
Bounded Collusion ABE for TMs from IBE

Rishab Goyal∗ Ridwan Syed† Brent Waters‡

Abstract

We give an attribute-based encryption system for Turing Machines that is provably secure assuming
only the existence of identity-based encryption (IBE) for large identity spaces. Currently, IBE is known
to be realizable from most mainstream number theoretic assumptions that imply public key cryptography
including factoring, the search Diffie-Hellman assumption, and the Learning with Errors assumption.

Our core construction provides security against an attacker that makes a single key query for a ma-
chine T before declaring a challenge string w∗ that is associated with the challenge ciphertext. We
build our construction by leveraging a Garbled RAM construction of Gentry, Halevi, Raykova and
Wichs [GHRW14a]; however, to prove security we need to introduce a new notion of security called
iterated simulation security.

We then show how to transform our core construction into one that is secure for an a-priori bounded
number q = q(λ) of key queries that can occur either before or after the challenge ciphertext. We do
this by first showing how one can use a special type of non-committing encryption to transform a system
that is secure only if a single key is chosen before the challenge ciphertext is declared into one where the
single key can be requested either before or after the challenge ciphertext. We give a simple construction
of this non-committing encryption from public key encryption in the Random Oracle Model. Next, one
can apply standard combinatorial techniques to lift from single-key adaptive security to q-key adaptive
security.

1 Introduction

Attribute-based encryption (ABE) [SW05] provides a method for encrypting data which allows for sharing
at a much finer-grained level than standard public key cryptography. In an ABE system one associates a
ciphertext with an attribute string w when encrypting message m to form a ciphertext ct. A secret key (as
issued by some authority) is associated with a predicate function f . A decryption algorithm using skf on
the ciphertext will be able to return the message m if and only if f(w) = 1.

The initial and many subsequent ABE constructions (e.g. [GPSW06, BSW07]) provided functionality
for when f was a boolean formula or circuit that would operate over a fixed set of attributes. This works
well for the setting when an attribute string could say represent a record that was of a fixed form, however,
would not work as well in a setting where we want the attribute string structure to be less rigid and of
arbitrary length. Initial progress towards resolving such issue was by Waters [Wat12] who provided the first
ABE construction for a uniform model of computation where the attribute string w ∈ {0, 1}∗ could be an
arbitrary length string and f is a Deterministic Finite Automata (DFA). A user in such a setting can decrypt
a ciphertext whenever the DFA f accepts w.

Since then, ABE systems in uniform models of computation have been very well studied, with subsequent
works roughly falling into the following three categories grouped by the hardness assumption.

∗MIT. Email: goyal@utexas.edu. Work done in part while at UT Austin, supported by IBM PhD Fellowship. Research
supported in part by NSF CNS Award #1718161, an IBM-MIT grant, and by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR00112020023. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the United States Government or DARPA.
†University of Texas at Austin.
‡University of Texas at Austin and NTT Research. Email: bwaters@cs.utexas.edu. Supported by NSF CNS-1908611, CNS-
1414082, DARPA SafeWare, Packard Foundation Fellowship, and Simons Investigator Award.

1

• The ABE construction of Waters [Wat12] for DFAs was built from bilinear maps and was collusion
resistant in that it allowed for an unbounded number of private keys to be issued, but was only
selectively secure in that the attacker was required to submit a challenge string w∗ before seeing
the public parameters of the system. Unlike constructions where the length of w is fixed by the
security parameter, there is no known way of generically moving from selective to adaptive security
using complexity leveraging and assuming sub-exponential hardness. Subsequent works [Att14, Att16,
AC17, GWW19, AMY19b, GW20] in the bilinear map setting improved upon the security arguments
in this setting as well as gave “ciphertext-policy” variants of the construction.

• A second cohort of constructions [BCP14, IPS15, KLW15, BCG+18] arise by constructing ABE for
Turing Machines from obfuscation culminating in the work of Ananth and Sahai [AS16] that achieves
functional encryption for Turing Machines from indistinguishability obfuscation with no a-priori bound
on the input size or machine description. We refer the reader to [AS16] for a discussion of the tradeoffs
present in prior works.

• In a third line of work, Agrawal and Singh [AS17] gave a construction of a single-key secure functional
encryption scheme provably secure under the Learning with Errors (LWE) [Reg05] assumption. They
could prove security only when the single private key was requested before the challenge ciphertext.
Additionally, in their model the encryptor had to specify the maximum time t that the Turing Machine
computation is allowed to run for during decryption. The work of Gentry et al. [GHRW14b] also gave
a construction for single-key secure functional encryption for RAM computation from single-key secure
functional encryption for circuits and garbled RAM, but the key generator not only takes the RAM
program as input but the input size and run-time bound as well. Thus, the encryption algorithm could
only encrypt messages of a-priori fixed length.

For unbounded collusions, Boyen and Li [BL15] gave constructions for DFAs from the LWE assumption
and Agrawal, Maitra, and Yamada [AMY19a] did this for NFAs, but in the secret key setting. Ananth,
Fan and Shi [AFS19] give an LWE solution for unbounded collusions in the problem of constructing
ABE for RAM Turing Machines. However, the maximum number of machine steps is given as a
parameter to the setup algorithm and will serve as a bound for the system.

One common thread of the above works is that they all depended upon a specific number theoretic setting.
Even in the case of indistinguishability obfuscation, the best known construction in the recent breakthrough
work [JLS21] relies on a careful combination of multiple specific algebraic assumptions.

Here we pursue a new direction of obtaining Attribute-Based Encryption for uniform computation mod-
els from general assumptions. In particular, we provide solutions that assume Identity-Based Encryption
(IBE) [Sha85, BF01]. We believe IBE is a good platform for this pursuit as it is known under most “main-
stream” number theoretic assumptions that imply public key cryptography such as factoring, search Diffie-
Hellman, and Learning with Errors [BF01, Coc01, GPV08, DG17a].

Our Results In this work we show how to achieve Attribute-Based Encryption for Turing Machines that
is adaptively secure against any attacker that requests at most q = q(λ) private keys where q can be any
polynomial function determined at system setup. Our work is logically broken into two parts.

In the first part we develop our core construction which is an ABE system for Turing Machines secure
against any poly-time attacker that requests a single key before declaring the attribute string w∗ for a
challenge ciphertext. In this system the maximum running time t of the Turing Machine is determined by
the encryption algorithm as in [AS17].

Our approach leverages a garbled RAM construction due to Gentry, Halevi, Raykova, and Wichs (GHRW)
[GHRW14a] which intuitively allows a sequence of t garbled programs to run while maintaining a persistent
database across invocations. We combine this with an IBE system in a spirit motivated by [DG17a, DG17b,
GS17, GHMR18] which allows us to securely evaluate a Turing Machine computation that delivers the
message on decryption only if the machine accepts. One challenge we encounter is that the GHRW definition
of simulation security is defined as distinguishing between a real garbled RAM and a simulated one over the

2

whole computation. However, this notion of simulation is not fine-grained enough for our purposes. Instead
we need to introduce a notion of iterated simulation security where it is hard to distinguish whether the first
i or i+ 1 programs were simulated, and not just indistinguishability of the entire computation. Fortunately,
we were able to show that the existing GHRW construction satisfies this notion of security as well. Since
the GHRW Garbled RAM itself only relies on IBE, the entire security of our construction still depends on
IBE only.

The second part of our work is focused on moving from a single key system that is limited to coming before
the challenge ciphertext to a q-query system that allows for key requests to come at arbitrary times. We
first tackle the question of giving flexibility for when the key query is placed. To do this we introduce a very
relaxed form of non-committing encryption [CFGN96, DN00, KO04] where the non-committing simulation
property must hold when an attacker is given the secret key of a public key encryption system. (But not the
randomness for encryption and key generation as in [CFGN96].) We show that this form of non-committing
encryption is strong enough to transform our single key ABE system into one where the key query can
come before or after the challenge ciphertext. We follow this transformation with another one to allow for q
queries by applying standard combinatorial techniques. To complete the transformation we provide a simple
construction for such a non-committing encryption scheme from public key encryption in the case of bounded
length messages, while for unbounded messages we additionally rely on hash function modeled as a Random
Oracle [BR93].

We want to emphasize that prior to our work, all other ABE systems in uniform computation models
either relied on specific algebraic assumptions, or powerful notions such as succinct function encryption and
program obfuscation. That is, unlike for non-uniform models where we have numerous generic constructions
(e.g., [SS10, GVW12, AV19]) from general assumptions such as public-key encryption, it was believed that
relying on algebraic manipulation or powerful encryption/obfuscation primitives might be necessary for
handling uniform models where the attribute space is not statically fixed. Ours is the first work that dispels
this belief. Thus, we want to highlight that one of our main take-away messages is that the central source
of hardness is only full collusion resistance, and not the underlying model of computation in functional
encryption.

Organization We begin by providing a technical overview of our approach in the next section. Since
our bounded collusion secure ABE system for TM predicates relies extensively on garbled RAM, thus we
start by describing our notations and other standard cryptographic primitives in Section 2, and recalling the
definition of garbled RAM along with the our proposed iterated simulation security definition in Section 3.
In Section 4, we describe our main construction for ABE for TMs via the usage of IBE and garbled RAM.
Later in Appendix A, we describe our relaxed notion of non-committing encryption, a simple construction,
and its usage in the transformation from key-selective secure ABE to standard security. We then follow
this by providing a transformation to go from 1-query security to q-query security in Appendix B. Finally,
in Appendix C, we show that the GHRW garbled RAM scheme [GHRW14a] satisfies the iterated simulation
security that we rely on.

1.1 Technical Overview

The overview is split into two parts where we first describe our core construction from garbled RAM and
identity-based encryption. This construction gives us 1-query secure ABE scheme for TMs where the secret
key query must be made before obtaining the challenge ciphertext. In the second part, we describe how to lift
the security of any ABE scheme for TMs, which guarantees security in this restricted 1-query key-selective
setting, to provide general bounded collusion security via a sequence of generic black-box transformations.
We conclude with some interesting open directions for further investigation.

Core construction: 1-query key-selective ABE for TMs

As highlighted in the previous section, the aspect of ABE systems in a uniform model of computation (such
as Turing Machines in our case) that makes it quite appealing is that it allows an encryptor to specify an

3

a-priori unbounded length attribute during encryption while still enabling a fixed decryption key to work
on all such varying length ciphertexts. From a mechnical perspective, this suggests that ciphertexts for
such computation models should possess a self-reducibility feature. By this we mean that in a structural
sense the ciphertext could be broadly divided into two components — one being reusable, while other
being execution time-step dependent. Here we expect the reusable component to store the current state
of computation during decryption, and the time-step dependent component to self-reduce, i.e. to be used
piece-by-piece (with each piece annotated with an execution time-step) for updating the reusable component
thereby guiding the decryption process to either the plaintext or failure depending on the predicate.

Comparing this mechnical view with that for ABE systems in a non-uniform model of computation, the
stark difference comes up in the implementation of the reusable component which for non-uniform models
could mostly be relegated to the predicate key instead, since each key already fixes an upper bound on the
number of such re-use operations/computation steps. This restriction is very consequential both for the
construction as well as proof purposes. Circumventing such unbounded reusability problems under standard
cryptographic assumptions has been a difficult task so far.

Our approach is to start with the simplest goal which is of security in presence of a single key corruption
where the challenge attribute as well as the TM key queried must be selectively chosen by the attacker.1

Now we already know that the concept of garbled circuits [Yao86] have been tremendously useful in building
bounded collusion secure ABE systems in a non-uniform circuit model (and bounded collusion secure func-
tional encryption more generally) [SS10, GVW12]. A natural question is whether the same could be stated if
we switch to a uniform computation model such as TMs since, despite the strengthening of the computation
model, the targetted encryption primitive still provides only an all-or-nothing style guarantee.

A building block construction. First, note that plugging in TMs as the model of computation in the
mechnical picture described above, we get the reusable ciphertext component to correspond to the tape of
the TM being operated on, while the time-step dependent component is being used to emulate a step-by-step
execution of the TM itself. Next, consider a highly simplified TM model where the number of states as well
as the size of the TM tape are a-priori fixed polynomials, say N and L respectively. (Although this simplified
model no longer resembles our targetted TM model of computation, this will serve as a good starting point
to convey the main idea which we afterwards extend to capture the more general model.) It turns out that
for such a model there is a natural candidate ABE system from just plain public-key encryption and garbled
circuits.

Let us start by sharing our methodology for encrypting a message m under attribute string w with time
bound t.2 At a high level, the idea is to let encryptor create a sequence of t step circuits, where each
step circuit takes as input the entire state of TM (which contains the current state, location of the tape
header, and the entire tape of the TM) and it performs one execution step (that is, applies one transition)
and its output is the entire TM state after this execution step (that is, output state, tape header and full
tape contents). Here the last step circuit simply outputs the encrypted message m if the execution lands in
accepting state. An encryptor then garbles each such step circuit starting from the last one (that is, t-th
step circuit first), and encodes the wire labels for the i-th garbled step circuit in the (i− 1)-th step circuit.
Now each garbled circuit must not output the wire labels in the clear, thus it instead encrypts the labels
corresponding to the TM state for next step circuit under a group of carefully selected PKE public keys.
The idea here is that during setup we sample a pair of PKE public-secret keys for each state transition3,
and a secret key for any TM in this system consists of a sequence of PKE secret keys corresponding to all
the state transition supported by the corresponding TM.

Intuitively, a ciphertext consists of a sequence of t garbled circuits, and a secret key consists of a
polynomial-sized set of PKE secret keys such that to decrypt a ciphertext, one evaluates each garbled
circuit in a sequential order thereby revealing the state of the TM computation after each execution step

1As we later show, such a core encryption scheme with such simple and weak security guarantees could be generically amplified
to better and more general bounded collusion security guarantees.

2Recall that in this work we require the encryptor to provide an upper bound on the running time of the TM.
3Since the number of states is polynomially bounded, thus this is efficient.

4

encrypted under appropriate PKE public keys. An honest decryptor can always recover the relevant garbled
circuit wires along its path of computation, and finally recovers the message if the machine accepts within the
ciphertext specified time bound t. One could also provide security of this construction by a straightforward
sequence of hybrids where the simulator would, instead of computing the garbled circuits honestly, replace
each garbled circuit with a simulated garbled circuit one by one. And, since our assumption was the tape
size and number of states to be polynomially bounded, thus this scheme is efficient (i.e., runs in polynomial
time) as well.

Looking ahead, the above approach serves as a good warm-up construction for our core construction
which does not suffer from the above limitations. Very briefly, we make the following observations. First,
note that the above construction does not exploit the fact that a given step circuit does not need to look at
the entire TM tape, but instead it needs to make changes right next to the location of tape header. Thus,
instead of passing around the entire TM tape to each step circuit, we can maintain a persistent storage
that contains the full TM tape while each step circuit only affects a few particular locations in the storage.
To this end, we replace our usage of garbled circuits with garbled RAMs [LO13] thereby bypassing the
above problem. Second, we assumed that the number of states are a-priori polynomially bounded. This was
mainly needed so to avoid the exponential blow-up due to the exponential state space which we could not
hope to generically encode using only public-key encryption. To solve this issue, we use an identity-based
encryption scheme to provide a succinct mechanism to encode the state transitions without this exponential
blow-up. Similar ideas of encoding exponential size strings succinctly have been used in numerous other
contexts [GKW16, DG17a, GHMR18].

Main construction. Before moving to a more technical description of our scheme, we fix our notation and
interpretation of a TM. This will help in understanding our main construction more clearly. We consider a
TM to be represented by a large set T of state transitions

{
(qin, bin, qout, bout, dir)

}
, where each transition is

associated with an input state qin, the input bit read bin, the output state qout, the bit to written bout, and
the direction dir in which the tape head moves. Also, let each state q be represented as an n-bit string.

As hinted previously, a central component of our construction is the notion of garbled RAMs. Recall
that a RAM program P gets random access to a large memory D (upon which it can perform arbitrary
reads and writes) along with a short input x, and at the end of its computation it produces an output y.
Here we will be interested in multi-program versions of RAM programs where given a sequence of RAM
programs P1, . . . , P` and corresponding short inputs x1, . . . , x`, and an initial memory D, the programs are
run in succession on their respective inputs wherein say program Pi outputs some result yi and updates the
database D which is then used by the next program Pi+1.

Garbled RAMs. The notion of garbled RAMs is a generalization of circuit garbling to RAM programs,
where the memory owner first garbles the memory D generating a pair of garbled database D̃ along with
a garbling key kD. The garbling key kD can then be used to garble any RAM program P with respect to
program index j to produce a garbled program P̃ along with input labels {labi,b}i,b. Here the program index
j is meant to capture the number of programs that have been run (including P).4 For example, to garble
the previously defined sequence of ` RAM programs, when the garbling party runs the program garbling
procedure for program Pj it specifies index j as the program index since it wants Pj to be the j-th RAM
program being evaluated in the sequence. Also, as in the case of circuit garbling, to evaluate a garbled
program P̃ with labels {labi,b}i,b on an input x, the evaluator selects the labels corresponding to bits of

x, i.e. y = EvalD̃(P̃ , {labi,xi
}i) where y is the output of running P on x with memory D. The standard

security property considered in most prior works [LO13, GHRW14a, LO14, GHL+14, GLOS15, GLO15]
is of static (full) simulation security wherein an adversary must not be able to distinguish a sequence of
honestly garbled RAM programs and database from a simulated sequence of programs and database, where
the simulator only knows the corresponding outputs {yi}i of each RAM program (but not the database D,
or any of the individual programs Pi, or their corresponding inputs xi).

4For the purposes of a technical overview, we significantly simplify and relax the notation. Here we consider each program to
be of fixed length, and not take time range among other things as additional inputs. Later in the main body, we define it in
full generality.

5

Core construction: switching from garbled circuits to garbled RAMs. With all the notation set, our
main construction is very simple to follow. The setup of our system simply corresponds to sampling a IBE
master public-secret key pair. (Recall that previously in our simplified building block construction, the setup
was sampling a large number of PKE public-secret key pairs. As we noted then, here we use IBE instead of
do the same more efficiently.) Next, to generate a secret key for a TM represented by a set T of transitions,
the key generator encodes each transition (qin, bin, qout, bout, dir) ∈ T into (n + 2) distinct identities. (The
identity-encodings we employ are the well known bit-decomposition style encodings where one encodes the
output state qout bit-by-bit into n strings of the form (i, qout[i]) ∈ [n] × {0, 1}.) Here n of these IDs jointly
encode the output state qout, while the other two encode the output bit to written bout, and the direction dir
separately.

The encryption algorithm in our core construction follows a similar paradigm to that described in our
building block construction with the only major change being we move to using garbled RAMs instead.
Concretely, to encrypt a message m under an unbounded length attribute string w ∈ {0, 1}∗ with time
bound t, the encryptor first creates an empty memory D of size t + 1.5 It then writes the attribute w on
the RAM memory D, and garbles it to get the corresponding garbled database D̃. (Basically this memory is
used as the tape of the TM embedded in the predicate keys during decryption.) Next, the encryptor creates
a sequence of t RAM programs where the i-th program takes as input the TM state qin, bit to be written
bout, and the direction dir that was output by the previous (i.e., (i − 1)-th) program/TM transition. Given
these inputs, the RAM program writes the bit bout at the current tape header, updates the tape header
location depending on dir, and encrypts the garbled labels for the next (i.e., (i+ 1)-th) RAM program under
appropriate identities. (Note that here we crucially rely on our bit-decomposition style identity-encodings of
the output state while encrypting the next program labels.) Thus, a ciphertext contains t such garbled RAM
programs in which the programs are garbled one-by-one from the last to first since each program contains
labels for the next successive garbled program. Connecting this to original mechnical viewpoint, the garbled
database should be though of as the reusable ciphertext component while the garbled programs as the time-
step dependent components. During decryption, an evaluator simply decrypts the wire labels depending on
the current state of its TM execution and evaluates the garbled programs to recover encryptions of the wire
labels for the next program. Doing this successively, an evaluator recovers the message if its TM accepts the
attribute word within the ciphertext specified time bound.

