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Abstract

We construct lightweight authenticated key exchange protocols based on pre-shared keys, which
achieve full forward security and rely only on simple and efficient symmetric-key primitives. All of
our protocols have rigorous security proofs in a strong security model, all have low communication
complexity, and are particularly suitable for resource-constrained devices.

We describe three protocols that apply linear key evolution to provide different performance and
security properties. Correctness in parallel and concurrent protocol sessions is difficult to achieve for
linearly key-evolving protocols, emphasizing the need for assurance of availability alongside the usual
confidentiality and authentication security goals. We introduce synchronization robustness as a new
formal security goal, which essentially guarantees that parties can re-synchronize efficiently. All of our
new protocols achieve this property.

Since protocols based on linear key evolution cannot guarantee that all concurrently initiated ses-
sions successfully derive a key, we also propose two constructions with non-linear key evolution based
on puncturable PRFs. These are instantiable from standard hash functions and requireO(C ·log(|CTR|))
memory, where C is the number of concurrent sessions and |CTR| is an upper bound on the total num-
ber of sessions per party. These are the first protocols to simultaneously achieve full forward security,
synchronization robustness, and concurrent correctness.
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1 Introduction

Authenticated key exchange protocols based on pre-shared long-term symmetric keys (PSK-AKE) enable
two parties to use a previously established symmetric key, agreed upon via out-of-band communication, to
(mutually) authenticate and derive a shared session key. Prominent examples of such protocols are the PSK
modes of TLS 1.3 and prior TLS versions, but these examples still make use of public-key techniques for
key derivation, even if authentication uses symmetric keys. PSK-AKE protocols can be significantly more
efficient than classical public-key AKE protocols, particularly when they can be constructed exclusively
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based on symmetric key primitives (“symmetric AKE”) for both authentication and key derivation. There-
fore such protocols are especially desirable for performance-constrained devices, such as battery-powered
wireless IoT devices, where every computation and every transmitted bit has a negative impact on battery
life. More generally, such protocols may be preferable in “closed-world” applications, such as industrial set-
tings, where pre-sharing keys may be easier and more practical than deploying a public-key infrastructure.
Furthermore, protocols based purely on symmetric-key techniques, such as hash functions and symmetric
encryption, also achieve security against quantum attacks by adjusting security parameters appropriately.

Forward Security in Symmetric AKE Protocols. Forward security is today a standard security goal of
key exchange protocols. It requires that past session keys remain secure, even if the secret long-term key
material is compromised. Note that this is only achievable if past session keys are not efficiently computable
from a current long-term key. Forward security is comparatively easily achievable if public key cryptography
is used. For instance, a classical approach is to use ephemeral keys for key establishment, such as the Diffie-
Hellman protocol or, more generally, a key encapsulation mechanism (KEM). Independent long-term keys
can then be used for authentication via digital signatures or another KEM.

The only currently known way to avoid public key techniques and use only symmetric key primitives is
based on the “derive-then-evolve” approach, where first a session key is derived from a long-term key, and
then the long-term key is evolved. This key evolution prevents efficient re-computation of prior session keys
which yields forward security. Both steps can be implemented with simple key derivation functions. There
are two common ways to use this approach:

1. Synchronized key evolution. In this case, both parties evolve their long-term keys in “epochs”, e.g.,
once per day. Note that this approach cannot achieve “full” foward security, but only a weaker “de-
layed” form. This is because all session keys of the current epoch can be computed from the current
long-term secret, so forward security only holds for session keys of past epochs. Moreover, this
approach requires synchronized clocks between parties, even to achieve correctness. For many appli-
cations this seems impractical, in particular for cheap low-performance devices, for which symmetric
AKE protocols are particularly relevant.

2. Triggered key evolution. In this case the protocol ensures that both parties advance their key material
during protocol execution. This approach directly achieves “full” forward security for every session,
and therefore seems preferable. However, this apparently simple approach turns out to be much
less trivial to realize than might be expected, because both parties must remain “in sync”, such that
correctness is guaranteed even in presence of concurrent sessions or message loss due to network
failures or active attacks. This approach has similarities with ratcheting [ACD19], but there are
significant differences in our setting as discussed under Related Work below.

Concurrency and Key-Evolving Protocols. The possibility of running concurrent protocol sessions in
parallel is a standard correctness requirement for protocols, and reflected in all common AKE security
models, such as the BR and CK models [BR94, CK01] and their countless variants and refinements. The
main technical challenge of key evolution is to achieve full forward security while maintaining correctness
in the presence of parallel and concurrent protocol sessions.

Even if we assume that all parties are honest and that all messages are transmitted reliably (i.e., without
being dropped because of an unreliable network or influence from an adversary) this is already highly non-
trivial and we do not know of any currently existing forward-secure symmetric AKE protocol which achieves
correctness and full forward security in such a setting. The difficulty is essentially that one session might
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Table 1: Overview of our protocols and comparison to SAKE [ACF20]. The number in the protocol name
indicates the total number of messages per protocol run, “R only” means that only the responder authenti-
cates its communication partner. The third column considers the communication complexity, where C is the
number of counter values that are sent, M the number of MACs, and N the number of nonces. Sync. Rob.
indicates the achieved level of synchronization robustness, Bd. Gap whether the gap between two parties is
bounded (for non-concurrent executions), CC whether concurrent correctness is achieved, and FS whether
full forward security is achieved.

Protocol Auth. (C, M, N) Sync. Rob. Bd. Gap CC FS

SAKE (5) [ACF20] mutual (0,4,2) + ID 7 3 7 3

SAKE-AM (4) [ACF20] mutual (0,4,2) + ID 7 3 7 3

LP3 mutual (3,3,2) weak 3 7 3

LP2 mutual (2,2,0) weak 7 7 3

LP1 R only (1,1,0) weak 7 7 3

PP2 mutual (1,2,0) full 3 3 3

PP1 R only (1,1,0) full 3 3 3

advance a key “too early” for another concurrent session to be completed, which breaks correctness. No such
difficulty appears in classical forward-secure public key protocols, since long-term keys are usually static
and different sessions use independent randomness. So it turns out that, somewhat surprisingly, forward
security and correctness is more difficult to achieve for symmetric AKE.

To complicate matters even further, note that the assumption of honest parties and reliable message
transmission is very strong and may not be realistic for many applications. Therefore we actually want to
achieve forward security and “synchronization robustness” in the presence of an adversary which intention-
ally aims to break synchronization, e.g., by adaptively dropping or re-ordering messages. Such an adversary
is attacking availability properties of the AKE protocol, an important aspect of security usually omitted
from key exchange security models. The development of techniques to ensure availability for stateful key
exchange is an unsolved foundational problem.

Our Contributions. In this work we develop several new lightweight forward-secure symmetric AKE
protocols with different efficiency and correctness properties. Table 1 summarizes the main security and
efficiency properties of our new protocols. This includes the first protocols that provably achieve synchro-
nization robustness, a formal availability security notion we introduce, and correctness in the presence of
concurrent sessions. More concretely we achieve the following.

Security model. We describe a security model suited to forward-secure symmetric AKE capturing entity
authentication (one-sided and mutual), indistinguishability of established keys, and forward security.
Our model follows a standard approach for AKE protocols based on the Bellare-Rogaway model
[BR94], adapted to the requirements of symmetric AKE with evolving keys.

Synchronization robustness. We formalize a new property called synchronization robustness (SR), which
is trivially achieved for traditional AKE protocols with fixed long-term keys, but turns out to be a
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crucial feature for key-evolving protocols such as forward-secure symmetric AKE. Essentially, SR
captures whether parties in a protocol can efficiently re-synchronize their states in order to complete
a successful protocol run. This should even hold if an adversary controls the network and/or some of
the parties.

We define two flavours. Both consider an active adversary that may execute arbitrary protocol sessions
to manipulate the state of parties, and whose goal is to manipulate the state such that a subsequent
protocol execution fails.

In weak SR the ‘target’ protocol session must then be executed without adversarial interaction (similar
to the corresponding requirement in Krawczyk’s weak forward security [Kra05]). “Full” SR allows
the adversary arbitrary queries between messages of the ‘target’ session, even to parties of the oracles
involved in the ‘target’ session.

Linear key evolving protocols. We define the notion of linear key evolution, which makes the classical
“derive-then-evolve” approach concrete. We argue that protocols based on linear key evolution can
only achieve weak SR and cannot achieve concurrent correctness.

We construct three different protocols (LP1, LP2, LP3, cf. Table 1), all of which achieve weak SR.
Most interestingly, LP3 even achieves a “bounded gap” property, which means that no active adversary
in control of the network is able to force the state of two parties to differ by more than one key
evolving step, so that a party is always able to catch up quickly, if necessary. For all three protocols
we show that in a setting where concurrent runs between two parties are allowed, this number of
steps required to catch up is bounded in the number of concurrent runs. To this end, we apply a
new approach to precisely analyze the state machine of a protocol. Furthermore, we also show two
extremely lightweight protocols LP1 and LP2, which provide one-sided and mutual authentication,
respectively, and where the communication complexity is only one (resp. two) MAC and one (resp.
two) counter value.

Full SR and concurrent correctness. This leads to the question of whether and how full synchronization
robustness and concurrent correctness (CC) can be achieved. We propose the use of puncturable
pseudorandom functions (PPRFs) to apply a “non-linear” key evolving strategy, and we construct two
protocols PP1 and PP2, which both achieve full SR and CC.

Since PPRFs can be efficiently instantiated from cryptographic hash functions, both protocols are ex-
tremely lightweight. PP1 achieves one-sided authentication with a single counter value and a single
MAC, PP2 mutual authentication with one counter and two MACs. Furthermore, while repeated punc-
turing PPRFs may lead to large secret keys [AGJ19, AGJ21] we take advantage of the stateful nature
of symmetric AKE protocols to instantiate the PPRF such that secret key size is at most logarithmic
in the number of sessions.

Hence, we offer a versatile catalogue of lightweight and forward-secure symmetric AKE protocols with
significantly stronger correctness and security properties. This includes the first protocols to achieve con-
current correctness and full synchronization robustness, or weak SR with bounded gap. Which of these
protocols is best for a particular application depends on the nature of the security and functionality re-
quirements. Further, in LP3 the parties exchange nonces: we recognize that in some applications sufficient
randomness will not be available and so we prove the protocol secure for any nonce generation procedure,
which could be random selection or (stateful) use of a counter.
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Related Work. Bellare and Yee [BY03] analyzed forward security for symmetric-key primitives, specif-
ically pseudo-random generation, message authentication codes and symmetric encryption. They provide
constructions using key evolution which are similar to the linear key evolution that we employ, and their
protocols use some techniques from key-evolving schemes such as prior work on forward-secure signa-
tures [BM99]. Their work does not deal with key exchange.

Brier and Peyrin [BP10] gave a tree-based protocol for key establishment, with the stated aim of im-
proving the DUKPT scheme defined in ANSI X9.24 [ANS09]. The idea in DUKPT is that the client device
(payment terminal) is highly constrained in terms of memory, yet needs to derive a unique key per transac-
tion from an original pre-shared key, by applying a PRF (based on Triple-DES) to a counter and the base
derivation key. Their work involves formalizing the specific problem faced in the payment terminal setting,
and their scheme assumes an incorruptible server: a far weaker security model than the one that we consider.
A similar security assumption was used by Le et al. [LBdM07], who presented a protocol for use in the con-
text of Radio Frequency Identification (RFID), where the server keeps two values of the key derivation key
to deal with potential synchronization loss.

Li et al. [LSY+14] analyzed the pre-shared key ciphersuites of TLS 1.2, using an adaption of the ACCE
model of Jager et al. [JKSS12]. In this setting, Li et al. presented a formalization of the prior AKE-style
models, but where parties could share PSK material with other parties in addition to their long-term key
pairs.

Dousti and Jalili [DJ15] presented a key exchange protocol called FORSAKES, which is based on syn-
chronized time-based key evolution. Their protocol requires 3 messages and assumes perfect synchronicity
of parties to achieve correctness, and as we have already mentioned their approach can only obtain de-
layed forward security. A discussion of delayed forward security and more generally the various challenges
involved in defining forward security was given Boyd and Gellert [BG20].

The concept of evolving symmetric keys is reminiscent of Signal’s double ratchet [ACD19], a well-
known example of a symmetric protocol with evolving keys. Signal employs a Diffie-Hellman-ratchet,
which adds new key material at every step through multiple Diffie-Hellman exchanges along the way. At
every step of this main ratchet a separate linear key evolving ratchet is ‘branched off’, which is similar to
how linear evolution works in our protocols — however, a critical difference is that in our scenario we evolve
the key shared across different sessions as opposed to evolving a key within one session as happens in the
Signal protocol. It is this difference which leads to the complexity of managing synchronization between
sessions which run concurrently. In addition to this difference, which anyway makes Signal unusable for our
setting, use of Diffie-Hellman in the Signal ratchet means that there is a vector for quantum attacks, while
our protocol is purely based on symmetric primitives.

Another primitive conceptually similar to PPRFs is puncturable encryption, which was introduced by
Green and Miers in 2015 [GM15], and has since led to several follow-up constructions of puncturable
encryption [GHJL17, DJSS18, CRSS20, SSS+20, DGJ+21]. However, all those constructions rely on ex-
pensive public-key techniques (such as bilinear pairings) and are thus impractical in the context of this
work.

Comparison with Avoine et al. [ACF20]. In Table 1 above we have mentioned two protocols named
SAKE and SAKE-AM that were presented by Avoine et al. [ACF20] (henceforth ACF20). Their paper
was the first to provide key exchange protocols that attain forward security via linear evolution. Their
system assumptions are largely the same as ours, with the crucial difference that our models are equipped to
capture parallel executions. The security model of ACF20 explicitly disallows concurrent sessions, which
not only yields a weak security notion, but also sidesteps the major difficulty of achieving even correctness
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in the presence of concurrent sessions in key-evolving symmetric-key protocols. Indeed, the protocols
from ACF20 completely break down when executed concurrently, allowing an adversary to prevent the
parties from computing any session keys in future sessions. We consider this an unrealistic and impractical
restriction for many applications. Therefore we introduce the new notion of synchronization robustness,
which formally defines the ability of key-evolving protocols to deal with concurrent executions, including
in adversarial environments.

We embrace the use of (explicit) counters to acquire linear key evolving protocols that are conceptually
simpler and require fewer messages than those provided by ACF20, in a way that additionally provides
(weak) synchronization robustness. In any protocol that uses PSK evolution to achieve forward security a
party must update the key state after a successful protocol run, and in embedded devices this requires writing
to persistent storage. Our protocols require the updating (writing) of one key and one counter per session,
while SAKE and SAKE-AM require updating two keys. Since a sequentially evolving key can also be seen
as an implicit counter, conceptually the distinction between counters and evolving keys seems to be minor.
The storage overhead of our protocols compared to ACF20’s protocols is the (usually 8-byte) counter, while
the linear key evolving protocols in our paper and ACF20 require storage of two keys (usually 16 or 32
bytes).

We note that ACF20 remarked that the parties could use separate PSKs for concurrent executions, how-
ever this solution requires an a priori bound on the number of possible concurrent sessions that could occur
and a corresponding multiplication in key storage: none of our protocols require this. Further, implementing
their approach would require a modification of their protocols, since parties need to know which PSK to use,
and the security of these modified protocols is not proven.

2 Preliminaries

We denote the security parameter as λ. For any n ∈ N let 1n be the unary representation of n and let
[n] = {1, . . . , n} be the set of numbers between 1 and n. We write x $←− S to indicate that we choose
element x uniformly at random from set S. For a probabilistic polynomial-time algorithm A we define
y $←− A(a1, . . . , an) as the execution of A (with fresh random coins) on input a1, . . . , an and assigning the
output to y. The function NextOdd(x) takes as input an integer and ouputs the next odd integer greater than
x, i.e. whichever element of {x + 1, x + 2} is odd. Our protocols require the use of counters, and integer
|CTR| is the largest possible counter value. Furthermore, we write [n] × [n] \ (i∗, j∗) as a shorthand for
{(i, j) ∈ [n]2} \ {(i∗, j∗) with i < j}.

2.1 Message Authentication Codes

Throughout this paper we assume that all MACs are deterministic. This is to reduce complexity in our
proofs, however most MACs used in practice are deterministic [CMA05, GMA07, HMA08, ISO11, KMA16].

Definition 1 (Message Authentication Codes). A message authentication code consists of three probabilistic
polynomial-time algorithms MAC = (KGen,
Mac,Vrfy) with key space KMAC and the following properties:

• KGen(1λ) takes as input a security parameter λ and outputs a symmetric key KMAC ∈ KMAC;

• Mac(KMAC,m) takes as input a key KMAC ∈ KMAC and a message m. Output is a tag σ;
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• Vrfy(KMAC,m, σ) takes as input a key KMAC ∈ KMAC, a message m, and a tag σ. Output is a bit
b ∈ {0, 1}.

We call a message authentication code correct if for all m, we have

Pr
KMAC $←−KGen(1λ)

[
Vrfy(KMAC,m,Mac(KMAC,m)) = 1

]
= 1.

We define MAC security as strong existential unforgeability under chosen message attack, where the
adversary has access to a verification oracle. In the more common version of this game, which we denote
SEUF-CMA-1, the adversary must stop running after it submits its first verification query: this is a subcase
of our more general definition. Bellare et al. [BGM04] showed that in the strong unforgeability case these
definitions are equivalent up to a loss factor Q.

GSEUF-CMA-Q
MAC (A)

1 : KMAC $←− KGen(1λ)

2 : Q,V ← ∅
3 : AOMac(·),OVrfy(·,·)(1λ)

4 : if ∃(m,σ) ∈ V \ Q
5 : return 1

6 : return 0

OMac(m)

7 : σ ← Mac(KMAC,m)

8 : Q := Q∪ {(m,σ)}
9 : return σ

OVrfy(m,σ)

10 : b← Vrfy(m,σ)

11 : if b = 1

12 : V := V ∪ {(m,σ)}
13 : return b

Figure 1: The SEUF-CMA-Q security experiment for message authentication code MAC. A can make Q
queries to OVrfy.

