
GoAT: File Geolocation via Anchor Timestamping
Deepak Maram

∗

Cornell Tech

Iddo Bentov
∗

Cornell Tech

Mahimna Kelkar
∗

Cornell Tech

Ari Juels
∗

Cornell Tech

ABSTRACT
Blockchain systems are rapidly gaining traction. Decentralized stor-

age systems like Filecoin are a crucial component of this ecosystem

that aim to provide robust file storage through a Proof of Replication

(PoRep) or its variants.

However, a PoRep actually offers limited robustness. Indeed if all

the file replicas are stored on a single hard disk, a single catastrophic

event is enough to lose the file.

We introduce a new primitive, Proof of Geo-Retrievability or in
short PoGeoRet, that enables proving that a file is located within

a strict geographic boundary. Using PoGeoRet, one can trivially

construct a PoRep by proving that a file is in several distinct geo-

graphic regions. We define what it means for a PoGeoRet scheme to

be complete and sound, in the process making important extensions

to prior formalism.

We propose GoAT, a practical PoGeoRet scheme to prove file ge-

olocation. Unlike previous geolocation systems that rely on trusted-

verifiers,GoAT bootstraps using public timestamping servers on the

internet that serve as geolocation anchors, tolerating a local thresh-

old of dishonest anchors. GoAT internally uses a communication-

efficient Proof-of-Retrievability (PoRet) scheme in a novel way to

achieve constant-size PoRet-component in its proofs.

We validateGoAT’s practicality by conducting an initial measure-

ment study to find usable anchors and also perform a real-world

experiment. The results show that a significant fraction of the in-

ternet can be used as anchors and that GoAT achieves geolocation

radii as little as 1000km.

1 INTRODUCTION
Decentralized systems are a rapidly expanding form of computing

infrastructure. Blockchain systems in particular have enjoyed con-

siderable recent popularity and constitute a $2 trillion market at the

time of writing [3]. Many decentralized applications, ranging from

non-fungible tokens (NFT) [20] to retention of blockchain state [5],

require a reliable bulk storage medium. As blockchains have lim-

ited innate storage capacity, there is thus a growing demand for

purpose-built decentralized storage systems, of which a number

have arisen, such as IPFS [13], Filecoin [30], Sia [43], Storj [31], etc.

Like today’s cloud storage services (e.g., Amazon S3 [11]), decen-

tralized storage systems typically achieve robustness by replicating

files. With this approach, even if some replicas become unavailable,

others can be used to fetch files. To help ensure trustworthy storage

of replicas, decentralized file systems require storage providers to

prove retention of file replicas. Most notably, Filecoin [15] uses a

∗
Also affiliated with IC3, The Initiative for CryptoCurrencies & Contracts.

protocol called Proof of Replication (PoRep) [23] for this purpose,

while related systems such as Sia, Storj, etc., use similar techniques.
1

While a PoRep or related proof system can prove the existence

of multiple copies of a file, however, its robustness assurances are

limited. This is because a PoRep does not ensure that file replicas
reside on independent devices or systems. If all file replicas are stored
on the same hard disk, for example, damage to that one device can

destroy the file.

In this paper, we explore an alternative approach to building

PoReps: proving that file replicas reside in distinct geographical
regions. For example, one may wish to prove that three replicas of a

file are present in the United States, Europe, and Asia respectively.

Such proof automatically implies the property ensured by a PoRep,

namely the existence of three distinct replicas of the file. It also

ensures much stronger properties than a proof of replication alone,

namely that file replicas are stored on distinct devices and in distinct
physical locations. These additional properties imply that the file

can survive device failures, destructive local events (e.g., natural

catastrophes), etc. Thus the ability to prove replica geolocation

can greatly improve robustness in decentralized storage systems.

Geolocation-based proofs can also incur substantially lower resource
costs than techniques like PoReps, as we show in this paper.

The goal of our work is to build protocols to prove that a given

file replica is stored within a strictly-bounded geographical region.

Our main building block for these protocols is a primitive we call

a Proof of Geo-Retrievability (PoGeoRet). A PoGeoRet involves a sin-

gle prover proving to a number of verifiers that it holds a file replica

in a given geographical region. To ensure the practicality of our

PoGeoRet designs we consider here, we focus on proofs involving

relatively large geographical regions (e.g., thousand-mile diameter),

which suffices for key applications such as file replication.

We introduce a formal definition of PoGeoRets in this paper,

and propose, implement, and experimentally validate a PoGeoRet

system called GoAT. GoAT creates publicly verifiable file-replica

geolocation proofs. GoAT proofs can thus be consumed by a mul-

tiplicity of verifiers and can be used to construct a system that

ensures the presence of file replicas in desired locations even in the

presence of a fraction of dishonest verifiers.

Previous works have explored internet-resource geolocation—

both servers [29, 44] and files [16]—but make strong assumptions,

e.g., all verifiers are honest, verifiers are close to storage providers,

and/or files are stored in cloud systemswhose locations are known a
priori, etc. These assumptions make such approaches unsuitable for

decentralized settings of the type we explore here. GoAT requires

none of these assumptions.

1
Filecoin has the most flexible yet most computationally expensive approach among

these systems: Its PoRep proof system works for plaintext files, while other decentral-

ized storage systems only work assuming distinct ciphertext file replicas.

1

Deepak Maram, Iddo Bentov, Mahimna Kelkar, and Ari Juels

1.1 The Anchor Model
To avoid the undesirable assumptions of previous geolocation sys-

tems, we explore a model for GoAT that relies on a collection of

servers called anchors.
An anchor is a server with a publicly announced location that

emits digitally signed timestamps on queries. In other words, an an-

chor has an API that returns the current time along with a signature

over the time and any value sent by a client.

Anchors used in GoAT need not be in close proximity to storage

service providers. Additionally, the main job of an anchor is not
to geolocate entities directly, but only to provide timestamps. As

we show, it is possible to handle a local minority of misbehaving

anchors.

Anchors can be purpose-built for a GoAT instance. We also show,

however, that it is possible to use existing, unmodified servers, e.g.,
TLS 1.2 or Roughtime[9] servers, as anchors. Thus it is possible to

realize GoATwith today’s internet infrastructure.

1.2 Proving Geolocation
In GoAT, a prover must prove proximity to an anchor. The starting

point for GoAT is a simple, well known technique: The prover pings
the anchor successively to get two timestamps 𝑡1, 𝑡2. If the prover is

indeed situated close to the anchor, then the timestamps will not

differ by much, i.e., 𝑡2 − 𝑡1 < Δ for some small Δ. Identification
of the prover is done by signing the first anchor response with

the prover’s private key and using the signature as a nonce in the

second ping. This form of chaining is also crucial to ensure that the

two anchor pings are indeed made successively.

The two anchor responses together form a proof that the prover

is situated close to the anchor. The signature on these responses

makes the proof publicly verifiable. Assuming that the anchor loca-

tion is known, it becomes a proof of location for the prover.

GoAT requires that a majority of anchors situated near a given

location be honest. Intuitively, this localization is necessary since

each anchor is only useful in places close to where its located. We

specify the adversarial model precisely later.

Realizing proofs of geolocation: Several challenges arise in ba-

sic proofs of geolocation. Existing anchors pose one key challenge.

TLS 1.2 servers, for instance, only provide second-level timestamps,

which is insufficient as network round-trip times are on the order

of milliseconds. We address this challenge by introducing a tech-

nique for amplification: Instead of pinging twice, a prover pings the
anchor repeatedly with interrelated challenges over an extended

time interval, e.g., a full second. Another challenge is identifying

usable anchors. Many TLS 1.2 servers, for instance, do not return

accurate time or have a unique location, needed for a prover to

prove geolocation. We conduct an initial measurement study of the

Alexa top 1M list to identify a broad network of usable anchors.

Another important practical concern is handling network volatil-

ity. We provide an empirical framework to calibrate the time thresh-

old Δ for the prover to assert proximity to an anchor. The frame-

work depends on factors like expected network quality and anchor

characteristics, such as how quickly a given anchor responds. Our

approach helps minimize false rejection rates, particularly given

that in our protocols a brief period of good network connectivity

(say few seconds) amidst a longer period of time (say hours) suffices

for a honest prover to prove file replica possession successfully.

1.3 Geolocating Files: GoAT
To build on basic geolocation proofs and realize GoAT, our strategy
is to interleave into the prover’s anchor pings a Proof of Retrievabil-

ity (PoRet) [28, 38]. A PoRet proves storage of a full file replica. In

isolation, though, it proves nothing about a file’s storage location.

Thus the need to integrate it with a geolocation scheme.

Making GoAT efficient: A key challenge is reducing GoAT’s com-

munication complexity. Due to a combination of amplification,

proof accumulation over several epochs and different anchors, the

proof sizes quickly blow up, even with use of the communication-

efficient SW PoRet [38]. Through incorporation of vector com-

mitments and compression across proof instances, we manage to

compress the size of PoRet-related proofs even across a sequence

of pings to just a few bytes.

Yet another challenge in realizing GoAT is minimizing the time

taken for the operation between the two anchor pings. Slow operation—

as caused by computing a full PoRet proof—degrades geolocation

accuracy. We therefore introduce techniques to compute a fast

PoRet commitment to the randomness in a SW proof between the

two pings, without actually computing the proof.

Defining PoGeoRet: A theoretical contribution of our work is

in defining what it means for a PoGeoRet scheme to be secure.

The formalization for PoGeoRet soundness is similar in spirit to

that for PoRet but leads to interesting new subtleties. Intuitively, a

PoGeoRet is sound if acceptance by a verifier means that a file 𝐹

can be extracted from the prover. The key difference for a PoGeoRet

is that successful extraction must now be possible from the target
location. To capture the notion of file location, we introduce a model

of location-specific storage devices. A PoGeoRet is said to be sound

if extraction succeeds from devices located in the desired target

geographic region.

1.4 Contributions and Paper Organization
We introduce preliminaries in Sec. 2. Our contributions are:

(1) New Security Definitions and Modeling: We define what it means

for a PoGeoRet scheme to be complete and sound, the latter

requiring important extensions to the classic PoRet security

experiments (Sec. 3). We also introduce practical model variants

for PoRet and PoGeoRets of potential independent interest that

facilitate bootstrapping using existing servers and fast encoding.

(2) GoAT: We introduce our Proof of Geo-Retrievability (PoGeoRet)

protocol GoAT in Sec. 4. GoAT leverages the Shacham-Waters

PoRet and timestamping anchors. We explore optimizations to

reduce the size of GoAT proofs, achieving constant-size PoRet

components in our proofs. We prove the security of GoAT in

App. C.

(3) Implementation and Evaluation: To demonstrate GoAT’s practi-
cality we prototypeGoAT and run a small real-world experiment

using 10 TLS / Roughtime anchors (5 each in the US and UK) for

over a week. GoAT’s prove and verify protocols execute in just

a few seconds, with proof sizes of a few hundred KB. We show

geolocation radii as low as 1000km, even tighter than required

for applications like file replication (Sec. 5).

2

GoAT: File Geolocation via Anchor Timestamping

We present related work in Sec. 6 and conclude in Sec. 7. We

have released GoAT as an open-source tool at https://github.
com/GoATTeam/GoAT.

2 PRELIMINARIES
2.1 Authenticated time protocols
We are interested in time protocols that are authenticated, i.e., the

timestamp must be digitally signed. Two main options exist today.

2.1.1 TLS 1.2. Some TLS 1.2 servers [22] embed the current time

in seconds into the first 8 bytes of the “server random” value. This

value is then signed and sent to the client as part of TLS 1.2 key ex-

change. The receiving party verifies the signature using the server’s

certificate. This trick works for Diffie-Hellman based key-exchange,

including elliptic-curve variants, and for RSA as well.

This functionality has always been an informal practice, and is

not specified in the TLS 1.2 RFC, but is widely practiced—we found

about 1/5 of top 500 hosts in Alexa list supported this technique.

Finally, this method does not work with TLS 1.3 as the specification

specifically deprecates it. In practice though, TLS 1.3 adoption is

only growing slowly. And TLS 1.2 is expected to be supported by

most websites in the near future, e.g., in April 2021, 99.4% of Alexa

top 1M sites [1] were found to support TLS 1.2 [36].

2.1.2 Roughtime. Roughtime [9] is a recently developed authenti-

cated time protocol. At the time of writing, we are aware of four

providers hosting Roughtime—Cloudflare [35], Google, Chainpoint

and int08h. Roughtime servers provide a highly precise timestamp

in µs signed with a fast signature scheme (EdDSA). As the name

“Roughtime” suggests, the protocol is only designed to provide a

roughly accurate time, say within 10 seconds of the true time, unlike

say NTP. Note that GoAT does not need accurate absolute time.

2.2 Proof of Retrievability
Proof of Retrievability [28] schemes enable a prover to prove knowl-

edge of a complete file replica in a communication-efficient manner.

For GoAT, we require a publicly verifiable PoRet scheme. Merkle-

tree (MT) based variants [28] and Shacham-Waters (SW) [38] are

the two main choices.

Figure 7 shows the API for a PoRet scheme. The file owner

begins by generating a key pair. The setup protocol takes an input

file 𝐹 and outputs a transformed file 𝐹 ∗ which contains the file

plus erasure-coding data and some extra data to support the proofs.

The setup protocol also outputs a unique handle [for the file and

some public parameters pp. In a typical PoRet system, pp is posted

publicly, e.g., on a blockchain. It enables any party to verify a proof

of retrievability.

An special feature of GoAT is the introduction of an additional

functionality in a PoRet. This functionality, called PoRet.Commit,
commits to randomness for use in a (future) PoRet proof. We in-

troduce PoRet.Commit to enable fast prover interaction with a

timestamping service, and thus require that it be: (1) quickly com-

putable (ideally within a few milliseconds), and (2) compact. We

specify our construction of PoRet.Commit later in the paper. The

PoRet.Commit function is the only addition we make to the PoRet

scheme used in GoAT, which otherwise remains unmodified.

Proof of Geo-Retrievability

• (sk, pk) ← KGen(1_) : Generate key pair. Run by the user.

• (𝐹 ∗, [, pp) ← St(sk, pk, 𝐹) : Runs setup of the underlying PoRet scheme to

generate 𝐹 ∗ , which contains the file plus the generated data, its handle [, and

some public parameters pp. Run by the user.

• 𝑐 ← Chal([, pp, seed) : On input file handle [and params pp, derive a chal-
lenge 𝑐 from the input seed.

• 𝜋geo ← Prove([, 𝑅, 𝑐, pp) : On input processed file [, a geographic region

𝑅 and a challenge 𝑐 , generates a proof of geo-retrievability 𝜋geo
. Run by the

prover.

• 0/1← Verify(pp, 𝑅, 𝑐, 𝜋geo) : The verifier checks that the file is in the desired

region 𝑅 by verifying the proof 𝜋geo
using the challenge, public params.

Figure 1: API of a PoGeoRet scheme.

3 FORMALIZING PROOFS OF GEOGRAPHIC
RETRIEVABILITY

A Proof-of-Geographic-Retrievability (PoGeoRet) scheme includes

three parties
2
: a user (U) that owns a file 𝐹 , a storage provider or

prover (P) that commits to storing 𝐹 for a specified duration at a

specified location, and an auditor or verifier (V) that verifies the
storage claims of storage providers.

