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Abstract

This paper presents Multidimentional ModDiv public key exchange protocol which security is
based on the hardness of an LWR problem instance consisting on finding a secret vector X in
Zn
r knowing vectors A and B respectively in Zm

s and Zl
t, where elements of vector B are defined

as follows : B(i) =( (
∑j=n

j=1 A(i + j)×X(j)) Mod(2p)Div(2q).
Mod is integer modulo operation, Div is integer division operation, p and q are known positive
integers satisfying p > 2× q. Size in bits of s equals p, size in bits of r equals q, and size in bits
of t equals p− q, m > 2× n and l = m− n.

Keywords : Diffie Hellman key exchange protocol, Post Quantum cryptography, Lattice based
cryptography, Closest vector problem, Learn with rounding problem.

1 Introduction :

Since its invention by Withfield Diffie and Martin Hellman [1], public key cryptography has im-
posed itself as the necessary and indispensable building block of every IT security architecture.
In the last decades, it has been proven that public key cryptosystems based on number theory
problems are not immune againt quantum computing attacks [2], urging the necessity of inventing
new algorithms not based on classical problems namely factoring, discret log over multiplicative
groups or elliptic curves.

In [3] is presented a one dimentional ModDiv public key exchange protocol which security have
been shown in Barcau et all [4] to be based on CVP problem.
Y Zang [5] have proven that one dimentional ModDiv security problem can be reduced to a CVP
problem in 2 dimentional lattice.

Present paper proposes Multidimentional ModDiv public key exchange protocol which security is
based on an instance of learn with rounding problem first proposed by Banerjee et all [6] .
In section 2, we describe one dimentional ModDiv public key exchange protocol and provide a proof
of its corectness .
In section 3, we describe Multidimentional ModDiv public key exchange protocol.
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2 One dimentional ModDiv public key exchange protocol :

2.1 Notations:

mdv2(p,q)(A) = A Mod(2p)Div(2q). ( A being an integer, Mod modulo operation, and
Div integer division ).

‖ A ‖ : size in bits of A .

2.1.1 Public parameters :

Integer A, positive integers p, q and S, where p > 2× q.

A is pseudorandom and ‖ A ‖= p.

S is exchanged key maximum size, which is equal to p− (2× q).

2.1.2 Private Computations :

- Alice generates pseudorandomly a q bit number X, and calculates U = mdv2(p,q)(A×X).

- Bob generates pseudorandomly a q bit number Y, and calculates V = mdv2(p,q)(A× Y ).

2.1.3 Publicly exchanged values :

- Alice sends U to Bob.

- Bob sends V to Alice.

2.1.4 Further Private Computations :

- Alice calculates Wa = mdv2(p−q,q)(X × V ).

- Bob calculates Wb = mdv2(p−q,q)(Y × U).

Bob and Alice know that :

Wa = Wb or |Wa−Wb | = 1.
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2.2 Proof of correctness :

Lemma 1. Let A be an integer, p and q positive integers.

If (p > q), then mdv2(p,q)(A× 2q) = A mod(2p−q).

Proof :

mdv2(p,q)(A× 2q) = (A× 2q) Mod(2p)Div(2q).

Observe least significant q bits of N = (A×2q) Mod(2p) are zeros whereas its most significant p−q
bits are the least significant p− q bits of A, dividing then N by 2q implies :

(A× 2q) Mod(2p)Div(2q) = A Mod(2p−q) = mdv2(p,q)(A× 2q) .

Theorem 1. Let A, X, Y, p and q be integers where p > q, ‖ A ‖= p, ‖ X ‖=‖ Y ‖= q.

Wa = mdv2(p−q,q)(X ×mdv(p,q)(A× Y )).

Wb = mdv2(p−q,q)(Y ×mdv(p,q)(A×X)).

There is two possibilities :

1 - Wa = Wb.

2 - |Wa−Wb | = 1.

Proof :

Let H1 and H2 be integers such as :

U1 = mdv2(p,q)(A×X)× 2q = (A×X −H1) Mod(2p).

V1 = mdv2(p,q)(A× Y )× 2q = (A× Y −H2) Mod(2p).

The fact that the least significant q bits of U1 and V1 are zeroes, implies ‖ H1 ‖=‖ H2 ‖= q.

