
General Bootstrapping Approach for RLWE-based Homomorphic

Encryption

Andrey Kim1, Maxim Deryabin1, Jieun Eom1, Rakyong Choi1, Yongwoo Lee1,
Whan Ghang1, and Donghoon Yoo1

1 Samsung Advanced Institute of Technology, Suwon, Republic of Korea
{andrey.kim, max.deriabin, jieun.eom, rakyong.choi, yw0803.lee, whan.ghang,

say.yoo}@samsung.com

July 14, 2021

Abstract

An approximate homomorphic encryption scheme called CKKS (Cheon-Kim-Kim-Song) is
considered one of the most promising fully homomorphic encryption (FHE) schemes since it
enables computations on real and complex numbers in encrypted form. Several bootstrapping
approaches were proposed for CKKS to refresh a modulus in a ciphertext. However all the
existing bootstrapping approaches for CKKS rely on polynomial approximation of a modular
reduction function and consequently the quality of a message deteriorates due to errors produced
by the polynomial approximation. Also, the polynomial approximation usually consumes a huge
number of multiplicative levels. We propose the first bootstrapping approach for the CKKS
scheme without polynomial approximation on the modular reduction function. Instead, we adopt
a blind rotation technique from FHEW-type schemes and as a result our approach introduces an
error which is comparable to a rescaling error while consuming only one multiplicative level. We
demonstrate that our bootstrapping procedure can be generalized to the BGV and BFV schemes
with minor modifications in the proposed algorithms. We also present several optimizations
including a compact representation of public keys required for bootstrapping and a modified
blind rotation technique for the case of sparse secret key.

Keywords: Bootstrapping, Fully Homomorphic Encryption.

1

Contents

1 Introduction 1
1.1 Technical Overview . 2
1.2 Related Works . 3
1.3 Organization . 3

2 Preliminaries 3
2.1 Basic Lattice-based Encryption . 3
2.2 Key Switching in RLWE . 5
2.3 Automorphism in RLWE . 5
2.4 Rescaling in RLWE . 5
2.5 RLWE based schemes . 6

3 Scaled Modulus Raising 6
3.1 ScaledMod procedure . 6

4 Bootstrapping 10
4.1 Bootstrapping for CKKS . 10

4.1.1 Multiprecision CKKS . 11
4.1.2 RNS-CKKS . 12

4.2 Bootstrapping for BGV and BFV . 13
4.2.1 BGV . 14
4.2.2 BFV . 14

5 Compact Representation of Blind Rotation Keys 14
5.1 Reconstruction of blind rotation keys . 15
5.2 Performing blind rotations on the fly . 16

6 Conclusion 16

A Bootstrapping for BGV 20
A.1 Multiprecision BGV . 20
A.2 RNS-BGV . 20

B Bootstrapping for BFV 22
B.1 Multiprecision BFV . 22
B.2 RNS-BFV . 22

1 Introduction

Homomorphic Encryption (HE) is a form of encryption that enables computations on encrypted
data without access to a secret key. Most HE schemes rely on Learning with Errors [1] (LWE)
or Ring Learning with Errors [2] (RLWE) problem, and their ciphertexts contain small “noise”
which ensures security. However the noise grows during computations and eventually can destroy
the message, and thus the number of operations which can be computed in encrypted form is
limited. Since the first construction of Fully Homomorphic Encryption (FHE) scheme by Gentry [3],
significant progress has been made in the direction of research on HE. Gentry’s celebrated idea of
bootstrapping allows refreshing the noise of a ciphertext and more computations to be performed
on the ciphertext.

The most common FHE schemes can be categorized into FHEW-type, BGV/BFV-type and
CKKS-type. FHEW-type schemes (such as FHEW [4] and TFHE schemes [5]) are based on LWE
and primarily work with boolean circuits. The core idea of their bootstrapping procedure is a so-
called blind rotation technique [5, 6, 7]. BGV/BFV-type schemes [8, 9, 10] are commonly designed
for computations over finite rings, and CKKS-type schemes [11, 12] are designed for computations
over real and complex numbers. While BGV, BFV, and CKKS are all based on RLWE and their
encryption differs only in encoding, the existing bootstrapping algorithms for these three schemes
are different.

Both BGV and BFV are exact schemes and an error accumulated during computations can
eventually destroy the message. All known bootstrapping techniques for BGV and BFV schemes
and their RNS variants [13, 14, 15] are performed by extracting bits from a decrypted result. This is
possible since a decryption algorithm outputs a result where message and error parts are separated.
Meanwhile, an error is considered part of a message in CKKS so that the bit extraction technique
cannot be applied. Cheon et al. [16] proposed the first bootstrapping procedure for CKKS based
on the polynomial approximation for a modular reduction function in a decryption algorithm.
Subsequent studies have focused on approximating the modular reduction function more precisely
to improve accuracy [17, 18, 19, 20, 21, 22].

However, such an approximation approach produces additional errors that have a significant
impact on the quality of a message. Besides, to achieve a better quality of approximations, the
previous methods consume a huge number of multiplicative levels [22] and it causes the modulus
of a ciphertext to be much smaller than that of the ciphertext after bootstrapping. It leads to the
fact that large RLWE parameters are required to make this bootstrapping procedure feasible. In
practice the ring dimension of RLWE is set to 216 or higher for security purpose [16, 18, 20, 23].

In this paper, we propose a new bootstrapping technique that does not use the polynomial ap-
proximation to evaluate the modular reduction function. We combine the blind rotation technique
used in bootstrapping for FHEW-type schemes [4, 5] and the RLWE ciphertext repacking tech-
nique [24] to avoid limitations of existing techniques. It produces an error as small as a rescaling
error and consumes only one level. As a result we can employ our bootstrapping technique using
RLWE ring dimension of 214 or even less, while preserving the same security level.

We show that the new bootstrapping technique is also applicable to BGV and BFV schemes
with only minor modifications on the proposed algorithm. This is possible because all procedures
in our bootstrapping technique are almost independent of message size and plaintext space.

We also provide a compact representation technique for reducing the size of public keys. It
enables a secret key holder to generate a smaller size of public keys, which brings the effect of
reducing the communication overhead. A computational party should reconstruct the public keys

1

for performing homomorphic operations. We present the additional technique to reconstruct the
public keys on-the-fly without storing all of them.

1.1 Technical Overview

Let N be the ring dimension and q be the ciphertext modulus. R := Z[X]/(XN + 1) denotes the
2N -th cyclotomic ring and its quotient ring is denoted by Rq := R/qR. Given an RLWE ciphertext
ct = (a, b) ∈ R2

q , the decryption query is defined as

ct(s) = a · s + b = m + e ∈ Rq,

where s is a secret key and e is a small error. When the modulus q is small and the additional
homomorphic operations can destroy the message m, it is required to increase this small modulus
to a bigger modulus Q > q and produce a new ciphertext ctboot = (aboot, bboot) such that

ctboot(s) = aboot · s + bboot = m + eboot ∈ RQ.

The previous CKKS bootstrapping methods start from the ciphertext ct = (a, b) ∈ R2
q represented

in a higher modulus Q. Then the decryption query becomes

ct(s) = a · s + b = m + e + q · u ∈ RQ (1)

for some small polynomial u. After a homomorphic linear transformation, the ciphertext contains
mi + ei + q · ui in each slot, where mi, ei and ui are i-th coefficients of polynomials m, e and
u, respectively. A polynomial approximation of the modular reduction function removes q · ui
parts from the ciphertext. The final ciphertext, which encrypts m in a higher modulus Q′ where
q < Q′ < Q, is obtained through another homomorphic linear transformation. As mentioned above,
a major difficulty of this method is accurate polynomial approximation of the modular reduction
function.

Our bootstrapping technique greatly differs from the previous bootstrapping methods. To
remove q · u part from the equation (1), we compute encryption of −q · u by the blind rotation
technique used in the FHEW-type bootstrapping algorithm [4, 5]. The main idea of our approach
is to preprocess the ciphertext ct and extract the encryption of a small polynomial u modulo 2N
to obtain a ciphertext ctprep satisfying

ctprep(s) = aprep · s + bprep = −u ∈ R2N .

Then we apply the blind rotation technique to ctprep and repack the results by using the RLWE
ciphertext repacking technique [24]. This procedure that we call ScaledMod gives an encryption
ctsm of the scaled value q · u and it satisfies

ctsm(s) = asm · s + bsm = −q · u + esm ∈ RQ.

Finally we add the ciphertext ct and ctsm modulo Q to eliminate q · u term from ct and increase
the size of the modulus from q to Q. Since the error grows linearly during ScaledMod procedure,
we can adjust the error esm to be comparable to the rescaling error with only a single rescaling.

