both
the curve and the twist, then chooses the correct one to compute the final key. Lemma 19 establishes
that the receiver’s KA message is statistically indistinguishable from the uniform distribution on
strings.

Note that the sender sends two curve/twist elements instead just one as in standard DHKA.
However, in batched OT it is exactly this sender message that is reused across all OT instances.
Hence a slight increase in its size has minimal effect on the overall OT protocol’s efficiency.

Similar approaches to representation have been used used in the context of PAKE [BMN01],
pseudo-random permutations [Kal91], authenticated key exchange [CFGP06], and by Möller [Möl04]
in the context of ElGamal.

6.3 Curve Choice and Security

We now discuss the security of the Möller variant (tagged) KA protocol. The choice of curve must
satisfy the following

• The finite field must have order at least 2q − 2q/2.
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• The curve and its twist must be cryptographically secure.

• The curve and its twist must be cyclic.

More specifically, we need a security property similar to the oracle Diffie-Hellman (ODH)
assumption [ABR01]. That definition is as follows:

Definition 20 ([ABR01]). Let G be a cyclic group of order n, with generator g, and let H :
{0, 1}∗ → {0, 1}` be a hash function. Then the oracle Diffie-Hellman (ODH) assumption holds
in G with respect to H if the following distributions are indistinguishable, for all A that do not
query their oracle at gb.

a, b← [n]
def Ha(X) = H(Xa)
K = H(gab)
return AHa(ga, gb,K)

a, b← [n]
def Ha(X) = H(Xa)
K ← {0, 1}`
return AHa(ga, gb,K)

Our applications require a variant of ODH where the hash function H takes an additional tag
argument:

Definition 21. Let G be a cyclic group of order n, with generator g, and let H : {0, 1}∗×{0, 1}∗ →
{0, 1}` be a hash function. Then the tagged oracle Diffie-Hellman (TODH) assumption holds
in G with respect to H if the following distributions are indistinguishable, for all tags τ∗ and all A
that do not query their oracle with second argument τ∗:

a, b← [n]
def Ha(X, τ) = H(Xa, τ)
K = H(gab, τ∗)
return AHa(ga, gb,K)

a, b← [n]
def Ha(X, τ) = H(Xa, τ)
K ← {0, 1}`
return AHa(ga, gb,K)

In [ABR01] the authors show that standard ODH is secure in the generic group model when H
is a random oracle. This proof is easily adapted to the new TODH assumption as well.

Proposition 22. Möller tagged DHKA (Figure 9) satisfies tag nonmalleability (Definition 3) if
the TODH assumption holds in both the curve and its twist.

A further small optimization is possible for Montgomery curves. The exponentiation algorithm
only depends on the x-coordinate of its input and is uniform for both the curve and its twist, in
the sense that the usual exponentiation algorithm for the curve also correctly exponentiates in the
twist if the input is on the twist. So if the sender in Figure 9 chooses a0 = a1 then there is no need
to check whether the receiver’s B is on the curve or twist. Instead, the sender simply exponentiates
B without any checking. However, security of this optimization requires that a kind of TODH
assumption hold for the curve and twist jointly (instead of separately/independently for the curve
and for the twist).

6.3.1 Instantiation

When creating a concrete instantiation of Möller ECDHKA, we chose to use Curve25519 [Ber06].
The main reasons for this choice were:

1. The base field Fp is of prime order 2255 − 19 > 2255 − 2255/2.
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Sender Receiver (with input {ci}i∈[m])

φ1 . . . φn ← Base OT Receiver
φ1, . . . , φn mS , {ri,j} ← Base OT Sender

{ui} ← OT Extension Receiver
chal := H({φi},mS , {ui})

ri,ci ← Base OT Receiver
mS , {ui}, resp

resp← OT Extension Receiver
chal := H({φi},mS , {ui})
check that resp answers chal
{r′i,j}i,j ← OT Extension Sender {r′i,ci}i ← OT Extension Receiver

return {r′i,j}i∈[m],j∈{0,1} return {r′i,ci}i∈[m]

Figure 10: Sketch of the composition of our batch OT protocol with the KOS OT extension
protocol, in 2 rounds.

