
VOProof: Efficient zkSNARKs from Vector Oracle Compilers

Yuncong Zhang
∗

Shanghai Jiao Tong University

shjdzhangyuncong@sjtu.edu.cn

Alan Szepieniec

Nervos

alan@nervos.org

Ren Zhang
†

Nervos

Shandong Institute of Blockchain

ren@nervos.org

Shifeng Sun
†

Shanghai Jiao Tong University

shifeng.sun@sjtu.edu.cn

Geng Wang

Shanghai Jiao Tong University

wanggxx@sjtu.edu.cn

Dawu Gu
†

Shanghai Jiao Tong University

dwgu@sjtu.edu.cn

ABSTRACT
The design of zkSNARKs is increasingly complicated and requires

familiarity with a broad class of cryptographic and algebraic tools.

This complexity in zkSNARK design also increases the difficulty in

zkSNARK implementation, analysis, and optimization. To address

this complexity, we develop a new workflow for designing and im-

plementing zkSNARKs, called VOProof. In VOProof, the designer
only needs to construct a Vector Oracle (VO) protocol that is intuitive
and straightforward to design, and then feeds this protocol to our

VO compiler to transform it into a fully functional zkSNARK. This

new workflow conceals most algebraic and cryptographic opera-

tions inside the compiler, so that the designer is no longer required

to understand these cumbersome and error prone procedures. More-

over, our compiler can be fine-tuned to compile one VO protocol

into multiple zkSNARKs with different tradeoffs.

We applyVOProof to construct three general-purpose zkSNARKs
targeting three popular representations of arithmetic circuits: the

Rank-1 Constraint System (R1CS), the Hadamard Product Relation

(HPR), and the PLONK circuit. These zkSNARKs have shorter and

more intuitive descriptions, thus are easier to implement and op-

timize compared to prior works. To evaluate their performance,

we implement a Python framework for describing VO protocols

and compiling them into working Rust code of zkSNARKs. Our

evaluation shows that the VOProof-based zkSNARKs have com-

petitive performance, especially in proof size and verification time,

e.g., both reduced by roughly 50% compared toMarlin (Chiesa et al.,

EUROCRYPT 2020). These improvements make the VOProof-based
zkSNARKs more preferable in blockchain scenarios where the proof

size and verification time are critical.

KEYWORDS
Zero-Knowledge; Proof System; SNARK

1 INTRODUCTION
Zero-knowledge SNARKs (zkSNARKs), first introduced by Bitansky

et al. in 2012 [8], allow a prover to generate a short proof 𝜋 for a com-

putation output 𝑦 = 𝐹 (𝑥,𝑤) of an arbitrary function 𝐹 and public

input 𝑥 , such that a resource-constrained verifier can validate𝑦 with

at most𝑂 (polylog(|𝐹 |)) computation and storage costs while learn-

ing nothing about the secret input𝑤 . Recent years witnessed a surge

of zkSNARKs with various properties, e.g., constant verification

∗
Partially supported by Cryptape.

†
Corresponding Author.

time [16, 21, 23, 25], universal setup [5, 13, 16, 18, 21, 25, 28], trans-

parent setup [5, 13, 18, 28], and post-quantum security [5, 7, 18].

New designs emerge rapidly with smaller proof generation and

verification costs, shorter proofs, and fewer security assumptions.

Despite their short history, zkSNARKs have already been deployed

in many blockchain-based scenarios, e.g., Zcash [6], the first fully

anonymous cryptocurrency, and Aztec [1] and zkSync [3], two

projects boosting the scalability and privacy of Ethereum—the cryp-

tocurrency with the second-largest market capitalization.

