
SUBMITTED TO IEEE, VOL. 00, NO. 00, MONTH 20YY 1

OSHA: A Next Generation One-way Secure
Hash Algorithm

Ripon Patgiri, Senior Member, IEEE

Abstract—Secure hash functions are widely used cryptographic algorithms to secure diverse attacks. A one-way secure hash function
is used in the various cryptographic area, for instance, digital signature. Notably, most of the hash functions provide security based on
static parameters and publicly known operations. Consequently, it becomes easier to attack by the attackers because all parameters
and operations are predefined. The publicly known parameters and predefined operations make the oracle regenerate the key even
though it is a one-way secure hash function. Moreover, the sensitive data is mixed with the predefined constant where an oracle may
find a way to discover the key. To address the above issues, we propose a novel one-way secure hash algorithm, OSHA for short, to
protect sensitive data against attackers. OSHA depends on a pseudo-random number generator to generate a hash value. Particularly,
OSHA mixes multiple pseudo-random numbers to produce a secure hash value. Furthermore, OSHA uses dynamic parameters, which
is difficult for adversaries to guess. Unlike conventional secure hash algorithms, OSHA does not depend on fixed constants. It replaces
the fixed constant with the pseudo-random numbers. Also, the input message is not mixed with the pseudo-random numbers; hence,
there is no way to recover and reverse the process for the adversaries.

Index Terms—Hash function, SHA, Secure hash algorithms, Cryptography, Attacks, Cryptanalysis, Pseudo-random Number
Generator, Algorithms.

F

1 INTRODUCTION

S ECURE hash algorithms are used to solve a specific prob-
lem in certain domains, particularly, digital signature,

password, SSH, Blockchain, TLS, PGP, SSL, IPsec, S/MiME,
and other sensitive data. Secure hash algorithms are also
used to protect passwords in our day-to-day life. The most
famous cryptographically secure hash algorithms are the
SHA2 and SHA3 families. However, there are preimage
attacks [1], [2], cryptanalysis attacks [3] and collision at-
tacks [4], [5]. Cryptanalysis is more powerful than other
variants of attacks. Collision attacks are obvious, which
can be expressed by the birthday paradox for any exist-
ing hash algorithms. The existing secure hash algorithms
define constants and the number of rounds that are public
and fixed. Moreover, message padding is required for the
last block of the message. The existing secure hash design
philosophy is based on static parameters, and as a result,
these parameters are known to adversaries. In particular,
the types of operations are fixed and known to adversaries.
Furthermore, the message is used to derive a hash value.
Hence, it makes it easier to attack the hash values.

The state-of-the-art secure hash algorithms are prone to
preimage attacks [1], [2], second preimage attacks [1], [2],
collision attacks [3], and cryptanalysis attacks [4], [5] due to
static and public parameters. Diverse attacks on the state-of-
the-art secure hash algorithms have already been reported,
such as attacks on SHA1 [6], [7], attacks on SHA2 [8], attacks
on SHA3 [9], attacks on BLAKE [10], and attacks on SHAKE
[11]. Thus, a few research questions arise, which are outlined
below-

• Department of Computer Science & Engineering, National Institute of
Technology Silchar, Cachar-788010, Assam, India
E-mail: ripon@cse.nits.ac.in and URL: http://cs.nits.ac.in/rp/

Manuscript received Month 20YY; revised Month 20YY.

Q1 Can a single secure hash algorithm be used
for various-sized hash value requirements? For
instance, low-powered IoT devices.

Q2 Can the predefined constants and operations be
replaced, which are used by the state-of-the-art
secure hash algorithms?

Q3 Can the secure hash algorithm defeat diverse
attacks?

SHAKE [12], [13], [14] addressed the question Q1. Since,
there are diverse devices available that cannot process 256
bits; hence, it demands secure and variable-sized hash func-
tions. Similarly, the emergence of Edge Computing also
demands variable-sized hash function. In addition, the Q2
and Q3 create a serious security concerns. Moreover, the
adversary knows all operations, constants, and parameters,
making a weaker hash value. Therefore, we propose a
novel and next-generation one-way secure hash algorithm,
OSHA for short, to address the existing issues of secure
hash algorithms. Our proposed algorithms take two inputs:
secret key (input message) and seed value (however, the
seed value is completely fixed and the public). Using these
two inputs, OSHA generates a pseudo-random number to
replace the fixed constants. The pseudo-random numbers
are generated using the murmur hash function [15]. The
total number of pseudo-random numbers is decided dy-
namically, wherein the total number is not known to the ad-
versaries. Notably, OSHA calculates all possible parameters
dynamically, including the total number of rounds, type of
rotation, and the total number of rotations. In short, OSHA
works on secret parameters and secret operations, which are
calculated dynamically. The types of rotation and number
of rotations change in each iteration. Furthermore, the new
pseudo-random numbers are generated in each iteration.



SUBMITTED TO IEEE, VOL. 00, NO. 00, MONTH 20YY 2

The existing ciphertext is XORed with the newly generated
pseudo-random number in each round. Thus, OSHA creates
unpredictability of the generated hash value. Therefore,
we claim that OSHA is the first variant of a secure hash
algorithm to use multiple pseudo-random numbers instead
of predefined constants to the best of our knowledge.