2. Curve25519 is explicitly designed to have a twist that is as secure as the curve itself.

3. Curve25519 can take full advantage of Montgomery Ladders for scalar multiplication which
allows us to use only the abscissa in computations.

4. Curve25519 and its twist have large prime subgroups of size #E/8 and #E′c/4.

Curve25519 also provides additional evidence for the security of the above optimization of
setting a0 = a1, because [Ber06] recommends not checking whether a given point is on the curve
or twist before performing scalar multiplication. This optimization is why Curve25519 was chosen
to have a secure twist, and in fact the reference implementation does not check if an elliptic curve
point is on the curve. This requires a similar additional security assumption to our optimization
because it uses the same key for both the curve and its twist.

7 2-round Endemic OT Extension

When our protocol is used for base OTs, we can achieve a 2-round Endemic OT extension protocol,
if the Fiat-Shamir heuristic is used. First, recall that our batch OT protocol is 1-flow when
instantiated with a 1-flow KA protocol, e.g., any Diffie-Hellman-based KA protocol. This gives
us the flexibility to send base OT messages in any order.

Second, we summarize the 1-out-of-2 OT extension protocol of [KOS15]:

• The parties perform base OTs

• The receiver (who is base OT sender) sends data as in all IKNP-based [IKNP03] extension
protocols.

• To protect against a malicious receiver, the sender gives a random challenge

• The receiver sends a response to this challenge, which the sender checks.

We can order the messages of the base OTs so that the receiver can send their IKNP data along
with their base OT sender message. Additionally, we can collapse the malicious consistency check
using the Fiat-Shamir heuristic, since the sender’s challenge is random. The resulting OT extension
protocol is sketched in Figure 10.

In related work, [CSW20] show how to use the Chou-Orlandi base OT protocol to achieve 3-
round OT extension. This is inevitable since their base OTs already require 3 rounds. [BCG+19]
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show a 2-round OT extension protocol based on newer “silent OT” techniques. Note however that
both these papers achieve chosen message OT, while Figure 10 only achieves endemic OT and
would require a third round to derandomize the sender’s messages.

8 Performance Evaluation

In this section, we will explore the concrete performance benchmarks of multiple instantiations of
the protocol in Figure 3.

8.1 Implementation Details

We implemented7 our protocol inside the libote OT extension library [Rin], modifying the library
to use Rijndael-256 [DR99, BÖS11] as a standin for an ideal cipher and libsodium [Den20] to
implement elliptic curve operations. The library uses Blake2 [ANWW13] as a standin for a random
oracle. We then tested the protocols on a machine running on an Intel Xeon E5-2699 v3 CPU,
without assembly optimizations or multi-threading. For benchmarking, each protocol was run in a
batch of 128 OTs for two settings of simulated latency and bandwidth limiting. The two settings
are meant to shed light on the LAN vs WAN environments that these protocols may run in. The
number of OTs to run was chosen to provide a realistic setting in the case of 128 base OTs as is
common in OT extension.

We compared the following implementations:

• Chou-Orlandi (Simplest OT).

• Naor-Pinkas OT

• Masny-Rindal (Endemic OT), with and without reusing the sender’s message. This protocol
uses hash-to-curve operations.

• Our protocol instantiated with Möller’s DHKA and various POPFs. We used the original
Feistel POPF of MRR, as well as the POPFs presented in Section 5. Because the messages
from Möller’s scheme are uniformly random bit strings, our these POPFs avoid the hash-to-
curve operations that are needed in [MR19]. We did not evaluate the Even-Mansour POPF
(Figure 5), since its performance would be identical to the EKE POPF (Figure 4) when both
the ideal cipher and ideal permutation are instantiated with Rijndael.

