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Abstract. In EUROCRYPT 2020, Hosoyamada and Sasaki find differ-
ential paths with probability 2−2n/3 can be useful in quantum collision
attacks, v.s. 2−n/2 for classical collision attacks. This observation led to
attacks for more rounds on some AES-like hash functions. In this pa-
per, we quantize the multi-collision distinguisher proposed by Biryukov,
Khovratovich, and Nikolić at CRYPTO 2009, and propose quantum multi-
collision distinguishers. Compared against the tight bound 2

n
2 ⋅(1− 1

2q−1 ) for
quantum multi-collision on ideal functions by Liu and Zhang in EURO-
CRYPT 2019, we find the probability of useful differential paths can be as
low as 2−n. This leads to even more attacked rounds than both classical
multi-collision distinguishers and quantum collision attacks. To demon-
strate the effectiveness, we applied the attack model to AES, Rijndael,
and the post-quantum block cipher design Saturnin. Distinguishing at-
tacks are found on the full version of AES-192, AES-256, Rijndael-128-160,
and Rijndael-128-224. Other results include 8-round AES-128, 11-round
Rijndael-160-192, 12-round Rijndael-160-256, and 10-round Saturnin-256.

Keywords: post-quantum cryptography, multicollision, free variable,
BHT, related-key differential trail, distinguisher

1 Introduction

Recently, post-quantum security of cryptographic systems and primitives has
received more and more attention from cryptographic researchers, developers,
and users due to the progress in the development of quantum computers. The
security of public-key crypto-systems such as RSA, DSA, and elliptic curve can
often be reduced to some mathematically difficult problems such as factoring
and discrete logarithm. However, Shor’s seminal work [46] could be used to
solve both problems efficiently in a sufficiently large quantum computer, which
directly destroys the security of the public-key cryptographic schemes based on
them in the post-quantum world. Due to such concerns, researchers have begun
to investigate and develop post-quantum cryptographic algorithms, serving as
replacements of the current public-key crypto-systems, with security against
attackers aided by both quantum and classical computers. In the meanwhile,
NIST has initiated a competition to develop post-quantum standards for key



establishment schemes and digital signature schemes since 2017 [39] . On the
other hand, symmetric-key crypto-systems usually are not built upon the security
assumption of hard math problems due to performance needs, and the research
on how quantum computers would affect their security strength shows to be less
direct. In 1996, Grover [16] found quantum algorithms could be faster for database
search than in classical settings. This algorithm could be used for bruteforce
search in time

√
N for a space of size N , due to which halved (in bits) security

strength is now considered as the generic lower security bound of a classical
symmetric-key primitive in the quantum setting. Besides, recent studies showed
that there exist non-trivial quantum attacks other than direct Grover search.
In 2010, Kuwakado and Morii [29] used Simon’s algorithm [47] to distinguish
the 3-round Feistel scheme from a random permutation in the quantum setting.
After that, Simon’s algorithm has been applied to other symmetric-key schemes
such as Even-Mansour scheme [28], message authentication codes (MACs) [25],
and FX construction [31]. Invented in 1997, Simon’s algorithm allows to find
a “hidden period” with only polynomially many queries and time. In most of
the previous works utilizing Simon’s algorithm, the attacker tries to construct
a function in such a way that the existence of the hidden period depends on
the key values, which can be recovered once the period is detected. The price of
such attacks is the strong requirement to access quantum superposition oracle of
the keyed primitives, which directly affects the practical relevance of Simon’s
algorithm. In addition to Simon’s algorithm, collision-finding utilizing Grover
search is another prominent approach as dedicated attacks against symmetric-key
primitives in quantum setting.

1.1 Collision

Preimage, second-preimage, and collision resistance form the basic security
requirements for a hash function in the classical setting, and the same is expected
in the quantum setting, e.g., some public-key schemes have been proven to be
post-quantum secure in the quantum random oracle model (QROM) [4] when
instantiated with a post-quantum secure hash function. The known generic best
time bounds in the quantum setting so far are n/2 bits for preimage resistance
due to Grover’s, and n/3 bits for collision resistance due to the BHT algorithm [6]
named after Brassard, Høyer, and Tapp in 1998.

The BHT algorithm finds collisions with a query complexity of O(2n/3) and
O(2n/3)-qubit quantum random access memory (qRAM), which is a quantum
analogue of the random access memory (RAM) allowing to efficiently access data
in quantum superpositions. In 2017, Chailloux, Naya-Plasencia, and Schrottenlo-
her [8] proposed the CNS collision finding algorithm with a time complexity of
O(22n/5), a quantum memory of O(n) qubits, and a classical memory of O(2n/5)
bits. The complexities of both BHT and CNS algorithms are optimized towards
lowest possible time. When it comes to time-memory tradeoff with the merit
of T ×M , the simple Grover search achieves the best 2n/2 (although this is not
proven) with O(2n/2) time and O(1) memory, while BHT gives 2n/3 ⋅ 2n/3 = 22n/3

and CNS 22n/5 ⋅ 2n/5 = 23n/5. Memoryless version of birthday attack for collision
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finding in classical setting is offered by the Pollard’s rho method [43] in 1975, and
an extension for parallelism was given by Van Oorschot and Wiener [50] in 1999.

The above mentioned algorithms are generic and do not exploit any internal
characteristics of the primitives. The first dedicated quantum collision attack on
hash functions was proposed at EUROCRYPT 2020 by Hosoyamada and Sasaki
in [20], which shows differentials whose probability was too low for classical
collision search can become useful in the quantum setting. They applied a
quantum version of the rebound attack [33] to round-reduced AES hashing modes
and Whirlpool, and extended the number of attacked rounds for collision finding
from 6 and 5 rounds in classical setting to 7 and 6 rounds in quantum setting,
respectively. These collision finding algorithms are considered as attacks when they
require lesser time and memory than that of BHT algorithm (T =M = O(2n/3).
Later, Dong et al. [12] followed the CNS algorithm and presented an improved
the quantum rebound attacks on AES hashing modes and Grøstl-512 in a setting,
where only a small amount of qRAM is available and the required resources
are lesser than that of CNS (T = O(22n/5), qM = O(n), cM = O(2n/5)). Very
recently, Hosoyamada and Sasaki [21] proposed the first dedicated quantum
collision attacks on SHA-256 and SHA-512 in another setting where the efficiency
is evaluated by the time-memory tradeoff compared against O(2n/2) by Pollard’s
rho.

1.2 Multi-Collision

Multi-Collision (or multicollision) finding is an important problem arising from
the generalization of collision finding. A q-multicollision for a function H is a set
of q distinct inputs {x1, . . . , xq} leading to the same output, i.e., H(xi) =H(xj)
for all 1 ≤ i, j ≤ q. Multi-Collisions appear to be useful in the cryptanalysis against
hash functions, block ciphers, and other cryptographic primitives. The notion of
multicollisions was first introduced by Merkle in [34] to analyze the security of a
hash function based on DES. It was later used against MicroMint [45], RMAC [22],
chopMD [9], Leamnta-LW [19], PHOTON and Parazoa [37], and the Keyed-
Sponge [24], all of which assume the multi-Collision resistance of the underlying
function. In 2004, Joux [23] proposed the multicollision attack on iterated hash
functions, where a 2q-multicollision can be found at the computational cost
of q collisions. In 2009, Knudsen et al. [27] presented a faster method to find
multicollisions using preimage attacks. Then, Naito et al. [38] gave generic state-
recovery and forgery attacks on MACs in 2013. For block ciphers, Biryukov et
al. [2] introduced the notation of q-multicollisions, by which they mounted a
distinguishing attack against the full AES-256 in a chosen-key setting. In 2013,
Nikolić et al. [41] proposed a cryptanalysis of round-reduced version of the
lightweight block cipher LED, and in the year after, Itai et al. [11] presented a
cryptanalysis against iterated Even-Mansour schemes with two keys, all of which
utilize multi-Collisions as the core of the attacks.

When the underlying is an ideal random function, Suzuki et al. [49] shows
the number of function evaluations needed to find one q-multicollision is (q!)1/q ⋅
N (q−1)/q ≈ q

e
⋅N (q−1)/q, where N denotes the size of co-domain and e is the base
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of natural logarithm. In [2], Biryukov, Khovratovich, and Nikolić considered a
variant of this problem, where the underlying function is the XOR difference of
two ciphertexts of the same block cipher queried under a chosen-key setting. The
query complexity is proven to be at least q ⋅N

q−1
q+1 when q is small and q ⋅N

q−2
q+2

otherwise. This model is applied to distinguish the full AES-256, where a high
probability differential path in related-key setting was found and the function is
defined to be the ciphertext difference following the differential path. Then the
q-multicollision is found with a query complexity of q ⋅ 267, which is lower than
q ⋅ 2

q−1
q+1 ⋅128 in the ideal case with small q and N = 2128 for AES.