2

1.2 Related Works

Ducas and Micciancio [4] introduced a blind rotation technique based on RGSW [25] and achieved
bootstrapping time less than a second for evaluation of boolean operations in encrypted form. One
of the main advantages of the blind rotation technique is that it introduces only small controllable
additive error. Chillotti et al. [5, 26] proposed a TFHE scheme over the torus and several opti-
mization methods for FHEW. Recently, Micciancio and Polyakov [27] generalized it to unify the
original and extended variants of both FHEW and TFHE.

Several recent studies [28, 29, 30, 31, 32] have applied the blind rotation technique in conjunction
with other FHE schemes. It is shown that conversions between LWE and RLWE combined with
the blind rotation can be an efficient base technique for evaluating non-polynomial functions for
FHE such as sign functions and other neural network activation functions [28, 29]. However, none
of them considered applying this technique to bootstrapping of BGV, BFV, and CKKS schemes.

1.3 Organization

This paper is organized as follows. In Section 2, we start with some preliminaries on lattice-based
structures and operations with them. In Section 3, we present the core algorithm ScaledMod for
our bootstrapping. In Section 4, we describe the full bootstrapping algorithm for CKKS and briefly
discuss how it could be generalized to BGV and BFV. The full algorithms of bootstrapping for BGV
and BFV are shown in Appendices A and B. In Section 5, we present a compact representation of
public keys and how to reconstruct them. We conclude in Section 6.

2 Preliminaries

All logarithms are base 2 unless otherwise indicated. For two vectors ~a and ~b, we denote their
inner product by 〈~a,~b〉. Let N be a power of two, we denote the 2N -th cyclotomic ring by R :=
Z[X]/(XN + 1) and its quotient ring by RQ := R/QR. Ring elements are indicated in bold, e.g.
a = a(X). We write the floor, ceiling and round functions as b·c, d·e and b·e, respectively. For
q ∈ Z, q > 1 we identify the ring Zq with (−q/2, q/2] as the representative interval, and for x ∈ Z
we denote the centered remainder of x modulo q by [x]q ∈ Zq.

We extend these notations to elements of R by applying them coefficient-wise. For a = a0 +a1 ·
X + · · ·+aN−1 ·XN−1 ∈ R, we denote the `∞ norm of a as ‖a‖∞ = max0≤i<N {|ai|}. There exists
a constant δR such that ‖a · b‖∞ ≤ δR ‖a‖∞ ‖b‖∞ for any a, b ∈ R. For R = Z[X]/(XN + 1), we
use the bound δR = 2

√
N as shown in [33].

We use a← S to denote uniform sampling from the set S. We denote sampling according to a
distribution χ by a← χ. χkey denotes ternary distribution such that each coefficient is chosen from
{−1, 0, 1}. χkey,h denotes ternary distribution with Hamming weight h. χerr denotes a discrete
Gaussian distribution with a standard deviation σerr.

2.1 Basic Lattice-based Encryption

For positive integers q and n, basic LWE encryption of m ∈ Z under the secret key ~s is defined as

LWEq,~s(m) = (~a, b) = (~a,−〈~a,~s〉+ e+m) ∈ Zn+1
q ,

3

where ~a← Znq , and error e← χerr. We occasionally drop subscripts q and ~s when they are obvious

from the context. We use the notation LWE0
q,~s(m) if the error e is zero.

For a positive integer Q and a power of two N , basic RLWE encryption of m ∈ R under the
secret key s is defined as

RLWEQ,s(m) := (a,−a · s + e + m) ∈ R2
Q,

where a ← RQ, and ei ← χerr for each coefficient ei of e, i ∈ [0, N − 1]. As with LWE, we will
occasionally drop subscripts Q and s. We also use the notation RLWE0

Q,s(m) if the error e is zero.
Decryption of ciphertext ct = RLWEQ,s(m) = (a, b) ∈ R2

Q is done by computing

RLWE−1Q,s(a, b) := a · s + b = m + e ∈ RQ.

We use shorthand notation ct(s) := RLWE−1Q,s(ct).

We assume that (t0, · · · , td−1) is a gadget decomposition of t ∈ RQ if t =
∑d−1

i=0 gi · ti where
~g = (g0, . . . , gd−1) is a gadget vector. For a power of two modulus Q, we use base power gadget
vectors (1, B1, . . . , Bd−1) with a power of two B. We use the RNS gadget vector ([q̂−1j]qj · q̂j)0≤j<d,
where q̂j =

∏
i 6=j qi and the modulus Q is chosen as the product Q =

∏
0≤j<d qj of different primes.

We adapt the definitions of RLWE′ and RGSW from [27]. For a gadget vector ~g, we define

RLWE′s(m) := (RLWEs(g0 ·m),RLWEs(g1 ·m), · · · ,RLWEs(gd−1 ·m)) ∈ R2d
Q

and
RGSWs(m) :=

(
RLWE′s(s ·m),RLWE′s(m)

)
∈ R2×2d

Q .

The scalar multiplication between an element in RQ and RLWE′ ciphertext is defined as

� : RQ × RLWE′ → RLWE

using the following rule

t� RLWE′s(m) = 〈(t0, · · · , td−1), (RLWEs(g0 ·m), · · · ,RLWEs(gd−1 ·m))〉

=
d−1∑
i=0

ti · RLWEs(gi ·m) = RLWEs

(
d−1∑
i=0

gi · ti ·m

)
= RLWEs(t ·m) ∈ R2

Q,

where (t0, · · · , td−1) is a gadget decomposition of t. The error after multiplication is equal to∑d−1
i=0 ti · ei which is small as ti and ei are small.
The multiplication between RLWE and RGSW ciphertexts is defined as

� : RLWE× RGSW→ RLWE

and

RLWEs(m1)� RGSWs(m2) = (a, b)�
(
RLWE′s(s ·m2),RLWE′s(m2)

)
= a� RLWE′s(s ·m2) + b� RLWE′s(m2)

= RLWEs(a · s ·m2) + RLWEs(b ·m2)

= RLWEs((a · s + b) ·m2)

= RLWEs(m1 ·m2 + e1 ·m2) ∈ R2
Q.

4

The result obtained in the previous equation represents an RLWE encryption of the product m1 ·m2

with an additional error term e1 ·m2. In order to have RLWEs(m1)�RGSWs(m2) ≈ RLWEs(m1 ·
m2), we need the error term e1 ·m2 to be small. This can be achieved by monomials ±Xυ for m2.
The multiplication between RLWE � RGSW is naturally extended to RLWE′ � RGSW by applying
RLWE � RGSW to each component of RLWE′. Note that RGSW0(1) := I2 ⊗ ~g is a trivial RGSW
encryption of 1 under any key s, where I2 is a 2× 2 identity matrix and ⊗ is a tensor product.

2.2 Key Switching in RLWE

Key switching operation converts a ciphertext RLWEs1(m) encrypted by a secret key s1 to a
ciphertext RLWEs2(m) encrypted by a new secret key s2. There are different variants of key
switching techniques used in the literature and readers can consult the literature such as [34] for
more details. We focus on BV key switching type [35] and on its RNS variant [36], as they fit our
approach. We define the following key switch generation and key switch algorithms:

• KeySwitchGen(s1, s2): Outputs RLWE′s2(s1).

• KeySwitchs1→s2
(RLWEs1(m) = (a, b)): Evaluates

RLWEs2(m) = a� RLWE′s2(s1) + (0, b) (mod Q).

The value RLWE′s2(s1) generated by KeySwitchGen can be understood as a public key switching
key. The key switching error is equal to the error of R× RLWE′ multiplication.

Remark. Key switching usually requires another auxiliary modulus to manage the error. However,
we do not employ an auxiliary modulus as the key switching error in our approach will be managed
in a different way.

2.3 Automorphism in RLWE

In order to perform some operations in FHE, we use automorphism procedure over R. There are
N automorphisms of R, namely ψt : R → R given by a(X) 7→ a(Xt) for t ∈ Z∗2N . Automorphism
procedure over RLWE instances can be defined as

• EvalAuto(RLWEs(m), t): For encryption RLWEs(m(X)) = (a(X), b(X)) of m, we apply ψt
to a(X) and b(X) and obtain (a(Xt), b(Xt)), an RLWE encryption of m(Xt) under the secret
key s(Xt). Then we perform key switching from s(Xt) to s(X) and output RLWEs(m(Xt)) =
RLWEs(ψt(m)).

The additional error after applying an automorphism is equal to key switching error as an auto-
morphism ψt is a norm-preserving map.