• Our protocol with traditional DHKA, and all POPF instantiations excluding EKE and Masny-
Rindal. We did not implement the EKE POPF using DHKA; however this could be accom-
plished using Elligator or a similar mapping to construct an ideal cipher on a subset of the
curve points. We did not implement our protocol with Masny-Rindal POPF as it would be
nearly identical to the Masny-Rindal protocol.

8.2 Results & Discussion

The performance benchmarks can be found in Table 2 for both settings.
As we would expect, when comparing the three instances of Masny-Rindal OT, each with their

own improvement, we see a marked increase in efficiency. Specifically, reusing the sender’s message
reduced the total time spent by both parties by 18% / 11% in the low latency and high bandwidth

7Source code is at https://github.com/Oreko/popfot-implementation.
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Protocol Security Sender (ms) Receiver (ms)

0.1ms latency, 10000Mbps bandwidth cap

Simplest OT [CO15] (Sender-reuse) standalone 35 17

Naor-Pinkas OT [NP01] (Sender-reuse) standalone 43 34

Endemic OT [MR19] (No reuse) UC 79 42

Endemic OT (Sender-reuse) UC 62 37

Ours (Feistel POPF [MRR20] – DHKA) UC 82 40

Ours (Streamlined Feistel POPF Figure 7 – DHKA) UC 80 40

Ours (Feistel POPF — Möller DHKA) UC 49 26

Ours (Streamlined Feistel POPF — Möller DHKA) UC 50 27

Ours (Masny-Rindal POPF Figure 6 — Möller DHKA) UC 48 27

Ours (EKE POPF Figure 4 — Möller DHKA) UC 50 25

30ms latency, 100Mbps bandwidth cap

Simplest OT [CO15] (Sender-reuse) standalone 105 111

Naor-Pinkas OT [NP01] (Sender-reuse) standalone 101 107

Endemic OT [MR19] (No reuse) UC 161 53

Endemic OT (Sender-reuse) UC 137 53

Ours (Feistel POPF [MRR20] – DHKA) UC 155 47

Ours (Streamlined Feistel POPF Figure 7 – DHKA) UC 155 47

Ours (Feistel POPF — Möller DHKA) UC 128 44

Ours (Streamlined Feistel POPF — Möller DHKA) UC 128 44

Ours (Masny-Rindal POPF Figure 6 — Möller DHKA) UC 128 44

Ours (EKE POPF Figure 4 — Möller DHKA) UC 128 44

Table 2: Running time of batch OT protocols, for batch size of 128.

setting / the high latency and low bandwidth setting, respectively. Moving to Möller’s KA caused
an additional 24% / 9% improvement, respectively, for the Masny-Rindal construction. On average,
for the three protocols with both DHKA and Möller DHKA versions (Masny-Rindal and the two
Feistel POPF variants) we saw an improvement of 32% / 13%, respectively, when moving to Möller’s
KA.

As expected, the Simplest OT protocol outperforms our instantiations for the sender since it
uses fewer exponentiations in the group. One point to take note of in the evaluation data is the
large gap in the performance for the receiver between the Naor-Pinkas and Simplest / Blazing OT
constructions and the POPF and Masny-Rindal constructions in the high latency / low bandwidth
setting. This is due to the different flow requirements between the two sets of protocols. Simplest
OT and Naor-Pinkas constructions all require an additional flow (or two) which, in the WAN
setting, will acrue more time for the party which needs to wait. It then follows that the advantages
of our protocol over Simplest OT is our UC security and round/flow complexity.
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• The sender first sends its (reused) KA message A = ga.
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• In the first instance, run honestly with choice bit c1 = 0. Generate φ1 = Program(0, gb) for
known b.

• The receiver can compute the value B̃ = Eval(φ1, 1). The security of the POPF is that the
receiver has no control over this value (i.e., doesn’t know its discrete log). The sender will
compute OT output from this instance r1,1 = B̃a.