1.3 Quantum Multi-Collision

The generic bound of collision resistance in classical setting is 2n/2 due to birthday
attack, hence a differential based collision finding algorithm constitutes an attack
only if the the probability of the underlying differential path of the bruteforce
search phase is higher than 2−n/2. Hosoyamada and Sasaki [20] observed that,
while in the quantum setting, the generic time bound is 2n/3 due to BHT algorithm,
and the admissible differential probability can be as low as 2−2n/3, for which the
bruteforce search of the conforming pair costs time 2n/3 and negligible quantum
or classical memory by Grover’s search in quantum computers. Taking advantage
of this gap in the admissible probability (2−2n/3 in quantum v.s. 2−n/2 in classical
setting), differential paths with lower probability, but for more rounds, become
useful hence lead to collision attacks for more rounds in quantum setting. This
gap was further enlarged by considering higher time bound in CNS algorithm
in [12], with T = O(22n/5) and admissible probability 2−4n/5, and time-memory
tradeoff in [21] with T = O(2n/2)/S and admissible probability 2−n ⋅ S2 when S
qubits are needed to implement the attack in quantum circuit or for qRAM, as
summarized in Table 1.

collision algo. Time q-Mem c-Mem Prob. Reference Acronym
Classical 2n/2 - 1 or 2n/2 2−n/2 bir., [43] CCB

Quantum
BHT [6] 2n/3 2n/3 1 2−2n/3 [20] QCB1
CNS [8] 22n/5 n 2n/5 2−4n/5 [12] QCB2
rho [43] 2n/2

/S S 1 2−n
⋅ S2 [21] QCB3

Table 1: Comparison of the asymptotic complexities in Big-O notations of collision
finding algorithms and the lowest admissible probabilities of differential path in quantum
setting calculated by Prob. = Time−2. Here the quantum memory (q-Mem) includes
both the quantum circuit needed to implement the computation of the underlying
attack, and the qRAM for storage and access of data.

Motivated by [20], in this paper we consider the problem of q-multicollision
finding in the quantum setting, which is a natural generalization of the collision
finding problem. And similarly to [20], we also consider the scenario where
bruteforce (resp. Grover search in quantum setting) is used to find conforming
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pairs of a given differential path. When the search is limited by time T , the
admissible differential probability is at least T −1 (resp. T −2 in quantum). In 2019,
Liu and Zhandry [32] proved that the necessary and sufficient query complexity
(hence tight bound) for the quantum q-multicollision problem is N 1

2 ⋅(1− 1
2q−1 ) aided

by the same amount of qRAM. Following the N (q−1)/q bound by Suzuki et al.
(after removing the polynomial factors), the admissible probability is N

1
q −1 in

classical v.s. N 1
2q−1−1 in quantum setting, which exhibits a similar gap as for the

differential based collision attacks.

1.4 Our Contributions

Following the observation on the gap of admissible probabilities, in this paper we
propose the Quantum Multi-Collision (QMC) distinguisher, as quantized version
of the q-multicollision distinguisher proposed in [2]. Our model shows differentials
with probability as low as 2−n, for a block cipher with n-bit block size, will be
useful in mounting QMC attack, compared with 2−2n/3 and 2−4n/5 for quantum
collision attack considered in [20] and [12], respectively. This wider range of
admissible probability potentially leads to larger number of attacked rounds.
When applied to AES-like block cipher, automatic search tools based on [17]
are utilized to find differential characteristics with highest possible probabilities
under the related-key setting, then the triangulation algorithm proposed in [26]
is applied to fulfill as many S-boxes as possible unitizing the degrees of freedom
from both key and state variables, which further reduces the overall attack
complexities. Equipped with these powerful tools, we apply the attack framework
to AES, Rijndael, and Saturnin, and find a rich set of results including full
version of AES-192, AES-256, Rijndael-128-160, and Rijndael-128-224, and 8-round
AES-128, 11-round Rijndael-160-192, 12-round Rijndael-160-256, and 10-round
Saturnin-256, as summarized in Table 2. These results can be interpreted in
the following three ways.

– Compared with other distinguishing attacks, our results reach the largest
number of rounds on most of the targets including AES-192, AES-256, Rijndael-
128-160, Rijndael-128-224, Rijndael-160-192, Rijndael-160-256, and Saturnin-
256.

– Compared with the classical multi-collision distinguisher, both accept admissi-
ble probability 2−n, but for different q values. If the attacks are valid for q = 3,
they are valid also for all other q values. When q = 3 is set as the threshold,
QMC distinguishers can cover more rounds than Classical Multi-Collision
(CMC) distinguishers, e.g., 8 v.s. 6 for AES-128, 10 v.s. 9 for Rijndael-128-160,
13 v.s. 11 for Rijndael-128-224, and 8 v.s. 7 for Saturnin-256.

– Compared with the quantum collision attacks, QMC distinguisher also covers
more rounds, e.g., 8 v.s. 7 for AES-128, while the data for Quantum Collision
(QC) attacks are not available for comparison on other targets.

Organization. Section 2 gives a brief introduction of AES-like primitives, quan-
tum computation, qRAMs, and quantum adversary models. Section 3 introduces
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Target #B,#R Rounds Attack Time Mem Ref. Notes

AES-128 128,10

6
CC 256 232 [15, 30] CCB
CMC 236 - [48],Sect. 5.1

7

QC 245.4 216(qRAM) [12] QCB1
QC 245.8 - [12] QCB2
QC 242.5 248(qRAM) [20] QCB1
QC 259.5 - [20] QCB2
CMC q ⋅ 290 - Sect. 5.1 q ≥ 4
QMC q ⋅ 245 - Sect. 5.1

8
QMC q ⋅ 252.5 216(qRAM) Sect. 5.1
QMC q ⋅ 256 - Sect. 5.1 q ≥ 4

AES-192 128,12
10 CMC q ⋅ 278 - [17],Sect. 5.1
12 r.k. rec 2176 2152 (data 2123) [1]
12 QMC q ⋅ 251 - Sect. 5.1

AES-256 128,14
14 CMC q ⋅ 267 - [2]
14 QMC q ⋅ 233 - [17],Sect. 5.1

Rijndael-128-160 128,11
9 CMC q ⋅ 260 - Sect. 5.2

10 QMC q ⋅ 245 - Sect. 5.2
11 QMC q ⋅ 259 - Sect. 5.2 q ≥ 4

Rijndael-128-224 128,13
11 CMC q ⋅ 267 - Sect. 5.2
13 QMC q ⋅ 245.5 - Sect. 5.2

Rijndael-160-192 160,12
11 QMC q ⋅ 245 - Sect. 5.2
11 CMC q ⋅ 290 - Sect. 5.2

Rijndael-160-256 160,14
12 QMC q ⋅ 251 - Sect. 5.2
12 CMC q ⋅ 2102 - Sect. 5.2

Saturnin-256 256,16

7 CMC q ⋅ 2143 - Sect. 5.3
8 QMC q ⋅ 285.6 - Sect. 5.3

10 r.k. rec 2236 2128 (data 2236) [7]
10 QMC q ⋅ 2124.65 - Sect. 5.3 q ≥ 6

Table 2: Summary of results on quantum multi-collision distinguishers against AES,
Rijndael, and Saturnin. Hereafter, CC is classical collision attack; QC is quantum
collision attack; CMC is classical multi-collision attack; QMC is quantum multi-collision
attack. The range of q values to make the corresponding attack valid is listed in the
last “Notes” column, and left empty if the attack is valid for all q ≥ 3. Early-abortion
technique for bruteforce may help to reduce the time complexity of all our QMC and
CMC attacks listed here by a factor around 28, as noted in [20], which are not included
in this table for simplicity.

the related quantum collision algorithms and quantum multi-collision algorithms
for ideal functions. Then, Section 4 give the our attack framework and techniques
involved, followed by is followed by applications to AES-128, Rijndael, and Sat-
urnin in Section 5. Section 6 concludes the paper. Some details of the work are
postponed to Appendix.
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2 Preliminary

Before moving onto the description of detailed attacks, in this section we give a
brief introduction of the necessary preliminaries to understand better quantum
computations, quantum (multi-)collision algorithms, and quantum memories.

2.1 Quantum Computation and Quantum RAM

Similar to the time complexity estimation on classical computers, the unit of time
complexity on quantum computers refers to the computational effort required to
execute the underlying primitive once. The actual time to run a quantum attack
will depend on many factors including the hardware architectures of quantum
computers. In what follows, we consider the simple computational model that
each pair of qubits in a quantum computer can interact with one another. Based
on this model, the time complexity of dedicated algorithms is evaluated and
compared against the generic bounds under the same model. Such algorithms are
only considered as valid attacks if they require lesser resources like time and/or
space than the generic bounds. Here, space complexity refers to the number of
qubits to implement the attack, and similarly that needed to implement the
underlying primitive is one unit of space.