Security: how to prove it? Although the above simple scheme seems to be secure when an adversary
makes only a single key query and that too before receiving the challenge ciphertext, proving the same seems
a bit challenging. This stems from the fact that a natural proof strategy seems to be incompatible with
the full simulation security guaranteed by the underlying garbled RAM scheme. To better understand this,
first recall that the garbled RAM security property for multi-program version states that no adversary can
distinguish between a sequence of honestly garbled RAM programs (along with half of the honestly computed
corresponding garbled labels) from a sequence of simulated garbled RAM programs (again along with half
of the simulated garbled labels), where the garbled labels provided depend on the input to be feeded to
each RAM program. Next, observe that in our construction, the RAM programs which we garble are not
independent programs but instead each RAM program in our construction directly depends on the garbling
of the next RAM program in the sequence (since the i-th RAM program contains labels for the (i + 1)-th
RAM program). Juxtaposing these two facts, we get that no reduction algorithm in the proof could even
statically define the sequence of RAM programs it wants garbled without interacting with the garbled RAM
challenger.

Thus, this circularity/interdependence prevents a natural proof strategy from working. But it turns out
that the problem is a bit deeper than what one can perceive at this point. That is, suppose we could somehow
make the RAM programs (that we want to garble) fully independent, the problem is that the underlying
sequence of RAM programs that we want to simulate will still be executing the TM step-by-step where
each program reveals the labels for the next garbled program, thus a reduction algorithm can only simulate

5Since the ciphertexts need only be decryptable by keys whose corresponding TMs accept the word within time t, thus the
encryptor only needs to instantiate the database with t bits of memory. To be fully accurate, we actually a little more memory
for storing the TM state which we discuss later in the main body.

6

the garbled programs one at a time, and not all at once. Let us clarify this second issue further by first
suggesting a modification to our current construction to solve the first interdependence problem.

The modification to our construction for solving this interdependence problem is to sample a fresh PRF
keys for eachlabel of the garbled RAM program at the beginning, and instead of letting a RAM program
output encryptions of the labels for the next program, we make each program output encryptions of the
corresponding PRF keys. Once we set the underlying RAM programs this way, we garble them and to
tie them together we encrypt the labels for the (i + 1)-th RAM program under PRF keys hardwired in
the i-th RAM program. Intuitively, this means evaluating the garbled RAM programs an evaluator learns
encryptions of some of the PRF keys which are then used to recover the garbled labels outside of this garbled
RAM structure.

Getting back to proving security, the problem we still encounter is that as a reduction algorithm it is
unclear on how to simulate all the garbled RAM programs at once, since for simulation the reduction needs
to able to generate the ciphertext given only half of the wire labels, but those wire labels are encrypted under
PRF keys which are hardwired inside each RAM program. Therefore, for a proof to go through a reduction
algorithm needs to first remove information about half of garbled labels from the ciphertexts for which it
needs to remove the information about half of the corresponding PRF keys which means the reduction must
be able to simulate the garbled programs instead which is what we were trying to do in the first place.
This circularity stems from the fact that the garbled RAM full simulation security only guarantees security
when all the garbled programs are being simulated at the same time, instead of being partially/sequentially
simulated.

Strengthening garbled RAM security. To fix the above problem we introduce a stronger security
notion for garbled RAMs which we call iterated simulation security.6 To us, it seems a more natural notion
of security for multi-program garbled RAM versions, and also captures the kind of garbled RAM security
we need for our proof to go through. We describe it in detail later in Section 3, but very briefly it states
that there exists an efficient simulator such that for any sequence of ` programs and inputs, it is hard
to distinguish between simulations of the first i programs and inputs along with honest garblings of the
remaining `− i programs from simulations of the first i+ 1 programs and inputs along with honest garblings
of the remaining `− i− 1 programs. That is, partial executions of the multi-program garbled RAMs are also
simulatable.

Plugging in the strengthened garbled RAM security property, we are able to prove security of our ABE
scheme by organizing an iterated hardwiring-style proof strategy where we start by simulating the first
garbled program, then remove the information about labels for the next program by relying on PRF security
(and the fact that only half of the PRF keys are needed to simulate the first garbled program), and keep
on interleaving garbled RAM security with PRF security to eventually remove the plaintext information
whenever the underlying TM does not accept the attribute word.

In order to complete the proof, we need to construct such a garbled RAM scheme that achieves our
notion of iterated simulation security. Fortunately, we were able to show that most existing garbled RAM
schemes already are secure under this partial simulation framework. Later in Appendix C, we show that the
IBE-based garbled RAM construction in [GHRW14a] is an iterated simulation secure garbled RAM scheme.
Although we believe that garbled RAM construction of Garg et al. [GLOS15] from one-way functions can
also be proven to be secure in this iterated simulation framework, since our ABE construction already relies
on IBE thus we chose to provide a proof of iterated simulation security for the simpler IBE-based scheme of
Gentry et al. [GHRW14a].

Lifting the core construction to q-query adaptive security

After a closer look at the proof overview provided for our core construction, the reason behind our con-
struction only enabling a proof in key-selective model (that is, where the key query must be made before

6Although prior works [LO13, GHRW14a, LO14, GHL+14, GHRW14b, GLOS15, GLO15, KLW15, BCG+18] have studied other
adaptive and reusable variants of garbled RAM security notions, our notion of iterated simulation security has not yet been
explicitly studied previously to the best of our knowledge.

7

receiving the challenge ciphertext) becomes apparent. Very briefly, the bottleneck is that the reduction algo-
rithm needs to know the current state of partial TM execution while embedding the challenge ciphertext with
partially simulated components. Thus, the reduction must know the TM of the key query before creating
the challenge ciphertext.

Now instead of modifying our core construction to resolve this bottleneck, we instead observe that if
the adversary gets to corrupt at most one key, then we could generically amplify key-selective security in a
black-box manner to adaptive security. The only tool needed for such an amplification is a relaxed notion of
non-committing encryption (NCE) [CFGN96, DN00, KO04] which we call weak non-committing encryption
(wNCE). In a wNCE system, there is an efficient simulator that could “open” the ciphertext to any message
by providing a simulated secret key after already committing to the public key in the beginning. For security,
it is only required that the distribution of simulated keys and ciphertext is computationally indistinguishable
from the distribution generated by the real encryption protocol.7

Given such a weak NCE scheme, the idea is pretty straightforward. During setup, we would additionally
sample a wNCE key pair, and encryption algorithm will be a simple double encryption where each (key-
selective secure) ABE ciphertext will be encrypted under the wNCE system. Each predicate key now contains
the wNCE secret key as well as the underlying ABE key, where during decryption, the decryptor first decrypts
the outer wNCE ciphertext to learn the core ABE ciphertext which it then decrypts using the core ABE
key. Now the adaptive security of this transformed scheme follows directly from wNCE simulation security
and the key-selective ABE security. The idea there is that the challenge ciphertext will be computed as a
simulated wNCE ciphertext instead, and when the adversary makes the post-challenge key query, then the
reduction algorithm opens the wNCE ciphertext to the challenge ciphertext provided by the key-selective
security ABE challenger, and answers the adversary’s key query with a simulated wNCE secret key along
with the core ABE key provided by the ABE challenger. Similar ideas were also used in [GVW12] in the
context of simulation secure functional encryption.

Since there is a very simple construction for a weak NCE scheme from regular public key encryption, this
seems to suggest that any 1-query key-selective secure ABE scheme could be generically lifted to achieve
1-query adaptive security instead, however there is an important caveat. The caveat is that this weak NCE
construction from PKE has public-secret keys whose sizes grow linearly with length of the messages. Recall
that in our generical transformation we encrypt the key-selective ABE ciphertext using the wNCE scheme.
If the size of key-selective ABE ciphertext is fixed at setup time, then the transformation goes through as is,
but this is not true for ABE in uniform models of computation where the whole motivation is being able to
encrypt messages under unrestricted length attributes, thus the ciphertext sizes are a-priori unbounded. This
implies that for the above transformation to work in the case of ABE for TMs we need a succinct weak NCE,
where by succinct we mean that the system supports encryption of unbounded length messages. To this end,
we show another generic transformation that takes any non-succinct weak NCE scheme and compiles it into
a succinct NCE scheme albeit in the Random Oracel Model (ROM) [BR93]. Very briefly, the idea here is use
the ROM as an adaptive programmable PRF to indistinguishably open simulated ciphertexts to arbitrary
messages. During encryption, an encryptor chooses a random λ-bit string K which it encrypts under the
non-succinct NCE scheme, and then encrypts the unbounded length message block-by-block using K as a
secret key and ROM as a PRF. The simulatability of this scheme follows directly from the simulatability of
the non-succinct scheme and programmability of the ROM. This is discussed in detail later in Appendix A.
We want to point out that building a succinct weak NCE scheme as described above is impossible in the
standard model [Nie02], thus adaptive security of our construction crucially relies on the usage of ROM.

Combining the above ideas, we obtain a 1-query adaptively secure ABE scheme for TMs. To conclude,
we show that by using standard combinatorial techniques, the security could be improved to q-query adap-
tive security for any a-priori fixed polynomial q(·). Since we are dealing with just an ABE scheme, thus
this transformation is much simpler than for other related transformations such as the one for functional
encryption in [GVW12]. For completeness, we provide it in Appendix B.

7In regular notions of non-committing encryption, the simulator must also be able to indistinguishably explain the ciphertexts
by providing encryption randomness too. We do not require that, thus regard our notion as a weak NCE system.

8

Related work, other suggested approaches, and future directions

Comparison with Agrawal-Singh [AS17]. Closest to us is the work of Agrawal-Singh [AS17] who construct
a 1-query functional encryption scheme for Turing Machines where, like our ABE system, the encryption
algorithm depends on the worst case running time of the TM. Ours and their construction share the same
mechnical perspective of traversing through a sequence of garbled circuits for encrypting unbounded length
inputs, however differ in overall execution since they rely on a succinct single-key FE scheme with the TM
evaluation happening under the FE hood, whereas we work with more general primitives such as IBE and
garbled RAM thereby our TM evaluation happens on encrypted pieces that come out as outputs of garbled
RAM evaluations. The usage of a succinct single-key FE scheme has the benefit of the resulting encryption
scheme being a FE scheme with short keys (and not just an ABE scheme like ours), but given the current
state-of-the-art [GKP+13] it also means relying on the LWE assumption, while we rely on much weaker
primitives thus are not tethered to the LWE assumption. Like our core key-selective secure ABE scheme,
they also prove security in the weaker model where there is a single-key query which must be made before
receiving the challenge ciphertext. Although they do not provide any follow-up transformations to improve
security like us, we believe our non-committing encryption idea could also be used with their FE construction.
However, extending to q-query bounded collusion security would be more tricky than our case, but might be
possible to adapt a more elaborate transformation along the lines of [GVW12].

ABE via laconic OT. Cho et al. [CDG+17] introduced the concept of laconic transfer for secure com-
putation over large inputs. They described an application of laconic OT to non-interactively compute in
the RAM setting. Although this application does not directly lead to ABE schemes that supports (RAM)
Turing Machine computation, it might be possible to repurpose the underlying ideas to build ABE by going
through laconic OT along with garbling techniques. One would need to be careful in executing this idea so
that the description size of the Turing Machine does not need to be a-priori bounded at setup time, and this
might require adjusting the definition of the corresponding primitives. Additionally, such an approach would
need one to rely on laconic OT whereas we chose to focus on IBE since it is both supported by multiple
number theoretic assumptions as well as there are multiple number theoretic IBE constructions that do not
themselves invoke garbling and thus avoid a double layer of garbling in the eventual construction. There
have been prior works [DG17b, KNTY19] which observe that laconic OT could be replaced by IBE in certain
applications, and it would be interesting to look at whether same could be done for this alternate approach.
In our work, we provide a much direct construction directly from any regular IBE scheme.

Future directions. In this work we focus on proving standard semantic security of our ABE scheme,
but we believe one could extend it to CCA security by either relying on the ROM, or on other generic
transformations such as [KW19a], and prove it to be a 1-sided predicate encryption scheme directly without
relying on generic transformations [GKW17, WZ17]. An interesting open question is whether one could
extend our current approach to either achieve succinctness similar to [AS17], or extend it to FE without
relying on stronger assumptions. Another related question is whether we could avoid the ROM for amplifying
the security of our core ABE scheme from key-selective to fully adaptive. It might be useful look at the graph
pebbling techniques [FKPR14, FJP15, JW16, JKK+17, KW19b] to develop a more intricate hybrid structure
for proving adaptive security directly. Another interesting thought might be to rely on adaptive security of
garbled RAM schemes [GOS18] instead, however it is unclear how to leverage having an adaptive garbled
RAM in our setting. Briefly, the reason is that the extra adaptivity it provides is useful in cryptosystems
where an attacker is able to see some of the garbled RAM programs and then somehow influence the inputs
or programs for the rest of them; while in our case all the garbling program calls are bundled together in a
single call to the encryption oracle. Lastly, another important question is whether these techniques could be
used to build ABE systems for TMs where the encryption algorithm no longer depends on the worst case
running of the TM.

9

2 Preliminaries

Notations For any distribution D, we write x ← D to denote that x is sampled from D. For any set S,
we write y ← S to denote that y is sampled from the uniform distribution on the S. For any randomized
algorithm A(·), we write y ← A(x) to denote that y is chosen as the output of A when run on input x. For
positive integers m,n satisfying m ≤ n, we write [m,n] to denote the set {m,m+ 1,m+ 2, . . . , n}. We write,
[n] as shorthand to denote the set [1, n]. For any set S, we write |S| to denote its cardinality. For any string
x, we write |x| to denote its length. For any string x (or other ordered set), we write x[i] to denote the ith

element of x. We use λ throughout for the security parameter in all algorithms.

Turing Machine Formalism A Turing Machine T is represented as a tuple

T = (Q,Σ, qstart, F, δ)

where, Q is a finite set of states, Σ is a finite tape alphabet, qstart ∈ Q is a unique starting state, F ⊂ Q is a
set of accepting states, and δ : Q× Σ→ Q× Σ× {L,R} is a transition relation8.

Without loss of generality, we will restrict to Turing Machines operating on a single tape, with state set
Q = {0, 1}n for some n, and Σ = {0, 1}. At the start of the computation, we say the machine is in state
qstart. The input w ∈ Σ∗ is written on the tape, and the machine head is scanning the leftmost symbol of
w. All remaining cells are blank. Computation then proceeds in discrete time steps where at each step,
the machine is initially in some state qin ∈ Q and is scanning a cell containing bit bin ∈ Σ. It proceeds by
applying the transition relation. If δ(qin, bin) is defined and

δ(qin, bin) = (qout, bout, dir)

the machine updates its state to qout, overwrites the cell it is currently scanning with bout, and then moves
the head by one cell in the direction dir. We call one such application, a transition. The machine proceeds
in this way until it either enters an accepting state q ∈ F in which case we say T accepts w, or it enters a
state q ∈ Q \F and is scanning a bit b for which δ(q, b) is undefined. For a positive integer t, if T accepts w
after performing at most t transitions, we say T accepts w within t steps. We write |T | to denote the size of
T and in particular the number of transitions defined under δ i.e. |T | = |{(q, b) : δ(q, b) is defined}|.

RAM Program Formalism We describe the notion of RAM Programs following the notions of [GHRW14a].
A RAM program P takes a small input x, has random access to a large memory database D upon which it
can perform arbitrary reads and writes, performs a sequence of computational steps during a time interval
[tinit, tfin], and at the end of its computation produces an output y. More concretely, the program P is rep-
resented as a sequence of t step circuits which we denote by CPRAM . Each of the step circuits performs one
of the computational steps of P . Each circuit takes as input a small state state as well as the most recently
read bit bread from the database D. It outputs an updated state state′ along with the next read and write
instructions to be executed. More formally we write the circuit CPRAM computing the function:

CPRAM(state, bread) = (state′, iread, iwrite, bwrite)

where iread, iwrite, bwrite are the next location in D to read from, the next location in D to write to, and
the next bit to write respectively. Throughout, we will use the notation CP

RAMj for the step circuit which
represents the computational step performed by program P at time step j.

Computation of program P with input x on database D begins with the initial step circuit CPRAMtinit
being

evaluated with x as the state input and an arbitrary read input bread which by convention we assume the
initial circuit ignores. The circuit outputs state′, iread, iwrite, bwrite. The database is overwritten at location
iwrite with bit bwrite, and then the next read bit b̃read is read from location iread. Then, the subsequent step
circuit CP

RAMtinit+1 is evaluated with inputs (state′, b̃read). Computation proceeds in this way, with the updated

state output by CP
RAMj being fed as the state input to CP

RAMj+1 , the write location output by CP
RAMj being

8Here we write {L,R} to denote the set of directions left and right.

10

overwritten with the write bit output by CP
RAMj , and the bit read at the read location output by CP

RAMj being

fed as the read bit input to CP
RAMj+1 . Finally, the updated state output by the final step circuit CP

RAMtfin
is

taken to be the output y of the computation. By convention, we assume that the final step circuit does not
produce any further writes. We also assume without loss of generality that all step circuits of P are of equal
size, take the same size input, and produce the same size output.

We allow for multiple programs Pk to be run on database D in sequence, with writes made by each program
persisting for the subsequent program. For each program Pk, we define its memory access pattern accessk
to be the sequence of reads and writes Pk makes to D throughout its computation. More formally we write

accessk = {(iread
j , iwrite

j , bwrite
j)}j∈[tinit,k,tfin,k]

where iread
j , iwrite

j , bwrite
j are respectively the read location, write location, and write bit output by the step

circuit CPk

RAMj for time j.

We use the notation y ← P (x)D to denote that program P operating on database D with input x outputs
y. For multiple programs and inputs, we write (y1, . . . , y`) ← (P1(x1), . . . , P`(x`))

D to denote that for all
k ∈ `, yk is the result of running Pk with input xk on database D after running programs Pk′ on input xk′

in sequence on D for all k′ < k with changes made to D persisting across program executions.

2.1 Attribute-Based Encryption for Turing Machines

An Attribute-Based Encryption (ABE) scheme ABE for set of attribute space {0, 1}∗, Turing Machines
classes T = {Tλ}λ∈N, and message spaces M = {Mλ}λ∈N consists of four polynomial time algorithms
(Setup,KeyGen,Enc,Dec) with the following syntax:

Setup(1λ)→ (pp,msk). The setup algorithm takes as input the security parameter λ. It outputs the public
parameters pp and the master secret key msk.

KeyGen(msk, T)→ skT . The key generation algorithm takes as input the master secret key msk and a Turing
Machine T ∈ Tλ. It outputs a secret key skT .

Enc(pp,m, (w, t))→ ct. The encryption algorithm takes as input the public parameters pp, a message m ∈
Mλ, and a pair (w, t) consisting of an attribute w ∈ {0, 1}∗, and a positive integer time bound t. It
outputs a ciphertext ct.

Dec(skT , ct)→ m/⊥. The decryption algorithm takes as input a secret key skT and a ciphertext ct. It
outputs either a message m ∈Mλ or a special symbol ⊥.