Definition 2 (MAC Security). The advantage of an adversary A in the SEUF-CMA-Q security experiment
defined in Fig. 1 for message authentication code MAC is

AdvSEUF-CMA-Q
MAC (A) := Pr

[
GSEUF-CMA-Q
MAC (A) = 1

]
.

2.2 Pseudorandom Functions

Definition 3 (Pseudorandom Functions). A pseudrandom function is a deterministic function y = PRF(k, x)
that takes as input some key k ∈ KPRF and some element of a domain DPRF, and returns an element
y ∈ RPRF.

Definition 4 (PRF Security). The advantage of an adversary A in the PRF-sec security experiment defined
in Fig. 2 for pseudorandom function PRF is

AdvPRF-sec
PRF (A) :=

∣∣∣∣Pr
[
GPRF-sec
PRF (A) = 1

]
− 1

2

∣∣∣∣ .
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GPRF-sec
PRF (A)

1 : b $←− {0, 1}
2 : kPRF

$←− KPRF

3 : g $←− {F : DPRF → RPRF}
4 : b∗ $←− AOf (·)(1λ)

5 : if b∗ = b

6 : return 1

7 : return 0

Of (x)

8 : if b = 1

9 : y ← f(kPRF, x)

10 : else

11 : y ← g(x)

12 : return y

Figure 2: The PRF-sec security experiment for pseudorandom function PRF. {F : DPRF → RPRF} is the
set of all functions from DPRF toRPRF.

3 Authenticated Key Exchange in the Symmetric Setting

In this section we describe our model for authenticated key exchange with forward security in the symmetric
setting. Our model follows the standard approach of AKE protocols based on the Bellare-Rogaway model
[BR94], adapted to the requirements of symmetric AKE with evolving keys. This includes definitions for
entity authentication (one-sided or mutual), key indistinguishability, and forward security. Furthermore, we
define the property of synchronization robustness, which is a crucial feature for forward-secure symmetric
key exchange protocols. Parts of our formalization take inspiration from the models of Jager et al. [JKSS12].

Differences to public-key AKE models. The most notable difference in the symmetric key setting is that
each pair of parties is initialized with shared key material, which is specified before the actual protocol is
run. This key material typically includes MAC keys or key derivation keys that have been established in an
out-of-band communication (e.g., chosen during the manufacturing process of devices). In order to achieve
forward-security via “key evolving techniques” in the symmetric key setting, we additionally have to provide
(sessions of) parties with the ability to modify the party’s key material. As a consequence, the shared key
material of two parties will not always be equal: While one party might evolve their key before preparing
the first protocol message, the responder can (at the earliest) evolve after it has received that message.

3.1 Execution Environment

We consider a set of n parties {P1, . . . , Pn}, where each party is a potential protocol participant. We refer
to parties by Pi or by their label i if context is clear. Initially, each pair of parties (Pi, Pj) with i 6= j share a
common secret PSKi,j , which is the initial key material generated during protocol initialization (e.g., MAC
keys or key derivation keys). Note that this key material may evolve over time and that PSKi,j and PSKj,i
may not necessarily be equal at all times.

We model parallel executions of a protocol by equipping each party i with q ∈ N session oracles
π1
i , . . . , π

q
i . Each session oracle represents a process that executes one single instance of the protocol. All

oracles have access to the “global key material” PSK (including the ability to modify the key material PSK).
Moreover, each oracle maintains an internal state consisting of the following variables:
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Variable Description
α execution state ∈ {uninitialized, negotiating, accept, reject}
pid identity of the intended partner ∈ {P1, . . . , Pn}
ρ role ∈ {Initiator,Responder}
sk session key ∈ Ks ∪ ⊥ for some session key space Ks

κ freshness of session key ∈ {exposed, fresh}
sid session identifier
b security bit ∈ {0, 1}

Additionally, we assume that each oracle has an additional temporary state variable, used to store
ephemeral values or the transcript of messages. As initial state of the oracle, we have α = uninitialized

and κ = fresh and b $←− {0, 1}. Note that pid and ρ are set when the adversary interacts with the respective
oracles and that sid and sk are defined as the protocol/adversary progresses.

As usual, if an oracle derives a session key then it will enter the execution state accept. If an oracle
reaches the execution state reject, then it will no longer accept any messages. Later on when we describe
protocols, the event Abort will identify points at which this action would be triggered.

To begin any of the experiments in this section, the challenger initializes n parties {P1, . . . , Pn}, with
each pair of parties sharing symmetric key material PSK as specified by the protocol.

An adversary interacts with session oracles πsi by issuing the following queries. Several of these queries
add output to an oracle transcript (defined below) which is available to the adversary.

• NewSessionI(πsi , pid) initializes a new initiator session for party Pi with intended partner pid. Specif-
ically, this query assigns pid, ρ = Initiator and α = negotiating to πsi , creates the first protocol
message and adds this to transcript of πsi .

• NewSessionR(πsi , pid,m) initializes a new responder session for party Pi with ρ = Responder and
intended partner pid, and delivers a protocol message to this oracle. Specifically, it assigns pid and
ρ = Responder to πsi and processes message m. The message m and consequent protocol messages
(if any) are added to its transcript, and the execution state is set to negotiating.

• Send(πsi ,m) delivers messagem to oracle πsi . This input message, and consequent protocol messages
(if any), are added to this oracle’s transcript.

• RevealKey(πsi ) reveals session key sksi and sets πsi .κ to exposed.

• Corrupt(Pi, Pj) (issued to some oracle of Pi or Pj) returns PSKi,j . If the query Corrupt(Pi, Pj) is
the τ -th query issued by A, we say that all oracles πi with pid = j are τ -corrupted. (i.e., party
Pi becomes τ -corrupted with respect to the other party Pj). An uncorrupted oracle is considered as
+∞-corrupted.

• Test (πsi ) chooses sk0
$←− Ks, sets sk1 = πsi .sk and returns skb. This oracle can only be queried once,

and the query making this action is labelled τ0.

The adversary must call NewSessionI or NewSessionR in order to specify a role and intended partner
identifier for each oracle it wishes to use. Afterwards, the adversary can use the Send query to convey
messages to these oracles.
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3.2 AKE Security

To define entity authentication we use matching conversations [BR94] for oracle partnering, which requires
a definition of an oracle’s transcript: Tsi is the sequence of all messages sent and received by πsi in chrono-
logical order. The standard definition of matching conversations, reflects that the party that sends the last
message cannot be sure that the responder received that protocol message. We use this definition for entity
authentication.

Note that an oracle πsi only has a transcript, Tsi , if πsi .α 6= uninitialized. Transcript Ttj is a prefix of
Tsi if Ttj contains at least one message and messages in Ttj are identical to and in the same order as the first
|Ttj | messages of Tsi .

Definition 5 (Partial-transcript Matching conversations [JKSS12, Def. 3]). πsi has a partial-transcript match-
ing conversation to πtj if

• Ttj is a prefix of Tsi and πsi has sent the last message(s), or

• Tsi = Ttj and πtj has sent the last message(s).

However, standard matching conversations are not strong enough to define key indistinguishability in a
symmetric setting and leave room for a trivial attack (intuitively, this is due to the “asynchronous evolution”
of the global key material PSK). Consider an adversary that uses the above execution environment to execute
some protocol between two (sessions of two) parties. The adversary forwards all messages but the last one
between both parties. At this point the party that sent the last message must have reached the accept state and
applied some one-way procedure to its key material PSK in order to achieve forward security. However, the
other party still needs to receive the final message in order to derive the session key and update its version
of the key material. If the adversary were now to use Test on the accepting party while using Corrupt on
the other party, this leads to a trivial distinguishing attack in standard key indistinguishability games (e.g.,
in [JKSS12]). Hence, we need to introduce a slightly stronger notion of matching conversations to precisely
capture when Corrupt queries are allowed: the conversation is only deemed to be matching if all messages
were delivered.

Definition 6 (Guaranteed Delivery Matching conversations). πsi has a guaranteed delivery matching con-
versation to πtj if Tsi = Ttj .

As usual, we say that the adversary breaks entity authentication if it forces a fresh oracle to accept
maliciously, and breaks key indistinguishability if it can distinguish from random an established key that it
cannot trivially access.

Definition 7 (Entity Authentication). Let Π be a protocol. Let GEnt-Auth
Π (A) be the following game:

• The challenger initializes n parties and their keys;

• A may issue queries to oracles NewSessionI, NewSessionR, Send, RevealKey, Corrupt and Test as
defined above;

• Once A has concluded, the experiment outputs 1 if and only if there exists an accepting oracle πsi
such that the following conditions hold:

1. both Pi (w.r.t. Pj) and intended partner Pj (w.r.t. Pi) were not corrupted before query τ0;
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2. there is no unique πtj , with ρsi 6= ρtj , such that πsi has a partial-transcript matching conversation
to πtj .

Define the advantage of an adversary A in the Ent-Auth security experiment GEnt-Auth
Π (A) as

AdvEnt-AuthΠ (A) := Pr
[
GEnt-Auth

Π (A) = 1
]
.

An oracle πsi accepting in the above sense ‘accepts maliciously’.
Later on we separate the analysis of an initiator oracle accepting maliciously from a responder oracle

accepting maliciously. Further, we will present protocols that only provide one-sided authentication: this
requires separation of the AKE definition. To this end, we use the following notation:

AdvEnt-AuthΠ (A) = AdvEnt-Auth-IΠ (A) + AdvEnt-Auth-RΠ (A).

Definition 8 (Key Indistinguishability). Let Π be a protocol. Let GKey-Ind
Π (A) be the following game:

• The challenger initializes n parties and their keys;

• A may issue queries to oracles NewSessionI, NewSessionR, Send, RevealKey, Corrupt and Test as
defined above;

• Once A has output (i, s, b′) to indicate its conclusion, the experiment outputs 1 if and only if there
exists an oracle πsi such that the following holds:

1. πsi accepts, with a unique oracle πtj , such that πsi has a partial-transcript matching conversation
to πtj , when A issues its τ0-th query;

2. A did not issue RevealKey to πsi nor πtj (so κsi = fresh) and ρsi 6= ρtj ;

3. Pi (w.r.t. Pj) is τi-corrupted and Pj (w.r.t. Pi) is τj-corrupted, with τi, τj > τ0;

4. at the point of query τj , oracle πtj had a guaranteed delivery matching conversation to πsi , and

5. b′ = πsi .b.

Define the advantage of an adversary A in the Key-Ind security experiment GKey-Ind
Π (A) as

AdvKey-IndΠ (A) :=

∣∣∣∣Pr
[
GKey-Ind

Π (A) = 1
]
− 1

2

∣∣∣∣ .
We assume that all adversaries in the Key-Ind game are valid, meaning that they terminate and provide

an output in the correct format (i.e. (i, s, b′) ∈ [n] × [q] × {0, 1}). Later on in our proofs we will follow
the game-hopping strategy, and in doing so we will often simplify exposition by additionally assuming
adversaries that do not trigger a trivial win (in the Key-Ind game or any subsequent modifications of this
game).

We define AKE security in three flavors, distinguished by the level of entity authentication that is
achieved by the protocol. An adversary breaks the AKE security of a protocol if it wins either the entity
authentication game, or the key indistinguishability game.
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Definition 9 (Authenticated Key Exchange). Let Π be a protocol. The advantage of an adversaryA in terms
of AKE-M (mutual entity authentication), resp. AKE-I (initiator authenticates the responder), resp. AKE-R
(responder authenticates the initiator) is defined as follows:

AdvAKE-M
Π (A) := AdvKey-IndΠ (A) + AdvEnt-Auth-IΠ (A) + AdvEnt-Auth-RΠ (A).

AdvAKE-I
Π (A) := AdvKey-IndΠ (A) + AdvEnt-Auth-IΠ (A).

AdvAKE-R
Π (A) := AdvKey-IndΠ (A) + AdvEnt-Auth-RΠ (A).

We do not specify any protocols that provide AKE-I alone in this paper, however it is defined here for
completeness.

3.3 Concurrent Execution Synchronization Robustness

We now describe a novel property for key exchange protocols. The goal is to capture, in a formal manner,
how robust a protocol is in the event of adversarial control of the network and/or some of the parties. We
seek a definition that asks: after an adversary has had control of the communication network (by executing
arbitrary Send and NewSessionI/NewSessionR queries), can an honest protocol run be executed success-
fully? Specifically, if it is possible for the parties to lose synchronization (due to dropped messages or
adversarial control) such that the parties cannot, in one protocol run, regain synchronization and compute
the same key, then the protocol does not meet this property.

Our formalization follows the execution environment of the Ent-Auth and Key-Ind games described
above, and allows an adversary to specify the protocol run (that it is attempting to ‘interrupt’) at the end
of its execution by specifying two oracles. The challenger awards success if the two parties (specifically
those two oracles) did not accept with the same session key. We define two flavours: a weaker version wSR
in which the ‘target’ protocol run must be executed without any other messages interleaved, and a stronger
version SR which allows arbitrary queries in between messages of the ‘target’ run, even to parties of the
oracles involved in the ‘target’ run (though of course not to the two oracles).

We define an honest protocol run (via adversarial queries) between two oracles (with initial state set
to uninitialized) as follows: a NewSessionI query was made that produced a protocol message m1, a
NewSessionR query was made to the other oracle with input message m1, and if this query produced a
protocol message m2 then this value was given as a Send query to the other oracle, and so on, until all
protocol messages have been created and delivered, if possible. In the event that any of these queries fails
(returns ⊥) the honest protocol run aborts. This honest protocol run can be thought of as a genuine attempt
to execute a protocol execution.

Definition 10 ((weak) Synchronization Robustness). Let Π be a protocol. Let GwSR
Π (A) with boxed text

or GSR
Π (A) with dashed boxed text be the following game:

• The challenger initializes n parties and their keys;

• A may issue queries NewSessionI, NewSessionR and Send as defined above;

• Once A has output (i, j, s, t) to indicate its conclusion, the experiment outputs 1 if and only if the
following conditions hold:

1. πsi .pid = Pj and πtj .pid = Pi;

2. πsi .sk 6= πtj .sk or both values are ⊥;
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3. an honest protocol run was executed between πsi and πtj ;

4. no queries were made by A to interrupt the protocol execution between πsi and πtj .

4. no protocol messages in the transcripts of πsi and πtj were sent to any other oracles before they
were delivered in the honest run.

Define the advantage of an adversary A in the XX security experiment GXX
Π (A), for XX ∈ {wSR,SR},

as

AdvXXΠ (A) := Pr
[
GXX

Π (A) = 1
]
.

Notes on the definitions.

• Condition (4.) in the SR experiment states that for each genuine protocol message in the ‘target’
session, A must not have provided this message to any other oracles before that message is delivered
as part of the ‘target’ run. This prevents a trivial attack where A delivers the final protocol message
to two oracles: first to some other oracle than the ‘target’ oracle (but of the same party), then to the
target oracle. When the (genuine) protocol message is delivered to the party for the second time the
target oracle would abort. The parties have still created exactly one key for this genuine protocol run,
and so condition (4.) essentially fixes the allowable output oracles as the ones that are processing
protocol messages for the first time. (Replay attacks are not an issue in the wSR setting, since the
execution must be uninterrupted and so any action made after that run has occurred has no impact on
A’s chances of winning.)

• We do not allow Corrupt queries in this definition: in all of the protocols in this paper we assume
pairwise shared key material (and specifically, no keys that are used by a party for communication
with multiple other parties). This means that the adversary is not allowed to corrupt the parties in
the target run with respect to each other, and that all other Corrupt queries will be of no benefit to an
attacker. A similar argument follows for RevealKey queries. This simplifies the security experiment,
while capturing the property that we wish to assess.

• In an alternative formulation of our definitions, the target protocol run could be performed by the
challenger as an Execute query as seen in past literature [BPR00]. We avoid this approach for two
reasons. First, in the SR case, in order to support interleaving, the adversary would have to call the
challenger to initiate each stage of the execution (i.e. k + 1 times for a k-message protocol), and this
is notationally awkward. Secondly and perhaps more importantly, our model allows the adversary
to attempt to win its game in multiple protocol runs, and output the oracles which provides the best
chance of success. Thus to retain the strength of the definition we would require multiple Execute
queries, resulting in a model that looks very similar to what we have presented here.

4 Linear Key Evolution

In this section we present a number of protocols that use linear key evolution to derive session keys. All of
these protocols achieve wSR. It is not hard to see that full robustness (SR) is not achievable with linearly
evolving protocols. To win the SR game the adversary makes a new complete protocol run after the target
run has started and the session key is computed at one party, but before the session key is computed at the
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second party. This means that when the target session completes, the long-term key has already evolved and
the key will be computed with the wrong version of the long-term key at the second party. Either the session
will fail at the second party or the key will be different at the two parties. (There is a third case when the key
is independent of the long-term key, but in that case the protocol fails to achieve key indistinguishability.)

The first linear key evolving protocol that we present, LP3, exchanges three short messages and has the
attractive property of bounding the gap between the counters of the two parties. We present two further pro-
tocols which are even more efficient at the cost of some restrictions. LP2 is a two-message protocol but in
order to maintain mutual authentication we insist that parties running LP2 have fixed their role as either ini-
tiator or responder (not an unreasonable assumption in many application scenarios). Our simplest protocol,
LP1, has only a single message but, in addition to requiring fixed roles, like any other one-message protocol
it can only achieve unilateral authentication. For all of our protocols we provide theorems guaranteeing
authentication, key indistinguishability and weak synchronization robustness (wSR) security.

Syntax and Conventions. All protocols in this paper use message authentication codes to ensure that
parties can only process messages that are meant for them. This means that party A stores a key KMAC

AB

(static) for MAC and key derivation key kCTR
AB (evolving) to communicate with B, and KMAC

AC and kCTR
AC to

communicate with C, etc. We describe the key derivation process in more detail in Sec. 4.1.
In LP2 and LP3, the party sending the protocol message includes its own identity in the MAC compu-

tation: this stops redirection/reflection attacks of protocol messages to the sending party. For LP1 this is
not necessary since the sending party advances after sending its protocol message, meaning that its state is
ahead and therefore it is unable to process messages that it has already sent.