• In the second instance, set φ2 = Program(0, B̃ · gs) for known s. This means that the sender
will compute OT output from this instance

r2,0 = Eval(φ2, 0)a = (B̃gs)a = B̃sgas = r1,1g
as = r1,1A

s

Note that the receiver can indeed compute As, and therefore it knows the ratio r2,0/r1,1.
Note also that if s is uniform then B̃ · gs is distributed uniformly. From the simulator’s point of

view, the receiver’s behavior is identically distributed to honest behavior — running Program(0, X)
for a uniform group element X. Hence, even if the ideal functionality is weakened to allow the
receiver to specify correlations among the OT values, in this protocol the simulator has no way of
detecting which correlation is appropriate.

B Security Proofs for POPFs

B.1 Security Proof for Ideal Cipher (EKE) POPF

First, we have that HHSim,H,HExtract are indistinguishable, because they are all identical other than
HSim and Extract. Extract only reads HExtract’s state, but does not modify it. Correctness follows
directly from the correctness property of ideal ciphers.

There is an invariant that must be maintained for the ideal cipher to continue working properly.
For any x, φ there must not be y1 6= y2 such that (x, y1, φ) ∈ T and (x, y2, φ) ∈ T . Similarly, for
any x, y there must not be φ1 6= φ2 such that (x, y, φ1) ∈ T and (x, y, φ2) ∈ T . If either case
happened, the output of E or E−1 would not be well-defined. A birthday bound shows that E and
E−1 maintain this invariant. HSim explicitly aborts if it is asked to break the invariant.

Honest Simulation: Recall that the y∗ sampled by D must be uniform. By a birthday bound
it is unique, not overlapping any previous y in T , with all but negligible probability. Then when
real phi samples φ← Program(x∗, y∗), E will choose a uniformly random φ, the same distribution
as sampled by HSim. It will also add (x∗, y∗, φ) to T . A similar birthday bound allows us to assume
that this φ is also unique. Then a E−1(1−x∗, φ) query will be freshly random, so we can equivalently
sample it ahead of time in a random value r1−x∗ and add (1−x∗, r1−x∗ , φ) to T . But this is exactly
what happens in sim phi, as the abort in HSim will not occur because r0 and r1 will be unique.

Uncontrollable Outputs: We provide a sequence of hybrids, starting from the real distribution
and ending at the ideal distribution.

1. Create an empty associative array Z at the start of HExtract. Inside E−1, whenever y is sampled
as freshly random, compute and save Z[y] = F (y). Then use the precomputed value as r in
Uncontrollable Outputs instead of finding it again; since y = Eval(φ, 1−x∗) is calculated Z[y]
must have been precomputed. This step just rearranges the order of computations, and so is
indistinguishable.
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2. For the first E−1 query, instead of finding F (y), sample Z[y] as a uniformly random value
in O. We would like to use the 1-weak RO’s security to prove that this is indistinguishable,
but it seems like we are using F multiple times, and so cannot use the security property.
However, this multiple use is illusory, as only single value in Z will ever be used and the rest
will be discarded.

More concretely, if we construct a reduction from this change in the hybrid proof to the 1-
weak RO security, without loss of generality we can assume that the adversary aborts if this
first Z[y] does not end up being used to find r. If it is not used then the two distributions
are identical anyway. Now the other computations of F are completely unused and can be
removed, allowing us to reduce to 1-weak RO security.

3. Repeat Step 2 for subsequent E−1 queries.

4. Undo the changes in step 1. That is, delay randomly sampling the entries of Z until Uncon-
trollable Outputs is run, so r will be uniformly random.

The advantage is bounded by adding up the advantages of every step. All security properties

used a constant number of birthday bounds, which give the adversary an advantage of O
(
q2

N

)
.