This paper describes our proposed algorithm, OSHA,
and compares OSHA with state-of-the-art secure hash algo-
rithms. Moreover, we compare the features of OSHA with
the state-of-the-art secure hash algorithm. OSHA is heavily
dependent on the pseudo-random number generator, and
henceforth, we enhance the pseudo-random number gener-
ator of existing work [16]. The enhanced pseudo-random
number generator algorithm is tested in NIST SP 800-22
statistical test suite for randomness [17], [18], and results
show excellent performance on the P-values and pass rates.
Furthermore, we theoretically demonstrate the capability
of our proposed work, and we show its strong resistance
against preimage attacks, second preimage attacks, collision
attacks, and cryptanalysis attacks. Thereupon, our claims
are as follows-

• We devise a novel one-way secure hash algorithm,
OSHA.

• It is the first variant to use a pseudo-random number
instead of fixed and public constants.

• Security of OSHA depends on a pseudo-random
number generator.

• All operations of OSHA are secret and dynamic.
• OSHA exhibits strong resistance against any possible

attacks.
• It produces variable-sized secure hash values.
• OSHA can be adapted to keyed or keyless one-way

secure hash function.

This article is organized as follows- Section 2 establishes
the proposed system and provides an in-depth description.
Section 3 analyzes the proposed system and compares it
with existing state-of-the-art secure hash algorithms. In ad-
dition, it demonstrates the randomness analysis practically.
Finally, Section 4 concludes the article.

2 OSHA: THE PROPOSED ALGORITHM

We propose a novel and next generation one-way
secure hash algorithm, called OSHA. It extends the non-
cryptographic string hash function, and it is used to gener-
ate a pseudo-random number to generate a hash value. The
embodiment of OSHA is to use a pseudo-random number
to produce a secure hash value. Pseudo-random numbers
are highly unpredictable and secure. Accordingly, OSHA
can provide better security than the existing state-of-the-art
algorithm. Also, our proposed system is flexible, and it can
be used for any bit size, for instance, 128-4096 or more. There
is no restriction of bit sizes, unlike state-of-the-art secure
hash functions. The proposed algorithm can be adapted to
keyless and keyed secure hash functions depending on the
applications, but both are one-way hash functions. The seed
value of a keyless hash function is publicly available and
fixed, while keyed hash function keeps the seed value as a
secret key.

N
e
w

 k
e
y

1 0

X
O

R
 r

e
su

lt

Fig. 1. Architecture of the proposed algorithm.

2.1 Description of proposed system
A pseudo-random number P is generated using an input
message (secret key) K and a seed value S , which is demon-
strated in Figure 1. The P is circular shift rotated r times
either left or right side, which is decided dynamically. The
value of r changes in each iteration. It results ζ , and the ζ is
XORed with a newly generated pseudo-random number P .
The pseudo-random number P is generated using a pseudo-
random number generator. This process is repeated t times
to generate a secure hash value, and the t is calculated
dynamically.

Table 1 shows the required parameters and their states.
All parameters are kept secret and generated dynamically.
The seed value can be public or secret. There is no restriction
on the seed value, and a user can input any number ≥ 4
digits. The seed value is made public and fixed. The rest
values of the parameters are not known and computed
at the run-time. In accordance, it is hard to retrieve the
dynamically generated information by the adversaries. In
addition, the input message and seed value are used to
create a single bit. The input message and seed values are
altered dynamically. The adversaries do not know dynamic
parameters. It changes the value at run-time and in each
iteration. OSHA has only two public and a static parameter
which the bit size β of the hash value and seed value, and
known to all.

2.2 Hash Value Generation
Algorithm 1 demonstrates generating a hash value of given
message K and fixed seed value S in the OSHA algorithm.
It uses a non-cryptographic string hash function to gen-
erate the pseudo-random number [15]. The K and S are
used to generate a single bit of the first pseudo-random
number. The pseudo-random number is used to replace
the constants of the conventional hashing algorithms. The
K and S are changed after generating the initial bit, and
the initial message and seed value are discarded. The first
generated pseudo-random number is rotated either left or
right depending on the LSB bit of the pseudo-random
number. The rotation’s value r is calculated dynamically.
The rotation process produces a new ciphertext, ζ . The ζ is
XORed with a newly generated pseudo-random number P .
The pseudo-random number P is generated using a pseudo-
random number generator 2. The pseudo-random number
generator uses the murmur hash function. Murmur hash



SUBMITTED TO IEEE, VOL. 00, NO. 00, MONTH 20YY 3

TABLE 1
Parameters, descriptions and their state in OSHA algorithm.

Parameter Description State
K Secret Key- Input message Secret, and Dynamic
S Public and fixed for keyless hash function Public and Static
l Length of the input string Secret and Dynamic
β Unrestricted bit size of hash value, for instance, β = 4096 Public and Static
t Number of rounds Secret, and Dynamic
r Number of rotations Secret, and Dynamic
Rotation type Circular rotation, either left or right depending the last bit of the

generated pseudo-random number
Secret, and Dynamic

P Newly generated pseudo-random number to replace constants Secret, and Dynamic
ζ Hash value in cipher form Initially, it is secret and dy-

namic, but later, made it public.