2.4 Rescaling in RLWE

Rescaling is used in RLWE to control the error or message growth. In this paper, we only consider
rescaling of RLWEQ,s instance by q that divides Q. For a RLWEQ,s instance (a, b) ∈ R2

Q, the
rescaling by q|Q is as follows:

• Rescale((a, b), q) =
(⌊

a
q

⌉
,
⌊
b
q

⌉)
∈ R2

Q/q.

5

For ct = RLWEQ,s(m) we have Rescale(ct, q) = ctrs = RLWEQ/q,s(1qm). The rescaling procedure
also divides the error of ct by q, but introduces additional rescaling error ers. The rescaling error
ers however is small [37] and it’s norm ‖ers‖∞ is bounded by 1

2(1 + δR) for ternary secret key.

2.5 RLWE based schemes

In this subsection we briefly present the encryption procedures for the three most common FHE
schemes based on RLWE. The main difference of encryption in all these schemes is in the message
representation and encoding procedures.

In the BGV scheme with the plaintext modulus t, a plaintext m is encoded in the least significant
bits in RQ and its encryption is given as follows:

EncBGV(m) = (a,−a · s + t · e + m).

In the BFV scheme with the plaintext modulus t, a plaintext m is encoded in the most significant
bits in RQ and its encryption is given as follows:

EncBFV(m) =

(
a,−a · s + e +

⌊
Q

t
·m
⌉)

.

The CKKS scheme is an approximate homomorphic encryption scheme and RLWE errors are con-
sidered a part of messages. Its encryption of a plaintext m is given as follows:

EncCKKS(m) = (a,−a · s + e + m) .

All encryption algorithms described above assume that the message is already encoded into the
polynomial m. Encoding techniques for BGV and BFV can be found in [8, 9, 10] and for CKKS
in [11, 12].

3 Scaled Modulus Raising

In this section, we present the core algorithm ScaledMod used in our bootstrapping in Section 4.
The algorithm transforms RLWE0

2N,s(u), where ‖u‖∞ ≤ c < N/2, to RLWEQ,s(∆ · u) for a scaling
factor ∆ and a large modulus Q.

3.1 ScaledMod procedure

We first extract LWE0
2N,~s(ui) ciphertexts from an RLWE0

2N,s(u) ciphertext. For each extracted LWE

ciphertext, we perform the blind rotation with an initial function f = −
∑c

j=−c ∆ · j · Xj ∈ RQ,

where ‖u‖∞ ≤ c < N/2 for some c, and obtain RLWE encryptions of u(i) which has a constant
term of ∆ · ui. Finally, we repack our RLWE encryptions of u(i) into a single RLWE encryption of
∆ · u. The flow of the proposed ScaledMod procedure is as follows.

• ScaledMod(RLWE0
2N,s(u),∆, Q): Outputs RLWEQ,s (∆ · u)

RLWE0
2N,s(u)

Extract−−−−−→ {LWE0
2N,~s(ui)}

BlindRotate−−−−−−−−−→ {RLWEQ,s (f ·Xui)}
Repack
−−−−−→ RLWEQ,s (∆ · u)

Now we describe each part of the ScaledMod algorithm in detail.

6

Step 1. Extract

We start with a pair (a, b) = RLWE0
2N,s(u). Since the error is zero, we have s ·a+b = u (mod 2N).

Multiplication of two polynomials a and s in R2N is described as

s · a =

N−1∑
i=0

 i∑
j=0

sj · ai−j −
N−1∑
j=i+1

sj · ai−j+N

Xi (mod 2N).

Let ~s = (s0, ..., sN−1) be a vector of coefficients of s. We can extract LWE0
2N,~s(ui) = (~a(i), bi) for all

i ∈ [0, N − 1] from a ∈ RLWE0
2N,s(u), where

~a(i) = (ai, ai−1, . . . , a0,−aN−1,−aN−2, . . . ,−ai+1).

Step 2. BlindRotate

BlindRotate procedure transforms a single LWE ciphertext LWE0
2N,~s(u) = (~α, β) obtained from

Extract into RLWE encryption of f ·Xu where f = −
∑c

j=−c ∆ · j ·Xj for ‖u‖∞ ≤ c < N/2. The
result will be accumulated into the RLWE ciphertext that we call ACC. Blind rotation public keys
brk =

{
RGSWQ,s(s+i),RGSWQ,s(s−i)

}
i∈[0,N−1] where{

s+i = 1, if si = 1
s+i = 0, otherwise

,

{
s−i = 1, if si = −1
s−i = 0, otherwise

for i ∈ [0, N − 1] must be generated in advance.
We initialize ACC as ACC = (0, f ·Xβ) = RLWE0

Q,s(f ·Xβ). Then we iteratively compute

RGSW(Xαi·si) = RGSW0(1) + (Xαi − 1) · RGSW(s+i) + (X−αi − 1) · RGSW(s−i) (2)

and update ACC as
ACC← ACC� RGSWQ,s(Xαi·si).

The equation (2) is correct as for each si ∈ {−1, 0, 1}, at least one of s+i and s−i is zero. The result
of the blind rotation is

RLWEQ,s(f ·Xβ+α0s0+···+αN−1sN−1) = RLWEQ,s(f ·Xu) = RLWEQ,s(uf).

Due to the initial function f and the boundary of ‖u‖∞, the polynomial uf has ∆ ·u as its constant
term. The full algorithm is described in Algorithm 1.

Algorithm 1 Blind rotation

procedure BlindRotate(f, (~α, β), brk)
ACC←

(
0, f ·Xβ

)
for i = 0, ..., N − 1 do

ACC← ACC�
(
RGSW0(1) + (Xαi − 1) · RGSW(s+i) + (X−αi − 1) · RGSW(s−i)

)
return ACC

We apply the blind rotation to each LWE0
2N,~s(ui) for all i ∈ [0, N − 1] and obtain

RLWEQ,s(f ·Xui) := RLWEQ,s(u(i)) := (ai, bi) ∈ R2
Q

7

such that

ai · s + bi = u(i) + ebr = ∆ · ui + ∗ ·X + ∗ ·X2 + · · ·+ ∗ ·XN−1 + ebr (mod Q),

where ∗ denotes some value in ZQ. As |ui|≤ c, most coefficients of u(i) are zeros. More precisely,
we have

u(i) = ∆ · ui + ∗ ·X + · · ·+ ∗ ·X2c + 0 ·X2c+1 + · · ·+ 0 ·XN−2c−2 + ∗ ·XN−2c−1 + · · ·+ ∗ ·XN−1.

Error Analysis Let Eerr denote the high-probability upper bound of error in an RLWE encryp-
tion, for instance, 6σerr [11]. The error bound of each RLWE element of the RGSW encryption in
equation (2) can be bounded by 4Eerr, so each blind rotation step introduces an additive error that
is bounded by 4dBEerr, where B is a digit bound, and d is a number of digits of gadget decompo-
sition. Therefore the total error after blind rotations is bounded by ‖ebr‖∞ < Ebr = 4dNBEerr.

Remark. It is worth noting that all the errors in our approach are additive which means that the
error grows linearly, so we do not have to rescale every time as in usual key-switching in [36, 38].
Instead, we can postpone rescaling to the end to reduce the complexity.

Step 2′. BlindRotate for sparse ternary secret key

For a sparse ternary secret s ← χkey,h, we can take advantage of the knowledge that only h
coefficients of s are non-zero and decrease the computational complexity of blind rotation. Suppose
(si1 , . . . , sih) are non-zero coefficients of s. We initially generate blind rotation public keys

brk′ =
{
RGSWQ,s

(
δ+`,j

)
,RGSWQ,s

(
δ−`,j

)}
(`,j)∈[1,h]×[0,N−1]

where {
δ+`,j = 1, if i` = j & si` = 1

δ+`,j = 0, otherwise
,

{
δ−`,j = 1, if i` = j & si` = −1

δ−`,j = 0, otherwise

for (`, j) ∈ [1, h]× [0, N − 1].
In the blind rotation, we iteratively compute

RGSW(Xαi`
·si`) =

N−1∑
j=0

Xαj · RGSW
(
δ+`,j

)
+
N−1∑
j=0

X−αj · RGSW
(
δ−`,j

)
(3)

and update ACC as
ACC← ACC� RGSWQ,s(Xαi`

·si`).

The equation (3) is correct since only one of summands is non-zero. This alternative blind rotation
decreases the number of RLWE� RGSW multiplications from N to h, but increases the size of the
blind rotation keys from 2N to 2hN of RGSW encryptions.

Error Analysis The error bound of each RLWE element of RGSW encryption in equation (3) can
be bounded by 2NEerr, so each blind rotation step introduces an additive error that is bounded
by 2dBNEerr. The total error after blind rotations is bounded by 2dBhNEerr.