Additionally, Uncontrollable Outputs used the security of the 1-weak RO once in each E−1 query,
for a total advantage of qAdv(wRO).

B.2 Security Proof for Even-Mansour POPF

The proof is very similar to that of Theorem 12, and we will only describe the differences. The
invariant no longer mentions x, and just says that each u should have at most one v and vice
versa. Honest Simulation works similarly to before, pre-programming the randomness that Eval
will produce. It will preserve the invariant as long as it does not produce the same φ or φ ⊕ 1 as
one produced previously — ignoring a single bit should not affect collision resistance.

For extraction, the only additional complication is arguing that the x∗ produced by Extract is
the only one where Eval(φ, x∗) is not freshly random on its first call. The only way for it to not be
random is for there to have been a previous Π(u) call that returned φ⊕ x, but this cannot happen
for multiple x as we have assumed that the other bits of φ are unique. Extract checks T to find the
unique call v = Π(u) where this happened, which must have been the first, then finds x∗ such that
v = φ⊕ x∗.

B.3 Security Proof for Masny-Rindal POPF

First, we have HHSim
∼∼∼ H ∼∼∼ HExtract, because they are all identical when neither HSim nor Extract

have been called, though some have extra bookkeeping. Extract only reads HExtract’s state, but
does not modify it. Correctness is ensured as if φ = (s0, y · (H1(s0))

−1) ← Program(1, y) then
y = y · (H1(s0))

−1 ·H1(s0) = Eval(φ, 1), and similarly for x∗ = 0.

Honest Simulation: In the generation of φ = (s0, s1), we have that s1−x∗ is uniform by con-
struction, and furthermore since y∗ is sampled from D and must be uniform we have that Program
will generate uniform sx∗ . sx∗ is distinguishable only if Hx∗(s1−x∗) had previously been queried
which for uniform s1−x∗ only happens with probability at most q

|G| .
We also have uniqueness of s0, s1 with all but negligible probability by an application of a

birthday bound over G, so using U to program Hx will not interfere with any previous Hx queries
or other HSim calls. Finally, we have that Eval(φ, 1 − x∗) = s1−x∗ ·H1−x∗(sx∗) is close to uniform
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(since the query H1−x∗(sx∗) will be fresh with probability 1− q
|G|), so we can sample it early and save

it in U . This is exactly how HSim functions in the ideal world. Finally, by the enforced consistency
of HSim we have that the outputs r0, r1 from Eval are the values provided to HSim. This can be
verified as if φ = (s0, s1)← HSim(r0, r1) then Eval(φ, x) = sx ·Hx(s1−x) = sx · (sx)−1 · rx = rx.

Uncontrollable Outputs: Similarly to the proof of Claim 4.3 in [MR19], we would like to guess
a query Hx∗(u

∗). Following MRR20, we will call this query an anchor query. The idea is that this
is the query made by Program, or however the adversary constructed φ. Any subsequent query
H1−x∗(u) can be programmed to be u∗−1 · y to make Eval(φ, 1 − x∗) = y if we guessed correctly.
We will know we guessed correctly if later u∗ is part of the φ that is input to Extract.

However, instead of guessing a query like in [MR19], we will use a hybrid proof to get the same
result. Some hybrids will make changes that are only useful if a guess is correct, but do nothing
if the guess is wrong. Here is our sequence of hybrids starting with an interaction with the real
protocol and ending with the ideal world.

1. Create a new associative array Z at the start of HExtract. When a uniformly random value
v is sampled in Hx(u), look for possible anchor queries by iterating over all previous queries
H1−x(u∗), and in each iteration, compute and save Z[x, u∗, u] = F (u∗ · v).

2. Use the precomputed value Z[1− x∗, s1−x∗ , sx∗ ] as r in the Uncontrollable Outputs distribu-
tion, instead of finding it again with F (Eval(φ, 1− x∗)), if it has already been computed.