Random-access memory (RAM) is a form of computer memory that supports
read and write in any order, and the access time is often assumed to be constant
in the time complexity evaluation of cryptanalysis. Quantum random-access
memory (qRAM) is the quantum analog of the RAM, which supports data access
and computation in superpositions. For simplicity of complexity evaluation, we
assume similarly to RAM that access time of qRAM is constant, and that for
reading or writing of one cell is considered as a unit. Furthermore, we do not
distinguish qubits used as memory like qRAM and the qubits used for quantum
circuit implementations of a function.

2.2 Grover’s algorithm

Given a search space ofN elements {1, 2, . . . ,N}, a Boolean function f ∶ {1, 2, . . . ,N}→
{0,1}, and a ≜ ∣f−1(1)∣/N the probability for a random x resulting in f(x) = 1,
the best classical algorithm with black-box access to f requires 1/a queries in
order to find one x with f(x) = 1 for a probability more than 0.5. This is usually
referred to as the bruteforce search in the classical setting. However, in the
quantum setting with quantum black-box oracle access to f , Grover’s algorithm
finds x with Θ(

√
1/a) quantum queries to the quantum oracle Of , which is

defined as:
∣x⟩ ∣y⟩↦ ∣x⟩ ∣y ⊕ f(x)⟩ .

Starting with a uniform superposition ∣φ⟩ = 1
√

N
∑Nx=1 ∣x⟩, by applying the Hadamard

transformation H⊗n to ∣0⟩⊗n where n = logN2 , the Grover’s algorithm iteratively
applies the unitary transformation (2 ∣φ⟩ ⟨φ∣−I)Of to ∣φ⟩ such that the amplitudes
of those x’s with f(x) = 1 are amplified. When measuring the resulting state, a
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value of x of interest will be returned with overwhelming probability. Due to this
nature, Grover’s is also viewed as quantum analog of bruteforce search.

Similar to classical bruteforce search, the time complexity of Grover’s al-
gorithm is usually dominated and approximated by the number of function
evaluations. The quadratic speedup of the search (

√
1/a v.s. 1/a) is based on the

premise that the oracle circuit can be constructed efficiently. Thus, it is important
to have a precise estimate of the resources needed to implement the quantum
oracle e.g.,, the amount of qRAM. Given a list of classical data L = (x0, . . . , x2n−1)
with xi ∈ Fm2 , the qRAM for L is modeled as an unitary transformation OLqRAM
such that

OLqRAM ∶ ∣i⟩Addr ⊗ ∣y⟩Out ↦ ∣i⟩Addr ⊗ ∣y ⊕ xi⟩Out ,

where i ∈ Fn2 , y ∈ Fm2 , and ∣⋅⟩Addr and ∣⋅⟩Out may be regarded as the address
and output registers, respectively. In such a way, quantum superposition of the
memory cells can be accessed by the corresponding superposition of addresses.
When qRAM is available, a quantum gate that realizes the unitary operation is
available in addition to basic quantum gates.

2.3 Quantum and Classical Collision-Finding Algorithms

The BHT Algorithm. Developed by Brassard, Høyer, and Tapp [6], the BHT
algorithm finds a collision in time O(2n/3) by making O(2n/3) quantum queries
when O(2n/3) qRAM is available. BHT algorithm consists of two steps. The
first step performs a classical precomputation that chooses a subset X ⊆ {0,1}n
of size ∣X ∣ = 2n/3 and computes the value f(x) for all x ∈ X. The list of 2n/3
pairs L = {(x, f(x))}x∈X are stored into qRAM so that they can be accessed
in quantum superpositions. Then, the second step performs the Grover search
to find x′ ∈ {0,1}n/X such that f(x′) = f(x) for some x ∈ X by comparing the
value of f(x′) against the stored list L, which takes time O(

√
2n/∣L∣) = O(2n/3)

on average. The overall optimal time complexity is O(2n/3) for both steps, and
memory requirement is O(2n/3) qRAM for storing the list L. More time-memory
tradeoffs are available. When ∣L∣ < 2n/3 pairs are obtained in the first step leading
to lesser qRAM requirement, the second step will take a dominating time

√
2n/∣L∣

achieving a time-qRAM tradeoff with T 2 × S = 2n and S ≤ 2n/3.

The CNS Algorithm. Suppose only a small quantum computer of polynomial
size is available but an exponentially large classical memory can be accessed. In
this situation, Chailloux et al. [8] showed that a collision in time O(22n/5) can be
found with a quantum computer of size O(1) and O(2n/5) classical memory. The
algorithm consists of four steps. The first performs a Grover’s search to find 2t−r
pairs with r out of the n bits of the output prefixed to zeros, which costs time
2t− r

2 . The second step uses Quantum Amplitude Amplification algorithm [5] to
build the superposition collecting all pairs from the first step, and this costs 2r/2
iterations. The third step constructs the quantum “membership” oracle which
can run in time 2t−r by testing sequentially against the elements found in step
1 using classical memory and a small quantum circuit of size O(n). The last
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step is the Grover’s search using quantum oracle built in step 3 to find multi-
preimage from the superposition of step 2. Total running time of the algorithm
is 2 n−t−1

2 (2r/2 + 2t−r) + 2t− r
2 which attain minimum 2n

5 when t = 3n
5 and r = 2n

5 .
The product of T and S becomes around 23n/5, which is larger than 2n/2, but

it is quite usual to consider a classical memory of size O(2n/5), whose availability
is obviously higher than qRAM in reality as of now. Hence, CNS shows another
more realistic tradeoff between time and space when quantum and classical
memories are treated separately.

Time-Space Tradeoff. As observed by Bernstein, from the view point of time-
space complexity, BHT is worse than the classical parallel rho method by Van
Oorschot and Wiener [50]. The parallel rho method works as follow. Firstly, each
processor of P selects a starting point and produces a trail of points until it
reaches a point of distinguished property such as certain number of leading zeros,
in the meanwhile keeps track on the number of elements produced. When a
distinguished point is found, the second step adds it to a common list and start
a new search from a new starting point. This trail production is repeated until a
collision is found among the distinguished points, which implies a collision with
high probability. Roughly speaking, when P classical processors are available,
the parallel rho method [35] finds a collision in time O(2n/2/P ) according to the
birthday paradox. Thus, if a quantum computer of size 2n/3 is available without
qRAM, by running the parallel rho method on the quantum computer, a collision
could be found in time 2n/6, which is much faster than BHT. Let S denote the
size of computational resources required for a quantum algorithm (i.e., S is the
maximum size of quantum computers and classical memory) and T denote its
time complexity. Then the tradeoff T ⋅ S = 2n/2 given by the parallel rho method
is the best one even in the quantum setting.

Admissible Probabilities. Given a path with probability p, it costs p−1/2 time
to find a conforming pair by Grover’s search. Since Grover’s requires no qRAM,
one needs only time lower than the respective bounds to ensure the validity of
the attack, which gives the admissible probability of p ≥ 2−2n/3,2−4n/5,2−n ⋅ S2,
respectively for BHT, CNS, and the parallel rho method as summarized in
Table 1.

2.4 Quantum multicollision algorithm

As a generalization of quantum collision-finding algorithm, quantum q-multicollision
algorithm considers the scenario where F ∶ X → Y is a q-to-1 function with
∣X ∣ = q∣Y ∣ = qN . The following algorithm could be abstracted from [32] with
O(N 1

2 (1− 1
2q−1 )) quantum queries:

– Prepare a list L1 = (xi, yi = F (xi))t1i=1 where xi are distinct and t1 = N (2q−1
−1)/(2q

−1).
This requires O(N (2q−1

−1)/(2q
−1)) classical queries on random points.

– With L1 stored in qRAM as targets, run Grover’s algorithm to find t2 colli-
sions. Each collision costs O(

√
N/N (2q−1−1)/(2q−1)) = O(N2q−2

/(2q
−1)) quan-
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tum queries. With t2 set to be N (2q−2
−1)/(2q

−1), the overall query complexity
in this step is O(N (2q−1

−1)/(2q
−1)). Store all t2 collisions in L2.

– With L2 as targets, repeat the above steps to find t3 = N2q−3
/(2q

−1) 3-collisions,
and store them in L3. This takes O(t3 ⋅

√
N/t2) = O(N (2q−1

−1)/(2q
−1)) quantum

queries.
– Repeat the above step for t4, t5, . . . , ti = N (2q−i

−1)/(2q
−1), . . . , tq−1 = N1/(2q

−1).
Each repetition costs the same O(N (2q−1

−1)/(2q
−1)) quantum queries.