Algorithm 1 Hash value generation using OSHA algorithm
1: procedure GENHASH(K, β)
2: l = LENGTH(K)
3: S = Integer number
4: S = S ⊕ β
5: ζ = GENPRNG(K, l, S, β)
6: K′ = MURMUR(K, l, S)
7: t = (K′ mod δ) + µ . For instance, µ = 5, δ = 17
8: while t ≥ 1 do
9: S = S ⊕ K′

10: r = K′ mod β
11: if P ∧ 1 = 1 then
12: ζ = ROTATELEFT(ζ, r)
13: else
14: ζ = ROTATERIGHT(ζ, r)
15: end if
16: K = CONVERTTOSTRING(K′)
17: l = LENGTH(K)
18: K′ = MURMUR(K, l, S)
19: P = GENPRNG(K, l, S, β)
20: ζ = ζ ⊕ P
21: t = t− 1
22: end while
23: return ζ
24: end procedure

functions produce a 10-digits integer, and only a single LSB
bit is recorded, and the rest are discarded. This process
repeats t times to generate a secure hash value. The total
number of iteration ranges between µ to δ. Moreover, the
total number of rotations varies between 0 to β − 1.

2.3 Pseudo-Random Number Generator

OSHA depends on a pseudo-random number generator.
The necessary conditions for the pseudo-random number
generator are- consistent, secure, and statistically proven for
randomness. Algorithm 2 demonstrates the generation of
pseudo-random numbers. It uses the murmur hash func-
tion to generate a single bit. Conversely, the murmur hash
function produces a 10-digits hash value, but a single LSB is
considered in the bin[] array, and the rest bits are discarded.
It generates a β bits array, which is unpredictable and
secure. Importantly, Algorithm 2 changes its parameters dy-
namically, which makes it hard to predict by the adversaries.

Algorithm 2 Pseudo-random number generator for pseudo-
random number

1: procedure GENPRNG(K, l, S, β)
2: i = 0
3: while β ≥ 1 do
4: d = MURMUR(K, l, S)
5: K = d
6: l = LENGTH(K)
7: e = MURMUR(K, l, S)
8: K = CONCATENATE(d, e)
9: l = LENGTH(K)

10: S =| d− e |
11: bin[i] = d ∧ 1
12: β = β − 1
13: i = i+ 1
14: end while
15: return bin
16: end procedure

3 ANALYSIS

The adversaries know the rotation process and the total
number of iteration in the conventional secure hash algo-
rithms. As a consequence, it makes it easier to attack by
adversaries. On the contrary, OSHA calculates all parameter
dynamically making it hard to attack by the adversaries.
The adversaries do not know whether to circular rotate
left or right and how much rotation is required. Moreover,
the adversary does not know how many iterations to be
performed.

3.1 Time Complexity
The time complexity of Algorithm 1 depends on the bit size
of the hash value; for instance, 1024. The bit size of the hash
value is β. OSHA uses a bit array, and hence, it requires
r time complexity to rotate the bit array. Additionally, it
requires β time complexity to generate a pseudo-random
number. Therefore, the time complexity of OSHA isO(r+β)
in each round. There are total t rounds in OSHA, thus, the
total time complexity is O(β + t(r + β) + r). The r ≤ β,
so, the total time complexity can be rewritten as O(β + tβ).
Moreover, the t ranges from 5 to 17, which is a constant
and small. Therefore, the total time complexity of OSHA is
O(β) ≈ O(1). Now, we consider the message length l. As a
consequence, the time complexity of Algorithm 1 becomes
the length of the message. Consequently, we can conclude



SUBMITTED TO IEEE, VOL. 00, NO. 00, MONTH 20YY 4

the time complexity as O(l). Hence, the time complexity
depends on the input string’s length.

3.2 Comparison with existing secure hash algorithm
Table 2 compares the state-of-the-art secure hash func-
tions with OSHA. SHA family produces fixed-size output,
whereas SHAKE, cSHAKE, and OSHA produce variable-
sized output. SHA family, SHAKE, and cSHAKE perform
fixed and predefined rounds, whereas OSHA can perform
any number of rounds kept secret and calculated dynami-
cally. Nonetheless, the minimum and the maximum number
of rounds are public. SHA2 family uses modulus operation,
but SHA3 family removes the modulus operation due to
large integer calculation. Notably, SHA2, SHA3, SHAKE,
and cSHAKE depends on the system architecture (little-
endian and big-endian) due to bitwise operation. Con-
versely, OSHA does not depend on the system architecture
because OSHA uses extra spaces O(β) to store the bits, and
thus, it is system independent. OSHA is the only variant to
use a pseudo-random number to produce a hash value.

Table 3 shows the difference between state-of-the-art
secure hash algorithms and OSHA. State-of-the-art secure
hash algorithms use predefined constants and operations,
which are public. Therefore, all operations and constants are
known to adversaries too. OSHA uses secret and dynamic
operations; for instance, rotation type is calculated dynam-
ically. Furthermore, the number of rotations is calculated
dynamically. As a result, there is no clue to adversaries to
find the rotation type and number of rotations. In short,
OSHA performs secret operations, which are calculated dy-
namically. On the contrary, the state-of-the-art secure hash
algorithms use predefined operations and constant. OSHA
generates the pseudo-random number dynamically instead
of predefined constants.

3.3 Flexibility
To the best of our knowledge, SHAKE and OSHA provide
flexibility in hash bit size; otherwise, the state-of-the-art
secure hash algorithms can produce fixed bit size of the
hash value. For example, SHA3-256 can produce 256 bits
hash value while SHAKE and OSHA can produce any size
of the output. A single algorithm works for 256 bits or 4096
bits, even higher bit sizes as shown in Table 4.