Desired properties: Like any security protocol, a PoGeoRet must

satisfy two basic properties: completeness and soundness. Complete-

ness means that the PoGeoRet scheme must succeed for any honest

prover storing the file in a correct location. Soundness means that

any dishonest prover either not storing the complete file or storing

it outside a permitted geographic boundary should be detected with

high probability.

Section structure:We start with preliminaries in Sec. 3.1, explain-

ing how a PoGeoRet leverages an underlying PoRet. We provide

the adversarial model in Sec. 3.2, and then presenting the basic

modeling behind our formal definitions. We formalize complete-

ness in Sec. 3.3 and soundness in Sec. 3.4. Finally, in Sec. 3.5.2, we

discuss modifications to our security model and definitions that we

believe reflects real-world use cases such as support for fast file

encoding and easy bootstrapping.

3.1 Preliminaries
Protocol structure: The API for a PoGeoRet scheme is specified

in Fig. 1.

We assume in this API and throughout this section that a PoGe-

oRet scheme internally leverages a PoRet scheme. In what follows,

where clear from context, we drop PoGeoRet from our notation,

e.g., use St to denote PoGeoRet.St.
We define a PoGeoRet for a general setting in which a target file

𝐹 is stored as a publicly accessible plaintext. (As noted above, some

decentralized file systems rely on file encryption by a file owner in

order to achieve redundancy proofs.)

A userU that wants a file 𝐹 to be stored near a particular location

runs the setup protocol (PoGeoRet.St) on 𝐹 to generate an encoded

file 𝐹 ∗. Here, St = PoRet.St, i.e., we invoke the underlying PoRet

setup to encode 𝐹 . U then gives 𝐹 ∗ to a storage provider P situated

near the desired location. The public parameters pp are published,

e.g., on a blockchain.

2
Of course, in practice, a decentralized system will typically include many instances

of each party type.

3

https://github.com/GoATTeam/GoAT
https://github.com/GoATTeam/GoAT

Deepak Maram, Iddo Bentov, Mahimna Kelkar, and Ari Juels

A PoGeoRet protocol runs in epochs. During each epoch, the

provider P computes a Proof of Geo-Retrievability using the Prove
protocol. An auditor V can use the public parameters pp to verify

the generated proof via the Verify protocol.

Modeling geolocation: We model geolocation in a PoGeoRet us-

ing a metric space [7] (M, dist) whereM is the full set of possible

storage locations and dist is a distance metric
3
onM. As an exam-

ple,M could be the set of all points on a sphere (e.g., the earth) and

dist the spherical distance function.
For a location 𝐿 ∈ M, we define a region 𝑅 = (𝐿;𝛿) as the set

of all 𝐿′ ∈ M that satisfy dist(𝐿, 𝐿′) ≤ 𝛿 . For example, whenM
models points on a sphere, regions correspond to circles on the

surface. For simplicity, we will only consider such circular regions.

Suppose that we want the PoGeoRet scheme to facilitate storage

of files in a target region 𝑅target = (𝐿;𝛿) where 𝛿 is a small radius

that captures the breadth of the target region. Our definition allows

for any arbitrary 𝛿 ; in practical settings however, geolocation will

be most beneficial for a small target region, e.g., the size of a city.

Any storage provider located inside 𝑅target can then join the system.

Region of uncertainty: We define a Region Of Uncertainty (ROU)

denoted 𝑅rou to capture the permitted noise in the attained geoloca-

tion guarantee. The PoGeoRet scheme then must ensure that files

are stored inside the region 𝑅rou. In other words, an ROU helps

eliminate spurious proof failures. For simplicity, we assume that the

attained ROU is same for all locations in the target region 𝑅target.

Continuing the previous example of earth surface asM, say we

want to support file storage in NewYork City. Then the target region

is 𝑅target = (𝐿;𝛿) where, e.g., 𝐿 = (40.73◦,−73.93◦) and 𝛿 = 10km.
4

Suppose that we are willing to tolerate noise in proofs up to the

point where we ensure that files are at most 1000km from New

York. The desired region of uncertainty then is 𝑅rou = (𝐿; 1000km).
Our definitions are given with respect to a single target region

𝑅target. In practice, it might be desirable to support several distant

locations. We expect our definition to be applied to each desired

target region independently.

Where convenient, we refer to a region of uncertainty 𝑅rou as

𝑅in and define its complement by 𝑅out =M \ 𝑅in.
Storage devices: To make the notion of file presence within a geo-

graphic region precise, we introduce a model of (storage) devices.
We denote a device by D. In our security experiments (for sound-

ness), all devices are under the control of the adversary / prover.

The prover can place devices in locations of its choice but they

remain fixed throughout the experiment.

Devices have access to two kinds of memory: static and dynamic.

The static memory is “frozen” after initialization, i.e., it cannot

be modified / erased during the security experiment, while the

dynamic memory is modifiable throughout. Intuitively, the static

memory corresponds to what a real-world prover plans to store in

a given location most of the time.

Formally, we model all devices by way of an oracle Odev pre-
sented in Sec. 3.4.

Modeling time: All PoGeoRet schemes must use time to distin-

guish between a challenge answered with a local file versus another

3
The metric is a function that defines the concept of a distance between any two set

members, and satisfying a few simple properties such as the triangle inequality.

4
In practice, 𝛿 would have to be decided based on the city geography.

Notation Description

U User / File owner

P Storage provider / Prover

V Auditor / Verifier

A,T Anchors (single / set)

Table 1: System entities. Anchors are specific to GoAT.

answered with a file fetched from afar. To do so, each operation

involved—both computation and communication—must have a spec-

ified expected time. We allow the adversary to communicate mes-

sages (of any size) between devices with speed 𝑆max. In our security

experiments below, we assume that the verifier internally keeps

track of time whenever necessary.

3.2 Adversarial Model
Table 1 lists the entities in a PoGeoRet scheme. The adversary

A controls the storage provider P. We assume that the auditor V
and the user U are honest. (In a decentralized system, it is easy to

imagine a honest-majority assumption for auditors).

We also assume that the adversary is rational. We explain what

this means precisely in the security experiments below.

3.3 Completeness
Completeness requires that for all key pairs (sk, pk) output by
KGen, for all files 𝐹 ∈ {0, 1}∗, and for all {𝐹 ∗, [, pp} output by
St(sk, pk, 𝐹), the verification algorithm accepts when interacting

with a valid prover, i.e., Succ← Verify(pp, 𝑅rou, 𝜋geo), for a proof
𝜋geo generated by a prover located in the target region 𝑅target

and running, 𝜋geo ← Prove([, 𝑅rou, pp). For convenience, we hide
challenges exchanged between prover and verifier in the above

expressions. Since completeness is relatively straightforward, we

omit further details.

3.4 Soundness
Our security definition for soundness involves three security ex-

periments: a setup experiment, a challenge experiment, and an

extraction experiment. The setup experiment lets the adversary

setup its devices and pick a file 𝐹 that is used for the challenge-

response interactions in the remaining experiments. The challenge

experiment corresponds to interactions with a real-world verifier,

and is used to ensure that an adversary responds to 𝜖-fraction of

queries correctly. Finally in the extraction experiment, we try to

extract 𝐹 from the static memory of devices in 𝑅in. The definition

then says that the PoGeoRet scheme is sound if the extraction

experiment succeeds.

Corresponding to the setup and challenge experiments, the ad-

versary A consists of two parts, A(“setup”) and A(“chal”), each

involved only in its respective experiment.

The adversary A(“setup”) may interact arbitrarily with the veri-

fier; it may create files and cause verifier to run setup on them; it

may also undertake challenge-response interactions with the veri-

fier and observe if the verifier accepts or not.A(“setup”) is allowed

to place any number of devices at locations of its choice.A(“setup”)

4

GoAT: File Geolocation via Anchor Timestamping

Device oracle Odev

1 :

State: A region 𝑅in
. Key-value pairs D[id] = (loc,Mdyn,Msta) where the

key id is the device identifier, loc is its location,Mdyn is the dynamic memory

andMsta is the static memory respectively.Mdyn is a list.

2 : init(𝑅) : Set 𝑅in = 𝑅. Not callable by the adversary.

3 :

create(id, loc,Mdyn,Msta) : If id ∈ D return ⊥. Set D[𝑖] =
(loc,Mdyn,Msta) .

4 :
execAny(id, fn) → 𝑜𝑢𝑡 : If id ∉ D return ⊥. Compute fn using static / dy-

namic memory of device D[id] and return its output.

5 :
execStatic(id, fn) → 𝑜𝑢𝑡 : If id ∉ D return ⊥. Compute fn using just the

static memory of device D[id] and return its output.

6 :

dataTransfer(id1, id2, 𝑑) : If 𝑑 ∉ D[id1] .Mdyn and 𝑑 ∉ D[id1] .Msta re-

turn ⊥. Run D[id2] .Mdyn .append(𝑑) .
7 : erase(id, 𝑗) : Erase index 𝑗 , D[id] .Mdyn .erase(𝑗) .
8 : clearDynamic() : For all id ∈ D, if D[id] .loc ∈ 𝑅in

set D[id] .Mdyn = 𝜙 .

Figure 2: The device API.

also decides what to store in their static memories. Device locations

are fixed after creation.

The purpose of the setup experiment is to run St on a file 𝐹

picked by the adversary. The resultant output 𝐹 ∗ is challenged in

the challenge and extraction experiments.

Both challenge and extraction experiments involve performing

only one function, receive a challenge and return a response. The

difference between the two lies in how challenges are issued. During

the challenge experiment, the challenges are issued to the second

adversary component A(“chal”). A(“chal”) has no restrictions; it

is allowed to freely communicate messages between devices and

use them in computations.

On the other hand, during the extraction experiment, we define

an extraction algorithm Extract that uses data stored in the static

memory of devices in 𝑅in to compute challenge responses. Note

that Extract operates directly on the device memory for reasons

explained below.

Through the challenge experiment, we fulfill the goal of requiring

the adversary to answer 𝜖 fraction of queries correctly. Whereas

through the extraction experiment, we model the desired goal of

file geolocation, i.e., if the extraction experiment succeeds, then the

file 𝐹 must have always been within 𝑅in (as it must be in the static

memory).

Our modeling of extraction directly from the devices i.e., without

the adversary, corresponds to the expectation of rational behavior

from prover in the real-world. That is, we assume that if the prover

has access to the challenged file blocks, then the prover might as

well respond to the challenges correctly. Moreover, in practice such

behavior can be incentivized by attaching (say) monetary payments

to valid PoGeoRet responses.

From the point of view of an adversary whose goal is to “cheat”

a verifier, A wants to create an environment in which V believes

that the file is in the static memory of devices in 𝑅in, but it isn’t.

Thus the aim of A(“setup”) is to setup devices in a way that: (1) V
accepts responses from A(“chal”) with high probability and (2) V
fails to extract the file via Extract.

We consider a stateful adversary. The state transfer between

experiments is modeled implicitly through the storage devices.

We present our detailed security experiments in Sec. 3.4.1. They

come together in our soundness definition in Sec. 3.4.2.

3.4.1 Soundness security experiments. We model device actions in

our three security experiments via the device oracle Odev specified
in Fig. 2. The entire PoGeoRet API (Fig. 1) is modeled using another

oracle O∗. The adversary is given access to O∗ indirectly through

Odev — the execAny and execStatic functions allow adversary

to execute any function fn, including one of O∗. The execStatic
function is constrained to use just the static memory, while execAny
has no such constraints. In the setup and challenge experiments,

the adversary is given complete freedom to call any device function,

modeled concisely as O∗dev.
Setup experiment ExpsetupA : In our first experiment ExpsetupA , the

adversary is given unlimited access to above oracles. Setup is run

over a file 𝐹 and the output given to the adversary, who decides

where to place the bits of 𝐹 .

Experiment ExpsetupA (𝑅)
Odev .init(𝑅) % Set 𝑅in

and 𝑅out
.

(sk, pk) ← KGen(1_)

𝐹 ← AO
∗
dev (“setup”) (pk)

(𝐹 ∗, [, pp) ← St(sk, pk, 𝐹)

AO
∗
dev (“setup”) (𝐹 ∗, [, pp)

Odev .clearDynamic() % To prevent storing 𝐹 ∗ inMdyn.

Output ([, pp, 𝐹)

Challenge experimentExpchalA : InExpchalA , the adversaryA(“chal”)

responds to a challenge issued by the verifier. The adversary is

deemed successful if it generates a response that succeeds with a

probability at least 𝜖 . Note that we issue one PoGeoRet challenge

which internally comprises of one PoRet challenge.

Experiment ExpchalA ([, 𝑅, pp)
seed←$ {0, 1}∗, 𝑐 ← Chal([, pp, seed)

𝜋 ← AO
∗
dev (“chal”).Prove([, 𝑅, 𝑐) % One challenge only

Output OVerify (pp, 𝑅, 𝑐, 𝜋)

We define the success probability as follows:

Succchal ([, 𝑅, pp) = Pr

[
ExpchalA ([, 𝑅, pp) = 1

]
. (1)

Extraction experiment ExpextrA : We say a PoGeoRet scheme is

sound if the file 𝐹 can be extracted from the static memory of

devices inside 𝑅in. The extraction algorithm Extract can execute

any function on devices located in 𝑅in using execStatic. Success
is defined as the probability that the extractor reconstructs the

original file 𝐹 .

Experiment ExpextrA ([, 𝑅, pp, 𝐹)
𝐹 ′ ← Extract([, 𝑅, pp) where Extract can call

Odev .execStatic(id, _) only if D[id] .loc ∈ 𝑅
Output 𝐹 = 𝐹 ′

We define the success probability as follows:

Succextr ([, 𝑅, pp, 𝐹) = Pr

[
ExpextrA ([, 𝑅, pp, 𝐹) = 1

]
. (2)

5

Deepak Maram, Iddo Bentov, Mahimna Kelkar, and Ari Juels

3.4.2 Soundness definition. Our main security definition is:

Definition 1 (Soundness). A PoGeoRet scheme is 𝜖-sound w.r.t
a target region 𝑅target achieving a region of uncertainty 𝑅rou, if for
all poly-time A and 𝑝1 = 1 − negl (_), 𝑝2 = 1 − negl (_):

Pr

Succextr ([, 𝑅, pp, 𝐹) > 𝑝1

������
𝑅 ← 𝑅rou,

([, pp, 𝐹) ← ExpsetupA (𝑅),
Succchal ([, 𝑅, pp) > 𝜖

 > 𝑝2 .

Although we defined a region to mean a circle for convenience,

this definition supports arbitrarily shaped ROUs 𝑅rou.

Above definitions of soundness and completeness assumed an in-

teractive protocol between the prover and verifier. In practice, non-

interactive schemes are often desirable, and we aim to build such a

scheme in GoAT. Due to lack of space, we provide non-interactive

definitions in App. A (they only require minor modifications).

3.5 Practical model variants
There are two modeling assumptions which, by assuming an eco-
nomically rational adversary, can lead to significantly better per-

formance, and which we therefore embrace in GoAT. The first

assumption—a lower bound on bandwidth costs—dictates when

and how challenges may be issued to a provider, which in turn al-

lows use of internet infrastructure for effective bootstrapping. The

second assumption—rational behavior by an adversary in file-block

retention—allows for use of fast (linear-time) erasure codes.

We think these two models are of independent interest beyond

GoAT, as for example they could be applied to a PoRet scheme.