– Finally given tq−1 (q − 1)-collisions, run Grover’s algorithm to find one x
′

that leads a q-multicollision with one of the (q − 1)-multicollision from Lq−1.
This step also takes

√
N/tq−1 = N (2q−1

−1)/(2q
−1) quantum queries.

The overall quantum queries made by this algorithm is O(N (2q−1
−1)/(2q

−1)), aided
by the same amount of qRAM. It is noted that the BHT algorithm is a special
case of q = 2.

3 The Quantum q-multicollision Distinguisher

When the underlying function is ideal and can only be queried as a blackbox, Liu
and Zhandry [32] as reviewed in previous section give an algorithm of complexity
O(N (2q−1

−1)/(2q
−1)) for the q-multicollision finding problem with proven tight

bounds. Hence, a dedicated algorithm which finds q-multicollision with lesser
time and/or qRAM will be considered a valid distinguisher, which in turn implies
the function under attack is not ideal. Blockciphers are permutations when key
is fixed, for which collisions or multi-collisions do not exists. Hence, to fit into
this model, Biryukov et al. [2] define the function to be

F∆K ,∆P
(K,P ) = EK(P )⊕EK⊕∆K

(P ⊕∆P ),

where EK is the block cipher of interest. F with (K,P ) as the input can be
considered as a pseudo-random function according to Patarin [42]. Then the
q-multicollision for F can be defined as follows.

Definition 1. Given two fixed differences ∆K and ∆P . A q-multicollision of a
cipher EK(●) is a set of q (q ≥ 2) pairs,

(P1,K1), (P2,K2), . . . , (Pq,Kq)

that satisfies

EK1(P1)⊕EK1⊕∆K
(P1 ⊕∆P ) = EK2(P2)⊕EK2⊕∆K

(P2 ⊕∆P ) =
= ⋅ ⋅ ⋅ = EKq(Pq)⊕EKq⊕∆K

(Pq ⊕∆P ).
(1)

Here the two differences ∆K and ∆P are fixed.
From the block cipher’s respective when there exists a high probability

differential path, F is essentially the XOR difference of a ciphertext pair following
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the differential path under plaintext difference ∆P and key difference ∆K . In
such case, the above q-multicollision can be translated into finding q conforming
pairs, which costs time q ⋅ p−1/2 by Grover’s search for a probability p differential
path. To ensure this leads to a valid distinguisher with lower time complexity, we
need q ⋅ p−1/2 ≤ q ⋅N (2q−1

−1)/(2q
−1) with N = 2n, then the admissible probability

should be p ≥ 2 n
2 (1− 1

2q−1 ).
Note, although the differential is under the related-key setting with key

difference fixed, the entire model is however under the chosen-key setting since
the secret key K is also an input to F which can be chosen freely by the attackers.

CC CMC

QC QMC
5 10 15 20 25

0.5

0.6

0.7

0.8

0.9

1

2 3

2/3,BHT

1/2,CC

4/5,CNS

1 − 2 logN S, rho

1 − 1
2q−1

,QMC

1 − 1
q

,CMC

GAP

q

− logN P

Figure 1: Left: Development from Collision to q-Multicollision [2] and Quantum Col-
lision [20], then to Quantum q-Multicollision in this paper. Right: Comparison of
Admissible Probabilities.

Comparison with CMC. In [2], the CMC distinguisher model was introduced
and applied to the full 14-round AES-256. Rather than following directly the
bound of CMC (21−1/q) from [49], they considered the repeated queries under
the related-key setting and came up with a slightly twisted bound. As Liu and
Zhanry’s QMC algorithm [32] follows directly from the procedure considered
in [49], we are following these two bounds for comparisons. Clearly, the admissible
probability for QMC 2−n(1−1/(2q

−1)) is smaller than that for CMC (2−n(1−1/q))
for all q ≥ 2. We define the logarithm of probability as pl = log2−n(p), then the
gap of two admissible probabilities is pQMC

l − pCMC
l = 1

q
− 1

2q−1 . The gap is largest
of 1

3 −
1

23−1 = 4
21 at q = 3 as depicted in Figure 1, hence q = 3 is used in the

rest of the paper unless otherwise specified. If a differential path of probability
pl falls in between of pQMC

l and pCMC
l , it means this path will lead to a valid

QMC attack, but invalid CMC attack. Hence, the larger the gap, the higher the
likelihood to result in a round difference of the two attacks for the same cipher.

11



Such differences will be highlighted later when we discuss the applications to the
target ciphers.

Comparison with QC. When compared with admissible probabilities of CC
and QC as depicted in Figure 1, QMC covers a wider range (or smaller probability)
than CC, and the QC algorithms BHT and CNS, for all q ≥ 3. pQMC

l is larger than
prho
l when q ≥ log2 ( n

2⋅log2(S)
+ 1) ≈ log2(n) − (1 + log2(log2(S))), as summarized

in Table 3. This shows QMC can cover no lesser rounds than QC in most of the
cases, and this is supported by the result summary in Table 2.

algorithm CC BHT CNS parallel rho CMC
condition q ≥ 2 q ≥ 2 q ≥ 3 q ≥ log2(n) − (1 + log2(log2(S))) q ≥ 2

Table 3: Range of q when QMC accepts a lower admissible probability, where S is the
size of available qRAM.

4 The Attack Framework and Techniques

To find the q-multicollision of a given block cipher, we follow the Definition 1 to
find q conforming pairs following a differential path. The overall attack procedure,
as depicted in Figure 2, works in the following 4 steps, with time complexity
optimization in mind.

Step 1: find a high differential path under the related-key setting. To find differential
path with highest possible probability, automatic search tools are reviewed
and that from [17] are invoked here. ∆P and ∆K are determined together
with the path.

Step 2: some probabilistic transitions in the differential path can be fulfilled deter-
ministically by presetting some state values. In case of our mainly concerned
AES-like ciphers, the input or output of these active Sboxes can be fixed
utilizing such degree of freedoms from both state and key bytes. To maximize
the number of such fixed active Sboxes, triangulation algorithm developed
in [26] will be reviewed and used.

Step 3: the remaining active Sboxes are fulfilled by Grover search, where candidates
are generated from the remaining degree of freedoms from Step 2.

Step 4: additional adhoc optimizations are done to minimize the final complexity.

In the sequel, we introduce the techniques and algorithms used in each step.

4.1 Automatic tools for related-key differential paths

Generic solver Constraint Programming (CP) is used to solve Constraint Satis-
faction Problems (CSPs). A CSP is defined by a triple (X ,D,C) where
– X is a finite set of variables;
– D is refers to the domain, i.e., the set of values each xi ∈X can take;
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Step 1: Path search

Step 2: triangulation
to fixed S-boxes

active S-boxes active
S-boxes

Step 3: Brute-force
conforming pairs

Ri

•
••Ri+1 • •

Ri+2 Ri+3 Ri+4

Figure 2: The attack framework

– C is a set of constraints including relations between variables.
When an objective function is defined, the CSP becomes a Constrained-Optimization
Problem (COP). A solution of a COP is an assignment of values to all the vari-
ables in X = {x0,⋯, xn−1} such that all constraints from C = {c0,⋯, cm−1} are
satisfied and objective function achieves maximum or minimum.

Finding an optimal related-key differential trail is a highly combinatorial
problem that hardly scales. To simplify this problem, a usual and efficient way is
to divide it into two steps [3, 13]. Step 1 searches for all truncated differential
characteristics under a given bound on the numbers of round and active S-Boxes.
It may happen that no actual differential characteristic follows the truncated
differential found in Step 1. Hence Step 2 examines and decides whether the
truncated differential characteristics are valid, and finds the actual differential
characteristic that maximizes the probability. Both steps can be approached
by CP. Such CP strategy has been successful in finding related-key differential
characteristics for AES [18], Midori [14], and SKINNY [48], in the sense that the
truncated differentials match the lower bound on the number of active S-boxes
(a.k.a. optimal truncated differentials).