8

Algorithm 2 Blind rotation for sparse secret key

procedure BlindRotate′(f, (~α, β), brk′)
ACC←

(
0, f ·Xβ

)
for l = 1, ..., h do

ACC← ACC�
(∑N−1

j=0 Xαj · RGSW
(
δ+`,j

)
+
∑N−1

j=0 X−αj · RGSW
(
δ−`,j

))
return ACC

Step 3. Repack

After BlindRotate, we receive N ciphertexts which encrypt polynomials u(i) introduced earlier.
Only constant coefficients of the encrypted polynomials contain useful information. Thus, other
coefficients of these polynomials must be removed. The goal of Repack procedure is to combine all
constant coefficients of encryption of u(i) into a single encrypted polynomial without decryption.

Let n be the smallest power of two satisfying n > 2c for some c defined in the initial function f.
Given RLWEQ,s(u(i)) for i ∈ [0, N − 1], Repack algorithm is performed in the following two steps.
First, we consider a subset of the given ciphertexts as

{
RLWEQ,s(u(nk))

}
k∈[0,N

n
−1]. We pack these

ciphertexts into the following n ciphertext

N
n
−1∑

k=0

RLWEQ,s(u(nk)) ·Xnk = RLWEQ,s

N
n
−1∑

k=0

u(nk) ·Xnk

 .

Let u(0,n) :=
∑N

n
−1

k=0 u(nk) ·Xnk. Let u(0,n) :=
∑N

n
−1

k=0 u(nk) ·Xnk. Since n > 2c, u(0,n) has coefficients
∆ · unk at Xnk as

u(0,n) = ∆ · u0 + ∗ ·X + · · ·+ ∗ ·Xn−1 + ∆ · un ·Xn + · · ·+ ∆ · u2n ·X2n + · · ·+ ∗ ·XN−1

where ∗ denotes some value in ZQ. In a similar way, we pack subsets
{
RLWEQ,s(u(i+nk))

}
k∈[0,N

n
−1]

into RLWEQ,s(u(i,n)) for all i ∈ [1, n− 1] where u(i,n) has coefficients ∆ · ui+nk at Xnk.
Second, we adapt the repacking technique from [24]. We consider a pair RLWEQ,s(u(0,n)) and

RLWEQ,s(u(n
2
,n)). Notice that the automorphism ψ1+ 2N

n
applied to u(0,n) preserves all coefficients at

Xnk, for k ∈ [0, Nn −1], changes the sign of coefficients at Xnk+n
2 , and shuffles the other coefficients

with possible changes in sign. We focus on the coefficients of Xnk and Xnk+n
2 and we do not track

how this automorphism operates on the other coefficients. We can merge RLWEQ,s(u(0,n)) and
RLWEQ,s(u(n

2
,n)) as follows

RLWE(2u(0,n
2
)) = RLWE(u(0,n)) +X

n
2 · RLWE(u(n

2
,n))

+ EvalAuto

(
RLWE(u(0,n))−X

n
2 · RLWE(u(n

2
,n)), 1 +

2N

n

)
,

where u(0,n
2
) is a polynomial which has coefficients ∆ · unk

2
at X

nk
2 . We apply the same procedure

to pairs RLWEQ,s(u(i,n)) and RLWEQ,s(u(i+n
2
,n)) for all i ∈ [1, n2 − 1] and obtain RLWEQ,s(2u(i,n

2
)).

We continue this merging process until we get

RLWEQ,s(n · u(0,1)) = RLWEQ,s(n ·∆ · u).

9

The full Repack algorithm is described in Algorithm 3.

Algorithm 3 Repacking

procedure Repack({RLWEQ,s(u(i))}i∈[0,N−1], n) . n is a power of two such that 2c < n ≤ N
for i = 0, . . . , n− 1 do

ct(i,n) ← RLWEQ,s(u(i))
for j = 1, . . . , Nn − 1 do

ct(i,n) ← ct(i,n) +Xnj · ct(i+nj)
while n > 1 do

for i = 0, . . . , n2 − 1 do

ct(i,
n
2
) ← ct(i,n) +X

n
2 · ct(i+

n
2
,n)

ctrot ← EvalAuto
(
ct(i,n) −X

n
2 · ct(i+

n
2
,n), 1 + 2N

n

)
ct(i,

n
2
) ← ct(i,

n
2
) + ctrot

n← n
2

return ct(0,1) = RLWEQ,s(n ·∆ · u)

Error Analysis The first step of repacking adds the errors from the blind rotations, so we can
bound the error of each RLWEQ,s

(
u(i,n)

)
by N

nEbr. For the second step every EvalAuto introduces

new error from R by RLWE′ multiplications, which is bounded by dB
2 Eerr. The total error after

repacking is bounded by Esm = NEbr + (n− 1)dB2 Eerr.

Remark. We obtain RLWEQ,s(n ·∆ ·u) instead of RLWEQ,s(∆ ·u) during the ScaledMod procedure
and accumulate errors during the blind rotations and repacking procedures. By modifying the initial
state, we can address the first issue. We start with [n]−1Q ·∆ instead of ∆ when Q and n are coprime.
When Q is a power of two, we start with RLWE modulus Q ·n and then rescale by n. For the second
issue we use an auxiliary modulus p > Esm and do all the computations modulo Q · p instead of Q
and rescale the result by p in the end. To do that, we also start with ∆ · p instead of ∆. Finally we
obtain RLWEQ,s(∆ · u) with only rescaling error esm = ers.

4 Bootstrapping

In this section, we present the whole procedure of the new bootstrapping technique which uses
ScaledMod algorithm as a core functionality. We mainly deal with the CKKS scheme and then
briefly describe the bootstrapping technique for the BGV and BFV schemes as subsequent results.

4.1 Bootstrapping for CKKS

Given a ciphertext ct = RLWEq,s(m) = (a, b) ∈ R2
q for a small modulus q, the goal of the CKKS

bootstrapping is to obtain a ciphertext ctboot = RLWEQ,s(m) = (aboot, bboot) ∈ R2
Q of the same

message m for a bigger modulus Q > q. It starts from the decryption query of ct in the higher
modulus Q represented by

ct(s) = a · s + b = m + e + q · v ∈ RQ

10

for some small polynomial v. To remove the q · v part, existing CKKS bootstrapping methods
mainly use homomorphic linear transformations and evaluation of approximating polynomials for
modular reduction functions. As we mentioned before, a major drawback of this approach is that
it is hard to approximate a modular reduction function with a polynomial. The ciphertext after
bootstrapping usually obtains a large noise, which reduces the quality of the encrypted message.

On the other hand, our new bootstrapping technique makes use of a blind rotation technique
to remove q · v part instead of using polynomial approximation and homomorphic linear trans-
formations. The ScaledMod algorithm is presented in the previous section which uses the blind
rotation technique as a sub-algorithm and can be used to compute q ·v. Our bootstrapping uses the
ScaledMod as a sub-algorithm and it only adds a noise comparable with a rescaling noise, which
preserves the quality of the encrypted message. As a first step, the ciphertext is preprocessed to
contains a ciphertext suitable for ScaledMod. After obtaining the result of ScaledMod, we add
it with the other preprocessed ciphertext and the final result will be a bootstrapped ciphertext.
The preprocessing procedure is different depending on the structure of the scheme and the detailed
descriptions are given in the following subsections.

4.1.1 Multiprecision CKKS

In the multiprecision CKKS scheme [11], the ciphertext modulus q is a power of two. Given a
ciphertext ct = (a, b) ∈ R2

q for a small modulus q, the decryption query is described as

ct(s) = a · s + b = m + e (mod q) = m + e + q · v.

Let q′ = q/2N and ‖m + e‖∞ ≤ γ < q
4 −

q′

2 · (δR + 1) for some γ. Firstly, we compute ct′ = ct

(mod q′) =
(
[a]q′ , [b]q′

)
∈ R2

q′ and obtain

ct′(s) = [a]q′ · s + [b]q′ = m + e (mod q′) = m + e + q′ · u.

Due to q′ · u = [a]q′ · s + [b]q′ − (m + e), we have

‖u‖∞ <
1

2
(δR + 1) +

γ

q′
<
N

2

for ternary secret key. Now both a − [a]q′ and b − [b]q′ are divisible by q′, thus we can obtain a
ciphertext

ctprep = (aprep, bprep) =

(
a− [a]q′

q′
,
b− [b]q′

q′

)
∈ R2

2N .

It is easy to see that the preprocessed ciphertext ctprep = RLWE0
2N,s(−u), so we can evaluate

ScaledMod(ctprep, q
′, Q) by setting c =

⌊
1
2(δR + 1) + γ

q′

⌋
for the initial function f and obtain

ctsm = RLWEQ,s(−q′ · u) with an error esm such that

ctsm(s) = asm · s + bsm = −q′ · u + esm (mod Q).