3.5.1 Bandwidth and challenge regimes. In the previously described
model, the verifier challenges the prover at random times. We refer

to this challenge pattern as the random-challenge model. Building a

practical PoGeoRet scheme under this model requires an existing

network of verifiers, thereby posing a bootstrapping problem.

A more practical model, we believe, is one, based on existing in-

ternet infrastructure. InGoAT, we derive challenges from signatures

provided by internet servers. But since the verifier is not issuing

challenges, the prover decides when the challenge-response interac-

tion is going to take place. We call this model the flexible-challenge
model, signifying the extra flexibility prover has.

Such a model might not make sense at first sight, as the prover

might download the entire file before initiating the challenge-

response interaction. But we argue that by imposing a restriction

that challenge-response interactions take place once per interval,

and by using a small interval length (i.e., high challenge frequency),

the flexible-challenge model achieves our security goals assuming

an economically rational adversary.

In what follows, we discuss the operational and security model

of the flexible-challenge model and end with an example.

Operational model: Time runs in epochs. Each epoch is in turn com-

posed of 𝐼 intervals, each of length 𝛽 . Interval length determines

challenge frequency, i.e., challenges are issued once per interval.

Epoch length determines verification frequency, i.e., challenge re-

sponses are accumulated over the 𝐼 intervals and only verified at

the end of an epoch.

Security model: Like before, we begin with a setup experiment

where the adversary picks a file 𝐹 and initializes several devices.

But then, 𝐼 challenge experiments take place, one per interval. After

the epoch (or) 𝐼 intervals end, the challenge responses are verified.

The extraction experiments take place after that.

We allow the adversary to modify the static memory once at the

beginning of each interval (for example the adversary might store

𝐹 ∗ inside 𝑅in during one interval and move it outside 𝑅in for the

rest). During every interval, the adversary requests a challenge at

a time of its choosing. And at the end of each interval, a snapshot

of the static memory of all the devices inside 𝑅in is taken. Let

𝑆𝑖 = {D[id] .Msta } where D[id] .loc ∈ 𝑅in denote the snapshot for

interval 𝑖 . After the epoch ends, the extraction experiment is run

over the snapshots {𝑆𝑖 }𝐼𝑖=1. The scheme is said to be sound only if

the file can be successfully extracted from each of the 𝐼 snapshots.
The model includes a bandwidth constraint: only 𝜙 bytes can

be transferred from devices in 𝑅out to those in 𝑅in (𝜙 ≪ |𝐹 |) per
interval. The bound 𝜙 is meant to reflect the economics of storage:

A rational adversary will not incur bandwidth costs in excess of the

revenue it receives for storage. Bandwidth costs today are several

orders of magnitude more than that of storage, as shown below.

Example: For the purpose of this example, we compare the band-

width and storage costs charged by Amazon (the storage cost is

used as a proxy for revenue). Let’s say we set the interval length

𝛽 = 30mins. If the encoded file size is |𝐹 ∗ |=1TB, then the storage

revenue is at most $0.02 per interval on Amazon S3 [11]. On the

other hand, AWS bandwidth costs start from $20 per TB.
5
So down-

loading 1GBwould cost the same as the revenue obtained by storing

1TB, and therefore 𝜙 = 1GB; more broadly the relation between the

bandwidth cap and the encoded file size is given by 𝜙 =
|𝐹 ∗ |
1000

.

Above we used a small interval length; this is because, shorter

the interval length, smaller the storage revenue, and thereby, lower

the cap 𝜙 . Finally, our framework is generic enough to adopt more

sophisticated economic models or better cost estimates.

3.5.2 Rational file retention and erasure-coding. Recall that a PoRet
encoding 𝐹 ∗ of file 𝐹 incorporates an erasure code (to amplify sound-

ness). To get strong soundness based on the security definitions

we have given, it is essential to use a code with high distance be-

tween codewords—e.g., a maximum distance separable (MDS) code

such as Reed-Solomon—treating 𝐹 as a codeword. Such erasure

coding is robust to adversarial erasures. MDS coding, however, is

expensive in practice for large codewords, asymptotically at best

𝑂 (𝑛 log𝑛) for file size 𝑛 (given tolerance of a constant-fraction of

erasures) [32, 39], and very costly in practice. (To avoid this problem,

a number of PoRet protocols, e.g., [18, 28], have “striped” files, i.e.,

broken them up into multiple codewords, permuting and encrypt-

ing error-coding symbols across codewords to tolerate adversarial

erasures / corruption.)

A second, more practical approach, we believe, is to use weaker

erasure codes, specifically fast (e.g., linear-encoding-time) codes,

e.g., [40]. Such codes are far more performant for large files than

MDS coding. They are designed, however, for noisy channels with

random erasures, and are brittle in the face of adversarial erasures.

Thus they provide poor security against a malicious adversary.

5
AWS bandwidth costs vary by region, ranging from $20-$100 per TB transferred [10].

S3 charges also vary by region, we use the maximum above.

6

GoAT: File Geolocation via Anchor Timestamping

Given a rational adversary, however, it is possible to achieve

good security with linear-time coding. Such an adversary may be

viewed as seeking to maximize its financial gain and minimize its

expenditure on storage. All other things being equal, however—for

instance, given a certain amount of allocated storage in a given

geolocation—such an adversary will attempt to preserve 𝐹 .

Assuming rationality in a provider reflects natural ecosystem

design decisions. For example, a provider may be paid for retrieving

𝐹 , or may earn a reputation for reliable service. Such a provider has

a financial incentive to ensure that a stored file 𝐹 is recoverable.

The provider will not strategically erase file blocks in an attempt to

render 𝐹 unrecoverable if it has to store the same amount of data

anyways. Consequently, it is possible to achieve strong soundness

using a linear-time erasure code.

4 THE GOAT PROTOCOL
We now present details of our PoGeoRet scheme, GoAT. We begin

by discussing GoAT-specific modeling details (Sec. 4.1). Next we

provide a brief description of the Shacham-Waters (SW) PoRet

scheme [38] (Sec. 4.2), followed by GoAT using SW PoRet (Sec. 4.3).

For ease of presentation, we start with a simplified version that

requires high-resolution anchors. Next in Sec. 4.4, we discuss how

GoAT deals with low-resolution anchors. In Sec. 4.5, we present a

theorem specifying the level of security GoAT provides. Finally in

Sec. 4.6, we discuss how to decentralize trust among anchors.

We also consider a second PoGeoRet design that uses Merkle

Tree PoRet instead of SW. This variant has the benefit of a simpler

design and avoids the cryptographic hardness assumptions required

for SW. It has large proof sizes, however, so we defer it to App. D.

4.1 System Model
We describe modeling details specific to GoAT now. GoAT achieves

soundness under the flexible-challenge model. All the important

notation is tabulated in Table 2.

Networkmodel: We approximate earth to be a sphere. The metric

space (M, dist) is defined by the set of all locations on earth (M)

and the spherical distance function (dist).
We assume that the maximum network speed attainable by an

adversary is 𝑆max. And the minimum speed required for storage

providers joining our system is 𝑆min. The ratio 𝑛 = 𝑆max/𝑆min is the

network speedup of the adversary. These parameter values need to

be decided based on empirical measurements (See Sec. 5). Honest

providers only need to attain the speed 𝑆min for a short period of

time. For example, if interval length 𝛽 = 1hr, good connectivity for

a few seconds every hour suffices.

We also include a small startup cost 𝑡start as it dominates the

round trip times for nearby locations. The expected maximum

time for a round trip between two locations 𝐿1 and 𝐿2 is given by

rttmax (𝐿1, 𝐿2) = (2dist(𝐿1, 𝐿2)/𝑆min) + 𝑡start.

Anchors: GoAT leverages existing internet servers called anchors.

Anchors must provide an authenticated time API and have a static

known location. The time need not be absolutely correct, relatively

consistent time is allowed. Clock drift is assumed to be negligible.

To begin with, anchors are assumed to be honest. Decentralizing

trust in anchors is discussed in Sec. 4.6.

Anchors serve time through an API denoted “GetAuthTime”. It
must take as input a nonce 𝑁 and return a transcript 𝑇 = {𝑀,𝜎 }
where 𝑀 = {𝑡, 𝑁 } is a message containing the time 𝑡 and nonce

(𝑀 could also contain other data), and 𝜎 is a signature over 𝑀 ,

i.e., 𝜎 = SigskA (𝑀). The key pair (skA, pkA) are the secret, public
key of the anchor respectively. We assume a list of anchors T
is decided based on various factors including which locations to

support, anchor trustworthiness and reliability.

The timestamp resolution of an anchor ΓA is defined as the small-

est (non-zero) difference between any two timestamps. GoAT sup-

ports anchors of all resolutions, although smaller resolution leads

to better performance.

Storage model:We assume storage providers use SSDs for storage

(we do not support HDDs, see [34]). Modern SSDs are quite fast with

seek times of just a few milliseconds [8] due to inbuilt parallelism.

4.2 Shacham-Waters scheme
At a high level, SW uses BLS-style signatures to facilitate proof

aggregation and public verifiability.

Let 𝑒 : G × G→ G𝑇 be a computable bilinear map, with Z𝑝 the

support for G. The setup in SW involves dividing the file into 𝑛

blocks, with each block further divided into 𝑠 sectors. Each sector is

a symbol in Z𝑝 . For every block, an aggregate signature is computed

over all the sectors. The generated signatures are{𝜎𝑖 }𝑛𝑖=1 (See SW.St
in Fig. 6 in the Appendix).

Each challenge consists of a block number 𝑐𝑖 ∈ [𝑛] and a co-

efficient 𝑣𝑖 ∈ Z𝑝 , both derived randomly. Denote the number of

challenges by 𝑘 . Generating a proof requires computing a linear

combination of the 𝑘 file blocks to compute 𝝁 =
{
` 𝑗

}𝑠
𝑗=1

and ag-

gregating the corresponding signatures to compute 𝜎 . Crucially,

the proof size does not depend on the number of challenges 𝑘 and

depends only on the number of sectors 𝑠 .

Modifications to SW: Fig. 6 in the appendix presents our (slightly)
modified version of SW scheme.We add a function SW.Commit that
commits the value 𝝁. Note that 𝝁 is computed exactly as in the proof

function. As 𝝁 is a vector of size 𝑠 , we use a vector commitment

scheme. The vector commitment scheme needs to be binding and

homomorphic. We use Pedersen commitments (See Fig. 8).

The verification function (SW.Verify) takes a commitment of 𝝁
as an extra input and verifies that the value 𝝁 provided in a proof

matches the commitment. Other functions are unchanged.

4.3 GoAT with high-resolution anchors
We now present the GoAT protocol which relies on high-resolution

anchors, i.e., an anchor A with millisecond or lower timestamp

resolution (or) ΓA ≤ 1ms. A real-world example of such an anchor

can make use of Roughtime [9], which has a 1µs resolution.

4.3.1 Protocol. As usual, our setting involves a user U that wants

to store a file 𝐹 with a provider situated in a location 𝐿P ∈ 𝑅target,
a target region.

Setup: U runs the PoRet setup protocol (SW.St) over 𝐹 to generate

transformed file 𝐹 ∗, file handle [, and the public parameters pp.
Then U picks a storage provider P located at an admissible location

𝐿P and sends {𝐹 ∗, [, pp} to P.
7

Deepak Maram, Iddo Bentov, Mahimna Kelkar, and Ari Juels

Anchor AProvider P

Time 𝑡1

Time 𝑡2

Using 𝜎1 as

seed, compute

PoRet commit-

ment 𝑁2 = 𝐶

GetAuthTime(𝑁
1)

{𝑀1
, 𝜎1 }

GetAuthTime(𝑁
2)

{𝑀2
, 𝜎2 }

Time

difference

𝑡2 − 𝑡1

Figure 3: The geo-commitment protocol.

As noted before, we assume that a set of anchors T is predeter-

mined; let A ∈ T be one such anchor located at 𝐿A. For simplicity,

in this section, we assume anchors are trusted and thus that it suf-

fices to use the single anchor A. Other protocol parameters such as

the interval length 𝛽 , number of intervals per epoch 𝐼 are assumed

to be predetermined.

Proof generation: Generating a proof of geo-retrievability hap-

pens in two phases. In the first, geo-commitment generation phase,

the provider interacts with the anchor to obtain PoRet challenges

and uses them to generate a PoRet commitment. This phase is run

once per interval. In the second PoRet computation phase, run only

once per epoch, the provider computes the full PoRets.

Geo-commitment generation (GeoCommit): The key idea is to sand-

wich the file access operation between successive pings to the

anchor. The PoRet commitment serves as the file access operation

and the anchor helps in timing this operation. Fig. 3 depicts the

geo-commit protocol explained now:

(1) Ping #1: Sample a random nonce 𝑁1 and send a request

GetAuthTime(𝑁1) to A. Receive transcript𝑇1 = {𝑀1, 𝜎1 }where
𝑀1 = {𝑡1, 𝑁1 }.

(2) PoRet commitment: Use 𝜎1 as randomness to derive a set of chal-

lenges S ← SW.Chal([, pp, 𝜎1). Now generate a commitment

𝐶 ← SW.Commit([,S).
(3) Ping #2: Set nonce 𝑁2 = 𝐶 and ping the anchor A again via

GetAuthTime(𝑁2). Receive𝑇2 = {𝑀2, 𝜎2 } where𝑀2 = {𝑡2, 𝑁2 }.
We refer to the pair 𝐶geo = {𝑇1,𝑇2 } as a geo-commitment. Note

that the PoRet commitment 𝐶 is embedded in 𝑇2, so we do not

explicitly mention it. By the end of an epoch (or 𝐼 intervals), the

provider has 𝐼 geo-commitments

{
𝐶
geo
𝑚

}𝐼
𝑚=1

.

PoRet computation (PoRetCompute):Once an epoch ends, the provider
finishes proof generation by computing PoRets corresponding to

the PoRet commitments computed during the epoch.

A naïve approach is to simply run the SW.Prove function 𝐼 times

with the same challenge sets used in step 2 of the geo-commit phase.

But this leads to exorbitant proof sizes.

Instead we aggregate proofs in much the same way as SW.Prove,
except for one key step, coefficient randomization. We derive a set

of pseudorandom coefficients

{
𝑟 𝑗
}
from the final PoRet commit-

ment 𝐶𝐼 . Denote the challenge set used to compute the 𝑗𝑡ℎ PoRet

commitment by S𝑗 =
{
𝑐𝑖 𝑗 , 𝑣𝑖 𝑗

}𝑘
𝑖=1

where 𝑗 ∈ {1, . . . , 𝐼 }. The newly
generated coefficients are incorporated into those for the challenge

Notation Description

𝜖 Frac. of queries answered correctly

𝜌 Erasure code rate

𝐼 #intervals per epoch

𝛽, 𝐼 𝛽 Interval length, Epoch length

𝑅 = (𝐿;𝛿) Circular region defined by center 𝐿 & radius 𝛿

𝑅target, 𝑅rou Target region and the ROU

𝑛 Network speedup

𝑆max, 𝑆min Network speeds (max, min)

𝑇 Anchor transcript

ΓA Timestamp resolution of anchor A
𝑘 Number of challenges in a PoRet

Δ(𝐿A, 𝐿P) Expected time to run GeoCommit b/w A & P.
𝑎 Amplification factor

𝜙 Bandwidth cap

𝛼 Grinding cap (2
𝛼 GetAuthTime calls)

Table 2: Notation

sets, ∀𝑗,S∗
𝑗
=
{
𝑐𝑖 𝑗 , 𝑟 𝑗𝑣𝑖 𝑗

}𝑘
𝑖=1

. The modified challenge sets are aggre-

gated as S∗ = ∪𝐼
𝑗=1
S∗
𝑗
.