Albeit more powerful and efficient, new zkSNARK designs are be-

coming increasingly complicated. Understanding the mechanism of

a zkSNARK requires familiarity with a large and ever-increasing set

of cryptographic and non-cryptographic techniques [30]. This com-

plexity makes zkSNARK implementations more cumbersome, error

prone, and vulnerable to security flaws. To dissect this complexity,

Bünz et al. [13] pointed out that all zkSNARK designs can be de-

scribed as a three-step workflow, where only the third step involves

heavy cryptographic techniques. First, the to-be-verified equation

𝑦 = 𝐹 (𝑥,𝑤) is transformed into a constraint system, i.e., a mathemat-

ical equation over a finite field. Second, an information-theoretic

Polynomial IOP (PIOP) is designed to verify that the instance-witness
pair (𝑥,𝑤) satisfies this constraint system. This is the most time-

consuming step among the three, as it often involves sophisticated

algebraic techniques: PLONK [21] and Marlin [16] spend 14 and

12 pages, respectively, to describe this step. Finally, the PIOP is

compiled into a zkSNARK by a cryptographic compiler called a

polynomial commitment scheme. This workflow simplifies the zk-

SNARK construction by reducing the design of zkSNARKs into

that of PIOPs.
1
Observing the bottleneck—the second step—in the

workflow, a natural question we ask is:

Can we further simplify the design by concealing the algebraic
techniques into another compiler, so that the zkSNARK designers can
focus on the application-specific logics?

We address this question by proposing a new zkSNARK design

method called VOProof. At the core of this method is a new type

of protocol, called Vector Oracle (VO) protocol. By the virtue of

matching with the constraint systems, whose key components are

vector-related operations, VO protocols are considerably more con-

cise than PIOPs: we list three VO protocols for R1CS, HPR and

PLONK in two figures, Fig. 2 and Fig. 5, that take only one page in

total. After formalizing the notion of VO protocols, we provide a

1
The PIOP formalism also appears in the work of Chiesa et al. [16] by the name

Algebraic Holographic Proof (AHP), and Gabizon et al. [21] as Polynomial Protocols.

1

ACM CCS, 2022 Yuncong Zhang, Alan Szepieniec, Ren Zhang, Shifeng Sun, Geng Wang, and Dawu Gu

𝑦 = 𝐹 (𝑥,𝑤) Constraint System PIOP zkSNARK

arithmetization protocol design crypto compile

VO Protocol

protocol design vo compile

Our methodology

Figure 1: The zkSNARK construction workflow. The VO pro-
tocol is more intuitive to design than PIOP, and the VO-to-
PIOP compilation is application-agnostic.

compiler that transforms them into PIOPs without the designer’s

intervention, replacing the functionalities provided by the vector

oracle with algebraic operations. By leveraging the existing crypto-

graphic compilers for the PIOP-to-zkSNARK transformation, our

method is illustrated by the new zkSNARK construction pipeline

in Fig. 1. In detail, our main contributions are listed as follows:

A Methodology for Simpler zkSNARK Design. We propose a

new workflow for designing universal zkSNARKs, named VOProof
(Sect. 3). In this workflow, the designer first constructs a VO protocol
introduced in this work, then transforms it into a PIOP via a com-

piler we propose, and finally compiles the PIOP into a zkSNARK. By

wrapping most of the heavy algebraic and cryptographic operations
in the compilers, VOProof thus conceals these complicated details

from the designer and enjoys the two-fold advantage of simplicity

and composability. Regarding simplicity, the designer or program-

mer only needs to design or implement a VO protocol, which is

highly concise and requires no background in zkSNARKs or cryp-

tography. This also reduces the chance of introducing security flaws

in the implementation, as the application-agnostic compiler can

be audited and maintained by zkSNARK experts. As for compos-
ability, we can compile one VO protocol into different zkSNARKs

fine-tuning various tradeoffs by configuring the compiler. For ex-

ample, the zero-knowledge (ZK) property may be turned on/off for

different scenarios.

A VO-to-PIOP Compiler. To demonstrate the feasibility of the

entire workflow, we present a highly optimized compiler for trans-

forming a VO protocol into a PIOP (Sect. 3.2). Inspired by the tech-

niques inClaymore [29], this compiler uses the canonical monomial

basis for encoding vectors into polynomials. We prove that if the VO

protocol has completeness and soundness, then the compiled PIOP

also has completeness, soundness, and zero-knowledge. VOProof
leverages readily available tools for all steps other than VO-to-PIOP

compilation; our compiler thus completes the toolchain.