Correctness. We say an ABE scheme ABE = (Setup,KeyGen,Enc,Dec) satisfies correctness if for all λ ∈ N,
(pp,msk)← Setup(1λ), T ∈ Tλ, m ∈Mλ, skT ← KeyGen(msk, T), t ∈ N, and w ∈ {0, 1}∗ for which T accepts
w within t steps, and ct← Enc(pp,m, (w, t)) we have that Dec(skT , ct) = m.

Efficiency. We require that the algorithm Setup(1λ) runs in time polynomial in the security parameter
λ. We require that the algorithm KeyGen(msk, T) runs in time polynomial in the security parameter λ and
the size |T | of T . We require that the algorithm Enc(pp,m, (w, t)) runs in time polynomial in the security
parameter λ, the length |m| of the message m, the length |w| of the attribute w, and the time bound t. We
require that the algorithm Dec(skT , ct) runs in time polynomial in the security parameter λ and the size |ct|
of the ciphertext ct.

Security. Next, we define the security notions we consider for ABE systems.

11

Definition 2.1 (adaptive security). We say an ABE scheme ABE = (Setup,KeyGen,Enc,Dec) is fully secure
if for any PPT adversary A = (A0,A1) there exists a negligible function negl(·), such that for all λ ∈ N the
following holds

Pr

AKeyGen(msk,·)
1 (st, ct) = β :

(pp,msk)← Setup(1λ); β ← {0, 1}
(st,m0,m1, (w, 1

t))← AKeyGen(msk,·)
0 (pp, 1λ)

ct← Enc(pp,mβ , (w, t))

 ≤ 1

2
+ negl(λ),

where all Turing Machines T queried by A do not accept the word w within t steps.

In this work, we focus on bounded collusion security for ABE systems where the adversary is restricted
to make an a-priori bounded number of key generation queries, say at most Q queries (for some polynomially
bounded function Q(λ)). The definition is given below.

Definition 2.2 (Q-query adaptive security). An ABE scheme is said to be Q-query adaptively secure if in
the above security game (see Definition 2.1), the adversary can make at most Q queries to the key generation
oracle.

We also define the weaker notion which we call key-selective security, where the adversary to must make
all key queries before it is given the challenge ciphertext. The definition is given below.

Definition 2.3 (Q-query key-selective security). An ABE scheme is said to be Q-query key-selective secure
if in the above security game (see Definition 2.1), the adversary can make at most Q queries to the key
generation oracle, and all key queries must be made before getting the challenge ciphertext.

2.2 Secret Key Encryption

A secret key encryption system SKE for message spaces M = {Mλ}λ∈N consists of three polynomial time
randomized algorithms (Setup,Enc,Dec) with the following syntax:

Setup(1λ)→ K. The setup algorithm takes as input the security parameter λ. It outputs the secret key K.

Enc(K,m)→ ct. The encryption algorithm takes as input a secret key K and a message m ∈Mλ. It outputs
a ciphertext ct.

Dec(K, ct)→ m. The decryption algorithm takes as input a secret key K and a ciphertext ct. It outputs a
message m ∈Mλ

Correctness. We say a secret key encryption scheme SKE = (Setup,Enc,Dec) satisfies correctness if for all
λ ∈ N, K← Setup(1λ), m ∈Mλ, and ct← Enc(K,m), we have that Dec(K, ct) = m.

Definition 2.4. We say a secret key encryption scheme SKE = (Setup,Enc,Dec) is secure if for any PPT
adversary A = (A0,A1) there exists a negligible function negl(·), such that for all λ ∈ N, the following holds

Pr

AEnc(K,·)
1 (st, ct) = β :

K← Setup(1λ); β ← {0, 1}
(st,m0,m1)← AEnc(K,·)

0 (1λ)
ct← Enc(K,mβ)

 ≤ 1

2
+ negl(λ),

2.3 Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme IBE for set of identity spaces I = {Iλ}λ∈N and message spaces
M = {Mλ}λ∈N consists of four polynomial time algorithms (Setup,KeyGen,Enc,Dec) with the following
syntax:

Setup(1λ)→ (pp,msk). The setup algorithm takes as input the security parameter λ. It outputs the public
parameters pp and the master secret key msk.

12

KeyGen(msk, id)→ skid. The key generation algorithm takes as input the master secret key msk and an
identity id ∈ Iλ. It outputs a secret key skid.

Enc(pp,m, id)→ ct. The encryption algorithm takes as input the public parameters pp, a message m ∈Mλ,
and an identity id ∈ Iλ. It outputs a ciphertext ct.

Dec(skid, ct)→ m/⊥. The decryption algorithm takes as input a secret key skid and a ciphertext ct. It
outputs either a message m ∈Mλ or a special symbol ⊥.

Correctness. We say an IBE scheme IBE = (Setup,KeyGen,Enc,Dec) satisfies correctness if for all λ ∈ N,
(pp,msk) ← Setup(1λ), id ∈ Iλ, m ∈ Mλ, skid ← KeyGen(msk, id), and ct ← Enc(pp,m, id), we have that
Dec(skid, ct) = m.

Definition 2.5. We say an IBE scheme IBE = (Setup,KeyGen,Enc,Dec) is secure if for any PPT adversary
A = (A0,A1) there exists a negligible function negl(·), such that for all λ ∈ N, the following holds

Pr

AKeyGen(msk,·)
1 (st, ct) = β :

(pp,msk)← Setup(1λ); β ← {0, 1}
(st,m0,m1, id)← AKeyGen(msk,·)

0 (1λ, pp)
ct← Enc(pp,mβ , id)

 ≤ 1

2
+ negl(λ),

where all id′ queried by A satisfy id 6= id′.

In our main construction of ABE for Turing Machines, we will make use of the following modified security
definition, where the challenge may consist of some polynomial number of message pairs.

Definition 2.6 (multi-challenge security). We say an IBE scheme satisfies multi-challenge security if the ad-
versary can not distinguish with non-negligible probability even when it receives polynomially many challenge

ciphertexts on polynomially many message-identity tuples of the form {(m(i)
0 ,m

(i)
1 , idi)}i∈[k].

It follows by a simple hybrid argument that any scheme IBE which is fully secure for a single challenge
message pair, also satisfies multi-challenge security described above.

3 Garbled RAM with Iterated Simulation Security

In this section we define a notion of Garbled RAM security which abstracts out properties of Garbled RAM
constructions in previous works which we will use in our construction of ABE. At a high level, our security
notion, which we call Iterated Simulation Security requires that there exists an efficient simulator such that
for any sequence of ` programs and inputs, it is hard to distinguish simulations of the first k programs
and inputs along with honest garblings of the remaining `− k programs from simulations of the first k + 1
programs and inputs along with honest garblings of the remaining `−k−1 programs. Our security definition
will actually be a notion of security with Unprotected Memory Access (UMA), that is security in which the
garbling may leak the contents of the garbled database D, and the memory access patterns accessj of the
programs. We drop the label UMA in the subsequent to reduce clutter.

A Garbled RAM scheme GRAM consists of three polynomial time algorithms (GData,GProg,Eval) with
the following syntax:

GData(1λ, D)→ (D̃, kD). The data garbling algorithm takes as input the security parameter λ and a database

D ∈ {0, 1}m. It outputs a garbled database D̃ and program garbling key kD.

GProg(1λ, kD,m, P, 1
n, (tinit, tfin))→ (P̃ , {labin

i,b}i∈[n],b∈{0,1}). The program garbling algorithm takes as input
the security parameter λ, a program garbling key kD, a database size m, a program P which operates on
a database of size m and takes an input of length n, and time range given as a pair of an initial time tinit

and final time tfin. It outputs a garbled program P̃ and a collection of input labels {labin
i,b}i∈[n],b∈{0,1}.

13

EvalD̃(P̃ , {labin
i }i∈[n])→ ỹ. The evaluation algorithm takes as input a garbled database D̃, a garbled program

P̃ , and a collection of n labels {labin
i }i∈[n]. It outputs a value ỹ. As in [GHRW14a], we will think of the

evaluation algorithm as a RAM program operating on database D̃ which is able to perform arbitrary
reads and writes on D̃. We slightly abuse notation, and will write

EvalD̃((P̃1, {labin,1
i }i∈[n1]), ..., (P̃`, {labin,`

i }i∈[n`]))→ (ỹ1, . . . , ỹ`)

to denote that for all j ∈ `, ỹj is the result of the evaluation algorithm on garbled program P̃j with

labels {labin,j
i }i∈[nj] on garbled database D̃ after running the evaluation algorithm on garbled programs

P̃j′ with labels {labin,j′

i }i∈[nj′]
in sequence on D̃ for all j′ < j with changes made to D̃ persisting across

evaluations.

Correctness. Fix parameters λ, `,m ∈ N, a database D ∈ {0, 1}m, and programs and inputs {(Pj , xj ∈
{0, 1}nj , nj , tinit,j , tfin,j)}j∈[`]. Let

(y1, . . . , y`)← (P1(x1), . . . , P`(x`))
D

be the result of sequentially running the programs Pj on inputs xj operating on persistent database D. We
say a garbled RAM scheme GRAM = (GData,GProg,Eval) satisfies correctness, if for all j ∈ [`] the following
holds

Pr

ỹj = yj :

(D̃, kD)← GData(1λ, D)

∀j ∈ [`], (P̃j , {labin,j
i,b }i∈[nj],b∈{0,1})← GProg(1λ, kD,m, Pj , 1

nj , (tinit,j , tfin,j))

(ỹ1, . . . , ỹ`)← EvalD̃((P̃1, {labin,j
i,xj [i]}i∈[nj]), . . . , (P̃1, {labin,j

i,xj [i]}i∈[nj]))

 = 1.

Definition 3.1 (iterated simulation security). We say a garbled RAM scheme GRAM = (GData,GProg,
Eval) satisfies iterated simulation security if there exists a polynomial time simulator Sim such that for any
PPT adversary A = (A0,A1) there exists a negligible function negl(·), such that for all λ ∈ N, the following
holds

Pr

A1(st, chal) = β :

β ← {0, 1}
(st, k,D, {(Pj , xj , nj , (tinit,j , tfin,j))}j∈[`])← A0(1λ)

chal← Expλk−β(D, {(Pj , xj , nj , (tinit,j , tfin,j))}j∈[`])

 ≤ 1

2
+ negl(λ),

where for 0 ≤ k ≤ `, the output of Expλk(D, {(Pj , xj , nj , (tinit,j , tfin,j))}j∈[`]) is defined
(
D̃, {(P̃j , {labin,j

i }i)}j∈[k],

{(P̃j , {labin,j
i,b }i,b)}j∈[k+1,`]

)
:

(D̃, kD)← GData(1λ, D)

∀j > k, (P̃j , {labin,j
i,b }i∈[nj],b∈{0,1})

← GProg(1λ, kD, |D|, Pj , 1nj , (tinit,j , tfin,j))

∀j ≤ k, (P̃j , {labin,j
i }i∈[nj],b∈{0,1})
← Sim(kD, 1

nj , |Pj |, yj , accessj , (tinit,j , tfin,j))

where for all j, |Pj | is the size of the program Pj , yj is the result of running Pj with input xj on the database
D after having run the previous j − 1 programs and inputs, and accessj is the memory access pattern of Pj .

Note, that all the inputs to Sim(·), can be computed from the inputs to Expλk .

Remark 3.2. As a point of comparison with the simulation security notions considered in prior works such
as [GHRW14a], we would want to highlight that in prior works the simulator always outputs a fully simulated
execution of the garbled RAM which must be indistinguishable from honestly garbled programs. We, on the
other hand, consider indistinguishability in between these partial execution steps.

Efficiency. We require that the algorithm GData(1λ, D) runs in time polynomial in the security parameter
λ and the size |D| of the database D. We require that the algorithms GProg(1λ, kD,m, P, 1

n, (tinit, tfin)) and

EvalD̃(P̃ , {labin
i }i∈[n]) both run in time polynomial in the security parameter λ, log(m) where m is the size

of D, the size |P | of P , the size n of the input taken by P , and the total number of steps (tfin − tinit) taken
by P .

14

4 ABE for Turing Machines

In this section we give our main construction of an ABE scheme for Turing Machines. The scheme will be
for message spaces M = {{0, 1}λ}λ∈N.

The primitives used by our construction are as follows. Let GRAM = (GData, GProg, Eval) be a garbled
RAM scheme satisfying Iterated Simulation Security. In addition, let IBE be a secure IBE scheme which
can encrypt messages of length λ, and assume there is some polynomial n(·) for which the identity space
of IBE includes identities of length n′(λ) := n(λ) + dlog(n + 2)e + 2. In the subsequent discussion we
will simply write n as shorthand for n(λ). Our scheme additionally uses a secret key encryption scheme
SKE = (SKE.Setup,SKE.Enc,SKE.Dec). For simplicity of exposition, we assume (w.l.o.g.) that the IBE
encryption algorithm takes as input λ-bits of randomness.

In our scheme, we will allow secret key queries for deterministic Turing Machines T = (Q,Σ, qstart, F, δ)
with the following restrictions. We assume:

• All machines have state space Q ⊂ {0, 1}n.

• The alphabet Σ is binary. That is Σ = {0, 1}.

• The all 0 state 0n is reserved as the unique start state qstart for all machines.

• The all 1 state 1n is reserved as the unique accept state qaccept ∈ F .

• The transition relation δ is a partial function. In particular, all machines are deterministic.

The above assumptions are essentially without loss of generality for deterministic Turing Machines. In
particular, any deterministic Turing Machine with constant size alphabet and a polynomial number of states
can be transformed in to a machine satisfying these assumptions with at most polynomial blowup. We will
identify each machine T with the set of possible transitions it can make under δ:

T = {(qin, bin, qout, bout, dir) : δ(qin, bin) = (qout, bout, dir)}

Thus, the notation |T |, will simply be the cardinality of the right hand side of the above.
The secret keys of our scheme will be carefully chosen sets of identity secret keys from the IBE scheme

IBE. In particular, each identity secret key will be for an identity id ∈ {0, 1}n+dlog(n)e+2.

4.1 Construction

We now formally describe the construction of our ABE scheme, ABE = (Setup,KeyGen,Enc,Dec).

Setup(1λ)→ (pp,msk). The setup algorithm chooses (pp,msk)← IBE.Setup(1λ), and outputs (pp,msk).

KeyGen(msk, T)→ skT . Let the Turing machine T be given as the set of possible transitions it can make
under its transition relation δ:

T = {(qin, bin, qout, bout, dir) : δ(qin, bin) = (qout, bout, dir)}

For each transition (qin, bin, qout, bout, dir) ∈ T the key generation algorithm samples n+2 identity secret
keys. Let IDT be the set of (n+ 2) · |T | identities described below:

IDT =

(qin, bin, i, β) ∈ {0, 1}n
′

: (qin, bin, qout, bout, dir) ∈ T ∧

 (i ∈ [n] ∧ β = qout[i]) ∨
(i = n+ 1 ∧ β = bout) ∨

(i = n+ 2 ∧ β = bdir)

 (1)

where in the above bdir = 0 if dir = L and bdir = 1 if dir = R.

15

Next, the key generation algorithm samples an IBE secret key for each identity in IDT . Concretely, it
chooses

∀ (qin, bin, i, β) ∈ IDT , sk(qin,bin,i,β) ← IBE.KeyGen(msk, (qin, bin, i, β)).

Finally, the key generation algorithm sets the key to be the machine description T and the entire set
of identity secret keys it chose:

skT =
(
T,
{
sk(qin,bin,i,β)

}
(qin,bin,i,β)∈IDT

)
.

Enc(pp,m, (w, t))→ ct. The encryption algorithm garbles a database D along with several copies of a step
program P . We formally describe the RAM program P in Fig. 1 before moving on to the encryption
algorithm.

The step program P [pp, {Ki,b}(i,b)∈[n+2]×{0,1},m, j; {ri,b}(i,b)∈[n+2]×{0,1}](q
in, bout, bdir)

The program P operates on a database D of size t+ 1 + dlog(t+ 1)e. For convenience, we will
think of the database as a length t + 1 array D′ concatenated with an integer index idx ∈ [t + 1]
i.e D := D′||idx. The program P has hard-coded the public parameters pp of an instance of IBE,
a set of SKE secret keys {Ki,b}(i,b)∈[n+2]×{0,1}, a message m, an integer j ∈ [t + 1], and a set of
randomness strings {ri,b}(i,b)∈[n+2]×{0,1}. It takes as input an n-bit state q, a bit bout, and a bit

bdir.

1. If j > 1, the program reads the index idx, and then it overwrites the idx-th bit of D′ with
bout i.e. it sets D′[idx] := bout. Otherwise if j = 1, the program ignores the input bout.

2. If j > 1, idx > 1, and bdir = 0, the program overwrites idx with idx − 1. Else if j > 1,
idx = 1, and bdir = 0, for each i ∈ [n+ 2] and b ∈ {0, 1}, the program re-sets Ki,b := 0. (This
instruction is to prevent decryption if the tape head tries to move left off of the tape.) Else,
if j > 1 and bdir = 1, the program overwrites idx with idx + 1. Else, if j = 1, the program
ignores the input bdir.

3. The program reads the bit bin := D′[idx] at the updated idx. For each pair (i, b) ∈ [n+ 2]×
{0, 1}, the program computes

cti,b := IBE.Enc(pp,Ki,b, (q
in, bin, i, b); ri,b).

4. Finally, if qin = accept, the program outputs ({cti,b}(i,b)∈[n+2]×{0,1},m). Otherwise it outputs
({cti,b}(i,b)∈[n+2]×{0,1},⊥).

Figure 1: The step program P.

The encryption algorithm proceeds as follows.

1. The encryption algorithm sets a database D ∈ {0, 1}t+1+dlog(t+1)e. It sets the first |w| bits of D
to match w, and sets the remaining bits to 0. More formally,

D := w||0t+1+dlog(t+1)e−|w|

where || denotes concatenation. The algorithm next garbles the database (D̃, kD)← GData(1λ, D).

2. For each (i, b, j) ∈ [n+ 2]×{0, 1}× [t+ 1], the algorithm samples randomness r
(j)
i,b and SKE secret

keys K
(j)
i,b as r

(j)
i,b ← {0, 1}λ,K

(j)
i,b ← SKE.Setup(1λ).

16

3. Let P be the RAM program described as described in Fig. 1. For each j ∈ [t+ 1], the algorithm

sets Pj as Pj := P [pp, {K(j)
i,b }i,b,m, j; {r

(j)
i,b }i,b].

4. Let ` be the number of steps P takes to run on a database of length |D|. For each j ∈ [t+ 1], the
algorithm garbles the program Pj , computing

(P̃j , {labin,j
i,b }i,b)← GProg(1λ, kD, t+ 1 + dlog(t+ 1)e, Pj , 1n+2, (1 + (j − 1) · `, j · `)).

5. For each (i, b, j) ∈ [n+2]×{0, 1}×[t], the algorithm computes ciphertexts c̃t
(j)
i,b ← SKE.Enc(K

(j)
i,b , lab

in,j+1
i,b).

6. Let {labin,1
i,b }i,b be the set of input labels computed when garbling program P1. Recall that the all

zero state is the canonical start state. The algorithm outputs the ciphertext

ct = (w, t, D̃, {labin,1
i,0 }i∈[n+2], {P̃j}j∈[t+1], {c̃t

(j)
i,b }i∈[n+2],b∈{0,1},j∈[t]).

Dec(skT , ct)→ m/⊥. The decryption algorithm parses the ciphertext and secret key as

ct = (w, t, D̃, {labin
i }i∈[n+2], {P̃j}j∈[t+1], {c̃t

(j)
i,b }i∈[n+2],b∈{0,1},j∈[t]), skT =

(
T,
{
sk(qin,bin,i,β)

}
(qin,bin,i,β)∈IDT

)
.