4.1 Key Derivation via Linear Evolution

Before looking at specific protocols, we define what we mean by linear key evolution and present an abstract
security definition for it. Party A holds a key derivation key kCTR

AB for use in communication with party B,
where the value CTR is an integer that defines the current key state, which is the number of times the key
has evolved since its creation. After a party has participated in a key exchange run and computed a session
key, it will apply a function Advnc to this key derivation key in order to obtain the next key derivation key
and update the counter. This process is detailed in Fig. 3a. Looking ahead, forward security will be obtained
if the function that computes kCTR+1

AB from kCTR
AB is one-way: this stipulation ensures that an adversary

corrupting a party has no way to move upwards in the figure.
The initial “key derivation key” (KDK) is k0

AB . Subsequent KDKs are derived using a pseudorandom
function PRF with KPRF = RPRF as

ki+1
AB = PRF(kiAB,"ad") (1)

and session keys are derived as
skiAB = PRF(kiAB,"der")

where "ad"(“advance”) and "der"(“derive”) are constant labels used for domain separation.
Furthermore, for convenience, we define a function Advnc which performs multiple key derivations, if

necessary. That is, Advnc(kiAB, i, z) takes an i-th key derivation key for some counter i and an integer z,
and applies PRF iteratively z times to obtain the (i+z)-th KDK such that (1) is satisfied, and sets i := i+z.
For example:

ki+zAB , i+ z ← Advnc(kiAB, i, z).
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"der"

"der"

"der"
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(a) Linear key evolution scheme.

GKEvol
PRF (A)

1` $←− A(1λ); k0 $←− KPRF; b $←− {0, 1}
for j ∈ {0, . . . , `} do

kj+1 = PRF(kj ,"ad")

skj = PRF(kj ,"der")

if b = 1

sk∗ := sk`

else

sk∗ $←− RPRF

b′ $←− A(sk0, . . . , sk`−1, sk∗, k`+1)

(b) The GKEvol
PRF (A) security experiment.

Figure 3: Linear key evolution and the corresponding experiment.

Security. For the security proofs of our protocols it will be convenient to have an abstract security defi-
nition for such a key derivation scheme, which we will show to be implied by the security of the PRF. To
this end, Fig. 3b represents a security experiment for the linear key evolution scheme that we describe. The
adversary A outputs an integer 1` (in unary, to ensure that the number ` is polynomially bounded for any
efficient A), and the adversary’s task is to distinguish sk` from random, when given all prior session keys
sk0, . . . sk`−1 and the ‘next’ key derivation key k`+1.

Definition 11. The advantage ofA in in the KEvol security experiment defined in Fig. 3b for pseudorandom
function PRF is defined as

AdvKEvolPRF (A) :=

∣∣∣∣Pr
[
b = b′

]
− 1

2

∣∣∣∣ .
We now prove the following straightforward theorem.

Theorem 1. Let PRF be a pseudorandom function. For any adversaryA against the KEvol security of PRF,
there exists an adversary B against the PRF-sec of PRF such that

AdvKEvolPRF (A) ≤ ` · AdvPRF-sec
PRF (B).

PROOF. The proof is a straightforward hybrid argument. Let H0 be the original experiment. For i ∈
{1, . . . , `} let Hi be an experiment which proceeds exactly like H0, except that kj and skj−1 are chosen
uniformly random for all j ≤ i, while all other keys are generated exactly as in the original experiment.

Let Xi denote the event that b = b′ in Hi. Then we have

Pr[X0] = AdvKEvolPRF (A) and Pr[X`] =
1

2

because the key sk∗ is always uniformly random in H`, independent of the hidden bit b.
We now construct an adversary B such that

|Pr[Xi]− Pr[Xi+1]| ≤ AdvPRF-sec
PRF (B) (2)
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for all i ∈ {0, . . . , ` − 1}, which yields the claim. B proceeds exactly like Hi, except that it defines ki =
O("ad") and ski−1 = O("der"), where O is the PRF oracle provided by the PRF security experiment.
If A outputs b′ such that b = b′, then B outputs 1, otherwise 0. Note that if O implements a “real” PRF,
then B perfectly simulatesHi forA, whereas if the oracle implements a “random” function, then it perfectly
simulates Hi+1, which yields (2).

4.2 LP3: a Three-Message Protocol

Intuition. In Fig. 4 we present a three-message protocol called LP3, which puts a bound on how far
initiator and responder can be out of sync, allows either party to initiate communications, and provides
mutual authentication. After the first message is sent by an initiator, the responding party advances to catch
up if they are behind. Then they respond, and the initiator does the same if they are behind. A third message
confirms that both parties are now in sync again, and only after that a session key is established. We make
use of state analysis proofs to show that the gap between the two states will be bounded even if messages are
lost on the way (Lemma 6) and extend this proof to a scenario where concurrent runs are allowed (Lemma
7). We then show that the number of concurrent runs is a bound on the gap that can occur. We show in
Theorem 8 that this also implies that the protocol achieves weak synchronization robustness (wSR). The
protocol uses MACs and nonces to achieve mutual authentication (AKE-M). The functions Advnc and KDF,
for PSK advancement and session key derivation respectively, are implemented using a PRF as described in
Fig. 3a and Sec. 4.1.

State. The protocol uses nonces on both the initiating (NA) and responding (NB) sides. Local session state
keeps track of these, and so it is only necessary to send NA in the first protocol message and only NB in the
second message. The nonce generation procedure is denoted GenN, and this process could be, for example,
random selection of a bitstring of some fixed length, or a (per-recipient) counter maintained by the party
(note however that this counter is distinct from CTR, which tracks the key derivation key’s evolution stage).
This choice depends on the application scenario, and this abstraction is for cleaner proofs. In the absence
of a hardware RNG, random nonces require memory to be allocated for code of a software CSPRNG, while
maintaining a counter requires writing to persistent storage (though such writes must be made anyway in
linear key evolving protocols). The probability of a collision in random selection from NS can be bounded
by coll[qN,GenN] ≤ q2N

2|NS| , and the collision probability of a (per-recipient) counter of size |NS| that is
called qN times is

coll[qN,GenN] =

{
0 for 0 ≤ qN ≤ |NS| − 1,
1 for qN ≥ |NS|.

We do not specify the additional counters required to make LP3 deterministic, so it is specified here as a
protocol with random nonces.

4.2.1 AKE-M of LP3

Theorem 2 (AKE-M of LP3). Let Π be the two-message protocol in Fig. 4, built using MAC = {KGen,Mac,Vrfy}
and PRF, with n parties. Then for any adversary A against the AKE-M security of Π that makes a maxi-
mum of q queries that initiate new sessions for each party (with q < |CTR|), there exists an adversary B2.1

against the SEUF-CMA-Q of MAC and an adversary B2.2 against the KEvol security of KDF such that

AdvAKE-M
Π (A) ≤ n2 ·

(
4AdvSEUF-CMA-Q

MAC (B2.1) + 4coll[q,GenN] + q · AdvKEvolPRF (B2.2)
)
.
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Initiator Responder

(CTRAB , k
CTR
AB , K

MAC) (CTRBA, k
CTR
BA , K

MAC)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NA

$←− GenN

σ1 ← Mac(KMAC, A ‖ NA ‖ CTRAB) NA,CTRAB , σ1
if Vrfy(KMAC, A ‖ NA ‖ CTRAB , σ1) = 0

Abort

z1 ← CTRAB − CTRBA

if z1 > 0

kCTR
BA ,CTRBA ← Advnc(kCTR

BA ,CTRBA, z1)

NB
$←− GenN

NB ,CTRBA, σ2 σ2 ← Mac(KMAC, B ‖ NA ‖ NB ‖ CTRBA)
if Vrfy(KMAC, B ‖ NA ‖ NB ‖ CTRBA, σ2) = 0

Abort

z2 ← CTRBA − CTRAB

if z2 > 0

kCTR
AB ,CTRAB ← Advnc(kCTR

AB ,CTRAB , z2)

σ3 ← Mac(KMAC, A ‖ NA ‖ NB ‖ CTRAB
‖ "conf") CTRAB , σ3

skAB := KDF(kCTR
AB ,"der") if Vrfy(KMAC, A ‖ NA ‖ NB ‖ CTRAB

kCTR
AB ,CTRAB ← Advnc(kCTR

AB ,CTRAB , 1) ‖ "conf", σ3) = 0

Abort

z3 ← CTRAB − CTRBA

if z3 6= 0

Abort

skAB ← KDF(kCTR
BA ,"der")

kCTR
BA ,CTRBA ← Advnc(kCTR

BA ,CTRBA, 1)

Figure 4: LP3, a three-message protocol.

We form a bound for each of the three ways in which an adversary can break AKE-M security, namely
Ent-Auth-R, Ent-Auth-I and Key-Ind, and then sum these bounds. There are two MAC security terms, for
entity authentication of responder and initiator, and so 2 · AdvSEUF-CMA-Q

MAC (B2.1) bounds these two terms by
fixing B2.1 to be whichever of B2.1r and B2.1i has greater advantage.

We now give intuition regarding the Ent-Auth proofs. Note that since q < |CTR|, if there is no collision
in the generation of NA for party A then all first protocol messages are unique. Further, after receiving a
first protocol message a responder always generates a nonce, thus if no nonce collisions occur, sending the
same first protocol message to two (or more) different responder oracles will result in distinct transcripts.
This rules out the possibility of multiple oracles with non-unique matching conversations accepting, in either
Ent-Auth-R or Ent-Auth-I. To conclude our proofs, we need to show that the only way an adversary can
force an oracle to accept and for there not to exist any other oracle with a matching transcript, the adversary
must forge a MAC message.

For Lemma 3 (Ent-Auth-R), a responder oracle accepts when it receives (what it believes to be) a third
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protocol message, and so to win there must not exist any oracle with the same partial transcript as this
accepting oracle. This accepting oracle’s transcript must consist of (i) an input first protocol message, (ii)
the resulting second protocol message, and (iii) the third protocol message that resulted in accept being
reached. Since the MAC is calculated on both nonce values and the counter value, the first and third input
messages to the accepting oracle must have been generated by an oracle of the communication partner. So
the only viable route to victory if a forgery has not occurred is if these messages came from different oracles:
and since the nonces are stored as part of the session state, this victory could only occur in the event of a
nonce collision.

A similar argument applies for Lemma 4 (Ent-Auth-I), except now the accepting oracle computes a
session key after receiving a valid second protocol message. Again that second protocol message must have
come from a genuine invocation of NewSessionR by the intended partner if no forgery has occurred, and
thus that oracle’s transcript is a prefix of the accepting oracle’s transcript.

Lemma 3 (Ent-Auth-R of LP3). For any adversary A, the probability that there exists an oracle with
ρ = Responder that accepts maliciously can be bounded by

AdvEnt-Auth-RΠ (A) ≤ n2 · AdvSEUF-CMA-Q
MAC (B2.1r) + coll[q,GenN]

where all quantities are defined as stated in Theorem 2.

PROOF. We proceed using a sequence of games.

Game 0. This is the original Ent-Auth game.

Pr
[
GEnt-Auth

Π (A) = 1
]

= Pr
[
GA0 = 1

]
Game 1. This game is the same as Game 0 except that we assume all nonces generated by NewSessionI
and NewSessionR queries are different, and abort otherwise. The only way an adversary can notice the
difference between these games is by making nonces collide, so we can write the following:

Pr
[
GA0 = 1

]
≤ Pr

[
GA1 = 1

]
+ coll[q,GenN].

Game 2. In this game we guess which responder will be the first to accept maliciously and its partner
identity, and abort if this guess is wrong. The game is the same as Game 1 except that the challenger guesses
(i∗, j∗) $←− [n]× [n], and if an oracle πsi (for some s) accepts maliciously with πsi .ρ 6= Responder or i∗ 6= i
or j∗ 6= πsi .pid, then the challenger aborts.

Pr
[
GA1 = 1

]
= n2 · Pr

[
GA2 = 1

]
In order for an adversary to win without an abort in Game 2, it must make a responder oracle (of party

i∗) accept maliciously, with no initiator oracle (of party j∗) having a matching conversation.
We construct a reduction B2.1r that is playing against the SEUF-CMA-Q security of MAC that simulates

the environment for an underlying adversary A that attempts to win in game Game 2.
The reduction generates (initial) key derivation keys for all pairs of parties, and authentication keys

for all pairs of parties except i∗ and j∗. When responding to queries by A regarding all other parties, the
reduction will honestly provide messages as specified in the protocol specification and the Ent-Auth game.
For any query made between oracles of parties i∗ and j∗, the reduction will use its OMac oracle and provide

19



the received value in its simulation for A. For example, to initialize initiator oracles πj∗ , the reduction calls
N← GenN, checks the current state counter CTRj∗i∗ and calls OMac(j

∗ ‖N ‖ CTRj∗i∗). If A provides any
value that it has not been given by a prior protocol message as input to a Send query from i∗ to j∗ or j∗ to
i∗, then the reduction sends this to its OVrfy oracle in the SEUF-CMA-Q game. The simulation of Game 2
is perfect and any win for A directly corresponds to a valid signature forgery, so we can write

Pr
[
GA2 = 1

]
≤ AdvSEUF-CMA-Q

MAC (B2.1r).

Summing these terms gives the bound in the statement of Lemma 3.

Lemma 4 (Ent-Auth-I of LP3). For any adversary A, the probability that there exists an oracle with ρ =
Initiator that accepts maliciously can be bounded by

AdvEnt-Auth-IΠ (A) ≤ n2 · AdvSEUF-CMA-Q
MAC (B2.1i) + coll[q,GenN]

where all quantities are defined as stated in Theorem 2.

PROOF. Games 0, 1 and 2 are as in the proof of Lemma 3. The reduction B2.1i is as in the proof of
Lemma 3, except that now we are guessing which initiator will be the first to accept maliciously (and its
intended partner), and so the abort occurs if a responder oracle accepts maliciously. The loss of n2 incurred
by selection of parties is the same.

The proof of key indistinguishability is very similar to that of Lemma 12 and the game hops proceed
following the same strategy. Again we use a reduction to the KEvol security of PRF.

Lemma 5 (Key-Ind of LP3). For any adversary A and (any fixed) entity authentication adversary B2.1, the
probability that A answers the Test challenge correctly can be bounded by

AdvKey-IndΠ (A) ≤ AdvEnt-AuthΠ (B2.1) + n2 · q · AdvKEvolPRF (B2.2)

where all quantities are defined as stated in Theorem 2.

PROOF. Let b′ be the bit output by A in each game, and b be the bit sampled as part of the Test query.

Game 0. This is the original Key-Ind game.

Pr
[
GKey-Ind

Π (A) = 1
]

= Pr
[
GA0 = 1

]
Game 1. This game is the same as Game 0, except the challenger aborts and chooses b′ $←− {0, 1} if any
oracle accepts maliciously.

Pr
[
GA0 = 1

]
≤ Pr

[
GA1 = 1

]
+ AdvEnt-Auth-RΠ (B2.1)

At this stage, the oracle to which A asks its Test query has a unique partner oracle with a matching conver-
sation.
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Game 2. This game is the same as Game 1, except the challenger guesses the two parties involved
in the Test query via (i∗, j∗) $←− [n] × [n], and additionally guesses the counter value which identifies
the key derivation key state of the session key in the Test query. If A issues a Test(πsi∗) query with
i∗ 6= i or j∗ 6= πsi∗ .pid (for some s), or the session key computed via Test(πsi ), i.e. ski∗j∗ is not equal
to KDF(kCTR∗

i∗j∗ ,"der"), then the challenger aborts. Note that the challenger does not guess which oracle
of i∗ the Test query will be made to, only the counter value linked to the session key in that query.

Pr
[
GA1 = 1

]
≤ n2 · q · Pr

[
GA2 = 1

]
At this stage, if the challenger has guessed correctly then the Test query will be asked to an oracle after the
key derivation counter has been advanced a fixed number of times, and this oracle has unique partner with a
matching conversation.

Game 3. This game is the same as Game 2, except that when the challenger runs KDF on the key derivation
values used in the Test query, the challenger instead responds with a random key from the session key space.
Noticing this change results in an adversary that is successful in the KEvol game for PRF, so we can write

Pr
[
GA2 = 1

]
= Pr

[
GA3 = 1

]
+ AdvKEvolPRF (B2.2).

The reduction B2.2 is detailed in Fig. 5. B2.2 initially guesses the target parties in the Test session and the
counter value associated with the Test session, as per the previous game hop.

For this reduction the challenger determines how an oracle should process each Send(πsi ) query using
a label MsgNr ∈ {1, 2, 3} as follows. If πsi .ρ = Responder and the message is of the form N,CTR, σ
then MsgNr ← 1. If πsi .ρ = Initiator then MsgNr ← 2. If πsi .ρ = Responder and the message is of the
form CTR, σ then MsgNr ← 3. For all other query types or improperly formatted messages, the challenger
returns ⊥ and sets πsi .α← reject

In the event that B2.2 is in the ‘real’ version of its own game, where it receives a genuine evaluation of
the function KDF, B2.2 perfectly simulates Game 2 for A, and otherwise it perfectly simulates Game 3.

At this stage, the Test query is asked on a key that is randomly chosen, and thus independent of the
protocol and the security game. Consequently,

Pr
[
GA3 = 1

]
=

1

2
⇒ Adv3

Π(A) = 0.

4.2.2 Bounded Gap: Non-Concurrent Setting.

We will now prove that the “gap” between the state of the two parties in LP3 is bounded in the non-
concurrent setting, that is:

Lemma 6. Let A and B be respectively the initiator and the responder of a single — non-concurrent —
LP3-run. Let δAB be the gap between A and B with respect to the evolution of the master keys of both
parties. Then δAB ∈ {−1, 0, 1}, assuming MAC-security.