NewzkSNARKs for Influential Circuit-basedConstraint Sys-
tems.We apply VOProof to construct three zkSNARKs targeting

three circuit-based constraint systems (Sect. 4), namely VOR1CS for
the Rank-1 Constraint System (R1CS), VOHPR for the Hadamard-

Product Relation (HPR) and VOPLONK for the constraint system

derived from PLONK. These zkSNARKs have more concise de-

scriptions, thus are easier to understand and implement, and have

competitive performance compared to the state of the art, as demon-

strated by our comprehensive evaluation in Sect. 5.

Implementation and Comprehensive Evaluation. To evaluate
the performance of VOProof-based zkSNARKs, we implement a

Python framework for describing VO protocols and compiling them

into working Rust codes of zkSNARKs, based on the VOProof work-
flow. We then apply this framework to generate the code for the

above three zkSNARKs. We benchmark VOR1CS and VOPLONK2

over the Poseidon-based [22] Merkle path verification and com-

pare the result with three state-of-the-art zkSNARKsMarlin [16],

PLONK [21], andGroth16 [23]. The evaluation results demonstrate

that the VOProof-based zkSNARKs outperformMarlin and PLONK
in both proof sizes and verification times (reduced by roughly 50%).

See Table 1 and Fig. 6 (in Sect. 5) for more details.

1.1 Technical Overview
We start with an overview of how VO protocols work and how to

transform them into PIOPs, followed by a high-level explanation of

why VO protocols are more intuitive and concise than PIOPs.

The Vector Oracle Protocol. A VO protocol involves two parties,

the prover and the verifier, where the prover tries to convince the

verifier of a statement. Unlike a standard interactive protocol, the

parties in a VO protocol have access to an oracle called the vector

oracle. The parties may query the oracle to (1) submit arbitrary

vectors to the oracle; (2) manipulate submitted vectors by linear

combination or right-shifting; (3) check if some vectors satisfy

certain equations, e.g., 𝒂◦𝒃 ?

= 𝒄 ◦𝒅, where ◦ is the Hadamard (entry-

wise) product between vectors. After submitting a vector to the

oracle, the submitter will receive a handle, i.e., a unique identifier, to
the vector. The handle contains no information about the vector’s

content. The parties may send the vector handles to each other.

A party can manipulate the vectors not known to itself or check

their properties by querying the oracle with the vectors’ handles,

received either from the other party or the oracle. The manipulation

does not modify the existing vectors. Instead, the oracle stores the

result in a new vector and returns its handle to the query issuer.

Therefore, once a party receives a vector handle, the party is assured

that the content of the corresponding vector will never change. In

this sense, the vector handle serves as a commitment to the vector.

The two manipulation queries (linear combination and right-

shifting) and the property check query (Hadamard equation) are

simple yet surprisingly powerful. We demonstrate in Sect. 4 that

these functionalities can capture any statements described by arith-

metic circuits.

VO-to-PIOPCompiler. To compile a VO protocol into a zkSNARK,

we first compile the protocol into a PIOP, because the PIOP-to-

zkSNARK compilation is extensively studied in the zkSNARK lit-

erature [13, 16, 21]. A PIOP is an interactive protocol where the

parties have access to polynomial oracles. A polynomial oracle plays

a similar role as a vector handle in the VO model
3
, but serving

as the commitment to a polynomial 𝑓 (𝑋) instead of a vector. The

polynomial oracle provides only one functionality to the parties:

given any point 𝑧, the oracle replies with 𝑓 (𝑧). In compiling PIOPs

to zkSNARKs, the polynomial oracles are replaced by cryptographic

polynomial commitments.

