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Abstract. We put forth a template for constructing statistical ZAPs for NP. Our template
compiles NIZKs for NP in the hidden-bit model (which exist unconditionally) into statistical
ZAPs using a new notion of interactive hidden-bit generator (IHBG), which adapts the notion of
hidden-bit generator to the plain model by building upon the recent notion of statistically-hiding
extractable commitments. We provide a construction of IHBG from the explicit hardness of the
decision Diffie-Hellman assumption (where explicit refers to requiring an explicit upper bound
on the advantage of any polynomial-time adversary against the assumption) and the existence
of statistical ZAPs for a specific simple language, building upon the recent construction of
dual-mode hidden-bit generator from (Libert et al., EUROCRYPT 2020). We provide two
instantiations of the underlying simple ZAP:
– Using the recent statistical ZAP for the Diffie-Hellman language of (Couteau and Hartmann,

CRYPTO 2020), we obtain statistical ZAPs for NP assuming (the explicit hardness of)
DDH in G1 and kernel-DH in G2 (a search assumption which is weaker than DDH), where
(G1,G2) are groups equipped with an asymmetric pairing. This improves over the recent
work of (Lombardi et al., EUROCRYPT 2020) which achieved a relaxed variant of statistical
ZAP for NP, under a stronger assumption.

– Using the recent work of (Couteau et al., EUROCRYPT 2020), we obtain statistical ZAPs for
NP assuming the explicit hardness of DDH, together with the assumption that no efficient
adversary can break the key-dependent message one-wayness of ElGamal with respect to
efficient functions over groups of size 2λ with probability better than poly(λ)/2(c+o(1))·λ,
denoted 2−cλ-OW-KDM, for a constant c = 1/2, in pairing-free groups. Note that the latter
is a search discrete-log-style falsifiable assumption, incomparable to DDH (in particular, it
is not known to imply public-key encryption).

1 Introduction

Zero-knowledge proof systems, introduced in [21], are a fundamental cryptographic primitive, allowing
a prover to convince a verifier of the veracity of a statement, while not divulging anything beyond
whether the statement is true. Zero-knowledge proofs have countless applications. However, they suffer
from strong lower bounds on the number of rounds of interactions required in their execution: they
require at least three rounds of interactions [20]. Therefore, the dream result of proofs that consists
of a single message from the prover to the verifier (NIZKs [4]) can only be achieved when assuming a
trusted setup. Due to the importance of round-efficient zero-knowledge proofs, a large effort has been
devoted to the construction of such proofs; yet, this trusted setup is often undesirable.

Witness-indistinguishability (WI) [18] is a natural relaxation of zero-knowledge, and is one of
the most widely used privacy notions in proof systems. It provides the following guarantee: if there
exist two witnesses (w0, w1) for a statement x ∈ L , the verifier should not be able to distinguish an
honest prover using w0 from an honest prover using w1. Witness-indistinguishable proofs can replace
zero-knowledge proofs in many of their applications. At the same time, their round complexity is not
subject to any known lower bounds.

ZAPs. The work of Dwork and Naor [13] introduced (and constructed) ZAPs, which are two-message
public-coin WI proof systems. These proof systems have several advantages: being public-coin, they
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are publicly verifiable (the validity of the proof can be verified solely by looking at the transcript).
Furthermore, the first flow, which is just a uniformly random string, is inherently reusable for an
arbitrary (polynomial) number of proofs on possibly different statements. ZAPs have proven to be
important cryptographic primitives. By now, we have constructions of ZAPs from many standard
assumptions, including trapdoor permutations (which is implied by factoring) [13], the decision linear
assumption (DLIN) in bilinear maps [23], the (quasi-polynomial hardness of the) learning with error
assumption [1,22,36], and also from more complex notions, such as indistinguishability obfuscation [3].

Statistical ZAP arguments. ZAPs were initially defined to satisfy unbounded soundness, and
computational WI [13]. Statistical ZAP arguments provide the converse properties: computational
soundness, and witness-indistinguishability against unbounded attackers. Unlike their computational
WI counterpart, statistical ZAP arguments enjoy a very appealing property, that of everlasting secu-
rity. Namely, soundness is an online security notion: as long as the prover cannot break soundness at
the time where it produces the proof, security is guaranteed, even if the assumption it is based upon
is later broken. On the other hand, WI and zero-knowledge should hold not only during the proof
generation, but must continuously keep on holding in the future: compromising the assumptions un-
derlying the WI property of proofs generated in the past at any point in the future would be sufficient
to break privacy. Hence, targeting statistical privacy avoids being forced to assume the nonexistence
of unforeseen cryptanalytic advances in the future.

Intriguingly, statistical ZAPs have proven much harder to construct than their computationally
WI counterparts. In fact, for almost two decades after their introduction and until very recently, no
construction of statistical ZAP argument was known, under any assumption. The situation changed
very recently, with the construction of statistical ZAP arguments under the quasi-polynomial hard-
ness of LWE, in two concurrent and independent works [1, 22]. Still, these results leave open the
question of whether statistical ZAPs can be based on any of the other cryptographic assumptions
that computational ZAPs can be based on, such as factoring or pairing-based assumptions.

The very recent work of [37] comes very close to improving this state of affairs: they construct,
from the quasi-polynomial hardness of the decision linear assumption in bilinear groups, ZAPs with
private randomness. This primitive is essentially as versatile as a standard ZAP: while the verifier
uses private coins, the proof remains publicly verifiable, and the first flow remains reusable. Yet, it
still falls short of constructing true statistical ZAPs from pairing-based assumptions.

1.1 Our Result

In this work, we develop a new approach for constructing statistical ZAPs. At a high-level, our
approach works by bootstrapping statistical ZAPs for simple languages to statistical ZAPs for NP,
using a new primitive called interactive hidden-bits generator (IHBG), a plain-model variant of hidden-
bits generators, which have been recently introduced in [9, 31, 34, 41] for constructing NIZKs for NP
from different assumptions. We provide two instantiations of our framework (in groups with or without
pairings in the publicly verifiable setting), and obtain:

– Statistical ZAPs in pairing groups. A statistical ZAP argument for NP, assuming the explicit
hardness5 of the DDH assumption in G1 and of the kernel Diffie-Hellman assumption in G2, where
(G1,G2) are groups equipped with an asymmetric pairing. The kernel Diffie-Hellman assumption
is a standard search assumption in bilinear groups [33,38], which is implied by (and is qualitatively
weaker than) the DDH assumption. This improves over [37], both in terms of assumption (we rely
on a qualitatively weaker assumption, since [37] requires DDH both in G1 and G2) and of the
primitive constructed (we achieve a true statistical ZAP argument, while [37] achieves a relaxed
variant).

– Statistical ZAPs in pairing-free groups. A statistical ZAP argument from NP, assuming
explicit hardness of the DDH assumption in a pairing-free group G with log |G| ≈ λ1/2, and the
assumption that no polynomial-time adversary can break the OW-KDM security of ElGamal with
respect to efficient functions with success probability significantly better than 2−λ/2, denoted as

5 Explicit hardness in [1] assumes that there exists an explicit bound µ on the advantage of any polynomial
time adversary against the assumption. In particular, this is a weaker requirement than superpolynomial
hardness, for any arbitrarily small superpolynomial function. We note that previous works on statistical
ZAPs using quasi-polynomial hardness [1, 22,36,37] can instead use explicit hardness.
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2−λ/2 − OW-KDM security. Note that the best-known attack against such OW-KDM security of
ElGamal succeeds with probability poly(λ) · 2−λ. While non-standard, this is a falsifiable search
assumption, and there is an exponential gap between the required security margin and the best
known attack. Under the same KDM assumption, but assuming only the standard polynomial
hardness of DDH, we also obtain statistical NIZKs (NISZKs) for NP in the common reference
string (CRS) model (settling for computational NIZKs, we can further relax DDH to computational
Diffie-Hellman). This builds upon and improves over the recent work of [10] which constructed
computational NIZK arguments in the CRS model, under CDH and a stronger assumption: the
2−3λ/4-OW-KDM-hardness of ElGamal.

In all the above, the (decisional or kernel) Diffie-Hellman assumption can be replaced by any of
its standard generalizations, namely the decisional k-Lin [27] and kernel k-Lin assumptions, or even
more generally any assumption from the family of the (decisional or kernel) matrix Diffie-Hellman
assumptions [15,38].

Relation to [29]. In a breakthrough work (very recently accepted at Eurocrypt’21), Jain and
Zhengzhong have solved the long-standing open problem of basing NIZKs on a well-studied assump-
tion in pairing-free groups (the subexponential hardness of DDH). Furthermore, their work also
achieves a statistical ZAP under the same assumption. We clarify the relation of our work to theirs.

The results presented in our work have been obtained concurrently and independently of those
presented in [29]. However, we were made aware of the existence and content of [29] while it was
submitted to Eurocrypt (through private communication), and before we had completed the write-up
of our paper. The techniques developed in our work are unrelated to those in [29], and our results are
complementary:

– We show that explicit hardness of DDH (or superpolynomial hardness of DDH, for any arbitrar-
ily small superpolynomial function) gives statistical ZAPs in the pairing setting, and two-round
statistical WI arguments in the pairing-free setting. In contrast, [29] relies on the subexponential
hardness of DDH (but does not need pairings to achieve public verifiability).

– In the pairing-free setting, we also rely on an exponential search discrete-log-style hardness assump-
tion, which is incomparable to subexponential DDH (albeit the latter is of course more standard).
In particular, our assumption is falsifiable, holds in the generic group model, and is not known to
imply public-key encryption.

Still, although our results have been achieved concurrently and independently of theirs, we cannot
(and do not) claim to achieve the first construction of a statistical ZAP from standard group-based
assumptions, since their construction precedes ours.

1.2 Our Techniques

At the heart of our results is a construction of a new cryptographic primitive, which we call an
interactive hidden-bits generator (IHBG). At a high level, an IHBG adapts the notion of hidden-bits
generator (defined in the CRS model) recently introduced and studied in [9, 31, 34, 41] to the plain
model.

Dual-Mode Hidden-Bits Generators. More precisely, our starting point is the notion of a dual-
mode hidden-bits generator (HBG) from [34]. In a dual-mode HBG, there are three algorithms: a
CRS generation algorithm, a hidden-bits generator GenBits, and a verification algorithm VerifyBit.
Given a CRS, the prover can, using GenBits, produce a short commitment c to a long, pseudorandom
hidden-bit string ρ, as well as openings πi to all the bits ρi of ρ. Then, VerifyBit takes as input the
CRS, a short commitment, a position i, a value ρi, and an opening certificate πi, and returns 0 or 1
depending on whether the opening is accepted. A dual-mode HBG must satisfy three properties:

– (Mode indistinguishability) the CRS can be generated in one of two modes, the hiding and the
binding modes, which are computationally indistinguishable.

– (Hiding) when the CRS is in hiding mode, the value ρi at all non-opened positions i is statistically
hidden, even given c and openings (ρj , πj) at all other positions.
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– (Extractable) when the CRS is in binding mode, there exists an efficient extractor which can extract
from c a string ρ such that no efficient prover can produce accepting openings for 1 − ρi, for any
position i.

As shown in [34], and following related transformations in [9, 31, 41], a dual-mode HBG can be
used to convert a NIZK for NP in the hidden-bits model (which exists unconditionally) into a dual-
mode NIZK for NP in the CRS model (with statistical zero-knowledge when the HBG is used in
hiding mode, and statistical soundness otherwise). These compilation techniques have their roots in
the seminal works of Feige, Lapidot, and Shamir [16] and of Dwork and Naor [13].

Interactive Hidden-Bits Generators. The statistical NIZKs by Libert et al. [34] crucially rely on
the dual-mode feature of the HBG: the statistical binding property appears unavoidable to compile
a NIZK in the hidden-bits model. Hence, obtaining statistical zero-knowledge is done by generating
the CRS in hiding mode, but switching it to the binding mode when analyzing soundness. Of course,
this standard technique is limited to the CRS model.

In an exciting recent work [30], Kalai, Khurana, and Sahai, building upon previous results and ideas
from [2,28,32], introduced an elegant and clever approach to partially emulate this “dual-mode feature”
of the CRS model, but in the plain model. At a high level, they rely on statistically-hiding commitment
schemes, which have the property that with some (negligible but not too small) probability, they will
become binding and extractable; furthermore, this event cannot be detected by the committer. This
in turn allows to obtain statistical privacy (e.g. statistical witness indistinguishability), while allowing
to use the extractability properties to show soundness, at the cost of having to rely on assumptions
which rule out even inverse-superpolynomial distinguishing advantages. This approach proved fruitful
and led to a successful line of work [1, 22,36] on building statistical ZAPs in the plain model.

Intuitively, our notion of interactive hidden-bits generator simply adapts this technique to the
notion of dual-mode hidden-bits generator. That is, an IHBG is a pair (GenBits,VerifyBit), similar to
a dual-mode HBG, with the following core differences:

– GenBits takes as input a uniformly random string, which will correspond to the verifier message in
the ZAP.

– The non-opened values remain statistically hidden with overwhelming probability over the coins of
VerifyBit, for any (possibly malicious) choice of the random string.

– There exists a simulator which can produce simulated random coins (indistinguishable from true
random coins) such that for any (possibly malicious) prover, with some not-too-small probability
µ (e.g. inverse-superpolynomial) over the coins of the simulator, the hidden bit string ρ can be
extracted from c.

Defining IHBG and Statistical ZAPs for NP. The above is of course very informal. Formally
defining an interactive hidden-bits generator requires some care. In particular, we observe that the
definition of extractability for statistically hiding extractable commitments in [1,22,36] do not suffice
in our setting. At a high level, this is because these definition roughly say the following: the event that
the commitments become extractable happens with probability µ, and whenever this event happens,
the extracted value are guaranteed to be correct.

However, this will not hold in our setting: given a tuple (c, {i, πi}i) of a commitment and set
of openings from a possibly malicious prover, the hidden-bit string ρ recovered by the extractor is
correct if VerifyBit(c, i, 1 − ρi, πi) = ⊥ for all the opened positions i. Unfortunately, we can only
guarantee that this will hold with overwhelming probability in our concrete construction, and not
with probability 1. It turns out that, when building statistical ZAPs for NP, this is a crucial issue:
in the soundness game of the ZAP construction from IHBG, the challenger will want extraction to
succeed with probability µ even when conditioning on other checks being successful. A guaranteed
correctness of extraction (conditioned on extraction succeeding) would ensure that this is the case,
but an overwhelming probability of correctness does not, since conditioning on other events could
arbitrarily change this probability.

To work around this issue, we adopt an approach closer in spirit to the definition of [37]. We define
µ-extractability as follows: an IHBG is µ-extractable if there exists an efficient simulator SimCoin and
an efficient opener Open such that, for any PPT adversary A and any PPT distinguisher D, given
simulated coins (r̃, τ) ←r SimCoin (where τ is an associated trapdoor for the opener), and a tuple
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(c, S, ρ∗S , {πi}s, st)←r A(r̃) where c is a short commitment, S is a set of positions, ρ∗S are the values
which A opens the position to, the πi are certificates of correct openings, and st is an arbitrary state,
and letting ρ← Open(r̃, c, τ), the probability p1 that VerifyBit(r̃, c, i, 1−ρi, πi) returns ⊥ for all i ∈ S
and at the same time the distinguisher D, given st, outputs 1, should satisfy

p1 ≥ µ(λ) · (p2 − negl(λ)),

where p2 is the probability of the same event without the check that the procedure VerifyBit(r̃, c, i, 1−
ρi, πi) returns ⊥ for all i ∈ S. That is, µ-extractability requires that for any other efficient conditions
that we were verifying, the probability that these conditions are still verified and that simultaneously,
extraction succeeded and produced a correct output, should not decrease by a factor more than µ
compared to the initial probability. This strong security notion is the key to capture the intuition
that the extraction should succeed with probability µ essentially independently of everything else.

Given this notion of µ-extractable IHBG, we provide a natural construction of statistical ZAP for
NP, which follows the standard template of using the IHBG to compile an unconditional NIZK for
NP in the hidden-bits model, and formally prove that the resulting construction is a ZAP.

Constructing IHBG. It remains to construct IHBG with a statistical hiding property, satisfying the
strong µ-extractability notion defined above. The first natural idea is to rely on the construction of
dual-mode HBG from [34], and to convert it into a plain model protocol by letting the verifier sample
the CRS herself. However, this immediately runs into obstacles: nothing prevents the verifier from
sampling the CRS in binding mode, breaking the statistical hiding property. To recover the statistical
hiding property, we let the prover tweak the CRS sampled by the verifier in a way that simultaneously
guarantee two things:

– With overwhelming probability over the coins of the prover, the tweaked CRS will be in hiding
mode, yet

– The tweak comes from a superpolynomial-size set, and by successfully guessing the tweak in ad-
vance, a simulator can engineer the sampled CRS (in a way that is indistinguishable from sampling
a CRS honestly) such that the tweaked CRS will be in binding mode.

To achieve these two features, we rely on an elegant linear-algebra trick. In order to explain the
idea, we first recall the high-level template of the construction of dual-mode HBG described in [34].
Let m be the length of the hidden bit string. The LPWW construction works in a hard-discrete-log
group G of order p with generator g. It has the following structure:

– The hiding CRS is gA, where A is a random full-rank matrix A ∈ Z(m+1)×(m+1)
p .

– The binding CRS is gA, where A is a random rank-1 matrix in Z(m+1)×(m+1)
p .