The messages in LP3 are counted in a natural way, as indicated in Fig. 6a. For this non-concurrent setting
the proof is similar to [ACF20, Lemma 1] . Then the notation “(CTRAB, CTRBA)” means that, when the
run ends, the last valid message received by A has index CTRAB , and the last valid message received by B
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Reduction B2.2 playing GKEvol
KDF (B2.2)

1 : i∗, j∗ $←− [n]; CTR∗ $←− [q]

2 : for i, j∈ [n] do

3 : CTRij = CTRji ← 0

4 : KMAC
ij = KMAC

ji
$←− KMAC

5 : for [n]× [n] \ (i∗, j∗) do

6 : k0
ij = k0

ji
$←− KPRF

7 : output CTR∗

8 : receive(sk0, . . . , skCTR
∗−1, sk∗, kCTR∗+1)

9 : kCTR∗+1
i∗j∗ ← kCTR∗+1

10 : Aoracles

11 : When A calls Test(πsi ) do

12 : if i 6= i∗ or j∗ 6= πs
∗

i∗ .pid

13 : return Abort

14 : return πsi .sk

15 : (i∗, s∗, b′) $←− A(πsi .sk)

16 : return b′

NewSessionI(πsi , pid)

17 : πsi .ρ← Initiator

18 : πsi .α← negotiating

19 : πsi .pid← pid// =j

20 : N← GenN

21 : σ1 ← Mac(KMAC, i ‖ N ‖ CTRij)
22 : m′ ← N,CTRij , σ1

23 : returnm′

NewSessionR(πsi , pid,m)

24 : πsi .ρ← Responder

25 : πsi .α← negotiating

26 : πsi .pid← pid

27 : do Send(πsi ,m)

Send(πsi ,m) // pid =j

28 : if MsgNr = 1

29 : if Vrfy(KMAC, j ‖ Nj ‖ CTRji,σ1) = 0

30 : return Abort

31 : z1 ← CTRji − CTRij

32 : if z1 > 0

33 : kij ,CTRij ← Advnc(kij ,CTRij , z1)

34 : Ni ← GenN

35 : σ2 ← Mac(KMAC, i ‖ Nj ‖ Ni ‖ CTRij
36 : m′ ← Ni,CTRij , σ2

37 : returnm′

38 : if MsgNr = 2

39 : if Vrfy(KMAC, j ‖ Ni ‖ Nj ‖ CTRji,σ2) = 0

40 : return Abort

41 : z2 ← CTRji − CTRij

42 : if z2 > 0

43 : kij ,CTRij ← Advnc(kij ,CTRij , z2)

44 : σ3 ← Mac(KMAC, i ‖ Ni ‖ Nj ‖ CTRij ‖ "conf")

45 : m′ ← CTRij , σ3

46 : returnm′

47 : else // MsgNr =3

48 : if Vrfy(KMAC, j ‖ Nj ‖ Ni ‖ CTRji‖"conf", σ3) = 0

49 : return Abort

50 : z3 ← CTRji − CTRij

51 : if z3 6= 0

52 : return Abort

53 : if MsgNr ∈ {2, 3}
54 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)

55 : if CTRij < CTR∗

56 : πsi .sk ← skCTRij

57 : if CTRij = CTR∗

58 : πsi .sk ← sk∗

59 : s∗ ← s

60 : CTRij ← CTRij + 1

61 : else

62 : πsi .sk ← KDF(kCTR
ij ,"der")

63 : kCTR
ij ,CTRij ← Advnc(kCTR

ij ,CTRij , 1)

64 : πsi .α← accept

Figure 5: Reduction B2.2 for the proof of Lemma 5. If at any time A causes an oracle to ac-
cept maliciously, then B2.2 simply does Abort. B2.2 provides A with access to oracles =
NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·),RevealKey(·),Corrupt(·, ·), however RevealKey and
Corrupt are omitted for space reasons: they are exactly as in Fig. 9 (Key-Ind proof of LP2).22
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(b) Synchronization state for LP3 in the non-
concurrent setting.

Figure 6: Different states for LP3, and transitions between them.

has index CTRBA. We call a (CTRAB,CTRBA)-run a run where the last message received by A is message
CTRAB , and the last message received by B is message CTRBA. By convention CTRAB = 0 means that
no message has been received by A. In Fig. 6b, we define the states to be the different values of δAB . The
transitions are the possible messages. An example: if our protocol instance is in state δAB = −1, and B
responds to message 1 with message 2, i.e. transition (2, 1) in the state diagram, the initiator will advance
twice and the state will be δAB = 1. A then sends the third message: transition (2, 3) takes place and we
end up in state δAB = 0 since this third message will cause the responder to advance.

PROOF. We prove Lemma 6. The protocol is initialized with δAB = 0 and the first step is sending message
1: either the message never reaches the responder, or the message is received correctly. In either case neither
party advances, so δAB = 0 — i.e. transition (0, 1) in Fig. 6b is fired. If the protocol now terminates we end
up in state 0, while sending and receiving message 2 would cause the initiator to advance, or in terms of the
state diagram, fire (2, 1) and transition to δAB = 1.

Because we restrict ourselves to non-concurrent executions, the only possible option no matter the state
is to advance with one message or terminate and start from (0, 1). Adding all possible transitions to the state
diagram, we observe that there are no reachable states other than 0 and 1. Since the protocol does not have
fixed roles we can reach a state −1 by changing roles after we reached state 1. From there, there are two
transitions that bring us back to states 0 and 1. Since we assume that MACs cannot be forged, these are the
only reachable states, thus δAB ∈ {−1, 0, 1} always holds.

4.2.3 Bounded Gap: Concurrent Setting.

We will now extend Lemma 6 to the concurrent setting.

Lemma 7. Let A and B be respectively the initiator and the responder of C concurrent LP3-runs. Let
δAB be the gap between A and B with respect to the evolution of the master keys of both parties. Then
−C ≤ δAB ≤ 1 + C, assuming MAC-security.

To illustrate the (in a sense) multidimensional effect of concurrent runs on the protocol, we will now use
a different message labelling convention. Fig. 6a defines the different states the protocol execution can be
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Figure 7: Synchronization state for LP3 in the concurrent setting.

in. The state diagram in Fig. 7 now uses these four possible protocol states as diagram states — a message
between state a and b is thus necessarily message 1. The internal state of the four ‘macro states’ in the
diagram now represents the value of δAB .

Observe that for the transitions from a to b and from b to c, i.e. the sending of messages 1 and 2,
respectively, the evolution of δAB depends on the actual value of a. For all transitions caused by message 3,
the change is systematic:

1. Any transition from c to d will decrease δAB by 1;

2. any transition from b to c will increase δAB by at least 1.

Additionally there are two ‘resets’, since

3. any transition from a to b will set δAB to 0, if the gap is 1 or more;

4. any transition from b to c will set δAB to 1, if the gap is 0 or less.

PROOF. We prove Lemma 7. In Lemma 6, the normal range is shown to be δAB ∈ {−1, 0, 1}. Extensions
beyond this range are possible when the condition in 1. or 2. above occurs during a run, so each consecutive
run can influence δAB with −1 or +1 at most. Since we assume MAC-security, the adversary cannot
influence the protocol with messages other than those authentically sent during one of the runs. Inductively,
we conclude −C ≤ δAB ≤ 1 + C.

4.2.4 wSR of LP3.

We now argue that LP3 obtains weak synchronization robustness (wSR), the property that captures how
well a protocol can recover from network errors and interleaving of protocol runs. In the wSR game the
adversary can make arbitrary NewSessionI, NewSessionR and Send queries, and at its conclusion it outputs
the identifiers of two oracles: it is said to win the wSR game if these oracles engaged in an uninterrupted
protocol run but did not compute the same session key. As such, a proof of wSR must argue that whatever
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values of party state exist before the target protocol run occurs, neither of the parties will abort and both will
arrive at the same session key.

Our general approach for proving robustness of all of the protocols in this paper is to separate adversaries
that win the wSR game via forging a MAC value, and those that do not produce a forgery during their
execution. LP1 (Fig. 11) and LP2 (Fig. 8) have fixed roles and as a result the initiator’s counter value must
always be at least the size of the responder’s counter value for the protocol to have correctness. Thus a MAC
forgery can force the responding party’s counter value to be arbitrarily large, and the target protocol run will
cause at least one party to abort, and the adversary wins the wSR game. LP3, on the other hand, is actually
not vulnerable in the sense of synchronization robustness if a MAC forgery does occur. This is due to LP3
being designed to have correctness for all starting (integer) counter values, since in any session, both parties
can catch up from being arbitrarily far behind.

We formally prove this below, however to see this visually, consider Fig. 7 for the execution of a single
protocol run, i.e. from a to d. For any initial state difference a, the state c after the second protocol message
has been processed is always 1 (the initiator computes a session key and advances once), leading to state
difference 0 after the responder processes the final protocol message (deriving a session key and advancing
once).

Theorem 8 (wSR of LP3). Let Π be the three-message protocol in Fig. 4, built using MAC = {KGen,Mac,Vrfy}
and PRF with n parties. Then for any adversary A against the wSR security of Π, AdvwSRΠ (A) = 0.

PROOF. The only places where Abort occurs in the protocol description (Fig. 4) are after MAC verification
failures: in the target protocol session all messages are honestly generated so this cannot occur (assuming
perfect correctness of MAC). As a result, the only route to victory in the wSR game for an adversary is to
make the parties compute different session keys. This occurs if the parties compute session keys but have
different counter values once all three protocol messages have been delivered and processed: following
the notation and arguments in Lemma 7, this is the same as showing that δ = 0 after a (2, 3) session for
any starting delta value. More precisely, let A and B be the parties involved in the target session where
A sends the first protocol message, let δpreAB be the gap between A and B with respect to the evolution of
the master keys of both parties and the point before the target session begins (i.e. before the adversary calls
NewSessionI for the target session), and let δpostAB be the gap after the target session has occurred. Fig. 6b
shows that δpostAB = 0 for δpreAB ∈ {−1, 0,−1}, so to complete the proof we need to show that this also holds
for arbitrary δpreAB .

If δpreAB ∈ {1, 2, . . . , }, i.e. CTRAB is ahead of CTRBA by δpreAB = z1 steps, then the first protocol message
processing by B results in B advancing its counter CTRBA by δpreAB steps, leading to state difference 0. This
means that A will not advance on receiving the second protocol message and both parties will compute a
session key for state CTRAB and then advance once, and so δpostAB = 0.

If δpreAB ∈ {−1,−2, . . . , }, i.e. CTRBA is ahead of CTRAB by −δpreAB = z2 steps, B does not advance in
processing the first message, howeverA does advance by−δpreAB = z2 steps on receiving the second protocol
message. Again this leads to state difference 0 and here a session key is computed for state CTRBA and then
both parties advance once, so δpostAB = 0.

This concludes the proof, since any initial state will lead to the target protocol run computing the same
session key for the involved parties.

4.3 LP2: A Two-Message Protocol with Fixed Roles

In Fig. 8 we present a two-message protocol, LP2, with linear key evolution. The roles of initiator and
responder are fixed, so the same party initiates every session: this is enforced by CTRAB ≥ CTRBA (for A
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initiating).

Initiator Responder

CTRAB , k
CTR
AB , K

MAC CTRBA, k
CTR
BA , K

MAC

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
z0 ← NextOdd(CTRAB)− CTRAB

kCTR
AB ,CTRAB := Advnc(kCTR

AB ,CTRAB , z0)

σ1 ← Mac(KMAC, A ‖ CTRAB) CTRAB , σ1
if Vrfy(KMAC, A ‖ CTRAB , σ1) = 0

Abort

z1 ← CTRAB − CTRBA

if z1 < 0

Abort

kCTR
BA ,CTRBA ← Advnc(kCTR

BA ,CTRBA, z1)
CTRBA, σ2 σ2 ← Mac(KMAC, B ‖ CTRBA)

if Vrfy(KMAC, B ‖ CTRBA, σ2) = 0 skAB ← KDF(kCTR
BA ,"der")

Abort kCTR
BA ,CTRBA ← Advnc(kCTR

BA ,CTRBA, 1)

z2 ← CTRBA − CTRAB

if z2 6= 0

Abort

skAB ← KDF(kCTR
AB ,"der")

kCTR
AB ,CTRAB ← Advnc(kCTR

AB ,CTRAB , 1)

Figure 8: LP2, a two-message protocol with fixed roles.

Achieving weak synchronization robustness (wSR) is slightly more complicated in LP2 than it was in
LP3. If we were to adapt LP3 to a two-message protocol by simply dropping the last message and having
the responder accept (thus, deriving a session key and advancing its state), we could end up in a situation
where we break the requirement that the responder should never advance past the state of the initiator. In
this hypothetical protocol, the initiator will initiate the key exchange, but will not derive a session key until
it has authenticated the responder. The responder, however, will authenticate the initiator upon receiving
the first protocol message (rather than waiting for a key confirmation message as in LP3) and produce the
second protocol message, after which it will immediately derive a session key and advance its state. Thus,
if this second protocol message is not delivered, the responder will have advanced its state, but the initiator
has not, contradicting our requirement that CTRAB ≥ CTRBA.

In order to avoid this in LP2, the initiator A will always advance to the next odd value of its counter at
the beginning of each session. How many steps the initiator advances depends on what has happened earlier.
If a complete session has been executed as A’s previous action, A starts by advancing once, so that its state
counter is ahead of B. If in the previous session A never processed the second protocol message, A will
advance twice at the beginning of the next session, in order to catch up to B and move ahead. The reasoning
behind this is the separation of A’s counter set: if the counter is an even integer then A has most recently
received a message (and derived a key), whereas if it is an odd integer then A most recently sent a (session
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opening) protocol message. In both cases, advancing to NextOdd(CTRAB) will have the desired effect.
With this simpler protocol we are able to achieve most of the desired properties from SP3, but with a

more lightweight protocol. Fixing the roles makes this possible, and this demonstrates the fine balance be-
tween forward security and (weak) synchronization robustness. In the event that the reduced communication
complexity of LP2 compared to LP3 is desirable when choosing a protocol, but if the application demands
that either party can initiate, it is possible to run LP2 in duplex mode. In duplex mode, both parties keep
separate key derivation keys and counters for initiating and responding such that both parties can have both
roles without violating the condition CTRAB ≥ CTRBA.

4.3.1 AKE-M of LP2

Theorem 9 (AKE-M of LP2). Let Π be the two-message protocol in Fig. 8, built using MAC = {KGen,Mac,Vrfy},
and PRF, with n parties. Then for any adversaryA against the AKE-M security of Π that makes a maximum
of q queries that initiate new sessions for each party (with q < |CTR|

2 ), there exists an adversary B9.1 against
the SEUF-CMA-Q of MAC and an adversary B9.2 against the KEvol security of PRF such that

AdvAKE-M
Π (A) ≤ n2 ·

(
4 · AdvSEUF-CMA-Q

MAC (B9.1) + q · AdvKEvolPRF (B9.2)
)
.

We form a bound for each of the three ways in which an adversary can break AKE-M security, namely
Ent-Auth-R, Ent-Auth-I and Key-Ind, and then sum these bounds. There are two MAC security terms, for
entity authentication of responder and initiator, and so 2 · AdvSEUF-CMA-Q

MAC (B9.1) bounds these two terms by
fixing B9.1 to be whichever of B9.1r and B9.1i has greater advantage.

We now give intuition regarding the Ent-Auth proofs. Note that since q < |CTR|
2 , all first protocol

messages are unique, and thus the first message in every transcript is unique. Further, after receiving a first
protocol message a responder always advances its state (at least) once, and so delivering that same first
protocol message to any oracle of the same responder party will trigger the if z1 < 0 branch and result in
Abort. This rules out the possibility of multiple oracles with non-unique matching conversations accepting.
To conclude our proofs, we need to show that the only way an adversary can force an oracle to accept and
for there not to exist any other oracle with a matching transcript, the adversary must forge a MAC message.

For Lemma 10 (Ent-Auth-R), a responder oracle accepts when it receives a first protocol message, and
so to win there must not exist any oracle with the same partial transcript as this accepting oracle. Since the
MAC is calculated on the the counter value and the communicating parties’ identities, the input message to
the accepting oracle must have been generated by an oracle of the communication partner (in which case
there is a matching conversation and the adversary has not won) or the adversary has produced a MAC
forgery (in the SEUF-CMA-Q sense.

A similar argument applies for Lemma 11 (Ent-Auth-I), except now the accepting oracle computes a
session key after receiving a valid second protocol message. Again if no forgery has occurred that second
protocol message must have come from a genuine invocation of NewSessionR by the intended partner (with
the first protocol message of the accepting oracle provided as input), and thus that oracle’s transcript is a
prefix of the accepting oracle’s transcript. Specifically, if an initiator session was instantiated after the first
protocol message of the accepting oracle was produced then z2 6= 0 and we have a contradiction since this
oracle could not then reach accept.

Lemma 10 (Ent-Auth-R of LP2). For any adversary A, the probability that there exists an oracle with
ρ = Responder that accepts maliciously can be bounded by

AdvEnt-Auth-RΠ (A) ≤ n2 · AdvSEUF-CMA-Q
MAC (B9.1r)
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where all quantities are defined as stated in Theorem 9.

PROOF. We proceed using a sequence of games.

Game 0. This is the original Ent-Auth game.

Pr
[
GEnt-Auth

Π (A) = 1
]

= Pr
[
GA0 = 1

]
Game 1. In this game we guess which responder will be the first to accept maliciously and its partner
identity, and abort if this guess is wrong. The game is the same as Game 0 except that the challenger guesses
(i∗, j∗) $←− [n]× [n], and if an oracle πsi (for some s) accepts maliciously with πsi .ρ 6= Responder or i∗ 6= i
or j∗ 6= πsi .pid, then the challenger aborts.