3.4 Outputs
Table 4 demonstrates the variable-sized output of OSHA,
SHAKE128 [13], and SHAKE256 [14] for input word
“OSHA”. In addition, OSHA requires a seed value, and
“98899” is used as a seed value. Depending on the require-
ments, the seed value can be made fixed and public or kept
secret. SHAKE produces the same prefix different length for
the same input; for instance, the prefix of 256 bits is 128
bits hash value. However, OSHA does not produce a similar
prefix or suffix. It changes in changing of the bit sizes.

Notably, BLAKE is the fastest variant of secure hash
algorithms [23]. The second fastest secure hash function is
MD5 [23]. OSHA is slower than SHAKE because it does not
depend on the predefined constants and operations. Also,
OSHA uses a bit array for circular shift rotation; so, it is

slower than BLAKE, but performance is similar to MD5
as shown in Table 6. Bit array makes OSHA a platform-
independent secure hash algorithm.

Table 5 demonstrates the hash value of various secure
hash algorithms. Also, it shows the fixed-sized hash value.
On the contrary, OSHA does not restrict output size, which
is similar to SHAKE128, and SHAKE256 [12]. SHA3-512 is
restricted to 512 bits output size, and it cannot produce 256
or 1024 bits output. The 1024 or 2048 bits size output is not
so costly for high-security requirements. Notably, the prefix
of the SHAKE256 output for 256 bits, which is the same with
128 bits output size and it is shown in Table 4.

3.5 Performance

Table 6 shows the time taken to produce 1000 hash values.
The BLAKE3 outperforms all, and it is the fastest secure
hash algorithm. On the contrary, OSHA and MD5 generate
1000 hash values in 2 ms for 64 bits. BLAKE3 produces 1000
hash values in 2 ms for 256 bits while OSHA takes 5 ms
for the same. SHAKE is slower than MD5, and hence, we
exclude SHAKE in the comparison [23].

3.6 Irreversibility

Definition 1. The function f : A 7→ B maps A to B, then
the function f is said to be irreversible if the function exhibits
f : B 67→ A.

OSHA is a one-way hash function, and hence, there is
no way to regenerate the key. Therefore, OSHA follows
Definition 1, and there is no way to regenerate the input
from the output. The function f : A 7→ B, i.e., OSHA
transform any input A to output B. The input A contributes
a single bit of B initially, and the pseudo-random numbers
replace it. Consequently, there is no way to regenerate
A from the output B. Let us assume that there exists a
reversible function. The oracle need to reverse the function
and regenerate the message from the hash value. Oracle
needs to reverse hash value and eventually meet a single
bit. Notably, it is impossible to find the input message from
a single bit. Thus, OSHA guarantees that f : B 67→ A,
because it is impossible to regenerate A from B.

3.7 Irrecoverability

The function f : A 7→ B, and the A is lost. OSHA
guarantees f : B 67→ A. Consequently, we cannot recover
the lost input string. OSHA generates the output using
a pseudo-random number generator; subsequently, it is
highly unpredictable. As a result, the A is responsible for
the initial bit. Thus, the A must be correct to regenerate
the output B. An oracle can find reversibility; however,
the oracle eventually finds the first bit but not the original
string. On the contrary, conventional secure hash algorithms
mix the input string with the predefined constant, where
an oracle can find the reversibility of a hash value. As a
consequence, input string is not recoverable from the hash
value.



SUBMITTED TO IEEE, VOL. 00, NO. 00, MONTH 20YY 5

TABLE 2
Comparison with existing secure hash algorithm.

Name Output
Size

Internal
State

Block size Rounds Collision Operations

MD5 128 128 512 64 ≤ 18 And, Xor, Rot, Add (mod 232),
Or

SHA-0 160 160 512 80 < 34 And, Xor, Rot, Add (mod 232),
Or

SHA-1 160 160 512 80 < 34 And, Xor, Rot, Add (mod 232),
Or

SHA2-224 [19] 224 256 512 64 112 And, Xor, Rot, Add (mod 232),
Or, Shr

SHA2-256 [19] 256 256 512 64 128 And, Xor, Rot, Add (mod 232),
Or, Shr

SHA2-384 [19] 384 512 1024 80 192 And, Xor, Rot, Add (mod 264),
Or, Shr

SHA2-512 [19] 256 512 1024 80 256 And, Xor, Rot, Add (mod 264),
Or, Shr

SHA3-224 [12] 224 1600 1152 24 112 And, Xor, Rot, Not
SHA3-256 [12] 256 1600 1088 24 128 And, Xor, Rot, Not
SHA3-384 [12] 384 1600 832 24 192 And, Xor, Rot, Not
SHA3-512 [12] 512 1600 576 24 256 And, Xor, Rot, Not
SHAKE128 [12] Unlimited 1600 1344 24 min(β/2, 128) And, Xor, Rot, Not
SHAKE256 [12] Unlimited 1600 1088 24 min(β/2, 256) And, Xor, Rot, Not
cSHAKE128 [20] Unlimited 1600 1344 24 min(β/2, 128) And, Xor, Rot, Not
cSHAKE256 [20] Unlimited 1600 1088 24 min(β/2, 256) And, Xor, Rot, Not
BLAKE2s [21] 256 16 words of

size 32 bits
512 10 128

BLAKE2b [21] 256 16 words of
size 64 bits

512 12 128

BLAKE3 [22] 256 16 words of
size 32 bits

512 7 128

OSHA Unilimited – 64 characters
but flexible

Flexible,
secret,
and
Dynamic

≈ β XOR, Rot, and genPRNG

TABLE 3
Difference between OSHA and state-of-the-art secure hash algorithms.