Under the DDH assumption, the two modes are indistinguishable. Let a0, · · · ,am denote the columns
of A. To provide a short commitment to a pseudorandom length-m hidden bit string, the prover picks
a random length-(m+ 1) vector y, and computes c = gy

>·a0 . Then, the i-th hidden bit is defined to
be ρi = HB(gy

>·ai), where HB(·) is a hardcore bit function (e.g. a la Goldreich-Levin). Eventually, to
prove correct opening of ρi, given the commitment c and the CRS gA, the prover reveals ci = gy

>·ai

and uses a NIZK to demonstrate the existence of a vector y such that c = gy
>·a0 and ci = gy

>·ai

(from now on, we will call this language the LPWW language, LLPWW).
Observe that when the CRS is in binding mode, we have ai = vi ·a0 for some value vi (since A has

rank 1), hence the above language becomes essentially a DDH language. Adapting existing statistical
NIZKs for the DDH language suffices to guarantee extractability in binding mode. On the other hand,
when the CRS is in hiding mode, where A has full rank, any number of openings (of which there is at
most m) gy

>·ai leak statistically no information about the unopened values (since A is of dimension
(m+1)× (m+1)). This is because for any possible choice of values for the unopened positions, there
exists a unique vector y that coincides with all the opened and unopened values when A is full rank.
Hence, this guarantees statistical hiding.

Now, the core idea to achieve statistical hiding and µ-extractability in our construction (where
µ is some arbitrary fixed inverse-superpolynomial function) is to let the verifier sample and send gA
herself, but to let the prover tweak this sample as follows: let Im+1 denote the identity matrix in
Z(m+1)×(m+1)
p . The prover picks a small exponent α at random from a subset of Zp of size ≈ 1/µ,
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e.g. by picking α as a random integer smaller than [1/µ], and using a natural encoding of integers in
{0, · · · , p−1} as elements of Zp. Then, the prover defines the tweaked CRS gA

′
to be gA−α·Im+1 , and

uses this tweaked CRS in the dual-mode HBG construction of [34].6

To see why this tweak achieves exactly what we want, observe that the following holds:

– First, we show that with overwhelming probability 1 − (m + 1)µ, the matrix A′ has full rank.
Indeed, if A′ does not have full rank, it means that there is a nonzero vector u in the kernel of A′.
But then, u ·A′ = 0 rewrites to u ·A = α · u – in equivalent terms, this means that α must be an
eigenvalue of A. But since A can have at most m+1 eigenvalues and α is randomly sampled from
a set of size 1/µ, then this event can happen with probability at most (m+ 1)µ.

– Second, we sketch why µ-extractability holds. First, the simulator will guess a value α′, and set
A ← M + α′ · Im+1, where M is a rank-1 matrix. Observe that when the simulator guesses
correctly, which happens with probability µ, it holds that gA

′
is a binding CRS. Furthermore,

under the assumption that no PPT adversary can distinguish DDH tuples from random tuples with
probability better than µ·negl(λ), the replacement of truly random coins by simulated coins will not
be detected. Hence, when further assuming that the ZAP for LLPWW guarantees a bound µ ·negl(λ)
on the probability that a malicious PPT prover breaks soundness, we can extract with probability
almost µ a correct hidden-bit string. In Section 3, we will formally prove that µ-extractability holds
with respect to an arbitrary PPT distinguisher D.

Summing up, the above provides a construction of IHBG (which in turns implies statistical ZAPs
for NP), assuming

– the hardness of DDH with distinguishing advantage µ · negl(λ) for any PPT adversary and for any
negligible functions µ and negl (an assumption in-between standard polynomial time hardness and
superpolynomial time hardness, which is called explicit hardness in [1]), and

– the existence of statistical ZAPs for LLPWW with µ · negl(λ)-soundness.

Instantiating the Statistical ZAPs for LLPWW. Looking ahead, the formal analysis of our con-
struction actually requires a slightly exotic notion of soundness: LLPWW is formally not a language,
but a parametrized family of languages, and (adaptive) soundness must hold for parameters sampled
uniformly at random from a specific subset of language parameters (which are those that correspond
to A being of rank 1). We call a ZAP for the parameterized family of languages LLPWW IHBG-
friendly when it satisfies this notion of soundness. We provide two instantiations for the underlying
IHBG-friendly statistical ZAP.

Using pairings. First, we observe that the recent work of Couteau and Hartmann [8] provides a
statistical ZAP for the DDH language, which extends directly to an IHBG-friendly statistical ZAP
for the LLPWW language, under the standard kernel-DH assumption, in groups equipped with an
asymmetric pairing. This leads to a statistical ZAP for NP under the explicit hardness of DDH in G1,
and the explicit hardness of kernel-DH in G2, where (G1,G2) are groups equipped with an asymmetric
pairing.

Without pairings. Secondly, we revisit the recent construction of statistical NIZKs for the DDH lan-
guage in pairing-free groups by Couteau, Katsumata, and Ursu [10]. Their construction relies on the
assumption that no PPT algorithm can break the one-wayness of ElGamal against key-dependent
message (OW-KDM) attacks with respect to efficient functions (i.e., the assumption that no PPT
adversary can recover m from an ElGamal encryption of m, even when m is some efficiently com-
putable function of the ElGamal secret key) with probability better than 2−3λ/4+o(λ) (note that the
best known PPT attack against this assumption, in appropriate groups, succeeds with probability
2−λ+o(λ); furthermore, the restriction of KDM hardness to efficient functions of the secret key makes
the assumption falsifiable “in spirit” – i.e., up to the negligible winning advantage). We denote this as-
sumption the 2−3λ/4-OW-KDM hardness of ElGamal. We adapt the CKU construction to the LPWW
language. Along the way, we put forth a modification of their construction which significantly improves
the underlying assumption: we only need to assume that no PPT adversary can break the OW-KDM
6 There is an obvious additional necessary change: when proving correctness of an opening, the statistical
NIZK for LLPWW is replaced by a statistical ZAP for LLPWW.
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hardness of ElGamal with probability better than 2−λ/2+o(λ). This change directly improves the re-
sult of [10]. With this instantiation, and observing that this statistical NIZK is also a statistical ZAP
when the verifier can choose the CRS, we obtain a statistical ZAP for NP in pairing-free groups under
the explicit hardness of DDH, and the 2−λ/2-OW-KDM hardness of ElGamal (we note that the latter
is incomparable to DDH: it is a search, discrete-logarithm-type assumption, which is not even known
to imply public-key encryption).

1.3 A Direct Construction using Pairings

Eventually, we point out that if one is willing to rely on a stronger assumption, one of our two
instantiations (the pairing-based instantiation) can be obtained from our techniques in a much more
direct (and simple-in-hindsight) way, without going through the hidden-bit model. Specifically, the
core idea for our IHBG construction is to modify the CRS of a dual-mode NIZK using a simple
tweak, sampled from a small set by the prover, which guarantees that with overwhelming probability
a maliciously sampled CRS will be in hiding mode (but it will be in binding mode in the case when
the verifier guesses the tweak).

A similar tweak can be applied directly to the dual-mode NIZK of Groth, Ostrovsky, and Sahai [24]
instantiated with Groth-Sahai commitments [25]. Briefly, a Groth-Sahai commitment is of the form
(1, gm) · ur · vs, where u,v are two random vectors of length two, and · denotes the coordinate-wise
product (we write ur for (ur1, u

r
2), where u = (u1, u2)). When the vectors (u,v) are random, the

commitments are perfectly hiding; when v is in the span of u, they become perfectly binding. A
GOS proof for circuit satisfiability, given a circuit C and a witness w such that C(w) = 1, works
by committing to all bits of w, as well as to the bits on all wires during the evaluation of C(w).
Then, the proof proceeds by showing that all commitments commit to bits, that all gate relations are
satisfied (which reduces to proving that a linear combination of the committed input and output bits –
homomorphically computed from the commitments – is itself a bit), and that the output commitment
contains 1. All these proofs can be reduced to pairing-product equations, hence can be proven with
a Groth-Sahai NIZK [25].

Now, letting the verifier choose the CRS (u,v) themself, the prover can sample a small tweak
z ←r [1/µ], and set the CRS to be (u′,v′) = (u · (1, gz),v · (1, gz)). For any adversarial choice of
(u,v), (u′,v′) will not be colinear except with negligible property; on the other hand, with probability
µ, the verifier can guess the tweak z and cause (u′,v′) to be in binding mode. To make the analysis
work, we need to rely on the same notion of µ-extractability which we defined previously. This direct
approach leads to a statistical ZAP for NP in groups (G1,G2) equipped with an asymmetric pairing,
assuming the explicit hardness of DDH in both G1 and G2, a slightly stronger assumption compared
to the one we obtain when going through the hidden-bit model. While simple in hindsight, this
construction was apparently missed in previous works: the recent work of [37] achieved, under the
same assumption, a strictly weaker result (a ZAPR argument for NP), using a considerably more
involved and highly non-trivial construction.

2 Preliminaries

Notation. For integers n ≤ m, we write [m] for the set {1, · · · ,m} and [n : m] for the set {n, n +
1, · · · ,m}. With an abuse of notation, for r ∈ R≥0, we use [r] to denote [dre]. For a string x ∈ {0, 1}m,
set S ⊆ [m], and an integer i ∈ [m], denote xS as the subsequence of the bits of x indexed by the
set S and xi as the i-th bit of x. We use bold fonts to denote column vectors over Zp or G such as
v = (v1, · · · , vn)> ∈ Znp and g = (ga1 , · · · , gan)> ∈ Gn, respectively. We use capital bold fonts for
matrices, e.g. M. Given a vector a, ga denotes the column vector whose components are the gai ∈ G;
we extend this notation to matrices of group elements gM in the natural way. With an abuse of
notation, we define (g>)v to be the inner-product between the exponent of g and v, i.e., g

∑
i∈[n] aivi .

For two vectors v and w, (v|w) denotes a matrix with columns v and w, and (v‖w) denotes a vector
with v stacked on top of w. Moreover, let ker(v) denote the linear subspace of Znp consisting of all
vectors w satisfying v>w = 0.

2.1 Hash Functions

We recall the definition of universal hash functions and define uniformity [26].
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Definition 1 (Universal Hash Function). An ensemble of a collection of hash functions H =
{Hλ}λ = {{H : Xλ 7→ Yλ}H}λ is universal if for any x0, x1 ∈ Xλ such that x0 6= x1, we have
Pr[H ←r Hλ : H(x0) = H(x1)] ≤ 1/|Yλ|.

Lemma 2 (Uniformity). Let an ensemble of a collection of hash functions H = {Hλ}λ = {{H :
Xλ 7→ Yλ}H}λ be universal. Then, for all λ ∈ N, if |Xλ| ≥ |Yλ| · λω(1), the two distributions {H ←r

Hλ, x←r Xλ : (H,H(x))} and {H ←r Hλ, y ←r Yλ : (H, y)} are negl(λ)-statistically close.

2.2 Hardness Assumptions

Let DHGen be a deterministic algorithm that on input 1λ returns a description G = (G, p) where G
is a cyclic group of prime order p. Let PGen be a deterministic algorithm that on input 1λ returns a
description PG = (G1,G2,GT, p) where (G1,G2,GT) are cyclic groups of prime order p equipped with
a bilinear pairing operation • : G1 ×G2 7→ GT. Below, we recall the definition of the decision Diffie-
Hellman assumption in a cyclic group, as well as the definition of the kernel Diffie-Hellman assumption
in a pairing group. Following [1], we also consider the explicit hardness of the assumptions, where
we say that an assumption has explicit µ-hardness if µ is an explicit bound on the advantage of
any polynomial time adversary. Note that this notion of explicit hardness is stronger than standard
polynomial hardness, but weaker than superpolynomial hardness7 for any superpolynomial factor.

Definition 3 (DDH Assumption). We say that the decisional Diffie-Hellman (DDH) assumption
holds relative to DHGen if for all PPT adversaries A, it holds that AdvDDH(A) ≤ negl(λ), where

AdvDDH(A) = |Pr
[
1← A(1λ,G, g, gα, gβ , gγ)

]
− Pr

[
1← A(1λ,G, g, gα, gβ , gαβ)

]
|.

Here, note that G ← DHGen(1λ) and DHGen outputs a fixed group G per security parameter, and
g ←r G, α, β, γ ←r Zp are chosen uniformly. Furthermore, let µ(λ) be an efficiently computable
function. We say that the µ-explicit hardness of the DDH assumption holds relative to DHGen, if
AdvDDH(A) ≤ µ(λ) for all PPT adversaries A.

We now recall the definition of the kernel Diffie-Hellman assumption in a pairing group. The
kernel DH assumption is a standard search assumption in bilinear groups, introduced in [38] and used
in several papers, e.g. [33]. In particular, kernel Diffie-Hellman in a group G2 is implied by (and is
qualitatively weaker than) the DDH assumption in the same group.

Definition 4 (Kernel DH Assumption). We say that the kernel Diffie-Hellman (kerDH) assump-
tion holds relative to PGen if for all PPT adversaries A, it holds that AdvkerDH(A) ≤ negl(λ), where

AdvkerDH(A) = Pr

PG ← PGen(1λ),
(g1, g2)←r G1 ×G2, e←r Zp, : (u, v) ∈ ker((1, e)>) ∧ v 6= 0
(gu1 , g

v
1)← A(1λ,PG, g1, g2, ge2)

 .
Furthermore, let µ(λ) be an efficiently computable function. We say that the µ-explicit hardness of
the kernel DH assumption holds relative to PGen, if AdvDDH(A) ≤ µ(λ) for all PPT adversaries A.

To see why the above is implied by DDH in G2, observe that on input (g, gα, gβ , gγ), an adversary
against DDH can run the kernel DH adversary on input (g1, g, gα), where g1 ←r G1 and e is implicitly
set as α. It then gets a vector (gu1 , g

v
1) in G2

1 from the kernel DH adversary such that (u, v) is
in the kernel of (1, α). Now, if (g, gα, gβ , gγ) is a DDH tuple, then (u, v) is also in the kernel of
(gβ , gγ) = (g, gα)β , and this can be checked efficiently given (gu1 , g

v
1) with the help of the pairing

operation.

Remark 5 (Extensions to Matrix Diffie-Hellman). For the sake of concreteness and simplicity, we state
our results in this paper in terms of the DDH and kernel DH assumptions. However, all our results can
be generalized to hold under the standard generalizations of the Diffie-Hellman assumption, namely
the decisional k-Lin [27] and kernel k-Lin assumptions, or even more generally any assumption from
the family of the (decisional or kernel) matrix Diffie-Hellman assumptions [15,38].
7 We consider adversaries that run in superpolynomial time in case of superpolynomial hardness.
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One-Way KDM Security of ElGamal. The last hardness assumption we will use in this work
states, in essence, that no PPT adversary can recoverm given an ElGamal encryption ofm, even when
mmight be an efficiently computable function of the ElGamal secret key, with probability significantly
better than 2−c·λ for some constant c < 1 (where λ is the logarithm of the group size). Note that
the best known attack against this falsifiable search assumption succeeds with probability poly(λ)/2λ.
To formally introduce the assumption, we introduce a natural secret-key variant of ElGamal (which
suffices for our construction and leads to a more conservative assumption compared to the public-key
variant).

Definition 6 (Secret-Key ElGamal). Let G̃ = {G̃λ}λ be an ensemble of groups where each group
G̃λ is of order q such that dlog qe ≈ λ. The natural (secret-key) variant of additive ElGamal with
message space Zq consists of the following three PPT algorithms.

– Setup(1λ) : The setup algorithm outputs a public-parameter G̃←r G̃λ and a secret key k ←r Zq.
– EncG̃(k,m) : The encryption algorithm samples R̃ ←r G̃ and outputs a ciphertext C̃ = (R̃, R̃k ·
G̃m).

– HalfDec(k, C̃) : The half decryption algorithm parses C̃ as (C̃0, C̃1) and outputs C̃1/C̃
k
0 .

Throughout the paper, we omit the subscript when the meaning is clear. Note that the scheme does
not allow for full decryption, but only for decryption “up to discrete logarithm”: for every (G̃, k,m),
it holds that HalfDec(k,EncG̃(k,m)) = G̃m. One important property of the scheme is that it enjoys
the notion of universality. Informally, the notion claims that the ciphertexts are not associated with
a specific key, but rather, could have been an output of any key.

Definition 7 (Universality). For all λ ∈ N, G̃ ∈ G̃λ, and k∗ ∈ Zq, the ciphertexts of ElGamal
satisfies

{C̃ : (k,m)←r Z2
q, C̃←r EncG̃(k,m)} = {C̃ : m←r Zq, C̃←r EncG̃(k

∗,m)} = UG̃2 .

Definition 8 (OW-KDM Security). Let F = {Fλ}λ∈N be an ensemble of sets of functions where
each Fλ = {Fu}u is a family of (possibly randomized) efficiently-computable functions. We say that
ElGamal satisfies (one-query) δ-hard OW-KDM security with respect to F if for every Fu ∈ Fλ,
superpolynomial function s, and every (non-uniform) PPT adversary A, it holds that

Pr
(G̃,k)←rG̃λ×Zq
m←Fu(G̃,k)

C̃←rEncG̃(k,m)

[A(G̃, C̃) = m] ≤ s(λ) · δ(λ).

When ElGamal satisfies δ-hard OW-KDM security for δ(λ) = 2−(c+o(1))·λ for some constant c ∈ (0, 1],
we say it is 2−cλ-OW-KDM secure or more simply, strong OW-KDM secure.

The strong OW-KDM security of ElGamal was introduced in [6]. However, this work considered
an extreme variant of the notion with c = 1 (that is, 2−λ-OW-KDM), and where security was required
to hold with respect to all functions (even inefficient ones). The more conservative variant (with
c < 1 and a restriction to efficiently computable functions) was introduced in [10], which used it
(with constant c = 3/4) to build correlation-intractable hash functions. In this work, we will rely on
an even more conservative variant with c = 1/2.

2.3 ZAP

ZAP [13, 14] is a public-coin two-move witness indistinguishable non-interactive argument. In this
work, we focus on statistical ZAPs where witness indistinguishability holds unconditionally.

Definition 9 (ZAP). A ZAP system ΠZAP for an NP language L = {Lλ}λ with corresponding
relation R = {Rλ}λ with public-coin length `(λ) is a tuple of PPT algorithms (Prove,Verify) defined
as follows.

Prove(r, x, w)→ π : The proving algorithm is given the public-coin r ∈ {0, 1}`, a statement x, and a
witness w, and outputs a proof π.