Pr
[
GA0 = 1

]
= n2 · Pr

[
GA1 = 1

]
We construct a reduction B9.1r that is playing against the SEUF-CMA-Q security of MAC that simu-

lates the environment for an underlying adversary A that attempts to win in game Game 1. The reduction
generates (initial) key derivation keys for all pairs of parties, and authentication keys for all pairs of parties
except i∗ and j∗. When responding to queries by A regarding all other parties, the reduction will honestly
provide messages as specified in the protocol specification and the Ent-Auth game. For any query made
between oracles of parties i∗ and j∗, the reduction will use its OMac oracle and provide the received value
in its simulation for A. For example, to initialize initiator oracles πj∗ , the reduction checks the current
state counter CTRj∗i∗ and calls OMac(j

∗ ‖ CTRj∗i∗). If A provides any value that it has not been given as
an initialization query as input to a NewSessionR query from i∗ to j∗, then the reduction sends this to its
OVrfy oracle in the SEUF-CMA-Q game. The simulation of Game 1 is perfect and any win for A directly
corresponds to a valid signature forgery, so we can write

Pr
[
GA1 = 1

]
≤ AdvSEUF-CMA-Q

MAC (B9.1r).

Summing these terms gives the bound in the statement of Lemma 10.

The second proof is very similar, and considers malicious acceptance by an initiator, i.e. as a result of
a full protocol run of two messages. We only detail significant changes and note that our term collection is
exactly the same.

Lemma 11 (Ent-Auth-I of LP2). For any adversary A, the probability that there exists an oracle with
ρ = Initiator that accepts maliciously can be bounded by

AdvEnt-Auth-IΠ (A) ≤ n2 · AdvSEUF-CMA-Q
MAC (B9.1i)

where all quantities are defined as stated in Theorem 9.

PROOF. Games 0 and 1 are exactly as in the proof of Lemma 10. The reduction is as in the proof of
Lemma 10, except that now we are guessing which initiating party will be the first to accept maliciously
(and its intended partner), and so the abort occurs if a responder oracle accepts maliciously. The loss of n2

incurred by selection of parties is the same.
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Again, the next step is a reduction that plays against SEUF-CMA-Q of the MAC scheme MAC. However,
the reduction of course must behave slightly differently, since it must send to its own OVrfy oracle any
message that was called as a Send query for the targeted initiator oracle, but which was not given as an
output protocol message by a NewSessionR query (to responder oracle j∗). Further, we need to ensure that
the forgery attempt is on an oracle that does not have a matching conversation with any others: in the proof
of Lemma 10 this was straightforward since there was only one unique message in question, but here the
transcripts that we are interested in consist of (up to) two flows between each oracle. This is just a matter of
bookkeeping, and as before B9.1i forwards all attempted forgeries to its own verification oracle, so any query
that would have caused A to win the entity authentication game (in the simulation that A is experiencing)
also corresponds to success in the game that B9.1i is playing.

Lemma 12 (Key-Ind of LP2). For any adversary A and (any fixed) entity authentication adversary B9.1,
the probability that A answers the Test challenge correctly can be bounded by

AdvKey-IndΠ (A) ≤ AdvEnt-AuthΠ (B9.1) + n2q · AdvKEvolPRF (B9.2).

where all quantities are defined as stated in Theorem 9.

PROOF. Let b′ be the bit output by A in each game, and b be the bit sampled as part of the Test query.

Game 0. This is the original Key-Ind game.

Pr
[
GKey-Ind

Π (A) = 1
]

= Pr
[
GA0 = 1

]
Game 1. This game is the same as Game 0, except the challenger aborts and chooses b′ $←− {0, 1} if any
oracle accepts maliciously.

Pr
[
GA0 = 1

]
≤ Pr

[
GA1 = 1

]
+ AdvEnt-AuthΠ (B9.1)

At this stage, the oracle to which A asks its Test query has a unique partner oracle with a matching conver-
sation.

Game 2. This game is the same as Game 1, except the challenger guesses the two parties involved in
the Test query via (i∗, j∗) $←− [n] × [n], and additionally guesses the counter value which identifies the
key derivation key state of the session key in the Test query. Note that session keys are only derived for
counters equal to odd integers in {1, 3, . . . , q}, so the challenger chooses CTR∗i∗j∗ from this set. If A issues
a Test(πsi∗) query with i∗ 6= i or j∗ 6= πsi∗ .pid (for some s), or the session key computed via Test(πsi ),
i.e. ski∗j∗ is not equal to KDF(kCTR∗

i∗j∗ ,"der"), then the challenger aborts. Note that the challenger does
not guess which oracle of i∗ the Test query will be made to, only the counter value linked to the session key
in that query.

Pr
[
GA1 = 1

]
≤ n2 · q · Pr

[
GA2 = 1

]
At this stage, if the challenger has guessed correctly then the Test query will be asked to an oracle after the
key derivation counter has been advanced a fixed number of times, and this oracle has unique partner with a
matching conversation.
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Game 3. This game is the same as Game 2, except that when the challenger runs KDF on the key derivation
values used in the Test query, the challenger instead responds with a random key from the session key space.
Noticing this change results in an adversary that is successful in the KEvol game for PRF, so we can write

Pr
[
GA2 = 1

]
= Pr

[
GA3 = 1

]
+ AdvKEvolPRF (B9.2).

The reduction B9.2 is detailed in Fig. 9. B9.2 initially guesses the target parties in the Test session and the
counter value associated with the Test session, as per the previous game hop. In this reduction, instances of
return Abort indicate that the adversary has done something that the reduction cannot respond to (since it
has been ruled out by earlier game hops) and thus the reduction must abort. Instances of return ⊥ indicate
that the adversary has done something that it is not allowed to do, for example doing RevealKey on a non-
existent session key or delivering an invalid message to a(n orcale of a) party. In this case the reduction stops
the action of the query, and if instructed by the model in Section 3, sets the execution state α of the queried
oracle to reject. Finally, return x indicates that B9.2 gives value x to A as a result of one of A’s queries.

In the event that B9.2 is in the ‘real’ version of its own game, where it receives a genuine evaluation of
the function KDF, B9.2 perfectly simulates Game 2 for A, and otherwise it perfectly simulates Game 3.

At this stage, the Test query is asked on a key that is randomly chosen, and thus independent of the
protocol and the security game. Consequently,

Pr
[
GA3 = 1

]
=

1

2
⇒ Adv3

Π(A) = 0.

4.3.2 wSR of LP2

We now argue that LP2 obtains weak synchronization robustness (wSR). A proof of wSR must argue that
whatever the adversary does before the target protocol run occurs, during the target protocol run itself neither
of the parties will abort and both will arrive at the same session key. Protocol LP2, like LP1 (Fig. 11), only
has correctness when the initiator’s counter is at least the size of the responder’s counter, i.e. CTRAB ≥
CTRBA – this inequality is guaranteed in our protocol by MAC security. By inspection, if an adversary
forges a MAC on A ‖ CTRAB for some CTRAB larger than the current value of CTRBA and delivers this
MAC as part of a protocol message to an oracle of B, then any subsequent protocol run will cause B to
Abort and thus will be a winning target protocol run for this adversary.

The formal proof is below, but here we outline the proof idea. We first define an event E13 that is
triggered if the adversary in the wSR game forges a MAC, i.e. produces a message-tag pair that verifies
correctly that it has not seen before, and the challenger aborts if this occurs: bounding this event is of course
straightforward. Then, we must argue that if a MAC forgery has not occurred then there are in fact no
viable routes to victory in the wSR game. To see this, note that for the (uninterrupted) target session, if
z1 = CTRAB − CTRBA ≥ 0 then B will always catch up to the counter value of A (i.e. advance by z1

steps) and both parties will compute a session key for counter value CTRAB . Note also that in the target
session, it is not possible for the if z2 6= 0 to be triggered after A receives the second protocol message
since the counter value CTRBA that B sends will always have caught up to CTRAB in the processing of
the first protocol message. Thus to conclude, we just need to show that, if a forgery has not occurred, it is
not possible for the adversary to force CTRAB < CTRBA. Every time the adversary creates a new initiator
session, the initiator’s counter is incremented by either 1 or 2 steps, whereas B can advance an arbitrary
number of times to catch up to (what B thinks is) A’s current counter state. Since the MAC includes party
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Reduction B9.2 playing GKEvol
KDF (B9.2)

1 : i∗, j∗ $←− [n]; CTR∗ $←− {1, 3, . . . , q}
2 : for i, j∈ [n] do

3 : CTRij = CTRji ← 0

4 : KMAC
ij = KMAC

ji
$←− KMAC

5 : for [n]× [n] \ (i∗, j∗) do

6 : k0
ij = k0

ji
$←− KPRF

7 : output CTR∗

8 : receive(sk0, . . . , skCTR
∗−1, sk∗, kCTR∗+1)

9 : kCTR∗+1
i∗j∗ ← kCTR∗+1

10 : Aoracles

11 : WhenA calls Test(πsi ) do

12 : if i 6= i∗ or j∗ 6= πs
∗
i∗ .pid

13 : return Abort

14 : return πsi .sk

15 : (i∗, s∗, b′) $←− A(πsi .sk)

16 : return b′

NewSessionI(πsi , pid)

17 : πsi .ρ← Initiator

18 : πsi .α← negotiating

19 : πsi .pid← pid // =j

20 : z0 ← NextOdd(CTRij)− CTRij

21 : kCTR
ij ,CTRij ← Advnc(kCTR

ij ,CTRij , z0)

22 : σ1 ← Mac(KMAC, i ‖ CTRij)
23 : m′ ← CTRij , σ1

24 : returnm′

NewSessionR(πsi , pid,m)

25 : πsi .ρ← Responder

26 : πsi .α← negotiating

27 : πsi .pid← pid

28 : do Send(πsi ,m)

Corrupt(Pi, Pj)

29 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)

30 : if CTRij ≤ CTR∗

31 : return Abort

32 : return kij

RevealKey(πsi )

33 : if πsi .α 6= accept

34 : return ⊥
35 : if (i, s) = (i∗, s∗)

36 : return Abort

37 : πsi .κ← exposed

38 : return πsi .sk

Send(πsi ,m) // pid =j

39 : Parse m as CTRji, σ

40 : if Vrfy(KMAC
ij , j ‖ CTRji, σ) = 0

41 : return ⊥
42 : if πsi .ρ = Responder

43 : z1 ← CTRji − CTRij

44 : if z1 < 0

45 : return ⊥

46 : kCTR
ij ,CTRij ← Advnc(kCTR

ij ,CTRij , z1)

47 : σ2 ← Mac(KMAC
ij , i ‖ CTRij)

48 : m′ ← CTRij , σ2

49 : returnm′

50 : else

51 : z2 ← CTRij − CTRji

52 : if z2 6= 0

53 : return ⊥
54 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)

55 : if CTRij < CTR∗

56 : πsi .sk ← skCTRij

57 : if CTRij = CTR∗

58 : πsi .sk ← sk∗

59 : s∗ ← s

60 : CTRij ← CTRij + 1

61 : else

62 : πsi .sk ← KDF(kCTR
ij ,"der")

63 : kCTR
ij ,CTRij ← Advnc(kCTR

ij ,CTRij , 1)

64 : πsi .α← accept

Figure 9: Reduction B9.2 for the proof of Lemma 12. If at any time A causes an oracle to
accept maliciously, then B9.2 simply does Abort. B9.2 provides A with access to oracles =
NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·),RevealKey(·),Corrupt(·, ·).
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identification information and the initiator’s counter value, in the absence of MAC forgeries the adversary
cannot produce a valid protocol message with verifying MAC for any counter larger than the ones that it has
seen as a result of genuine invocations of new protocol sessions.

Theorem 13 (wSR of LP2). Let Π be the two-message protocol in Fig. 8, built using MAC = {KGen,Mac,Vrfy}
and PRF, with n parties. Then for any adversary A against the wSR security of Π that makes a maximum
of q queries that initiate new sessions for each party (with q < |CTR|

2 ), there exists an adversary B13 against
the SEUF-CMA-Q of MAC such that

AdvwSRΠ (A) ≤ n2 · AdvSEUF-CMA-Q
MAC (B13).

PROOF. We proceed using a sequence of games.

Game 0. This is the original wSR game.

Pr
[
GwSR

Π (A) = 1
]

= Pr
[
GA0 = 1

]
Game 1. This game is the same as Game 0 except that we define an event E13, that is said to occur if the
adversary successfully forges a MAC while it is running, and the challenger aborts if E13 occurs.

Pr
[
GA0 = 1

]
= Pr

[
GA1 = 1

]
+ Pr [E13]

We now bound the probability that E13 occurs. We construct a reduction B13 to the SEUF-CMA-Q
security of MAC with a verification oracle. First, the reduction guesses which parties will be involved in
the forgery that triggers E13, and then simulates the environment of Game 0. To do this, B13 must select
(initial) key derivation keys from the appropriate keyspace and randomly pick MAC keys for all pairs of
parties except for the guessed parties i∗ and j∗. It is then simple to simulate all queries to oracles of parties
except communication between the guessed pair. Note that this choice of parties involved in the forgery is
independent of the parties that the underlying adversaryA will eventually output for the target protocol run.

For any query to an oracle of party i∗ with pid = j∗ or an oracle of j∗ with pid = i∗, the reduction needs
to forward queries to its own MAC and verification oracles. However note that B13 knows the key derivation
keys even for these parties, so responding to queries is straightfoward except for its calls toOMac andOVrfy.
The full reduction is detailed in Fig. 10.

Pr [E13] ≤ n2 · AdvSEUF-CMA-Q
MAC (B13)

At this point, the adversary cannot win via a MAC forgery.
A win can be obtained if either party in the target session aborts, or if the parties compute different

keys. If the target session begins with CTRAB ≥ CTRBA, then the parties will always compute the same
key via skAB ← KDF(kCTR

AB ,"der") so we only need to argue that the adversary cannot force the state
CTRBA > CTRAB without forging the MAC. Note that every intiator session advances its counter (and thus
key state) once either once or twice, while responder sessions (oracles) can advance an arbitrary number of
times. However, the responder only advances if it has received and accepted a protocol message. For the
responder to advance without the initiator having done so, the adversary must deliver a valid message to the
responder without having called NewSessionI. This message must also have a counter value CTR′AB that is
greater than CTRAB (the actual counter value of A with respect to B, and a valid MAC. Producing such a
message that will be processed by B requires it to have a valid MAC on A ‖ CTR′AB . Since we assume that
the adversary does not produce a MAC forgery it must have seen this message before, which means it must
have been output by a NewSessionI query, and we have a contradiction. This concludes the proof.
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Reduction B13 playing GSEUF-CMA-Q
MAC (B13)

1 : i∗, j∗ $←− [n]

2 : for i, j∈ [n] do

3 : kCTR
ij = kCTR

ji
$←− KPRF

4 : for [n]× [n] \ (i∗, j∗) do

5 : KMAC
ij = kj,iMAC

$←− KMAC

6 : CTRij = CTRji ← 0

7 : Aoracles

NewSessionI(πsi , pid)

8 : πsi .ρ← Initiator

9 : πsi .α← negotiating

10 : πsi .pid← pid // = j

11 : z0 ← NextOdd(CTRij)− CTRij

12 : kCTR
ij ,CTRij ← Advnc(kCTR

ij ,CTRij , z0)

13 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)

14 : σ1 ← call OMac(i ‖ CTRij)
15 : else

16 : σ1 ← Mac(KMAC
ij , i ‖ CTRij)

17 : m′ ← CTRij , σ1

18 : returnm′

NewSessionR(πsi , pid,m)

19 : πsi .ρ← Responder

20 : πsi .α← negotiating

21 : πsi .pid← pid

22 : do Send(πsi ,m)

Send(πsi ,m) // pid =j

23 : Parse m as CTRji, σ
24 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)

25 : b← call OVrfy(j ‖ CTRji), σ)

26 : if b = 0

27 : return ⊥
28 : else

29 : if Vrfy(KMAC, j ‖ CTRij , σ) = 0

30 : return ⊥
31 : if πsi .ρ = Responder

32 : z1 ← CTRji − CTRij

33 : if z1 < 0

34 : return ⊥
35 : kCTR

ij ,CTRij ← Advnc(kCTR
ij ,CTRij , z1)

36 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)

37 : σ2 ← call OMac(i ‖ CTRij)
38 : else

39 : σ2 ← Mac(KMAC
ij , i ‖ CTRij)

40 : returnm′ ← CTRij , σ2

41 : else

42 : z2 ← CTRij − CTRji

43 : if z2 6= 0

44 : return ⊥
45 : πsi .sk ← KDF(kCTR

ij ,"der")

46 : πsi .α← accept

47 : kCTR
ij ,CTRij ← Advnc(kCTR

ij ,CTRij , 1)

Figure 10: Reduction B13 for the proof of Theorem 13. B13 provides A with access to oracles =
NewSessionI(·, ·, ·),NewSessionR(·, ·),Send(·, ·, ·).

4.4 LP1: A One-Message Protocol with Fixed Roles

In Fig. 11 we present a one-message protocol, LP1, with linear key evolution. Like in LP2, the roles of
initiator and responder are fixed, so the same party initiates every session: i.e. CTRAB ≥ CTRBA (for A
initiating). Ensuring that the counter states of the communicating parties is slightly simpler in LP1 than
LP2, since we do not have to worry about the responder advancing before the initiator. The initiator simply
advances once every time it participates in a session, and both parties advance exactly once after computing
a session key. If protocol messages are dropped then it may be necessary for the responder to advance before
it can compute the session key.
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Initiator Responder

(CTRAB , k
CTR
AB , K

MAC) (CTRBA, k
CTR
BA , K

MAC)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ1 ← Mac(KMAC,CTRAB) CTRAB , σ1

skAB ← KDF(kCTR
AB ,"der") if Vrfy(KMAC,CTRAB , σ1) = 0

kCTR
AB ,CTRAB ← Advnc(kCTR

AB ,CTRAB , 1) Abort

z1 ← CTRAB − CTRBA

if z1 < 0

Abort

kCTR
BA ,CTRBA ← Advnc(kCTR

BA ,CTRBA, z1)

skBA ← KDF(kCTR
BA ,"der")

kCTR
BA ,CTRBA ← Advnc(kCTR

BA ,CTRBA, 1)

Figure 11: LP1, a one-message protocol with fixed roles.

In Theorem 14 we show that LP1 achieves one-sided authentication (responder authenticates initiator).
Achieving weak synchronization robustness (wSR, Theorem 17) is similar in LP1 and LP2, and is guaranteed
by MAC security. Like with LP2, if both parties need to be able to initiate then LP1 can be run in duplex
mode.