Parameters OSHA State-of-the-art Secure Hash Algorithms
Output size Flexible Fixed
Output Output completely changes if desired output length

changes for the same input
Some parts of the output are same even if desired output
length of SHAKE128 and SHAKE256 change for the
same input.

Rounds Secret and Dynamic Public and Fixed
Rotation type Secret and Dynamic Public and Fixed
Number of rotation Secret and Dynamic Public and Fixed
Mixture Mixes with pseudo-random numbers Mixes with predefined constants
Secret message It contributes a single bit and define the bit patterns Use to mix with predefined constants
Seed value Public and fixed integer value None
Constants None Public and Fixed
Pseudo-random
numbers

Secret and Dynamic. It is a pseudo-random number. None

Word size Flexible Fixed sizes
Padding with mes-
sage

Not required Required

3.8 Consistency

Consistency states that the output should be the same for the
same input even if the platform changes. OSHA produces
the same output for the same input parameters. OSHA does
not depend on volatile variables. Therefore, it can produce a
consistent result. Moreover, OSHA works on a bit array and
random bits, and so, it can provide consistency irrespective
of the system’s architecture.

3.9 Rounds
Most of the conventional secure hash algorithm performs
64 rounds, which is fixed. OSHA performs µ to δ rounds
of XOR, Rotation, and key generations (pseudo-random
number generation). The rounds are dynamically generated
between µ to δ to defend the adversaries; however, it is
flexible. The user can set the total number of rounds as
per their requirements to protect against the attacks. For
instance, 2-17, 11-19, etc. Importantly, the δ should be a
prime number. The difference between µ and δ should be
significant enough to provide unpredictability; for instance,



SUBMITTED TO IEEE, VOL. 00, NO. 00, MONTH 20YY 6

TABLE 4
Outputs of OSHA, SHAKE128, and SHAKE256 for the input string “OSHA”.

Bits OSHA SHAKE128 SHAKE256
16 b8a9 144e 9f6e
32 c655f80d 144e65ef 9f6e4af9
64 a68517979a06c690 144e65efe08651ca 9f6e4af9b5fdbeac
128 f1ec5c2da85661622589f6253a0d45a0 144e65efe08651ca40a9579648d4fcac 9f6e4af9b5fdbeacc748920658e9b894

256 ed4948e9382f486f4eec0f362b0410c06
ecc85fd50d492f9df02044a17eb0600

144e65efe08651ca40a9579648d4fcacf
088711566275ab8fb673b96b06c7a76

9f6e4af9b5fdbeacc748920658e9b8945
75852bc7499ba098e1513fced329367

512

c0d1f616fcebcd47c8daca7d9da4b08b5
a9396e80e734174387e4e3a9781cf0c7
3ff1b88d8e658f96857b7e6a52005f7e3
50c27224fe460a812f2130b51dffbd

144e65efe08651ca40a9579648d4fcacf
088711566275ab8fb673b96b06c7a76
6053a5dd64503da095f0094c687e12c9
af8124477f4765af904783c86aa015ff

9f6e4af9b5fdbeacc748920658e9b8945
75852bc7499ba098e1513fced329367c
943e7e61eb4863fa373b7ccb1acd2a39f
87a7c24eb7355c4607d1ecb480f76a

1024

b8c2e5fa87d15ea905ab6fce04b36041c
13f13b713abb4d187a0e817e7219f443
bb6d97ccb0bb783ac32eeaff858177260
b1fef795b31cb6254f10e33376a0f6384
20c62a7172bb1c2f8b50aa84a542ed8b
7413f588cf030ea140d53a2acfbdf8d64
40a2cf01f1c9e32beaacd41401efd4209
2407801430e36a938ae259320ef

144e65efe08651ca40a9579648d4fcacf
088711566275ab8fb673b96b06c7a76
6053a5dd64503da095f0094c687e12c9
af8124477f4765af904783c86aa015ffe
02040c6f3168d27a158c05706dd687bc
ca44f132ba6b205ffab437053ff5ec844c
055670280522e032d71512c4d30eab8
d1956abe1f0fe2924858636a260e

9f6e4af9b5fdbeacc748920658e9b894
75852bc7499ba098e1513fced329367c
943e7e61eb4863fa373b7ccb1acd2a39f
87a7c24eb7355c4607d1ecb480f76ac3
07616825943b6e612874432dc4780eeb
d1490b1b34ab28f208cfb7411a6497d2
9e8cbd5be9564f997de0dc4962b39450
258e17b714c09f78c85ff4fc8a11aa

TABLE 5
Output of various hash functions for the input string “OSHA”

Hash
function’s
name

Hash output

MD5 7b95917312740e2be161a373be1bdce9
SHA256 7fde3b94d739f42f431d20fcac28017181462ae53873449995d45febe9ea8eb5
SHA3-256 c81957c8d5ab48bcf8971fe45580e98724d3b64e7f7780882154efb32912b757

SHA384 0aed40222131c9d872bdc76c20cf04082279ca28956ebf56fbe0c8be31384af9b1bfc4153
c1eb373646e9d114b733180

SHA3-384 0d1458a960fff9acf02844709e1b525b13f2c0513ed6558e61bbd29597ae110dab9542e1
dde20d0c7246598a8a8e4e6c

SHA512 590a860a95ada9ecd50541f7167d19caf87fb5c8aa3b1cca1fda7f12bb2af8feb91ff3a2d23
66a57047a3031bc2b392a3b077e30f8885f0c627e4671b1263692

SHA3-512 7a1fea1aa23d73491413a0a6bf21c8d325b302e7fb75843857c96a988a93bba70ab4cdd1
abda8a9dc1a23199a734e7fdf6e7c5a3fa613a7602cc17c82015f171

TABLE 6
Time taken in generating various hash values in milliseconds.