We add it with ct′ modulo Q and finally obtain the ciphertext ctboot = ctsm + ct′ (mod Q) as

ctboot(s) = aboot · s + bboot = m + e + q′ · u− q′ · u + esm = m + e + esm (mod Q).

The full bootstrapping algorithm is described in Algorithm 4.

11

Algorithm 4 Bootstrapping for CKKS

procedure Bootstrap-CKKS(ct = (a, b) ∈ R2
q)

Preprocess(ct)→ ct′, ctprep . ct(s) = m + e + q · v ∈ R
• ct′ ← ct (mod q′) . ct′(s) = m + e + q′ · u ∈ R
• ctprep ←

(
ct−ct′

q′

)
. ctprep(s) = −u (mod 2N)

ScaledMod(ctprep, q
′, Q)→ ctsm . ctsm(s) = −q′ · u + esm (mod Q)

Combine(ctsm, ct
′)→ ctboot

• ctboot ← ctsm + ct′ (mod Q) . ctboot(s) = m + e + esm (mod Q)
return ctboot = (aboot, bboot) ∈ R2

Q

Sparsely Packed Ciphertext The bootstrapping complexity can be reduced with sparse pack-
ing [12]. Let ct be an encryption of a sparsely packed plaintext m which encodes n values where
n < N

2 . The main idea is to reduce the number of coefficients of u which will be inputs of the blind
rotations in ScaledMod procedure. We firstly prepare ct′ and ctprep as previously and execute an
additional preprocessing for ct′ to obtain ct′′. Then we apply a variant of ScaledMod to ctprep
and combine it to ct′′.

The additional preprocessing for ct′ is zeroizing certain coefficients of u. We take a similar
approach used in the original CKKS bootstrapping [16] which is presented in Algorithm 5. It
increases the modulus of ct′ from q′ to Q and then applies automorphisms and additions to ct′.
After the zeroizing procedure, we obtain a ciphertext ct′′ which is described as

ct′′(s) = a′′ · s + b′′ = m + e′′ + q′ · u′ (mod Q′),

where Q′ = Q · 2nN and u′ has same coefficients as u at degrees which are multiples of N/2n and
zero coefficients at other degrees. Notice that since m is a sparsely packed plaintext, the message
in each slot does not change under the automorphisms used in ZeroizeCoeffs.

Due to the structure of u′, given ctprep = RLWE0
2N,s(−u) as an input of ScaledMod, we can

evaluate the blind rotations only for the subset of coefficients
{
u(N/2n)·i

}
for i ∈ [0, 2n− 1], instead

of evaluating for every coefficient of u. It reduces the number of blind rotations to 2n and also
reduces the number of iterations of the Repack algorithm. The output of the variant ScaledMod is
ct′sm which satisfies

ct′sm(s) = a′sm · s + b′sm = −q′ · u′ + e′sm (mod Q′)

and we combine it with ct′′ to have ctboot = ct′′ + ct′sm (mod Q′) which satisfies

ctboot(s) = aboot · s + bboot = m + e′′ + q′ · u′ − q′ · u′ + e′sm = m + e′′ + e′sm (mod Q′).

4.1.2 RNS-CKKS

In the RNS-CKKS scheme [12], the modulus q is not a power of two but a product of primes, so
the preprocessing steps are different. We start from the decryption query for the given ciphertext
ct = (a, b) ∈ R2

q described as

ct(s) = a · s + b = m + e + q · v ∈ R.

12

Algorithm 5 Zeroizing Coefficients

procedure ZeroizeCoeffs(ct′, n)
ct′′ ← ct′ (mod Q)
for (k = N ; k > 2n; k = k/2) do

ct′′ ← EvalAuto(ct′′, k + 1) + ct′′ (mod Q)

ct′′ ← Rescale(ct′′, N2n)

return ct′′

Let ‖m + e‖∞ ≤ γ < q
4 −

q
4N · (δR + 1) for some γ. We first compute ct′ = 2N · ct (mod q) =

([2N · a]q, [2N · b]q) ∈ R2
q to obtain

ct′(s) = [2N · a]q · s + [2N · b]q = 2N ·m + 2N · e + q · u ∈ R,

where

‖u‖∞ <
1

2
(δR + 1) +

2N

q
· γ < N

2
.

Now both 2N ·a− [2N ·a]q and 2N ·b− [2N ·b]q are divisible by q, thus we can obtain a ciphertext

ctprep = (aprep, bprep) =

(
2N · a− [2N · a]q

q
,
2N · b− [2N · b]q

q

)
∈ R2

2N .

Again for the preprocessed ctprep = RLWE0
2N,s(−u), we can evaluate ScaledMod(ctprep, q,Qp) by

setting c =
⌊
1
2(δR + 1) + γ

q′

⌋
for the initial function f and obtain a ciphertext ctsm(s) = (asm, bsm)

which satisfies
ctsm(s) = asm · s + bsm = −q · u + esm (mod Qp),

where p is an auxiliary prime which we will rescale by later. Now we add ct′′ = ctsm + ct′ modulo
Qp and it satisfies

ct′′(s) = a′′ · s + b′′ = 2N ·m + 2N · e + q · u− q · u + esm = 2N ·m + 2N · e + esm (mod Qp).

To get rid of the scaling factor 2N in the message, we multiply ct′′ by p
2N and rescale the result

by p as ctboot = Rescale(p
2N · ct

′′, p), then we have

ctboot(s) = aboot · s + bboot = m + e +
1

2N
· esm + ers (mod Q).

The full bootstrapping algorithm is described in Algorithm 6.

4.2 Bootstrapping for BGV and BFV

Now we explain how our technique can be applied to BGV and BFV schemes. Since BGV, BFV,
and CKKS schemes have a similar cryptographic structure and their encryption only differs in
encoding, the Preprocess and Combine procedures are performed with slight modifications. In
this subsection, we only describe the different parts briefly and the full algorithms are presented in
Appendices A and B. Both BGV and BFV schemes have a plaintext space Rt for some t which is
normally taken as a prime power and in our cases, we take t to be coprime with 2 for simplicity.

13

Algorithm 6 Bootstrapping for RNS-CKKS

procedure Bootstrap-RNS-CKKS(ct = (a, b) ∈ R2
q)

Preprocess(ct)→ ct′, ctprep . ct(s) = m + e + q · v ∈ R
• ct′ ← 2N · ct (mod q) . ct′(s) = 2N ·m + 2N · e + q · u ∈ R
• ctprep ←

(
2N ·ct−ct′

q

)
. ctprep(s) = −u (mod 2N)

ScaledMod(ctprep, q,Qp)→ ctsm . ctsm(s) = −q · u + esm (mod Qp)
Combine(ctsm, ct

′)→ ctboot
• ct′′ ← ctsm + ct′ (mod Qp) . ct′′(s) = 2N ·m + 2N · e + esm (mod Qp)
• ctboot ← Rescale

(p
2N · ct

′′, p
)

. ctboot(s) = m + e + 1
2N · esm + ers (mod Q)

return ctboot = (aboot, bboot) ∈ R2
Q

4.2.1 BGV

The decryption query of the BGV scheme is

ct(s) = a · s + b = m + t · e + q · v ∈ R.

The bootstrapping algorithm for BGV is similar to that for multiprecision CKKS with the only
difference that secret and public keys are generated with errors of the form t · e instead of e and
the automorphism and rescale in Repack procedure are evaluated in accordance with BGV style.
The bootstrapping algorithm for RNS-BGV is also similar to that for RNS-CKKS, with the only
difference at Combine step, where division by 2N is done modulo t.

4.2.2 BFV

The decryption query of the BFV scheme is

ct(s) = a · s + b =
Q

t
·m + e +Q · v ∈ R.

The goal of bootstrapping for BFV is to reduce the accumulated error instead of increasing the
modulus size. During the bootstrapping procedure, the previous big error e is removed and replaced
with a small refreshed error generated from ScaledMod and rescaling.

5 Compact Representation of Blind Rotation Keys

As presented in Section 3, blind rotation keys should be precomputed by a secret key holder for
BlindRotate procedure. As a dimension of ring increases, the amount of memory required to
represent blind rotation keys increases dramatically. It is difficult for the secret key holder to
generate and transfer the heavy blind rotation keys to the computational party which performs
all the computations. The computational party also can have a limitation in storing all the blind
rotation keys.

In this section, we provide a possible way to reduce the communication cost and storage size
of blind rotation keys. First, we present a method that the secret key holder generates only a
small amount of public keys and the blind rotation keys are reconstructed on the computational
side instead of being generated by the secret key holder. We also present a method that the
computational party reconstructs the keys and performs blind rotations on the fly, without storing
the whole keys.