10 Geoffroy Couteau, Shuichi Katsumata, Elahe Sadeghi, and Bogdan Ursu

Verify(r, x, π)→ > or ⊥ : The verification algorithm is given the public-coin r ∈ {0, 1}`, a statement
x, and a proof π, and outputs > for acceptance or ⊥ for rejection.

We additionally require the following properties to hold.
Correctness: For any λ ∈ N, r ∈ {0, 1}` and (x,w) ∈ Rλ, we have

Pr[Verify(r, x,Prove(r, x, w)) = >] = 1.

(Non-Adaptive) Computational Soundness: For any λ ∈ N, PPT adversary A, and any state-
ment x 6∈ Lλ, we have

Pr[r ← {0, 1}`, π ←r A(r, x) : Verify(r, x, π) = >] ≤ negl(λ).

(Adaptive) Statistical Witness Indistinguishability: For any λ ∈ N and unbounded adversary
A = (A0,A1), we have∣∣∣∣∣∣Pr

 (r, x, w0, w1, st)←r A0(1
λ)

π0 ←r Prove(r, x, w0)
:

A1(st, π0) = 1
∧ (x,w0) ∈ Rλ
∧ (x,w1) ∈ Rλ


− Pr

 (r, x, w0, w1, st)←r A0(1
λ)

π1 ←r Prove(r, x, w1)
:

A1(st, π1) = 1
∧ (x,w0) ∈ Rλ
∧ (x,w1) ∈ Rλ

∣∣∣∣∣∣ ≤ negl(λ).

Remark 10 (On Adaptive Soundness). In this work, we construct a ZAP that is non-adaptive com-
putationally sound and adaptive statistical witness indistinguishable. This security property is in
alignment with all the recent ZAPs (or ZAP with private randomness) [1, 22, 37]. Constructing ZAPs
satisfying adaptive soundness and statistical witness indistinguishability seems to be difficult, where
the former stipulates that the adversary can choose the statement x 6∈ L after it sees the public-
coin r. Although we do not have any formal proofs of nonexistence of such ZAPs, we do have some
evidence indicating the difficulty of obtaining them. In the context of NIZKs satisfying statistical
zero-knowledge (NISZKs), Pass [40] shows that there is no black-box reduction from the adaptive
soundness of NISZK to a falsifiable assumption [19, 39]. Owing to the similarity between ZAPs with
statistical witness indistinguishability and NISZK, and the fact that the former turned out to be much
more difficult to construct than the latter, we view it as an interesting open problem to construct
adaptively sound proof systems.

2.4 NIZKs in the Hidden-Bits Model

We recall the notion of a NIZK in the hidden-bits model [17].

Definition 11. A non-interactive proof system ΠHBM in the hidden-bits model for an NP language
L = {Lλ}λ with corresponding relation R = {Rλ}λ with hidden-bits length m(λ) is a pair of PPT
algorithms (Prove,Verify) defined as follows.

Prove(hb, x, w)→ (I, π) : The proving algorithm is given a random bit string hb ∈ {0, 1}m and a
statement x, and a witness w as inputs, and outputs a subset I ⊆ [m] together with a proof π.

Verify(S, hbS , x, π)→ > or ⊥ : The verification algorithm is given a subset S ⊆ [m], a string hbS ∈
{0, 1}|S|, a statement x and a proof π as inputs, and outputs > for acceptance or ⊥ for rejection.

We additionally require the following properties to hold.
Correctness. For any λ ∈ N, (x,w) ∈ Rλ, any hb ∈ {0, 1}m, and for (I, π) ←r Prove(hb, x, w), we
have Verify(x, hbS , x, π) = >.
Statistical ε-Soundness. For any λ ∈ N and (possibly unbounded) adversary A, we have

Pr [hb←r {0, 1}m, (x, S, π)←r A(hb) : Verify(S, hbS , x, π) = > ∧ x /∈ Lλ] ≤ ε.

Perfect Zero-Knowledge. For any λ ∈ N and any (possibly unbounded) stateful adversary A,
there exists a PPT8 zero-knowledge simulator Sim such that for every (x,w) ∈ Rλ, the distributions
{(S, hbS , π) : hb ←r {0, 1}m, (S, π) ←r Prove(hb, x, w)} and {Simzk(x)} are perfectly indistinguish-
able.

We use the following result regarding the existence of NIZKs in the hidden-bits model [16].
8 Note that we can also relax the definition to allow for an unbounded zero-knowledge simulator.
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Theorem 12 (NIZK for all of NP in the hidden-bits model). Let k = k(λ) be any positive
integer-valued function. Then, unconditionally, there exists a non-interactive proof system ΠHBM for
any NP language L = {Lλ}λ in the hidden-bits model that uses hb = k · poly(λ) hidden-bits with
soundness error ε ≤ 2−k·λ, where poly is a polynomial function related to the NP language L .

2.5 Correlation-Intractable Hash Functions

Finally, we recall the definition of correlation-intractable hash functions (CIH).

Definition 13 (Correlation Intractable Hash Function). A collection H = {Hλ : Kλ × Iλ 7→
Oλ}λ of (efficient) keyed hash functions is a R-correlation intractable hash (CIH) family, with respect
to a parameterized relation ensemble R = {Rλ}λ = {{Rλ,t ⊆ Iλ × Oλ}t∈Tλ}λ, if for every (non-
uniform) PPT adversary A and t ∈ Tλ, it holds that

Pr
k←rKλ
x←rA(k)

[(x,Hλ(k, x)) ∈ Rλ,t] ≤ negl(λ).

Furthermore, let µ(λ) be an efficiently computable function. We say that the collection H satisfies
(µ,R)-correlation intractability if the above probability is bounded by µ(λ) for all PPT adversaries A.

3 Interactive Hidden-Bits Generating Protocol and ZAPs for NP

In this section, we formally define an interactive hidden-bits generating (IHBG) protocol. Our definition
builds on the definition of a (dual-mode) hidden-bits generator from [34, 41] (and the similar notion
of (designated-verifier) PRG [9,13,14]). The main difference is that we allow a two-round interaction
between the hidden-bits generator and the verifier, while removing the common reference string.
Below, we define a public-coin flavor of an IHBG protocol to allow for public verifiability and reusability
of the message from the verifier.

3.1 Definition

We formalize the notion of an interactive hidden-bits generating (IHBG) protocol.

Definition 14 (Interactive Hidden-Bits Generating Protocol). Let s(λ) and m(λ) be posi-
tive valued polynomials. An interactive hidden-bits generating (IHBG) protocol ΠIHBG with public-coin
length `(λ) is a tuple of efficient algorithms (GenBits,VerifyBit) defined as follows.

GenBits(1λ,m, r)→ (σ, ρ, {πi}i∈[m]) : The hidden-bits generator algorithm is given the security pa-
rameter 1λ (in unary), a lengthm, a public-coin r ∈ {0, 1}` and outputs a commitment σ ∈ {0, 1}s,
a string ρ ∈ {0, 1}m, and a set of proofs {πi}i∈m.

VerifyBit(r, σ, i, ρi, πi)→ > or ⊥: The verification algorithm is given a public-coin r ∈ {0, 1}`, a
commitment σ ∈ {0, 1}s, a bit ρi ∈ {0, 1}, and a proof πi, and outputs > for acceptance or ⊥ for
rejection.

We additionally require the following properties to hold. Below, we assume that the security parameter
is provided to all algorithms, and omit it for simplicity.
Correctness: For any λ ∈ N, j ∈ [m], and r ∈ {0, 1}`, we have

Pr[(σ, ρ, {πi})i∈[m] ←r GenBits(m, r) : VerifyBit(r, σ, j, ρj , πj) = >] = 1.

Succinctness: The commitment length s only depends on the security parameter, i.e., s(λ) = poly(λ),
and in particular, does not depend on the length m of the generated bits.
µ-Extractability: There exists a PPT public-coin simulator SimCoin and a deterministic polynomial-
time open algorithm Open such that for all polynomial m, the following two conditions hold. For an
intuitive explanation for µ-successful extraction, we refer the readers to the technical overview in
Section 1.2.
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– (Public-Coin Indistinguishability) for any PPT adversary A, we have

|Pr[r ←r {0, 1}` : A(m, r) = 1]

−Pr[(r̃, τ)←r SimCoin(1λ,m) : A(m, r̃) = 1]| ≤ negl(λ).

– (µ-Successful Extraction) for any PPT adversary A and any PPT distinguisher D, we have

Pr

 (r̃, τ)←r SimCoin(1λ,m)
(σ, S, ρ∗S , {πi}i∈S , st)←r A(m, r̃)
ρ← Open(r̃, σ, τ)

:
D(st) = 1 ∧ ρ ∈ {0, 1}m ∧ ∀i ∈ S,

VerifyBit(r̃, σ, i, 1− ρi, πi) = ⊥


≥ µ(λ) · Pr

[
(r̃, τ)←r SimCoin(1λ,m)
(σ, S, ρ∗S , {πi}i∈S , st)←r A(m, r̃)

: D(st) = 1

]
− µ(λ) · negl(λ).

Statistical Hiding: For all polynomial m, public-coin r ∈ {0, 1}`, and all unbounded adversaries
A = (A0,A1), there exists a (possibly unbounded) simulator Sim such that∣∣∣∣Pr [ (σ, ρ, {πi}i∈[m])←r GenBits(m, r)

S ←r A0(ρ)
: S ⊆ [m] ∧ A1(r, S, σ, ρ, {πi}i∈S) = 1

]
−

Pr

[
ρ←r {0, 1}m, S ←r A0(ρ)
(σ, {πi}i∈S)←r Sim(m, r, S, ρS)

: S ⊆ [m] ∧ A1(r, S, σ, ρ, {πi}i∈S) = 1

]∣∣∣∣
≤ negl(λ).

3.2 ZAPs for NP from Interactive Hidden-Bits Generating Protocols

Here, we construct a ZAP for NP based on an IHBG protocol and a NIZK in the hidden-bits model,
where the latter exists unconditionally.
Building Block. Let L be an NP language and R be its corresponding relation.9 We construct a
ZAP for L based on the following building blocks.

– ΠIHBG = (GenBits,VerifyBit) is an interactive hidden-bits generating protocol. We assume it has
public-coin length `(λ), commitment length s(λ), and output length m(λ) (i.e., ρ ∈ {0, 1}m). We
further assume it satisfies µ(λ)-extractability.

– ΠHBM = (HBM.Prove,HBM.Verify) is a NIZK in the hidden-bits model for L . We assume the
hidden-bits length ism(λ) and it is statistically εHBM-sound, where εHBM = 2−s(λ) ·µ(λ)·negl(λ).10

Construction. The construction of a ZAP for L with public-coin length `′(λ) = `(λ)+m(λ), denoted
as ΠZAP, is described as follows.

ZAP.Prove(r′, x, w) : On input a public-coin r′ ∈ {0, 1}`′ , a statement x and a witness w, parse
it as (r,∆) ← r′ such that r ∈ {0, 1}` and ∆ ∈ {0, 1}m. Then run (σ, ρ, {πIHBG,i}i∈[m]) ←r

GenBits(1λ,m, r) and compute an HBM proof (S, πHBM) ←r HBM.Prove(hb, x, w), where hb :=
ρ⊕∆. Finally, output πZAP = (σ, S, ρS , {πIHBG,i}i∈S , πHBM).

ZAP.Verify(r′, x, πZAP) : On input a public-coin r′ ∈ {0, 1}`′ , a statement x and a proof πZAP, parse
it as (r,∆)← r′ such that r ∈ {0, 1}` and ∆ ∈ {0, 1}m, and (σ, S, ρS , {πIHBG,i}i∈S , πHBM)← πZAP.
Then, output > if HBM.Verify(S, ρS ⊕∆S , x, πHBM) = > and VerifyBit(r, σ, i, ρi, πIHBG,i) = > for
all i ∈ S. Otherwise, output ⊥.

3.3 Security

Correctness of our ZAP follows from a routine check. Below, we show our ZAP satisfies non-adaptive
computational soundness and adaptive statistical witness indistinguishability in Theorems 15 and 19.
9 Although L and R are parameterized by the security parameter λ, we omit them throughout the paper
for better readability whenever the meaning is clear.

10 Here, m can be set sufficiently large for both ΠIHBG and ΠHBM so that the existence of ΠHBM is guaranteed
unconditionally by Theorem 12.
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Theorem 15 (Soundness). If ΠIHBG is µ-extractable and ΠHBM has statistical εHBM-soundness,
where εHBM = 2−s(λ) · µ(λ) · negl(λ), then ΠZAP has non-adaptive computational soundness.

Proof. Assume there exists a statement x 6∈ L and a PPT adversary A against the non-adaptive
computational soundness of ΠZAP with advantage ε. Below, we consider the following sequence of
games between A and a challenger and denote Ei as the event that the challenger outputs 1.

Game1: This is the real soundness game that proceeds as follows: The challenger first samples a
public-coin r′ ←r {0, 1}`

′
and sends it to A. A then outputs a proof π∗ZAP and sends it to the

challenger. The challenger outputs 1 if ZAP.Verify(r′, x, π∗ZAP) = >, and outputs 0 otherwise. By
definition Pr[E1] = ε.

Game2: This game is identical to the previous game except that the public-coin r′ ∈ {0, 1}`′ is sampled
differently. Let SimCoin be the PPT public-coin simulator of the IHBG protocol ΠIHBG. Then, in
this game, the challenger first runs (r̃, τ) ←r SimCoin(m) and samples ∆ ←r {0, 1}m, where
r̃ ∈ {0, 1}`, and outputs the simulated public-coin r̃′ := (r̃, ∆) ∈ {0, 1}`′ . The rest is defined the
same as in the previous game.

Game3: This game is identical to the previous game except that the challenger checks an additional
condition regarding π∗ZAP output by A. Let Open be the efficient deterministic open algorithm of
the IHBG protocol ΠIHBG. Then, in this game, when A outputs π∗ZAP, the challenger first parses

(σ∗, S∗, ρ∗S∗ , {π∗IHBG,i}i∈S∗ , π∗HBM)← π∗ZAP

and runs ρ ← Open(r̃, σ∗, τ). It then outputs 1 if ZAP.Verify(r′, x, π∗ZAP) = >, ρ ∈ {0, 1}m, and
ρ∗S∗ = ρS∗ , and 0 otherwise.

The following Lemmas 16 to 18 establish Pr[E1] = ε ≤ negl(λ), thus completing the proof.

Lemma 16. If ΠIHBG is µ-extractable for all PPT adversary, then we have |Pr[E1]− Pr[E2]| ≤
negl(λ), hence Pr[E2] ≥ ε− negl(λ).

Proof. The only difference between the two games is how the public-coin is generated. Let us consider
the following adversary B against the public-coin indistinguishability of ΠIHBG: B receives r ∈ {0, 1}`
from its challenger and samples ∆ ←r {0, 1}m. It then invokes A on input r′ = (r,∆), and out-
puts 1 if the proof πZAP output by A satisfies ZAP.Verify(r′, x, π∗ZAP) = >, and 0 otherwise. Since B
perfectly simulates Game1 (resp. Game2) when r ←r {0, 1}` (resp. (r, τ) ←r SimCoin(m)), we have
|Pr[E1]− Pr[E2]| ≤ negl(λ).

Lemma 17. If ΠIHBG is µ-extractable for all PPT adversary, then we have Pr[E3] ≥ µ(λ) · (Pr[E2]−
negl(λ)).

Proof. This follows from the µ-successful extractability of ΠIHBG. Let us consider the following adver-
sary B and distinguisher D against the µ-successful extractability: B on input m and r̃ invokes A and
simulates the challenger in Game2. WhenA outputs a forgery π∗ZAP = (σ∗, S∗, ρ∗S∗ , {π∗IHBG,i}i∈S∗ , π∗HBM),
B outputs (σ∗, S∗, ρ∗S∗ , {π∗IHBG,i}i∈S∗ , st), where st = (r̃, π∗ZAP); D on input st, checks if ZAP.Verify(r̃, x,
π∗ZAP) = >, and outputs 1 if so and outputs 0 otherwise. Observe that the probability D outputs 1
is the same as the probability that event E2 occurs. Below, we relate the probability that event E3

occurs with the left hand side equation of µ-successful extractability.
The only difference between Game2 and Game3 is the check that ρ ∈ {0, 1}m and ρ∗S∗ = ρS∗ . Now,

consider a variant Game′3 of Game3 where, instead of checking ρ∗S∗ = ρS∗ , the challenger checks that
for all i ∈ S∗, it holds that

VerifyBit(r̃, σ∗, i, 1− ρi, π∗IHBG,i) = ⊥.
Let E′3 be the event that the challenger outputs 1 in this variant. Observe that if event E′3 occurs then
so does event E3. Indeed, whenever the challenger outputs 1 in E′3, it holds in particular that

∀i ∈ S∗, VerifyBit(r̃, σ∗, i, ρ∗i , π∗i ) = >, and
∀i ∈ S∗, VerifyBit(r̃, σ∗, i, 1− ρi, π∗i ) = ⊥.

The latter implies that it can never hold, for any i ∈ S∗, that ρ∗i = 1 − ρi; hence, since we check
ρ ∈ {0, 1}m in both events, whenever E′3 happens, it further holds that ρ∗S∗ = ρS∗ and E3 therefore
holds as well. In other terms,

Pr[E3] ≥ Pr[E′3].
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Therefore, by applying the µ-successful extractability of ΠIHBG with respect to B and D, since
the only difference between Game2 and Game′3 is the check that ρ ∈ {0, 1}m and VerifyBit(r̃, σ∗, i, 1−
ρi, π

∗
IHBG,i) = ⊥, we get

Pr[E′3] ≥ µ(λ) · (Pr[E2]− negl(λ)) ,

which concludes the proof of Lemma 17.

Lemma 18. If ΠHBM is statistical εHBM-sound, then we have Pr[E3] ≤ µ(λ) · negl(λ).