Intuitively, the set of coefficients

{
𝑟 𝑗
}
ensures that a malicious

provider cannot skip accessing the file even for a single interval.

We give further details later.

Given S∗, the PoRet is computed as 𝜋PoRet ← SW.Prove([,S∗).
The full proof of geo-retrievability then consists of the 𝐼 geo-

commitments and the PoRet, 𝜋geo =

{{
𝐶
geo
𝑚

}𝐼
𝑚=1

, 𝜋PoRet
}
. 𝜋geo is

given to the auditor V for verification.

Proof verification: The auditor checks anchor transcripts in the 𝐼

geo-commitments using the anchor’s public key. Then the auditor

derives PoRet challenges from transcript signatures as in proof

generation. The coefficients

{
𝑟 𝑗
}
and aggregate challenge set S∗

are similarly computed. V computes an aggregate commitment

𝐶∗ =
∏𝐼

𝑗=1 (𝐶 𝑗)𝑟 𝑗 . The proof of retrievability 𝜋PoRet and 𝐶∗ are

verified by SW.Verify(pp,S∗,𝐶∗, 𝜋PoRet).
Note that verification succeeds even with randomization of the

challenge coefficients because SW.Commit contains only linear

operations and the vector commitment scheme is homomorphic.

The final verification step is to check that the two timestamps

are close in all geo-commitments, namely that 𝑡2 − 𝑡1 ≤ Δ(𝐿A, 𝐿P),
where Δ is a pre-agreed upon function that takes anchor, provider

locations as inputs and outputs the expected runtime ofGeoCommit
operations (those happening between times 𝑡1, 𝑡2). We now discuss

how Δ is set.

4.3.2 Setting Δ. Deciding Δ requires effectively striking a balance

between completeness and soundness. To achieve completeness,

Δ should output high enough values for honest parties to succeed.

At the same time, Δ should output low enough values to prevent

cheating, i.e., improper location of a file, by an adversarial provider.

As shown in Fig. 3, the time difference 𝑡2 − 𝑡1 captures the time

taken to run two operations: a GetAuthTime API call and a PoRet

commitment. Denote the expected time for the two operations by

𝑡ping and 𝑡com respectively; we then have Δ(𝐿A, 𝐿P) = 𝑡ping + 𝑡com.
8

GoAT: File Geolocation via Anchor Timestamping

Elapsed time for the GetAuthTime API call depends on the phys-

ical distance between the anchor and provider. We have 𝑡ping =

rttmax (𝐿A, 𝐿P) + 𝑡proc where the first term denotes the expected

round trip time introduced in Sec. 4.1 and 𝑡proc denotes processing

time by the provider and anchor.

Therefore we have

Δ(𝐿A, 𝐿P) = (2dist(𝐿A, 𝐿P)/𝑆min) + 𝑡start + 𝑡proc + 𝑡com . (3)

We later prove that for a provider to succeed in a PoGeoRet proof

for 𝐹 , most of 𝐹 must be stored within Δ(𝐿A, 𝐿P) · 𝑆max/2 distance
of the anchor location 𝐿A.

Crucially, the radius of the ROU grows linearly with Δ(𝐿A, 𝐿P).
This serves as a motivation to minimize computation time in a

PoGeoRet as much as possible. Indeed, it is to reduce 𝑡com that

we introduce the function SW.Commit as a means to commit to a

PoRet proof before generating the proof itself.

4.3.3 Grinding attacks. SinceGeoCommit protocol is prover-initiated,
an adversarial prover can exploit by re-running the protocol. For

example, an adversary could save on storage by only storing a por-

tion of the file, and repeatedly querying the anchor until all the

challenges lie in the stored part. Let 𝑔 be the stored fraction.

To model practical constraints, we assume that a prover can

make upto 2
𝛼 GetAuthTime API calls per interval (In practice, this

number needs to be set based on the actual cost to make many API

calls). The success probability after 2
𝛼
API calls is 𝑝 = 1−(1−𝑔𝑘)2𝛼 .

The adversary needs to choose the file-fraction 𝑔 such that 𝑝 is non-

negligible, i.e.,𝑔 ≥ (1−(1−2−_)2−𝛼)1/𝑘 (or)𝑔 > 2

−_−𝛼
𝑘 (via binomial

expansion). Intuitively as the number of challenges 𝑘 is raised, the

adversary is forced to store more. We derive an exact constraint

involving 𝑘 and 𝛼 in our security proofs.

4.3.4 Coefficient randomization. Randomization at the end of an

epoch is necessary to ensure that the PoRet commitments {𝐶𝑖 }
are correctly computed in every interval of the epoch. If the ratio

between any two random coefficients was predictable, e.g., say

𝜏 = 𝑟𝑖/𝑟 𝑗 was known for some 𝑖 ≠ 𝑗 , then the adversary could skip

file access in the 𝑖th interval and set 𝐶𝑖 to random; 𝐶 𝑗 is set such

that the product of commitments is same as that computed by a

honest provider, 𝐶
𝑟𝑖
𝑖
𝐶
𝑟 𝑗
𝑗

= 𝐻
𝑟𝑖
𝑖
𝐻
𝑟 𝑗
𝑗
, so 𝐶 𝑗 = (𝐻𝑖 (𝐶𝑖)−1)𝜏𝐻 𝑗 . 𝐻𝑖 and

𝐻 𝑗 are the actual 𝑖th and 𝑗th PoRet commitments—the adversary

can compute them both in the 𝑗th interval. More formally, we

later show that an adversary that skips PoRet commitments cannot

succeed in verification, as it is equivalent to breaking commitment

binding, which can happen with negligible probability.

We ensure that the likelihood of guessing the random coeffi-

cients

{
𝑟 𝑗
}
apriori is negligible by deriving them from the final

PoRet commitment 𝐶𝐼 . But this leaves open potential grinding con-

cerns. The best strategy for an adversary is to randomly choose the

commitments (or random coefficients) and check if the verification

equation succeeds. The probability of success is 2
−_

(as 2
_
is the

size of the group used). With grinding, the probability increases to

2
−_+𝛼

, which is still negligible for practical parameters. One way

to avoid grinding is to use public randomness beacons [4] to derive

coefficients instead of deriving from the final PoRet commitment.

4.4 GoAT with low-resolution anchors
The GeoCommit protocol described before assumes anchors pro-

vide high-resolution time. But most existing anchors today such as

TLS 1.2 servers only offer second-level resolution.

We deal with such anchors by amplification. The idea is to chain

a sequence of proofs. Specifically, the prover alternates between

computing a PoRet commitment and pinging the anchor. The first

and last operation are anchor pings. Chaining of the two operations

is done in a similar fashion to before. In total, 𝑎 PoRet commitment

computations and 𝑎 + 1 anchor pings take place. We refer to 𝑎 as

the amplification factor.
The value 𝑎 is set based on the exact resolution offered by an

anchor. For example if the anchor resolution is in seconds and the

expected time difference Δ(𝐿A, 𝐿P) is 50ms, then 20 consecutive

proofs (when started at a one-second boundary in the anchor’s

clock) will have the same timestamp, so 𝑎 = 19 (since 𝑎 + 1 pings
are needed). More generally, if the resolution of an anchor is ΓA, we
set 𝑎 = ⌊ΓA/Δ(𝐿A, 𝐿P)⌋ − 1.6 Below, we explain how to time proof

execution in order to ensure receipt of 𝑎 + 1 transcripts with the

same timestamp.

In PoRetCompute, the prover computes a single PoRet similar to

before, leveraging the aggregability of SW. We also make a change

to Verify: instead of checking the difference between timestamps,

the verifier counts if 𝑎 + 1 anchor transcripts have the same times-

tamp. Other steps are similar to before.

A general GeoCommit protocol for any anchor, low- or high-

resolution, is specified in Fig. 5, in the paper appendix.

When to start execution?:We have a question of when to initiate

the protocol so that 𝑎 + 1 anchor transcripts have the same time. A

simple approach is to continue executing proofs for roughly double

the amplification factor 𝑎, specifically to use an augmented amplifi-

cation factor 𝑎′ = 2 ⌈ΓA/Δ(𝐿A, 𝐿P)⌉−1. Irrespective of the start time

in this case, the resulting sequence of transcripts are guaranteed

to contain a (𝑎 + 1)-length sub-sequence with the same timestamp

(given stable network conditions). The final proof will only include

the desired sub-sequence; extra transcripts can be discarded. The

intuition here is that 𝑎′ executions guarantees seeing two time

changes (i.e., three distinct timestamps), therefore one resolution

tick is fully covered, which in turn guarantees ⌊ΓA/Δ(𝐿A, 𝐿P)⌋ tran-
scripts will have the same timestamp. As noted, this will not work

if the network conditions are unstable, and other mechanisms like

retries are needed in practice.

Effect on geolocation: The use of amplification has a small effect

on the radius of ROU, explained through an example. Suppose

Δ(𝐿A, 𝐿P) = 250ms, ΓA = 1000ms. Applying the above formula, we

get 𝑎 = 3, i.e., 4 pings are needed. But this leaves some “extra time”—

for example, if the anchor’s clock times at the moment of receipt of

the 4GetAuthTime requests are 𝑥 , 𝑥 +250, 𝑥 +500, 𝑥 +750 (all in ms),

then an adversary still has about 250ms left in the end (Assume 𝑥

is a second boundary). So an adversary can spend an extra 250/𝑎 =

83.33ms on each of the 𝑎 PoRet commitment computations and

thus position the file further from the target location than with

no amplification. Such manipulation will go undetected because

6
In theory, 𝑎 = ⌊ΓA/Δ(𝐿A, 𝐿P) ⌋ also works as 𝑎 · Δ(𝐿A, 𝐿P) ≤ ΓA . But for per-
fect divisors, e.g., Δ(𝐿A, 𝐿P) = 50ms, this can only be achieved with perfect time

synchronization and ideal network conditions, making it impossible in practice.

9

Deepak Maram, Iddo Bentov, Mahimna Kelkar, and Ari Juels

the difference between the last and first anchor clock times is still

within a resolution tick, 750 + 83.33 · 3 = 999.99ms < ΓA.
The precise extra time available due to amplification is 𝑒 = ΓA −

𝑎 · Δ(𝐿A, 𝐿P). Distributing it equally leads to an extra 𝑒/𝑎 time per

commitment computation. For practical values, the extra time is

small and hence its impact is minimal. For example, if Δ(𝐿A, 𝐿P) =
50ms and ΓA = 1000ms, then 𝑒 = 50/19 = 2.6ms causing about

260km increase compared to that without amplification.

4.5 GoAT security
Say the target region is a single location, 𝑅target = (𝐿; 0). Then
the region of uncertainty achieved by GoAT is a circle centered at

anchor’s location with radius 𝛿𝐿 given by:

𝛿𝐿 =

{
Δ(𝐿A, 𝐿) · 𝑆max/2 if ΓA ≤ 1ms.

(ΓA/(⌊ΓA/Δ(𝐿A, 𝐿)⌋ − 1)) · 𝑆max/2 otherwise.

In practice, the target regionmight have a small diameter,𝑅target =

(𝐿;𝛿 ′). As long as 𝛿 ′ is small, we can approximate and define the re-

gion of uncertainty as𝑅rou = (A;𝛿 ′′)where𝛿 ′′ = max{𝐿′∈𝑅target } 𝛿𝐿′ .

Theorem 1. Let 𝑤 =
(
𝜌 + 𝜙

|𝐹 ∗ | + 1 − 2
−_−𝛼
𝑘

)𝑘 . Assuming 𝜖 −𝑤
is positive and non-negligible and that the CDH problem is hard
in bilinear groups, GoAT is 𝜖-sound at a target geographic region
𝑅target = (𝐿;𝛿 ′) achieving a geolocation guarantee of 𝑅rou = (A;𝛿 ′′)
under the flexible challenge model against an economically rational
adversary.

The proof sketches are in App. C. GoAT also satisfies soundness

under the non-interactive definition variants described in App. A.

4.6 Decentralizing trust among anchors
It is straightforward to consider an extension toGoATwhere as long
as a threshold 𝑡 number of anchors collude, the system is secure.

This would come at the cost of somewhat more work to provers as

they would have to execute GeoCommit with 𝑡 + 1 anchors every
interval. But the proof size remains the same and the increase in

prover / verifier computation time is not huge (See Sec. 5.2).

The geolocation quality degrades due to the use of multiple

anchors. Previously each anchor produced a circular ROU centered

at its location, but with 𝑡 + 1 anchors, the new ROU is the union of

the 𝑡 + 1 spherical circles as some 𝑡 of them might be corrupt.

5 IMPLEMENTATION AND EVALUATION
We implemented GoAT in approximately 2500 lines of C with sup-

port for both TLS 1.2 and Roughtime anchors. Our implementation

uses TLSe [42] for TLS and Roughenough [41] for Roughtime. We

use the PBC library [33] for pairings. For sensitive file operations

in GeoCommit, we use the asynchronous I/O library libaio [6]. We

did not integrate erasure coding functionality as it is not our focus.

The outline of this section is as follows. In Sec. 5.1, we discuss

a number of setup considerations, and in Sec. 5.2, we present our

evaluation results.

5.1 Setup considerations
For the purposes of this paper, we only aim to demonstrate the

feasibility of our approach. We thus set parameters conservatively,

favoring strong completeness with somewhat looser geolocation

bounds than may be achievable in practice. For more aggressive

parametrization, a detailed internet measurement study is needed.

5.1.1 Network parameters. We set the maximum network speed of

an adversary 𝑆max = 2

3
𝑐 where 𝑐 is the speed of light. This is the

maximum speed achievable in a fiber-optic cable [29].

Estimating the minimum speed for an honest user 𝑆min can be

tricky due to inconsistent network quality across locations. Based

on RTT data from Wonder Network [37], we set 𝑆min = 2

9
𝑐 , i.e.,

speedup 𝑛 = 𝑆max/𝑆min = 3 and the constant startup cost 𝑡start =

5ms. These parameter choices are consistent with recent work [17]

that estimates the median RTT between PlanetLab nodes
7
and

popular websites to be about 3.2× slower than speed of light; so

𝑆min = 𝑐
4.5 is conservative. These parameters worked consistently

across our experiments, and we emphasize again that our flexible-

challenge security model permits a prover to make multiple proof

attempts over a given interval, creating strong resilience for any

network-speed fluctuations.

5.1.2 Existing anchor discovery. To show that there is an existing

network of servers that can serve as GoAT anchors, we perform a

limited measurement study of existing TLS 1.2, Roughtime servers.

In this study, we identify servers that return the correct time

and have unique locations. We obtain server locations from an IP

geolocation database, IP2Location.
8
We verify location uniqueness

heuristically by finding each server’s ISP and making sure it does

not belong to a Content Distribution Network (CDN) [2]; servers

that use CDNs do not have a fixed location since they respond from

a replica closest to the query point. A stricter approach would be

to perform a delay-based geolocation experiment validating that

the server location is unique, e.g., [29, 44]. We do one such experi-

ment for Roughtime on a small scale. For TLS 1.2 and Roughtime

respectively, our findings are as follows.