14

5.1 Reconstruction of blind rotation keys

For simplicity, we denote s+i and s−i as s±i . First, we notice that RGSWs(s±i) can be reconstructed
from only RLWE′s(s±) and RLWE′s(s2), where

s± =

N−1∑
i=0

s±i X
i.

The reconstruction of RLWE′s(s±i) can be done in parallel by using divide and conquer algorithm
described in Algorithm 7. The reconstruction of RLWE′s(s±i · s) can be done by observing that for
each RLWEs(gj · s±i) = (ai,j , bi,j), the reconstruction of RLWEs(gj · s±i · s) is as follows:

ai,j � RLWE′s(s2) + bi,j · (1, 0) = RLWEs

(
ai,j · s2 + bi,j · s

)
= RLWEs(gj · s±i · s). (4)

After repeating this procedure for all j ∈ [0, d− 1] and i ∈ [0, N − 1], the keys RGSWs(s±i) =(
RLWE′s(s±i),RLWE′s(s±i · s)

)
can be fully reconstructed from RLWE′s(s±) and RLWE′s(s2).

Algorithm 7 Reconstruct and store

procedure Reconstruction(RLWE′s(s±))
S±0 ← RLWE′s(s±)
for (n = N ;n > 1;n = n/2) do

for (i = 0; i < N ; i = i+ n) do
T±i ← EvalAuto(S±i , n+ 1)
S±i = S±i + T±i
S±i+n/2 = X−N/n · (S±i − T

±
i)

return
{
S±i
}

=
{
RLWE′(N · s±i)

}
EvalAuto(RLWE′(·), ·) in Algorithm 7 denotes the operation of performing the same EvalAuto

for all the RLWE elements in RLWE′(·). EvalAuto by 2N/2k + 1 maintains the 2k · i-th coefficients
and changes the signs of 2k · i+ 2k−1-th coefficients for an integer i. When the other coefficients are
zeros, we can obtain the ciphertext with only 2k · i-th coefficients or 2k · i+ 2k−1-th coefficients by
addition or subtraction of the original ciphertext and its rotation, respectively. By repeating this
procedure, we obtain a ciphertext with only one coefficient, which is an encryption of s±i .

In Algorithm 7, the coefficients that are not removed are doubled after each evaluation of
automorphism and addition. Therefore, the target coefficient will eventually be multiplied by N
and the algorithm outputs RLWE′(N · s±i). There are two possible ways to remove the additional
multiplicand N from the polynomial. If Q is coprime with N , the input ciphertext can be multiplied
initially by N−1 (mod Q), i.e. we start with RLWE′Q,s([N]−1Q · s±). Otherwise, if Q is a power of

two we start with QN and rescale RLWE′QN,s(N · s±i) by N .

Error Analysis The error bound of each RLWE element of RLWE′ encryption after reconstruction
can be bounded by Erc = NEerr + (N − 1)dB2 Eerr. As the errors of reconstructed RGSWQ,s(s±i)
are bigger than fresh errors of RGSWQ,s(s±i), we can use larger auxiliary modulus to make the error
negligible.

15

5.2 Performing blind rotations on the fly

To prevent storing all blind rotation keys on computational side, we can reconstruct blind rotation
key for each blind rotation step i on the fly, and discard it after.

To reconstruct RLWE′s(s±i) for specific i, we multiply RLWE′s(s±) by X−i to have s±i as the
constant term, and then make all other coefficients zeros by applying the sequence of automorphisms
and additions. Algorithm 8 sums up the reconstruction of RLWE′s(s±) for a single i. We remove N
from the result in a similar way as we did in Section 5.1.

Algorithm 8 Reconstruct on the fly

procedure ReconstructSingle(RLWE′s(s±), i)
Si ← RLWE′s(s±) ·X−i
for (n = N ;n > 1;n = n/2) do

Si ← EvalAuto(Si, n+ 1) + Si

return Si = RLWE′s(N · s±i)

Furthermore, we can either reconstruct RLWE′s(s±i ·s) as explained in Section 5.1, or evaluate the

blind rotation step i using only RLWE′s(s2) and RLWE′s(s±i). For the latter case, we first evaluate

RLWE′s(Xαi·si) = RLWE
′0(1) + (Xαi − 1) · RLWE′s(s+i) + (X−αi − 1) · RLWE′s(s−i). (5)

For given ACC = RLWEs(f ·Xβ+α0s0+···+αi−1si−1) = (a, b), we multiply a and b by RLWE′s(Xαi·si).

a� RLWE′s(Xαi·si) = RLWEs(a ·Xαi·si) = (a′, b′)

b� RLWE′s(Xαi·si) = RLWEs(b ·Xαi·si)

Then we evaluate RLWEs(a · s ·Xαi·si) as

a′ � RLWE′s(s2) + (b′, 0) = RLWEs(a′ · s2 + b′ · s) = RLWEs(a · s ·Xαi·si).

Finally, we add RLWEs(a · s ·Xαi·si) and RLWEs(b ·Xαi·si) to obtain the updated ACC

ACC← RLWEs(a · s ·Xαi·si) + RLWEs(b ·Xαi·si)

= RLWEs((a · s + b) ·Xαi·si) = RLWEs(f ·Xβ+α0s0+···+αisi).

Error Analysis The error of each RLWE element of RLWE′ encryption in equation (5) can be
bounded by 4Erc. Hence, each R by RLWE′ for a and b adds an error which is bounded by 2dBErc,
each blind rotation step introduces additive error bounded by at most 2(N + 1)dBErc + dB

2 Eerr.

6 Conclusion

We proposed the first bootstrapping procedure for the CKKS scheme without approximating the
modular reduction function, and extended it to BGV and BFV schemes. Our bootstrapping pro-
cedure uses the blind rotation technique and it introduces small rescaling errors instead of big
approximation errors as in previous CKKS bootstrapping methods. We also modified the blind
rotation algorithm for a sparse secret key to reduce computational complexity.

16

Due to the large size of blind rotation keys, we introduced a method of extracting all blind
rotation keys on a computational side rather than generating and transferring all of them from a
secret key holder side. In addition, we proposed a method of evaluating the blind rotation on the
fly without storing all the keys on the computational side.

In contrast to previous bootstrapping methods, our bootstrapping requires only one rescaling
and thus it can be implemented with smaller parameters for the same security level. We plan to
implement and experiment our approach on different computing platforms including systems with
limited memory. We will also continue research on possible optimizations of our new bootstrapping
approach.

Acknowledgments

We thank Yuriy Polyakov and Daniele Micciancio for their careful review, feedback and insightful
discussions that helped us to improve the paper.

References

[1] Regev, O. (2009) On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6), 1–40.

[2] Lyubashevsky, V., Peikert, C., and Regev, O. (2013) On ideal lattices and learning with errors
over rings. Journal of the ACM (JACM), 60(6), 1–35.

[3] Gentry, C. (2009) Fully homomorphic encryption using ideal lattices. In Proceedings of the
forty-first annual ACM Symposium on Theory of Computing ACM pp. 169–178.

[4] Ducas, L. and Micciancio, D. (2015) FHEW: Bootstrapping homomorphic encryption in less
than a second. In Advances in Cryptology – EUROCRYPT 2015 Springer pp. 617–640.

[5] Chillotti, I., Gama, N., Georgieva, M., and Izabachène, M. (2020) TFHE: Fast fully homomor-
phic encryption over the torus. Journal of Cryptology, 33(1), 34–91.

[6] Alperin-Sheriff, J. and Peikert, C. (2014) Faster bootstrapping with polynomial error. In
Advances in Cryptology – CRYPTO 2014 Springer pp. 297–314.

[7] Gama, N., Izabachene, M., Nguyen, P. Q., and Xie, X. (2016) Structural lattice reduction: gen-
eralized worst-case to average-case reductions and homomorphic cryptosystems. In Advances
in Cryptology – EUROCRYPT 2016 Springer pp. 528–558.

[8] Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2014) (Leveled) Fully homomorphic en-
cryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3),
1–36.

[9] Brakerski, Z. (2012) Fully homomorphic encryption without modulus switching from classical
GapSVP. In Advances in Cryptology – CRYPTO 2012 Springer pp. 868–886.

[10] Fan, J. and Vercauteren, F. (2012) Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch., 2012/144.

17

[11] Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017) Homomorphic encryption for arithmetic
of approximate numbers. In Advances in Cryptology – ASIACRYPT 2017 Springer pp. 409–
437.

[12] Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y. (2018) A full RNS variant of approx-
imate homomorphic encryption. In Selected Areas in Cryptography – SAC 2018 Springer pp.
347–368.