3. For 1 ≤ i ≤ q and 1 ≤ j < i, repeat the following sequence of hybrids. That is, perform these
transformations for the ith query to H and jth iteration of the loop over prior queries in H,
for a total of q(q−1)

2 repetitions.

(a) Instead of sampling v ← G in the ith query Hx(u), use u∗ from the jth iteration of the
loop over possible anchor queries to sample y ← G and set v = u∗−1 · y.

(b) In the jth iteration of the ith query to H, instead of computing Z[φ, x] = F (y), sample
Z[φ, x] as a uniformly random value in O. This change is indistinguishable because F
is a 1-weak RO.8

(c) Undo the changes in step 3a, so v is sampled as v ← G again.

4. Undo the changes in step 1. That is, wait until the Uncontrollable Outputs distribution is
run before sampling the entries in Z. If Z[1 − x∗, s1−x∗ , sx∗ ] is present, the Uncontrollable
Outputs distribution now gets a uniformly random r instead of the output of F .

5. Finally, also replace r with random if it does not appear in Z. In this case, either H0(s1)
or H1(s0) must not have been queried before, as otherwise whichever was queried first would
be the anchor query and then in the second query r would be precomputed and saved in Z.
Either x∗ will be the query that was made, or neither were queried — either way, Hx∗(s1−x∗)
must not have been queried. Therefore Eval(φ, 1− x∗) must return a fresh uniformly random
value, and the 1-weak RO property allows us to replace F ’s output with random.

For Honest Simulation, the adversary just gets a birthday bound advantage O
(
q2

N

)
. But in Un-

controllable Outputs we use the security of 1-weak RO, which allows them an additional advantage.
We use it q(q−1)

2 times in step 3b, and one additional time in step 5. Therefore, Uncontrollable

Outputs allows the adversary an advantage of q2−q+2
2 Adv(wRO), on top of the birthday bounds.

8Although it appears that F is used in multiple places, only a single one is actually used in the end. See the proof
for the EKE POPF for details.
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B.4 Security Proof for Feistel POPF

All three Hs are clearly indistinguishable on their common interface, as without any HSim queries
they behave identically. For correctness, notice that

Eval(Program(x∗, y∗), x∗) = H(x∗, ι(t)x∗ + u− ι(t)x∗) · t
= H(x∗, u) ·H(x∗, u)−1 · y = y

Honest Simulation: real phi chooses u uniformly randomly, so the H(x∗, u) query will return
fresh randomness as it has negligible probability of overlapping with any other query. Therefore
φ = (s, t) will be uniformly random, the same distribution as produced by HSim. Next, we just need
to prove that HSim successfully programs Eval, i.e., that r0 and r1 will match between real phi
and sim phis. It succeeds if the second if-statement in H(x, ι(t)x + s) is triggered, because then
Eval(φ, x) will produce H(x, ι(t)x+ s) · t = rx · t−1 · t = rx.

There are two ways that it could fail: either H(x, ι(t)x + s) had already been queried before
HSim was called, or U [x, ι(t)x + s] gets overwritten by another HSim query. The former case has
negligible probability because there are at most q previous queries H(x, u), each would cause a
failure only if s = u− ι(t)x, and s is chosen uniformly at random after the H(x, u) query. For the
latter case, notice that every φ = (s, t) defines a unique line u = ι(t)x + s. A pair of such lines
would have to intersect at some x ∈ {0, 1} in order for U to be overwritten. They can only intersect
for a single value of x, and since both lines are uniformly random, this x will be uniformly random
in F, so there is negligible probability of an intersection for x ∈ {0, 1}.9

Uncontrollable Outputs: We use MRR20’s notion of anchor queries for this proof. An anchor
query is a query made during Program that can be used by HExtract to identify φ before it is revealed
by the adversary. More specifically, a query H(x∗, u∗) is the anchor query if it is the first query on
the line u∗ = ι(t)x∗ + s. It is, in fact, the query that Extract searches for in order to find x∗. The
anchor query is needed in order to find t early and program the subsequent H queries such that
Eval outputs a random value for the weak random oracle.