Let t′ ≤ t be the maximum number of well defined transitions the machine T can make on input w
within t time steps. Let

{(qin
j , b

in
j , q

out
j , bout

j , dirj)}j∈[t′]

be the t′ transitions T makes on input w. The decryption algorithm sets lab1 := {labin
i }i∈[n+2], and

then proceeds to evaluate the garbled RAM programs in ascending order for j = 1 to j = t′ + 1 as
follows:

1. The decryption algorithm evaluates the jth garbled RAM program P̃j on the current value of the

garbled database D̃ with the input given by labels in labj :

({ct(j)i,b }i,b, ỹj)← EvalD̃(P̃j , labj).

Note that the garbled database D̃ has now been updated after running Eval(·).
2. If ỹj 6= ⊥, the algorithm breaks and exits the loop, sets m := ỹj , and outputs m.

3. Otherwise, if ỹj = ⊥ it continues. Let (qin
j , b

in
j , q

out
j , bout

j , dirj) be the jth transition T makes on
input w. Also, for i ∈ [n+ 2], let bi,j denote the following bit

bi,j :=

qout
j [i] if i ∈ [n]

bout
j if i = n+ 1

bdir
j otherwise.

where in the above bdir
j = 0 if dirj = L and bdir

j = 1 if dirj = R. The algorithm computes the labels
for the next program as follows. For i ∈ [n+ 2], it decrypts the IBE and SKE ciphertexts as:

K
(j)
i,bi,j

= IBE.Dec(sk(qin,bin,i,bi,j), ct
(j)
i,bi,j

), labin
i,bi,j ← SKE.Dec(K

(j)
i,bi,j

, c̃t
(j)
i,bi,j).

4. If j < t′ + 1, the algorithm sets the labels for the garbled program P̃j+1 as

labj+1 := {labin
i,bi,j}i∈[n+2]

and otherwise if j = t′ + 1, the algorithm exits the loop and returns ⊥.

17

4.2 Correctness

We show that the above construction satisfies correctness. Fix message m, attribute w, time bound t, and
Turing Machine T . Let (pp,msk) ← Setup(1λ), skT ← KeyGen(msk, T), ct ← Enc(pp,m, (w, t)). Fix t′ ≤ t,
and assume T accepts w, and transitions to being in state accept for the first time after t′ transitions. Now,
for j ∈ [t′], let

(qin
j , b

in
j , q

out
j , bout

j , dirj)

be the jth transition made by T on input w. In particular, note that qin
1 = start = 0n and qout

t′ = accept = 1n.
Next, for j ∈ [t′], let tapej and posj respectively be the contents of the first t+ 1 cells of the Turing Machine
tape and the position of the tape head before the jth transition. Parse the ciphertext ct as

ct = (w, t, D̃, {labin
i }i∈[n+2], {P̃j}j∈[t+1], {c̃t

(j)
i,b }i∈[n+2],b∈{0,1},j∈[t]).

We now show that Dec(skT , ct) outputs m. The decryption algorithm evaluates the garbled programs P̃j in

ascending order starting with P̃1. We claim that the loop satisfies the following invariant. For each j ∈ [t′],

qout
j , bout

j , bdir
j is the input encoded by labj+1, and the garbled database D̃ at the start of iteration j + 1 of

the loop has contents tapej ||posj . We establish this claim by induction on j.
First we establish the claim when j = 1. At the start of the first iteration of the loop, the garbled database

D̃ has contents w||0t+1+dlog(t+1)e−|w|. The label set lab1, which is used to evaluate P̃1, encodes the all 0

input. Now, the underlying program P1 has hard-coded pp, the secret keys {K(1)
i,b }, and j = 1. It follows then

by construction, that in the first step of the first iteration, EvalD̃(P̃1, lab1) outputs ({ctib}(i,b)∈[n+2]×{0,1},⊥)
where for each i ∈ [n+ 2] and b ∈ {0, 1},

ctib ← IBE.Enc(pp,K
(1)
i,b , (start, w1, i, b))

By the definition of skT and the keys K
(j)
i,b as well as the correctness of IBE and SKE, for each i ∈ [n] the

algorithm decrypts K
(1)
i,qout

1 [i] and labin
i,qout

1 [i], for i = n + 1 the algorithm decrypts K
(1)
i,bout

1 [i] and labin
i,bout

1
, and for

i = n+ 2 the algorithm decrypts K
(1)

i,bdir
1

and labin
i,bdir

1
. Thus qout

1 , bout
1 , bdir

1 is encoded by lab2. Since P1 does not

modify the database, the contents of the database at the start of the second iteration are tape1||pos1. This
establishes the claim for j = 1.

Now, assume the claim holds for some j < t′. Then at the start of iteration j+ 1 of the loop, the garbled
database D̃ has contents tapej ||posj . The label set labj+1, which is used to evaluate P̃j+1, encodes the input

qout
j , bout

j , bdir
j . Note, that qin

j+1 = qout
j . Now, the underlying program Pj+1 has hard-coded pp, the secret keys

{K(1)
i,b }, and the integer j + 1. It follows then by the definition of Pj+1 and correctness of GRAM, that in the

first step of the iteration, EvalD̃(P̃j+1, labj+1) outputs ({ctib}(i,b)∈[n+2]×{0,1},⊥) where for each i ∈ [n + 2]
and b ∈ {0, 1},

ctib ← IBE.Enc(pp,K
(j+1)
i,b , (qin

j+1, b
in
j+1, i, b))

By the definition of skT and the keys K
(j)
i,b as well as the correctness of IBE and SKE, for each i ∈ [n] the

algorithm decrypts K
(j+1)
i,qout

1 [i] and labin
i,qout

j+1[i], for i = n + 1 the algorithm decrypts K
(1)
i,bout

j+1[i] and labin
i,bout

j+1
, and

for i = n+ 2 the algorithm decrypts K
(j+1)

i,bdir
j+1

and labin
i,bdir

j+1
. Thus qout

j+1, b
out
j+1, b

dir
j+1 is encoded by labj+2. Also,

by the definition of Pj+1 and correctness of GRAM, after the first step of iteration j+1, D̃ has been modified
so that its contents are tapej+1||posj+1. This established the claim for j + 1.

By induction, the claim holds for all j ∈ [t′]. In particular, the label set labj+1 encodes the in-
put (qout

t′+1, b
out
t′+1, b

dir
t′+1). As we assumed, qout

t′+1 = accept. By correctness of GRAM, in iteration t′ + 1,

EvalD̃(P̃t′+1, labt′+1) outputs ({ctib}(i,b)∈[n+2]×{0,1},m). It follows then that the decryption algorithm out-
puts m, and we are done.

18

4.3 Efficiency

We discuss the efficiency of the algorithms of the above construction. Since Setup(λ) simply runs IBE.Setup(λ),
the runtime is poly(λ) whenever the runtime of IBE.Setup(λ) is poly(λ). Next, the algorithm KeyGen(msk, T)
runs IBE.KeyGen(msk, ·) a total of n+2 times for each transition of T . Since n is bounded by poly(λ), we have
that if the runtime of IBE.KeyGen(msk, ·) is poly(λ) then KeyGen(msk, T) has runtime |T | ·poly(λ). Next, the
algorithm Enc(pp,m, (w, t)) runs GData(1λ, D) on a database of size O(t), and garbles t+1 copies of the step-
program P . Assume |w| ≤ t and that each P has representation of size poly(λ)·polylog(t). If IBE.Enc(pp, ·) has
runtime poly(λ), GData(1λ, D) has runtime |D|·polylog(|D|)·poly(λ), and GProg(1λ, log(|D|), P, 1n, (tinit, tfin))
has runtime |P | · polylog(|D|, |P|) · poly(λ), then Enc(pp,m, (w, t)) has runtime t · polylog(t) · poly(λ). Finally,
the algorithm Dec(skT , ct) evaluates a garbled program and decrypts a set of n ciphertexts of the IBE system
t′ + 1 many times, where t′ is the time T takes to accept the underlying attribute w used to compute ct.

Thus, if IBE.Dec(skid, ct) has runtime poly(λ) and if EvalD̃(P̃ , lab) has runtime |P | ·polylog(|D|) ·poly(λ) then
Dec(skT , ct) has runtime t′ · polylog(t) · poly(λ) where t′ is the time T takes to accept the attribute w used
when computing ct and t is the time bound set at encryption time when computing ct.

4.4 Security

Next, we prove the following.

Theorem 4.1. Let IBE be a secure IBE scheme as per Definition 2.6, SKE be a secure symmetric key
encryption scheme as per Definition 2.4, and GRAM be a garbled RAM scheme satisfying Iterated Simulation
Security as per Definition 3.1. Then ABE described above is an ABE scheme satisfying 1-query key-selective
security as per Definition 2.3.

We prove Theorem 4.1 via a sequence of hybrid games. First, we describe the games and later on prove
that any two adjacent games are indistinguishable.

Game 0. This game corresponds to the original 1-query key-selective security game.

• Setup Phase: The challenger chooses (pp,msk) ← IBE.Setup(1λ), and sends pp to the adversary.
(Note that Setup in our scheme is precisely IBE.Setup.)

• Key Query Phase: The adversary submits a single key query for machine T to the challenger. Let
the Turing machine T be given as the set of possible transitions it can make under its transition relation
δ:

T = {(qin, bin, qout, bout, dir) : δ(qin, bin) = (qout, bout, dir)}.
Let IDT be the set of (n + 2) · |T | identities as defined in Eq. (1). The challenger samples an IBE
secret key for each identity in IDT . Concretely, it chooses

∀ (qin, bin, i, β) ∈ IDT , sk(qin,bin,i,β) ← IBE.KeyGen(msk, (qin, bin, i, β)).

Finally, it sends the key skT =
(
T,
{
sk(qin,bin,i,β)

}
(qin,bin,i,β)∈IDT

)
to A.

• Challenge Phase: The adversary submits two challenge messages (m0,m1) and the challenge at-
tribute and time bound (w, 1t) to the challenger. It must be the case that the machine T for which the
adversary was given a secret key skT during the key query phase does not accept the word w within t
steps.

The challenger samples a bit β ← {0, 1}, and computes the challenge ciphertext as follows.

1. The challenger sets a database D ∈ {0, 1}t+1+dlog(t+1)e. It sets the first |w| bits of D to match w,
and sets the remaining dlog(t+ 1)e bits to 0. More formally,

D := w||0t+1+dlog(t+1)e−|w|

where || denotes concatenation. It next garbles the database (D̃, kD)← GData(1λ, D).

19

2. For each (i, b, j) ∈ [n+2]×{0, 1}× [t+1], the challenger samples randomness r
(j)
i,b and SKE secret

keys K
(j)
i,b as r

(j)
i,b ← {0, 1}λ,K

(j)
i,b ← SKE.Setup(1λ).

3. Let P be the RAM program described as described in Fig. 1. For each j ∈ [t+ 1], the challenger

sets Pj as Pj := P [pp, {K(j)
i,b }i,b,mβ , j; {r(j)

i,b }i,b].
4. Let ` be the number of steps P takes to run on a database of length |D|. For each j ∈ [t+ 1], the

challenger garbles the program Pj , computing

(P̃j , {labin,j
i,b }i,b)← GProg(1λ, kD, t+ 1 + dlog(t+ 1)e, Pj , 1n+2, (1 + (j − 1) · `, j · `)).

5. For each (i, b, j) ∈ [n+2]×{0, 1}×[t], the challenger computes ciphertexts c̃t
(j)
i,b ← SKE.Enc(K

(j)
i,b , lab

in,j+1
i,b).

6. Let {labin,1
i,b }i,b be the set of input labels computed when garbling program P1. Recall that the all

zero state is the canonical start state. The challenger outputs the ciphertext

ct∗ = (w, t, D̃, {labin,1
i,0 }i∈[n+2], {P̃j}j∈[t+1], {c̃t

(j)
i,b }i∈[n+2],b∈{0,1},j∈[t]).

• Guess Phase: The adversary submits its guess β′, and wins the game if β = β′.

Game k.1 (1 ≤ k ≤ t + 1). This game is defined similar to Game 0, except now the challenger simulates
the first k (out of t+ 1) garbled RAM programs and the SKE ciphertexts encrypting the labels for first k−1
levels are also simulated (i.e., half of them contain the simulated wire label keys, while other half encrypt
all zeros). Note that while setting up the garbled programs to be simulated, the challenger needs to sample
the IBE ciphertexts appropriately where the IBE ciphertexts for the first k − 1 simulated garbled programs
encrypt only half of the corresponding SKE keys and the IBE ciphertexts for the k-th simulated program
encrypts all the keys honestly. Below we describe it in detail highlighting the differences.

• Challenge Phase: The adversary submits two challenge messages (m0,m1) and the challenge at-
tribute and time bound (w, 1t) to the challenger. It must be the case that the machine T for which the
adversary was given a secret key skT during the key query phase does not accept the word w within t
steps.

Let {(qin
j , b

in
j , q

out
j , bout

j , dirj)}j∈[t] be the sequence of the first t transitions made by machine T on input

w. Let x1 = 0n+2, and for all other j let xj be the (n+ 2)-bit representation of (qout
j−1, b

out
j−1, b

dir
j−1). Let

D ∈ {0, 1}t+1+dlog(t+1)e match w in the first |w| bits, and be 0 elsewhere. Let {accessj}j∈[t+1] be the
memory access patterns of the t+ 1 step programs Pj run on D in sequence with inputs xj . Note that
the hard-coded inputs do not affect the memory access pattern, so for all j ∈ [t + 1], accessj can be
computed as a function of the machine T , the challenge attribute w, and the time bound t.

The challenger samples a bit β ← {0, 1}, and computes the challenge ciphertext as follows.

1. The challenger sets a database D ∈ {0, 1}t+1+dlog(t+1)e. It sets the first |w| bits of D to match w,
and sets the remaining dlog(t+ 1)e bits to 0. More formally,

D := w||0t+1+dlog(t+1)e−|w|

where || denotes concatenation. It next garbles the database (D̃, kD)← GData(1λ, D).

2. For each (i, b, j) ∈ [n+2]×{0, 1}× [t+1], the challenger samples randomness r
(j)
i,b and SKE secret

keys K
(j)
i,b as r

(j)
i,b ← {0, 1}λ,K

(j)
i,b ← SKE.Setup(1λ).9

9We point out that the challenger does not need use all the sampled random coins and secret keys anymore. However, for ease
of exposition we still sample all of them as before.

20

3. Let P be the RAM program as described in Fig. 1. For each j ∈ [k+ 1, t+ 1], the challenger sets

Pj as Pj := P [pp, {K(j)
i,b }i,b,mβ , j; {r(j)

i,b }i,b]. It computes 2k(n+ 2) IBE ciphertexts as:

(i, b) ∈ [n+ 2]× {0, 1}, ct
(k)
i,b ← IBE.Enc(pp,K

(k)
i,b , (q

in
k , b

in
k , i, b)),

(i, j) ∈ [n+ 2]× [k − 1], ct
(j)
i,xj [i] ← IBE.Enc(pp,K

(j)
i,xj [i], (q

in
j , b

in
j , i, xj [i])),

(i, j) ∈ [n+ 2]× [k − 1], ct
(j)
i,1−xj [i] ← IBE.Enc(pp,0, (qin

j , b
in
j , i, 1− xj [i]))

4. Let ` be the number of steps P takes to run on a database of length |D|. For each j ∈ [k+1, t+1],
the challenger garbles the program Pj , computing

(P̃j , {labin,j
i,b }i,b)← GProg(1λ, kD, t+ 1 + dlog(t+ 1)e, Pj , 1n+2, (1 + (j − 1) · `, j · `)).

For j ∈ [k], the challenger computes a simulated program

(P̃j , {labin,j
i }i∈[n+2])← Sim(1λ, kD, |P |, ({ct(j)i,b }(i,b)∈[n+2]×{0,1},⊥), D, {access′j}j′∈[t+1])

5. Next, it computes the ciphertexts c̃t
(j)
i,b as follows:

(i, b, j) ∈ [n+ 2]× {0, 1} × [k, t], c̃t
(j)
i,b ← SKE.Enc(K

(j)
i,b , lab

in,j+1
i,b),

(i, j) ∈ [n+ 2]× [k − 1], c̃t
(j)
i,xj+1[i] ← SKE.Enc(K

(j)
i,xj+1[i], lab

in,j+1
i),

(i, j) ∈ [n+ 2]× [k − 1], c̃t
(j)
i,1−xj+1[i] ← SKE.Enc(K

(j)
i,1−xj+1[i],0)

6. Let {labin,1
i }i be the set of input labels computed when simulating program P1. The challenger

outputs the ciphertext

ct∗ = (w, t, D̃, {labin,1
i }i∈[n+2], {P̃j}j∈[t+1], {c̃t

(j)
i,b }i∈[n+2],b∈{0,1},j∈[t]).

Game k.2 (1 ≤ k ≤ t + 1). This game is defined identically to Game k.1, except now IBE ciphertexts
hardwired in the k-th simulated garbled program also encrypt only half of the corresponding SKE keys (as
for first k−1 simulated programs). Below we simply describe the change in game description when compared
with previous game.

• Challenge Phase: The adversary submits two challenge messages (m0,m1) and the challenge at-
tribute and time bound (w, 1t) to the challenger. It must be the case that the machine T for which the
adversary was given a secret key skT during the key query phase does not accept the word w within
t steps. The challenger samples a bit β ← {0, 1}, and computes the challenge ciphertext as in Game
k.1, except the following:

3. Let P be the RAM program as described in Fig. 1. For each j ∈ [k+ 1, t+ 1], the challenger sets

Pj as Pj := P [pp, {K(j)
i,b }i,b,mβ , j; {r(j)

i,b }i,b]. It computes 2k(n+ 2) IBE ciphertexts as:

(i, j) ∈ [n+ 2]× [k], ct
(j)
i,xj [i] ← IBE.Enc(pp,K

(j)
i,xj [i], (q

in
j , b

in
j , i, xj [i])),

(i, j) ∈ [n+ 2]× [k], ct
(j)
i,1−xj [i] ← IBE.Enc(pp,0, (qin

j , b
in
j , i, 1− xj [i]))

21

Game k.3 (1 ≤ k ≤ t+ 1). This game is defined identically to Game k.2, except now the SKE ciphertexts
encrypting the garbled program labels for the (k+ 1)-th garbled program encrypt only half of the label keys
(i.e., only the label keys corresponding to the k-th state transition). Below we simply describe the change
in game description when compared with previous game.

• Challenge Phase: The adversary submits two challenge messages (m0,m1) and the challenge at-
tribute and time bound (w, 1t) to the challenger. It must be the case that the machine T for which the
adversary was given a secret key skT during the key query phase does not accept the word w within
t steps. The challenger samples a bit β ← {0, 1}, and computes the challenge ciphertext as in Game
k.2, except the following:

5. Next, it computes the ciphertexts c̃t
(j)
i,b as follows:

(i, b, j) ∈ [n+ 2]× {0, 1} × [k + 1, t], c̃t
(j)
i,b ← SKE.Enc(K

(j)
i,b , lab

in,j+1
i,b),

(i, j) ∈ [n+ 2]× [k], c̃t
(j)
i,xj+1[i] ← SKE.Enc(K

(j)
i,xj+1[i], lab

in,j+1
i),

(i, j) ∈ [n+ 2]× [k], c̃t
(j)
i,1−xj+1[i] ← SKE.Enc(K

(j)
i,1−xj+1[i],0)

Analysis of game indistinguishability. We complete the proof by showing that adjacent hybrid games
are indistinguishable. For any adversary A and game Game s, we denote by AdvAs (λ), the probability that
A wins in Game s. For ease of exposition, in the sequel we use Game 0.3 to denote Game 0.