In 2014, Minier et al. [36] proposed to use tools to automatize Step 1 for
finding best truncated differentials. In 2020, Gérault et al. [17] added more
constraints to describe the KeySchedule and MixColumn more precisely to filter
out those truncated differentials without valid differential characteristics following
them, which in turn also reduced the search space and improved the efficiency of
the tool. Within the space of valid truncated differentials, Step 2 follows the same
CP program used in Step 1, but considers the exact byte differences for the entire
differential characteristics instead of a binary value 0/1 in truncated differentials.
Following these significant developments in [17, 36], our search model can be
described as follows. The constraint includes the 5 steps of the round function
in a AES-like cipher, i.e., S-boxes, AddRoundKey, ShiftRow, MixColumn, and
KeySchedule, and the objective function is to minimize the number of active
S-boxes and to maximize the overall differential probability. These constraints
together describe the underlying cipher in the language of CP, which ensures the
differential characteristics found by the program will follow exactly the cipher.
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1. Objective function:
obj = ∑(xr

i,j is active)∆x
r
i,j +∑(kr

i,3is active)∆k
r
i,3

2. Constraints on S-boxes in states and subkeys:
∆xri,j =∆yri,j
∆SKr

i =∆Kr
i,3

3. Constraints on AddRoundKey:
∆wri,j +∆Kr+1

i,j +∆xr+1
i,j ≠ 1

4. Constraints on ShiftRow:
∆yri,(i+j) mod 4 =∆z

r
i,j

5. Constraints on MixColumn:
∑3
i=0∆z

4
i,j +∑

3
i=0∆w

4
i,j ∈ {0,5,6,7,8}

6. Constraints on KeySchedule:
∆Kr+1

i,0 +∆Kr
i,0 +∆SKr

(i+1) mod 4 ≠ 1
∆Kr+1

i,j +∆Kr+1
i,j−1 +∆Kr

i,j ≠ 1

where i, j ∈ [0,3] and SKr
i are introduced variables after S-boxes operations in

rth-round KeySchedule.
Technically, the truncated differential search of Step 1 is implemented by

MiniZinc [40] language, which is subsequently solved by Picat-SAT [51]. Then
the search of actual differential characteristics in Step 2 is defined and solved
by Choco solver [44]. The execution of our search programs is performed on a
single core Intel Core i9 processor at 3.6 GHz, and all can complete within one
hour while most in less than 10 minutes. To minimize the final complexity of
our distinguishers, a set of sub-optimal differentials, rather than the optimal
differential only, are prepared for the triangulation algorithm.

4.2 Triangulation Algorithm

The Triangulation Algorithm(TA) proposed in [26] uses Gaussian elimination to
solve systems of non-linear equations. Unlike a universal algorithm dealing with
any non-linear function, it is efficient for solving system of bijective functions
only. To illustrate how it works, we use the following system of equations as a
toy example.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 ⊕ F (x2) = 0
x1 ⊕ (3 ⋅ x3)⊕G(x4) = 0
x2 ⊕ x4 ⊕ a = 0

(2)

Here F and G are some bijective functions, and a is a constant. Note all other
operations including multiplication by 3 and exclusive-or are also bijective. To
translate the above system into TA, all bijective functions are removed, and the
system can be re-expressed as a matrix with columns for the variables and rows
for the equations. The entries are binary values, and are “1” only when a variable
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[ ]
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Figure 3: Procedure of Triangulation Algorithm for solving the system (2)

appears in the respective equation. The algorithm starts with marking all the
equations as unprocessed. Next, the algorithm finds that x3 is involved in the
eq2 only, i.e., there is only one “1” in the third column of the matrix. Then,
the third column and the second row corresponding to this “1” are marked as
processed, and will be removed from the matrix, as highlighted in the left most
matrix in Figure 3. Within the resulted matrix after removal, the next column
with a single “1” will be the column x4, then this column and the corresponding
eq3 are marked and to be removed from the matrix. After that, x2 is the next
variable to be marked as processed and removed. Finally, the TA outputs x1 as
free variable. 3. Besides the set of free variables, the TA also gives us who the
system of equations can be fulfilled, following the reversed order of the execution
procedure, i.e., after the free variable(s) x1 are assigned to some values, x2 is
used to fulfill eq1, followed by x4 for eq3, and finally x3 for eq2. Note, in this toy
example, Gaussian elimination is not used, but necessary for a general case at
the beginning of each step to ensure a column with a single “1” will appear.

When a differential characteristic of an AES-like block cipher is given, and
the attacker is given full control over the state and key values, we are interested
in finding the maximum amount of active S-boxes that can be fulfilled by setting
to the respective conforming values. TA serves this purpose, with state bytes and
key bytes as variables, and the round function and key schedule as the system of
equations. This can be applied to multiple rounds one by one, i.e.,TA is applied
to one round, then to the next rounds with only those free variables returned
by the TA from the previous round, this is repeated until all free variables are
exhausted. Our implementation shows the problem sizes in our attack are small
and all our TA programs can finish execution instantly on a PC.

4.3 Complexity Optimizations

To further minimize the overall complexity, the following measures are integrated
into the attack procedure.

1. TA is applied to consecutive rounds, for as many rounds as possible. This
process is repeated for all starting round, and the maximum number of fixed
active S-boxes is selected among all choices.

2. We note it is not necessary that the optimal differential characteristic from
Step 2 leads to the lowest attack complexity after the execution of TA. Hence,
instead of a single optimal path, a set of sub-optimal paths are collected from
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Step 2, then TA is run for all the paths to identify the best one with highest
remaining probability.

3. It is noted that S-box operation only applies to the last column of the round
key bytes in the key schedule, while this is for all state bytes in round function.
Hence, it is likely many degrees of freedom from key bytes will be used to
fulfill some active S-boxes in the state. However, a key byte variable may
not affect all state byte in a bijective way. For example, the first byte of i-th
round key x is added into the state at round i, the first state byte of the i-th
round will be 2 ⋅ S(x), then the same key byte will propagate through key
schedule to the first key byte for round i + 1, and added to the first state
byte at round i + 1 resulting in 2 ⋅ S(x) + x. If the first state S-box at round
i + 1 is active and x is the variable used to fulfill it, one can precompute
2 ⋅ S(x) + x for all possible 28 possible x values and store them in a lookup,
which saves the trouble of bruteforce every time. While the function can
be more complicated involving many variables, such a lookup table with
pre-computation is always possible as long as the complexity here does not
dominate the whole attack.

5 Applications on AES, Rijndael and Saturnin

Our QMC attack framework is generic, and can be applied to any given block
cipher. To demonstrate the effectiveness, well studied targets including AES,
Rijndael, and Saturnin are used here. To make a comprehensive comparison,
besides QMC we also apply the attack framework to find CMC. Detailed attack
procedure on AES will be given for the readers to follow the techniques, then
brief results are described for subsequent targets.

5.1 AES

Description of AES. AES-k is a block cipher family of 128-bit block and k-bit
key for k ∈ {128,192,256}. The state has 16 bytes and can be represented as a
4× 4 matrix. Given a Nrow ×Ncol bytes of the state matrix, where Nrow = Ncol = 4,
we order the byte cells as in Figure 4. Then the state is encrypted by an
iterative process which is repeated for 10, 12, and 14 rounds, for AES-128,
AES-192, and AES-256, respectively. An AES round function, as depicted in
Figure 4, is an Substitution-Permutation Network (SPN), and composed of four
consecutive operations: SubBytes (SB), ShiftRows (SR), MixColumn (MC), and
AddRoundKey (AK). The master key k is added to the state before the application
of the first round function, and is used to generated to r subkeys through the
KeySchedule (KS) function. We refer to Appendix A.1 the details of both AES
and Rijndael.

Attack Procedure on AES. We apply the search tool described in Section 4.1
to find the related-key differential paths of AES-128 reduced to 7 rounds, 8
rounds, and the full 12-round AES-192, while that for the full 14-round AES-256
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Figure 4: The AES round function

has been already found and used in [2, 17]. A lower bound of probability 2−(n+k)
is set to limit the search space, where n is the state size and k is the key size
in bits. This bound is used to ensure there will be at least one pair of message
conforming the differential path, utilizing all degrees of freedom from both state
and key. A set of differential paths are collected.

Let denote by yi,wi, ki as the state after SB, MC, and the sub-key at i-th
round. Each of them is an array of 16 bytes following the same order as in
Figure 4. Then, the i-th round function involving yi,wi−1, ki and wi can be
re-expressed by Equation (3), where the first line yi ⊕ S(wi−1 ⊕ ki) reassembles
two operations AK and SB, and the second line reassembles SR and MC. The
i-th round key schedule can be re-expressed by the Equation (4), relating key
bytes of the current round ki with that from the previous round ki−1. The same
Equation (4) is used for both AES-128 with i = 0, . . . , 10 and b = 16, and AES-192
with i = 0, . . . ,8 and b = 24. There are 32 free variables (16 from the state and
16 from the key) for AES-128, and 40 free variables (16 from the state and 24
from the key) for AES-192. Each equation will form a line with 1/0 indicating
the presence of the respective variable in the matrix input to TA.