Hash function Times in milliseconds
OSHA (64 bits) 2
MD5 (64 bits) 2

BLAKE3 (256 bits) 2
OSHA (256 bits) 5

2-17 is better than 11-19 because the difference between 2-
17 is larger than 11-19. Notably, the minimum should be
µ ≥ 1. On the contrary, if the minimum round is zero, it can
also defend against many attacks because it depends on the
pseudo-random numbers that are truly random and secure.

3.10 Collision resistance

Definition 2. If there exists some functions such that
f : A 7→ B and f : C 7→ B where A 6= C , then it is
said to be collision.

Definition 2 defines the collision where two hash values
of two different input strings become the same. Generally,
the collision probability of all hash functions is the same.
The birthday paradox state that there is a collision proba-
bility in 2

β
2 hash functions for β bits hash functions. If η

items are hashed to find a collision, the collision probability
is given using birthday paradox in Equation (1).

ρ = 1− 2β !

2ηβ(2β − η)!
(1)

Solving Equation (1), we get Equation (2).

ρ = 1− e−
η2

2β+1

1− ρ = e−
η2

2β+1

ln(1− ρ) = − η2

2β+1

η2 = −2β+1 ln(1− ρ)

η = 2
β+1
2

√
−ln(1− ρ)

(2)

In Equation (2), we approximate ln(1 − ρ) = −ρ, then we
get Equation (3).

η = 2
β+1
2
√
ρ (3)

Equation (3) gives us the probability of collision of any
secure hash function. The η becomes enormous for 256-bits
and onward. Equation (3) shows the collision probability of
keyless OSHA. Notably, both keyless and keyed OSHA uses
pseudo-random number which makes much harder for the
attackers.



SUBMITTED TO IEEE, VOL. 00, NO. 00, MONTH 20YY 7

3.11 Preimage resistance

Definition 3. Given a hash value B, a preimage attack finds a
function such that f : A 7→ B.

Definition 3 defines preimage attack on the hash value.
The hash value B is given, and the preimage attacker finds
the input. The preimage attacks are successful in password
guessing because of a weak password. Precisely, modern
practice recommends a password of at least an alphabet, a
digit, and a special symbol of string length eight. Still, there
is a creation of a weak password, for instance, “abcd@1234”.
OSHA completely depends on the pseudo-random num-
bers other than state-of-the-art secure hash functions. If
the pseudo-random number is weak, then OSHA cannot
provide a strong preimage resistance. Particularly, our ex-
perimental results show that the generated pseudo-random
number is secure. Therefore, keyless OSHA also provides
strong resistance against preimage attacks. Notably, the
applications of keyed and keyless OSHA are different, but
both are secure.

Meet-in-the-middle [24] performs an exhaustive search
on key spaces to achieve preimage attacks. The meet-in-the-
middle has broken various secure hash algorithms [4], [5],
[25] which try to perform preimage attacks. Nevertheless,
this is an exhaustive search, and it takes huge computing
resources. OSHA uses pseudo-random numbers, and thus, it
does not follow any bit patterns. Thus, it can provide strong
deterrence against meet-in-the-middle attacks.

3.12 Second preimage resistance

Definition 4. Given a hash value B, a second preimage attack
finds the functions f : A 7→ B and f : C 7→ B where A 6= C .

Definition 3 defines second preimage attack. Given the
hash value B to find two hash function that finds B for
different inputs. Let us assume that f : A 7→ B and
f : C 7→ B where A 6= C . OSHA depends on not only the
input string but also the statistically proven pseudo-random
numbers. Thus, it requires high-powered computing ma-
chinery to find the given hash value. Therefore, it is hard
to find such a collision.

3.13 Cryptanalysis

There are diverse cryptanalysis attacks, particularly
ciphertext-only, plaintext-only attacks, known-plaintext at-
tacks, chosen-ciphertext attacks, chosen-plaintext attacks,
adaptive chosen-ciphertext attacks, fault-injection attacks,
differential cryptanalysis attacks, and linear cryptanalysis
attacks. Cryptanalysis does not perform a brute-force search
on the target. It performs in-depth analysis on the target
and tries to find the fault/loophole to attacks on the hash
values. Cryptanalysis is easier to perform if the parame-
ters and constants are predefined. Predefined parameters
and constants have hidden relations with the ciphertext.
Therefore, the cryptanalysis tries to finds the relationship
of all collected ciphertexts. On the contrary, OSHA does
not have any relationship with the generated ciphertexts.
Consequently, it is hard to perform cryptanalysis attacks.