[13] Gentry, C., Halevi, S., and Smart, N. P. (2012) Better bootstrapping in fully homomorphic
encryption. In Public Key Cryptography – PKC 2012 Springer pp. 1–16.

[14] Halevi, S. and Shoup, V. (2021) Bootstrapping for HElib. Journal of Cryptology, 34(1), 1–44.

[15] Chen, H. and Han, K. (2018) Homomorphic lower digits removal and improved FHE boot-
strapping. In Advances in Cryptology – EUROCRYPT 2018 Springer pp. 315–337.

[16] Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y. (2018) Bootstrapping for approximate
homomorphic encryption. In Advances in Cryptology – EUROCRYPT 2018 Springer pp. 360–
384.

[17] Chen, H., Chillotti, I., and Song, Y. (2019) Improved bootstrapping for approximate homo-
morphic encryption. In Advances in Cryptology – EUROCRYPT 2019 Springer pp. 34–54.

[18] Han, K. and Ki, D. (2020) Better bootstrapping for approximate homomorphic encryption. In
Topics in Cryptology – CT-RSA 2020 Springer pp. 364–390.

[19] Lee, Y., Lee, J.-W., Kim, Y.-S., and No, J.-S. (2020) Near-optimal polynomial for modulus
reduction using l2-norm for approximate homomorphic encryption. IEEE Access, 8, 144321–
144330.

[20] Bossuat, J.-P., Mouchet, C., Troncoso-Pastoriza, J., and Hubaux, J.-P. (2021) Efficient boot-
strapping for approximate homomorphic encryption with non-sparse keys. In Advances in
Cryptology – EUROCRYPT 2021 Springer.

[21] Lee, J.-W., Lee, E., Lee, Y., Kim, Y.-S., and No, J.-S. (2021) High-Precision Bootstrapping
of RNS-CKKS Homomorphic Encryption Using Optimal Minimax Polynomial Approximation
and Inverse Sine Function. In Advances in Cryptology – EUROCRYPT 2021 Springer.

[22] Lee, Y., Lee, J., Kim, Y.-S., Kang, H., and No, J.-S. (2020) High-Precision and Low-
Complexity Approximate Homomorphic Encryption by Error Variance Minimization. IACR
Cryptol. ePrint Arch., 2020/1549.

[23] Han, K., Hhan, M., and Cheon, J. H. (2019) Improved homomorphic discrete fourier transforms
and FHE bootstrapping. IEEE Access, 7, 57361–57370.

[24] Chen, H., Dai, W., Kim, M., and Song, Y. (2021) Efficient Homomorphic Conversion Between
(Ring) LWE Ciphertexts. In Applied Cryptography and Network Security Springer.

[25] Gentry, C., Sahai, A., and Waters, B. (2013) Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in Cryptology
– CRYPTO 2013 Springer pp. 75–92.

18

[26] Chillotti, I., Gama, N., Georgieva, M., and Izabachene, M. (2017) Faster packed homomor-
phic operations and efficient circuit bootstrapping for TFHE. In Advances in Cryptology –
ASIACRYPT 2017 Springer pp. 377–408.

[27] Micciancio, D. and Polyakov, Y. (2020) Bootstrapping in FHEW-like Cryptosystems.. IACR
Cryptol. ePrint Arch., 2020/86.

[28] Boura, C., Gama, N., Georgieva, M., and Jetchev, D. (2020) Chimera: Combining Ring-LWE-
based fully homomorphic encryption schemes. Journal of Mathematical Cryptology, 14(1),
316–338.

[29] Lu, W.-j., Huang, Z., Hong, C., Ma, Y., and Qu, H. (2021) PEGASUS: Bridging Polynomial
and Non-polynomial Evaluations in Homomorphic Encryption. In 2021 IEEE symposium on
Security and Privacy (S&P) (to appear) IEEE.

[30] Chillotti, I., Joye, M., and Paillier, P. (2021) Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. IACR Cryptol. ePrint Arch., 2021/091.

[31] Guimarães, A., Borin, E., and Aranha, D. F. (2021) Revisiting the functional bootstrap in
TFHE. IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 229–253.

[32] Miccianco, D. and Sorrell, J. (2018) Ring packing and amortized FHEW bootstrapping. In
45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[33] Halevi, S., Polyakov, Y., and Shoup, V. (2019) An improved RNS variant of the BFV homo-
morphic encryption scheme. In Topics in Cryptology – CT-RSA 2019 Springer pp. 83–105.

[34] Kim, A., Polyakov, Y., and Zucca, V. (2021) Revisiting Homomorphic Encryption Schemes
for Finite Fields. IACR Cryptol. ePrint Arch., 2021/204.

[35] Brakerski, Z. and Vaikuntanathan, V. (2011) Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In Advances in Cryptology – CRYPTO 2011 Springer
pp. 505–524.

[36] Bajard, J.-C., Eynard, J., Hasan, M. A., and Zucca, V. (2016) A full RNS variant of FV like
somewhat homomorphic encryption schemes. In Selected Areas in Cryptography – SAC 2016
Springer pp. 423–442.

[37] Kim, A., Papadimitriou, A., and Polyakov, Y. (2020) Approximate homomorphic encryption
with reduced approximation error. IACR Cryptol. ePrint Arch., 2020/1118.

[38] Brakerski, Z. and Vaikuntanathan, V. (2014) Efficient fully homomorphic encryption from
(standard) LWE. SIAM Journal on Computing, 43(2), 831–871.

[39] Gentry, C., Halevi, S., and Smart, N. P. (2012) Homomorphic evaluation of the AES circuit.
In Advances in Cryptology – CRYPTO 2012 Springer pp. 850–867.

19

A Bootstrapping for BGV

A.1 Multiprecision BGV

Our bootstrapping for multiprecision BGV is quite similar to multiprecision CKKS bootstrapping
in Section 4, with the difference that the blind rotation keys RGSWQ,s(s±i) are generated with
errors of type t · e instead of e.

Assume that we have a ciphertext ct = (a, b) ∈ R2
q where

ct(s) = a · s + b = m + t · e (mod q) = m + t · e + q · v.

Let q′ = q/2N and consider ct′ = ct (mod q′) =
(
[a]q′ , [b]q′

)
∈ R2

q′ . Similar to CKKS, we assume

that ‖m + t · e‖∞ ≤ γ <
q
4 −

q′

2 · (δR + 1) for some γ. Hence,

ct′(s) = [a]q′ · s + [b]q′ = m + t · e (mod q′) = m + t · e + q′ · u,

where

‖u‖∞ <
1

2
(δR + 1) +

γ

q′
<
N

2

for ternary secret key. Now both a − [a]q′ and b − [b]q′ are divisible by q′, thus we can obtain a
ciphertext

ctprep = (aprep, bprep) =

(
a− [a]q′

q′
,
b− [b]q′

q′

)
∈ R2

2N .

We set c =
⌊
1
2(δR + 1) + γ

q′

⌋
and apply ScaledMod(ctprep, q

′, Q) to obtain ctsm = RLWEQ,s(−q′ ·u)

with an error t·esm. Finally we add ctsm and ct′ modulo Q and have the ciphertext ctboot satisfying

ctboot(s) = m + t · e + q′ · u− q′ · u + t · esm = m + t · (e + esm) (mod Q),

It shows that ctboot is a BGV encryption of m with noise t · (e + esm) and modulus Q. The full
algorithm for bootstrapping in BGV is described in Algorithm 9.

Algorithm 9 Bootstrapping for BGV

procedure Bootstrap-BGV(ct = (a, b) ∈ R2
q)

Preprocess(ct)→ ct′, ctprep . ct(s) = m + t · e + q · v ∈ R
• ct′ ← ct (mod q′) . ct′(s) = m + t · e + q′ · u ∈ R
• ctprep ←

(
ct−ct′

q

)
. ctprep(s) = −u (mod 2N)

ScaledMod(ctprep, q
′, Q)→ ctsm . ctsm(s) = −q′ · u + t · esm (mod Q)

Combine(ctsm, ct
′)→ ctboot

• ctboot ← ctsm + ct′ (mod Q) . ctboot(s) = m + t · (e + esm) (mod Q)
return ctboot

A.2 RNS-BGV

Bootstrapping for RNS-BGV is also similar to RNS-CKKS bootstrapping in Section 4, with the
only difference at Combine step, where division is done by 2N modulo t. We again start with
ct = (a, b) ∈ R2

q such that

ct(s) = a · s + b = m + t · e + q · v ∈ R.