Proof. Let (σ∗, S∗, ρ∗S∗ , {π∗IHBG,i}i∈S∗ , π∗HBM) ← π∗ZAP be A’s output. When the challenger outputs
1 (i.e., event E3 occurs), we have ρ∗S∗ = ρS∗ , where ρ ← Open(r̃, σ∗, τ), and HBM.Verify(S∗, ρ∗S∗ ⊕
∆S∗ , x, π

∗
HBM) = >. For an any S∗ ⊆ [m] and ρS∗ , if ∆←r {0, 1}m is sampled uniformly at random,

then ρS∗ ⊕ ∆S∗ is distributed uniformly random. Then, by soundness of ΠHBM, for a fixed ρS∗ we
have

Pr[HBM.Verify(S∗, ρS∗ ⊕∆S∗ , x, π
∗
HBM) = >] ≤ εHBM,

where the probability is taken over the randomness of ∆, A, and the challenger, conditioned on A
outputting ρ∗S∗ that is consistent with ρS∗ . Here, we do not include the condition x 6∈ L in the above
equation since we consider non-adaptive soundness for ΠZAP.

If we fix an arbitrary (r̃, τ), then for any commitment σ ∈ {0, 1}s the output of ρ← Open(r̃, σ, τ)
is uniquely defined since Open is deterministic. Let us denote the unique ρ as ρσ. Then, taking a
union bound over all possible commitments σ ∈ {0, 1}s, we have

Pr[∃σ ∈ {0, 1}` s.t. HBM.Verify(S∗, ρσS∗ ⊕∆S∗ , x, π
∗
HBM) = >] ≤ 2s · εHBM

= µ(λ) · negl(λ).

Thus, we conclude Pr[E3] ≤ µ(λ) · negl(λ).

Putting everything together, this gives µ(λ)·(ε−negl(λ)) ≤ µ(λ)·negl(λ), which implies ε ≤ negl(λ).
This concludes the proof.

Theorem 19 (Statistical Witness Indistinguishability). If ΠIHBG is statistically hiding and
ΠHBM has perfect zero-knowledge, then ΠZAP is adaptive statistical witness indistinguishability.

Proof. We proceed with a sequence of games where the first (resp. last) corresponds to the game
where the challenger uses witness w0 (resp. w1). Without loss of generality, we assume the adversary
A = (A0,A1) always outputs a statement x and witnesses w0 and w1 such that (x,w0) ∈ R and
(x,w1) ∈ R. We denote Ei as the event that A outputs 1 on input a proof πZAP.

Game1: This is the real game where the challenger uses witness w0. Concretely, the challenger runs
(r′, x, w0, w1, st)←r A0(1

λ) and runs π0 ←r ZAP.Prove(r′, x, w0). Here, recall ZAP.Prove consti-
tutes of the following steps:
1. Parse (r,∆)← r′;
2. Compute (σ, ρ, {πIHBG,i}i∈[m])←r GenBits(m, r);
3. (S, πHBM)←r HBM.Prove(hb, x, w0), where hb := ρ⊕∆;
4. Output πZAP = (σ, S, ρS , {πIHBG,i}i∈S , πHBM).
By definition, we have Pr[A1(st, πZAP)] = Pr[E0].

Game2: We modify how the challenger computes the proof πZAP. It uses the (possibly unbounded)
simulator IHBG.Sim guaranteed by the statistically hiding property of IHBG to simulate the proofs
{πIHBG,i}i∈S for the opening of the hidden-bits. Concretely, the challenger performs the following
instead of running ZAP.Prove(r′, x, w0), where the red underline indicates the difference between
the previous game.
1. Parse (r,∆)← r′;
2. Sample ρ←r {0, 1}m;
3. (S, πHBM)←r HBM.Prove(hb, x, w0), where hb := ρ⊕∆;
4. (σ, {πIHBG,i}i∈S)←r IHBG.Sim(m, r, S, ρS);
5. Output πZAP = (σ, S, ρS , {πIHBG,i}i∈S , πHBM).
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Game3: We further modify how the challenger computes the proof πZAP. It uses the zero-knowledge
simulator HBM.Sim guaranteed by the perfect zero-knowledge of the NIZK in the hidden-bits
model to compute the proof πHBM. Concretely, the challenger performs the following, where the
red underline indicates the difference between the previous game. Here, notice that the challenger
no longer uses the witness w0.
1. Parse (r,∆)← r′;
2. (S, hbS , πHBM)←r HBM.Sim(x);
3. ρS ← hbS ⊕∆S ;
4. (σ, {πIHBG,i}i∈S)←r IHBG.Sim(m, r, S, ρS)

5. Output πZAP = (σ, S, ρS , {πIHBG,i}i∈S , πHBM).
Game4: We undo the change we made to move from Game2 to Game3, except that the challenger uses

witness w1 instead of w0 to compute πHBM in Item 3 of Game2.
Game5: We undo the change we made to move from Game1 to Game2. This game is the real game

where the challenger uses witness w1.

The following two lemmas establish |Pr[E1]− Pr[E3]| ≤ negl(λ). Since the game transition from
Game3 to Game5 is identical to those from Game3 to Game1 except that the challenger uses w1 instead
of w0, we have |Pr[E3]− Pr[E5]| ≤ negl(λ). Collecting the bounds, we obtain |Pr[E1]− Pr[E5]| ≤
negl(λ), thus completing the proof.

Lemma 20. If ΠIHBG is statistically hiding, then we have |Pr[E1]− Pr[E2]| ≤ negl(λ).

Proof. We construct an adversary B against the statistically hiding property of the IHBG protocol
that simulates the view of A in either Game1 or Game2 depending on the challenge it receives. Since
statistical hiding is defined with respect to any public-coin r ∈ {0, 1}`, we can think B prepares
r before seeing the hidden-bits ρ ∈ {0, 1}m. For clarity, we assume B consists of three unbounded
algorithms (B′0,B0,B1), where B′0 prepares r and (B0,B1) are as defined in Definition 14.

Description of B follows: B′0 runs (r′, x, w0, w1, st)← A0(1
λ) and parses (r,∆)← r′. It then outputs

the public-coin r ∈ {0, 1}` to the challenger. The challenger either runs (I) (σ, ρ, {πIHBG,i}i∈[m]) ←r

GenBits(m, r) or (II) ρ ←r {0, 1}m and sends ρ to B0. B0 then sets hb := ρ ⊕∆, runs (S, πHBM) ←r

HBM.Prove(hb, x, w0), and sends the index set S ∈ [m] to the challenger. The challenger then pro-
vides B1 with input (r, S, σ, ρ, {πIHBG,i}i∈S). If the challenger ran (I) above, then it uses the already
generated (σ, {πIHBG,i}i∈S) and if the challenger ran (II) above, then it uses (σ, {πIHBG,i}i∈S) ←r

IHBG.Sim(m, r, S, ρS). B1 then prepares the proof πZAP = (σ, S, ρS , {πIHBG,i}i∈S , πHBM) and outputs
whatever output by A1(st, πZAP).

It can be checked that B perfectly simulates the view of Game1 (resp. Game2) to A when the
challenger runs (I) (resp. (II)). Therefore, assuming statistical hiding of the IHBG protocol, we have
|Pr[E1]− Pr[E2]| ≤ negl(λ) as desired.

Lemma 21. If ΠHBM has perfect zero-knowledge, then we have Pr[E2] = Pr[E3].

Proof. Fix an arbitrary ∆ ∈ {0, 1}m. Then, in Game2, we have (S, πHBM) ←r HBM.Prove(hb, x, w0)
for a uniform random hb since hb := ρ⊕∆ for a uniform random ρ←r {0, 1}m. On the other hand, in
Game3, we have (S, hbS , πHBM)←r HBM.Sim(x) and ρS := hbS⊕∆S . By the perfect zero-knowledge of
ΠHBM, the distributions of (S, ρS , πHBM) are identical. Moreover, (σ, {πIHBG,i}i∈S) are generated iden-
tically in both games. Therefore, the distribution of πZAP = (σ, S, ρS , {πIHBG,i}i∈S , πHBM) is identical
in both games. Thus, we have Pr[E2] = Pr[E3] as desired.

4 The LPWW Language LLPWW

To instantiate the generic construction of statistical ZAP for NP given in Section 3, we will con-
struct an IHBG which builds upon the dual-mode hidden-bit generator of Libert, Passelègue, Wee,
and Wu [34]. In this section, we first recall the specific parameterized language considered by [34] (de-
noted as the LPWW language LLPWW). We then introduce some tools related to this parameterized
language: a specific type of statistical ZAP for LLPWW, which we call IHBG-friendly statistical ZAP,
and a Σ-protocol for LLPWW.
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4.1 Definition

Formally, we denote by LLPWW := {LLPWW,λ}λ the following family of parametrized languages: let
G be a cyclic group of prime order p. We implicitly fix a vector length d ∈ N and a generator g ∈ G
for each security parameter λ.11 Let a set of parameter space Λλ be (Gd\{1})2, where 1 := g0 for
0 ∈ Zdp. Then, for any parameter par = (gv, gw) ∈ Λλ, we define LLPWW,λ = {L par

LPWW,λ}par∈Λλ such
that L par

LPWW,λ is the following parametrized language:

L par
LPWW,λ :=

{
(gs, gu) ∈ G2 | ∃y ∈ Zdp s.t. gy

>v = gs ∧ gy
>w = gu

}
.

Let Col(Gd) ⊂ Λλ denote the set of elements of the form (gv, gα·v) for some v 6= 0 and α ∈ Z∗p, that
is, the exponents form colinear vectors over (Zp)d. Observe that for any par ∈ Col(Gd), L par

LPWW,λ is a
non-trivial Diffie-Hellman-style language (hence, L par

LPWW is a sparse subset of Λλ); however, for any
par ∈ Λλ\Col(Gd), L par

LPWW,λ is actually equal to G2 (hence, L par
LPWW,λ is a trivial language). Below, we

may omit the security parameter and use the shorthand LLPWW = {L par
LPWW}par∈Λ when the meaning

is clear.

4.2 IHBG-Friendly Statistical ZAPs for the LPWW Language LLPWW

Looking ahead, our construction of IHBG in Section 5 will rely at its core on an adaptively secure
statistical ZAP for the family of parametrized languages LLPWW = {L par

LPWW}par∈Λ. More precisely,
the statistical ZAP which we will use in our construction satisfies a variant of the standard notion of
adaptive computational soundness (which we defined for a single language in Section 2): we require
adaptive computational soundness to hold with respect to parameters par sampled uniformly from
Col(Gd) ⊂ Λ (recall that Col(Gd) is the subset of parameters such that L par

LPWW is nontrivial). In
contrast, adaptive statistical witness indistinguishability must hold even for adversarially chosen
parameters par ∈ Λ (hence, in a sense, WI is doubly-adaptive: with respect to the statement, and
with respect to the language parameters). We call a statistical ZAP with these properties an IHBG-
friendly statistical ZAP for LLPWW. We provide a formal definition below.

Definition. We formally introduce the notion of IHBG-friendly statistical ZAP for the family of
parametrized languages LLPWW.

Definition 22 (IHBG-Friendly Statistical ZAP for LLPWW). Let Λλ = (Gd\{1})2 be the pa-
rameter space for any λ ∈ N and consider the family of parameterized NP languages LLPWW =
{LLPWW,λ}λ = {{L par

LPWW,λ}par∈Λλ}λ, with associated witness relation RLPWW = {RLPWW,λ}λ =

{{Rpar
LPWW,λ}par∈Λλ}λ. Then, an IHBG-friendly ZAP system ΠZAP for LLPWW with with public-coin

length `(λ) is a tuple of PPT algorithms (Prove,Verify) defined as follows.

Prove(par, r, x, w)→ π : The proving algorithm is given the parameters par ∈ Λλ, the public-coin
r ∈ {0, 1}`, a statement x, and a witness w, and outputs a proof π.

Verify(par, r, x, π)→ > or ⊥ : The verification algorithm is given the parameters par ∈ Λλ, the public-
coin r ∈ {0, 1}`, a statement x, and a proof π, and outputs > for acceptance or ⊥ for rejection.

We additionally require the following properties to hold.
Correctness: For any λ ∈ N, r ∈ {0, 1}`, par ∈ Λλ, and (x,w) ∈ Rpar

LPWW,λ, we have

Pr[Verify(par, r, x,Prove(par, r, x, w)) = >] = 1.

(Adaptive) Computational εsound-Soundness w.r.t. Colinear Parameters: For any λ ∈ N and
PPT adversary A, we have

Pr

[
par←r Col(Gd), r ← {0, 1}`, (x, π)←r A(par, r) :

x 6∈ L par
LPWW,λ ∧

Verify(par, r, x, π) = >

]
≤ εsound.

11 To be precise, g ∈ G will be sampled for each security parameter λ and the family of parameterized
language LLPWW,λ is defined with respect to such generator g. For better readability, we may make the
random sampling of g implicit when the context is clear.
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(Doubly-Adaptive) Statistical Witness Indistinguishability: For any λ ∈ N and unbounded
adversary A = (A0,A1), we have∣∣∣∣∣∣Pr

 (r, par, x, w0, w1, st)←r A0(1
λ)

π ←r Prove(par, r, x, w0)
:

par ∈ Λλ ∧ A1(st, π) = 1
∧ (x,w0) ∈ Rpar

LPWW,λ

∧ (x,w1) ∈ Rpar
LPWW,λ

∣∣∣∣∣∣
−

∣∣∣∣∣∣Pr
 (r, par, x, w0, w1, st)←r A0(1

λ)
π ←r Prove(par, r, x, w1)

:

par ∈ Λλ ∧ A1(st, π) = 1
∧ (x,w0) ∈ Rpar

LPWW,λ

∧ (x,w1) ∈ Rpar
LPWW,λ

∣∣∣∣∣∣ ≤ negl(λ).

Building IHBG-Friendly Statistical ZAPs for LLPWW. In Section 6, we will provide two con-
structions of an IHBG-friendly statistical ZAPs for LLPWW, one in pairing groups (Theorem 40),
and one in pairing-free groups (Theorem 46). Both constructions are obtained by compiling the Σ-
protocol for LLPWW described in Section 4.4 into an IHBG-friendly statistical ZAP for LLPWW. Below,
we give an overview of the main lemmas regarding our two constructions whose proofs are provided
in Section 6.

Pairing-Based Construction. The pairing-based construction builds upon the Couteau-Hartmann
compiler from [8], which relies on the hardness of the kernel Diffie-Hellman assumption in a group G2

(more generally, it can be based on the kernel k-Lin assumption in G2 for any k), a standard search
assumption (which is implied in particular by DDH in G2) introduced in [38] and used in several
works on pairing-based NIZKs, e.g. [33].

Lemma 23. Let (G1,G2) be bilinear-map groups equipped with an asymmetric pairing (implicitly pa-
rameterized by the security parameter λ). There exists an IHBG-friendly adaptive statistical ZAP for
the family of parametrized languages LLPWW over G1 which satisfies adaptive computational εsound-
soundness w.r.t. colinear parameters, and doubly-adaptive statistical witness indistinguishability, as-
suming the explicit εsound-hardness of the kernel Diffie-Hellman assumption in G2.

Pairing-Free Construction. The pairing-free construction builds upon the compiler of [10]. The work
of [10] build a correlation intractable hash function under the 2−3λ/4-OW-KDM security of ElGamal,
which suffices to compile the above Σ-protocol into a statistical ZAP. We refine their approach and
achieve a similar result under a weaker assumption, by managing to reduce the constant 3/4 to 1/2,
that is, rely on the 2−λ/2-OW-KDM security of ElGamal. We note that the best known attack against
this falsifiable search assumption succeeds with probability poly(λ)/2λ.

Lemma 24. Let G be a group of order p such that λ ≈ 2dlog pe2. There exists an IHBG-friendly adap-
tive statistical ZAP for the family of parametrized languages LLPWW over G which satisfies adaptive
computational εsound-soundness w.r.t. colinear parameters for any εsound = 2−o(dlog pe

2), and doubly-
adaptive statistical witness indistinguishability, assuming the 2−λ/2-OW-KDM hardness of ElGamal
over another group G̃ of size |G̃| ≈ 2λ.

4.3 Σ-protocols for Parameterized Families of Languages

To construct our IHBG-friendly statistical ZAPs for LLPWW, we rely on a Σ-protocol for the family of
parameterized language LLPWW. Here, we recall the definition of Σ-protocols, adapted to a family of
parametrized languages, rather than just one single language. A Σ-protocol is a three-move interactive
proof between a prover P and a verifier V for a family of parameterized languages L = {Lλ}λ =
{{L par

λ }par∈Λλ}λ with associated witness relation R = {Rλ}λ = {{Rpar
λ }par∈Λλ}λ. The prover sends

an initial message α ∈ Iλ for some commitment space Iλ, the verifier responds with a random β ←r Sλ
for some challenge space Sλ, and the prover concludes with a message γ. Lastly, the verifier outputs
>, if it accepts and ⊥ otherwise. We denote out〈P(par, x, w),V(par, x)〉 as the final value output by the
verifier and trans〈P(par, x, w),V(par, x)〉 as the transcript (α, β, γ). A Σ-protocol is usually defined by
three properties: completeness, special honest-verifier zero-knowledge, and special soundness (see for
example [35]). In this work, we will instead be interested in statistical witness indistinguishability
even against malicious verifiers and adaptive soundness. The definitions follow.



18 Geoffroy Couteau, Shuichi Katsumata, Elahe Sadeghi, and Bogdan Ursu

Definition 25 (Completeness). For any λ ∈ N, par ∈ Λλ and (x,w) ∈ Rpar
λ , we have Pr[out〈P(par, x, w),

V(par, x)〉 = >] = 1.

Definition 26 (Statistical Witness Indistinguishability). For any λ ∈ N, par ∈ Λλ and (x,w0, w1)
such that (x,w0) ∈ Rpar

λ and (x,w1) ∈ Rpar
λ , and for any (possibly inefficient) cheating verifier V∗,

the two distributions trans〈P(par, x, w0),V
∗(par, x)〉 and trans〈P(par, x, w1),V

∗(par, x)〉 are statistically
close. We say it is perfect witness indistinguishability when the two distributions are identical.