Let’s calculate :

Wa1 = (X × V1) Mod(2p) = ((X × Y ×A)− (X ×H2)) Mod(2p) (1)

Wb1 = (Y × U1) Mod(2p) = ((Y ×X ×A)− (Y ×H1)) Mod(2p) (2)
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‖ X ‖=‖ Y ‖=‖ H1 ‖=‖ H2 ‖= q implies ‖ X ×H2 ‖=‖ Y ×H1 ‖= 2× q, we have then :

Wa1 Div(22×q) = (X × Y ×A) Mod(2p)Div(22×q)− Ea

Wb1 Div(22×q) = (Y ×X ×A) Mod(2p)Div(22×q)− Eb

where Ea and Eb are respectively the 2× q’th borrows of binary substractions (1) and (2) .

Ea and Eb being bits, they can have then for values 0 or 1, implying :

if Ea = Eb we have Wa1 Div(22×q) = Wb1 Div(22×q).

if | Ea − Eb |= 1 we have |Wa1 Div(22×q)−Wb1 Div(22×q) |= 1.

Now we’ll show that :

Wa = Wa1 Div(22×q) and Wb = Wb1 Div(22×q).

ending thus theorem’s proof .

Wa1 = (X × V1) Mod(2p) = (X ×mdv2(p,q)(A× Y )× 2q) Mod(2p).

Wa1 Div(2q) = (X × V1) Mod(2p)Div(2q) = (X ×mdv2(p,q)(A× Y )× 2q) Mod(2p)Div(2q).

Applying Lemma 1, we get :

Wa1 div(2q) = (X × V1) Mod(2p)Div(2q) = (X ×mdv(p,q)(A× Y )) Mod(2p−q).

Wa1 Div(22×q) = (X ×mdv2(p,q)(A× Y )) Mod(2p−q)Div(2q).

Wa1 Div(22×q) = mdv2(p−q,q)(X ×mdv(p,q)(A× Y )).

Wa1 Div(22×q) = Wa.

Likewise we can prove :

Wb1 Div(22×q) = Wb.

Observe, Max(S) = ‖Wa ‖ = ‖Wb ‖ = p− (2× q).
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Figure 1:

But there is one drawback, Alice or Bob wouldn’t get precisely the same value, they only know
that Wa = Wb or |Wa−Wb | = 1. That is if Alice encrypts a message M with key Wa and sends
resulting cipher text C to Bob who in order to get M, he should decrypt C with Wb, Wb + 1 and
Wb−1 and gets 3 plausible plain texts. To decide which one is correct, Alice should priorly hash M
and joins computed digest as header to M before encryption. Bob can then decide which plain text
is correct by hashing obtained plain text and compares it to joined hash value, but decryption can
be then three times slower than encryption. Now lets suppose that computed values Wa and Wb
are uniformly distributed : the probability that their least r significant bits are ones is (1/2)r. To
get M, Bob can perform only one decryption if he and Alice agreed on r. Alice would then encrypt
with Wa Div(2r), Bob would decrypt with Wb Div(2r) (Figure 1).

We have experimentaly observed that Pr[ Wa = Wb ] = 2/3, implying :

Pr[ Wa Div(2r) = Wb Div(2r) ] = 1− ((1/3)× (1/2)r). (1)

Consequently Bob can decrypt C only one time, but the price going with it, is r bits security and
a probability of 1− ((1/3)× (1/2)r) to get plain text right.

Although introducing fixing parameter r, helps to know exact key size and increases probability of
key exchange corectness. End goal remains geting a key exchange protocol functioning all the time.
Figure 1 shows that as long next significant bit is the same, ( 1 in case of addition, 0 in case of
substraction ) bit carry/borrow propagates. The fact that Wa = Wb or Wa = Wb + 1 or Wa =
Wb− 1, means that in order to get the same key, it suffices to know least significants bits number
of Wb affected by addition or substraction by 1, or how much bit carries/borrows of addition or
substraction by 1 propagates to most significants bits. All Bob and Alice have to do is right shifting
their obtained numbers as long as least significant bit value is the same as the formers, then right
shift again. In conclusion they would have an all the time functioning key exchange protocole, but
they wouldn’t know shared key exact size. Key sizes would have a statistical distibution derived
from (1).
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3 Multidimentional ModDiv public key exchange protocol :

3.1 Notations:

polyDiv : Polynomial division operation, polyMod : Polynomial modulo operation.

pmdv(m,n)(A) = (A) polyMod(xm)polyDiv(xn).