TLS 1.2:We focus on domains belonging to educational institutions,

as we find they are more likely than other domains to have unique

physical locations. We take the first 2850 domains from the Alexa

top 1M list [1] containing the substring “.edu”. We retain only those

servers that return the correct time and whose ISP does not belong

to a CDN provider. The result is a set of 300 domains that can

be used as anchors, i.e., 10.5% of our original list. But this list is

heavily biased towards anchors located in the U.S. (60% of the 300).

So to find anchors for a different location, we apply more specific

filters—e.g., to find anchors in UK we search for domains ending

with “.ac.uk”.

We also limit ourselves to using only those TLS 1.2 servers that

use RSA for authentication. This is done purely for implementation

convenience. Using faster alternatives such as ECDSA (if supported

by the server) might allow somewhat better geolocation (see anchor

processing times below), but many TLS servers use RSA certificates

only. We find that the proof transcript length for RSA-based servers

is 389 bytes, which includes a 256-byte signature.

TLS uses TCP in the transport layer. Therefore in a standard TLS

connection, it takes two round trips to get time: the first round trip

7
PlanetLab nodes tend to be well-connected to the internet, matching our expectation

of storage provider’s connection. [17] also picks geographically diverse nodes.

8
These databases are known to have some errors [25] and a rigorous geolocation

experiment like [44] would have to be done before deploying our system.

10

GoAT: File Geolocation via Anchor Timestamping

establishes a TCP connection while the second gets the time. To

get better geolocation, we open TCP connections prior to the start

of the geo-commitment protocol. This eliminates the unnecessary

communication time incurred by performing the first round trip

during GeoCommit.

Roughtime: We are aware of the existence of four Roughtime

servers as of Apr. 2021. All of them return correct time with mi-

crosecond granularity. To check that their locations are unique,

we perform a small geolocation experiment by sending an ICMP

ping request from two vantage points: North Virginia (NV) and

Singapore (SP). In this process, we identify one of the servers as

unusable for geolocation, as it has a RTT of 17ms from NV and

30ms from SP, suggesting it is sitting behind a CDN provider (the

server belongs to Cloudflare, a popular CDN provider). We find that

the proof transcript length for Roughtime is 360 bytes.

Anchor processing times:ManyTLS servers take a non-negligible

amount of time to compute the response, called the anchor pro-

cessing time (𝑡aproc). This is measured by pinging 114 servers at

repeated intervals over two weeks both via TLS (with TCP connec-

tions established apriori) and ICMP (for raw RTT). The processing

time is defined as the difference between the two. We compute

the average processing time for each server, and then the 75th per-

centile over all the servers, which is 𝑡 tlsaproc = 6.5ms. Anchors in

the remaining 25th percentile are discarded. Note that setting a

somewhat high value of 6.5ms for all TLS servers is conservative—a
better approach is to set anchor-specific values.

For Roughtime, we find that the processing times are almost

negligible, we set 𝑡 rtaproc = 2ms. This could be due to a combination

of several factors, including the use of faster UDP at the transport

layer [17] and a faster signature scheme (EdDSA).

5.1.3 GoAT parameters: We now briefly discuss how various GoAT
parameters are set. App. B contains a discussion over practical

considerations related to parameterization.

For SW PoRet, we use an asymmetric pairing-friendly curve

“g149” [33]. The rationale being that it took the least time to per-

form a vector commitment, i.e., a fixed-base multi-exponentiation

operation, among the options provided in the library.
9
Fast multi-

exponentiation helps both in finer geolocation and faster verifica-

tion. Except in one experiment below, we set the number of sectors

per block, 𝑠 = 96.

As we discuss in Sec. 4.5, (𝜌 + 𝜙

|𝐹 ∗ | + (1 − 2
−(_+𝛼)/𝑘))𝑘 needs to

be negligible. Assuming the grinding constraint 𝛼 = 40, one set of

parameters to achieve 80-bit security are code rate 𝜌 = 0.33 and

number of challenges 𝑘 = 170;
10

note that the bandwidth cap is set

to 𝜙 = 0.001|𝐹 ∗ | using the economic analysis from Sec. 3.5.1.

For the experiments below, we set the number of challenges to

just 𝑘 = 100; we do not expect that this impacts the results by much.

Remaining parameters: In eq. (3), two more parameters remain

to be set, 𝑡proc and 𝑡com. Note that we separate the processing

time 𝑡proc into client (𝑡cproc) and anchor (𝑡aproc) components, with

the latter discussed before. 𝑡cproc corresponds to the time spent in

handling the anchor response. We set 𝑡cproc = 1.5ms based on code

9
We did not specifically tune curve parameters nor did we use hardware optimizations.

Both are possible opportunities to optimize.

10
Another set of parameters with higher code rate is 𝜌 = 0.5, 𝑘 = 240.

benchmarks. The expected commitment compute time 𝑡com is also

fixed based on benchmark results discussed below.

5.2 Evaluation
We evaluate GoAT through several benchmarks and perform a real-

world experiment over a week (Sec. 5.2.1). For most benchmarks,

we use an AWS c5.4xlarge machine with 16 CPU, 32GB RAM and

2TB io2 SSD that is capped at 20k IOPS. The io2 SSD is only used for

experiments with small duration as it is more expensive, whereas

for the long experiment in Sec. 5.2.1, we use a 100 IOPS, 30GB gpt2

SSD. We do not expect this decision to have a significant impact as

we show below that the effect of file sizes is negligible. All tables

include standard deviations in brackets.

PoRet commit time (vs) file size: As explained in Sec. 4, PoRet

commit time has a direct impact on the ROU radius. Table 3 presents

the time taken to compute the PoRet commitment as a function

of file size (128MB to 256GB). The numbers are largely constant,

except for an abrupt jump at 64GB, which happens as the cache

no longer remains useful. In particular, we use buffered I/O for

smaller files (first four rows) and direct I/O
11

for bigger ones. As

each millisecond contributes to about a 100km increase in the ROU

radius, the overall impact of both file sizes and PoRet commit times

is minimal for geolocation. We set the expected time to commit

𝑡com = 2ms, which works for smaller files.

We measure the impact of the number of sectors 𝑠 in GoAT-SW
on the commitment compute times. Table 4 shows the linear impact

caused by the commitment to 𝑠-sized vectors. (See Table 7.) Note

that to show the effect clearly we omit the constant file read time

in this table.

Computation costs: Table 5 presents the time taken for the PoRet-
Compute and Verify operations. Here we assume a fixed epoch

length and vary the number of intervals. Recall that with more

intervals per epoch, the location guarantee gets better. As shown,

with 1000 intervals, PoRetCompute takes about 21s and Verify takes
around 19s. Concrete costs are negligible for both operations (our

AWS instance cost us $0.376 per hour). Also note that the effect of

number of intervals on both PoRetCompute andVerify computation

times is close to linear.

In the above experiment, we set the amplification factor 𝑎 to

1. A similarly linear effect is expected due to amplification, if for

example we vary 𝑎. We conclude with a concrete example. If 𝑎 = 20,

interval and epoch lengths are 30mins and 1 day respectively, then

a total of 20 · 24 · 2 = 960 PoRet commitments will be computed per

day, i.e., PoRetCompute and Verify will take around the same time

as given before (with 1000 intervals).

Communication costs: Setting parameters from above, GoAT
proof size is 1844 + |𝑇 |𝐼 (𝑎 + 1) bytes. First half of the equation

is contributed by the PoRet proofs, while the second half by anchor

transcripts. As expected the PoRet-component size is constant.

Concretely, assuming Roughtime anchors (𝑎 = 1) and 𝐼 = 100,

GoAT proof size is 36.96KB with a dominating 35.15KB of anchor

transcripts.With a TLS anchor requiring amplification factor 𝑎 = 20,

the proof grows to 740.08KB.

11
Direct I/O (the “O_DIRECT” flag) is a way to avoid entire caching layer in the kernel

and send the I/O directly to the disk.

11

Deepak Maram, Iddo Bentov, Mahimna Kelkar, and Ari Juels

File size Time (ms)

128MB 1.09 (0.02)

1GB 1.02 (0.02)

4GB 1.02 (0.02)

16GB 1.04 (0.02)

64GB 4.27 (0.22)

256GB 4.06 (0.22)

Table 3: Time taken for PoRet commit.

#sectors Time (ms)

64 1.16 (0.01)

128 2.08 (0.01)

256 4.16 (0.02)

Table 4: Time taken for SW PoRet commit without the file
read operation as a function of the number of sectors.

#intervals PoRetCompute Verify
1 76.67 (0.40) 55.48 (0.55)

10 275.70 (0.81) 234.28 (5.59)

100 2,175.16 (10.46) 1,992.32 (61.03)

1000 21,227.36 (102.99) 19,404.71 (411.75)

Table 5: Computation time (in millis) of PoRetCompute and
Verify (vs) number of intervals per epoch.

10
0

10
1

10
2

10
3

10
4

1,000

1,500

2,000

2,500

720

Epoch length (hrs)

S
i
z
e
p
e
r
i
n
t
e
r
v
a
l
(
B
y
t
e
s
)

Figure 4: For a fixed interval length of 1hr, the proof size per
interval for GoAT (vs) the epoch length. Roughtime anchor.

To show the dominant effect of anchor transcripts, we fix the

interval length to 𝛽 = 1hr and plot the proof size per interval as the

epoch length is increased. The effect can be clearly seen in Fig. 4.

The plot converges at 720 bytes, the size of 2 Roughtime transcripts.

GoAT is extremely communication-efficient, compared to alter-

native PoGeoRet designs. For example, if Merkle Tree was used as

the PoRet scheme instead of Shacham-Waters, the proof size per

interval would remain constant at around 100KB, which is in fact

too high to show in the plot.

5.2.1 Experiment. We devise a small experiment to demonstrate

the practical feasibility of GoAT, specifically how it deals with

network volatility. We focus on the GeoCommit protocol alone
as it is the sole operation affected by network conditions. Prior

works [26] have observed network stability over long time periods,

and conclude that network instability is frequent but most often

transient. So we handle failures in GeoCommit by simply retrying

until success. Concretely, the number of retries is capped at 30 with

Anchor name Distance 𝑎 ROU radius (𝛿/dist) #retries (SD)

roughtime.chainpoint.org 46.00 1 1187.27 (25.81) 0.06 (0.23)

roughtime.sandbox.google.com 115.33 1 1395.26 (12.10) 0.02 (0.13)

www.american.edu 43.99 60 1665.51 (37.86) 0.03 (0.47)

www.sunysuffolk.edu 450.29 34 2939.14 (6.53) 1.00 (0.06)

roughtime.int08h.com 1582.83 1 5797.76 (3.66) 0.01 (0.11)

holycross.ac.uk 35.26 61 1638.21 (46.46) 0 (0)

sruc.ac.uk 58.83 58 1722.94 (29.29) 0.67 (1.04)

gold.ac.uk 87.45 55 1816.92 (20.78) 1.02 (0.15)

nott.ac.uk 175.19 48 2081.89 (11.88) 2.26 (1.76)

www.ed.ac.uk 533.67 31 3223.57 (6.04) 0.003 (0.05)

Table 6: The ROU radius (𝛿) per anchor and the distance b/w
anchor and provider. All distances are in km. Last column
shows the mean, standard deviation (SD) of the number of
retries.

a gap of 1 second between retries. In this process, we count the

number of retries needed to succeed and the false rejection rate, if

any. Under ideal network conditions, 0 retries are expected.

We run the GoAT prover from two AWS instances located in

North Virginia (NV) and London (LON). Five anchors, screened

for the criteria described above, are picked near each. The interval

length is set to 𝛽 = 30mins and the GeoCommit protocol is run for

10 days at NV (525 intervals) and 7 days at LON (347 intervals).

Table 6 shows the 10 anchors used (3 Roughtime anchors are

identifiable by their prefix). The top five anchors are used with our

provider instance in NV, while the rest with the one in LON. The

2nd column shows the distance between the anchor and provider,

the 3rd column shows the amplification factor 𝑎, and the 4th col-

umn shows the ROU radius 𝛿 along with the radius to distance

ratio. These three column values are computed using techniques

described previously.

The ROU radius to distance ratio is useful to understand the

key factors contributing to the radius. Recall from Sec. 4 that this

ratio is given by (𝑛+ ((𝑡com +𝑡start +𝑡proc)𝑆max/2dist(𝐿A, 𝐿P))). For
providers farther away from the anchor, we see the ratio converging

to speedup 𝑛 = 3 suggesting that distance-to-the-anchor is indeed

the dominating factor. But for providers closer, we see high ratios

(going up to 46!) caused by constants like 𝑡start and 𝑡proc.

TLS anchors achieve somewhat worse geolocation compared to

Roughtime ones due to the higher processing times; for example,

compare “american.edu” and “roughtime.chainpoint.org”.

The last column in Table 6 shows a statistical picture of the num-

ber of retries required to succeed during the experiment period.

The anchor “holycross.ac.uk” behaved perfectly requiring no retries

throughout. Whereas the anchor “www.sunysuffolk.edu” was the

only one to fail—it failed in 4 of the 525 intervals, i.e., 0.7% false

rejection. The four failures happened in consecutive intervals sug-

gesting a period of bad server response times. We expect system

designers to select several anchors in each location to avoid false

rejections in practice. The maximum number of retries required to

succeed was 13 (seen once with “sruc.ac.uk” and “nott.ac.uk”).

6 RELATEDWORK
A long line of works aim to prove correct file storage by a storage

provider, e.g., Proof of Retrievability [28, 38], Proof of Data Posses-

sion [12] and more recently Proof of Replication [14, 19, 23, 24]. To

the best of our knowledge, only few works [16, 45] aim to prove file

12

GoAT: File Geolocation via Anchor Timestamping

location, but they operate in a trusted-verifier setting. Our work

is the first to consider decentralized trust among verifiers. The

technique of combining a PoRet with a geolocation scheme was

previously used by [45]; while [45] combines the two naïvely, GoAT
introduces a PoRet commit function to reduce geolocation errors.

Most geolocation technologies in use today (e.g., GPS, Bluetooth

beacons [27]) rely on trusted verifiers and are hence unusable in

decentralized systems. FOAM [21] generates a proof-of-location

using permissionless anchors that perform triangulation in small

zones, but their approach suffers from bootstrapping problems.

Many prior works [16, 29, 44] have used distance-bounding like

techniques for geolocation. Our protocol is also a novel applica-

tion of the same underlying technique: typically distance bounding

works by verifier sending a challenge and measuring the time taken

for a prover to respond, whereas we leverage public timestamp-

ing servers to track time instead of a verifier. Our approach has

some similarities to [44], which uses existing anchors with known

locations (educational / govt servers) to geolocate IP addresses.

7 CONCLUSION
We have presented GoAT, a practical Proof of Geo-Retrievability
(PoGeoRet) scheme for file geolocation. GoAT leverages timestamp-

ing internet servers for proving location and the Shacham-Waters

PoRet scheme for proving file retrievability. We formalized the no-

tion of PoGeoRet soundness by extraction from devices located

within a geographic boundary. We also presented a few practi-

cal model variants that facilitate realization of GoAT. GoAT has a

unique challenge model that permits batching proofs over several

intervals and verifying them at the end of an epoch. GoAT proofs

are small due to aggregation of PoRet proofs across the epoch. We

have demonstrated GoAT’s practicality through a fully functional

implementation and a real-world experiment.