Definition 27 (Adaptive ρ-soundness). For any λ ∈ N, par ∈ Λλ, any (possibly inefficient)
cheating prover P∗, and any first flow α, it holds that Pr[β ←r Sλ; (x, γ) ←r P∗(par, α, β) : x 6∈
L par
λ ∧ V(par, x, α, β, γ) = >] ≤ ρ(λ).

4.4 A Σ-Protocol for the LPWW Language LLPWW

Fix some parameters par = (gv, gw) ∈ Λ = (Gd\{1})2 (implicitly parameterized by the security
parameter λ). To match with the notations which we will use later when building an IHBG, we denote
the dimension d in L par

LPWW by m + 1. We consider a statement (X̂, Ŷ ) := (gx̂, gŷ) ∈ L par
LPWW and let

y ∈ Zm+1
p be the prover witness (i.e., y is any vector over Zm+1

p such that y>v = x̂ and y>w = ŷ).
Let n ∈ N be any positive integer. Then, a Σ-protocol for LLPWW = {L par

LPWW}par∈Λ is provided
in Figure 1. Correctness can be checked by routine calculation. Below, we prove statistical witness
indistinguishability and adaptive soundness.

Prover Verifier

∀i ∈ [n] : zi ←$Zm+1
p and

set (Ri, Si)← ((g>)zi , (h>)zi)
∀i ∈ [n] : ei ←$Z∗p

∀i ∈ [n] : di ← ei · y + zi
Check (g>)di = X̂ei ·Ri

and (h>)di = Ŷ ei · Si, for i ∈ [n]

{(Ri, Si)}i∈[n]

{ei}i∈
[n]

{di}i∈[n]

Fig. 1. Σ-protocol with statement (X̂, Ŷ ) ∈ L par
LPWW where par := (g,h) = (gv, gw).

Lemma 28 (Perfect Witness Indistinguishability). The IHBG-friendly Σ-protocol for the fam-
ily of parametrized languages LLPWW = {L par

LPWW}par∈Λ in Figure 1 satisfies perfect witness indistin-
guishability.

Proof. Fix any par = (gv, gw) ∈ Λ and statement (X̂, Ŷ ) = (gx̂, gŷ) ∈ L par
LPWW such that the set

of witnesses W := {y ∈ Zm+1
p | y>v = x̂ ∧ y>w = ŷ} is non-trivial, i.e., there exists at least

two witnesses in W. Below, we only consider the case n = 1 since witness indistinguishability is
closed under parallel repetition. First, notice that the distribution of the first message (R,S) is
independent of the witnesses. This in particular implies that the output e of the (possibly inefficient)
cheating verifier V∗ is also independent of the witnesses as well. Therefore, it suffices to show that
the distribution of the third message d is identical for any witness y ∈ W conditioned on an arbitral
fixed choice of (R,S) = (gr, gs) and e. Let Dz be the distribution of sampling a uniformly random
z ∈ Zm+1

p conditioned on v>z = r and w>z = s. Then, for any witness y ∈ W, the third message
d follows the distribution Dy

d where we first sample z ←r Dz and output d ← e · y + z. Observe
that by the definition of Dz, the probability of any d being sampled form Dy

d and Dy′

d for any two
witnesses y,y′ ∈ W is identical. In particular, we have Dy

d = Dy′

d for any y,y′ ∈ W. Combining all
the arguments together, the statement follows.

Lemma 29 (Adaptive Soundness). The IHBG-friendly Σ-protocol for the family of parametrized
languages LLPWW = {L par

LPWW}par∈Λ in Figure 1 satisfies adaptive ( 1
p−1 )

n−1-soundness.

Proof. In case par ∈ Λ\Col(Gd), we have L par
LPWW = G2 so there exists no statement (X̂, Ŷ ) /∈ L par

LPWW

(see Section 4.1). Therefore, we only need to consider the case par ∈ Col(Gd). For any such par =



Statistical ZAPs from Group-Based Assumptions 19

(gv, gw), we have v 6= 0 and w = α · v for some α ∈ Z∗p. Now, fix any first flow {(Ri, Si)}i∈[n] and
let ri and si be their exponents, respectively, i.e., Ri = gri and Si = gsi and assume the adversary
outputs (X̂, Ŷ ) = (gx̂, gŷ) /∈ L par

LPWW. In order for the verifier to accept, the following must hold:
ei · ŷ + si = ei · x̂ · α+ ri · α, for i ∈ [n], which implies that:

ŷ − α · x̂ = (α · ri − si) · e−1i , for i ∈ [n]

We distinguish the following two cases:

1. If α · ri = si for some i ∈ [n], then ŷ = α · x̂. This implies (gx̂, gŷ) ∈ L par
LPWW.

2. If α · ri 6= si for all i ∈ [n], then α·r1−s1
α·ri−si · ei = e1 for i ∈ [n], which happens with probability at

most ( 1
p−1 )

n−1 over the randomness of (ei)i∈[n] ←r (Z∗p)n.

We can ignore the first case since it does not lead to a valid cheating prover for adaptive soundness. In
the second case, even a computationally unbounded cheating prover has at most ( 1

p−1 )
n−1 possibility

of breaking adaptive soundness. Hence the statement follows.

5 Interactive Hidden-Bits Generating Protocols from the Explicit
Hardness of DDH and an IHBG-Friendly Statistical ZAPs for LLPWW

In this section, we construct an IHBG protocol based on explicit µ-hardness of the DDH assumption
(over a pairing-free group, for a negligible function µ arbitrarily close to an inverse polynomial func-
tion) and an IHBG-friendly statistical ZAP for the language LLPWW, defined in Section 4, which is
naturally induced from the (non-interactive) hidden-bits generator of Libert et al. [34].

5.1 Constructing the IHBG Protocol

Building Block. Our construction is parametrized by λ and µ(λ), and relies on the following building
blocks:

– H = {Hλ}λ = {{H : G 7→ {0, 1}}H}λ is a family of universal hash functions with description size
of at most O(log2 p) bits, where G and p are implicitly parameterized by the security parameter.

– ΠZAP = (ZAP.Prove,ZAP.Verify) is an IHBG-friendly ZAP for the parametrized family of languages
LLPWW = {LLPWW,λ}λ = {{L par

LPWW,λ}par∈Λλ}λ with public-coin length `′(λ), satisfying adaptive
computational εsound-soundness w.r.t. colinear parameters for εsound = µ(λ)

m(λ) and doubly-adaptive
statistical witness indistinguishability. Here, we set the vector length parameter d(λ) in LLPWW,λ

to m(λ)+ 1, where m(λ) is the polynomial output bit length of the IHBG protocol defined below.

Construction. The construction of an IHBG protocol denoted as ΠIHBG is described as follows. The
commitment length is at most s(λ) = dlog2 pe + O(log2 p) where (G, p) ← DHGen(1λ) (note that
DHGen guarantees in particular p > λω(1), which is needed to use the uniformity property of H). The
output bit length m(λ) is an arbitrary large enough fixed polynomial poly(λ), and the public-coin
length `(λ) ism·`′+(m+2)·dlog2 pe. We rely on one more parameter ν(λ) and require the parameters
to satisfy the following conditions:

– In order to prove statistical hiding, m(λ) · µ(λ) must be negligible; this holds by setting µ(λ) to
be a negligible function.

– For technical reasons in the hybrid games, we need a negligible gap between ν and µ; that is, ν(λ)
is a negligible function satisfying µ(λ) = ν(λ) · negl(λ).

– We also need 1/µ(λ) (and hence 1/ν(λ)) to be small compared to p (otherwise, assuming explicit
µ-hardness of DDH over G does not make sense: a polynomial time attack with O(1/p) advantage
against DDH trivially exists). In particular, µ(λ) can be set as an arbitrary close to an inverse
polynomial, i.e., λ−ω(1). Here, since 1/ν(λ) is small compared to p, any element z ∈ [1/ν(λ)] can
be seen as an element of Zp.

We proceed with the description of the scheme. In the following we may omit the dependency on λ
for better readability when the context is clear.
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GenBits(1λ,m, r) : On input the security parameter 1λ, bit length m, and a public-coin r ∈ {0, 1}`,
parse ((rZAP,i)i∈[m], g, g

M) ← r, where g ∈ G and M := (v|w1| . . . |wm) ∈ Z(m+1)×(m+1)
p .12

Then sample z ←r [1/ν], and compute gM−z·Im+1 , where we denote M′ := M − z · Im+1 =

(v′|w′1| · · · |w′m) ∈ Z(m+1)×(m+1)
p . Further sample a random hash function H ←r H and a uni-

formly random seed y←r Zm+1
p , and compute a commitment gs ← gy

>v′ , openings gui ← gy
>w′i ,

and the hidden bits ρi ← H(gui) for all i ∈ [m]. For each i ∈ [m], set the language param-
eter pari := (gv

′
, gw

′
i), statement xi := (gs, gui), and witness w := y for membership to the

parametrized language L
pari
LPWW, and compute πZAP,i ←r ZAP.Prove(pari, rZAP,i, xi, w) and set

πi = (gui , πZAP,i). Finally, output the commitment σ := (H, gs, z) ∈ H × G × [1/ν], string
ρ := (ρi)i∈[m] ∈ {0, 1}m and the set of proofs {πi}i∈[m].

VerifyBit(r, σ, i, ρi, πi) : Parse ((rZAP,i)i∈[m], g, g
M) ← r, (H, gs, z) ← σ, (gui , πZAP,i) ← πi, and

compute gM
′ ← gM−zIm+1 . Then, set the language parameter as pari := (gv

′
, gw

′
i) and the

statement as xi := (gs, gui). Check ρi = H(gui) and ZAP.Verify(pari, rZAP,i, xi, πZAP,i) = >.
Output > if both check passes and otherwise output ⊥.

Succinctness The length of the commitment σ = (H, gs, z) only depends on the security param-
eter, and in particular, independent of m. This is because gs requires dlog2 pe bits, z requires
dlog2(1/ν(λ))e ≤ dlog2 pe and the description of the universal hash function H requires at most
O(log2 p) bits.

5.2 Security

Correctness of our IHBG protocol can be verified by a routine check. Below, we show our IHBG protocol
satisfies extractability and statistical hiding in the following Theorems 30 and 32.

Theorem 30 (Extractability). Consider µ(λ) an efficiently computable function, εsound = ν(λ)
m(λ) ,

and a negligible function ν(λ) such that µ(λ) = ν(λ) · negl(λ). If the IHBG-friendly ZAP for LLPWW

is adaptively computational εsound-sound w.r.t. colinear parameters and the DDH assumption is µ-
explicitly hard, then IHBG satisfies ν-extractability.

Proof. We show that our IHBG satisfies public-coin indistinguishability and µ-successful extraction.
Public-Coin Indistinguishability. We first describe the PPT algorithm SimCoin. SimCoin starts
by sampling g ←r G, v′ ←r Zm+1

p \{0} and αi ←r Z∗p, for all i ∈ [m], and sets w′i = αiv
′ and

M′′ := (v′|w′1| . . . |w′m) ∈ Z(m+1)×(m+1)
p . It then samples z̃ ←r [1/ν], rZAP,i ←r {0, 1}`

′
for all

i ∈ [m]. It now computes M := M′′ + z̃ · Im+1, interprets ((rZAP,i)i∈[m], g, g
M) as a binary string

r̃ ∈ {0, 1}`. Finally, it outputs the simulated public-coin r̃ and sets the trapdoor τ := ((αi)i∈[m], z̃).
Following textbook arguments, the following holds due to the polynomial hardness of DDH:∣∣Pr[r ←r {0, 1}` : A(m, r) = 1]

∣∣− ∣∣Pr[(r̃, τ)←r SimCoin(1λ,m) : A(m, r̃) = 1]
∣∣ ≤ negl(λ).

µ-Successful Extraction. We first describe the efficient, deterministic Open(r̃, σ, τ) algorithm:

– Parse (H, gs, z)← σ and ((αi)i∈[m], z̃)← τ .
– If z̃ 6= z, then return ⊥.
– Otherwise, for each bit i ∈ [m], compute ρi := H(gs·αi).
– Return ρ = (ρi)i∈[m] ∈ {0, 1}m.

We proceed by a hybrid argument between PPT adversary A, PPT distinguisher D, and a challenger.
We denote Ei as the event that the challenger outputs 1 in Gamei. Looking ahead, the probability of
E occurring in the first and last games correspond to the probability of the left-hand and right-hand
side of the ν-successful extraction, respectively.

Game0 : In this game, the challenger first runs (r̃, τ) ← SimCoin(1λ,m) and invokes the adversary
A on input (m, r̃). Once A replies with (σ, S, ρ∗S , {πi}i∈S , st), the challenger computes ρ ←
Open(r̃, σ, τ). The challenger outputs 1 if the following holds: D(st) = 1, ρ ∈ {0, 1}m, and

12 Note the algorithm only has knowledge of the encodings gM, and does not know the discrete logarithms
M themselves.
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VerifyBit(r̃, σ, i, 1− ρi, πi) = ⊥ for all i ∈ S. The probability the challenger outputs 1 corresponds
to the left-hand side of the ν-successful extraction condition in Definition 14. Let us denote

Pr[E0] := ε.

Below, we give the full description of the challenger, which receives as input the security parameter
λ (in unary) and polynomial m, and proceeds as follows:
1. g ←r G
2. v′ ←r Zm+1

p \{0}
3. αi ←r Z∗p, for all i ∈ [m].
4. w′i ← αiv

′, for all i ∈ [m].
5. M′′ ← (v′|w′1| . . . |w′m) ∈ Z(m+1)×(m+1)

p .
6. z̃ ←r [1/ν]
7. M←M′′ + z̃ · Im+1.
8. rZAP,i ←r {0, 1}`

′
, for all i ∈ [m]

9. Set the simulated public-coin as r̃ := ((rZAP,i)i∈[m], g, g
M) ∈ {0, 1}`.

10. Set the extraction trapdoor as τ := ((αi)i∈[m], z̃).
11. Send (m, r̃) to A, which replies with (σ, S, ρ∗S , {πi}i∈S , st).
12. Run ρ← Open(r̃, σ, τ) and if ρ = ⊥, return 0.
13. Send st to D. If D replies with 0, return 0.
14. Check VerifyBit(r̃, σ, i, 1− ρi, πi) = ⊥, for all i ∈ S. If not, return 0.
15. Return 1.

Game1 : This game is defined identically to Game0, except that the challenger now performs an
additional check whether z̃ picked by the SimCoin algorithm is the same as the z it received from
the adversary A. Since Open already makes this check, this is just a conceptual change and we
have

Pr[E1] = Pr[E0].

Below, we give the full description of the challenger, where the red underline indicates the differ-
ence between the previous game:
1. g ←r G
2. v′ ←r Zm+1

p \{0}
3. αi ←r Z∗p, for all i ∈ [m].
4. w′i ← αiv

′, for all i ∈ [m].
5. M′′ ← (v′|w′1| . . . |w′m) ∈ Z(m+1)×(m+1)

p .
6. z̃ ←r [1/ν]
7. M←M′′ + z̃ · Im+1.
8. rZAP,i ←r {0, 1}`

′
, for all i ∈ [m]

9. Set the simulated public-coin as r̃ := ((rZAP,i)i∈[m], g, g
M) ∈ {0, 1}`.

10. Set the extraction trapdoor as τ := ((αi)i∈[m], z̃).
11. Send (m, r̃) to A, which replies with (σ, S, ρ∗S , {πi}i∈S , st).
12. Parse (H, gs, z)← σ.
13. If z̃ 6= z, return 0.
14. Run ρ← Open(r̃, σ, τ) and if ρ = ⊥, return 0.
15. Send st to D. If D replies with 0, return 0.
16. Check VerifyBit(r̃, σ, i, 1− ρi, πi) = ⊥, for all i ∈ S. If not, return 0.
17. Return 1.

Game2 : This game is defined identically to Game1, except that the challenger does not verify whether
for all i ∈ S, VerifyBit(r̃, σ, i, 1−ρi, πi) = ⊥. It still checks however, if ρ ∈ {0, 1}m (which is implied
by the check z̃ = z). We prove in Lemma 31 that assuming the IHBG-friendly ZAP for LLPWW is
adaptively computational εsound-sound w.r.t. colinear parameters, we have

|Pr[E1]− Pr[E2]| ≤ m · εsound.

So as not to interrupt the main proof, we skip the proof of Lemma 31 to later.
Below, we give the full description of the challenger:
1. g ←r G
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2. v′ ←r Zm+1
p \{0}

3. αi ←r Z∗p, for all i ∈ [m].
4. w′i ← αiv

′, for all i ∈ [m].
5. M′′ ← (v′|w′1| . . . |w′m) ∈ Z(m+1)×(m+1)

p .
6. z̃ ←r [1/ν]
7. M←M′′ + z̃ · Im+1.
8. rZAP,i ←r {0, 1}`

′
, for all i ∈ [m]

9. Set the simulated public-coin as r̃ := ((rZAP,i)i∈[m], g, g
M) ∈ {0, 1}`.

10. Set the extraction trapdoor as τ := ((αi)i∈[m], z̃).
11. Send (m, r̃) to A, which replies with (σ, S, ρ∗S , {πi}i∈S , st).
12. Parse (H, gs, z)← σ.
13. If z̃ 6= z, return 0.
14. Run ρ← Open(r̃, σ, τ) and if ρ = ⊥, return 0.
15. Send st to D. If D replies with 0, return 0.
16. Check VerifyBit(r̃, σ, i, 1− ρi, πi) = ⊥, for all i ∈ S. If not, return 0.
17. Return 1.

Game3 : This game is defined identically to Game2, except that the challenger no longer computes
ρ← Open(r̃, σ, τ) and checks ρ = ⊥. Since in Game2, the check z̃ 6= z (which is equivalent to the
check ρ = ⊥) is done prior to calling Open, and because ρ is not used at any point in Game2, this
is simply a syntactic change and the two games are equivalent and we have

Pr[E2] = Pr[E3].