Compiling a VO protocol into a PIOP involves four steps. The

first step is to establish a one-to-one correspondence between vector

2
To our knowledge, there are no existing implementations for any HPR-based zk-

SNARKs, including Sonic [25], BulletProofs [12] (Existing implementations are all

R1CS-variant of BulletProofs) andClaymore [29], or circuit composer for HPR. There-

fore, it is difficult to make an apples-to-apples comparison between VOHPR and

existing HPR-based zkSNARKs for a real-world problem.

3
Unlike vector oracle, a polynomial oracle does not function as a third party, but as

objects that can be passed around.

2

VOProof: Efficient zkSNARKs from Vector Oracle Compilers ACM CCS, 2022

handles and polynomial oracles. For every vector 𝒗 submitted by

the prover in the VO protocol, the prover in the compiled PIOP

correspondingly sends the oracle of 𝑓𝒗 (𝑋) :=
∑
𝒗 [𝑖]𝑋

𝑖−1
to the

verifier. For a vector submitted by the verifier, the corresponding

polynomial oracle is simulated by the PIOP verifier locally.

The second step is to translate the manipulations to vectors into

the manipulations to polynomials. For example, right-shifting a

vector 𝒗 by 𝑘 positions is translated to multiplying 𝑋𝑘 to 𝑓𝒗 (𝑋).
The oracle for the shifted polynomial is simulated by first querying

𝑓𝒗 (𝑋) at point 𝑧, and then multiplying the result with 𝑧𝑘 .

Third, the property checks are replaced by PIOP protocols in-

spired by the techniques in Claymore [29]. We explain the ideas

via a concrete example. Suppose the VO verifier queries for check-

ing the Hadamard equation 𝒂 ◦ 𝒃 = 0 with vector handles for 𝒂
and 𝒃 . Recall that the PIOP verifier, via the aforementioned first

step, has access to all polynomial oracles corresponding to the

vector handles, including the oracles for 𝑓𝒂 (𝑋) and 𝑓𝒃 (𝑋). The
verifier samples a random 𝜔 , and simulates the polynomial oracle

for ℎ(𝑋) := 𝑓𝒂 (𝜔 · 𝑋−1) · 𝑓𝒃 (𝑋). If the Hadamard equation holds,

then the constant term of ℎ(𝑋), denoted by ℎ0, should be zero.

Otherwise, ℎ0 = 0 happens with negligible probability over the

randomness of 𝜔 , by Schwartz-Zippel Lemma. Therefore, it suffices

for the verifier to ensure that ℎ0 = 0. It is difficult for the verifier to

check the constant term of a polynomial given only the access to

evaluate this polynomial, so the verifier needs help from the prover.

To show that the constant term of ℎ(𝑋) is zero, the prover only
needs to show that ℎ(𝑋) can be written in the form

¯ℎ(𝑋) − ¯ℎ(𝛾 ·𝑋),
i.e., the difference between two polynomials whose constant terms

are guaranteed to be the same, where 𝛾 is a constant. It is easy to

find this polynomial
¯ℎ(𝑋) as long as the multiplicative order of 𝛾

is sufficiently large. We can choose 𝛾 to be the generator of the

multiplicative group F\{0}. The prover computes the appropriate

¯ℎ(𝑋) and sends its oracle to the verifier, then the verifier checks

the equality ℎ(𝑋) = ¯ℎ(𝑋) − ¯ℎ(𝛾 · 𝑋) by querying both sides of the

equation at a random point 𝑧.

Finally, to ensure that the compiled PIOP is zero-knowledge,

the VO-to-PIOP compiler appends randomizer coefficients to every

polynomial sent from the prover to the verifier. The randomizers,

unfortunately, change the coefficient vector of the polynomials

and potentially break the Hadamard equations or other vector

properties. Our solution is to modify the property check queries,

such as cutting the vectors to keep the first 𝑛 elements before

checking if the vectors satisfy the desired properties. To implement

this modified property check, the compiler modifies the Hadamard

equations as explained in the following example. If the original

equation was 𝒂 ◦ 𝒃 = 0, the compiler replaces it with 𝒂 ◦ 𝒃 −
(0𝑛 ∥1) ◦ (𝜹 ∥𝒕) = 0 where 𝒕 is computed and submitted by the

prover to satisfy this new equation, and 𝜹 ∈ F𝑛 is a random vector.