8 ACKNOWLEDGMENTS
We would like to thank Filecoin researchers, in particular Nicola

Greco and Will Scott, for thoughtful discussions that helped shape

the work.

This workwas funded byNSF grants CNS-1564102, CNS-1704615,

and CNS-1933655 as well as generous support from IC3 industry

partners. Any opinions, findings, conclusions, or recommendations

expressed here are those of the authors and may not reflect those

of these sponsors.

REFERENCES
[1] 2021. Alexa Top Sites. https://www.alexa.com/topsites. [Accessed Apr

2021].

[2] 2021. Content delivery network. https://en.wikipedia.org/wiki/Content_
delivery_network. [Accessed Apr 2021].

[3] 2021. Cryptocurrency Prices by Market Cap. https://coinmarketcap.com/
[Accessed May 2021].

[4] 2021. Drand - Distributed Randomness Beacon. https://drand.love/ [Ac-

cessed May 2021].

[5] 2021. Filecoin Aims to Use Blockchain to Make Decentralized Storage Resilient

and Hard to Censor. https://www.infoq.com/news/2021/02/filecoin-
blockchain-storage/ [Accessed May 2021].

[6] 2021. Linux-native asynchronous I/O access library. https://pagure.io/
libaio. [Accessed Apr 2021].

[7] 2021. Metric space. https://en.wikipedia.org/wiki/Metric_space. [Ac-

cessed Apr 2021].

[8] 2021. SSD UserBenchmarks - 1058 Solid State Drives Compared. https://ssd.
userbenchmark.com/. [Accessed Apr 2021].

[9] A. Langley A. Malhotra and W. Ladd. 2020. Roughtime. https://datatracker.
ietf.org/doc/html/draft-roughtime-aanchal.

[10] Amazon. 2021. AWS EC2 Costs. https://aws.amazon.com/ec2/pricing/on-
demand/. [Accessed Apr 2021].

[11] Amazon. 2021. AWS S3. https://aws.amazon.com/s3/. [Accessed Apr 2021].

[12] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D.

Song. 2007. Provable Data Possession at Untrusted Stores. In ACM CCS. 598–609.
[13] J. Benet. 2014. IPFS - Content Addressed, Versioned, P2P File System. CoRR

abs/1407.3561 (2014). arXiv:1407.3561 http://arxiv.org/abs/1407.3561
[14] Juan Benet, David Dalrymple, and Nicola Greco. 2017. Proof of replication.

Protocol Labs, July 27 (2017), 20.

[15] J Benet and N Greco. 2018. Filecoin: A decentralized storage network. Protoc.
Labs (2018), 1–36.

[16] Karyn Benson, Rafael Dowsley, and Hovav Shacham. 2011. Do you know where

your cloud files are?. In Proceedings of the 3rd ACM workshop on Cloud computing
security workshop. 73–82.

[17] Ilker Nadi Bozkurt, Anthony Aguirre, Balakrishnan Chandrasekaran, P Brighten

Godfrey, Gregory Laughlin, Bruce Maggs, and Ankit Singla. 2017. Why is the

internet so slow?!. In International Conference on Passive and Active Network
Measurement. Springer, 173–187.

[18] David Cash, Alptekin Küpçü, and Daniel Wichs. 2017. Dynamic proofs of retriev-

ability via oblivious RAM. Journal of Cryptology 30, 1 (2017), 22–57.

[19] Ethan Cecchetti, Ben Fisch, Ian Miers, and Ari Juels. 2019. Pies: Public incom-

pressible encodings for decentralized storage. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 1351–1367.

[20] M. Clark. Mar 11, 2021. NFTs, explained. https://www.theverge.com/
22310188/nft-explainer-what-is-blockchain-crypto-art-faq [Ac-

cessed Apr 2021].

[21] Foamspace Corp. 2018. FOAM: The Consensus Driven Map of the World. https:
//foam.space/publicAssets/FOAM_Whitepaper.pdf [Accessed May 2021].

[22] T. Dierks and E. Rescorla. 2008. TLS 1.2 RFC 5246. https://tools.ietf.org/
html/rfc5246.

[23] Ben Fisch. 2018. PoReps: Proofs of Space on Useful Data. IACR Cryptol. ePrint
Arch. 2018 (2018), 678.

[24] Ben Fisch, Joseph Bonneau, Nicola Greco, and Juan Benet. 2018. Scaling proof-

of-replication for filecoin mining. Benet//Technical report, Stanford University
(2018).

[25] Phillipa Gill, Yashar Ganjali, Bernard Wong, and David Lie. 2010. Dude, where’s

that IP? Circumventing measurement-based IP geolocation. In Proceedings of the
19th USENIX conference on Security. 16–16.

[26] Toke Høiland-Jørgensen, Bengt Ahlgren, Per Hurtig, and Anna Brunstrom. 2016.

Measuring latency variation in the internet. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments and Technologies. 473–480.

[27] Kang Eun Jeon, James She, Perm Soonsawad, and Pai Chet Ng. 2018. BLE Bea-

cons for Internet of Things Applications: Survey, Challenges, and Opportunities.

IEEE Internet of Things Journal (2018). https://doi.org/10.1109/JIOT.2017.
2788449

[28] Ari Juels and Burton S Kaliski Jr. 2007. PORs: Proofs of retrievability for large

files. In Proceedings of the 14th ACM conference on Computer and communications
security. 584–597.

[29] Ethan Katz-Bassett, John P John, Arvind Krishnamurthy, David Wetherall,

Thomas Anderson, and Yatin Chawathe. 2006. Towards IP geolocation using

delay and topology measurements. In Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement. 71–84.

[30] Protocol Labs. July 19, 2017. Filecoin: A Decentralized Storage Network. https:
//filecoin.io/filecoin.pdf. [Accessed Apr 2021].

[31] Storj Labs. October 30, 2018. Storj: A Decentralized Cloud Storage Network

Framework. https://www.storj.io/storjv3.pdf. [Accessed Apr 2021].

[32] Sian-Jheng Lin, Tareq Y Al-Naffouri, Yunghsiang S Han, and Wei-Ho Chung.

2016. Novel polynomial basis with fast Fourier transform and its application to

Reed–Solomon erasure codes. IEEE Transactions on Information Theory 62, 11

(2016), 6284–6299.

[33] Ben Lynn. 2021. The Pairing-Based Cryptography Library. https://crypto.
stanford.edu/pbc/. [Accessed Apr 2021].

[34] Chris Mellor. January 25, 2021. SSDs will crush hard drives in the enterprise,

bearing down the full weight of Wright’s Law. https://blocksandfiles.com/
2021/01/25/wikibon-ssds-vs-hard-drives-wrights-law/. [Accessed Apr
2021].

[35] Christopher Patton. 2018. Roughtime: Securing Time with Digital Signatures.

https://blog.cloudflare.com/roughtime/. [Accessed Apr 2021].

[36] Qualys. April 11, 2021. SSL Pulse. https://www.ssllabs.com/ssl-pulse/.
[Accessed Apr 2021].

[37] Paul Reinheimer and Will Roberts. [n.d.]. Global Ping Statistics→Manhattan.

https://wondernetwork.com/pings/Manhattan. [Accessed Apr 2021].

[38] Hovav Shacham and Brent Waters. 2008. Compact proofs of retrievability. In

International conference on the theory and application of cryptology and information
security. Springer, 90–107.

13

https://www.alexa.com/topsites
https://en.wikipedia.org/wiki/Content_delivery_network
https://en.wikipedia.org/wiki/Content_delivery_network
https://coinmarketcap.com/
https://drand.love/
https://www.infoq.com/news/2021/02/filecoin-blockchain-storage/
https://www.infoq.com/news/2021/02/filecoin-blockchain-storage/
https://pagure.io/libaio
https://pagure.io/libaio
https://en.wikipedia.org/wiki/Metric_space
https://ssd.userbenchmark.com/
https://ssd.userbenchmark.com/
https://datatracker.ietf.org/doc/html/draft-roughtime-aanchal
https://datatracker.ietf.org/doc/html/draft-roughtime-aanchal
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/s3/
https://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1407.3561
https://www.theverge.com/22310188/nft-explainer-what-is-blockchain-crypto-art-faq
https://www.theverge.com/22310188/nft-explainer-what-is-blockchain-crypto-art-faq
https://foam.space/publicAssets/FOAM_Whitepaper.pdf
https://foam.space/publicAssets/FOAM_Whitepaper.pdf
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://doi.org/10.1109/JIOT.2017.2788449
https://doi.org/10.1109/JIOT.2017.2788449
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://www.storj.io/storjv3.pdf
https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
https://blocksandfiles.com/2021/01/25/wikibon-ssds-vs-hard-drives-wrights-law/
https://blocksandfiles.com/2021/01/25/wikibon-ssds-vs-hard-drives-wrights-law/
https://blog.cloudflare.com/roughtime/
https://www.ssllabs.com/ssl-pulse/
https://wondernetwork.com/pings/Manhattan

Deepak Maram, Iddo Bentov, Mahimna Kelkar, and Ari Juels

[39] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. 2013. Practical dy-

namic proofs of retrievability. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security. 325–336.

[40] Amin Shokrollahi. 2006. Raptor codes. IEEE transactions on information theory
52, 6 (2006), 2551–2567.

[41] Stuart Stock. 2021. Roughenough. https://github.com/int08h/roughenough.
[Accessed Apr 2021].

[42] Eduard Suica. 2021. Single C file TLS 1.2/1.3 implementation. https://github.
com/eduardsui/tlse/. [Accessed Apr 2021].

[43] D. Vorick and L. Champine. November 29, 2014. Sia: Simple Decentralized Storage.

https://sia.tech/sia.pdf. [Accessed Apr 2021].

[44] Yong Wang, Daniel Burgener, Marcel Flores, Aleksandar Kuzmanovic, and Cheng

Huang. 2011. Towards Street-Level Client-Independent IP Geolocation.. In NSDI,
Vol. 11. 27–27.

[45] Gaven J Watson, Reihaneh Safavi-Naini, Mohsen Alimomeni, Michael E Locasto,

and Shivaramakrishnan Narayan. 2012. Lost: location based storage. In Proceed-
ings of the 2012 ACM Workshop on Cloud computing security workshop. 59–70.

A NON-INTERACTIVE PROOFS OF
GEOGRAPHIC RETRIEVABILITY

Non-interactive Proofs of Geo-Retrievability or NIPoGeoRet allows

any newcomer to verify that the prover indeed had the file inside

the region of uncertainty (ROU), during a specified time duration.

The NIPoGeoRet API is almost the same as the PoGeoRet one except

that the function Chal is removed. We attach the preamble NI to
other API functions, e.g., NIProve and NIVerify.

Modeling time: In our previous modeling for interactive PoGe-

oRet, we relied on the verifier to keep track of time during the

security experiments. Instead now we introduce a notion of time

into the definition. Each system entity maintains an internal clock.

Clocks need not be synchronous, but we assume that clock drift

is negligible. The clock time of say an anchor A is given by timeA.
If the true time is given by true_time, then the clock offset of an

entity A is (timeA − true_time). The offsets of all anchors are as-
sumed to be public (this can be observed once during a setup phase

in practice). Note that the NIVerify function relies on these clock

offsets to judge if the proof is valid.

A.1 Security properties

Non-interactive Completeness: The completeness definition is

the same as before, except that no challenges are issued by the

verifier.

Non-interactive Soundness: The changes to the security experi-

ments are as follows. The setup experiment is same as before, except

that the public information pp could also contain extra information

such as anchor public keys.

The challenge experiment now does not involve sending chal-

lenges to the prover. Instead, the prover computes NIPoGeoRet

proofs itself, and submits a proof at the end of an epoch. This proof

is verified using NIVerify. We define

Succchal
′
([, 𝑅, pp) = Pr [NIVerify(pp, 𝑅) = 1] . (4)

The extraction experiment is same as before. The new soundness

definition is also roughly the same as before, barring the change to

challenge experiment:

Definition 2 (NISoundness). A NIPoGeoRet scheme is 𝜖-sound
w.r.t a target region 𝑅target achieving a region of uncertainty 𝑅rou, if

for all poly-time A and 𝑝1 = 1 − negl (_), 𝑝2 = 1 − negl (_):

Pr

Succ
extr ([, 𝑅, pp, 𝐹) > 𝑝1

�������
𝑅 ← 𝑅rou,

([, pp, 𝐹) ← ExpsetupA (𝑅),
Succchal

′ ([, 𝑅, pp) > 𝜖

 > 𝑝2 .

A.2 Changes to GoAT
The GoAT protocol is already mostly non-interactive. For example,

recall that in GoAT, the newcomer verifies the proof by using the

list of public keys of the anchors.

In the specified protocol in Fig. 9, the function Chal can be

removed as a randomly chosen initial challenge is unnecessary for

GoAT’s security.

B PRACTICAL CONSIDERATIONS

Parameterization trade-offs: We discuss various trade-offs aris-

ing in GoAT parameterization now.

The number of sectors 𝑠 impacts the proof sizes, geolocation

quality and the storage overhead. Higher 𝑠 leads to reduced storage

overhead but at the cost of relatively poorer geolocation and worse

proof size (See Table 7). Note that higher 𝑠 leads to increased PoRet

commit times and thereby worse geolocation (eq. (3)).

The number of challenges 𝑘 and the code rate 𝜌 need to be set

following the constraint given in Thm. 1. As shown in Sec. 5.1.3,

for practical values of 𝜌 , the number of challenges is around 200. 𝑘

and 𝜌 impact geolocation quality and storage overhead respectively.

There is a direct trade-off between the two — higher code rate (𝜌)

leads to less storage overhead but requires setting a higher number

of challenges (𝑘), which leads to higher PoRet commit times and

worse geolocation.

Anchor clocks: For GoAT to work, we assume that the clock drift

of anchors is negligible. This assumption was made to ensure that

clock offsets can be observed once and used later on, avoiding the

need for any time synchronization. Clock drifts in practice tend to

be much smaller than the interval lengths in GoAT, and hence this

assumption is reasonable.

Finding anchors: In Sec. 5, we used just the basic requirements in

deciding whether a given internet server can be used as an anchor.

In practice though, other considerations such as reliability (does

the anchor have stable response times) and trustworthiness (is the

anchor reputable enough) will have to be taken into account.

As noted before, if relying on existing internet servers is unde-

sirable, anchors for GoAT can be purpose-built. We suggest using

Roughtime for new anchors due to its performance benefits.

C SECURITY PROOFS
Recall that the PoGeoRet proof consists of 𝐼 geo-commitments and

a PoRet proof. Each geo-commitment consists of 𝑎 + 1 anchor tran-
scripts and all but the first transcript contain a PoRet commitment.

In total, 𝑁 = 𝐼𝑎 PoRet commitments are in a PoGeoRet proof.

AsGoAT is a non-interactive protocol, i.e., a NIPoGeoRet scheme,

we provide the proof for the non-interactive variant of the sound-

ness definition (Def. 2).

We prove soundness of GoAT in four steps.

14

https://github.com/int08h/roughenough
https://github.com/eduardsui/tlse/
https://github.com/eduardsui/tlse/
https://sia.tech/sia.pdf

GoAT: File Geolocation via Anchor Timestamping

(1) Prove that the 𝑁 PoRet commitments and the PoRet proof

are correctly computed, i.e., the PoRet verification protocol

(PoRet.Verify) part of Verify must detect otherwise.