Lemma 4.2. If IBE is a secure IBE scheme, then for any PPT adversary A and k ∈ [t + 1], we have that
AdvAk.1(λ)− AdvAk.2(λ) ≤ negl(λ) for some negligible function negl(·).

Proof. Suppose for contradiction that A is a PPT adversary for which AdvAk.1(λ)−AdvAk.2(λ) = ε, where ε is
non-negligible. We give a reduction B which uses A to break the security of IBE. In particular, our reduction
B will break the multi-challenge security of IBE.

The reduction algorithm B plays a game with an IBE challenger. The reduction B samples a bit β ← {0, 1}.
The challenger chooses (pp,msk)← IBE.Setup(1λ) and sends pp to B who forwards it to A. Next, A submits
a key query for machine T to the reduction B. Let IDT denote the set of identities corresponding to machine
T as per Eq. (1). B then makes a key query for every identity in IDT to the challenger, and let S denote set
containing all the secret keys sent by the challenger to B. The reduction B then set skT = S, and it sends
skT to A. Now, A submits two challenge messages (m0,m1) and the challenge attribute and time bound
(w, 1t) to B. The reduction B now computes the challenge ciphertext ct∗ as in Game k.1, except for how it
computes the IBE ciphertexts which constitute the output of the k-th simulated program in step 3 of the
challenge phase.

Let xk be the n + 2 bit representation of (qout
k−1, b

out
k−1, b

dir
k−1), and let {K(k)

i,b }(i,b) be the set of SKE secret

keys chosen in step 2. First, for each i ∈ [n+ 2], B computes ct
(k)
i,xk[i] ← IBE.Enc(pp,K

(k)
i,xk[i], (q

in
k , b

in
k , i, xk[i])).

Next, it sends {(K(k)
i,1−xk[i],0, (q

in
k , b

in
k , i, 1 − xk[i]))}i∈[n+2] as its challenge vector of message-identity tuples.

(Recall that we are considering the multi-challenge version of IBE security.) Let {ct∗i }i denote the set of

challenge ciphertexts received by B. It then sets the ciphertexts ct
(k)
i,1−xk[i] as ct

(k)
i,1−xk[i] = ct∗i for i ∈ [n+ 2].

The remaining portion of the challenge ciphertext is computed as in Game k.1.
Finally, after sending the challenge ciphertext to A, the adversary outputs a bit γ. If γ = β, then B

guesses 0 to the challenger signalling that ciphertexts {ct∗i }i encrypt the PRF keys. Otherwise, B guesses 1
to the challenger signalling they encrypt all zeros. Observe that the reduction B perfectly simulates the view
of Game k.1 and k.2 to A, respectively, depending upon the challenger’s bit. Note that B is an admissible
adversary as per the multi-challenge IBE game, since the adversary A makes only a single key query for
machine T such that T does not accept w after t steps, and the IBE keys queried by B are completely disjoint
with the set of challenge identities. Thus, the lemma follows.

22

Lemma 4.3. If SKE is a secure secret key encryption scheme, then for any PPT adversary A and k ∈ [t+1],
we have that AdvAk.2(λ)− AdvAk.3(λ) ≤ negl(λ) for some negligible function negl(·).

Proof. We prove this lemma by sketching a sequence of n + 3 intermediate hybrid games Game k.2.h, for
each h ∈ [0, . . . , n+ 2]. Game k.2.h is defined similar to Game k.2, except for how the challenge ciphertext
is computed. In particular in Game k.2.h, we change how the challenger proceeds in step 5 of computing

the challenge ciphertext. Concretely, it computes the ciphertexts c̃t
(j)
i,b as follows:

(i, b, j) ∈ [n+ 2]× {0, 1} × [k + 1, t]
∪ [h+ 1, n+ 2]× {0, 1} × {k} , c̃t

(j)
i,b ← SKE.Enc(K

(j)
i,b , lab

in,j+1
i,b),

(i, j) ∈ [n+ 2]× [k − 1]
∪ [h]× {k} ,

c̃t
(j)
i,xj+1[i] ← SKE.Enc(K

(j)
i,xj+1[i], lab

in,j+1
i),

c̃t
(j)
i,1−xj+1[i] ← SKE.Enc(K

(j)
i,1−xj+1[i],0)

In short, for each i ≤ h, if b 6= xk+1[i], the encryption of label labin,k+1
i,b is replaced with an encryption of 0.

All other steps are identical to Game k.2. It is immediate that Game k.2.0 is identical to Game k.2 and that
Game k.2.(n + 2) is identical to Game k.3. We claim that if SKE is a secure secret key encryption scheme,
that for any A and h ∈ [n + 2] that AdvAk.2.h(λ) − AdvAk.2.(h−1)(λ) ≤ negl′(λ) for some negligible function

negl′(λ). The lemma follows immediately from this claim.
Suppose for contradiction that A is a PPT adversary for which AdvAk.2.h(λ)− AdvAk.2.(h−1)(λ) = ε, where

ε is non-negligible. We give a reduction B which uses A to break the security of SKE. The reduction B
samples a bit β ← {0, 1}. It then chooses (pp,msk) ← IBE.Setup(1λ), and forwards pp to the adversary A.
The challenger chooses K ← SKE.Setup(1λ). Next, A submits a key query for machine T to the reduction
B. The reduction B computes skT as in Game k.2.(h − 1) (equivalently k.2), and sends skT to A. Now,
A submits two challenge messages (m0,m1) and the challenge attribute and time bound (w, 1t) to B. The
reduction B now computes the challenge ciphertext ct∗ as in Game k.2.h, except it computes the ciphertext

c̃t
(k)
h,1−xk+1[h] by quering the SKE challenger on appropriate challenge messages.

Here xk denotes the n + 2 bit representation of (qout
k−1, b

out
k−1, b

dir
k−1). First, B sample all the SKE secret

keys except the key K
(k)
h,1−xk+1[h] which is implicitly set to the challenger’s secret key. The reduction B sends

the challenge messages m0 = labin,k+1
h,1−xk+1[h] and m1 = 0, and let ct′ denote the challenger’s response. B now

sets c̃t
(k)
h,1−xk+1[h] = ct′, while for all other (j, i, b) 6= (k, h, 1 − xk+1[h]), it computes c̃t

(j)
i,b as in Game k.2.h.

The remaining portion of the challenge ciphertext is computed as in Game k.2.h.
Finally, after computing the challenge ciphertext ct∗, B sends it to A. The adversary A now sends B its

guess β′′. If β′′ = β, B guesses 0 to the challenger. Otherwise, B guesses 1 to the challenger. Observe that
when β′ = 0, the reduction B perfectly simulates the view of Game k.2.(h − 1) to A. On the other hand,
when β′ = 1, the reduction B perfectly simulates the view of Game k.2.h to A. It immediately follows that
B has advantage ε against the SKE challenger, which contradicts the security of SKE. This establishes the
claim and thus the lemma.

Finally, after sending the challenge ciphertext to A, the adversary outputs a bit γ. If γ = β, then B
guesses 0 to the challenger signalling that ciphertext ct′ was an encryption of the garbled label. Otherwise, B
guesses 1 to the challenger signalling its encrypts all zeros. Observe that the reduction B perfectly simulates
the view of Game k.2.(h − 1) and k.2.h to A, respectively, depending upon the challenger’s bit. Note that
B is an admissible adversary as per the SKE game, since the adversary A does not need the SKE secret key

K
(k)
h,1−xk+1[h] for preparing the challenge ciphertext as the garbled program which would have contained the

key is already being simulated. Thus, the lemma follows.

Lemma 4.4. If GRAM satisfies Iterated Simulation Security, then for any PPT adversary A and 0 ≤ k ≤ t,
we have that AdvAk.3(λ)− AdvAk+1.1(λ) ≤ negl(λ) for some negligible function negl(·).

Proof. Suppose for contradiction that A is a PPT adversary for which AdvAk.3(λ) − AdvAk+1.1(λ) = ε, where

23

ε is non-negligible. We give a reduction B which uses A to break the Iterated Simulation Security property
of GRAM.

The reduction algorithm B plays a game with a GRAM challenger. The reduction B samples a bit
β ← {0, 1}. The reduction B then chooses (pp,msk)← IBE.Setup(1λ), and sends pp to A. Next, A submits
a key query for machine T to the reduction B. The reduction B computes skT as it is computed in Game
k.3. Then, B sends skT to A. Now, A submits two challenge messages (m0,m1) and the challenge attribute
and time bound (w, 1t) to B. The reduction B now computes the challenge ciphertext ct∗ as in Game k.3,
except it simulates the (k + 1)-th garbled program instead of computing honestly.

The reduction B sets up the database D as in Game k.3. Let x1 = 0n+2, and for all other j let xj be the

n+ 2 bit representation of (qout
j−1, b

out
j−1, b

dir
j−1). It samples the random coins r

(j)
i,b and SKE secret keys K

(j)
i,b as

in step 2. For each j ∈ [t+ 1], the reduction B sets program Pj as

Pj := P [pp, {K(j)
i,b }(i,b),mβ , j; {r(j)

i,b }(i,b)].

The reduction sends (k + 1, D, {(Pj , xj , n+ 2, (1 + (j − 1) · `, j · `))}j) to the challenger. The challenger,

garbles the database D to compute D̃, and then honestly garbles the programs Pj for j ∈ [k+ 2, t+ 1], while

Pk+1 is either garbled honestly or simulated, and remaining programs P̃j , for j ∈ [k], are simulated. Finally,

the challenger sends (D̃, {P̃j , {labin,j
i }i}j∈[k+1], {P̃j , {labin,j

i,b }i,b}j∈[k+2,t+1]) to B.
From this point, the reduction simply computes the challenge ciphertext as in Game k.3 but using

the garbled database, programs, and input labels as provided by the challenger. Finally, after sending the
challenge ciphertext toA, the adversary outputs a bit γ. If γ = β, then B guesses 0 to the challenger signalling

that P̃k+1 was honestly garbled. Otherwise, B guesses 1 to the challenger signalling it was simulated. Note
that since the reduction B does not need the garbled labels for (k + 1)-th garbled program while preparing
the challenge ciphertext thus it can perfectly simulate the view of Game k.3 and k + 1.1 to A, respectively,
depending upon the challenger’s bit. Thus, the lemma follows.

Lemma 4.5. For any adversary, A we have that AdvAt+1.1(λ) = 0.

Proof. This lemma is immediate, as in Game t + 1.1, the challenge ciphertext consists only of simulated
programs all of which are completely independent of the challenge message mβ .

By combining the above lemmas, the theorem follows.

Acknowledgements

We thank Xiong Fan and Venkata Koppula for useful discussions in the early stages of this work. We also
thank Daniel Wichs for helpful discussions about the GHRW garbled RAM scheme [GHRW14a].

References

[AC17] Shashank Agrawal and Melissa Chase. Simplifying design and analysis of complex predicate
encryption schemes. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT
2017, volume 10210 of Lecture Notes in Computer Science, pages 627–656, 2017.

[AFS19] Prabhanjan Ananth, Xiong Fan, and Elaine Shi. Towards attribute-based encryption for rams
from LWE: sub-linear decryption, and more. In Advances in Cryptology - ASIACRYPT 2019
- 25th International Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I, volume 11921 of Lecture
Notes in Computer Science, pages 112–141. Springer, 2019.

24

[AMY19a] Shweta Agrawal, Monosij Maitra, and Shota Yamada. Attribute based encryption (and more)
for nondeterministic finite automata from LWE. In Alexandra Boldyreva and Daniele Miccian-
cio, editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II, volume 11693
of Lecture Notes in Computer Science, pages 765–797. Springer, 2019.

[AMY19b] Shweta Agrawal, Monosij Maitra, and Shota Yamada. Attribute based encryption for deter-
ministic finite automata from dlin. In Dennis Hofheinz and Alon Rosen, editors, Theory of
Cryptography - 17th International Conference, TCC 2019, Nuremberg, Germany, December
1-5, 2019, Proceedings, Part II, volume 11892 of Lecture Notes in Computer Science, pages
91–117. Springer, 2019.

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for turing machines. In
Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography - 13th International Confer-
ence, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I, volume 9562 of
Lecture Notes in Computer Science, pages 125–153, 2016.

[AS17] Shweta Agrawal and Ishaan Preet Singh. Reusable garbled deterministic finite automata from
learning with errors. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl,
editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 36:1–36:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework,
fully secure functional encryption for regular languages, and more. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science,
pages 557–577. Springer, 2014.

[Att16] Nuttapong Attrapadung. Dual system encryption framework in prime-order groups via compu-
tational pair encodings. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryp-
tology - ASIACRYPT 2016 - 22nd International Conference on the Theory and Application of
Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part
II, volume 10032 of Lecture Notes in Computer Science, pages 591–623, 2016.

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure functional
encryption. In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography - 17th Inter-
national Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part
I, volume 11891 of Lecture Notes in Computer Science, pages 174–198. Springer, 2019.

[BCG+18] Nir Bitansky, Ran Canetti, Sanjam Garg, Justin Holmgren, Abhishek Jain, Huijia Lin, Rafael
Pass, Sidharth Telang, and Vinod Vaikuntanathan. Indistinguishability obfuscation for RAM
programs and succinct randomized encodings. SIAM J. Comput., 47(3):1123–1210, 2018.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Theory of
Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA,
February 24-26, 2014. Proceedings, pages 52–73, 2014.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In
Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’01, 2001.

[BL15] Xavier Boyen and Qinyi Li. Attribute-based encryption for finite automata from LWE. In
Man Ho Au and Atsuko Miyaji, editors, Provable Security - 9th International Conference,

25

ProvSec 2015, Kanazawa, Japan, November 24-26, 2015, Proceedings, volume 9451 of Lecture
Notes in Computer Science, pages 247–267. Springer, 2015.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM Conference on Computer and Communications Security, pages
62–73, 1993.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In IEEE Symposium on Security and Privacy, pages 321–334, 2007.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni Poly-
chroniadou. Laconic oblivious transfer and its applications. In CRYPTO 2017, 2017.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party
computation. In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Sym-
posium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages
639–648. ACM, 1996.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In IMA Int.
Conf., pages 360–363, 2001.

[DG17a] Nico Döttling and Sanjam Garg. Identity-based encryption from the diffie-hellman assumption.
In CRYPTO 2017, 2017.

[DG17b] Nico Dttling and Sanjam Garg. From selective ibe to full ibe and selective hibe. TCC, 2017.

[DN00] Ivan Damg̊ard and Jesper Buus Nielsen. Improved non-committing encryption schemes based
on a general complexity assumption. In Annual International Cryptology Conference, pages
432–450. Springer, 2000.

[FJP15] Georg Fuchsbauer, Zahra Jafargholi, and Krzysztof Pietrzak. A quasipolynomial reduction for
generalized selective decryption on trees. In Annual Cryptology Conference, pages 601–620.
Springer, 2015.

[FKPR14] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Vanishree Rao. Adaptive
security of constrained prfs. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 82–101. Springer, 2014.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel Wichs.
Garbled ram revisited. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 405–422. Springer, 2014.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi.
Registration-based encryption: Removing private-key generator from IBE. In TCC 2018, 2018.

[GHRW14a] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Garbled ram revisited, part
i. Cryptology ePrint Archive, Report 2014/082, 2014. https://eprint.iacr.org/2014/082.

[GHRW14b] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private ram
computation. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science,
pages 404–413. IEEE, 2014.

[GKP+13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zel-
dovich. Reusable garbled circuits and succinct functional encryption. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing, pages 555–564, 2013.

26

https://eprint.iacr.org/2014/082

[GKW16] Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security and bundling func-
tionalities made generic and easy. In Theory of Cryptography - 14th International Conference,
TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part II, 2016.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017, pages 612–621, 2017.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled ram. In 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science, pages 210–229. IEEE, 2015.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled ram from one-way
functions. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 449–458, 2015.

[GOS18] Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan. Adaptive garbled ram from laconic
oblivious transfer. In Annual International Cryptology Conference, pages 515–544. Springer,
2018.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina
De Capitani di Vimercati, editors, Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006,
pages 89–98. ACM, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, pages 197–206, 2008.

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC from bilinear
maps. In FOCS 2017, 2017.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO, 2012.

[GW20] Junqing Gong and Hoeteck Wee. Adaptively secure ABE for DFA from k-lin and more. In
Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture Notes in
Computer Science, pages 278–308. Springer, 2020.

[GWW19] Junqing Gong, Brent Waters, and Hoeteck Wee. ABE for DFA from k-lin. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part II, volume 11693 of Lecture Notes in Computer Science, pages 732–764.
Springer, 2019.

[IPS15] Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs obfuscation and
its applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptogra-
phy - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25,
2015, Proceedings, Part II, volume 9015 of Lecture Notes in Computer Science, pages 668–697.
Springer, 2015.

[JKK+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof Pietrzak, and
Daniel Wichs. Be adaptive, avoid overcommitting. In Annual International Cryptology Con-
ference, pages 133–163. Springer, 2017.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. 2021.

27

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of yaos garbled circuits. In Theory of
Cryptography Conference, pages 433–458. Springer, 2016.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation
for turing machines with unbounded memory. In Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC ’15, pages 419–428, New York, NY, USA, 2015.
ACM.

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa. Adaptively secure
and succinct functional encryption: improving security and efficiency, simultaneously. In Annual
International Cryptology Conference, pages 521–551. Springer, 2019.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In Annual
International Cryptology Conference, pages 335–354. Springer, 2004.

[KW19a] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security generically in
attribute-based encryption and predicate encryption. In CRYPTO 2019, 2019.

[KW19b] Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure abe for nc1 from k-lin. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 3–33. Springer, 2019.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble ram programs? In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 719–734. Springer,
2013.

[LO14] Steve Lu and Rafail Ostrovsky. Garbled ram revisited, part ii. Cryptology ePrint Archive,
Report 2014/083, 2014. https://eprint.iacr.org/2014/083.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The
non-committing encryption case. In Annual International Cryptology Conference, pages 111–
126. Springer, 2002.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 84–93. ACM, 2005.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of CRYPTO
84 on Advances in cryptology, pages 47–53, New York, NY, USA, 1985. Springer-Verlag New
York, Inc.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public
keys. In Proceedings of the 17th ACM conference on Computer and communications security,
CCS ’10, pages 463–472, New York, NY, USA, 2010. ACM.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457–473, 2005.

[Wat12] Brent Waters. Functional encryption for regular languages. In Reihaneh Safavi-Naini and
Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture
Notes in Computer Science, pages 218–235. Springer, 2012.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under LWE.
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pages
600–611, 2017.

[Yao86] Andrew Yao. How to generate and exchange secrets. In FOCS, pages 162–167, 1986.

28

https://eprint.iacr.org/2014/083

A From 1-query key-selective security to adaptive security

In this section, we show how to lift an ABE scheme that only satisfies a weak notion of security, that is 1-query
key-selective, to achieve 1-query full/adaptive security by relying on a very weak form of non-committing
encryption. We start by defining the notion of non-committing encryption required for our transformation.

A.1 Weak Non-Committing Encryption

The notion of non-committing encryption was introduced by Canetti et al. [CFGN96]. At a high level, a
non-committing encryption scheme enables efficient simulation of public keys and ciphertexts such that, at a
later point, the simulator could “open” the ciphertext to any message by providing encryption randomness
and corresponding secret keys. For security, it is mostly required that the distribution of simulated keys,
ciphertexts, and key generation and encryption randomness is computationally indistinguishable from the
distribution generated by the real encryption protocol.

In this work, we rely on a weak form of non-committing encryption where the simulator need not provide
indistinguishable random coins used for encryption and key generation. Formally, we define it below.