This modification allows the prover to randomize the vectors or

polynomials arbitrarily, as long as the modification happens outside

the first 𝑛 elements.

Simplicity of VO Protocols. The advantage of VO protocols in

simplicity over PIOPs is best demonstrated via the following exam-

ple. One common task in protocol design is checking the equality

between two groups of elements. In a VO protocol, this problem is

usually embodied as comparing parts of two vectors, e.g., to show

that the first 𝑚 elements of vector 𝒂 equal the first 𝑚 elements

of vector 𝒃 . This task can be accomplished by a single query for

checking the Hadamard equation (𝒂 − 𝒃) ◦ 1𝑚 = 0, where 1𝑚 is

the vector that is filled with ones in the first𝑚 positions and zeros

elsewhere.

In PIOP, this task often requires transmitting one polynomial

oracle in the interaction, and several evaluation queries of the

verifier. For example, in Marlin or PLONK, the equality check is

embodied as the task of verifying that two polynomials 𝑓 (𝑋) and
𝑔(𝑋) evaluate to the same values over a domain 𝐻 ⊂ F. To ac-

complish this, the prover sends the verifier the polynomial 𝑞(𝑋) :=

(𝑓 (𝑋)−𝑔(𝑋))/𝑍 (𝑋) where𝑍 (𝑋) :=
∏
ℎ∈𝐻 (𝑋 −ℎ), and the verifier

samples a random 𝑧 and checks the identity𝑞(𝑧) ·𝑍 (𝑧) = 𝑓 (𝑧)−𝑔(𝑧)
via three evaluation queries. Describing these operations are already

more verbose than a single query in the VO protocol. Moreover,

PIOP designers need to manually batch multiple invocations of the

above procedure for optimization, which further complicates the

protocol description, whereas for the VO protocols, the batching

strategy is automatically executed by the compiler.

1.2 Related Works
We classify zkSNARKs into three groups, based on how they achieve

succinctness—the “S” in zkSNARK. The first group includes

BulletProofs [12] and Aurora [7], which achieve logarithmic proof

sizes and linear verification complexities. The second group target

only uniform circuits, i.e., those with very short representations.

Examples include Libra [31], which requires the circuit to be layered
and log-space uniform, and STARK [5] and vRAM [32], which target

Random-Access-Machines (RAMs) that are equivalent to circuits

consisting of repetitions of the same sub-circuit.

Most zkSNARKs fall into the third group, which introduces pre-

processing, allowing the verifier to read a short digest instead of

the complete circuit. Spartan [28] and Fractal [18] do not require

trusted setups and Fractal is proved post-quantum secure [17].

Pinocchio [26] and Groth16 [23] are pairing-based zkSNARKs that

require per-circuit trusted setups. In comparison,Marlin [16],

PLONK [21] and Sonic [25] only require a universal trusted setup.

These pairing-based zkSNARKs have constant proof sizes and veri-

fication complexities.

Supersonic [13] andClaymore [29] crosses the group boundaries
by focusing on improving the methodology instead of standalone

zkSNARKs. Specifically, Supersonic proposes the DARK polynomial

commitment and the PIOP formalism, while Claymore explores

constructing PIOPs in the monomial-basis setting. Our work is

inspired by the techniques proposed in Claymore. Particularly, we
share several monomial-basis techniques with Claymore, whereas
we generalize their Hadamard protocol and propose an alternative

InnerProduct protocol. Other works that improve the modularity of

zkSNARK designs include the ILC model [11], the CSS model [27],

Lunar [14], and LegoSNARK [15]. Lunar and LegoSNARK focus on

Commit-and-Prove SNARKs. Although both ILC and VO operate

on vectors, the former focuses on linearity, while VO relies heavily

on non-linear query—HAD, so the techniques for leveraging and

implementing these two models are completely different. Similar

to CSS, VO abstracts away the implementation details; our design

differs from CSS in our finer levels of granularity.