Below, we give the full description of the challenger:
1. g ←r G
2. v′ ←r Zm+1

p \{0}
3. αi ←r Z∗p, for all i ∈ [m].
4. w′i ← αiv

′, for all i ∈ [m].
5. M′′ ← (v′|w′1| . . . |w′m) ∈ Z(m+1)×(m+1)

p .
6. z̃ ←r [1/ν]
7. M←M′′ + z̃ · Im+1.
8. rZAP,i ←r {0, 1}`

′
, for all i ∈ [m]

9. Set the simulated public-coin as r̃ := ((rZAP,i)i∈[m], g, g
M) ∈ {0, 1}`.

10. Set the extraction trapdoor as τ := ((αi)i∈[m], z̃).
11. Send (m, r̃) to A, which replies with (σ, S, ρ∗S , {πi}i∈S , st).
12. Parse (H, gs, z)← σ.
13. If z̃ 6= z, return 0.
14. Run ρ← Open(r̃, σ, τ) and if ρ = ⊥, return 0.
15. Send st to D. If D replies with 0, return 0.
16. Return 1.

Game4 : This game is defined identically to Game3, except that the challenger samples a uniformly
random matrix M′′ ←r Z(m+1)×(m+1)

p rather than running SimCoin. As in Game3, the challenger
still samples z̃ ←r [1/ν] and checks whether z̃ = z. Identically to the proof for public-coin
indistinguishability, due to the µ-explicit hardness of DDH13, we have

|Pr[E3]− Pr[E4]| ≤ µ(λ).

Below, we give the full description of the challenger:
1. g ←r G
2. M′′ ←r Z(m+1)×(m+1)

p .
3. z̃ ←r [1/ν]
4. M←M′′ + z̃ · Im+1.
5. rZAP,i ←r {0, 1}`

′
, for all i ∈ [m]

13 Note that we need µ-explicit hardness rather than the standard polynomial hardness to provide a stricter
bound between Pr[E3] and Pr[E4].
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6. Set the simulated public-coin as r̃ := ((rZAP,i)i∈[m], g, g
M) ∈ {0, 1}`.

7. Send (m, r̃) to A, which replies with (σ, S, ρ∗S , {πi}i∈S , st).
8. Parse (H, gs, z)← σ.
9. If z̃ 6= z, return 0.
10. Send st to D. If D replies with 0, return 0.
11. Return 1.

Game5 : This game is defined identically to Game4, except that the challenger directly samples a
uniformly random matrix M ←r Z(m+1)×(m+1)

p . Since the distributions of M are identical in
both Game4 and Game5, we have

Pr[E4] = Pr[E5].

At this point, notice that z̃ is information theoretically hidden from A and D. Therefore, the
probability z̃ = z is ν regardless of all the other randomness.
The description of the challenger is as follows:
1. g ←r G
2. M′′ ←r Z(m+1)×(m+1)

p .
3. z̃ ←r [1/ν]

4. M←r Z(m+1)×(m+1)
p .

5. rZAP,i ←r {0, 1}`
′
, for all i ∈ [m]

6. Set the simulated public-coin as r̃ := ((rZAP,i)i∈[m], g, g
M) ∈ {0, 1}`.

7. Send (m, r̃) to A, which replies with (σ, S, ρ∗S , {πi}i∈S , st).
8. Parse (H, gs, z)← σ.
9. If z̃ 6= z, return 0.
10. Send st to D. If D replies with 0, return 0.
11. Return 1.

Game6 : This game is defined identically to Game5, except that matrix M is again computed as
M←M′′ + z̃′ · Im+1 for some other z̃′ sampled uniformly and independently of z̃. Since matrix
M′′ remains uniformly random, the distributions of Game5 and Game6 are identical. Hence,

Pr[E5] = Pr[E6].

The description of the challenger is as follows:
1. g ←r G
2. M′′ ←r Z(m+1)×(m+1)

p .
3. z̃ ←r [1/ν]
4. z̃′ ←r [1/ν]

5. M←M′′ + z̃′ · Im+1.
6. rZAP,i ←r {0, 1}`

′
, for all i ∈ [m]

7. Set the simulated public-coin as r̃ := ((rZAP,i)i∈[m], g, g
M) ∈ {0, 1}`.

8. Send (m, r̃) to A, which replies with (σ, S, ρ∗S , {πi}i∈S , st).
9. Parse (H, gs, z)← σ.
10. If z̃ 6= z, return 0.
11. Send st to D. If D replies with 0, return 0.
12. Return 1.

Game7 : This game is defined identically to Game6, except that matrix M′′ is again chosen as a rank 1
matrix. (meaning that r̃ is again generated as the output of SimCoin). Identically to the transition
we made to move from Game3 to Game4, due to the µ-explicit hardness of DDH, we have

|Pr[E6]− Pr[E7]| ≤ µ(λ)

.
The description of the challenger is as follows:
1. g ←r G
2. v′ ←r Zm+1

p \{0}
3. αi ←r Z∗p, for all i ∈ [m].
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4. w′i ← αiv
′, for all i ∈ [m].

5. M′′ ← (v′|w′1| . . . |w′m) ∈ Z(m+1)×(m+1)
p .

6. z̃ ←r [1/ν]
7. z̃′ ←r [1/ν]
8. M←M′′ + z̃′ · Im+1.
9. rZAP,i ←r {0, 1}`

′
, for all i ∈ [m]

10. Set the simulated public-coin as r̃ := ((rZAP,i)i∈[m], g, g
M) ∈ {0, 1}`.

11. Set the extraction trapdoor as τ := ((αi)i∈[m], z̃
′).

12. Send (m, r̃) to A, which replies with (σ, S, ρ∗S , {πi}i∈S , st).
13. Parse (H, gs, z)← σ.
14. If z̃ 6= z, return 0.
15. Send st to D. If D replies with 0, return 0.
16. Return 1.

By using the triangle inequality, we have therefore shown the following bound:

|Pr[E0]− Pr[E7]| ≤ 2 · µ(λ) +m · εsound = ν(λ) · negl(λ),

where the equality comes from our choice of εsound and ν(λ). Moreover, observe that in Game7, z̃ is
information theoretically hidden from A and D. Therefore, the probability of z̃ = z is ν regardless of
all the other randomness. Namely, we have the following:

Pr[E7] = Pr[z̃ = z] · Pr
[
(r̃, τ)←r SimCoin(1λ,m)
(σ, S, ρ∗S , {πi}i∈S , st)←r A(m, r̃)

: D(st) = 1

]
,

= ν(λ) · Pr
[
(r̃, τ)←r SimCoin(1λ,m)
(σ, S, ρ∗S , {πi}i∈S , st)←r A(m, r̃)

: D(st) = 1

]
.

Now notice that this corresponds to the probability in the right-hand side of the ν-successful
extraction condition in Definition 14. Since Pr[E0] corresponded to the probability in the left-hand
side, this completes the proof of the theorem. It only remains to prove Lemma 31 below.

Lemma 31. If the IHBG-friendly ZAP for LLPWW is adaptively computational εsound-sound w.r.t.
colinear parameters, then we have |Pr[E1]− Pr[E2]| ≤ m · εsound.

Proof. Observe that Game1 and Game2 will only differ in the event that VerifyBit(r̃, σ, i∗, 1−ρi∗ , πi∗) =
> for some i∗ ∈ S. Let us call this event F. Then we have |Pr[E1] − Pr[E2]| ≤ Pr[F]. Below, we
upper bound Pr[F] by constructing an adversary B, which runs A internally, against the adaptive
computational εsound-soundness w.r.t. colinear parameters of the IHBG-friendly ZAP for LLPWW. The
description of B follows:14
B receives a random language parameter par = (gv

′
, gw

′
) ∈ Col(G) and a public-coin rZAP ∈

{0, 1}`′ as the problem instance, where note that w′ = α · v′ for some α ∈ Z∗p.15 First, B samples a
random index i∗ ←r [m] and sets pari∗ := par and rZAP,i∗ := rZAP, which implicitly sets wi∗ := w′.
It then further samples rZAP,i ←r {0, 1}`

′
and αi ←r Z∗p for all i ∈ [m]\{i∗} and sets gw

′
i = (gw

′
)αi .

Note that B can compute everything without knowledge of the secret exponents (v′,w′). B then
samples z̃ ←r [1/ν] and computes gM = gM

′′+z̃·Im+1 , where M′′ is implicitly set as (v′|w′1| . . . |w′m) ∈
Z(m+1)×(m+1)
p . B sets the simulated public-coin of the ΠIHBG as r̃ = ((rZAP,i)i∈[m], g

M), and invokes A
on input (m, r̃). When A outputs (σ, S, ρ∗S , {πi}i∈S , st), B parses (H, gs, z)← σ and (gui∗ , πZAP,i∗)←
πi∗ , and outputs its forged statement-proof pair as (x∗ := (gs, gui∗ ), π∗ZAP := πZAP,i∗).

We analyze the behavior of B. First, since the given language parameter par is a random element
over Col(G), B perfectly simulates the view of A in both Game1 and Game2. Next, we show x∗ =
(gs, gui∗ ) /∈ L par

LPWW. By contradiction, assume (gs, gui∗ ) ∈ L par
LPWW. Namely, there exists some y ∈ Zdp

such that s = y>v and ui∗ = y>w. Now, due to the definition of the Open algorithm, we have
ρi∗ = H(gα·s). On the other hand, since VerifyBit(r̃, σ, i∗, 1−ρi∗ , πi∗) = >, we have 1−ρi∗ = H(gui∗ ).
However, since ui∗ = y>w = α · y>v = α · s, the output of the hash function H cannot be different.
Therefore, we have x∗ = (gs, gui∗ ) /∈ L par

LPWW. Then, since i∗ ∈ [m] is statistically hidden from A,
14 Note that B does not need to invoke D below since event F can be checked without the output of D.
15 To be precise, we assume a random group generator g ∈ G is also provided to B as part of the challenge,

which B uses to simulate the view of A.
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conditioning on event F occuring, we have x∗ /∈ L par
LPWW and ZAP.Verify(par, rZAP, x

∗, π∗ZAP) = >
with probability 1/m. Therefore, due to the adaptive computational εsound-soundness w.r.t. colinear
parameters of the IHBG-friendly ZAP, we obtain Pr[F] ≤ m · εsound. This concludes the proof.

Theorem 32 (Statistical Hiding). If the IHBG-friendly ZAP for LLPWW is doubly-adaptive sta-
tistically witness indistinguishable, the hash function family H is universal, and ν(λ) is negligible,
then ΠIHBG is statistically hiding.

Proof. We first provide the description of the simulator Sim used to simulate the commitment σ and
proof for opening {πi}i∈S below:

Sim(m, r, S, ρS): On input a polynomial m, public-coin r, set S, and hidden-bits string ρS , it proceeds
as follows:

1. Parse ((rZAP,i)i∈[m], g, g
M)← r.

2. H ←r H.
3. z ←r [1/ν].
4. gM

′ ← gM−z·Im+1 .
5. Recover matrix M′ := (v′|w′1| · · · |w′m) ∈ Z(m+1)×(m+1)

p by brute force.
6. If M′ is not full-rank, return ⊥.
7. ρi ← {0, 1}m, for all i ∈ [m].
8. Compute Y := {y′ ∈ Zm+1

p : H(g(y
′)>w′i) = ρi, for all i ∈ S} (inefficiently).

9. If Y = ∅, return 0.
10. y←r Y .
11. gs ← gy

>v′ and gui ← gy
>w′i , for all i ∈ S.

12. Set the language parameter pari := (gv
′
, gw

′
i) and the statement xi := (gs, gui) for the language

L
pari
LPWW, for all i ∈ S.

13. πZAP,i ←r ZAP.Prove(pari, rZAP,i, xi,y), for all i ∈ S.
14. πi ← (gui , πZAP,i), for all i ∈ S.
15. σ ← (H, gs, z).
16. Return (σ, {πi}i∈S).

We consider the following sequence of games between an unbounded adversary A = (A0,A1) and
a challenger, where the first and last games corresponding respectively to the honest game using
GenBits and simulated game using Sim of the statistical-hiding property in Definition 14. We denote
Ei as the event that the challenger outputs 1 in Gamei.

Game0: This game is the same as the real game where the challenger uses GenBits to generate the
hidden-bits. By definition, we have

Pr[E0] = ε.

Below, we give the full description of the challenger, which receives as input the security parameter
λ (in unary), polynomial m and public-coin r, and proceeds as follows:

1. Parse ((rZAP,i)i∈[m], g, g
M)← r.

2. H ←r H.
3. z ←r [1/ν].
4. gM

′ ← gM−z·Im+1 .
5. y← Zm+1

p .
6. gs ← gy

>v′ and gui ← gy
>w′i , for all i ∈ S, where M := (v′|w′1| · · · |w′m) ∈ Z(m+1)×(m+1)

p .
7. Set the language parameter pari := (gv

′
, gw

′
i) and the statement xi := (gs, gui) for the lan-

guage L
pari
LPWW, for all i ∈ S.

8. πZAP,i ←r ZAP.Prove(pari, rZAP,i, xi,y), for all i ∈ [m].
9. πi ← (gui , πZAP,i), for all i ∈ [m].

10. σ ← (H, gs, z).
11. ρi ← H(gui), for all i ∈ [m].
12. Send ρ := (ρi)i∈[m] to A0, which replies with a set S. If S 6⊆ [m], return 0.
13. Send (r, S, ρ, σ, {πi}i∈S) to A1. If A1 replies with 1, return 1, otherwise, return 0.
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Game1 : This game is defined identically to Game0, except that GenBits is modified as follows:
Upon computing gM

′
= g(v

′|w′1|...|w
′
m), the challenger recovers the discrete logarithms, obtain-

ing v′,w′1, . . . ,w
′
m. Then, it picks (s‖u)←r Zm+1

p and computes y = M′−1(s‖u), where we show
M′ is invertible with overwhelming probability for our parameter choice ν and m. We later prove
in Lemma 33 that we have

|Pr[E0]− Pr[E1]| ≤ (m+ 1) · ν(λ).
The description of the challenger is as follows:
1. Parse ((rZAP,i)i∈[m], g, g

M)← r.
2. H ←r H.
3. z ←r [1/ν].
4. gM

′ ← gM−z·Im+1 .
5. Recover M′ := (v′|w′1| . . . |w′m) ∈ Z(m+1)×(m+1)

p by brute force.
6. If M′ is not full-rank, return 0.
7. (s‖u)←r Zm+1

p .

8. Set the language parameter pari := (gv
′
, gw

′
i) and the statement xi := (gs, gui) for the lan-

guage L
pari
LPWW, where ui denotes the i-th entry of u, for all i ∈ [m].

9. y←M′−1(s‖u).
10. πZAP,i ←r ZAP.Prove(pari, rZAP,i, xi,y), for all i ∈ [m].
11. πi ← (gui , πZAP,i), for all i ∈ [m].
12. σ ← (H, gs, z).
13. ρi ← H(gui), for all i ∈ [m].
14. Send ρ := (ρi)i∈[m] to A0, which replies with a set S. If S 6⊆ [m], return 0.
15. Send (r, S, ρ, σ, {πi}i∈S) to A1. If A1 replies with 1, return 1, otherwise, return 0.

Game2 : This game is defined identically to Game1, except that u is sampled differently. First, the chal-
lenger picks u′′ ←r Zmp , and then it samples u ←r {u′ ∈ Zmp : H(gu

′
i) = H(gu

′′
i ), for all i ∈ S},

which it can do since computing the set of all valid u′ can be done inefficiently. For completeness,
we later formally prove in Lemma 34 that we have

Pr[E1] = Pr[E2].

The description of the challenger is as follows:
1. Parse ((rZAP,i)i∈[m], g, g

M)← r.
2. H ←r H.
3. z ←r [1/ν].
4. gM

′ ← gM−z·Im+1 .
5. Recover M′ := (v′|w′1| . . . |w′m) ∈ Z(m+1)×(m+1)

p by brute force.
6. If M′ is not full-rank, return 0.
7. (s‖u′′)←r Zm+1

p .

8. ρi ← H(gu
′′
i ), for all i ∈ [m], where u′′i denotes the i-th entry of u′′.

9. Send ρ := (ρi)i∈[m] to A0, which replies with a set S. If S 6⊆ [m], return 0.
10. Compute U = {u′ ∈ Zmp : H(gu

′
i) = ρi, for all i ∈ S} (inefficiently).

11. u←r U .
12. Set the language parameter pari := (gv

′
, gw

′
i) and the statement xi := (gs, gui) for the lan-

guage L
pari
LPWW for all i ∈ [m].

13. y←M′−1(s‖u).
14. πZAP,i ←r ZAP.Prove(pari, rZAP,i, xi,y), for all i ∈ [m].
15. πi ← (gui , πZAP,i), for all i ∈ [m].
16. σ ← (H, gs, z).
17. Send (r, S, ρ, σ, {πi}i∈S) to A1. If A1 replies with 1, return 1, otherwise, return 0.

Game3 : This game is defined identically to Game2, except for the hidden-bits generation procedure,
which now first samples ρ←r {0, 1}m and then uniformly randomly picks u such that H(gui) = ρi
for all i ∈ S, if such u exists. We later prove in Lemma 35 that, due to the statistical uniformity
of the hash function, we have

|Pr[E2]− Pr[E3]| ≤ negl(λ).

The description of the challenger is as follows:
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1. Parse ((rZAP,i)i∈[m], g, g
M)← r.

2. H ←r H.
3. z ←r [1/ν].
4. gM

′ ← gM−z·Im+1 .
5. Recover M′ := (v′|w′1| . . . |w′m) ∈ Z(m+1)×(m+1)

p by brute force.
6. If M′ is not full-rank, return 0.
7. ρi ← {0, 1}m, for all i ∈ [m].
8. Send ρ := (ρi)i∈[m] to A0, which replies with a set S. If S 6⊆ [m], return 0.
9. Compute U = {u′ ∈ Zmp : H(gu

′
i) = ρi, for all i ∈ S} (inefficiently).

10. If U = ∅, return 0.
11. u←r U .
12. s←r Zp.
13. Set the language parameter pari := (gv

′
, gw

′
i) and the statement xi := (gs, gui) for the lan-

guage L
pari
LPWW, for all i ∈ [m].