4.4.1 AKE-R of LP1

Theorem 14 (AKE-R of LP1). Let Π be the one-message protocol in Fig. 11, built using MAC = {KGen,Mac,Vrfy}
and PRF, with n parties. Then for any adversaryA against the AKE-R security of Π that makes a maximum
of q queries that initiate new sessions for each party (with q < |CTR|), there exists an adversary B14.1

against the SEUF-CMA-Q security of MAC and an adversary B14.2 against the KEvol security of PRF such
that

AdvAKE-R
Π (A) ≤ n2 ·

(
2 · AdvSEUF-CMA-Q

MAC (B14.1) + q · AdvKEvolPRF (B14.2)
)
.

We form a bound for each of the two ways in which an adversary can break AKE-R security, namely
Ent-Auth-R and Key-Ind, and then sum these bounds.

We now give intuition regarding the Ent-Auth-R proof. Note that since q < |CTR|
2 , all first protocol

messages are unique, and thus the first message in every transcript is unique. This rules out the possibility
of multiple oracles with non-unique matching conversations accepting. To conclude our proofs, we need to
show that the only way an adversary can force an oracle to accept and for there not to exist any other oracle
with a matching transcript, the adversary must forge a MAC message.

A responder oracle accepts when it receives a first protocol message, and so to win there must not
exist any oracle with the same partial transcript as this accepting oracle. Since the MAC is calculated on the
counter value and the communicating parties’ identities, the input message to the accepting oracle must have
been generated by an oracle of the communication partner (in which case there is a matching conversation
and the adversary has not won) or the adversary has produced a MAC forgery (in the SEUF-CMA-Q sense).
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Lemma 15 (Ent-Auth-R of LP1). For any adversary A, the probability that there exists an oracle with
ρ = Responder that accepts maliciously can be bounded by

AdvEnt-Auth-RΠ (A) ≤ n2 · AdvSEUF-CMA-Q
MAC (B14.1).

PROOF. We proceed using a sequence of games.

Game 0. This is the original Ent-Auth game.

Pr
[
GEnt-Auth

Π (A) = 1
]

= Pr
[
GA0 = 1

]
Game 1. In this game we guess which responder will be the first to accept maliciously and its partner
identity, and abort if this guess is wrong. The game is the same as Game 0 except that the challenger guesses
(i∗, j∗) $←− [n]× [n], and if an oracle πsi (for some s) accepts maliciously with πsi .ρ 6= Responder or i∗ 6= i
or j∗ 6= πsi .pid, then the challenger aborts.

Pr
[
GA0 = 1

]
= n2 · Pr

[
GA1 = 1

]
We construct a reduction B14.1 that is playing against the SEUF-CMA-Q security of MAC that simulates

the environment for an underlying adversary A that attempts to win in game Game 1. The reduction gener-
ates (initial) key derivation keys for all pairs of parties, and authentication keys for all pairs of parties except
i∗ and j∗. When responding to queries by A regarding all other parties, the reduction will honestly provide
messages as specified in the protocol specification and the Ent-Auth game. For any query made between
oracles of parties i∗ and j∗, the reduction will use its OMac oracle and provide the received value in its sim-
ulation for A. For example, to initialize initiator oracles πj∗ , the reduction checks the current state counter
CTRj∗i∗ and calls OMac(CTRj∗i∗). If A provides any value that it has not been given as an initialization
query as input to a NewSessionR query from i∗ to j∗, then the reduction sends this to its OVrfy oracle in the
SEUF-CMA-Q game. The simulation of Game 1 is perfect and any win forA directly corresponds to a valid
signature forgery, so we can write

Pr
[
GA1 = 1

]
≤ AdvSEUF-CMA-Q

MAC (B14.1).

Summing these terms gives the bound in the statement of Lemma 15.

The proof of key indistinguishability is very similar to that of Lemma 12 and the game hops proceed
following the same strategy. Again we use a reduction to the KEvol security of PRF.

Lemma 16 (Key-Ind of LP1). For any adversary A and (any fixed) entity authentication adversary B14.1,
the probability that A answers the Test challenge correctly can be bounded by

AdvKey-IndΠ (A) ≤ AdvEnt-AuthΠ (B14.1) + n2 · q · AdvKEvolPRF (B14.2)

where all quantities are defined as stated in Theorem 14.

PROOF. Let b′ be the bit output by A in each game, and b be the bit sampled as part of the Test query.
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Game 0. This is the original Key-Ind game.

Pr
[
GKey-Ind

Π (A) = 1
]

= Pr
[
GA0 = 1

]
Game 1. This game is the same as Game 0, except the challenger aborts and chooses b′ $←− {0, 1} if any
oracle accepts maliciously.

Pr
[
GA0 = 1

]
≤ Pr

[
GA1 = 1

]
+ AdvEnt-Auth-RΠ (B14.1)

At this stage, the oracle to which A asks its Test query has a unique partner oracle with a matching conver-
sation.

Game 2. This game is the same as Game 1, except the challenger guesses the two parties involved
in the Test query via (i∗, j∗) $←− [n] × [n], and additionally guesses the counter value which identifies
the key derivation key state of the session key in the Test query. If A issues a Test(πsi∗) query with
i∗ 6= i or j∗ 6= πsi∗ .pid (for some s), or the session key computed via Test(πsi ), i.e. ski∗j∗ is not equal
to KDF(kCTR∗

i∗j∗ ,"der"), then the challenger aborts. Note that the challenger does not guess which oracle
of i∗ the Test query will be made to, only the counter value linked to the session key in that query.

Pr
[
GA1 = 1

]
≤ n2 · q · Pr

[
GA2 = 1

]
At this stage, if the challenger has guessed correctly then the Test query will be asked to an oracle after the
key derivation counter has been advanced a fixed number of times, and this oracle has a unique partner with
a matching conversation.

Game 3. This game is the same as Game 2, except that when the challenger runs KDF on the key derivation
values used in the Test query, the challenger instead responds with a random key from the session key space.
Noticing this change results in an adversary that is successful in the KEvol game for PRF, so we can write

Pr
[
GA2 = 1

]
= Pr

[
GA3 = 1

]
+ AdvKEvolPRF (B9.2).

The reduction B14.2 is detailed in Fig. 12. B14.2 initially guesses the target parties in the Test session and
the counter value associated with the Test session, as per the previous game hop.

In the event that B14.2 is in the ‘real’ version of its own game, where it receives a genuine evaluation of
the function KDF, B14.2 perfectly simulates Game 2 for A, and otherwise it perfectly simulates Game 3.

At this stage, the Test query is asked on a key that is randomly chosen, and thus independent of the
protocol and the security game. Consequently,

Pr
[
GA3 = 1

]
=

1

2
⇒ Adv3

Π(A) = 0.

4.4.2 wSR of LP1

The wSR security of LP1 is achieved in a similar manner to LP2 and we proceed to prove the theorem.
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Reduction B14.2 playing GKEvol
KDF (B14.2)

1 : i∗, j∗ $←− [n]; CTR∗ $←− [q]

2 : for i, j∈ [n] do

3 : CTRij = CTRji ← 0

4 : KMAC
ij = KMAC

ji
$←− KMAC

5 : for [n]× [n] \ (i∗, j∗) do

6 : k0
ij = k0

ji
$←− KPRF

7 : output CTR∗

8 : receive(sk0, . . . , skCTR
∗−1, sk∗, kCTR∗+1)

9 : kCTR∗+1
i∗j∗ ← kCTR∗+1

10 : Aoracles

11 : When A calls Test(πsi ) do

12 : if i 6= i∗ or j∗ 6= πs
∗

i∗ .pid

13 : return Abort

14 : return πsi .sk

15 : (i∗, s∗, b′) $←− A(πsi .sk)

16 : return b′

NewSessionI(πsi , pid)

17 : πsi .ρ← Initiator

18 : πsi .α← negotiating

19 : πsi .pid← pid// =j

20 : σ1 ← Mac(KMAC,CTRij)

21 : m′ ← CTRij , σ1

22 : kCTR
ij ,CTRij ← Advnc(kCTR

ij ,CTRij , 1)

23 : returnm′

NewSessionR(πsi , pid,m)

24 : πsi .ρ← Responder

25 : πsi .α← negotiating

26 : πsi .pid← pid

27 : do Send(πsi ,m)

Corrupt(Pi, Pj)

28 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)

29 : if CTRij ≤ CTR∗

30 : return Abort

31 : return kij

RevealKey(πsi )

32 : if πsi .α 6= accept

33 : return ⊥
34 : if (i, s) = (i∗, s∗)

35 : return Abort

36 : πsi .κ← exposed

37 : return πsi .sk

Send(πsi ,m) // pid =j

38 : Parse m as CTRji, σ1

39 : if Vrfy(KMAC
ij ‖ CTRji, σ1) = 0

40 : return ⊥
41 : z1 ← CTRji − CTRij

42 : if z1 < 0

43 : return ⊥
44 : kCTR

ij ,CTRij ← Advnc(kCTR
ij ,CTRij , z1)

45 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)

46 : if CTRij < CTR∗

47 : πsi .sk ← skCTRij

48 : if CTRij = CTR∗

49 : πsi .sk ← sk∗

50 : s∗ ← s

51 : CTRij ← CTRij + 1

52 : else

53 : πsi .sk ← KDF(kCTR
ij ,"der")

54 : kCTR
ij ,CTRij ← Advnc(kCTR

ij ,CTRij , 1)

55 : πsi .α← accept

Figure 12: Reduction B14.2 for the proof of Lemma 16. If at any time A causes an oracle to
accept maliciously, then B14.2 simply does Abort. B14.2 provides A with access to oracles =
NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·),RevealKey(·),Corrupt(·, ·).
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Theorem 17 (wSR of LP1). Let Π be the one-message protocol in Fig. 11, built using MAC = {KGen,Mac,Vrfy}
and PRF, with n parties. Then for any adversaryA against the wSR security of Π that makes a maximum of
q queries that initiate new sessions for each party (with q < |CTR|), there exists an adversary B17 against
the SEUF-CMA-Q security of MAC such that

AdvwSRΠ (A) ≤ n2 · AdvSEUF-CMA-Q
MAC (B17).

We now argue that LP1 obtains weak synchronization robustness (wSR). A proof of wSR must argue
that whatever the adversary does before the target protocol run occurs, neither of the parties will abort
during the target protocol run itself and both will arrive at the same session key. Protocol LP1, like LP2
(Fig. 8), only has correctness when the initiator’s counter is at least the size of the responder’s counter,
i.e. CTRAB ≥ CTRBA — this inequality is guaranteed in our protocol by MAC security. By inspection,
if an adversary forges a MAC on CTRAB for some CTRAB larger than the current value of CTRBA and
delivers this MAC as part of a protocol message to an oracle of B, then any subsequent protocol run will
cause B to Abort and thus will be a winning target protocol run for this adversary.

The formal proof is below, but here we outline the proof idea. We first define an event E17 that is
triggered if the adversary in the wSR game forges a MAC, i.e. produces a message-tag pair that verifies
correctly and that it has not seen before, and the challenger aborts if this occurs: bounding this event is of
course straightforward. Then, we must argue that if a MAC forgery has not occurred then there are in fact
no viable routes to victory in the wSR game. To see this, note that for the (uninterrupted) target session, if
z1 = CTRAB − CTRBA ≥ 0 then B will always catch up to the counter value of A (i.e. advance by z1

steps) and both parties will compute a session key for counter value CTRAB . Thus to conclude, we just need
to show that, if a forgery has not occurred, it is not possible for the adversary to force CTRAB < CTRBA.
Every time the adversary creates a new initiator session, the initiator’s counter is incremented by 1, whereas
B can advance an arbitrary number of times to catch up to (what B thinks is) A’s current counter state.
Since the MAC includes party identification information and the initiator’s counter value, in the absence of
MAC forgeries the adversary cannot produce a valid protocol message with verifying MAC for any counter
larger than the ones that it has seen as a result of genuine invocations of new protocol sessions.

PROOF. We proceed using a sequence of games.

Game 0. This is the original wSR game.

Pr
[
GwSR

Π (A) = 1
]

= Pr
[
GA0 = 1

]
Game 1. This game is the same as Game 0 except that we define an event E17, that is said to occur if the
adversary successfully forges a MAC while it is running, and the challenger aborts if E17 occurs.

Pr
[
GA0 = 1

]
= Pr

[
GA1 = 1

]
+ Pr [E17]

We now bound the probability that E17 occurs. We construct a reduction B17 to the SEUF-CMA-Q
security of MAC with a verification oracle. First, the reduction guesses which parties will be involved in
the forgery that triggers E17, and then simulates the environment of Game 0. To do this, B17 must select
(initial) key derivation keys from the appropriate keyspace and randomly pick MAC keys for all pairs of
parties except for the guessed parties i∗ and j∗. It is then easy to simulate all queries to the parties’ oracles,
except communication between the guessed pair. Note that this choice of parties involved in the forgery is
independent of the parties that the underlying adversaryA will eventually output for the target protocol run.
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For any query to an oracle of party i∗ with pid = j∗ or an oracle of j∗ with pid = i∗, the reduction needs
to forward queries to its own MAC and verification oracles. However note that B17 knows the key derivation
keys even for these parties, so responding to queries is straightfoward except for its calls toOMac andOVrfy.
The full reduction is detailed in Fig. 13.

Pr [E17] ≤ n2 · AdvSEUF-CMA-Q
MAC (B17)

Reduction B17 playing GSEUF-CMA-Q
MAC (B17)

1 : i∗, j∗ $←− [n]

2 : for i, j∈ [n] do

3 : kCTR
ij = kCTR

ji
$←− KPRF

4 : for [n]× [n] \ (i∗, j∗) do

5 : KMAC
ij = kj,iMAC

$←− KMAC

6 : CTRij = CTRji ← 0

7 : Aoracles

NewSessionI(πsi , pid)

8 : πsi .ρ← Initiator

9 : πsi .α← negotiating

10 : πsi .pid← pid // = j

11 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)

12 : σ1 ← call OMac(CTRij)

13 : else

14 : σ1 ← Mac(KMAC
ij ,CTRij)

15 : m′ ← CTRij , σ1

16 : returnm′

17 : πsi .sk ← KDF(kCTR
ij ,"der")

18 : πsi .α← accept

19 : kCTR
ij ,CTRij ← Advnc(kCTR

ij ,CTRij , 1)

NewSessionR(πsi , pid,m)

20 : πsi .ρ← Responder

21 : πsi .α← negotiating

22 : πsi .pid← pid

23 : do Send(πsi ,m)

Send(πsi ,m) // pid =j

24 : Parse m as CTRji, σ1
25 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)

26 : b← call OVrfy(CTRji, σ1)

27 : if b = 0

28 : return ⊥
29 : else

30 : if Vrfy(KMAC,CTRij , σ1) = 0

31 : return ⊥
32 : if πsi .ρ = Initiator

33 : return ⊥
34 : z1 ← CTRji − CTRij

35 : if z1 < 0

36 : return ⊥
37 : kCTR

ij ,CTRij ← Advnc(kCTR
ij ,CTRij , z1)

38 : πsi .sk ← KDF(kCTR
ij ,"der")

39 : πsi .α← accept

40 : kCTR
ij ,CTRij ← Advnc(kCTR

ij ,CTRij , 1)

Figure 13: Reduction B17 for the proof of Theorem 17. B17 provides A with access to oracles =
NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·).

At this point, the adversary cannot win via MAC forgery.
A win can be obtained if either party in the target session aborts, or if the parties compute different

keys. If the target session begins with CTRAB ≥ CTRBA, then the parties will always compute the same
key via skAB ← KDF(kCTR

AB ,"der"), so we only need to argue that the adversary cannot force the state
CTRBA > CTRAB without forging the MAC. Note that every intiator session advances its counter (and
thus key state) exactly once, while responder sessions (oracles) can advance an arbitrary number of times.
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However, the responder only advances if it has received and accepted a protocol message. For the responder
to advance without the initiator having done so, the adversary must deliver a valid message to the responder
without having called NewSessionI. This message must also have a counter value CTR′AB that is greater
than CTRAB (the actual counter value of A with respect to B, and a valid MAC. Producing such a message
that will be processed by B requires it to have a valid MAC on CTR′AB . Since we assume that the adversary
does not produce a MAC forgery it must have seen this message before, which means it must have been
output by a NewSessionI query, and we have a contradiction. This concludes the proof.

5 Non-Linear Key Evolution

In the previous section, we have considered protocols that deploy a linear key evolving mechanism. We
have seen that the linearity of these mechanisms has significant downsides when the protocol runs multiple
times in parallel between the same two parties. Especially interleaving of messages might cause all but one
protocol execution to abort, which is an undesirable behavior.

In this section, we present a protocol that uses puncturable pseudorandom functions (PPRFs) as a “non-
linear” key evolution mechanism. We show that this protocol can establish many parallel sessions between
two parties, while only requiring some additional storage (logarithmic in the supported maximum number
sessions) and computations (in practice hash function evaluations logarithmic in the supported maximum
number of sessions).

5.1 Puncturable Pseudorandom Functions

We briefly recall the basic definition of puncturable pseudorandom functions (PPRF). A PPRF is a special
case of a pseudorandom function, where it is possible to compute punctured keys, which do not allow
evaluation on inputs that have been punctured. We recall the definition of a PPRF and its security [SW14].

Definition 12 (PPRF). A puncturable pseudorandom function with key space KPPRF, domain DPPRF, and
range RPPRF consists of three probabilistic polynomial-time algorithms PPRF = (Setup,Eval,Punct),
which are described as follows:

• Setup(1λ): This algorithm takes as input the security parameter λ and outputs a description of a key
k ∈ KPPRF.

• Eval(k, x): This algorithm takes as input a key k ∈ KPPRF and a value x ∈ DPPRF, and outputs a
value y ∈ RPPRF, or a failure symbol ⊥.

• Punct(k, x): This algorithm takes as input a key k ∈ KPPRF and a value x ∈ DPPRF, and returns a
punctured key k′ ∈ KPPRF.