3.1.1 Public parameters :

Integers m, n, p, q where m > (2× n) and p > (2× q) + log2(n).

An m degree polynomial A, which coefficients sizes in bits equals ‖ 2p ‖ .

A coefficients are pseudorandomly generated.

3.1.2 Private Computations :

- Alice chooses an n degree polynomial X, which coefficient sizes in bits equals ‖ 2q ‖. X coefficients
are pseudorandomly generated.

- Alice calculates U = pmdv(m,n)(A×X) .

- For each U coefficient U(i), she calculates U1(i) = mdv2(p,q)(U(i)), getting thus polynomial U1.

- Bob chooses an n degree polynomial Y, which coefficient sizes in bits equal ‖ 2q ‖. Y coefficients
are pseudorandomly generated.

- Bob calculates V = pmdv(m,n)(A×Y) .

- For each V coefficient V (i), he calculates V 1(i) = mdv2(p,q)(V (i)), getting thus polynomial V1.

3.1.3 Publicly exchanged values :

- Alice sends U1 coefficients to Bob.

- Bob sends V1 coefficients to Alice.

6



3.1.4 Further Private Computations :

- Alice calculates polynomial Wa= pmdv(m−n,n)(X×V1).

- For each Wa coefficient Wa(i) :

– She calculates r(i), Wa(i) consecutive least significant bits with the same value, number + 1.

– She calculates Wa1(i) = mdv2(p−q,q)(Wa(i)) Div(2r(i)+log2(n))

- Bob calculates polynomial Wb = pmdv(m−n,n)(X×U1).

- For each Wb coefficient Wb(i) :

– He calculates r(i), Wb(i) consecutive least significant bits with the same value, number + 1.

– He calculates Wb1(i) = mdv2(p−q,q)(Wb(i)) Div(2r(i)+log2(n))

Bob and Alice know that for each coefficients Wa1(i) and Wb1(i) :

Shared key sise in bits they would get equals :∑i=n
i=1 (m− (2× n))× (p− ((2× q) + r(i) + log2(n)).

3.2 Proof of Correction :

Proof of correction straitly follows from :

- Polynomial multiplication commutativity.

- Theorem 1.

- Size in bits of the result of adding n, s bits numbers is s× log2(n).
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3.3 Generalized Multidimentional Moddiv public key exchange protocol:

3.3.1 Public parameters :

Integers m, n, p, q, P, Q where m > 2×n, p > (2× q) + log2(n), ‖ P ‖ = ‖ 2p ‖ and ‖ Q ‖ = ‖ 2q ‖.

An m degree polynomial A, which coefficients sizes in bits equal ‖ 2p ‖ .

P, Q and A coefficients are pseudorandomly generated.

3.3.2 Private Computations :

- Alice chooses an n degree polynomial X, which coefficient sizes in bits equal ‖ 2q ‖. X coefficients
are pseudorandomly generated.

- Alice calculates U = pmdv(m,n)(A×X) .

- For each U coefficient U(i) :

– she calculates U1(i) = U(i) Mod(P )Div(Q), getting thus polynomial U1.

- Bob chooses an n degree polynomial Y, which coefficient sizes in bits equal ‖ 2q ‖. Y coefficients
are pseudorandomly generated.

- Bob calculates V = pmdv(m,n)(A×Y) .

- For each V coefficient V (i) :

– He calculates V 1(i) = V (i) Mod(P )Div(Q), getting thus polynomial V1.

3.3.3 Publicly exchanged values :

- Alice sends U1 coefficients to Bob.

- Bob sends V1 coefficients to Alice.

3.3.4 Further Private Computations :

- Alice calculates polynomial Wa = pmdv(m−n,n)(X×V1).
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- For each Wa coefficient Wa(i) :

– She calculates r(i), Wa(i) consecutive least significant bits with the same value, number + 1.
– She calculates Wa1(i) = Wa(i) Mod(P Div(Q)) Div(2q+r(i)+log2(n)).