14. y←M′−1(s‖u).
15. πZAP,i ←r ZAP.Prove(pari, rZAP,i, xi,y), for all i ∈ S.
16. πi ← (gui , πZAP,i), for all i ∈ [m].
17. σ ← (H, gs, z).
18. Send (r, S, ρ, σ, {πi}i∈S) to A1. If A1 replies with 1, return 1, otherwise, return 0.

Game4 : This game is defined identically to Game3, except that it only samples the necessary entries
in u and samples an additional vector yr uniformly at random, conditioned on the fact that
g(y

r)>v′ = gs and g(y
r)>w′i = gui , for all i ∈ S. Then, the proofs {πZAP,i}i∈S are computed using

witness yr instead of witness y. We later prove in Lemma 36 that, due to the doubly-adaptive
statistical witness indistinguishability of the IHBG-friendly ZAP for LLPWW, we have

|Pr[E3]− Pr[E4]| ≤ negl(λ).

The description of the challenger is as follows, where note that Ys,u 6= ∅ is guaranteed in case the
challenger hasn’t returned 0:
1. Parse ((rZAP,i)i∈[m], g, g

M)← r.
2. H ←r H.
3. z ←r [1/ν].
4. gM

′ ← gM−z·Im+1 .
5. Recover M′ := (v′|w′1| . . . |w′m) ∈ Z(m+1)×(m+1)

p by brute force.
6. If M′ is not full-rank, return 0.
7. ρi ← {0, 1}m, for all i ∈ [m].
8. Send ρ := (ρi)i∈[m] to A0, which replies with a set S. If S 6⊆ [m], return 0.
9. Compute U = {u′ ∈ ZSp : H(gu

′
i) = ρi, for all i ∈ S} (inefficiently), where x ∈ ZSp is a vector

of length |S| indexed by the elements in the set S
10. If U = ∅, return 0.
11. u←r U .
12. s←r Zp.
13. Set the language parameter pari := (gv

′
, gw

′
i) and the statement xi := (gs, gui) for the lan-

guage L
pari
LPWW, for all i ∈ S.

14. Compute Ys,u := {y′ ∈ Zm+1
p : g(y

′)>v′ = gs ∧ g(y′)>w′i = gui , for all i ∈ S} (inefficiently).
15. yr ←r Ys,u.
16. πZAP,i ←r ZAP.Prove(pari, rZAP,i, xi,y

r), for all i ∈ S.
17. πi ← (gui , πZAP,i), for all i ∈ S.
18. σ ← (H, gs, z).
19. Send (r, S, ρ, σ, {πi}i∈S) to A1. If A1 replies with 1, return 1, otherwise, return 0.

Game5 This game is defined identically to Game4, except that it now first samples y uniformly at
random, conditioned on the fact that H(gy

>w′i) = ρi, for all i ∈ S. It then computes gs = gy
>v′

and gui = gy
>w′i for all i ∈ S. Namely, the order of operations is switched: in Game4, first u and

s are sampled and y is determined afterwards, while in Game5, the challenger first samples y and
only after it can compute u and s accordingly. We later prove in Lemma 37 that we have

Pr[E4] = Pr[E5].

The description of the challenger is as follows:
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1. Parse ((rZAP,i)i∈[m], g, g
M)← r.

2. H ←r H.
3. z ←r [1/ν].
4. gM

′ ← gM−z·Im+1 .
5. Recover M′ := (v′|w′1| . . . |w′m) ∈ Z(m+1)×(m+1)

p by brute force.
6. If M′ is not full-rank, return 0.
7. ρi ← {0, 1}m, for all i ∈ [m].
8. Send ρ := (ρi)i∈[m] to A0, which replies with a set S. If S 6⊆ [m], return 0.
9. Compute Y := {y′ ∈ Zm+1

p : H(g(y
′)>w′i) = ρi, for all i ∈ S} (inefficiently).

10. If Y = ∅, return 0.
11. y←r Y .
12. gs ← gy

>v′ and gui ← gy
>w′i , for all i ∈ S.

13. Set the language parameter pari := (gv
′
, gw

′
i) and the statement xi := (gs, gui) for the lan-

guage L
pari
LPWW, for all i ∈ S.

14. πZAP,i ←r ZAP.Prove(pari, rZAP,i, xi,y), for all i ∈ S.
15. πi ← (gui , πZAP,i), for all i ∈ S.
16. σ ← (H, gs, z).
17. Send (r, S, ρ, σ, {πi}i∈S) to A1. If A1 replies with 1, return 1, otherwise, return 0.

Finally, notice that Game5 is equivalent to first sampling ρ ←r {0, 1}m, running S ←r A0(ρ),
(σ, {πi}i∈S) ←r Sim(m, r, S, ρS), and checking whether S ⊆ [m] and A1(r, S, ρ, σ, {πi}i∈S) = 1. In
particular, Game5 corresponds to the simulated game using Sim of the statistical-hiding property.
Combining all the arguments and using the triangle inequality, we have therefore shown the following
bound:

|Pr[E0]− Pr[E5]| ≤ (m+ 1) · ν(λ) + negl(λ) = negl(λ),

where the equality comes from the fact that m is polynomial and ν is negligible. This completes the
proof of the theorem. It remains to prove Lemmas 33 to 37.

Lemma 33. We have |Pr[E0]− Pr[E1]| ≤ (m+ 1) · ν(λ).

Proof. The only difference between the two games occurs when the matrixM′ is not full-rank. Namely,
when matrix M′ is full-rank, this means that M′ and M′−1 correspond to bijective linear functions.
Therefore, since (s‖u)←r Zm+1

p is uniformly random, vector y is also uniformly distributed in Zm+1
p

and the distributions in Game0 and Game1 are identical.
It remains to show that the matrix M′ is full-rank with overwhelming probability 1− (m+1) · ν.

Assume that M′ = M− z · Im+1 was not full-rank, then there exists a vector t in the right kernel of
M′, meaning that M′t = 0. But then, Mt = z · t, which means that t is an eigenvector and z is a
eigenvalue of M. Matrix M has at most m+1 eigenvalues. Since z ←r [1/ν] is uniformly random, the
probability that z is an eigenvalue is at most (m + 1) · ν (which happens in the worse-case scenario
in which all m+ 1 eigenvalues of M are in the set [1/ν]).

Lemma 34. We have Pr[E1] = Pr[E2].

Proof. The distributions of u in Game1 and in Game2 are identical. The only difference is that in In
Game2, the sampling of u is performed in two stages: the challenger first picks a vector u′′ ←r Zmp ,
computes ρi ← H(gu

′′
i ), and after sending ρ to A0, it receives the set S. Afterwards, the challenger

samples u ←r {u′ ∈ Zmp : H(gu
′
i) = ρi, for all i ∈ S}. It is clear that the resulting distribution of u

is identical to those of Game1.

Lemma 35. We have that |Pr[E2] − Pr[E3]| ≤ negl(λ) assuming the hash function family H is uni-
versal.

Proof. Notice that Game2 and Game3 are identical conditioned on the set U in Game3 being non-
empty. Therefore, we upper bound the probability of U being empty in Game3. For a fixed H ∈ H
and ρ1 ∈ {0, 1}, define the set U1 := {u′ ∈ Zmp : H(gu

′
) = ρ1}. Then, by the union bound, we have

PrH,ρ1,··· ,ρm [U is empty] ≤ m · PrH,ρ1 [U1 is empty]. Finally, due to Lemma 2 and p > λω(1), we have
PrH,ρ1 [U1 is empty] ≤ negl(λ), hence completing the proof.
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Lemma 36. If the IHBG-friendly ZAP for LLPWW is doubly-adaptive statistically witness indistin-
guishable, then we have |Pr[E3]− Pr[E4]| ≤ negl(λ).

Proof. We consider (m + 1) intermediate games Game03, · · · ,Gamem3 , where the challenger in Gamei3
generates the proof πZAP,j for j ∈ [i + 1 : m] ∩ S using witness y as in Game3 and the proofs for
j ∈ [i] ∩ S using witness yr as in Game4. Noticing that we do not need to generate any proofs for
j ∈ [m]\S, we have Game03 = Game3 and Gamem3 = Game4. We prove that the output distribution of
A changes negligibly by transitioning from Gamei

∗

3 to Gamei
∗+1
3 for all i∗ ∈ [0 : m− 1].

Let B be an adversary against the doubly-adaptive statistically witness indistinguishability of the
IHBG-friendly ZAP that internally runs A defined as follows: On input the security parameter in
unary 1λ, B runs identically up to Item 13 as the challenger in Game3. It then computes y and yr

as in Item 14 in Game3 and Item 14 in Game4, respectively. B generates πZAP,i using witness y for
i ∈ [i∗+2 : m]∩S and using witness yr for i ∈ [i∗]∩S. B then sets st as all its internal state and sends
(rZAP,i∗ , pari∗ , xi∗ ,y,y

r, st) to the challenger of the IHBG-friendly ZAP witness indistinguishability
game, and receives back π∗ZAP. Finally, B sets πZAP,i∗+1 := π∗ZAP if i∗ ∈ S and simulates the rest of the
challenger in Game3 and outputs whatever output by A1. It can be checked that B perfectly simulates
Gamei

∗

3 and Gamei
∗+1
3 when witnesses y and yr are used to create π∗ZAP, respectively. Therefore, by

a standard hybrid argument over m-games, we conclude the proof.

Lemma 37. We have Pr[E4] = Pr[E5].

Proof. It suffices to prove that the distribution of (u, s,y) in Game4 and Game5 are identical. First, we
focus on the case thatM′ is full-rank since otherwise the challenger implicitly sets (u, s,y) = (⊥,⊥,⊥)
in both games. Conditioning on M′ being full-rank, we have the set U in Game4 is empty if and only if
the set Y in Game5 is empty. Therefore, we can further focus on the case that U in Game4 is non-empty.
Now, notice that since M is full-rank, the sets {Ys,u}(s,u)∈Zp×U are disjoint and all have the same size
for a fixed choice of H,M, S, and ρ. Therefore, since Y in Game5 is identical to

⋃
(s,u)∈Zp×U Ys,u, the

distribution of first sampling (s,u)←r Zp × U and sampling y ←r Ys,u is identical to first sampling
y ←r Y and then setting (s, (ui)i∈S) = (y>v′, (y>w′i)i∈S). We complete the proof by taking the
probability over the other variables.

6 IHBG-Friendly Statistical ZAPs for LLPWW

In this section, we provide two instantiations for the IHBG-friendly statistical ZAP used in the con-
struction of IHBG from the previous section, one in pairing groups, and one in pairing-free groups.
These constructions and their analysis constitute the proofs of Lemma 23 and Lemma 24.

6.1 First Construction: a Statistical ZAP for LLPWW in Pairing Groups

For this construction, we employ the Couteau-Hartmann compiler from [8]. The high-level idea of the
compiler is very simple: assume that the family of parametrized languages LLPWW = {L par

LPWW}par∈Λ
is defined over a group G1, such that there exists another group G2 and an asymmetric pairing from
G1 × G2 to a target group GT. Let g2 ∈ G2 be a generator of G2. Then, the Couteau-Hartmann
compiler converts a Σ-protocol with linear answer for the target language into a statistical ZAP by
parsing the random message of the verifier as a pair (g2, ge2), where e is seen as some random verifier
challenge for the Σ-protocol. The compiled ZAP is constructed by computing the first flow of the
Σ-protocol normally, and the last flow (which is a linear function of the challenge e with coefficients
known to the prover) “in the exponent of g2” using (g2, g

e
2). The verification step is carried out using

a pairing. Below, we adapt this compiler to the family of parameterized languages LLPWW and prove
its security.
Construction. Let (G1,G2) be elliptic curves equipped with an asymmetric pairing • : G1 ×Ge 7→
GT, where G1 and G2 both have prime order p. We extend the definition of • to vectors in the
conventional manner. Let g1 be a generator of G1 and d be a vector length parameter. Let par =
(g,h) ∈ Λ = (Gd1\{1})2 be the language parameters. We will rely on the Σ-protocol from Section 4.4
with repetition parameter n = 1. In particular, we do not require to rely on the adaptive soundness
of the Σ-protocol (i.e., Lemma 29) to achieve adaptive soundness (looking ahead, higher value of n
(i.e., adaptive soundness of the Σ-protocol) will only be useful in our pairing-free instantiation). The
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construction of a ZAP for LLPWW over G1 with public coin length ` = 2dlog |G2|e, denoted as ΠZAP,
is described as follows.

– ZAP.Prove(par, r′, x, w) : On input parameters par = (g,h) ∈ Λ, a public coin r ∈ {0, 1}`, a
statement x := (X,Y ) ∈ L par

LPWW and a witness w := y ∈ Zdp such that (X,Y ) = ((g>)y, (h>)y),
parse r as (g2, ge2) ∈ G2

2 and proceed as follows:
• Pick z←r Zdp and set (R,S)← ((g>)z, (h>)z). Note that this corresponds to computing the

first flow of the prover in the Σ-protocol from Section 4.4, with n = 1.
• Set gd2 ← (ge2)

y · gz2 . Note that this corresponds to computing the last flow of the prover in
the Σ-protocol from Section 4.4, in the exponent domain of G2.
• Output πZAP = (R,S, gd2 ).

– ZAP.Verify(par, r, x, πZAP) : On input parameters par = (g,h) ∈ Λ, a public coin r ∈ {0, 1}`, a
statement x = (X,Y ), and a proof πZAP, parse πZAP as (R,S, gd2 ), and parse r as (g2, g

e
2) ∈ G2

2.
Check that g> •gd2 = (X •ge2) · (R•g2) and h> •gd2 = (Y •ge2) · (S •g2). Note that this corresponds
to executing the verification procedure of the Σ-protocol from Section 4.4 (with n = 1), but using
the pairings to emulate the exponentiations of (g>,h>) and (X,Y ) (which are all over G1) by d
and e respectively, since the latter are now only known in the exponent of g2.

Completeness follows directly from the completeness of the underlying Σ-protocol.

Lemma 38. For any parametrized language L par
LPWW over G1, ΠZAP satisfies doubly-adaptive perfect

witness indistinguishability.

Proof. This follows directly from the perfect witness indistinguishability of the underlying Σ-protocol.
Indeed, if there exists a (possibly) inefficient cheating adversary A = (A0,A1) against the doubly-
adaptive perfect witness indistinguishability of the above ZAP, then it can be lifted to an attack
against the perfect witness indistinguishability of the Σ-protocol as follows: first run A0 to get the
parameters par ∈ Λ, the first flow r = (g2, g

e
2) ∈ G2

2, and statement-witnesses pair (x,w0, w1), and
state st. Then, extract e ∈ Z∗p by brute force search of the discrete logarithm and send par and (x,w0)
(and (x,w1)) to the prover in the Σ-protocol. Upon receiving the first flow (R,S) of the prover,
send the challenge e. Upon receiving the last flow d, lift it to the exponent of g2 and feed A1 with
(R,S, gd2 , st). Output whatever A1 output; it is immediate to check that this translate to an attack
against the witness indistinguishability of the Σ-protocol with exactly the same advantage as A. ut

Lemma 39. For a randomly sampled parametrized language L par
LPWW over G1, ΠZAP satisfies adaptive

computational εsound-soundness w.r.t. colinear parameters par ∈ Col(Gd1) under the explicit εsound-
hardness of the kernel Diffie-Hellman assumption in G2.

Proof. Let A be an efficient adversary against the adaptive computational εsound-soundness w.r.t.
colinear parameters of ΠZAP:

Pr[par←r Col(Gd1), r ← {0, 1}`, (x, πZAP)←r A(par, r) : x 6∈ L par
LPWW ∧ Verify(par, r, x, πZAP) = >] > εsound.

We build an adversary against the explicit εsound-hardness of the kernel Diffie-Hellman assumption
in G2 as follows: the reduction receives (G1,G2,GT, p, g1, g2, g

e
2) from the challenger for the kernel

Diffie-Hellman assumption. It samples par by picking (v, s)←r (Z∗p)d×Z∗p and setting par← (g,h) =
(gv1 , g

s·v
1 ), and sets r to be (g2, g

e
2). Note that par is perfectly distributed as a random sample from

Col(Gd1), and r is perfectly distributed as in ΠZAP. Then, it gets (x, πZAP) ← A(par, r) from the
ZAP adversary A, and parses x as (X,Y ) and πZAP as (R,S, gd2 ). By definition of A and since par
and r are distributed exactly as in the soundness game, it holds with probability at least εsound that
(X,Y ) 6∈ L par

LPWW and Verify(par, r, x, πZAP) = >, i.e. we have the following three equations:

– Xs/Y 6= g01 (this is equivalent to (X,Y ) /∈ L par
LPWW),

– g> • gd2 = (X • ge2) · (R • g2), and
– h> • gd2 = (Y • ge2) · (S • g2).

Now, since h = gs, and using the bilinearity of the pairing, we get from the last two equations that

1 = (Xs/Y • ge2) · (Rs/S • g2) = (Rs/S,Xs/Y ) • (g2, ge2)>

and therefore the vector (Rs/S,Xs/Y ), which the reduction can efficiently compute, is of the form
(gu1 , g

v
2) where (u, v) is in the kernel of (1, e) and v 6= 0 (since Xs/Y 6= g01); hence, the reduction

outputs (Rs/S,Xs/Y ) and breaks the kernel Diffie-Hellman assumption with probability at least
εsound. ut
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This concludes the proof of Lemma 23. Plugging this IHBG-friendly adaptive statistical ZAP for
LLPWW into the construction of IHBG of Section 5 and combining it with the construction of statistical
ZAP for NP from any IHBG from Section 3, we get our first main theorem:

Theorem 40 (Statistical ZAPs in Pairing Groups). Assume that the explicit µ-hardness of the
DDH assumption holds in a group G1, and the explicit (µ/m)-hardness of the kernel Diffie-Hellman
assumption holds in a group G2, where (G1,G2) are groups equipped with a bilinear pairing, m is the
output length of the IHBG protocol, and for any negligible function µ (which can be arbitrarily close to
an inverse polynomial function). Then there exists an adaptive statistically witness indistinguishable
ZAP for NP with non-adaptive computational soundness.