Note that the puncturing procedure can also output an unmodified key (i.e. k′ = k). This is for example
reasonable if the procedure is called on an already-punctured value.

Definition 13 (PPRF Correctness). A PPRF is correct if for every subset {x1, . . . , xt} = S ⊆ DPPRF and
all x ∈ DPPRF \ S , it holds that

Pr

[
Eval(k0, x) = Eval(kt, x) :

k0
$←− Setup(1λ);

ki = Punct(ki−1, xi) for i ∈ [t];

]
= 1.
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Grand
PPRF(A)

k $←− Setup(1λ)

b $←− {0, 1}; Q := ∅
x∗ $←− AOEval(·)(1λ)

y0
$←− RPPRF; y1 ← Eval(k, x∗)

k ← Punct(k, x∗)

b∗ $←− A(k, yb)

return 1 if b = b∗ and x∗ /∈ Q
return 0

OEval(x)

y ← Eval(k, x)

Q := Q∪ {x}
k ← Punct(k, x)

return y

Figure 14: The rand security experiment for puncturable PRF PPRF.

The security experiment asks that an adversary cannot distinguish an evalution of a real input (provided
by the adversary) from a random output range element, even if the adversary has access to an evaluation
oracle and the key that results from puncturing on the challenge input.

Definition 14 (PPRF Security). The advantage of an adversaryA in the rand security experiment Grand
PPRF(A)

defined in Fig. 14 is

AdvrandPPRF(A) :=

∣∣∣∣Pr
[
Grand
PPRF(A) = 1

]
− 1

2

∣∣∣∣ .

5.2 PPRF-based Symmetric AKE

Intuition. The main idea of our PPRF-based protocol is to derive the session key via an evaluation of the
PPRF. That is, both parties share a PPRF evaluation key k, which is used to derive session keys by computing
Eval(k,NA) for some value NA (in our protocols this will be a counter). After derivation of a session key,
the PPRF key will also be punctured at the value NA by computing k ← Punct(k,NA). Note that the new
key k cannot recompute Eval(k,NA) as it has been punctured for NA. This will be our leverage to achieve
forward security.

Additionally, the PPRF is an essential building block to achieve full synchronization robustness in our
protocols. Intuitively, the puncturing procedure of a PPRF does not evolve its key “linearly” but rather
enables fine-grained removal of evaluation capabilities. This guarantees that every protocol run with some
fresh value NA for Eval(k,NA) will be completed successfully, even if other protocol runs with some value
N′A 6= NA are executed in-between.

Our protocols. We present a one-message and a two-message protocol, based on PPRFs. Both protocols
have fixed roles, meaning the same party will always initiate (and only this party is required to store the
counter). The two-message protocol implicitly authenticates both parties (and thus achieves mutual authen-
tication), while the one-message protocol inherently only achieves responder-only authentication (responder
authenticates initiator).

Another important aspect of our protocols is that they use counters to systematically “exhaust” the PPRF.
We will later discuss that this approach assists the efficiency of tree-based PPRFs as discussed in Aviram et
al. [AGJ19]. The number of session keys that can be derived is equal to the size of the counter space.
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5.3 PP2: a Two-Message Protocol with Fixed Roles

Initiator Responder

(kAB , K
MAC,CTR) (kBA, K

MAC)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NA ← CTR

σ1 ← Mac(KMAC, A ‖ NA) NA, σ1

CTR← CTR + 1 if Vrfy(KMAC, A ‖ NA, σ1) = 0

Abort

xB ← Eval(kBA,NA)

if xB = ⊥
Abort

σ2 ← Mac(KMAC, B ‖ NA)σ2

if Vrfy(KMAC, B ‖ NA, σ2) = 0 skAB ← xB

Abort kBA ← Punct(kBA,NA)

xA ← Eval(kAB ,NA)

if xA = ⊥
Abort

skAB ← xA

kAB ← Punct(kAB ,NA)

Figure 15: A symmetric AKE protocol PP2 that tolerates concurrent sessions, using a puncturable PRF
PPRF = (Setup,Eval,Punct).

5.3.1 AKE-M of PP2

Theorem 18 (AKE-M of PP2). Let Π be the two-message protocol in Fig. 15, built using MAC = {KGen,Mac,Vrfy}
and PPRF = (Setup,Eval,Punct) with n parties. Then for any adversaryA against the AKE-M security of
Π that makes a maximum of q queries that initiate new sessions for each party (with q < |CTR|), there exists
an adversary B18.1 against the SEUF-CMA-Q of MAC and an adversary B18.2 against the rand security of
PPRF such that

AdvAKE-M
Π (A) ≤ 4n2 · AdvSEUF-CMA-Q

MAC (B18.1) + n2 · q · AdvrandPPRF(B18.2).

We form a bound for each of the three ways in which an adversary can break AKE security, namely
Ent-Auth-R, Ent-Auth-I and Key-Ind, and then sum these bounds.

There are two MAC security terms, for entity authentication of responder and initiator, and so 2 ·
AdvSEUF-CMA-Q

MAC (B18.1) bounds these two terms by fixing B18.1 to be whichever of B18.1r and B18.1i has
greater advantage.

Lemma 19 (Ent-Auth-R of PP2). For any adversary A, the probability that there exists an oracle with
ρ = Responder that accepts maliciously can be bounded by

AdvEnt-Auth-RΠ (A) ≤ n2 · AdvSEUF-CMA-Q
MAC (B18.1r)
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where all quantities are defined as stated in Theorem 18.

PROOF. We proceed using a sequence of games.

Game 0. This is the original Ent-Auth game. We have

Pr
[
GEnt-Auth

Π (A) = 1
]

= Pr
[
GA0 = 1

]
.

Note that that Theorem 18 requires that the adversary only initiates q < |CTR| sessions (which can be
guaranteed by choosing |CTR| exponential in the security parameter), implying that the counter is never
exhausted and thus, the initial protocol message sent from initiator to responder is unique. This rules out the
possibility of multiple oracles with non-unique matching conversations accepting.

Game 1. In this game we guess which responder will be the first to accept maliciously and its partner
identity, and abort if this guess is wrong. The game is the same as Game 0 except that the challenger guesses
(i∗, j∗) $←− [n]× [n], and if an oracle πsi (for some s) accepts maliciously with πsi .ρ 6= Responder or i∗ 6= i
or j∗ 6= πsi .pid, then the challenger aborts. We have

Pr
[
GA0 = 1

]
= n2 · Pr

[
GA1 = 1

]
.

We conclude our reduction by constructing a reduction B18.1r that is playing against the SEUF-CMA-
Q security of MAC that simulates the environment for an underlying adversary A that attempts to win in
game Game 1. Note that in Game 1, the only way that an adversary can win without an abort occurring
is if it makes a responder oracle (of party i∗) accept maliciously, and no initiator oracle (of party j∗) has
a matching conversation. To do this, it must initialize an initiator oracle, resulting in some initial protocol
message, and then provide a different message to the responder oracle that causes the responder oracle to
accept. (If the messages were not different and the adversary forwarded the genuine initial message, then
the conversations would match.)

The reduction generates (initial) key derivation keys for all pairs of parties, and authentication keys
for all pairs of parties except i∗ and j∗. When responding to queries by A regarding all other parties, the
reduction will honestly provide messages as specified in the protocol specification and the Ent-Auth game.
For any query made between oracles of parties i∗ and j∗, the reduction will use its OMac oracle and provide
the received value in its simulation for A. For example, to initialize initiator oracles πj∗ , the reduction sets
N := CTRj∗i∗ , increments CTRj∗i∗ := CTRj∗i∗+1, and callsOMac(j

∗‖N). IfA provides a value that it has
not been given as an initialization query as input to a NewSessionR query from i∗ to j∗, then the reduction
sends this to its OVrfy oracle in the SEUF-CMA-Q game. The simulation of Game 1 is perfect and any win
for A directly corresponds to a valid signature forgery, so we can write

Pr
[
GA1 = 1

]
≤ AdvSEUF-CMA-Q

MAC (B18.1r).

Summing these terms gives the bound in the statement of Lemma 19.

The second proof is very similar, and considers malicious acceptance by an initiator, i.e. as a result of
a full protocol run of two messages. We only detail significant changes and note that our term collection is
exactly the same.
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Lemma 20 (Ent-Auth-I of PP2). For any adversary A, the probability that there exists an oracle with
ρ = Initiator that accepts maliciously can be bounded by

AdvEnt-Auth-IΠ (A) ≤ n2 · AdvSEUF-CMA-Q
MAC (B18.1i)

where all quantities are defined as stated in Theorem 18.

PROOF. Games 0 is exactly as in the proof of Lemma 19. Game 1 is as in the proof of Lemma 19, except that
now we are guessing which initiator oracle will be the first to accept maliciously (and its intended partner),
and so the abort occurs if a responder oracle accepts maliciously. The loss of n2 incurred by selection of
parties is the same.

Again, the next step is a reduction that plays against SEUF-CMA-Q of the MAC scheme MAC. However,
the reduction of course must behave slightly differently, since it must send to its own OVrfy oracle any
message that was called as a Send query for the targeted initiator oracle, but which was not given as an
output protocol message by a NewSessionR query (to responder oracle j∗). Further, we need to ensure
that the forgery attempt is on an oracle that does not have a matching conversation with any others: in the
proof of Lemma 19 this was straightforward since there was only one unique message in question, but here
the transcripts that we are interested in consist of (up to) two flows between each oracle. This is just a
matter of bookkeeping, and as before B18.1i forwards all attempted forgeries to its own verification oracle,
so any query that would have caused A to win the entity authentication game (in the simulation that A is
experiencing) also corresponds to success in the game that B18.1i is playing.

Lemma 21 (Key-Ind of PP2). For any adversary A and (any fixed) entity authentication adversary A18.2,
the probability that A answers the Test challenge correctly can be bounded by

AdvKey-IndΠ (A) ≤ AdvEnt-AuthΠ (A18.2) + n2 · q · AdvrandPPRF(B18.2)

where all quantities are defined as stated in Theorem 18.

PROOF. Let b′ be the bit output by A in each game, and b be the bit sampled as part of the Test query.

Game 0. This is the original Key-Ind game. We have

Pr
[
GKey-Ind

Π (A) = 1
]

= Pr
[
GA0 = 1

]
.

Game 1. This game is the same as Game 0, except the challenger aborts and chooses b′ $←− {0, 1} if any
oracle accepts maliciously. We have

Pr
[
GA0 = 1

]
≤ Pr

[
GA1 = 1

]
+ AdvEnt-AuthΠ (A21).

At this stage, the oracle to which A asks its Test query has a unique partner oracle with a matching con-
versation. (Recall that we only consider adversaries that terminate with valid outputs, and further if A does
anything that would trigger a trivial loss in the original Key-Ind game then it loses in all games in this proof.)

Game 2. This game is the same as Game 1, except the challenger guesses (i∗, j∗, s∗) $←− [n] × [n] × [q],
and if A issues a Test(πsi ) query with (i∗, s∗) 6= (i, s) or j∗ 6= πs

∗
i∗ .pid then the challenger aborts. We have

Pr
[
GA1 = 1

]
= n2 · q · Pr

[
GA2 = 1

]
.

Now πs
∗
i∗ is the oracle to which the Test query will be asked, and this oracle has unique partner πt

∗
j∗ with a

matching conversation.
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Game 3. In this game, the challenger responds to the Test query with a random element of KPPRF, the
output space of PPRF.

We construct a reduction B18.2, detailed in Fig. 16 that runs an adversary that attempts to distinguish
Game 3 from Game 2, while B18.2 is playing the rand game.

Pr
[
GA2 = 1

]
= Pr

[
GA3 = 1

]
+ AdvrandPPRF(B18.2)

If b = 1 in the rand game then B18.2 perfectly simulates Game 2 for A, while if b = 0 in the rand game
then B18.2 perfectly simulates Game 3 for A.

The presentation in Fig. 16 is given for clarity, and omits a number of bookkeeping tasks performed
by B18.2, such as managing and updating execution state values, partner identifiers, session key freshness
values, security bit values and transcripts for all oracles. Further, ifAmakes an invalid query, such as a Send
query to an oracle that has already entered α ∈ {accept, reject} then B18.2 replies with ⊥. Likewise if
the adversary submits a Test query to an oracle that has not entered into an accept state or either it or its
partner were corrupted before acceptance occurred, then B18.2 will do Abort. Recall that since the MAC
keys do not update, KMAC

ij = KMAC
ji throughout, while the key derivation keys kij and kji initially start as the

same value but may differ as the protocol progresses.
In Game 3 the adversary’s advantage of winning is zero, since a Test query will always return a random

key that is independent of the protocol,
Pr
[
GA3 = 1

]
= 0.

5.3.2 SR of PP2

We will now prove that PP2 achieves full synchronization robustness (SR). Intuitively we want to show
that any adversary, making arbitrary message delivery queries between any of the parties (and their session
oracles), cannot cause an adversarially chosen but honestly executed target protocol run to break down.

The robustness proof essentially needs three arguments: 1) the adversary cannot forge protocol messages
without breaking the security of the MAC, 2) replaying messages from the target protocol run to other oracles
is not beneficial to the adversary, and 3) the correctness of the PPRF ensures that interleaving queries with
nonce values different to the one used in the target session will not influence the successful computation of
a session key in the target session.

Theorem 22 (SR of PP2). Let Π be the two-message protocol in Fig. 15, built using MAC = {KGen,Mac,Vrfy}
and PPRF, with n parties. Then for any adversaryA against the SR security of Π that makes a maximum of
q queries that initiate new sessions for each party (with q < |CTR|), there exists an adversary B22 against
the SEUF-CMA-Q of MAC such that

AdvSRΠ (A) ≤ n2 · AdvSEUF-CMA-Q
MAC (B22).

PROOF. We proceed using a sequence of games.

Game 0. This is the original SR game. We have

Pr
[
GSR

Π (A) = 1
]

= Pr
[
GA0 = 1

]
.

Note that that Theorem 22 requires that the adversary only initiates q < |CTR| sessions (which can be
guaranteed by choosing |CTR| exponential in the security parameter), implying that the counter is never
exhausted and thus, the value N∗ contained in the first protocol message is unique.
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Reduction B18.2 playing Grand
PPRF(B18.2)

1 : i∗, j∗ $←− [n]; s∗ $←− [q]

2 : CTRi = 0 for all i ∈ {1, . . . , n}
3 : for i, j∈ [n] do

4 : KMAC
ij = KMAC

ji
$←− KMAC

5 : CTRij ← 0

6 : for [n]× [n] \ (i∗, j∗) do

7 : kij = kji
$←− KPPRF

8 : Aoracles

9 : WhenA calls Test(πsi ) do

10 : if (i, s) 6= (i∗, s∗) or j∗ 6= πs
∗
i∗ .pid

11 : return Abort

12 : submit N∗, receive (k∗, y∗)

13 : (i∗, s∗, b′) $←− A(y∗)

14 : return b′

NewSessionI(πsi , pid)

15 : πsi .ρ← Initiator

16 : πsi .α← negotiating

17 : πsi .pid← pid

18 : N← CTRij

19 : CTRij ← CTRij + 1

20 : σ1 ← Mac(KMAC
ij , i ‖ N)

21 : m′ ← N, σ1

22 : returnm′

NewSessionR(πsi , pid,m)

23 : πsi .ρ← Responder

24 : πsi .α← negotiating

25 : πsi .pid← pid

26 : do Send(πsi ,m)

RevealKey(πsi )

27 : if πsi .α 6= accept

28 : return ⊥
29 : if (i, s) = (i∗, s∗)

30 : return Abort

31 : πsi .κ← exposed

32 : return πsi .sk

Corrupt(Pi, Pj)

33 : if i ∈ {i∗, j∗} or j ∈ {i∗, j∗}

34 : if πs
∗
i∗ .α 6= accept

35 : return Abort

36 : return kij

Send(πsi ,m, pid = j)

37 : Parse m as N, σ1

38 : if Vrfy(KMAC
ij , j ‖ N, σ1) = 0

39 : return ⊥
40 : if (i, j) 6= (i∗, j∗) ∨ (j∗, i∗)

41 : xi ← Eval(kij ,N)

42 : else // embed

43 : if Test has not occurred

44 : xi ← callOEval(N)

45 : else

46 : xi ← Eval(kij ,N)

47 : kij ← Punct(kij ,N)

48 : endif

49 : if xi = ⊥
50 : return ⊥
51 : skij ← xi

52 : πsi .α← accept

53 : if πsi .ρ = Responder

54 : σ2 ← Mac(KMAC
ij , i ‖ N)

55 : m′ ← N, σ2

56 : returnm′

57 : if (i, j) 6= (i∗, j∗) ∨ (j∗, i∗)

58 : kij ← Punct(kij ,N)

59 : endif

Figure 16: Reduction B18.2 for the proof of Lemma 21. N∗ is the initial nonce sent in
the transcript between πs

∗
i∗ and πt

∗
j∗ . If at any time A causes an oracle to accept ma-

liciously, then B18.2 simply does Abort. B18.2 provides A with access to oracles =
NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·),RevealKey(·),Corrupt(·, ·).
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Game 1. This game is the same as Game 0 except that we define an event E22, that is said to occur if the
adversary successfully forges a MAC while it is running, and the challenger aborts if E22 occurs. We have

Pr
[
GA0 = 1

]
= Pr

[
GA1 = 1

]
+ Pr [E22] .

We now bound the probability that E22 occurs. We construct a reduction B22 to the SEUF-CMA-Q
security of MAC with a verification oracle. First, the reduction guesses which parties will be involved in
the forgery that triggers E22, and then simulates the environment of Game 0. To do this, B22 must select
(initial) PPRF keys from the appropriate keyspace and randomly pick MAC keys for all pairs of parties
except for the guessed parties i∗ and j∗. It is then simple to simulate all queries to oracles of parties except
communication between the guessed pair. For any query to an oracle of party i∗ with pid = j∗ or an oracle
of j∗ with pid = i∗, the reduction needs to forward queries to its own MAC and verification oracles. The
full reduction is detailed in Fig. 17.