MRR20 guessed the anchor query, taking a factor q security loss, and we will do something
similar with hybrids. In a chain of hybrids we guess a possible anchor query and make some
changes that make progress if the guess was correct and do nothing if we are wrong. Once the
anchor query H(x∗, u∗) has been made, on each subsequent query H(x, u) we assume it is on the
same u = ι(t)x + s line and use this to find φ and program H(x, u). Specifically, t = ι−1

(
u−u∗
x−x∗

)
can be found from the slope of the line through the points (x∗, u∗), (x, u), and s = u− ι(t)x is the
u-axis intercept. If this assumption is wrong there is no harm, similarly to the anchor query.

We use the following sequence of hybrids, from the real distribution to the ideal distribution.

1. Create an empty associative array Z at the start of HExtract. Inside H, whenever v is sampled
as freshly random, iterate over all previous queries H(x∗, u∗) for x∗ 6= x to look for possible
anchor queries. For each such query, compute φ = (s, t) as described above. Skip to the next
H-query if this φ came up in a previous iteration, as then it is impossible for H(x∗, u∗) to be
the anchor query for φ. Compute and save Z[φ, x] = F (v · t).

2. Use the precomputed value Z[φ, 1− x∗] as r in the Uncontrollable Outputs distribution if it
is present, instead of computing it again as F (Eval(φ, 1− x∗)).

9When handling exponentially large x this becomes problematic, but can be fixed by hashing x with another
random oracle H ′ before multiplying by ι, so that the adversary would need to solve a hard preimage problem to find
the x corresponding to an intersection.
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3. For 1 ≤ i ≤ q and 1 ≤ j < i, repeat the following sequence of hybrids. That is, perform these
transformations for the ith query to H and jth possible anchor query, for a total of at most
q(q−1)

2 repetitions.

(a) Instead of sampling v ← G in the ith query H(x, u), use the inferred φ = (s, t) from the
jth possible anchor query to sample y ← G and set v = y · t−1.

(b) In the jth iteration in the ith query to H, instead of computing Z[φ, x] = F (y), sample
Z[φ, x] as a uniformly random value in O. This change is indistinguishable because F
is a 1-weak RO.10

(c) Undo the changes in step 3a, so v is sampled as v ← G again.

4. Undo the changes in step 1. That is, delay randomly sampling the entries in Z until Uncon-
trollable Outputs is run. If Z[φ, 1 − x∗] is present, the Uncontrollable Outputs distribution
now gets a uniformly random r instead of the output of F .

5. Finally, if Z[φ, 1 − x∗] is not present, replace the output r of the 1-weak RO with random.
In this case H

(
1− x∗, ι(t)(1− x∗) + s

)
cannot have been queried before, as otherwise either

the anchor query would be at 1 − x∗ not x∗, or the anchor query H(x∗, ι(t)x∗ + s) would
have been made before the other query and so Z[φ, 1 − x∗] would be present, which are
both contradictions. Therefore, the call to Eval(φ, 1 − x∗) in the Uncontrollable Outputs
distribution must return fresh randomness, and then the 1-weak RO property allows us to
replace r with random.

Again, we bound the advantage by summing the advantages of each step in the hybrid proof.
Excluding the birthday bounds, the only advantage the adversary gets is in Uncontrollable Outputs,
when we use the 1-weak RO property. We use it q(q−1)

2 times in step 3b, once for each pair of oracle
queries, because we have to loop over every previous query as a possible anchor query. Finally, we
use it one last time in step 5. Therefore, Uncontrollable Outputs allows the adversary an advantage

of q2−q+2
2 Adv(wRO), on top of the birthday bounds.

10Although it may seem that F is used multiple times, only one of these values will actually be used in the end.
For more details, see the proof for the EKE POPF.
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