Ri ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi ⊕ S(wi−1 ⊕ ki) = 0

wi ⊕

⎛
⎜⎜⎜⎜⎜
⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎟⎟⎟
⎠

×

⎛
⎜⎜⎜⎜⎜
⎝

yi[0] yi[4] yi[8] yi[12]
yi[5] yi[9] yi[13] yi[1]
yi[10] yi[14] yi[2] yi[6]
yi[15] yi[3] yi[7] yi[11]

⎞
⎟⎟⎟⎟⎟
⎠

= 0
(3)

KSi ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ki[j]⊕ ki[j − 4]⊕ ki−1[j] = 0, j = 4, . . . b − 1
ki[0]⊕ ki−1[0]⊕ S(ki−1[b − 3])⊕RCONi = 0
ki[1]⊕ ki−1[1]⊕ S(ki−1[b − 2]) = 0
ki[2]⊕ ki−1[2]⊕ S(ki−1[b − 1]) = 0
ki[3]⊕ ki−1[3]⊕ S(ki−1[b − 4]) = 0

(4)

Results on 8-round AES-128. After CP tool run on a PC for a few minutes,
the desired differential characteristics are found on 8-round AES-128. The one, as
depicted in Figure 5, is formed with 37 active S-boxes, whereas 6 of them are in
3 Legend is used for the same meaning for the subsequent differential paths

17



∆IN

KS

•
k0

AK

x0

SB

y0

SR

z0

MC

w0

Round 0

KS

k1
AK x

xx
x
x
xxx

x
x
x
x

x1

SB

•

• •
•
•
•
•

y1

SR

x
x
x x

x

z1

MC

w1

Round 1

KS

k2
AK xxx

x
x
x

x

x2

SB •
y2

SR

x
x

x
x
x
x

x

z2

MC

w2

Round 2

KS

•
k3

AK x
x x

x

x3

SB

y3

SR x x
x x

z3

MC

w3

Round 3

KS

•
k4

AK

x4

SB

y4

SR

z4

MC

w4

Round 4

KS

•
k5

AK

x5

SB

y5

SR

z5

MC

w5

Round 5

KS

k6
AK

x6

SB

y6

SR

z6

MC

w6

Round 6

k7
AK

x7

SB

y7

SR

z7

∆OUT

Legend

No diff.

Nonzero diff.

Fixed variables.

• Free variables.

x Known bytes.

Active S-box
with probability 2−7.

Figure 5: A differential path 3 for 8-Round AES-128
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Cipher Attacked Active S-boxes Fixed bytes Final Probability Ref.
Rounds Type-I + Type-II Type-I + Type-II pout

AES-128
6 16 + 5 10 + 5 2−36 [48],Fig. 9
7 13 + 16 5 + 10 2−90 Fig. 10
8 10 + 27 (3 + 17) or (3 + 18) 2−112 or 2−105 Fig. 5

AES-192
10 22 + 8 9 + 8 2−78 [17],Fig. 12
12 23 + 16 6 + 16 2−102 Fig. 13

AES-256 14 22 + 2 11 + 2 2−66 [17]
Table 4: Summary of AES related-key differential paths

the sub-keys and 31 are in the state. For the AES S-box, there are two types of
differentials with probability of 2−6 and 2−7, which we will refer to as Type-I and
Type-II. They are depicted in the figures of differential path as boxes in blue only,
and blue with white lines, respectively. Among the 37 active S-boxes, there are 10
Type-I and 27 Type-II, which gives an overall probability of 2−(10×6+27×7) = 2−249.
After execution of TA with all possible starting round, we find the one starting
with Round 1 is the best choice, which allows to fix all active S-boxes in Round 1
and Round 2, and 4 of the state in Round 3, as well as 5 out of the 6 active S-boxes
in sub-keys, as highlighted in red in the Figure 5. TA finds the active S-box in
k7 cannot be fixed probably because it is too far from the Round 1 variables.
After TA, 7 Type-I and 10 Type-II active S-boxes are left unfixed, resulting in a
probability of pout = 2−(7×6+10×7) = 2−112. Grover search then finds a conforming
pair in 256 quantum queries, and hence a QMC in q ⋅256. This complexity is lower
than the generic bound when pl = 112/128 = 0.875 < 1 − 1

2q−1 , i.e., q ≥ 4. The
same differential leads to a CMC attack with complexity q ⋅ 2112, which is a valid
attack when pl < 1 − 1/q, i.e., q ≥ 9. The gap of the q ranges can be interpreted
as the differential leads to a valid QMC attack but invalid CMC attack in the
range 4 ≤ q ≤ 8.

To check if TA works as expected and no byte is over-defined in the system,
we verified the entire procedure to reproduce all other state and key bytes from
the set of fixed bytes and free bytes. As also highlighted in red, the fixed bytes are
{k0[14], k1[15], k2[14], k3[15], k5[15], y1[1], y1[5], y1[10], y1[11], y1[15], y2[2],
y2[6], y2[10], y2[11], y2[13], y2[15], y3[1], y3[3], y3[9], y3[11]}, and the free
bytes are {k0[15], k3[11], k4[4], k5[11], y1[4], y1[7], y1[8], y1[9], y1[12], y1[13],
y1[14], y2[5]}. From these 32 bytes, Table 5 shows step by step how the entire
key state k2 (highlighted in red) and state y1 (highlighted in blue) are derived.
MC−1 is the operator acting on any 4 bytes out of 8 bytes of the columns before
and after MC and resulting in the remaining 4 bytes.

Fixing one more active S-box. In this part, we describe a method to fulfill
one additional active S-box at y3[12] for free at the cost of some qRAM. Along
with the previous fixed bytes, we fix one more byte k3[12] and receive other free
variables from another run of TA. Note that byte k3[12] will not be fixed to
particular value, but will be chosen so that k3[12]⊕ x3[12] fulfill the S-box at
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Fixed bytes: k0[14], k1[15], k2[14], k3[15], k5[15], y1[1], y1[5], y1[10], y1[11], y1[15],
y2[2], y2[6], y2[10], y2[11], y2[13], y2[15], y3[1], y3[3], y3[9], y3[11]

Free bytes: k0[15], k3[11], k4[4], k5[11], y1[4], y1[7], y1[8], y1[9], y1[12], y1[13], y1[14], y2[5]
1. k1[11] = k0[15]⊕ k1[15] 27. k2[3] = S(k2[12])⊕ k3[3]
2. k2[15] = k3[11]⊕ k3[15] 28. k1[14] = k2[10]⊕ k2[14]
3. k4[15] = k5[11]⊕ k5[15] 29. k1[10] = k0[14]⊕ k1[14]
4. k4[11] = k3[15]⊕ k4[15] 30. k2[6] = k1[10]⊕ k2[10]
5. k4[7] = k4[11]⊕ k3[11] 31. x1[6] = x2[6]⊕ k2[6]
6. k5[7] = k5[11]⊕ k4[11] 32. y1[3] = z1[7],w1[4,5,7]

=MC−1
(z1[4,5,6],w1[6])

7. k5[3] = k5[7]⊕ k4[7] 33. k2[5] = w1[5]⊕ x2[5]
8. w1[15] = x2[15]⊕ k2[15] 34. x2[7] = w1[7]⊕ k2[7]
9. y1[6] = z1[14],w1[12,13,14] 35. z2[8],w2[8,9,10]
=MC−1

(z1[12,13,15],w1[15]) =MC−1
(z2[9,10,11],w2[11])

10. k2[13] = x2[13]⊕w1[13] 36. k2[8] = x2[8]⊕w1[8]
11. x2[14] = k2[14]⊕w1[14] 37. k3[9] = w2[9]⊕ x3[9]
12. w2[11] = x3[11]⊕ k3[11] 38. k3[4] = k2[8]⊕ k3[8]
13. k2[11] = k1[15]⊕ k2[15] 39. k4[0] = k3[4]⊕ k4[4]
14. k2[7] = k1[11]⊕ k2[11] 40. k3[13] = k3[9]⊕ k2[13]
15. k3[7] = k2[11]⊕ k3[11] 41. k3[0] = S(k3[13])⊕ k4[0]
16. k3[3] = k2[7]⊕ k3[7] 42. k2[4] = k3[0]⊕ k3[4]
17. k4[3] = k3[7]⊕ k4[7] 43. k2[0] = S(k2[13])⊕ k3[0]
18. k4[12] = S−1

(k4[3]⊕ k5[3]) 44. w2[3] = k3[3]⊕ x3[3]
19. k3[12] = S−1

(k3[3]⊕ k4[3]) 45. z2[0],w2[0,1,2]
=MC−1

(z2[1,2,3],w2[3])
20. k4[8] = k3[12]⊕ k4[12] 46. w1[0] = k2[0]⊕ x2[0]
21. k3[8] = k4[4]⊕ k4[8] 47. y1[0] = z1[0],w1[1,2,3]

=MC−1
(z1[1,2,3],w1[0])

22. k2[12] = k3[8]⊕ k3[12] 48. k2[2] = w1[2]⊕ x2[2]
23. w1[11] = k2[11]⊕ x2[11] 49. k3[1] = w2[1]⊕ x3[1]
24. y1[2] = z1[10],w1[8,9,10] 50. k2[1] = k3[1]⊕ S(k2[14])
=MC−1

(z1[8,911],w1[11])
25. k2[10] = w1[10]⊕ x2[10] 51. k3[5] = k2[5]⊕ k3[1]
26. x2[12] = w1[12]⊕ k2[12] 52. k2[9] = k3[5]⊕ k3[9]

Table 5: Steps to derive the entire key k2 and state y1 from the fixed and free bytes.

y3[12]. Let denote the value of k3[12] as x. Then the value of y3[12] depends on
x and some more free variables and fixed variables, more precisely

y3[12] = S(03 × S(01 × 02−1x⊕ c1)⊕ c2 ⊕ x), (5)

where c1 and c2 are 8-bit values depending on the 31 free bytes and fixed bytes.
To verify the expression above is possible, the procedure to find the relation
between y3[12] and x from the free and fixed bytes are listed in Table 6. A
lookup table with the triplet (c1, c2, x) can be precomputed and stored in qRAM
for superposition access. When the values of the 31 main bytes are fixed, the
corresponding (c1, c2) can be computed, and suitable x can be identified from
the lookup table so that the active S-box at y3[12] can be fulfilled. The cost
of this lookup table is classical computation effort of 216 and 216 qRAM. This
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method allows to fix one additional Type-II active S-box, resulting in the final
pout = 2−105 as depicted in Figure 5.