We have
Pr [E22] ≤ n2 · AdvSEUF-CMA-Q

MAC (B22).

Game 2. This game is the same as Game 1 except that we add an additional requirement to its winning
condition: the adversary may not issue queries to interrupt the target protocol execution between πsi and
πsj . Note that this is the additional winning condition required by the weak synchronization robustness
experiment. We claim

Pr
[
GA1 = 1

]
= Pr

[
GA2 = 1

]
.

To prove the above equality, we need to take a closer look at the sequence of queries made by A. Let πsi
and πsj be the oracles of the targeted protocol execution. That is, the adversary needs to query

NewSessionI(πsi , j)→ m1, NewSessionR(πtj , i,m1)→ m2, Send(πsi ,m2)

during its runtime, where m1 contains some nonce N∗. While the adversary has to make those three queries
in order, it may interleave the queries with queries of different protocol executions. We make the following
three observations:

• Sending the message m1 to any oracle apart from πtj will either make the oracle abort without any
modification to kij , kji or CTRij , or make the adversary immediately lose. We distinguish three cases.
(i) m1 is sent to an oracle πt

′
j′ with j 6= j′. In this case the MAC cannot be verified and that oracle will

abort without any modification to kij , kji or CTRij . (ii) m1 is sent to an oracle πt
′
j with t′ 6= t before

it is sent to πtj . In this case the oracle πt
′
j would accept the message, however, the adversary is now

unable to output its intended oracles, since the transcripts involve a message that was sent earlier. (iii)
m1 is sent to an oracle πt

′
j with t′ 6= t after it was sent to πtj . In this case πt

′
j will abort after receiving

m1 (xB = ⊥ since πtj already computed kji ← Punct(kji,N
∗)), without any modification to kji.

• Sending the message m2 to any oracle apart from πsi will make the oracle abort without any modifi-
cation to kij , kji or CTRij . We distinguish two cases. (i) m2 is sent to an oracle πs

′
i′ with i 6= i′. In

this case the MAC cannot be verified and that oracle will abort without any modification to kij , kji or
CTRij . (ii) m2 is sent to an oracle πs

′
i with s′ 6= s. In this case the uniqueness of N∗ guarantees that

the MAC verification will fail and the oracle will abort without any modification to kij or CTRij .
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Reduction B22 playing GSEUF-CMA-Q
MAC (B22)

1 : i∗, j∗ $←− [n]

2 : for i, j∈ [n] do

3 : kij = kji
$←− KPPRF

4 : CTRij ← 0

5 : for [n]× [n] \ (i∗, j∗) do

6 : KMAC
ij = KMAC

ji
$←− KMAC

7 : Aoracles

NewSessionI(πsi , pid)

8 : πsi .ρ← Initiator

9 : πsi .α← negotiating

10 : πsi .pid← pid // = j

11 : N← CTRij

12 : CTRij ← CTRij + 1

13 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)

14 : σ1 ← call OMac(i ‖ N)

15 : else

16 : σ1 ← Mac(KMAC
ij , i ‖ N)

17 : m′ ← N, σ1

18 : returnm′

NewSessionR(πsi , pid,m)

19 : πsi .ρ← Responder

20 : πsi .α← negotiating

21 : πsi .pid← pid

22 : do Send(πsi ,m)

Send(πsi ,m)// pid =j

23 : Parse m as N, σ1
24 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)

25 : b← call OVrfy(j ‖ N, σ1)

26 : if b = 0

27 : return ⊥
28 : if πsi .ρ = Responder

29 : σ2 ← call OMac(i ‖ N)

30 : returnm′ ← N, σ2

31 : else // simulate

32 : if Vrfy(KMAC
ij , j ‖ N, σ1) = 0

33 : return ⊥
34 : if πsi .ρ = Responder

35 : σ2 ← Mac(KMAC
ij , i ‖ N)

36 : returnm′ ← N, i, σ2

37 : skji ← Eval(kij ,Nj)

38 : kij ← Punct(kij ,N)

Figure 17: Reduction B22 for the proof of Theorem 22. B22 provides A with access to oracles =
NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·).

• Note that the adversary may not ‘replace’ m1 or m2 in the target protocol run as this would imme-
diately result in a loss for A, as the target protocol run would not consist of an honest protocol run
anymore.

We conclude that sending m1 or m2 to any oracles apart from A’s respective target oracles will either have
no impact on the keys of the target parties or the counter CTRij and thus have no impact on the target
protocol run, or make the target run ineligible in the SR game.

It now remains to show that the adversary cannot use any queries of different protocol runs to win
the robustness experiment. We do this by “isolating” queries made during the queries related to the target
protocol run. We start with the observation that any queries related to protocol runs with parties i′ 6= i and
j′ 6= j does not have any influence over the target protocol run. Hence, the adversary does not gain any
advantage issuing those queries in a way that interleaves with the target protocol run.

At this point, we need to consider the remaining possible queries for any oracle πs
′
i with s′ 6= s or πt

′
j

with t′ 6= t, which can be interleaved with the target protocol run. The adversary gains an advantage if it is
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capable of modifying the global session variables, here (kij , kji, K
MAC
ij = KMAC

ji ,CTRij), in such a way that
the target protocol run aborts. We show that there is no such possible query that influences the outcome of
the target session by a case distinction:

NewSessionI queries. Any NewSessionI query will cause the counter CTR of the initiator i to be incre-
mented. However, since the counter is only relevant during the generation of the first protocol mes-
sage, and since the initial message m1 of the target run has already been generated, this has no impact
on the target protocol run.

NewSessionR queries. Any NewSessionR query for πt
′
j with t′ 6= t will either result in the receiving oracle

aborting the protocol run (either due to an invalid MAC or a replayed first protocol message), or in
puncturing kBA at some position N. Since all values of N are unique and the adversary cannot re-use
the first message of the target run m1, the adversary cannot cause a puncturing operation on the value
N∗ contained in the target protocol run. The correctness of the PPRF then guarantees that a consistent
evaluation for N∗ is possible as long as only values N 6= N∗ have been punctured.

Send queries. Any Send query for πs
′
i with s′ 6= s, if it does not abort due to an invalid MAC, will puncture

kij (or another key belonging to i, though this does not assist the adversary) at some position N. Any
oracle πs

′
i with s′ 6= s will always puncture the PPRF key for some value N, which is not equal to the

value N∗ contained in the target session. This is ensured by the uniqueness of the counter during the
adversary’s runtime and by the session storing its respective value N during initialization. Hence, only
the target initiator oracle πsi is able to puncture the PPRF key for the value N∗. The correctness of the
PPRF then guarantees that a consistent evaluation for N∗ is possible as long as only values N 6= N∗

have been punctured.

We have now exhausted all possible options for the adversary to cause a disturbance of the target protocol
run, either via re-using values of the target protocol run before it is concluded, or via interleaving any other
protocol message during the target protocol run. Both of which yield no advantage for the adversary. We
hence have

Pr
[
GA1 = 1

]
= Pr

[
GA2 = 1

]
.

Bounding the advantage of A. It remains to bound the adversary’s advantage in Game 2. Recall that
1) the adversary can now only execute a complete protocol run between the target session, which has full
matching transcripts and is not interrupted by any other queries. Furthermore, for any protocol run between
two fixed parties, the value N∗ is unique, which ensures that for any protocol run, the PPRF key remains not
punctured at N∗. In this case, the correctness of PP2 ensures that the target protocol runs will not abort and,
in particular, will successfully derive the same session key. We get

Pr
[
GA2 = 1

]
= 0.

5.4 PP1: a One-Message Protocol with Fixed Roles

In Figure 18 we give a one-message protocol that uses a PPRF in a very similar way to our two-message
protocol. Here we only get one-sided entity authentication, but the proofs are very similar to the ones for
the two-message protocol.
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Initiator Responder

(kAB , K
MAC,CTR) (kBA, K

MAC)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NA ← CTR

σ1 ← Mac(KMAC,NA) NA, σ1

CTR← CTR + 1 If Vrfy(KMAC,NA, σ1) = 0

xA ← Eval(kAB ,NA) Abort

if xA = ⊥ xB ← Eval(kBA,NA)

Abort if xB = ⊥
skAB ← xA Abort

kAB ← Punct(kAB ,NA) skAB ← xB

kBA ← Punct(kBA,NA)

Figure 18: One-message symmetric AKE protocol that tolerates concurrent sessions, using a Puncturable
PRF PPRF = (Setup,Eval,Punct).

5.4.1 AKE-R of PP1

Theorem 23 (AKE-R of PP1). Let Π be the one-message protocol in Fig. 18, built using MAC = {KGen,Mac,Vrfy}
and PPRF = (Setup,Eval,Punct) with n parties. Then for any adversary A against the AKE-R security of
Π that makes a maximum of q queries that initiate new sessions for each party (with q < |CTR|), there exists
an adversary B23.1 against the SEUF-CMA-Q of MAC and an adversary B23.2 against the rand security of
PPRF such that

AdvAKE-R
Π (A) ≤ 2n2 · AdvSEUF-CMA-Q

MAC (B23.1) + n2 · q · AdvrandPPRF(B23.2).

The Ent-Auth-R analysis is essentially the same as in Lemma 19 and leads to the same term collection,
since in PP1 the responder performs the same notable actions as in PP2 (the creation of the second protocol
message is not necessary).

Proving Key-Ind is also similar to that of Lemma 21, leading to the same term collection. The final
reduction is slightly more straightforward than B18.2 since the only Send queries that B23.2 needs to deal
with are those that are part of NewSessionR queries.

5.4.2 SR of PP1

Theorem 24 (SR of PP1). Let Π be the two-message protocol in Fig. 18, built using MAC = {KGen,Mac,Vrfy}
and PPRF, with n parties. Then for any adversaryA against the SR security of Π that makes a maximum of
q queries that initiate new sessions for each party (with q < |CTR|), there exists an adversary B24 against
the SEUF-CMA-Q of MAC such that

AdvSRΠ (A) ≤ n2 · AdvSEUF-CMA-Q
MAC (B24).

PROOF. The strategy for this proof is very similar to that of Theorem 22, and the term collection is the
same: only the reduction logic is different (since there are no second protocol messages to deal with). The
reduction B24 is detailed in Fig. 19. Note that for one-message protocols, there are no Send queries that
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were not initially called by NewSessionR, since those queries will always result in the oracle going to state
accept or reject (in other words, an oracle cannot ever be negotiating at the point an adversary makes
a query). However, formatting is maintained to provide easier comparison with reduction B22.

Reduction B24 playing GSEUF-CMA-Q
MAC (B24)

1 : i∗, j∗ $←− [n]

2 : for i, j∈ [n] do

3 : kij = kji
$←− KPPRF

4 : CTRij ← 0

5 : for [n]× [n] \ (i∗, j∗) do

6 : KMAC
ij = KMAC

ji
$←− KMAC

7 : Aoracles

NewSessionI(πsi , pid)

8 : πsi .ρ← Initiator

9 : πsi .α← negotiating

10 : πsi .pid← pid // = j

11 : N← CTRij

12 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)

13 : σ1 ← call OMac(N)

14 : else

15 : σ1 ← Mac(KMAC
ij ,N)

16 : m′ ← N, σ1

17 : CTRij ← CTRij + 1

18 : skji ← Eval(kij ,Nj)

19 : kij ← Punct(kij ,N)

20 : returnm′

NewSessionR(πsi , pid,m)

21 : πsi .ρ← Responder

22 : πsi .α← negotiating

23 : πsi .pid← pid

24 : do Send(πsi ,m)

Send(πsi ,m, pid = j)

25 : Parse m as N, σ1
26 : if πsi .ρ = Initiator

27 : return Abort

28 : if (i, j) = (i∗, j∗) ∨ (j∗, i∗)// embed

29 : b← call OVrfy(N, σ1)

30 : if b = 0

31 : return ⊥
32 : else // simulate

33 : If Vrfy(KMAC
ij ,N, σ1) = 0

34 : return ⊥
35 : skji ← Eval(kij ,Nj)

36 : kij ← Punct(kij ,N)

Figure 19: Reduction B24 for the proof of Theorem 24. B24 provides A with access to oracles =
NewSessionI(·, ·, ·),NewSessionR(·, ·), Send(·, ·, ·).

5.5 Instantiation

It remains to discuss how PP2 can be instantiated with a PPRF and what impact the PPRF has on its ef-
ficiency. A promising candidate is the Goldreich–Goldwasser–Micali PRF [GGM86], which can be trans-
formed to a PPRF [BW13, KPTZ13, BGI14]. We give an intuitive explanation of the construction and refer
the reader to [AGJ19] for a more detailed description and analysis. This construction is especially suitable,
as both the PPRF evaluation and puncturing are solely based on hash function evaluations in practice.
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Intuition. The tree-based PPRF uses two functionsH0 andH1 both mapping from {0, 1}λ to {0, 1}λ. For
every input x ∈ {0, 1}λ of the PPRF, the binary representation of x prescribes the sequence in which H0

and H1 have to be repeatedly applied to x. For example, Eval(01) = H1(H0(x)). Note that the evaluation
of x corresponds to a path through a binary tree, where each bit in x tells you whether to take a “left” or
“right” path. The result of an evaluation always corresponds to a leaf in the binary tree.

The initial PPRF key consists of the root node, which is initialized during key generation as a randomly
chosen string. To puncture values (i.e., to puncture leaves of the tree), we precompute and store all nodes on
the co-path between the root and the leaf, before deleting all parent nodes (including the root node) of the
leaf. Note that this procedure can be repeated for any of the leaves and note that it satisfies all puncturing-
relevant properties (i.e., re-computation of Eval(x) is not possible but the correctness of the PPRF remains
intact).

Memory Consumption. We briefly discuss the memory consumed by the PPRF during the lifetime of PP2
(and PP1). First, note that the PPRF-based protocols deploy counters, which (if all messages are delivered
in sequence) ensure a systematic puncturing from the leftmost leaf to the rightmost leaf of the binary tree.
This yields the need to to store at most log(|CTR|) tree nodes (i.e., at most one node per layer of the tree)
at any point in time. For C concurrent sessions, this bound increases to a maximum of C · log(|CTR|) tree
nodes.

The analysis gets slightly more difficult if an adversary actively drops protocols messages. Each dropped
message will either cause the initiator or both parties to not puncture at some position. One approach to tame
the memory consumption in this case, would be to always puncture on all values which are smaller than
CTR−C.1 As we never expect more than C sessions in parallel, this reduces additional memory caused by
lost messages. In this case, the memory consumption is again upper-bounded by C · log(|CTR|) tree nodes.

Finally, note that in the one-message protocol PP1 (Sec. 5.4) the initiator always punctures strictly in
order and thus has to store at most log(|CTR|) tree nodes. This may be particularly useful in an application
where many low-end devices communicate with a central server.

Case Study. To provide some intuition on how efficient our PPRF-based protocols are, we present a brief
toy example. Consider a sensor device that commences communication with a central hub on average six
times per hour, with an expected lifetime of 15 years. We can upper bound the expected number of sessions
|CTR| by 220 (since 6 · 24 · 365 · 15 ≈ 219.6), so an instantiation of the GGM-based PPRF with H0 and H1

as the left and right halves of SHA-256 outputs respectively (a tree node thus has size 16 bytes), produces a
punctured key with size upper-bounded by log(|CTR|)·16·C = 320·C bytes. (More generally, |CTR| = 264

should suffice for any conceivable application, in this case the upper bound on the key size is 1024 ·C bytes.)
For computation, in the worst case log(|CTR|) = 20 SHA computations are required per evalua-

tion/puncturing operation, and fewer on average (this depends on the position in the tree; some puncture
operations require no computations but only a deletion).

Acknowledgements. In addition to the funding bodies acknowledged on page 1, we would also like to
thank Luke Mather for numerous helpful comments.

1Interestingly, the tree-based PPRF can puncture multiple values in one go by “chopping off” whole branches of the tree, instead
of puncturing all values one after another.
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[LSY+14] Yong Li, Sven Schäge, Zheng Yang, Florian Kohlar, and Jörg Schwenk. On the security of the
pre-shared key ciphersuites of TLS. In Hugo Krawczyk, editor, PKC 2014: 17th International
Conference on Theory and Practice of Public Key Cryptography, volume 8383 of Lecture Notes
in Computer Science, pages 669–684, Buenos Aires, Argentina, March 26–28, 2014. Springer,
Heidelberg, Germany.

[SSS+20] Shifeng Sun, Amin Sakzad, Ron Steinfeld, Joseph K. Liu, and Dawu Gu. Public-key puncturable
encryption: Modular and compact constructions. In Aggelos Kiayias, Markulf Kohlweiss, Pet-
ros Wallden, and Vassilis Zikas, editors, PKC 2020: 23rd International Conference on Theory
and Practice of Public Key Cryptography, Part I, volume 12110 of Lecture Notes in Computer
Science, pages 309–338, Edinburgh, UK, May 4–7, 2020. Springer, Heidelberg, Germany.

55



[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory of Computing,
pages 475–484, New York, NY, USA, May 31 – June 3, 2014. ACM Press.

56


	Introduction
	Preliminaries
	Message Authentication Codes
	Pseudorandom Functions

	Authenticated Key Exchange in the Symmetric Setting
	Execution Environment
	AKE Security
	Concurrent Execution Synchronization Robustness

	Linear Key Evolution
	Key Derivation via Linear Evolution
	LP3: a Three-Message Protocol
	AKE-M of LP3
	Bounded Gap: Non-Concurrent Setting.
	Bounded Gap: Concurrent Setting.
	wSR  of LP3.

	LP2: A Two-Message Protocol with Fixed Roles
	AKE-M of LP2
	wSR  of LP2

	LP1: A One-Message Protocol with Fixed Roles
	AKE-R of LP1
	wSR  of LP1


	Non-Linear Key Evolution
	Puncturable Pseudorandom Functions
	PPRF-based Symmetric AKE
	PP2: a Two-Message Protocol with Fixed Roles
	AKE-M of PP2
	SR of PP2

	PP1: a One-Message Protocol with Fixed Roles
	AKE-R of PP1
	SR of PP1

	Instantiation