Syntax. A weak non-committing encryption (wNCE) system wNCE for message spaces M = {Mλ}λ∈N
consists of five polynomial time algorithms (Setup,Enc,Dec,Sim-Setup,Sim-Open) with the following syntax:

Setup(1λ)→ (pk, sk). On input the security parameter λ, it outputs a public-secret key pair (pk, sk).

Enc(pk,m)→ ct. It takes as input a public key pk and a message m ∈Mλ, and outputs a ciphertext ct.

Dec(sk, ct)→ m. It takes as input a secret key sk and a ciphertext ct, and outputs a message m ∈Mλ.

Sim-Setup(1λ)→ (pk, ct, t). On input the security parameter λ, it outputs a tuple of a public key pk, a
ciphertext ct, and trapdoor information t.

Sim-Open(t,m)→ sk. On input the trapdoor t and a message m ∈Mλ, it outputs a secret key sk.

Correctness. A weak non-committing encryption scheme wNCE is said to be correct if for all λ ∈ N,
(pk, sk)← Setup(1λ), m ∈Mλ, and ct← Enc(pk,m), we have that Dec(sk, ct) = m.

Security. For security, we require the following weak simulatability property which already implies
semantic security.

Definition A.1 (weak simulatability). We say a secret key encryption scheme wNCE = (Setup,Enc,Dec,
Sim-Setup,Sim-Open) is weakly simulation secure if for any stateful PPT adversaryA, there exists a negligible
function negl(·), such that for every λ ∈ N, the following holds

Pr

A(skb, ctb) = b :

(pk0, sk0)← Setup(1λ),
(pk1, ct1, t)← Sim-Setup(1λ)
b← {0, 1}, m← A(pkb)

ct0 ← Enc(pk,m),
sk1 ← Sim-Open(t,m)

 ≤ 1

2
+ negl(λ).

Weak NCE for bit messages from PKE

In this section, we show a simple construction for weak NCE from regular public key encryption. We start
with a public-key bit encryption scheme, and use it build a weak non-committing bit encryption scheme,
that is M = {0, 1}. By a standard hybrid argument (i.e., the repitition scheme), one could extend it to
encrypt multi-bit messages, but that has the limitation of key sizes growing linearly with the bit length of the
messages. Later on we sketch a simple extension in the Random Oracle Model (ROM) [BR93] that avoids
this key size limitation. Below we sketch a simple scheme wNCE from any plain public key bit encryption
scheme PKE = (PKE.Setup,PKE.Enc,PKE.Dec).

29

Setup(1λ)→ (pk, sk). The algorithm samples two independent public-secret key pairs (pkb, skb)← PKE.Setup(1λ)
for b ∈ {0, 1}, and a random bit β ← {0, 1}. It outputs the public-secret key pair as pk = (pk0, pk1)
and sk = (β, skβ).

Enc(pk,m)→ ct. Let pk = (pk0, pk1). It encryptsm independently under both keys as ctb ← PKE.Enc(pkb,m)
for b ∈ {0, 1}, and outputs the ciphertext ct = (ct0, ct1).

Dec(sk, ct)→ m. Let ct = (ct0, ct1) and sk = (β, skβ). It decrypts ctβ using key skβ , and thus outputs the
message as m← PKE.Dec(skβ , ctβ).

Sim-Setup(1λ)→ (pk, ct, t). The algorithm samples two independent public-secret key pairs (pkb, skb) ←
PKE.Setup(1λ) for b ∈ {0, 1}, and a random bit δ ← {0, 1}. Next, it computes two PKE ciphertexts
as ctb ← PKE.Enc(pkb, δ ⊕ b) for b ∈ {0, 1}, and outputs the ciphertext as ct = (ct0, ct1), public key as
pk = (pk0, pk1), and trapdoor as t = (sk0, sk1, δ).

Sim-Open(t,m)→ sk. Let t = (sk0, sk1, δ). It simply outputs the secret key as sk = (δ ⊕m, skδ⊕m).

The correctness of the above scheme follows directly from the correctness of the underlying PKE system.
For security, we could very easily reduce weak simulatability to semantic security of the underlying PKE
system. We provide a brief proof sketch below.

Theorem A.2. If PKE is an IND-CPA secure public key bit encryption scheme, then wNCE scheme described
above is a weakly simulation secure non-committing bit encryption scheme as per Definition A.1.

Proof sketch. The proof of weak simulation security follows mostly directly from the semantic security of
the PKE system. First, observe that since δ is a random bit, thus δ ⊕m is a random bit as well. Therefore,
the distribution of secret keys is identical in both cases (honest and simulated). Next, observe that the only
difference between honestly computed and simulated ciphertext is the way ciphertext component ct1⊕δ⊕m
is created. In the honest case, it encrypts message m honestly, whereas in the simulated case it encryption
1 ⊕m. Now since the adversary never received the corresponding PKE secret key, thus a reduction could
simply guess the message bit m that it has to be simulate and use semantic security of PKE to switch
between honestly computed and simulated ciphertext.

Succinct Weak NCE for arbitrarily long messages via ROM

Here we briefly sketch a simple transformation that takes any weakly simulation secure non-committing
encryption scheme for fixed length messages and builds another wNCE scheme where the size of public-secret
keys does not grow with the length of the messages. We want to emphasize in the ROM, the simulation
algorithms also get to program the RO.

The idea is as follows. We will start with a wNCE scheme that encrypts λ-bit messsages, and a hash
function H : {0, 1}2λ → {0, 1}λ which we model as a random oracle. During setup, we simply sample a
public-secret key pair for the underlying (non-succinct) wNCE scheme. To encrypt a message m ∈ {0, 1}∗,
we first sample a λ-bit random string K ← {0, 1}λ, and encrypt K using the underlying wNCE scheme to
obtain first part of the ciphertext. Next, it creates masking values ri = H(K, i) for i ∈ {1, . . . , d|m|/λe},
and encrypts each λ-bit block of message as ci = ri ⊕m[1 + λ(i− 1) : λi]. To decrypt, one first decrypt the
underlying wNCE ciphertext to recover the masking key K, and then uncomputes the masking values by
re-computing them using the hash function H.

Now this scheme is succinct since the size of public and secret keys grows only polynomially with λ
since we only sample a single key pair for the underlying wNCE scheme for λ-bit messages. Also, the weak
simulatability of the system follows weak simulatability of the underlying wNCE scheme and programmability
of the random oracle H. Briefly, the simulator computes the first part of the simulated ciphertext as a
simulated wNCE ciphertext for λ-bit messages, and sets the remaining part as λ-bit random strings of
appropriate length. During simulation opening, it simulates the underlying wNCE ciphertext to a random

30

λ-bit key K. Since the adversary would not have queried the random oracle on any string of the form (K, ·),
thus the simulator could very easily program the random oracle such that the ciphertext blocks ci open to
the appropriate message blocks.

A.2 Adaptive security via weak NCE

In this section, we describe a simple transformation that takes any 1-query key-selective secure ABE
scheme and converts it into an adaptively secure scheme. Let sABE = (sABE.Setup, sABE.KeyGen, sABE.Enc,
sABE.Dec) be a 1-query key-selective secure ABE scheme with message spaceM = {Mλ}λ∈N, and wNCE =
(wNCE.Setup,wNCE.Enc,wNCE.Dec,wNCE.Sim-Setup,wNCE.Sim-Open) be a weakly simulation secure non-
committing encryption scheme with message space {0, 1}∗.10 We now describe the construction of our
1-query fully secure ABE scheme ABE = (Setup, InstKey,Enc,Dec).

Setup(1λ)→ (pp,msk). The setup algorithm samples a key pair for both wNCE as well as underlying ABE
system as (nce.pk, nce.sk) ← wNCE.Setup(1λ), and (abe.pp, abe.msk) ← sABE.Setup. It outputs the
parameters as pp = (nce.pk, abe.pp) and msk = (nce.sk, abe.msk).

InstKey(msk, T)→ skT . It parses the key as above, and runs the ABE key generation as abe.skT ← sABE.KeyGen(
abe.msk, T). It outputs the key as skT = (nce.sk, abe.skT).

Enc(pp,m, (w, t))→ ct. It parses the key as above, and runs the ABE encryption as abe.ct← sABE.Enc(abe.pp,
m, (w, t)). It then encrypts abe.ct using the wNCE key, and outputs the ciphertext as ct← wNCE.Enc(nce.pk,
abe.ct).

Dec(skT , ct)→ m/⊥. It parses the key as above, and first runs the wNCE encryption to recover the ABE
ciphertext as abe.ct← wNCE.Dec(nce.sk, ct). It then decrypts abe.ct using the ABE key, and outputs
z = sABE.Dec(abe.skT , abe.ct).

The correctness and efficiency of the above scheme follows directly from the correctness and efficiency of
the underlying ABE and weak NCE schemes. Below we show that if the underlying ABE scheme is 1-query
key-selective secure, and the wNCE scheme is weak simulation secure, then the resulting scheme is 1-query
adaptively secure. Formally, we prove the following.

Theorem A.3. If sABE is a 1-query key-selective secure ABE scheme (Definition 2.3), and wNCE is a weakly
simulation secure NCE scheme (Definition A.1), then the scheme ABE described above is 1-query fully secure
ABE scheme (Definition 2.2) for the same message space and predicate class as sABE.

Proof. We start by dividing the adversary into two types. We say an adversay A is “Type-1” if it makes
its challenge encryption query before making its key query. Otherwise we say it is “Type-2”. Note that a
Type-2 adversary is already an admissible adversary as per the key-selective ABE security game, thus for
any Type-2 adversary, security of the above ABE scheme follows directly from the key-selective security of
the underlying 1-query key-selective secure ABE scheme.

Now for the case of Type-1 attackers, the proof of security following via a short sequence of hybrid games.
Below we describe them more formally.

Game 0. This corresponds to the 1-query adaptive security for ABE as defined in Definition 2.2.

10Since the size of ciphertexts in a ABE system for TMs is not a-priori bounded, thus we rely on a weak NCE scheme with
unbounded length messages. However, if the size of ciphertexts is a-priori bounded, then one could simply rely on a wNCE
scheme for fixed length messages (that is, implied by regular PKE itself).

31

Game 1. This is same as the previous game, except now the challenger makes the following changes:

— it simulates the wNCE parameters during setup (i.e., (nce.pk, nce.ct, t) ← wNCE.Sim-Setup(1λ)), in-
stead of running the wNCE setup honestly;

— note that the adversary makes an encryption query before making its key query, thus the challenger
computes the underlying ABE ciphertext honestly (i.e., abe.ct ← sABE.Enc(abe.pp,mb, (w, t)), where
b is the challenge bit and rest of inputs are provided by the attacker), and “opens” the simulated
ciphertext nce.ct to abe.ct as nce.sk ← wNCE.Sim-Open(t, abe.ct). It then responds with nce.ct as the
challenge ciphertext, and when/if the adversary makes its key query, then the challenger samples the
underlying ABE honestly as abe.skT ← sABE.KeyGen(abe.msk, T), and uses the simulated key nce.sk
to respond to the key query as skT = (nce.sk, abe.skT).

Let AdvAi (λ) denote the adversary A’s advantage in Game i. To complete the proof, we prove the
following lemmas.

Lemma A.4. If wNCE is a weakly simulation secure NCE scheme, then for any Type-1 PPT adversary A,
we have that AdvA0 (λ)− AdvA1 (λ) ≤ negl(λ) for some negligible function negl(·).

Proof. The proof of this lemma follows directly from the simulation security of the wNCE scheme.

Lemma A.5. If sABE is a 1-query key-selective secure ABE scheme, then for any Type-1 PPT adversary
A, we have that AdvA1 (λ) ≤ negl(λ) for some negligible function negl(·).

Proof. The proof of this lemma follows directly from the key-selective security of the ABE scheme. Briefly, the
reduction algorithm proceeds as follows. It receives the ABE public parameters abe.pp from the challenger,
and simulates the wNCE parameters (nce.pk, nce.ct, t) at the beginning. It then sends (nce.pk, abe.pp) to
A as the public key. Since A is a Type-1 attacker, thus it sends its challenge messages and attribute
next. The reduction stores the challenge messages and attribute, and simply responds with nce.ct as the
challenge ciphertext to A. Next, if/when A makes its only key query, then the reduction algorithm forwards
it as its own key query to the challenger and receives the underlying ABE key abe.skT . The reduction
then forwards the challenge messages and attribute as its own challenge to the underlying ABE challenger.
Let abe.ct∗ be the challenger’s responce. The reduction then opens the simulated ciphertext to abe.ct∗ as
nce.sk ← wNCE.Sim-Open(t, abe.ct∗), and sends (nce.sk, abe.skT) as the response to adversary’s key query.
Finally, A outputs its guess which the reduction forwards to its ABE challenger as its own guess.

First, note that the reduction algorithm is an admissible adversary as per the1-query key-selective security
game since it makes its key query before asking for the challenge ciphertext. Thus, the reduction perfectly
simulates Game 1 for any Type-1 adversary. Hence, the lemma follows.

B Amplifying to q-query security

In this section, we provide a construction for amplifying security of our ABE scheme described in Section 4
from 1-query security to q-query security for any a-priori chosen parameter q.11 This mostly follows from
standard combinatorial techniques, but we provide it for completeness.

Let sABE = (sABE.Setup, sABE.KeyGen, sABE.Enc, sABE.Dec) be a single key secure ABE scheme with
message space {Fλ}λ∈N, where each Fλ is a finite field of size to be specified later. When clear from context,
we omit the security parameter as subscript. Let N, d ∈ N be parameters to be set later. For describing
our scheme and proving correctness we only require that the parameters satisfy |F| > N > d > 0. We now
describe the construction of our q-query secure ABE scheme qkABE = (Setup,KeyGen,Enc,Dec).

11Before applying this transformation, we amplify the security of our construction to 1-query adaptive security via the weak
NCE approach described in Appendix A.

32

• Setup(1λ) → (pp,msk): The setup algorithm chooses N distinct instances of the public parameters
and master secret key of sABE. In particular, for i ∈ [N], the algorithm chooses (ppi,mski) ←
sABE.Setup(1λ) and outputs pp = {ppi}i∈[N] as the public parameters and msk = {mski}i∈[N] as the
master secret key.

• KeyGen(msk, T) → skT : Let msk = {mski}i∈[N]. The key generation algorithm chooses several sABE
secret keys as follows. The algorithm selects a random subset S ⊂ [N] of size d+1. For each i ∈ S, the
algorithm chooses skT,i ← sABE.KeyGen(mski, T). Finally, the algorithm outputs skT = (S, {skT,i}i∈S)
as the secret key.

• Enc(pp,m, (w, t)) → ct: Let pp = {ppi}i∈[N]. The encryption algorithm samples a random degree
d polynomial p(·) with coefficients in F such that it has constant term p(0) = m. The algorithm
randomly samples N distinct non-zero elements xi ∈ F, and for each i ∈ [N] computes the intermediate
ciphertexts cti ← sABE.Enc(ppi, (xi, p(xi)), (w, t)). Finally, the algorithm outputs ct = {cti}i∈[N] as
the ciphertext.

• Dec(skT , ct)→ m or ⊥ : Let skT = (S, {skT,i}i∈S). Parse the ciphertext as {cti}i∈[N]. For each i ∈ S,
the algorithm computes yi ← sABE.Dec(skT,i, cti). If for any i ∈ S, (xi, yi) = ⊥, the algorithm outputs
⊥. Otherwise, the algorithm interpolates a degree d polynomial p(·) consistent with the d + 1 points
(xi, yi). Finally the algorithm computes m = p(0) and outputs m.

Setting parameters We now briefly discuss the setting of parameters N, d as well as the size of F. We
will use the following lemma.

Lemma B.1. Fix q, λ ∈ N. There exist universal constants c1, c2 > 0 such that the following holds. Let
d > c1q

2λ, N > c2q
4λ. Sample uniformly random subsets S1, . . . , Sq ⊂ [N] each of size d+ 1. We have

Pr [| ∪i<j Si ∩ Sj | > d] ≤ 2−Θ(λ)

The proof follows from a standard probabilistic argument. We refer to [GVW12, Lemma B.2] for details.
For our scheme, we will take d,N so as to satisfy the hypothesis of this lemma. We will take F to be any
finite field of size larger than N .

Correctness We show that the above construction is correct. Fix m, (w, t), T , and let (pp,msk) ←
Setup(1λ), skT ← KeyGen(msk, T), ct ← Enc(pp,m, (w, t)). Assume T accepts w within t steps, and let
skT = (S, {skT,i}i∈S) Let p(·) be the polynomial sampled when computing ct. By the correctness of sABE,
the decryption algorithm recovers k pairs (xi, p(xi)) for i ∈ S. Since a degree d polynomial is uniquely
determined by d + 1 points, the decryption algorithm correctly recovers the polynomial p(·). Thus by the
construction the decryption algorithm recovers the message m = p(0).

Efficiency We briefly remark on the efficiency of the scheme we construct. The polynomial bounds on
the runtimes of the algorithms are inherited from the underlying single key secure system, albeit with some
loss depending on the collusion bound q. In particular,if we construct the scheme using the construction
presented in Section 4 as a building block, we have that the algorithm KeyGen(msk, T) runs in time Õ(q2 ·|T |),
the algorithm Enc(pp,m, (w, t)) runs in time Õ(q4 · t), and Dec(skT , ct) runs in time Õ(q4 · t) where ct ←
Enc(pp,m, (w, t)). We remark that using techniques from [AV19] it is possible to bootstrap our construction
to construct a q key query secure scheme such that the dependence on q in all of the above bounds is linear.

B.1 Proof of q-query Security

We prove our construction of qkABE satisfies q-query security. The high level proof idea is as follows. Let
(S1, {skT1,i}i∈S1

), . . . , (Sq, {skTq,i}i∈Sq
) be the responses of the challenger to the q secret key queries made

by the adversary. For each machine Tj , we have that Tj does not accept the challenge word w within t steps.

33

Thus, for each index i ∈ [N] which is contained in at most one Sj , the security of sABE implies that cti is
indistinguishable from the encryption of a random message. On the other hand, if i is contained in multiple
Sj , the adversary may learn some information about (xi, p(xi)). However, by our selection of parameters
and Lemma B.1, with overwhelming probability the number of i for which this happens will be at most d,
and in this case the value of m = p(0) remains information theoretically hidden. The proof proceeds via
a sequence of hybrid games. We describe the games here and then prove adjacent games are indistinguishable.

Game 0 : This game corresponds to the original security game.

• Setup Phase: The challenger samples a bit β ← {0, 1}. The challenger chooses N distinct instances of
the public parameters and master secret key of sABE. In particular, for i ∈ [N], the algorithm chooses
(ppi,mski)← sABE.Setup(1λ) and outputs pp = {ppi}i∈[N] to the adversary. It sets msk = {mski}i∈[N]

as the master secret key.

• Key Query Phase: The adversary submits up to q key queries for Turing Machines Tj to the
challenger. Let msk = {mski}i∈[N]. For j ∈ [q], on the jth query, the challenger chooses several
sABE secret keys as follows. The algorithm selects a random subset Sj ⊂ [N] of size k. For each
i ∈ S, the challenger chooses skTj ,i ← sABE.KeyGen(mski, Tj). Finally, the challenger outputs skTj

=
(Sj , {skTj ,i}i∈Sj) as the jth secret key. We note that the adversary may adaptively choose subsequent
machines to query based on the secret keys it receives in response to its queries.