Fixed bytes: k0[14], k1[15], k2[14], k3[12] = x,k3[15], k5[15], y1[1], y1[5], y1[10], y1[11], y1[15],
y2[2], y2[6], y2[10], y2[11], y2[13], y2[15], y3[1], y3[3], y3[9], y3[11]

Free bytes: k0[15], k3[11], k4[4], y1[4], y1[7], y1[8], y1[9], y1[12], y1[13], y1[14], y2[5]
1. k2[15] = k3[11]⊕ k3[15] 27. k4[15] = k4[11]⊕ k3[15]
2. w1[15] = x2[15]⊕ k2[15] 28. k5[11] = k4[15]⊕ k5[15]
3. z1[14],w1[12,13,14] 29. k5[7] = k5[11]⊕ k4[11]
=MC−1

(z1[12,13,15],w1[15])
4. k2[13] = w1[13]⊕ x2[13] 30. k5[3] = k4[7]⊕ k5[7] = S(x)⊕ c
5. k2[11] = k1[15]⊕ k2[15] 31. k4[12] = S−1

(k4[3]⊕ k5[3]) = S−1
(c⊕ k3[3])

6. k3[7] = k2[11]⊕ k3[11] 32. k4[8] = x⊕ k4[12]
7. w1[11] = x2[11]⊕ k2[11] 33. k3[8] = k4[8]⊕ k4[4]
8. z1[10],w1[8,9,10] 34. k2[12] = x⊕ k3[8] = c′

=MC−1
(z1[8,9,11],w1[11])

9. k2[10] = w1[10]⊕ x2[10]) 35. x2[12] = w1[12]⊕ k2[12]
10. k1[14] = k2[10]⊕ k2[14] 36. k2[1] = S(k2[14])⊕ k3[1]
11. k1[10] = k0[14]⊕ k1[14] 37. k2[3] = S(k2[12])⊕ k3[3]
12. k1[11] = k0[15]⊕ k1[15] 38. x2[7] = w1[7]⊕ k2[7]
13. k2[7] = k1[11]⊕ k2[11] 39. z2[8],w2[8,9,10]

=MC−1
(z2[9,10,11],w2[11])

14. k3[3] = k2[7]⊕ k3[7] 40. k2[8] = w1[8]⊕ x2[8]
15. k2[6] = k1[10]⊕ k2[10] 41. k3[4] = k2[8]⊕ k3[8] = x⊕ c′′

16. w1[6] = x2[6]⊕ k2[6] 42. k3[9] = x3[9]⊕w2[9]
17. z1[7],w1[4,5,7] 43. k3[13] = k3[9]⊕ k2[13]
=MC−1

(z1[4,5,6],w1[6])
18. k2[5] = w1[5]⊕ x2[5] 44. k4[0] = k4[4]⊕ k3[4] = x⊕ c′′′

19. w2[3] = x3[3]⊕ k3[3] 45. k3[0] = S(k3[13])⊕ k4[0] = x⊕ d
20. w2[11] = x3[11]⊕ k3[11] 46. k2[0] = S(k2[13])⊕ k3[0] = x⊕ d′

21. z2[0],w2[0,1,2] 47. w1[0] = x2[0]⊕ k2[0] = x⊕ d′′

=MC−1
(z2[1,2,3],w2[3])

22. k3[1] = w2[1]⊕ x3[1] 48. z1[0],w1[1,2,3]
=MC−1

(z1[1,2,3],w1[0])
23. k3[5] = k2[5]⊕ k3[1] 49. w1[1] = 01 × 02−1x⊕ d′′′

24. k4[3] = k3[3]⊕ S(x) 50. y2[1] = S(01 × 02−1x⊕ c1)

25. k4[7] = k4[3]⊕ k3[7] 51. w2[12] = 03 × S(01 × 02−1x⊕ c1)⊕ c2

26. k4[11] = k4[7]⊕ k3[11] 52. x3[12] = 03 × S(01 × 02−1x⊕ c1)⊕ c2 ⊕ x

Table 6: Steps to derive the relation between x3[13] and the variable x in key byte
k3[13], c, c′, c′′, c′′′ and d, d′, d′′, d′′′ are 8-bit values depending on the 31 free bytes and
fixed bytes (excluding x)

Results on 7-round AES-128. Since the QMC for 8-round AES-128 are not
valid for all q values, and the previous quantum collision attacks work for 7 rounds
only, we also run our attack framework to 7-round for comparison purposes. The
CP tool returns in a few mins the differential path depicted in Figure 10 with
29 actives S-boxes, out of which 22 actives S-are in states and 7 are in subkeys.
With (13,16) and (8,6) Type-I and Type-II active S-boxes before and after TA,
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the respective probabilities are 2−190 and 2−90. Then pl = 90/128 = 0.703 gives a
valid QMC with complexity q ⋅ 245 for q ≥ 3 and a valid CMC with complexity
q ⋅ 290 for q ≥ 4. To find the CMC attack valid for all possible q, we move on to
reduce the attacked round to 6.

Results on 6-round AES-128. The best related-key differential of 6-round
AES-128 has been found in [48], with 16 Type-I and 5 Type-II active S-boxes,
and only 6 Type-I active S-boxes are left. This path gives a final pout = 2−36 and
pl = 0.28 leading to a valid CMC with complexity q ⋅ 236 for all q ≥ 3.

Results on 12-round AES-192. Similar attack procedure is applied to AES-192,
and the probabilities of the differential path before and after application of TA, as
depicted in Figure 13, are 2−250 and 2−102, respectively. The pl = 102/128 ≈ 0.80
gives a valid QMC with complexity q ⋅ 251 for q ≥ 3 and a valid CMC with
complexity q ⋅ 2102 for q ≥ 4. The attacked round reduces to 10 to obtain the
CMC attack valid for q ≥ 3 with time complexity 278. All our results on AES are
summarized in Table 4.

5.2 Rijndael

Description of Rijndael. Rijndael-b-k (where b is the block size and k is the key
size in bits) is the predecessor of AES designed by Daemen and Rijmen [10]. It
has 25 variants corresponding to each case of 4 ×Ncol block size (128, 160, 192,
224 or 256 bits) and the key size (128, 160, 192, 224 or 256 bits). The number of
rounds for the 25 instances are 10, 11, 12, 13, and 14 depending on the maximum
of block size and key size. The encryption process is the same as AES as described
in Section 5.1, except for the KS, SR, and the round numbers. Here we focus on
the variants of block size 128 and 160 bits, for which SR works the same as AES
by circularly shifting i-th row to the left by i positions.

Results on Rijndael. Our related-key differential characteristics are obtained
by modifying the tool from [17] to fit Rijndael. There are 25 instances of Rijndael,
we report in this paper only the longest rounds attacked due to space limit. The
QMC can be mounted on full rounds of Rijndael-128-160, Rijndael-128-224, 11-
round Rijndael-160-192, and 12-rounds of Rijndael-160-256. For Rijndael-128-160
(and similarly for Rijndael-128-224), we listed the results from 9 to 11 rounds,
because 9 is the maximum rounds CMC attack can reach for q = 3, 10 is the
valid QMC attack can archive for q = 3, and 11 is the maximum rounds a valid
QMC works for some q. When TA is applied, active S-boxes in up to 4 rounds
can be fixed, compared with 3 for AES. Details of the differential paths, before
and after the application of TA, are summarized in Table 7. It is interesting to
note that differential paths leading to the best attack for 3 out of the 4 variants
are optimal, except for Rijndael-160-256. In this special case, a differential path
with 41 active S-boxes instead of the optimal one with 40 active S-boxes is used.
This path has more active S-boxes in the keys rather than the state than the
optimal path. After application of TA, this sub-optimal path leads to higher final
probability pout. This is consistent with out observation that more free variables

22



are available from key bytes since there are less S-box operations, hence TA has
better chance to fix active S-boxes in key.