20

We assume that ‖m + t · e‖∞ ≤ γ < q
4 −

q
4N · (δR + 1) for some γ. We compute ct′ = 2N · ct

(mod q) = ([2N · a]q, [2N · b]q) ∈ R2
q and have

ct′(s) = [2N · a]q · s + [2N · b]q = 2N ·m + 2Nt · e + q · u ∈ R,

where

‖u‖∞ <
1

2
(δR + 1) +

2N

q
· γ < N

2
.

Now both 2N ·a− [2N ·a]q and 2N ·b− [2N ·b]q are divisible by q, thus we can obtain a ciphertext

ctprep = (aprep, bprep) =

(
2N · a− [2N · a]q

q
,
2N · b− [2N · b]q

q

)
∈ R2

2N .

For preprocessed ctprep = RLWE0
2N,s(−u) we can evaluate ScaledMod(ctprep, q,Q) by setting c =⌊

1
2 (1 + δR) + 2N

q · γ
⌋

and obtain ctsm satisfying

ctsms = asm · s + bsm = −q · u + t · esm (mod Q).

Now we add ct′′ = ctsm + ct′ modulo Q and have

ct′′(s) = a′′ ·s+b′′ = 2N ·m+2Nt·e+q ·u−q ·u+t·esm = [2N ·m]t+t·r+2Nt·e+t·esm (mod Q),

where r = 1
t · (2N ·m− [2N ·m]t). To get rid of scaling factor 2N from the message, we multiply

ct′′ by [(2N)−1]t, and obtain ctboot satisfying

ctboot(s) = m + t · [(2N)−1]t · (2N · e + esm + r) (mod Q).

Let e′ = [(2N)−1]t · (2N · e + esm + r) and ctboot is an RNS-BGV encryption of m with noise t · e′
and modulus Q. The full algorithm is described in Algorithm 10.

Remark. The latest division by 2N modulo t is optional, otherwise we can update the scaling factor
of the message in the ciphertext by 2N instead [34, 39].

Algorithm 10 Bootstrapping for RNS-BGV

procedure Bootstrap-RNS-BGV(ct = (a, b) ∈ R2
q)

Preprocess(ct)→ ct′, ctprep . ct(s) = m + t · e + q · u ∈ cR
• ct′ ← 2N · ct (mod q) . ct′(s) = 2N ·m + 2Nt · e + q · u ∈ R
• ctprep ←

(
2N ·ct−ct′

q

)
. ctprep(s) = −u (mod 2N)

ScaledMod(ctprep, q,Q)→ ctsm . ctsm(s) = −q · u + t · esm (mod Q)
Combine(ctsm, ct

′)→ ctboot
• ct′′ ← (ctsm + ct′) (mod Q) . ct′′(s) = 2N ·m + 2Nt · e + esm + r (mod Q)
• ctboot ← ([(2N)−1]t) · ct′′ (mod Q) . ctboot(s) = m + t · e′ (mod Q)

return ctboot = (aboot, bboot) ∈ R2
Q

21

B Bootstrapping for BFV

B.1 Multiprecision BFV

Bootstrapping for multiprecision BFV scheme with a power of two Q starts with a ciphertext
ct = (a, b) ∈ R2

Q such that

ct(s) = a · s + b = e +
Q

t
m ∈ RQ.

Let Q′ = Q/2N and t ·e ≤ γ < Q
4 −

Q′

2 · (δR+1) for some γ. We first multiply t by ct as ct′ = t ·ct
(mod Q) and have

ct′(s) = [t · a]Q · s + [t · b]Q = t · e +Q · v.

We compute ct′′ = ct′ (mod Q′) and have

ct′′(s) = [t · a]Q′ · s + [t · a]Q′ = t · e +Q′ · u,

where

‖u‖∞ <
1

2
(1 + δR) +

γ

Q′
<
N

2
.

Now we obtain the preprocess ciphertext ctprep = 1
Q′ · (ct

′ − ct′′) with

ctprep(s) = aprep · s + bprep = −u + 2N · v ∈ R.

After applying ScaledMod(ctprep,−Q′, Qt) for c =
⌊
1
2(1 + δR) + γ

Q′

⌋
, we have ctsm satisfying

ctsm(s) = asm · s + b = Q′ · usm + esm (mod Qt).

We evaluate ct′′′ = ctsm + t · ct− ct′′ (mod Qt) and have

ct′′′s = a′′′ · s + b′′′ = Q′ · u + esm + t · e +Q ·m− t · e−Q′ · u = esm +Q ·m (mod Qt).

Finally we rescale ct′′′ by t and obtain ctboot satisfying

ctboots = aboot · s + bboot =
1

t
· esm + ers +

Q

t
·m (mod Q).

The full algorithm is described in Algorithm 11.

B.2 RNS-BFV

Bootstrapping for RNS-BFV scheme also starts with a ciphertext ct = (a, b) ∈ R2
Q such that

ct(s) = a · s + b = e +
Q

t
·m (mod Q).

Let t · e ≤ γ < Q
4 −

Q
4N · (δR + 1) for some γ. We compute ct′ = t · ct (mod Q) and ct′′ = 2N · ct′

(mod Q), then we have

ct′(s) = [t · a]Q · s + [t · b]Q = t · e +Q · v ∈ R

22

Algorithm 11 Bootstrapping for BFV

procedure Bootstrap-BFV(ct = (a, b) ∈ R2
Q)

Preprocess(ct)→ ct′, ct′′, ctprep . ct(s) = e + Q
t ·m (mod Q)

• ct′ ← t · ct (mod Q) . ct′(s) = t · e +Q · v ∈ R
• ct′′ ← ct′ (mod Q′) . ct′′(s) = t · e +Q′ · u ∈ R
• ctprep ←

(
ct′−ct′′

Q′

)
(mod 2N) . ctprep(s) = −u (mod 2N)

ScaledMod(ctprep,−Q′, Qt)→ ctsm . ctsm(s) = Q′ · u + esm (mod Qt)
Combine(ctsm, ct, ct

′′)→ ctboot
• ct′′′ ← ctsm + t · ct− ct′′ (mod Qt) . ct′′′(s) = esm +Q ·m (mod Qt)
• ctboot ← Rescale (ct′′′, t) . ctboot(s) = 1

t · esm + ers + Q
t ·m (mod Q)

return ctboot = (aboot, bboot) ∈ R2
Q

and
ct′′(s) = [2Nt · a]Q · s + [2Nt · b]Q = 2Nt · e +Q · u ∈ R.

where

‖u‖∞ <
1

2
(1 + δR) +

2N

Q
· γ < N

2
.

Now we obtain a preprocessed ciphertext ctprep = 1
Q · (2N · ct

′ − ct′′) with

ctprep(s) = aprep · s + bprep = −u + 2N · v ∈ R.

After applying ScaledMod(ctprep,−Q,Qpt) with an auxiliary prime p and c =
⌊
1
2 (1 + δR) + 2N

Q · γ
⌋
,

we have ctsm, satisfying

ctsm(s) = asm · s + b = Q · u + esm (mod Qpt).

We evaluate ct′′′ = ctsm + 2Nt · ct− ct′′ (mod Qpt) and have

ct′′′s = a′′′ ·s+b′′′ = Q ·u+esm +2Nt ·e+2NQ ·m−2Nt ·e−Q ·u = esm +2NQ ·m (mod Qpt).

Finally we multiply ct′′′ by p
2N , and rescale the result by p, then obtain ctboot = Rescale(p

2N ·
ct′′′, pt) satisfying

ctboot(s) = aboot · s + bboot =
1

2Nt
· esm + ers +

Q

t
·m (mod Q).

The full algorithm is described in Algorithm 12.

23

Algorithm 12 Bootstrapping for RNS-BFV

procedure Bootstrap-RNS-BFV(ct = (a, b) ∈ R2
Q)

Preprocess(ct)→ ct′, ct′′, ctprep . ct(s) = e + Q
t ·m (mod Q)

• ct′ ← t · ct (mod Q) . ct′(s) = t · e +Q · v ∈ R
• ct′′ ← 2N · ct′ (mod Q) . ct′′(s) = 2Nt · e +Q · u ∈ R
• ctprep ←

(
2N ·ct′−ct′′

Q

)
(mod 2N) . ctprep(s) = −u (mod 2N)

ScaledMod(ctprep,−Q,Qpt)→ ctsm . ctsm(s) = Q · u + esm (mod Qpt)
Combine(ctsm, ct, ct

′′)→ ctboot
• ct′′′ ← ctsm + 2Nt · ct− ct′′ (mod Qpt) . ct′′′(s) = esm + 2NQm (mod Qpt)
• ctboot ← Rescale

(p
2N · ct

′′′, pt
)

. ctboot(s) = 1
2Nt · esm + ers + Q

t ·m (mod Q)
return ctboot = (aboot, bboot) ∈ R2

Q

24