• Challenge Phase: The adversary submits two challenge messages (m0,m1) and the challenge at-
tribute (w, t) to the challenger. Let pp = {ppi}i∈[N]. The challenger samples a random degree d
polynomial p(·) with coefficients in F such that it has constant term p(0) = mβ . The challenger sam-
ples N distinct non-zero random elements xi ∈ F, and for each i ∈ [N] computes the intermediate
ciphertexts cti ← sABE.Enc(ppi, (xi, p(xi)), (w, t)). Finally, the challenger outputs ct∗ = {cti}i∈[N] as
the challenge ciphertext.

• Key Query Phase: Same as pre-challenge query phase (if proving full security; disallowed for key-
selective security).

• Guess Phase: The adversary submits its guess β′, and wins the game if β = β′.

Game ` : for ` ∈ [N]. In the `-th game, we modify how the challenge ciphertext ct∗ = {cti}i∈[N] is formed.
Let I ⊂ [`] consist of all i′ such that for two distinct j, j′, i ∈ Sj ∩ Sj′ . If i 6∈ I, then we replace cti with the
encryption of a random message. Otherwise cti is computed as in Game 0.
We now prove a sequence of lemmas showing that adjacent hybrid games are indistinguishable. For any
adversary A and Game `, we denote by AdvA` (λ), the advantage of A in that game Game `, where the
advantage is A’s success probability less 1/2.

Lemma B.2. If sABE is a single key secure ABE scheme, then for any PPT adversary A and ` ∈ [N],
AdvA` (λ)− AdvA`−1(λ) ≤ negl(λ) for some negligible function negl(·).

Proof. Observe that the difference between Game ` − 1 and Game ` is in how the challenge ciphertext is
generated. In particular, if ` is not contained in two distinct Sj , Sj′ sampled during the key query phase,
then cti is replaced with the encryption of a random message. In this case, since no machine queried accepts
w within t steps, indistinguishability of the two games follows immediately from security of sABE, which
holds since for the `-th instance of the single key scheme A receives a single key. In the case that ` was
sampled in two distinct Sj , Sj′ , the games are identical. The lemma follows.

Lemma B.3. Let c1, c2 be as in Lemma B.1. If d > c1q
2λ, N > c2q

4λ, and |F| > N , for any PPT adversary
A, AdvAN (λ) ≤ negl(λ) for some negligible function negl(·).

34

Proof. Let I ⊂ [N] be defined as in Game N. Suppose that |I| ≤ d, and let p(·) be the polynomial sampled by
the challenger during the challenge phase. Observe that the challenge ciphertext only consists of encryptions
of d many points of p. Indeed, for all i 6∈ I, cti is independent of of mβ , and all other cti. Moreover,
given up to d samples {(xi, p(xi))}i∈I , p is not fully determined, and the constant term mβ = p(0) remains
information theoretically hidden. Thus, in this case ct∗ is independent of β and thus A has advantage 0. On
the other hand, by Lemma B.1, |I| > d with probability exponentially small in λ. The lemma follows.

The q-query security of our scheme follows immediately from the above two lemmas.

C Garbled RAM: Iterated Simulation Security of [GHRW14a]

Our ABE construction uses a Garbled RAM scheme GRAM which satisfies our notion of Iterated Simulation
Security. [GHRW14a] construct a basic Garbled RAM scheme which satisfies security with Unprotected
Memory Access (UMA), a simulation based notion of security where simulator is given the memory access
patterns of the programs being simulated. Using Oblivious RAM they then bootstrap this basic scheme
to satisfy a stronger notion of full security. In this appendix we sketch the construction of the basic UMA
secure scheme of [GHRW14a], and prove that it already satisfies Iterated Simulation Security. We review
the required primitives before formally describing the scheme and then proving our security claim.

C.1 Timed IBE

The scheme of [GHRW14a] uses a variant of IBE (in fact a variant of hierarchical IBE) which the authors
name Timed IBE. Moreover, they show that Timed IBE can be constructed from any selectively-secure
IBE scheme. We review the syntax and security definition here, and refer to [GHRW14a] for the con-
struction and security proof. A Timed Identity-Based Encryption (TIBE) scheme TIBE for set of iden-
tity spaces I = {Iλ}λ∈N and message spaces M = {Mλ}λ∈N consists of five polynomial time algorithms
(Setup, TimeGen,KeyGen, Enc, Dec) with the following syntax:

• Setup(1λ) → (pp,msk): The setup algorithm takes as input the security parameter λ. It outputs the
public parameters pp and the master secret key msk.

• TimeGen(msk, j)→ tskj : The time-key generation algorithm takes as input the master secret key msk
and an integer j ∈ N. It outputs a time secret key tskj .

• KeyGen(tskj , (j, v)) → sk(j,v): The key generation algorithm takes as input a time secret key tskj and
an identity (j, v). It outputs a secret key sk(j,v).

• Enc(pp,m, (j, v))→ ct: The encryption algorithm takes as input the public parameters pp, a message
m ∈Mλ, and an identity (j, v). It outputs a ciphertext ct.

• Dec(sk(j,v), ct)→ m or ⊥: The decryption algorithm takes as input a secret key sk(j,v) and a ciphertext
ct. It outputs either a message m ∈Mλ or a special symbol ⊥.

Correctness. We say a Timed IBE scheme TIBE = (Setup, TimeGen, KeyGen, Enc, Dec) satisfies cor-
rectness if for all λ ∈ N, (pp,msk) ← Setup(1λ), j ∈ N, m ∈ Mλ, tskj ← TimeGen(msk, j), sk(j,v) ←
KeyGen(tskj , (j, v)), and ct← Enc(pp,m, (j, v)) the following holds:

Pr[Dec(sk(j,v), ct) = m] = 1

Definition C.1. We say a timed IBE scheme TIBE = (Setup, KeyGen, Enc, Dec) is secure if for any PPT
adversary A = (A0,A1,A2) there exists a negligible function negl(·), such that for all λ ∈ N, the adversary’s

35

advantage AdvA(λ) ≤ negl(λ), where advantage of A is defined as

Pr

A2(st1, ct) = b :

(t ∈ N, j∗ ∈ [t], (j∗, v∗), S0, S, st0)← A0(1λ)
(pp,msk)← Setup(1λ); b← {0, 1}
tskj ← TimeGen(msk, j) for j ∈ [0, t]

sk(0,v) ← KeyGen(tsk0, v) for (0, v) ∈ S0

sk(j,v) ← KeyGen(tskj , v) for (j, v) ∈ S
(st1,m0,m1) = A1(pp, {sk(0,v)}(0,v)∈S0

, {sk(j,v)}(j,v)∈S , {tskj}j>j∗ , st0)
ct← Enc(pp,mb, (j

∗, v∗))

− 1

2

where the adversary may receive all time secret keys tskj for times j > j∗, an arbitrary set of identity secret
keys for identities (0, v) where the time is 0, and precisely one secret key for identity (j, v) for all positive
j ≤ j∗. We additionally require that the adversary not receive a secret key for identity (j∗, v∗).

C.2 Garbled Circuits with Labels

The construction in [GHRW14a] also uses a Garbled Circuit scheme which allows for specifying labeled
outputs. A Garbled Circuit scheme with output labels allows the garbling algorithm to accept as input a
collection of output labels for the output wires to the circuit being garbled. More formally a scheme GC
for circuit classes C = {Cλ}λ∈N consists of two polynomial time algorithms (GC.Garble, GC.Eval) with the
following syntax:

• GC.Garble(1λ, C, {labout
j,b }j∈[m],b∈{0,1})→ (C̃, {labin

i,b}i∈[n],b∈{0,1}): The garbling algorithm takes as input
the security parameter, a circuit C ∈ C = {Cλ}λ∈N with n input wires and m output wires, and a

collection of output wire labels {labout
j,b }j∈[m],b∈{0,1}. It outputs a garbled circuit C̃ and a collection of

input wire labels {labin
i,b}i∈[n],b∈{0,1}.

• GC.Eval(C̃, {labin
i,}i∈[n]) → {labout

j, }j∈[m]: The evaluation algorithm takes as input a garbled circuit

C̃ and a collection of n input wire labels {labin
i,}i∈[n]. It outputs a sequence of output wire labels

{labout
j, }j∈[m].

For any j ∈ [m] and b ∈ {0, 1}, we allow the corresponding output label to be set so that labout
j,b = b. If

for a given j, the labels for both b ∈ 0, 1 are set this way, we say the output bit is given in the clear.
Correctness. We say a garbled circuit scheme GC = (GC.Garble, GC.Eval) satisfies correctness if for all

λ ∈ N, C ∈ Cλ, (C̃, {labin
i,b}i∈[n],b∈{0,1})← GC.Garble(1λ, C, {labout

j,b }j∈[m],b∈{0,1}), and x, y satisfying C(x) = y,
the following holds:

Pr[GC.Eval(C̃, {labin
i,xi
}i∈[n]) = {labout

j,yj}j∈[m]] = 1

Definition C.2. We say a Garbled Circuit scheme GC = (GC.Garble, GC.Eval) is secure if there exists a
polynomial time simulator algorithm GC.Sim such that for any PPT adversary A = (A0,A1) there exists
a negligible function negl(·), such that for all λ ∈ N, the adversary’s advantage AdvA(λ) ≤ negl(λ), where
advantage of A is defined as

AdvA(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

A1(ctb) = b :

b← {0, 1}
(C, x)← A0(1λ)

y := C(x)
chal0 ← GC.Sim(1λ, 1n, 1|C|, {labout

j,yj}j∈[|y|])

(C̃, {labi,b}i∈[n],b∈{0,1})← GC.Garble(1λ, C)

chal1 := (C̃, {labi,xi}i∈[n])

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
,

where C ∈ Cλ and x ∈ {0, 1}n.

36

C.3 Predictably Timed Writes

The construction of [GHRW14a], allows for garbling programs and inputs so long as the execution of the
programs satisfies a property called predictably timed writes. Intuitively this property guarantees that for
any location i in memory, before making a read at location i, one can efficiently compute the last time
location i was written to. More formally, we require that there exist a polynomial sized circuit WriteTime
(which may depend on the database D, programs Pk, and inputs xk) such that if state is the jth state
variable in the computation and iread is the jth location in memory read during the computation, then
WriteTime(j, state, iread) = u, where u < j is the largest value such that iread is the location in the database
read by the uth step of the program. We now argue that any computation can be transformed so as to satisfy
predictably timed writes, with only a small blowup in the size of the database, programs, and runtime. Let
{Pk}k and D be the programs and database of the computation. We replace D with a binary tree D′ so
that the leaves of D′ are simply the entries of D. The non-leaf nodes of the tree will contain the most recent
time step j for which each of its two immediate children were writen to / updated. These values are all
initiated to 0. We modify the programs Pk to new programs P ′k so that at each read for (say) location i,
the computation follows the path from the root of D′ to the leaf corresponding to i. We modify the step
circuits, so that the state information stores the most recent write/update times of the children of the most
recently read node. Thus, the most recent write time of any node to be read can be trivially computed
from the state information. We also modify them so that whenever P ′k writes to a leaf node, P ′k updates the
stored last write times in each node in the path from the root of the tree. Observe that transforming the
database and programs in this way increases the size of the database so that |D′| = O(|D| log(T)) where T
is the total run time of the programs, since there are 2|D| many nodes to store, and each node is of size at
most 2 log(T). Moreover, the size of each program increases so that |P ′k| = O(|Pk| log(|D|) log(T)) where the
log(|D|) factor is due to traversing the tree D′ and the log(|T |) factor is due to storing the node information
in state. In the construction we describe below, we assume that all computations already satisfy predictably
timed writes. This is essentially without loss of generality, as GData and GProg can be modified to perform
this transformation on the data and programs respectively before garbling.

C.4 GHRW Garbled RAM Construction

Let TIBE be a secure timed IBE scheme, and let GC be a secure garbled circuit scheme with output labels.
Assume that the time and identity secret keys reveal which time or identity they are for. We now formally
describe the GHRW Garbled RAM scheme.

GData(1λ, D)→ (D̃, kD): The algorithm proceeds as follows.

1. The algorithm chooses (pp,msk)← Setup(1λ).

2. It then chooses tsk0 ← TimeGen(msk, 0), and for each i ∈ [|D|] it chooses

sk(0,idi) ← KeyGen(tsk0, (0, idi))

where for each i ∈ [|D|], idi = (i,D[i]).

3. It outputs D̃ = {sk0,idi
}i∈[|D|] as the garbled database and kD = (pp,msk) as the program garbling

key.

GProg(1λ, kD, 1
m, P, 1n, (tinit, tfin))→ (P̃ , {labin

i,b}): The algorithm parses the key as kD = (pp,msk), and

parses the program as P = {CP
RAMj}j∈[tinit,tfin]. We assume the state input (and updated state output)

for each step program will be of length n. For each j, the algorithm chooses tskj ← TimeGen(msk, j).
For each step circuit CP

RAMj we define an augmented step circuit CP
RAMj+ . The augmented step circuit

will have hard-coded the public paramters pp, the time secret key tskj , the labels lab0, lab1, and
randomness strings r, r0, r1. We define the augmented step circuit

CPRAMj+ [pp, tskj , lab0, lab1, r, r0, r1](state, bread)

37

which takes as input an n bit long state state and read bit bread. The circuit CP
RAMj+ computes as

follows:

1. The circuit computes
(state′, iread, iwrite, bwrite) := CPRAMj (state, bread)

2. If (iwrite, bwrite) 6= ⊥, the circuit computes

sk(j,id) := KeyGen(tskj , (j, id))

where id = (iwrite, bwrite) and sets skwrite = sk(j,id). If (iwrite, bwrite) = ⊥, the circuit sets skwrite = ⊥.

3. Let u = WriteTime(j, state, iread), be the largest time u < j such that location iread was written to
at time u. For each b ∈ {0, 1}, the circuit computes

ctb := Enc(pp, labb, (u, idb); rb)

where for each b, idb = (iread, b).

4. The circuit outputs (state′, iread, iwrite, skwrite, ct0, ct1)

Now, the algorithm garbles the augmented versions of the step circuits {CP
RAMj}tinit≤j≤tfin

. Let ρ1, ρ2

be the number of random bits used by the algorithms KeyGen(·) and Enc(·) respectively. Starting with
j = tfin and counting down to j = tinit, the algorithm proceeds as follows.

1. The algorithm computes a set labout,j of output labels. If j = tfin, then it sets labout,j so that the
updated state output (which is simply the output y of the program) is given in the clear, and the
labels for the other outputs are set to ⊥. If j 6= tfin it sets labout,j so that the output labels for the
updated state output (i.e. for the first n output wires) match the input labels {labib,j+1}i∈nb∈{0,1}
for the first n input wires of CP

RAM(j+1)+ . The labels for all other outputs are set so that they are
given in the clear.

2. The algorithm computes hard-coded inputs. It chooses tskj ← TimeGen(msk, j). It sets lab0 :=
labn+1

0,j+1 and lab1 := labn+1
1,j+1 to be the labels for the last input wire of CP

RAM(j+1)+ . Finally, it
chooses randomness strings r ← {0, 1}ρ1 and for each b ∈ {0, 1} it chooses rb ← {0, 1}ρ2 .

3. The algorithm sets the augmented step circuit as

CPRAMj+ := CPRAMj+ [pp, tskj , lab0, lab1, r, r0, r1]

and then it garbles the circuit

(C̃P
RAMj+ , {labib,j}

i∈[n+1]
b∈{0,1})← GC.Garble(1λ, CPRAMj+ , labout,j)

The algorithm sets labin
i,b := labib,tinit

for each i ∈ [n] and b ∈ {0, 1}. It outputs the garbled program

P̃ := {C̃P
RAMj+}j∈[tinit,≤tfin] and the input label set {labin

i,b}
i∈[n]
b∈{0,1}. Note that, for j = tinit, the read bit

input is ignored and thus the garbled circuit can be evaluated without the final label.

EvalD̃(P̃ , {labin
i,}i∈[n])→ ỹ: The algorithm parses the garbled program as P̃ = {C̃P

RAMj+}j∈[tinit,tfin]. It then
evaluates the garbled augmented step circuits in sequence. Counting up, for j = tinit to j = tfin the
algorithm does the following:

1. If j = tinit, let labj = {labin
i,}, and otherwise let labj be as computed in the final step of the

previous iteration of the loop. If j = tfin, the algorithm computes

(ỹ,⊥)← GC.Eval(C̃P
RAMj+ , labj)

and then breaks out of the loop. Otherwise it computes

({labout
i,j }i∈[n], i

read
j , iwrite

j , skwrite
j , ct0,j , ct1,j)← GC.Eval(C̃P

RAMj+ , labj)

38

2. Let sk ∈ D̃ be the unique secret key in the garbled database for an identity of the form (j′, (iwrite
j , b)).

The algorithm replaces sk with skwrite
j . Note that the contents of D̃ have now been modified.

3. Now, let sk ∈ D̃ be the unique secret key in the garbled database for an identity of the form
(u, iread

j , b). The algorithm decrypts

labb,j ← Dec(sk, ctb,j)

4. The algorithm sets labj+1 so that the first n labels match {labout
i,j } as computed in the first step

of the loop and the final label is labb,j as computed in the previous step of the loop.

After breaking out of the loop, the algorithm simply outputs ỹ.

We omit proofs of correctness and efficiency, and refer to [GHRW14a] for the proofs.

C.5 Iterated Simulation Security

We now turn to proving that the construction in the previous subsection satisfies our notion of Iterated
Simulation Security. We first define the simulator Sim.

Sim(1λ, kD, 1
n, |P |, y, {accessk}k∈`, (tinit, tfin)): The simulator parses the key as kD = (pp,msk). Given n and

|P |, the simulator sets s to be the circuit size of each augmented step circuit of P . Let access =
{(iread

j , iwrite
j , bwrite

j)}j∈[tinit,tfin] be the memory access pattern restricted to the time interval (tinit, tfin)).
The simulator computes a sequence of simulated garbled circuits, one for each time j ∈ [tinit, tfin]).
Counting down from j = tfin to j = tinit the simulator proceeds as follows.

1. The simulator computes a set labout,j of output labels. If j = tfin, then labout,j is set to be y given
out in the clear, with all other wires outputting ⊥. Otherwise, when j 6= tfin, let {labij+1}i∈[n+1]

be the input labels computed in the final step of the previous iteration of the loop. The simulator
computes tskj ← TimeGen(msk, j) and skwrite

j ← KeyGen(tskj , (j, id)) where id = (iwrite
j , bwrite

j). Let

u be the largest time u < j such that location iread
j was written to at time u i.e. iread

j = iwrite
u , and

let b := bwrite
u be the bit written at time u. This can be computed from {accessk}. The simulator

computes ctb,j ← Enc(pp, labn+1
j+1 , (u, idb)) where idb = (iread

j , b), and ct1−b,j ← Enc(pp,0, (u, id1−b)

where id1−b = (iread
j , 1 − b). Then the simulator sets labout,j so that the first n labels match the

labels {labij+1}i∈[n], and the remaining labels are set so that outputs iread
j , iwrite

j , skwrite
j , ct0,j , ct1,j

are all given out in the clear.

2. The simulator computes

(C̃P
RAMj+ , {labij}i∈[n+1])← GC.Sim(1λ, 1n, 1s, labout,j)

The simulator sets labin
i, := labitinit

for each i ∈ n. It outputs the simulated program P̃ := {C̃P
RAMj+}j∈[tinit,tfin]

and input labels {labin
i,}i∈[n].