Cipher Attacked Active S-boxes Fixed bytes Final Probability Ref.
Rounds Type-I + Type-II Type-I + Type-II pout

Rijndael-128-160
9 22 + 9 12 + 9 2−60 Fig. 19
10 27 + 9 12 + 9 2−90 Fig. 14
11 21 + 20 6 + 16 2−118 Fig. 15

Rijndael-128-224
11 19 + 7 9 + 6 2−67 Fig. 20
13 27 + 11 13 + 10 2−91 Fig. 16

Rijndael-160-192 11 31 + 14 16 + 14 2−90 Fig. 17
Rijndael-160-256 12 34 + 7 17 + 7 2−102 Fig. 18

Table 7: Summary of Rijndael related-key differential paths

5.3 Saturnin

∆K′ ∆K

SB MR

AK’

SB MC

AK

Figure 6: A differential path for 2-Round Saturnin [7]

Description of Saturnin. Saturnin is a block cipher with a 256-bit state and
256-bit key that was designed as the derivative of AES with efficient implementa-
tion by Canteaut et al. for the NIST lightweight cryptography competition, and
it was among the round 2 candidates. It can viewed as a 3-dimensional AES with
cell size of 4 bits. The composition of two consecutive rounds starting from even
round is called super-round, which is very similar to an AES round operating
on 16-bit words except that the SR is replaced by a transposition exactly as
used in Square, the predecessor of AES. We refer to Appendix A.2 for the byte
orientation and the KeySchedule of Saturnin for details.

Results on Saturnin. On Saturnin’s design website, the authors propose a
challenge to dig into the security analysis of Saturnin against the related-key
differential attack, starting from 9 rounds. In [7], the designers proposed the first
classical related-key attack on 10 rounds, and conclude

“A quantized version of this attack is expected to reach less rounds ... ”
Contrary to the designers’ conclusion, in this paper we successfully mount QMC
attack on 10-round Saturnin. We utilize the differential characteristic proposed
by the designers in [7], where a 2-round iterative differential characteristic (refer
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to Figure 6) with probability 2−78.1 is given and repetition by 5 times leads to a
10-round related-key differential characteristic with probability 2−390.5. Figure 7
shows the full differential characteristic in truncated version.

Next, we prepare the system of equations as the input to TA. The key schedule
of Saturnin is simple byte shuffle, which requires no extra equation to describe.
Similar to AES, the round function of Saturnin can be modeled as the system
of equations as follows.

i mod 2 = 1,Ri ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi[j]⊕ S(wi−1[j]⊕ k0[(j + 5) mod 16]) = 0, j = 0, . . . ,15

wi ⊕MC ×

⎛
⎜⎜⎜⎜⎜
⎝

yi[0] yi[4] yi[8] yi[12]
yi[1] yi[5] yi[9] yi[13]
yi[2] yi[6] yi[10] yi[14]
yi[3] yi[7] yi[11] yi[15]

⎞
⎟⎟⎟⎟⎟
⎠

= 0
,

i mod 2 = 0,Ri ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi[j]⊕ S(wi−1[j]⊕ k0[j]) = 0, j = 0, . . . ,15

wi ⊕

⎛
⎜⎜⎜⎜⎜
⎝

yi[0] yi[1] yi[2] yi[3]
yi[4] yi[5] yi[6] yi[7]
yi[8] yi[9] yi[10] yi[11]
yi[12] yi[13] yi[14] yi[15]

⎞
⎟⎟⎟⎟⎟
⎠

×MR = 0
,

where MC and MR are 4×4 MDS matrices. Application of TA shows that all
the active S-boxes in first 4 rounds of states except for the last active S-box in byte
y3[7] can be fixed. Saturnin does not allow us to apply the trick used for AES
to save degree of freedom of key bytes, because each byte of the key is involved in
various equations. The relationship of the key byte and the corresponding state
byte involves many more dependent variables c1, c2, c3,⋯, which increases the
requirement of memory significantly. To this end, the probability of the S-box in
byte y3[7] is not lower than 2−15, which results in a pout = 2−249.3. This leads to a
QMC with complexity 2124.65 and q ≥ 6. The similar procedure attack is applied
to 8 rounds to archieve general QMC, i.e., q ≥ 3, with pout = 2−171.2, which leads
to the complexity 285.6. To extend the CMC attack to q = 3, the same differential
characteristic but reduced further to 7 rounds is used. This leads to a pout = 2−143,
and a valid CMC attack with complexity 2143, as summarized in Table 8.

Model Rounds Active S-boxes Fixed bytes Final Probability Ref.

Saturnin
7 22 11 2−143

Fig. 7
8 24 11 2−171.2

10 30 11 2−249.3

Table 8: Results on Saturnin’ related-key differential paths
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6 Conclusions

In this paper, we proposed the quantum multi-collision distinguishers. Our model
shows differential paths with probability as low as 2−n will be useful in mounting
such attacks, hence resulted in more rounds than both quantum collision attack
and classic multi-collision distinguishers. We applied the attack model to AES-
like ciphers including all three versions of AES, 4 versions of Rijndael, and the
post-quantum block cipher design Saturnin-256. Full attacks are mounted
on AES-192, AES-256, Rijndael-128-160, and Rijndael-128-224. Comparing with
quantum collision attacks, our attack covered one more round on AES-128. Our
attack framework is generic, hence can be applied to more target ciphers. It will
be also interesting to see if such distinguishers can be converted into collision
attacks on block cipher hashing modes or key recovery.
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A Appendix

A.1 The Rijndael key schedule

The key schedule of AES and Rijndael have same construction. Let 4 × N
be the block cipher of 4N -bit key, and K0,K1, . . .KN−1 be the respecting
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columns of the original key. Let R be the number of round keys needed, and
WK0,WK1, . . .WK4R−1 be the columns of expanded key. The expanded key are
found by repeating the algorithm of WKi from i = 0 to 4R − 1 as follow:

WKi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ki i < N
WKi−N ⊕ SW (RW (WKi−1))⊕RCONi/N i ≥ N and i mod N = 0
WKi−N ⊕ SW (WKi−1) i ≥ N,N > 6 and i mod N = 4
WKi−N ⊕WKi−1 otherwise.

where SW and RW are SubWord and RotWord operators acting on 4 bytes
which are defined corresponding

SW ([b0 b1 b2 b3]) = [SB(b0) SB(b1) SB(b2) SB(b3)]

and

RW ([b0 b1 b2 b3]) = [b1 b2 b3 b0]

A.2 The Saturinin key transformation
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Figure 8: The byte orientation and key transformation of Saturnin

A.3 The differential trails of our attacks
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Figure 9: A differential trail for 6-Round AES-128 [48]
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Figure 10: A differential trail for 7-Round AES-128
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Figure 12: A differential trail for 10-Round AES-192 [17]
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Figure 13: A differential trail for 12-Round AES-192
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Figure 14: A differential trail for 10-Round Rijndael-128-160

36



∆IN

KS

k0
AK x

x
x

x
xx
x
x

xxx
x

x0

SB

•
•
•

•
• •
•
••

• • •
y0

SR

x
x

x
x

x x
x

x
xxx

x

z0

MC

w0

Round 0

KS

k1
AK

x1

SB

y1

SR

z1

MC

w1

Round 1

KS

k2
AK

x
x2

SB

y2

SR
x

z2

MC

w2

Round 2

KS

k3
AK

x3

SB

y3

SR

z3

MC

w3

Round 3

KS

k4
AK

x4

SB

y4

SR

z4

MC

w4

Round 4

KS

k5
AK

x5

SB

y5

SR

z5

MC

w5

Round 5

k6
AK

x6 y6

SR

z6

MC

w6

Round 6

KS

k7
AK

x7

SB

y7

SR

z7

MC

w8

Round 7

KS

k8
AK

x8

SB

y8

SR

z8

MC

w7

Round 8

KS

• •
k9

AK

x9

SB

y9

SR

z9

MC

w9

Round 9

k10
AK

x10

SB

y10

SR

z10

∆OUT

Figure 15: A differential trail for 11-Round Rijndael-128-160
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Figure 16: A differential trail for 13-Round Rijndael-128-224
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Figure 17: A differential trail for 11-Round Rijndael-160-192
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Figure 18: A differential trail for 12-Round Rijndael-160-256
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Figure 19: A differential trail for 9-Round Rijndael-128-160
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Figure 20: A differential trail for 11-Round Rijndael-128-224
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