(2) Timing-based argument to prove that the challenged file

blocks used to compute a valid PoRet commitment must be

in the target region, i.e., the verification protocol (Verify)
must detect otherwise.

(3) Prove that the extraction algorithm Extract can efficiently

reconstruct 𝜌 fraction of file blocks from each of the 𝐼 snap-

shots {𝑆𝑖 }𝐼𝑖=1.
(4) Prove that the file can be reconstructed from any 𝜌 fraction.

The proof for part 4 follows directly from the properties of a

rate-𝜌 erasure code, so we do not expand on it further. Note that

we only provide proof sketches for the rest.

C.1 Part-two proof
For this part, we assume that the PoRet commitments, proofs are

correctly computed and prove that the challenged file blocks must

be in the desired target region during every interval.

As noted before, we assume that the clock offsets of all anchors

are observed apriori and that clock drift is negligible. So we can

safely assume that the anchor timestamps lie inside the expected

interval, as otherwise the geo-commit verification would detect.

We begin with a proof for a setting with high resolution anchors.

C.1.1 High-resolution anchors (𝑎 = 1). Fixing some notation, as-

sume that the storage provider P is at a location 𝐿𝑝 ∈ 𝑅target and
that the anchor assigned to 𝐿𝑝 is A, located at 𝐿1. Recall that the

target region inGoAT is a spherical circle centered at 𝐿1 with radius

𝛿 = Δ(𝐿𝑝 , 𝐿1) · 𝑆max/2, i.e., the region 𝑅in = (𝐿1;𝛿). Expanding the

radius further we have, 𝛿 = (𝑡com+ rttmax (𝐿𝑝 , 𝐿1) +𝑡proc) · (𝑆max/2).
Recall that in the case of high-resolution anchors, the prover

computes one PoRet commitment per interval. We want to prove

that all the 𝐼 PoRet commitments are computed on some device in

𝑅in. Assume the contrary, i.e., say there exists a deviceDout situated

at 𝐿2 ∈ 𝑅out on which one of the PoRet commitments is computed.

By definition we have dist(𝐿1, 𝐿2) > 𝛿 .

Without loss of generality, assume that a copy of the encoded

file 𝐹 ∗ (generated during the setup experiment) exists in its entirety

in the memory of Dout, and therefore the time taken to compute

commitment on Dout is negligible, i.e., 𝑡
A
com = 0. We also set the

anchor response handling time, 𝑡Aproc = 0.

The time taken to receive and respond from Dout during the geo-

commitment protocol with A is given by 𝑧 = 2dist(𝐿1, 𝐿2)/𝑆max.

This is because in Fig. 5 we derive challenges from anchor signa-

tures, i.e., they arise at 𝐿1 and must reach 𝐿2. We can assume that

the adversary probability of guessing these challenges is negligible

(requires breaking selective unforgeability of the signature scheme

used by the anchor which happens with negligible probability).

Note in particular that this value is irrespective of any other

factors, e.g., the adversary’s strategy might be to place a device Din
exactly at the anchor location 𝐿1, and initiate the protocol from Din
with challenges forwarded to Dout. Moreover, we do not include

any startup cost when the adversary is sending messages between

devices, so 𝑡Astart = 0.

For the geo-commitment verification to succeed, it must be that

𝑧 ≤ Δ(𝐿𝑝 , 𝐿1). (See last step in Fig. 3 when 𝑎 = 1.)

But we have a contradiction, as 𝑧 must also satisfy 𝑧 > 2𝛿/𝑆max
because dist(𝐿1, 𝐿2) > 𝛿 . Substituting for 𝛿 we get 𝑧 > Δ(𝐿𝑝 , 𝐿1).
Hence proved. □

C.1.2 Low-resolution anchors (𝑎 > 1) . The target region now has

a slightly larger radius, 𝛿 = (Γ/𝑎) ·𝑆max/2. The proof is very similar

to the previous case. Themain difference now is that the verification

algorithm checks if 𝑎 + 1 anchor transcripts have the same time.

Therefore the prover is forced to execute 𝑎 PoRet commitments

sequentially.

Recall that for low-resolution anchors, the prover computes 𝑎

commitments every interval. Continuing in the same style as before,

assume for contradiction that the prover tries to execute all the

commitments in one of the intervals from Dout (Dout is setup in

the same fashion as before).

The time difference between last and first timestamp in Geo-
Commit is given by 𝑧 = 2𝑎dist(𝐿1, 𝐿2)/𝑆max. Note that we are

counting time from the moment anchor receives the first request

to the moment anchor sends out the last response.

To succeed in verification, it must be that 𝑧 ≤ Γ. Intuitively, this
corresponds to 𝑎 + 1 timestamps having the same time. But we have

a contradiction, as 𝑧 must also satisfy 𝑧 > 2𝑎𝛿/𝑆max, substituting

for 𝛿 we get 𝑧 > Γ. Hence proved. □

Note on technique:One subtlety to note is that the following alter-
nate amplification method that computes PoRet commitment only

once does not work: 𝑝𝑖𝑛𝑔1, 𝑐𝑜𝑚1, 𝑝𝑖𝑛𝑔2, 𝑝𝑖𝑛𝑔3, . . ., 𝑝𝑖𝑛𝑔𝑎 , 𝑝𝑖𝑛𝑔𝑎+1.
At first sight it might seem like a reasonable approach as it can also

fill up a large amount of time.

But the proof does not go through because the adversary can

decrease the time difference 𝑧 as follows. Place Din negligibly close

to A and initiate the protocol from it. Therefore, the time taken for

all consecutive pings is negligible. In this case, the timestamp differ-

ence will only be 𝑧 = 2dist(𝐿1, 𝐿2)/𝑆max (incurred as the adversary

would have to forward challenges required to compute 𝑐𝑜𝑚1 from

Din to Dout).

C.2 Remaining proofs
We now prove the remaining parts, part-one and part-three.

C.2.1 Part-one proof. For this we reuse the proof for Theorem 4.2

in [38]. They provide a series of games that prove that, except with

negligible probability, no adversary ever causes a verifier to accept

in a PoRet instance, except by responding with values

{
` 𝑗

}
, 𝜎 that

are computed correctly (under the assumption that the compu-

tational Diffie-Hellman problem is hard in bilinear groups). This

directly proves that if the challenger provides a challenge set S∗,
then the correctly computed output of SW.Prove and SW.Commit
containing

{
𝐶𝝁 , 𝝁, 𝜎

}
must be accepted by the verification algo-

rithm SW.Verify. The only change we made is the extra vector

commitment. Assuming that the binding property of the vector

commitment scheme holds, this directly follows.

The remaining thing to be proved is that all the individual PoRet

commitments used to compute 𝐶 = 𝐶𝝁 are correctly computed.

Assume for contradiction that some of them are not computed cor-

rectly. Observe that we derive random coefficients 𝑟 𝑗 from the final

15

Deepak Maram, Iddo Bentov, Mahimna Kelkar, and Ari Juels

PoRet commitment 𝐶𝑁 (in PoRetCompute-SW). These coefficients

are used during verification (in Verify-SW) to compute𝐶 as follows,

𝐶 =
∏𝑁

𝑗=1 (𝐶 𝑗)𝑟𝑁 . Under the random oracle model, we can assume

that the probability of prover guessing these coefficients beforehand

is negligible. Note the two checks in SW.Verify: the commitment

check (VC.Verify) and the pairing equation check. Assuming that

the latter succeeds, that is the final commitment 𝐶 is the same as

that computed by an honest prover, then the only way prover can

make VC.Verify succeed is by guessing the random coefficients cor-

rectly (or) by breaking commitment binding, both of which happen

with negligible probability. Grinding concerns are discussed in the

main body.

C.2.2 Part-three proof. We re-purpose the extraction algorithm

provided in the proof of Theorem 4.3 in [38]. [38] provides an

extraction algorithm that, given an adversary that answers 𝜖 frac-

tion of the queries correctly, can extract 𝜌 fraction of the encoded

file blocks provided that 𝜖 − (𝜌𝑛)𝑘/(𝑛 − 𝑘 + 1)𝑘 is positive and

non-negligible.

A key difference now is that the extraction algorithm runs di-

rectly on the static memory snapshots {𝑆𝑖 }𝐼𝑖=1. We prove that 𝜌

fraction of the encoded file blocks can be extracted from one of the

snapshots, say 𝑆1. Proof for the rest is similar.

The key question is how the new bandwidth constraint𝜙 impacts

the above theorem.

Recall that the size of the encoded file is |𝐹 ∗ |. Of this, due to

grinding, at least 𝑔 = (1 − (1 − 2−_)1/𝛼)1/𝑘 fraction is only stored

in the snapshot 𝑆1 and hence only that is available for extraction (𝛼

is the grinding cap). And further, upto 𝜙 bytes (the bandwidth cap)

of the 𝑔-sized fraction can be downloaded, and is hence unavailable

in 𝑆1.

The idea in the proof of Theorem 4.3 of [38] is to query enough

times and use linear algebraic techniques to recover file blocks

from query responses. Queries are made randomly. Three types of

queries are listed, and the fraction of type-1 queries (the useful ones

that help recover file blocks) is 𝜖 −𝑤 where 𝑤 = (𝜌𝑛)𝑘/(𝑛 − 𝑘 +
1)𝑘 (omitting the negligible part of the equation caused by type-2

queries). The extractor needs 𝜌𝑛 ≤ 𝑛 type-1 queries to succeed,

which happens in 𝑂 (𝑛/(𝜖 −𝑤)) time.

The maximum number of blocks unavailable in the static mem-

ory is given by 𝛾 = (𝑛𝜙|𝐹 ∗ |) +𝑛(1 −𝑔). Therefore the extractor needs
more type-1 queries to succeed, (𝜌𝑛 + 𝛾). Note that we assume if a

query challenges a block that belongs to the unavailable portion in

𝑆1, a special symbol “−1” is used in place of the file block, and the

challenge response is computed. And by extracting (𝜌𝑛 +𝛾) blocks,
we are guaranteed to have at least 𝜌𝑛 actual file blocks (removing

the −1’s).
The useful fraction of queries now is 𝜖 − 𝑤 where 𝑤 = (𝜌𝑛 +

𝛾)𝑘/(𝑛 − 𝑘 + 1)𝑘 . And assuming 𝜌𝑛 + 𝛾 ≤ 𝑛, extraction happens in

𝑂 (𝑛/(𝜖 −𝑤)) time, i.e., same order as before. One constraint we

get is
𝜙

|𝐹 ∗ | ≤ 𝑔 − 𝜌 .
We want 𝜖 −𝑤 to be positive and non-negligible. Therefore𝑤

needs to be negligibly small. Meaning (𝜌+𝛾/𝑛)𝑘 (or) (𝜌+ 𝜙

|𝐹 ∗ |+1−𝑔)
𝑘

needs to be negligible. As noted above, the number of interactions

required and the time to extract is the same order as in [38]. □

Geo-commitment generation (GeoCommit) between P and A

ProtA : Follow the standard protocol (TLS 1.2 / Roughtime).

ProtP : On input {[, seed, pp }, runs the below protocol.

If ΓA ≤ 1ms, set the amplification factor 𝑎 = 1. Or else 𝑎 = ⌊ΓA/Δ(A, P) ⌋ − 1. Set
𝑁1 = seed, 𝑖 = 1 and do the following:

(1) (Anchor ping) Request time from the anchor, {𝑡𝑖 , 𝑁𝑖 , 𝜎𝑖 } ←
A.GetAuthTime(𝑁𝑖) . If 𝑖 = 𝑎 + 1, then break.

(2) (PoRet commitment) Run S𝑖 ← PoRet.Chal([, pp, 𝜎𝑖) , 𝐶𝑖 ←
PoRet.Commit([, S𝑖) . Set 𝑁𝑖+1 = 𝐶𝑖 , 𝑖 = 𝑖 + 1 and repeat from step 1.

P saves𝐶geo = {𝑇𝑖 }𝑎+1𝑖=1 where𝑇𝑖 = {𝑡𝑖 , 𝑁𝑖 , 𝜎𝑖 } denotes the transcript.
Geo-commitment verification by V

On receiving seed, epoch number 𝑒 , interval number𝑚, anchor public key pkA and

the geo-commitment𝐶geo =
{
{𝑇𝑖 }𝑎+1𝑖=1 , {𝐶𝑖 }𝑎𝑖=1

}
, the auditor V does:

• Set 𝑁1 = seed and ∀𝑖 ∈ [1, . . . , 𝑎], 𝑁𝑖+1 = 𝐶𝑖 .

• Verify anchor signatures using pkA , ∀𝑖 ∈ [1, . . . , 𝑎 + 1], VfpkA (𝜎𝑖 , {𝑡𝑖 , 𝑁𝑖 })
where𝑇𝑖 = {𝑡𝑖 , 𝜎𝑖 } .

• Check that the time corresponds to epoch 𝑒 , interval𝑚.

• Check that the timestamps are close:

– If 𝑎 > 1, check that the time is same, 𝑡1 = 𝑡2 = . . . = 𝑡𝑎+1 .
– If 𝑎 = 1, check that 𝑡2 − 𝑡1 ≤ Δ(A, P) .

Figure 5: Geo-commitment protocols.

Shacham-Waters PoRet scheme

Scheme parameters: A bilinear group (𝑝,G,G𝑇 , 𝑒, 𝑔) . Number of challenges 𝑘 .

Number of sectors per block 𝑠 . An erasure code with rate 𝜌 .

• (sk, pk) ← SW.KGen(1_) : Pick key pair (ssk, spk) ← KGen(1_) . Choose
𝛼 ∈ Z𝑝 at random and compute 𝑔𝛼 ∈ G. The secret key is sk = (ssk, 𝛼) while
the public key is pk = (spk, 𝑔𝛼) .

• (𝐹 ∗, [, pp) ← SW.St(sk, pk, 𝐹): Apply erasure code over 𝐹 to obtain 𝐹 ′. Split
𝐹 ′ into 𝑛 blocks, each 𝑠 sectors long

{
𝑚𝑖 𝑗

}
1≤𝑖≤𝑛,1≤ 𝑗≤𝑠 with𝑚𝑖 𝑗 ∈ Z𝑝 . Pick

𝑠 elements at random {𝑢𝑖 }𝑠𝑖=1 ∈ G. For each 𝑖 ∈ {1, . . . , 𝑛 } compute 𝜎𝑖 ←
(𝐻 (𝑖) .∏𝑠

𝑗=1 𝑢
𝑚𝑖𝑗

𝑗
)𝛼 where𝐻 is a hash-to-group function. Denote 𝐹 ∗ as the file

together with 𝜎𝑖 , 1 ≤ 𝑖 ≤ 𝑛. The public params
a pp contains

{
pk, 𝑛, {𝑢𝑖 }𝑠𝑖=1

}
along with a signature generated with ssk. [= H(𝐹 ∗) .