3.14 Randomness testing
Table 7 demonstrates the randomness of Algorithm 2. Se-
curity of the OSHA depends on pseudo-random numbers,
which are generated by Algorithm 2. The randomness of
Algorithm 2 is tested in NITS SP 800-22. Table 7 demon-
strates the P-values and pass rate of the generated bits
using Algorithm 2. Initially, we have generated 10M random
bits of the word “OSHA” and the number 98899. We have
chosen a weak word to demonstrate the performance of our
algorithm. The generated random bits are tested in NIST
SP 800-22 statistical test suite [17], [18] for 32 bits, 64 bits,
and 128 bits stream. NIST SP 800-22 test suit provides ap-
proximate entropy, frequency, block frequency, cumulative
sums, runs, longest runs, rank, FFT, non-overlapping tem-
plate, overlapping template, random excursions, random
excursions variant, serial, linear complexity, and universal
tests. The minimum pass rate of 32bits, 64 bits, and 128 bits
stream is 0.96875, 0.9375, and 0.9765625, respectively. The
minimum P-value of 32 bits, 64 bits, and 128 bits stream is
0.100508, 0.134686, and 0.015065, respectively. The P-value
must be ≥ 0.001 to be considered as a random number. The
maximum P-values of 32 bits, 64 bits, and 128 bits stream
are 0.991468, 0.991468, and 0.788728, respectively. R. Patgiri
[16] reported the highest P-values are 0.976060, 0.991468 and
0.941144 in 32 bits, 64 bits, and 128 bits streams, respec-
tively. The minimum P-value of R. Patgiri [16] are 0.035174,
0.012043, 0.017912 in 32 bits, 64 bits, and 128 bits streams,
respectively. Our proposed pseudo-random number gener-
ator clearly enhances and outperforms the pseudo-random
number generator of R. Patgiri [16]. Similarly, R. Patgiri [16]
reports test’s minimum pass rates are 0.96875, 0.96875, and
0.9765625 in 32 bits, 64bits, and 128 bits stream, respectively;
whereas our proposed pseudo-random number generator
clearly surpasses the minimum pass rate.

4 CONCLUSION

In this paper, we have presented a one-way secure hash
algorithm, OSHA for short, to produce a secure hash value
and it can defend against diverse attacks. OSHA uses mur-
mur hash functions to generate a single bit of a pseudo-
random number. It uses multiple pseudo-random numbers
to replace the predefined constants. Additionally, OSHA
uses two variables as input, mainly secret message (key) and
seed value, to generate a hash value. The input message and
seed value contribute a single bit. Therefore, it does not use
in the rest bit generation, but it defined the future bits. The
seed value can be fixed and public or kept secret depending
on the requirements of the hash function. A keyed one-
way secure hash function does not share the seed value, for
instance, generating a password hash value. Furthermore,
OSHA can generate variable-sized hash values similar to
SHAKE hash algorithms. OSHA calculates the parameters’
value dynamically, and thus, parameters’ values are not
known to adversaries.

Moreover, the operation type is decided dynamically.
Furthermore, OSHA performs an XOR operation with a
newly generated pseudo-random number, but the original
message is not used in the XORing process. Therefore, it
provides truly one-way secure hash functions. Due to the
dynamic property of OSHA, it provides strong resistance



SUBMITTED TO IEEE, VOL. 00, NO. 00, MONTH 20YY 8

TABLE 7
P-values and success rates of Algorithms 2 for 32, 64 and 128 bits in NIST SP 800-22.

Test name 32 bits 64 bits 128 bits
P-value Pass rate P-value Pass rate P-value Pass rate

Approximate Entropy 0.100508 32/32 0.500934 64/64 0.350485 126/128
Frequency 0.862344 32/32 0.134686 64/64 0.178278 128/128

Block Frequency 0.949602 31/32 0.468595 63/64 0.054199 127/128
Cumulative sums 0.213309 32/32 0.324180 64/64 0.364146 128/128

Runs 0.213309 31/32 0.324180 60/64 0.619772 124/128
Longest runs 0.407091 31/32 0.350485 64/64 0.654467 127/128

Rank 0.671779 32/32 0.407091 64/64 0.222869 128/128
FFT 0.911413 32/32 0.500934 61/64 0.110952 127/128

Non-overlapping Template 0.991468 32/32 0.991468 64/64 0.788728 128/128
Overlapping Template 0.468595 32/32 0.862344 64/64 0.275709 127/128

Random Excursions 0.275709 13/13 0.162606 17/17 0.162606 15/15
Random Excursions Variant 0.637119 13/13 0.275709 17/17 0.275709 15/15

Serial 0.299251 32/32 0.671779 63/64 0.422034 128/128
Linear complexity 0.407091 31/32 0.911413 64/64 0.015065 125/128

Universal 0.534146 31/32 0.671779 64/64 0.350485 126/128

against diverse attacks, particularly preimage attacks, sec-
ond preimage attacks, collision attacks, and cryptanalysis
attacks. Significantly, there are diverse applications of keyed
and keyless hash functions, for example, Edge Computing,
IoT, Blockchain, Cloud Computing etc.

REFERENCES

[1] D. Khovratovich, C. Rechberger, and A. Savelieva, “Bicliques for
preimages: Attacks on skein-512 and the sha-2 family,” in Fast
Software Encryption, A. Canteaut, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 244–263.

[2] T. Espitau, P.-A. Fouque, and P. Karpman, “Higher-Order Differen-
tial Meet-in-the-middle Preimage Attacks on SHA-1 and BLAKE,”
in Advances in Cryptology – CRYPTO 2015. Berlin, Germany:
Springer, Aug 2015, pp. 683–701.

[3] A. Biryukov, M. Lamberger, F. Mendel, and I. Nikolić, “Second-
Order Differential Collisions for Reduced SHA-256,” in Advances
in Cryptology – ASIACRYPT 2011. Berlin, Germany: Springer, Dec
2011, pp. 270–287.