- Bob calculates polynomial Wb = pmdv(m−n,n)(X×U1).

- For each Wb coefficient Wb(i) :

– He calculates r(i), Wb(i) consecutive least significant bits with the same value, number + 1.
– He calculates Wb1(i) = Wb(i) Mod(P Div(Q)) Div(2q+r(i)+log2(n)).

Shared key sise in bits they could get equals :∑i=n
i=1 (m− (2× n))× (p− ((2× q) + r(i) + log2(n)).

We have experimentally observed that generalized variant of proposed public key exchange protocol
holds.

3.4 Security :

To attack proposed public key exchange protocol, adversary Eve knows polynomials A, U1, V1
and parameters p, q, m, n satistifying the following conditions :

- A is of degree m.
- U1 and V1 are of degree m-n.
- A coefficients sizes in bits are p.
- U1 and V1 coefficients sizes in bits are p-q.
- m > 2× n and p > 2× q.

She equaly knows that there exists polynomials U, V, X and Y Satisfying :

- X and Y are of degree n.
- U and V are of degree m-n.
- X and Y coefficients sizes in bits are q.
- U and V coefficients sizes in bits are p + q + log2(n).
- U = (X×A) polyMod(xm)polyDiv(xn).
- V = (Y×A) polyMod(xm)polyDiv(xn).

Coefficients of U and V are respectively related to those of U1 and V1 by following equations :

- U1(i) = U(i) Mod(2p)Div(2q).
- V 1(i) = V (i) Mod(2p)Div(2q).
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Meaning to know secret polynomials X and Y, Eve have to solve the following equations set :

For 1 ≤ i ≤ m - n

U1(i) =( (
∑j=n

j=1 A(j + i)×X(j)) Mod(2p)Div(2q) .

V 1(i) =( (
∑j=n

j=1 A(j + i)× Y (j)) Mod(2p)Div(2q) .

To Attack Generalized Multidimentional ModDiv public key, Eve had to solve the following equa-
tions set, knowing parameters P and Q satisfy ‖ P ‖ = ‖ 2p ‖ and ‖ Q ‖ = ‖ 2q ‖

For 1 ≤ i ≤ m - n

U1(i) =( (
∑j=n

j=1 A(j + i)×X(j)) Mod(P )Div(Q) .

V 1(i) =( (
∑j=n

j=1 A(j + i)× Y (j)) Mod(P )Div(Q) .

3.4.1 ModDiv learn with rounding problem:

Basically underlying security problem of proposed public key exchange protocol is an instance of
learn with rounding problem first proposed by Banerjee et all [6], which we would define as ModDiv
learn with rounding problem.

Said instance is caracterized by the following features :

- Rounding is done from Z2p to Z2(p−q) .

- In Generalized Multidimentional ModDiv, rounding is done from ZP to ZP/Q.

- Public vectors are not random, they reflect polynomial mutiplication algebraic structure :
If vector A1 [ A(1), A(2) .... A(n) ] is given as public, vector A2 [ R(1),A(2),.... A(n-1) ].
is also given as public. Element R(1) is pseudorandomly generated.

- Secret vector elements size is the same as derandomized error vector elements induced by
rounding, which is q bits.

Seemingly Multidimentional ModDiv learn with rounding problem is at most as hard as its gen-
eralized counterpart, but public key cryptosystem based on the first is easier to implement, the
modulis are powers of two : bit shifting operations could be used instead of actual integer modulo
and division operations.
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Learn with rounding problem is considered to be at least as hard as Learn with error problem, and
was used recently to construct public key cryptosystems like Saber [7] one of NIST third round
finalists.

The open question is how hard ModDiv learn with rounding problem, actually is ?.

4 Conclusion :

In this paper we have presented Multidimentional ModDiv public key exchange protocol, the mul-
tidimentional version of public key exchange protocol presented in [3].

We have shown that its security is based on an instance of learn with rounding problem, we defined
as ModDiv learn with rounding problem.

One can construct public key encryption and digital signature ElGamal schemes based on presented
Key exchange protocols, it is also quite possible to device hash functions and pseudo random num-
bers generators, based on introduced problems.
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