• {𝑐𝑖 , 𝑣𝑖 }𝑘𝑖=1 ← SW.Chal([, pp, seed) : Derive 𝑘 values 𝑐𝑖 ∈ [𝑛], 𝑣𝑖 ∈ Z𝑝 from

the input seed. Return {𝑐𝑖 , 𝑣𝑖 }𝑘𝑖=1 .
• 𝐶𝝁 ← SW.Commit([, {𝑐𝑖 , 𝑣𝑖 }𝑘𝑖=1) : Compute ∀𝑗 ∈ [1, . . . , 𝑠], ` 𝑗 ←

Σ𝑘
𝑖=1

𝑣𝑖𝑚
′
𝑖 𝑗 where 𝑚′𝑖 𝑗 = 𝑚 (𝑐𝑖) 𝑗 . Commit to the vector 𝝁 =

{
` 𝑗

}𝑠
𝑗=1

by

𝐶𝝁 ← VC.Commit(𝝁) .
• 𝜋 ← SW.Prove([, {𝑐𝑖 , 𝑣𝑖 }𝑘𝑖=1) : Compute 𝜎 =

∏𝑘
𝑖=1 𝜎

𝑣𝑖
(𝑐𝑖)

and ∀𝑗 ∈
[1, . . . , 𝑠], ` 𝑗 ← Σ𝑘

𝑖=1
𝑣𝑖𝑚

′
𝑖 𝑗 where𝑚

′
𝑖 𝑗 =𝑚 (𝑐𝑖) 𝑗 . Output 𝜋 = {𝝁, 𝜎 } where

𝝁 =
{
` 𝑗

}𝑠
𝑗=1

.

• 0/1 ← SW.Verify(pp, {𝑐𝑖 , 𝑣𝑖 }𝑘𝑖=1 ,𝐶𝝁 , 𝜋) : Receive 𝜋 = {𝝁, 𝜎 }. Check sig-

nature on 𝑡 with spk and parse it receive {𝑢𝑖 }𝑠𝑖=1 . Check if 𝑒 (𝜎,𝑔) =

𝑒 (∏𝑘
𝑖=1 (𝐻 (𝑐𝑖))𝑣𝑖

∏𝑠
𝑖=1 𝑢

`𝑖
𝑖
, pk) . Check if VC.Verify(𝝁,𝐶𝝁) = 1.

a
Referred to in the original Shacham-Waters paper as tag.

Figure 6: The Shacham-Waters PoRet scheme with an extra
commitment step.

Note that the above proof assumed that any 𝜌 fraction of blocks

can be used to extract the file 𝐹 . This is not true for fast-codes

(Sec. 3.5.2). But since we assume that the adversary only picks how

many blocks to delete, and does not resort to strategic deletion of

blocks, we can trivially extend the above proof to the setting of

fast-codes by assuming that the adversary deletes blocks randomly.

16

GoAT: File Geolocation via Anchor Timestamping

Proof of Retrievability

• (sk, pk) ← PoRet.KGen(1_) : Generate key pair.

• (𝐹 ∗, [, pp) ← PoRet.St(sk, pk, 𝐹) : 𝐹 ∗ contains the encoded file, [denotes a

unique file handle and pp contains the public parameters. We model the public

key pk as a part of pp.
• 𝐹 ← PoRet.Extract([, pp) : An interactive function between a prover and

verifier to recover original file 𝐹 .

• 𝑐 ← PoRet.Chal([, pp, seed) : Derive a challenge 𝑐 from the input seed for

the file [.

• 𝐶 ← PoRet.Commit([, 𝑐) : Generate a commitment𝐶 to the proof based on

the challenge 𝑐 .

• 𝜋 ← PoRet.Prove([, 𝑐) : Generate a proof 𝜋 based on the challenge 𝑐 .

• 0/1← PoRet.Verify(pp, 𝑐,𝐶, 𝜋) : Verify both the commitment𝐶 and proof 𝜋

using the public parameters pp.

Figure 7: Publicly verifiable PoRet API. PoRet.Commit is the
only addition compared to prior modeling [28].

Pedersen commitment

Params: Group G and it’s support Z𝑝 . Supported vector size 𝑠 . Generators

(ℎ1, ℎ2, . . . , ℎ𝑠) ← G.
• 𝐶v ← VC.Commit(v) : Receive v = {𝑣𝑖 }𝑠𝑖=1 where ∀𝑖, 𝑣𝑖 ∈ Z𝑝 . Output
𝐶v =

∏𝑠
𝑖=1 ℎ

𝑣𝑖
𝑖
∈ G.

• 0/1← VC.Verify(v,𝐶v) : Check if𝐶v =
∏𝑠

𝑖=1 ℎ
𝑣𝑖
𝑖
.

Figure 8: Pedersen vector commitment scheme

Scheme GoAT-MT GoAT-SW
Parameters 𝑛 = 1

𝑏𝜌
|𝐹 | 𝑛 = 1

𝑠𝜌_
|𝐹 |

Storage overhead 32𝑛 + (1𝜌 − 1) |𝐹 | 𝑛_ + (1𝜌 − 1) |𝐹 |

Proof size

𝐼𝑎𝑘 (𝑏 + 32 log
2
𝑛)+

𝐼 (𝑎 + 1) |𝑇 |
(𝑠 + 1)_+
𝐼 (𝑎 + 1) |𝑇 |

PoRet.Commit time 𝑂 (𝑘𝑏) 𝑂 (𝑘𝑠)
Table 7: Storage overhead, proof sizes and commit times for
GoAT-MT and GoAT-SW.

D GOAT-MT: GOATWITH MERKLE TREES
We now provide details of an alternate construction,GoAT-MT, that
uses Merkle-Trees as the Proof of Retrievability scheme. We refer

to the previously proposed GoAT as GoAT-SW.

D.1 Merkle Tree PoRet
We begin with a brief explanation of the Merkle tree PoRet scheme

and the newly added commit function.

The setup phase (MT.St) is as follows. The user divides the file
𝐹 into blocks and builds a Merkle tree with the blocks serving as

leafs of the tree. The root of the Merkle tree 𝑟 is signed by the user,

and the resultant tuple pp = {𝑟, 𝜎𝑟 } forms the public parameters.

A PoRet challenge consists of 𝑘 file block indices. For each block

index requested, the proof of retrievability consists of the requested

block together with a sibling path to the root of the Merkle tree.

Any party can later verify the proof later using just the public

parameters pp.
The new commit function,MT.Commit, involves computing a

hash over the requested file blocks; note that the Merkle tree is not

used in this computation. Figure 10 presents the scheme.

PoGeoRet scheme between U, P, V

Scheme parameters: List of anchors T and their corresponding public keys. Interval

length 𝛽 , number of intervals 𝐼 .

ProtU, ProtP, ProtV :

• (sk, pk) ← KGen(1_) : U runs (sk, pk) ← PoRet.KGen(1_) .
• (𝐹 ∗, [, pp) ← St(sk, pk, 𝐹) : U runs (𝐹 ∗, [, pp) ← PoRet.St(sk, pk, 𝐹) and

picks a geographic region 𝑅 = (𝐿;𝛿𝐿) . Values {𝐹 ∗, pp, 𝑅 } are given to P
situated at 𝐿.

• 𝑐 ← Chal([, pp, seed) : Derive 32-byte values 𝑐 = {seed𝑚 }𝐼𝑚=1 ←
PRF(seed) .

• 𝜋geo ← Prove([, 𝑅, 𝑐, pp) : P selects an anchor A ∈ T based on the input

region 𝑅. P generates geo-commitments via GeoCommit once every interval,

and proofs of retrievability via PoRetCompute once every epoch. Send 𝜋geo ={{
𝐶
geo
𝑚

}𝐼
𝑚=1

, 𝜋PoRet
}
to V.

– 𝐶geo ← GeoCommit([, seed𝑚, pp) : P runs the protocol in Fig. 5 with the

anchor A.
– 𝜋PoRet ← PoRetCompute([, {𝐶geo }𝐼𝑎𝑗=1) : Let 𝑁 = 𝐼𝑎. Let S𝑗 , 𝐶 𝑗 be the

PoRet challenge set and the commitment generated to compute𝐶
geo
𝑗

. The

proof computation process differs by the PoRet scheme:

∗ MT: Run ∀𝑗, 𝜋PoRet
𝑗

← MT.Prove([, S𝑗) . 𝜋PoRet =

{
𝜋PoRet
𝑗

}𝑁
𝑗=1

.

∗ SW: P derives 𝑁 random coefficients in Z𝑝 from the last PoRet commit-

ment,

{
𝑟 𝑗

}𝑁
𝑗=1
← PRF(𝐶𝑁) . Denote S𝑗 =

{
𝑐𝑖 𝑗 , 𝑣𝑖 𝑗

}𝑘
𝑖=1

. Apply random

coefficients, ∀𝑗, S∗𝑗 =
{
𝑐𝑖 𝑗 , 𝑟 𝑗 𝑣𝑖 𝑗

}𝑘
𝑖=1

and merge all the sets to create,

S∗ = ∪𝑁
𝑗=1
S∗𝑗 . Compute 𝜋PoRet ← SW.Prove([, S∗) .

• Fpor/Fother/Succ ← Verify(pp, 𝑅, 𝑐, 𝜋geo) : V unpacks 𝑐 = {seed𝑚 },
𝜋geo =

{{
𝐶
geo
𝑚

}𝐼
𝑚=1

, 𝜋PoRet
}
. First 𝜋PoRet

is verified using below specified

method. Geo-commitments verification is in Fig. 5: if it fails, Fother is returned.

– MT: Denote 𝜋PoRet =

{
𝜋PoRet
𝑗

}𝑁
𝑗=1

. Check

∀𝑗,MT.Verify(pp, 𝑐 𝑗 ,𝐶 𝑗 , 𝜋
PoRet
𝑗
) = 1. Else return Fpor.

– SW: Denote 𝜋PoRet = {𝝁, 𝜎 }. V generates random coefficients

{
𝑟 𝑗

}𝑁
𝑗=1

and

aggregate challenge set S∗ similar to how P does in Prove. V computes

𝐶 =
∏𝑁

𝑗=1 (𝐶 𝑗)𝑟 𝑗 and checks if SW.Verify(pp, S∗,𝐶, 𝜋PoRet) = 1. Else

return Fpor.

Figure 9: TheGoAT proof of geo-retrievability schemes. It in-
cludes both the Shacham-Waters (SW) and the Merkle-Tree
(MT) variants.

Merkle tree PoRet scheme

Scheme parameters: Block size 𝑏 and number of challenges 𝑘 . An erasure code

with rate 𝜌 .

• (sk, pk) ← MT.KGen(1_) : Run KGen(1_) .
• (𝐹 ∗, [, pp) ← MT.St(sk, pk, 𝐹) : Apply erasure code over 𝐹 to obtain 𝐹 ′. Split

𝐹 ′ into 𝑛 blocks (𝑛 = |𝐹 ′ |/𝑏) and build a Merkle tree. Denote the tree root by 𝑟 .

Set pp = {𝑛, 𝑟, pk, 𝜎𝑟 } where 𝜎𝑟 = Sigsk (𝑛 ∥ 𝑟) . Set 𝐹 ∗ to 𝐹 ′ plus the Merkle

tree and [= H(𝐹 ∗) .
• {𝑐𝑖 }𝑘𝑖=1 ← MT.Chal([, pp, seed) : Derive 𝑘 values from the input seed in the

range [1, 𝑛].
• 𝐶 ← MT.Commit([, {𝑐𝑖 }𝑘𝑖=1) : For each challenge 𝑐𝑖 , retrieve the file block 𝑓𝑖

using the file handle [and compute𝐶 = H({ 𝑓𝑖 }𝑘𝑖=1) .
• 𝜋 ← MT.Prove([, {𝑐𝑖 }𝑘𝑖=1) : For each challenge 𝑐𝑖 , retrieve the file block 𝑓𝑖

and its sibling path 𝑝𝑖 in the Merkle tree. Set 𝜋 = { 𝑓𝑖 , 𝑝𝑖 }𝑘𝑖=1 .
• 0/1 ← MT.Verify(pp, {𝑐𝑖 }𝑘𝑖=1 ,𝐶, 𝜋) : Expand pp = {𝑛, 𝑟, pk, 𝜎𝑟 }. Check

Vfpk (𝑟, 𝜎𝑟) = 1. ∀1 ≤ 𝑖 ≤ 𝑘 , check each triple {𝑐𝑖 , 𝑓𝑖 , 𝑝𝑖 } using the root

𝑟 .

Figure 10: TheMerkle tree PoRet scheme with an extra com-
mitment step.

17

Deepak Maram, Iddo Bentov, Mahimna Kelkar, and Ari Juels

D.2 GoAT-MT protocol
Figure 9 also specifies GoAT-MT, look for the symbols “MT” in

the figure. The GeoCommit protocol is same as before. In PoRet-
Compute, unlike GoAT-SW, all PoRets are computed individually

thereby leading to high proof sizes. The proofs are later verified in

Verify.
Table 7 presents the concrete storage overhead, proof size and

the algorithmic complexity of commit for GoAT-MT and GoAT-SW.

We note that the proof sizes shown in the table does not account for

several practical optimizations one might use to compress GoAT-
MT proofs, e.g., remove some portion of the top half of the tree as

it is likely the same. We expect these optimizations to bring down

proof sizes by a small constant only.

E FUTUREWORK
Finer geolocation. One set of ideas is related to improving the

network model. Taking endpoint locations into account is one direc-

tion, for example well-connected areas could have higher expected

network speeds (or lower speedup). The network model could also

be more nuanced, for example nearby locations are known to have

higher latencies due to long routing paths. In this case, choosing

a different model based on how close the two locations are would

be better. The startup cost 𝑡start can then only be applied to nearby

locations.

Another idea would be to optimize the PoRet commit compute

time further — for example, finding a pairing-friendly curve that

has fast vector commit times. With regards to the choice of anchors,

using Roughtime servers is clearly beneficial if possible. Otherwise

finding TLS servers that respond quickly is suggested, i.e., have low

processing times. Overall Roughtime is a better choice of anchor,

both from a performance perspective and an ethical standpoint

since our use of TLS might be seen as abusing it. We hope that

Roughtime gains more adoption in the future.

Constructing a proof-of-space. One potentially impactful research

direction is to extendGoAT to construct a Proof-of-Space. Currently,
GoAT can only prove that a file 𝐹 is geographically retrievable from

a set of different regions. But if the file 𝐹 is adversarially chosen,

the prover might only actually need to store a small seed.

18

	Abstract
	1 Introduction
	1.1 The Anchor Model
	1.2 Proving Geolocation
	1.3 Geolocating Files: GoAT
	1.4 Contributions and Paper Organization

	2 Preliminaries
	2.1 Authenticated time protocols
	2.2 Proof of Retrievability

	3 Formalizing Proofs of Geographic Retrievability
	3.1 Preliminaries
	3.2 Adversarial Model
	3.3 Completeness
	3.4 Soundness
	3.5 Practical model variants

	4 The GoAT protocol
	4.1 System Model
	4.2 Shacham-Waters scheme
	4.3 GoAT with high-resolution anchors
	4.4 GoAT with low-resolution anchors
	4.5 GoAT security
	4.6 Decentralizing trust among anchors

	5 Implementation and Evaluation
	5.1 Setup considerations
	5.2 Evaluation

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References
	A Non-interactive Proofs of Geographic Retrievability
	A.1 Security properties
	A.2 Changes to GoAT

	B Practical considerations
	C Security Proofs
	C.1 Part-two proof
	C.2 Remaining proofs

	D GoAT-MT: GoAT with Merkle trees
	D.1 Merkle Tree PoRet
	D.2 GoAT-MT protocol

	E Future Work