[4] J. Guo, S. Ling, C. Rechberger, and H. Wang, “Advanced Meet-
in-the-Middle Preimage Attacks: First Results on Full Tiger, and
Improved Results on MD4 and SHA-2,” in Advances in Cryptology
- ASIACRYPT 2010. Berlin, Germany: Springer, Dec 2010, pp.
56–75.

[5] J. Li, T. Isobe, and K. Shibutani, “Converting Meet-In-The-Middle
Preimage Attack into Pseudo Collision Attack: Application to
SHA-2,” in Fast Software Encryption. Berlin, Germany: Springer,
Mar 2012, pp. 264–286.

[6] M. Stevens, “New Collision Attacks on SHA-1 Based on Optimal
Joint Local-Collision Analysis,” in Advances in Cryptology – EURO-
CRYPT 2013. Berlin, Germany: Springer, May 2013, pp. 245–261.

[7] G. Leurent and T. Peyrin, “From Collisions to Chosen-Prefix
Collisions Application to Full SHA-1,” in Advances in Cryptology
– EUROCRYPT 2019. Cham, Switzerland: Springer, Apr 2019,
pp. 527–555.

[8] A. Hosoyamada and Y. Sasaki, “Quantum collision attacks
on reduced SHA-256 and SHA-512,” IACR Cryptol. ePrint
Arch., vol. 2021, p. 292, 2021. [Online]. Available: https:
//eprint.iacr.org/2021/292

[9] J. Guo, G. Liao, G. Liu, M. Liu, K. Qiao, and L. Song, “Practical
Collision Attacks against Round-Reduced SHA-3,” J. Cryptology,
vol. 33, no. 1, pp. 228–270, Jan 2020.

[10] Y. Hao, “The Boomerang Attacks on BLAKE and BLAKE2,” in
Information Security and Cryptology. Cham, Switzerland: Springer,
Mar 2015, pp. 286–310.

[11] T. Li and Y. Sun, “Preimage Attacks on Round-Reduced Keccak-
224/256 via an Allocating Approach,” in Advances in Cryptology –
EUROCRYPT 2019. Cham, Switzerland: Springer, Apr 2019, pp.
556–584.

[12] O. Standards and N. I. Technology, “SHA-3 Stan-
dard: Permutation-Based Hash and Extendable-Output
Functions,” CSRC | NIST, Aug 2015. [Online].
Available: https://www.nist.gov/publications/sha-3-standard-
permutation-based-hash-and-extendable-output-functions

[13] “Shake-128 Online,” April 2021, [Online; accessed on April
2021]. [Online]. Available: https://emn178.github.io/online-
tools/shake\ 128.html

[14] “Shake-256 Online,” April 2021, [Online; accessed on April
2021]. [Online]. Available: https://emn178.github.io/online-
tools/shake\ 256.html

[15] A. Appleby, “Murmurhash,” Retrieved on December 2020 from
https://sites.google.com/site/murmurhash/, 2008.

[16] R. Patgiri, “Stealth: A highly secured end-to-end symmetric
communication protocol,” Cryptology ePrint Archive, Report
2021/622, 2021, https://eprint.iacr.org/2021/622.

[17] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker,
“A statistical test suite for random and pseudorandom
number generators for cryptographic applications,” Booz-
allen and hamilton inc mclean va, Tech. Rep., 2001.
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-22r1a.pdf

[18] L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid,
E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks et al.,
SP 800-22 rev. 1a. a statistical test suite for random and pseudorandom
number generators for cryptographic applications. National Institute
of Standards & Technology, 2010. [Online]. Available: https:
//csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final

[19] “Announcing Approval of Federal Information
Processing Standard (FIPS) 180-2, Secure Hash
Standard; a Revision of FIPS 180-1,” Aug 2002,
[Online; accessed 23. May 2021]. [Online]. Available:
https://www.federalregister.gov/documents/2002/08/26/02-
21599/announcing-approval-of-federal-information-processing-
standard-fips-180-2-secure-hash-standard-a

[20] J. Kelsey, S.-j. Change, and R. Perlner, “SHA-3 derived functions:
cSHAKE, KMAC, TupleHash and ParallelHash,” National Insti-
tute of Standards and Technology, Gaithersburg, MD, Tech. Rep.
NIST SP 800-185, Dec. 2016. [Online]. Available: https://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf

[21] J. Guo, P. Karpman, I. Nikolić, L. Wang, and S. Wu, “Analysis
of BLAKE2,” in Topics in Cryptology – CT-RSA 2014. Cham,
Switzerland: Springer, Feb 2014, pp. 402–423.

[22] Blake3-team, “BLAKE3-specs,” April 2021, [Online; accessed
April 2021]. [Online]. Available: https://github.com/BLAKE3-
team/BLAKE3-specs/blob/master/blake3.pdf

[23] “BLAKE2,” Nov 2020, [Online; accessed April 2021]. [Online].
Available: https://www.blake2.net

[24] W. Diffie and M. E. Hellman, “Special Feature Exhaustive Crypt-
analysis of the NBS Data Encryption Standard,” Computer, vol. 10,
no. 6, pp. 74–84, Jun 1977.

[25] K. Aoki and Y. Sasaki, “Meet-in-the-Middle Preimage Attacks
Against Reduced SHA-0 and SHA-1,” in Advances in Cryptology
- CRYPTO 2009. Berlin, Germany: Springer, Aug 2009, pp. 70–89.