As we mentioned in the preliminaries, the above theorem can be easily generalized to hold under
any of the more general family of Diffie-Hellman assumption, such as the (decisional and kernel) matrix
Diffie-Hellman assumption [15,38] (which includes for example the k-Lin assumption from [27]).

6.2 Second Construction: a Statistical ZAP for LLPWW in Pairing-Free Groups

A Correlation-Intractable Hash Function for RLPWW. Let λ be the security parameter. We
consider a group G̃ of order q(λ) with dlog qe ≈ λ. Let Trunc : G̃ 7→ {0, 1}λ/2 be the function which,
on input a group element G̃ ∈ G̃, parses it as a dlog qe-bit string and returns the first λ/2 bits of its
input. We consider the following hash function H : G̃2×Zq 7→ {0, 1}λ/2 based on secret key ElGamal:

– Sampling the key: sample (G̃, k,m) ←r G̃× Z2
q and set the hash key as C̃ ←r EncG̃(k,m). Note

that the key distribution is exactly the uniform distribution over G̃2 due to universality (see
Definition 7).

– Evaluating H(C̃, ·) : H(C̃, x) = Trunc(HalfDec(x, C̃)).

Correlation-Intractability of H. Fix a parameter n ∈ N. Consider a group G of order p(λ) with
dlog pe ≈ λ/2n. Fix a parameter t ∈ Z∗p and define the set of parameters Λt := {(gv, gt·v)}v∈Zm+1

p \{0} ⊂
Λ = (Gd\{1})2 implicitly parameterized by the security parameter λ. DefineRsparse

LPWW = {Rsparse
LPWW,t}t∈Z∗p

to be the natural sparse relation associated to the Σ-protocol of Section 4.4 for the parametrized fam-
ily of languages LLPWW, with repetition parameter n. That is,

Rsparse
LPWW,t := {(α, β) ∈ G2n × (Z∗p)n : ∃x, γ, par ∈ Λt s.t. x /∈ L par

LPWW ∧ V (x, α, β, γ) = >},

where α := {(Ri, Si)}i∈[n], β := {ei}i∈[n], and γ := {di}i∈[n] in Figure 1. Here, the above relation can
also be described alternatively using the following (inefficient) randomized function:

ft(α; z) :

{
G2n × Z∗p 7→ (Z∗p)n

((Ri, Si)i∈[n], z)→ (z, ((log(Rt1/S1)(R
t
i/Si)) · z)i∈[2,n])

.

Given this function, it is straightforward (albeit tedious) to check that the relation rewrites to

Rsparse
LPWW,t = {(α, β) ∈ G2n × (Z∗p)n : ∃z ∈ Z∗p, ft(α; z) = β}.

The following is the main contribution of this section.

Theorem 41. Assume that ElGamal satisfies 2−λ/2-OW-KDM security with respect to efficient func-
tions. Let Rsparse

LPWW = {Rsparse
LPWW,λ}λ = {{Rsparse

LPWW,λ,t}t∈Z∗p}λ be the family of parameterized sparse relation
induced by LLPWW. Then the hash family H = {H : G̃2 × Zq 7→ {0, 1}λ/2}λ satisfies (ε,Rsparse

LPWW)-
correlation intractability for every negligible function ε satisfying ε(λ) = 2−o(λ).

Remark 42. Theorem 41 should be compared to Theorem 24 from [10]: in [10], the authors restricted
their attention to a Σ-protocol with only two parallel repetitions (the language we consider is also
different, but this does not matter for the conclusion – both the DDH language from [10] and the
LPWW language could be used in their construction). As a consequence, they could only build a
correlation-intractable hash function for their relation from the 2−3λ/4-OW-KDM hardness of ElGa-
mal. By considering the general case of n parallel repetitions, and adjusting n appropriately, we
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significantly strenghthen their conclusion and manage to rely on the 2−λ/2-OW-KDM hardness of
ElGamal. By Definition 8, this means that no PPT adversary has significantly better advantage than
2−(1/2+o(1))·λ, where the o(1) in the exponent can be made smaller than 1/λε for any constant ε < 1.
Beyond this simple generalization, our analysis is essentially identical to that of [10]; we provide it
below for the sake of completeness.

Proof. Toward proving the above theorem, we first establish the main lemma on which the proof will
be based:

Lemma 43. Let A be an adrversary against the (ε,Rsparse
LPWW)-correlation intractability of H. Then, it

holds for some t ∈ Z∗p that:

Pr
(G̃,a∗,m)←rG̃×Z2

q

C̃←rEncG̃(a∗,m)

[A(G̃, C̃) = a∗|(a∗,H(C̃, a∗)) ∈ Rsparse
LPWW,t] ≥

ε(λ)

2
λ
2 ·(1+

1
n )
.

Proof. The proof is almost identical to the proof of [10], generalized to handle an arbitrary number
n of parallel repetitions. We provide it for completeness. If H is a CIH for Rsparse

LPWW, then there exists
t ∈ Z∗p such that

Pr

 (G̃, k,m)←r G̃× Z2
q

C̃←r EncG̃(k,m) : (a,H(C̃, a)) ∈ Rsparse
LPWW,t

a←r A(G̃, C̃)

 ≥ ε(λ).
Consider sampling independently a random input a∗ ←r Zq. Then we have:

Pr

 (G̃, k,m)←r G̃× Z2
q

a∗ ←r Zq : A(G̃, C̃) = a∗ ∧ (a∗,H(C̃, a∗)) ∈ Rsparse
LPWW,t

C̃←r EncG̃(k,m)

 ≥ ε(λ)

2λ
,

Using the (perfect) universality of ElGamal, this becomes

Pr

 (G̃,m)←r G̃× Zq
a∗ ←r Zq : A(G̃, C̃) = a∗ ∧ (a∗,H(C̃, a∗)) ∈ Rsparse

LPWW,t

C̃←r EncG̃(a
∗,m)

 ≥ ε(λ)

2λ
.

We now introduce another (inefficient) randomized function αt:

αt(G̃, a; z1, z2) :

{
G̃× Zq × {0, 1}λ/2 × Z∗p 7→ Zq
(G̃, a; z1, z2) → dlogG̃(ft(a; z2)||z1)

Using this function αt, the previous inequality can be rewritten as

Pr

 (G̃,m)←r G̃× Zq
a∗ ←r Zq : A(G̃, C̃) = a∗ ∧ ∃(z1, z2),m = αt(G̃, a

∗; z1, z2)

C̃←r EncG̃(a
∗,m)

 ≥ ε(λ)

2λ
,

since given C̃←r EncG̃(a
∗,m), it holds that

(a∗, H(C̃, a∗)) ∈ Rsparse
LPWW,t ⇐⇒ Trunc(HalfDec(a∗, C̃)) = ft(a

∗; z2) (for some z2)

⇐⇒ Trunc(G̃m) = ft(a
∗; z2)

⇐⇒ ∃z1, z2, G̃m = ft(a
∗; z2)||z1

⇐⇒ ∃z1, z2,m = αt(G̃, a
∗; z1, z2).

Let St,G̃,a∗ := {αt(G̃, a∗; z1, z2) : (z1, z2) ∈ {0, 1}λ/2 × Z∗p} be the set of elements in G̃ (i.e., non-
truncated challenge) for which there exists an accepting last flow and word with a∗ as the first flow.
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Now, observe that the probability in the statement becomes:

Pr

 (G̃, a∗)←r G̃× Zq
m←r St,G̃,a∗ : A(G̃, C̃) = a∗

C̃←r EncG̃(a
∗,m)


=

q−1∑
i=0

Pr
a∗←rZq

[a∗ = i] · Pr

 G̃←r G̃
m←r St,G̃,i : A(G̃, C̃) = i

C̃←r EncG̃(i,m)



≥
q−1∑
i=0

Pr
a∗←rZq

[a∗ = i] ·
Pr

[
(G̃,m)←r G̃× Zq : A(G̃, C̃) = i

C̃←r EncG̃(i,m) ∧ (∃z1, z2,m = αt(G̃, i; z1, z2))

]
Pr[(G̃,m)←r G̃× Zq : ∃z1, z2,m = αt(G̃, i; z1, z2)]

Furthermore, it holds that for any i,

Pr
m←rZq

[∃(z1, z2),m = αt(G̃, i; z1, z2)] ≤ 2−
λ
2 ·(1−

1
n ).

Indeed, the statement is equivalent to “∃(z1, z2), G̃m = ft(i; z2)||z1”, which further translates to
“there exists z2 ∈ Z∗p such that the first half of the bits of G̃m are equal to ft(i; z2)”. Since a random
string from {0, 1}λ/2 is equal to ft(i; z2) with probability 2−λ/2 for a fixed z2, by taking a union
bound over all possible values of z2 ∈ Z∗p, where |Z∗p| = 2λ/2n, we get the result.

Hence, we get:

Pr

 (G̃, a∗)←r G̃× Zq
m←r St,G̃,a∗ : A(G̃, C̃) = a∗

C̃←r EncG̃(a
∗,m)


≥ 2−

λ
2 ·(1−

1
n ) ·

q−1∑
i=0

Pr
a∗←rZq

[a∗ = i] · Pr
[
(G̃,m)←r G̃× Zq : A(G̃, C̃) = i

C̃←r EncG̃(i,m) ∧ (∃(z1, z2),m = αt(G̃, i; z1, z2))

]
= 2−

λ
2 ·(1−

1
n ) · Pr

[
(G̃,m, a∗)←r G̃× Z2

q : A(G̃, C̃) = a∗

C̃←r EncG̃(a
∗,m) ∧ (∃(z1, z2),m = αt(G̃, a

∗; z1, z2))

]
=

ε(λ)

2
λ
2 ·(1+

1
n )
.

This concludes the proof of the lemma.

It remains to show that this implies a contradiction to the OW-KDM security of ElGamal for
efficient functions. The above can be rewritten as

Pr
(G̃,a∗)←rG̃×Zq
m←rαt(G̃,a

∗)

C̃←rEncG̃(a∗,m)

[A(G̃, C̃) = a∗] ≥ ε(λ)

2
λ
2 ·(1+

1
n )
, (1)

with αt : G̃ × Zq × {0, 1}λ/2 × Z∗p 7→ Zq, such that αt(G̃, a; z1, z2) = dlogG̃(ft(a; z2)||z1). This nat-
urally translates to an adversary against the OW-KDM security of ElGamal where m is sampled as
αt(G̃, a

∗; z1, z2), but the main difficulty is that αt is not an efficiently computable function. To get
around this apparent issue, we use the exact same strategy as [10]. Define the (randomized) efficiently
computable function f−1t as follows:

f−1t ((ei)i∈[n]; (ri)i∈[n], s1) :=

{
(Z∗p)n × Zn+1

p 7→ G2n

((ei)i∈[n]; (ri)i∈[n], s1)→ (gr1 , gs1 , (gri , g
ei(t·r1−s1)

e1
−t·ri)i≥2).

Furthermore, define Ft to be the following (efficient, randomized) function:

Ft(G̃,m; z) :

{
G̃× Zq × {0, 1}

λ
2 ·(1+

1
n ) 7→ Zq

(G̃,m; z) → f−1t (Trunc(G̃m); z),
.
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Let A be the previous adversary, which satisfies Equation (1). Consider the distribution of
(G̃, a∗,m) where we first sample (G̃, a∗)←r G̃×Zp and set m←r αt(G̃, a

∗). Then, this is equivalent
the distribution where we first sample (G̃,m) ←r G̃ × Zq and then set a∗ ←r Ft(G̃,m). Therefore,
we have

Pr
(G̃,k)←rG̃×Zq
a∗←rFt(G̃,k)

C̃←rEncG̃(a∗,k)

[A(G̃, C̃) = a∗] ≥ ε(λ)

2
λ
2 ·(1+

1
n )
.

We can now build an adversary B against the OW-KDM security of ElGamal for efficient functions
as follows: on input (G̃, C̃), B parses C̃ as (C̃0, C̃1). B sets G̃′ ← C̃0 and C̃′ ← (G̃, C̃1). Then, B runs
A(G̃′, C̃′) and outputs whatever A outputs. Observe that the distributions

{(G̃, C̃) : (G̃, k)←r G̃× Zq, a∗ ←r Ft(G̃, k), C̃←r EncG̃(a
∗, k)},

which corresponds to the experiment in the previous probability, and

{(C̃0, (G̃, C̃1)) : (G̃, k)←r G̃× Zq, a∗ ←r Ft(G̃, k), (C̃0, C̃1)←r EncG̃(k, a
∗)}

are identical. Therefore,

Pr
(G̃,k)←rG̃×Zq
a∗←rFt(G̃,k)

C̃←rEncG̃(k,a∗)

[B(G̃, C̃) = a∗] ≥ ε(λ)

2
λ
2 ·(1+

1
n )
,

which contradicts the (one-query) 2−(1+1/n)λ/2−o(λ)-hardness of OW-KDM security of ElGamal with
respect to the family of (efficient, randomized) functions {Ft}t (recall that ε(λ) = 2−o(λ)). To conclude
the proof of Theorem 41, it remains to pick an appropriate value of n (note that we cannot just set
n = λ since λ = 2ndlog pe depends on n). Setting e.g. n = O(log p) gives 1/n = O(1/

√
λ) = o(1),

thus concluding the proof. ut

IHBG-Friendly Statistical ZAP for LLPWW in Pairing-Free Groups. Equipped with the above
correlation-intractable hash function, we are now ready to give our construction of our IHBG-friendly
statistical ZAP. We note that this construction will actually satisfy a stronger soundness notion than
required for an IHBG-friendly ZAP: adaptive computational soundness will hold for any parameters
(an not just only for parameters sampled uniformly from Col(Gd)).16 Let G be a group of order p,
and let G̃ be a group of order q such that dlog qe ≈ λ ≈ 2dlog pe2. Let ΠΣ be the Σ-protocol for
LLPWW, with repetition parameter n = dlog pe. Let P1, P2 and V be the corresponding algorithms
for the first and second move of the prover and the verifier, respectively. let H : G̃2 × Zq 7→ {0, 1}λ/2
be the correlation intractable hash function constructed above.

Construction. The construction of an IHBG-friendly statistical ZAP for LLPWW with public coin
length ` = 2dlog qe, denoted as ΠZAP, is described as follows.

– ZAP.Prove(par, r, x, w) : On input parameters par = (g,h), a public coin r ∈ {0, 1}`, a statement
x := (X,Y ) ∈ LLPWW and a witness w := y such that (X,Y ) = ((g>)y, (h>)y), run α ←r

P1(par, x, w) and compute β = H(r, α), where r provides the description of the CIH hash H. Parse
β as an element of (Z∗p)n, and further run γ ←r P2(par, x, w, α, β). Finally, output πZAP = (α, γ).

– ZAP.Verify(par, r, x, πZAP) : On input parameters par = (g,h), a public coin r ∈ {0, 1}`, a state-
ment x, and a proof πZAP, parse πZAP as (α, γ)← πZAP. Then, compute β = H(r, α) and output
> if V (par, x, α, β, γ) = >. Otherwise, output ⊥.

Completeness follows from the completeness of the underlying Σ-protocol.

Lemma 44. For any parametrized language L par
LPWW over G, the above construction satisfies doubly-

adaptive perfect witness indistinguishability.
16 We defined the weaker soundness notion since that was all we required to construct the IHBG protocol, and

moreover, it was what we could construct from the kernel DH assumption.
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Proof. As for the previous construction, this follows directly from the adaptive statistical witness
indistinguishability of the underlying Σ-protocol: any attack against the witness indistinguishability
of the above construction can be trivially lifted to an attack on the underlying Σ-protocol (with
the same advantage), by simulating the ZAP prover by feeding the Σ-protocol prover the challenge
β = H(r, α), where r is any public-coin and α is the first flow from the Σ-protocol prover.

Lemma 45. For any parametrized language L par
LPWW over G, the above construction satisfies adaptive

computational εsound-soundness w.r.t. colinear parameters par ∈ Col(Gd) under the (εsound,Rsparse
LPWW)-

correlation-intractability of H.

Proof. Suppose there exists a PPT adversary A against the adaptive computational εsound soundness
of the above construction. Then there exists some par ∈ Col(Gd) such that

Pr[r ← {0, 1}`, (x, π)←r A(par, r) : x 6∈ L par ∧ Verify(par, r, x, π) = >] ≤ εsound.

Let t be such that par = (gv, gt·v). Parse (X,Y ) ← x and (α, γ) ← π. Then, since x 6∈ L par
LPWW and

(α, β, γ) is an accepting proof, we have (α, β) ∈ Rsparse
LPWW,t. Thus, using A, we can construct a PPT

adversary A such that

Pr
k←rG̃2

α←rA(k)

[(α,H(k, α)) ∈ Rsparse
LPWW,t] ≥ εsound.

However, this contradicts the (εsound,Rsparse
LPWW)-correlation intractability of our hash function.

This concludes the proof of Lemma 24. Plugging this IHBG-friendly adaptive statistical ZAP for
LLPWW into the construction of IHBG of Section 5 and combining it with the construction of statistical
ZAP for NP from any IHBG from Section 3, we get our second main theorem:

Theorem 46 (Statistical ZAPs in Pairing-Free Groups). Assume that the explicit µ-hardness
of the DDH assumption holds in a group G of order p for any negligible function µ (which can be
arbitrarily close to an inverse polynomial function), and that the 2−λ/2-OW-KDM security of ElGamal
holds over a group G̃ of order q such that dlog qe ≈ λ ≈ 2dlog pe2. Then there exists an adaptive
statistically witness indistinguishable ZAP for NP with non-adaptive computational soundness.

As we mentioned in the preliminaries, the above theorem can be easily generalized to hold under
any of the more general family of Diffie-Hellman assumption, such as the (decisional and kernel) matrix
Diffie-Hellman assumption [15,38] (which includes for example the k-Lin assumption from [27]).
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