Before stating and proving our main security claim, we define a sequence of experiments. Fix a positive
integer `.
Experiment areal for a ∈ [`]:

• Phase 1: The adversary sends the challenger a databaseD ∈ {0, 1}m, and ` tuples {(Pk, xk, nk, (tinit,k, tfin,k))}k∈[`].
The challenger computes (y1, . . . , y`) ← (P1(x1), . . . , P`(x`))

D. For each k the challenger computes
accessk to be memory access pattern of the kth program.

39

• Data Garbling: The challenger chooses (pp,msk)← Setup(1λ). It then chooses tsk0 ← TimeGen(msk, 0),
and for each i ∈ m it chooses

sk(0,idi) ← KeyGen(tsk0, (0, idi))

where for each i ∈ [|D|], idi = (i,D[i]). The challenger sets D̃ := {sk0,idi}i∈[|D|] as the garbled database,
and kD := (pp,msk) as the program garbling key.

• Honest Garbling: For k > a, the challenger honestly garbles the kth program Pk. In particular, for
each k ∈ [a+ 1, `], the challenger computes

(P̃k, {labin
i,b,k}i∈[nk])← GProg(1λ, kD,m, Pk, 1

nk , (tinit,k, tfin,k))

• Program a: The challenger parses the ath program as Pa = {CPa

RAMj}j∈[tinit,a,tfin,a]. Let ρ1, ρ2 be
the number of random bits used by the algorithms KeyGen(·) and Enc(·) respectively. Starting with
j = tfin,a and counting down to j = tinit,a, the challenger proceeds as follows.

1. The challenger computes a set labout,j of output labels. If j = tfin,a, then it sets labout,j so that the
updated state output (which is simply the output ya of the program) is given in the clear, and the
labels for the other outputs are set to ⊥. If j 6= tfin,a it sets labout,j so that the output labels for
the updated state output (i.e. for the first n output wires) match the input labels {labib,j+1}

i∈na

b∈{0,1}

for the first na input wires of CPa

RAM(j+1)+ . The labels for all other outputs are set so that they are
given in the clear.

2. The challenger computes hard-coded inputs. It chooses tskj ← TimeGen(msk, j). It sets lab0 :=

labna+1
0,j+1 and lab1 := labna+1

1,j+1 to be the labels for the last input wire of CPa

RAM(j+1)+ . Finally, it
chooses randomness strings r ← {0, 1}ρ1 and for each b ∈ {0, 1} it chooses rb ← {0, 1}ρ2 .

3. The challenger sets the augmented step circuit as

CPa

RAMj+ := CPa

RAMj+ [pp, tskj , lab0, lab1, r, r0, r1]

and then it garbles the circuit

(C̃Pa

RAMj+ , {labib,j}
i∈[na+1]
b∈{0,1})← GC.Garble(1λ, CPa

RAMj+ , labout,j)

The challenger sets P̃a := {C̃Pa

RAMj+}j∈[tinit,a,tfin,a]. The challenger sets labin
i,a := labixa[i],tinit,a

for each
i ∈ [na].

• Simulated Programs: For each k < a, the challenger simulates the kth program Pk. In particular,
for each k ∈ [a− 1], the challenger computes

(P̃k, {labin
i,k}i∈[nk])← Sim(1λ, kD, 1

nk , |Pk|, yk, {accessk′}k′∈[`], (tinit,k, tfin,k))

• Guess Phase: The challenger sends the adversary {(P̃k, {labin
i,k}i∈nk)}k∈[a] and {(P̃k, {labin

i,b,k}
i∈[nk]
b∈{0,1})}k∈[a+1,`].

The adversary sends the challenger a guess bit β.

Experiment asim for a ∈ [`]: This experiment is identical to Experiment areal, except for how the challenger
processes the ath program. Below we only describe the phase Program a, as all other phases are identical.

• Program a: Let s be the size of the step circuits of Pa, and let access = {(iread
j , iwrite

j , bwrite
j)}j∈[tinit,a,tfin,a]

be the memory access pattern restricted to the time interval (tinit,a, tfin,a)). The challenger computes
a sequence of simulated garbled circuits, one for each time j ∈ [tinit,a, tfin,a]). Counting down from
j = tfin,a to j = tinit,a the challenger proceeds as follows.

40

1. The challenger computes a set labout,j of output labels. If j = tfin,a, then labout,j is set to be
ya given out in the clear, with all other wires outputting ⊥. Otherwise, when j 6= tfin,a, let
{labij+1}i∈[n+1] be the input labels computed in the final step of the previous iteration of the

loop. The challenger computes tskj ← TimeGen(msk, j) and skwrite
j ← KeyGen(tskj , (j, id)) where

id = (iwrite
j , bwrite

j). Let u be the largest time u < j such that location iread
j was written to at

time u i.e. iread
j = iwrite

u , and let b := bwrite
u be the bit written at time u. This can be computed

from {accessk}. The challenger computes ctb,j ← Enc(pp, labn+1
j+1 , (u, idb)) where idb = (iread

j , b),

and ct1−b,j ← Enc(pp,0, (u, id1−b) where id1−b = (iread
j , 1− b). Then the challenger sets labout,j so

that the first na labels match the labels {labij+1}i∈[na], and the remaining labels are set so that

outputs iread
j , iwrite

j , skwrite
j , ct0,j , ct1,j are all given out in the clear.

2. The challenger computes

(C̃Pa

RAMj+ , {labij}i∈[na+1])← GC.Sim(1λ, 1na , 1s, labout,j)

The challenger sets labin
i,a := labitinit,a

for each i ∈ [na]. The challenger sets P̃a := {C̃P
RAMj+}j∈[tinit,a,tfin,a].

For each adversary A and integer a ∈ [`], we let AdvAa,real(λ) be the probability that A outputs a guess β = 0

in Experiment areal, and AdvAa,sim(λ) be the probability that A outputs a guess β = 0 in Experiment asim.
Now, proving that GRAM satisfies Iterated Simulation Security, is equivalent to proving the following.

Theorem C.3. If TIBE is a secure Timed IBE scheme and GC is a secure garbled circuit scheme, then for
any PPT adversary A, integer `, and a ∈ [`], we have that |AdvAa,real(λ) − AdvAa,sim(λ)| ≤ negl(λ) for some
negligible function negl(·).

We prove this theorem via a sequence of hybrid experiments. Let (tinit,a, tfin,a) be the time interval for
program Pa. We define a sequence of hybrid experiments.
Experiment a.l.1 for l ∈ [tinit,a, tfin,a]: This experiment is identical to Experiment areal, except for how the
challenger processes the ath program. Below we only describe the phase Program a, as all other phases are
identical.

• Program a: The challenger parses the ath program as Pa = {CPa

RAMj}j∈[tinit,a,tfin,a], where the augmented
versions of each step circuit has size s. Let ρ1, ρ2 be the number of random bits used by the algorithms
KeyGen(·) and Enc(·) respectively. If l 6= tfin,a, starting with j = tfin,a and counting down to j = l + 1,
the challenger proceeds as follows.

1. The challenger computes a set labout,j of output labels. If j = tfin,a, then it sets labout,j so that the
updated state output (which is simply the output ya of the program) is given in the clear, and the
labels for the other outputs are set to ⊥. If j 6= tfin,a it sets labout,j so that the output labels for
the updated state output (i.e. for the first n output wires) match the input labels {labib,j+1}

i∈na

b∈{0,1}

for the first na input wires of CPa

RAM(j+1)+ . The labels for all other outputs are set so that they are
given in the clear.

2. The challenger computes hard-coded inputs. It chooses tskj ← TimeGen(msk, j). It sets lab0 :=

labna+1
0,j+1 and lab1 := labna+1

1,j+1 to be the labels for the last input wire of CPa

RAM(j+1)+ . Finally, it
chooses randomness strings r ← {0, 1}ρ1 and for each b ∈ {0, 1} it chooses rb ← {0, 1}ρ2 .

3. The challenger sets the augmented step circuit as

CPa

RAMj+ := CPa

RAMj+ [pp, tskj , lab0, lab1, r, r0, r1]

and then it garbles the circuit

(C̃Pa

RAMj+ , {labib,j}
i∈[na+1]
b∈{0,1})← GC.Garble(1λ, CPa

RAMj+ , labout,j)

41

Next, counting down from j = l to j = tinit,a the challenger proceeds as follows.

1. The challenger computes a set labout,j of output labels. If j = tfin,a = l, then labout,j is set to be ya

given out in the clear, with all other wires outputting ⊥. When, j = l < tfin,a, let {labib,j+1}
i∈[na+1]
b∈{0,1}

be the labels computed in the final step of the final iteration of the previous loop. Otherwise, when
j < l, let {labij+1}i∈[n+1] be the input labels computed in the final step of the previous iteration

of this loop. The challenger computes tskj ← TimeGen(msk, j) and skwrite
j ← KeyGen(tskj , (j, id))

where id = (iwrite
j , bwrite

j). Let u be the largest time u < j such that location iread
j was written to at

time u i.e. iread
j = iwrite

u , and let b := bwrite
u be the bit written at time u. This can be computed from

{accessk}. If j = l, for each b′ ∈ {0, 1}, the challenger computes ctj,b′ ← Enc(pp, labna+1
b′,j+1, (u, id

′
b))

where id′b = (iread
j , b′). If j < l, the challenger computes ctb,j ← Enc(pp, labn+1

j+1 , (u, idb)) where

idb = (iread
j , b), and ct1−b,j ← Enc(pp,0, (u, id1−b) where id1−b = (iread

j , 1 − b). Then, if j = l,

the challenger sets labout,j so that the first na labels match the labels {labistate′j [i],j+1}i∈[na] where

state′j is the updated state that would have been output by the jth step circuit if all ` programs
and inputs were executed on the database. If j < l, the first na labels of labout,j are set to match
the first na labels {labij+1}i∈[na]. In both cases, the remaining labels of labout,j are set so that

outputs iread
j , iwrite

j , skwrite
j , ct0,j , ct1,j are all given out in the clear.

2. The challenger computes

(C̃Pa

RAMj+ , {labij}i∈[na+1])← GC.Sim(1λ, 1na , 1s, labout,j)

The challenger sets labin
i,a := labitinit,a

for each i ∈ [na]. The challenger sets P̃a := {C̃P
RAMj+}j∈[tinit,a,tfin,a].

Experiment a.l.2 for l ∈ [tinit,a, tfin,a]: This experiment is identical to Experiment a.1.1, except for how the
challenger processes the ath program, and in particular how it sets the output of the lth circuit. Below we
only describe the phase Program a, as all other phases are identical.

• Program a: The challenger parses the ath program as Pa = {CPa

RAMj}j∈[tinit,a,tfin,a], where the augmented
versions of each step circuit has size s. Let ρ1, ρ2 be the number of random bits used by the algorithms
KeyGen(·) and Enc(·) respectively. If l 6= tfin,a, starting with j = tfin,a and counting down to j = l + 1,
the challenger proceeds as follows.

1. The challenger computes a set labout,j of output labels. If j = tfin,a, then it sets labout,j so that the
updated state output (which is simply the output ya of the program) is given in the clear, and the
labels for the other outputs are set to ⊥. If j 6= tfin,a it sets labout,j so that the output labels for
the updated state output (i.e. for the first n output wires) match the input labels {labib,j+1}

i∈na

b∈{0,1}

for the first na input wires of CPa

RAM(j+1)+ . The labels for all other outputs are set so that they are
given in the clear.

2. The challenger computes hard-coded inputs. It chooses tskj ← TimeGen(msk, j). It sets lab0 :=

labna+1
0,j+1 and lab1 := labna+1

1,j+1 to be the labels for the last input wire of CPa

RAM(j+1)+ . Finally, it
chooses randomness strings r ← {0, 1}ρ1 and for each b ∈ {0, 1} it chooses rb ← {0, 1}ρ2 .

3. The challenger sets the augmented step circuit as

CPa

RAMj+ := CPa

RAMj+ [pp, tskj , lab0, lab1, r, r0, r1]

and then it garbles the circuit

(C̃Pa

RAMj+ , {labib,j}
i∈[na+1]
b∈{0,1})← GC.Garble(1λ, CPa

RAMj+ , labout,j)

Next, counting down from j = l to j = tinit,a the challenger proceeds as follows.

42

1. The challenger computes a set labout,j of output labels. If j = tfin,a = l, then labout,j is set to be ya

given out in the clear, with all other wires outputting ⊥. When, j = l < tfin,a, let {labib,j+1}
i∈[na+1]
b∈{0,1}

be the labels computed in the final step of the final iteration of the previous loop. Otherwise, when
j < l, let {labij+1}i∈[n+1] be the input labels computed in the final step of the previous iteration

of this loop. The challenger computes tskj ← TimeGen(msk, j) and skwrite
j ← KeyGen(tskj , (j, id))

where id = (iwrite
j , bwrite

j). Let u be the largest time u < j such that location iread
j was written to

at time u i.e. iread
j = iwrite

u , and let b := bwrite
u be the bit written at time u. This can be computed

from {accessk}. If j = l, the challenger sets labn+1
j+1 := labn+1

b,j+1. Then, the challenger computes

ctb,j ← Enc(pp, labn+1
j+1 , (u, idb)) where idb = (iread

j , b), and ct1−b,j ← Enc(pp,0, (u, id1−b) where

id1−b = (iread
j , 1 − b). Then, if j = l, the challenger sets labout,j so that the first na labels match

the labels {labistate′j [i],j+1}i∈[na] where state′j is the updated state that would have been output by

the jth step circuit if all ` programs and inputs were executed on the database. If j < l, the first
na labels of labout,j are set to match the first na labels {labij+1}i∈[na]. In both cases, the remaining

labels of labout,j are set so that outputs iread
j , iwrite

j , skwrite
j , ct0,j , ct1,j are all given out in the clear.

2. The challenger computes

(C̃Pa

RAMj+ , {labij}i∈[na+1])← GC.Sim(1λ, 1na , 1s, labout,j)

The challenger sets labin
i,a := labitinit,a

for each i ∈ [na]. The challenger sets P̃a := {C̃P
RAMj+}j∈[tinit,a,tfin,a].

For each hybrid a.l.v, define AdvAa.l.v(λ) to be the probability the adversary guesses β = 0 in Experiment
a.l.v.

Lemma C.4. If TIBE is a secure timed IBE scheme, then for all PPT A, |AdvAa.l.1(λ)−AdvAa.l.2(λ)| ≤ negl(λ).

Proof. Suppose for contradiction that A is a PPT adversary for which |AdvAa.l.1(λ)− AdvAa.l.2(λ)| = ε, where
ε is non-negligible. We give a reduction B which uses A to break the security of TIBE.

The reduction algorithm B plays a game with a TIBE challenger. It simulates the view of Experiment
a.l.1 to A. In particular, it receives database D ∈ {0, 1}m, and ` tuples {(Pk, xk, nk, (tinit,k, tfin,k))}k∈[`].
The reduction B then computes (y1, . . . , y`)← (P1(x1), . . . , P`(x`))

D. For each k, B computes accessk to be
memory access pattern of the kth program. Next, as a function of D and the memory access pattern, the
reduction computes sets S0 = {(0, (i,D[i])) : i ∈ [m]}, S = {(j, (iwrite

j , bwrite
j)) : j ≤ l}. It then sets (j∗, v∗) to

be (u, (iread
l , 1−bwrite

u)), where u < l is the largest time value for which iwrite
u = iread

l . It sends S0, S, (j
∗, v∗), l+1

to the challenger. The challenger chooses (pp,msk)← Setup(λ), tskj ← TimeGen(msk, j) for each j ∈ [tfin,`],
sk(0,v) ← KeyGen(tsk0, (0, v)) for each (0, v) ∈ S0, and sk(j,v) ← KeyGen(tskj , (j, v)) for each (j, v) ∈ S.
Then, the challenger sends B, the public parameters pp, the secret keys {sk(t,v)}(t,v)∈S0∪S , and the time keys
{tskj}j∈[l+1,tfin,`]. Now, B can compute the output of challenger of Experiment a.l.1, with the change that
wherever a program garbling key kD was previously used, B substitutes in the relevant keys which it received
from the challenger. The reduction continues in this way until it needs to set ct1−bwrite

u ,l. The reduction B
sends the challenger the messages m0 = labna+1

1−bwrite
u ,l+1

and m1 = 0. The challenger chooses β′ ← {0, 1},
computes ct∗ ← Enc(pp,mβ′ , (u, (i

read
l , 1− bwrite

u))) and sends ct∗ to B. Now, B sets ct1−bwrite
u ,l := ct∗, and then

proceeds in computing its output as before. Finally, it sends the output to A which responds with a guess β,
and then B forwards its guess to the challenger. It is straightforward to verify that when β′ = 0, B perfectly
simulates the view of Experiment a.l.1, and otherwise it perfectly simulates the view of Experiment a.l.2.
It follows immediately that B has non-negligible advantage ε in the game with the TIBE challenger, which
contradicts the assumption that TIBE is a secure Timed IBE scheme, and we are done.

In the following lemma, we rename Experiment areal to Experiment a.(tinit,a − 1).2.

43

Lemma C.5. If GC is a secure Garbled Circuit Scheme, then for all l ∈ [tinit,a, tfin,a], and PPT adversary A,

|AdvAa.l.1(λ)− AdvAa.(l−1).2(λ)| ≤ negl(λ).

Proof. Suppose for contradiction that A is a PPT adversary for which |AdvAa.l.1(λ) − AdvAa.(l−1).2(λ)| = ε,
where ε is non-negligible. We give a reduction B which uses A to break the security of GC.

The reduction algorithm B plays a game with a GC challenger. It simulates the view of Experiment
a.(l−1).2 to A. In particular, it receives database D ∈ {0, 1}m, and ` tuples {(Pk, xk, nk, (tinit,k, tfin,k))}k∈[`].
The reduction B then computes (y1, . . . , y`)← (P1(x1), . . . , P`(x`))

D. For each k, B computes accessk to be
memory access pattern of the kth program. Now, B can compute the output of challenger of Experiment

a.(l − 1).1. The reduction continues in this way until just before it is to compute C̃Pa

RAMl+ . Let zl be the

input which C̃Pa

RAMl+ would have taken as input. The reduction B sends the challenger the circuit C̃Pa

RAMl+ ,

the output labels labout,l, and input zl. The challenger computes w′l = C̃Pa

RAMl+(zl). The challenger chooses

β′ ← {0, 1}, and if β′ = 0 it computes its challenge (C̃Pa

RAMl+ , {labil}i∈[na+1]) by honestly garbling C̃Pa

RAMl+ and

if β′ = 1 it computes its challenge using the simulator. It then sends (C̃Pa

RAMl+ , {labil}i∈[na+1]) to B. Now,
B proceeds in computing its output as the challenger would in Experiment a.(l − 1).2, substituting with

(C̃Pa

RAMl+ , {labil}i∈[na+1]) where appropriate. Finally, it sends the output to A which responds with a guess β,
and then B forwards its guess to the challenger. It is straightforward to verify that when β′ = 0, B perfectly
simulates the view of Experiment a.(l − 1).2, and otherwise it perfectly simulates the view of Experiment
a.l.1. It follows immediately that B has non-negligible advantage ε in the game with the GC challenger,
which contradicts the assumption that GC is a secure garbled circuit scheme, and we are done.

Observe that Experiment a.(tfin,a).2 is identical to Experiment asim. It follows then that the previous two
lemmas imply Theorem C.3.

44

	Introduction
	Technical Overview

	Preliminaries
	Attribute-Based Encryption for Turing Machines
	Secret Key Encryption
	Identity-Based Encryption

	Garbled RAM with Iterated Simulation Security
	ABE for Turing Machines
	Construction
	Correctness
	Efficiency
	Security

	From 1-query key-selective security to adaptive security
	Weak Non-Committing Encryption
	Adaptive security via weak NCE

	Amplifying to q-query security
	Proof of q-query Security

	Garbled RAM: Iterated Simulation Security of GHRW14
	Timed IBE
	Garbled Circuits with Labels
	Predictably Timed Writes
	GHRW Garbled RAM Construction
	Iterated Simulation Security