3

ACM CCS, 2022 Yuncong Zhang, Alan Szepieniec, Ren Zhang, Shifeng Sun, Geng Wang, and Dawu Gu

2 PRELIMINARIES
2.1 Notations
Let Z be the set of integers. We abbreviate the set {𝑖}𝑛

𝑖=1
by [𝑛], and

{𝑖}𝑛
𝑖=𝑚

by [𝑚..𝑛]. Throughout this paper, we use a unique finite

field F. Denote by F∗ the multiplicative group F\{0}. For any set 𝑆 ,

denote the size of 𝑆 by |𝑆 |.
We denote the vectors by bold lowercase letters. For example, 𝒂 ∈

F𝑛 is a vector of size𝑛 over F. We use 𝒂 [𝑖] to denote the 𝑖-th element

of 𝒂. The index starts from one. Let 𝒂 [𝑖 .. 𝑗] := (𝒂 [𝑖] , · · · , 𝒂 [𝑗]) for
𝑖 ≤ 𝑗 . For 𝑖 > 𝑛, we treat 𝒂 [𝑖] = 0 for convenience.

We use the following binary operations between vectors. For

two vectors 𝒂 ∈ F𝑚 and 𝒃 ∈ F𝑛 , their concatenation is 𝒂∥𝒃 :=

(𝒂 [1] , · · · , 𝒂 [𝑚] , 𝒃 [1] , · · · , 𝒃 [𝑛]) ∈ F𝑚+𝑛 . Their sum is 𝒂 + 𝒃 :=

(𝒂 [𝑖] + 𝒃 [𝑖])
max{𝑚,𝑛}
𝑖=1

∈ Fmax{𝑚,𝑛}
. Their inner product is ⟨𝒂, 𝒃⟩ :=∑

𝑖∈[min{𝑚,𝑛}] 𝒂 [𝑖] · 𝒃 [𝑖] . Their Hadamard (entry-wise) product is

𝒂◦𝒃 := (𝒂 [𝑖] ·𝒃 [𝑖])
min{𝑚,𝑛}
𝑖=1

∈ Fmin{𝑚,𝑛}
. We will use power vectors,

i.e., vectors of the form (1, 𝛼, 𝛼2, · · · , 𝛼𝑛−1), denoted by 𝜶𝑛 , where
𝛼 ∈ F. In particular, 1𝑛 and 0𝑛 are the all-one and all-zero vectors

of size 𝑛. We also use unit vectors 𝒆𝑖 that has a single one at position
𝑖 and zeros anywhere else. If we right-shift 𝒗 ∈ F𝑛 by 𝑘 positions,

we get 𝒗→𝑘 := 0𝑘 ∥𝒗 ∈ F𝑛+𝑘 , i.e., prefix the vector with 𝑘 zeros.

We use bold capital uppercase letters for matrices, e.g., 𝑴 ∈
F𝑚×𝑛 is a matrix of size𝑚 × 𝑛 over F. 𝑴 [𝑖, 𝑗] is the element of 𝑴
at the 𝑖-th row and 𝑗-th column.

We write 𝑓 (𝑋) ∈ F[𝑋] as a polynomial over field F. When the

context is clear, we use 𝑓𝑖 to represent the coefficient for 𝑋 𝑖 . For a

vector 𝒗 ∈ F𝑑 , let 𝑓𝒗 (𝑋) be the polynomial that uses the elements

of 𝒗 as coefficients, i.e., 𝑓𝒗 (𝑋) =
∑𝑑
𝑖=1

𝒗 [𝑖]𝑋
𝑖−1

. We call 𝑓𝒗 (𝑋) the
polynomial representation of 𝒗 in the canonical monomial basis.

We write 𝑞(𝑋1, · · · , 𝑋`) ∈ F[𝑋1, · · · , 𝑋`]≤2
as a `-variate qua-

dratic polynomial. For any 𝒗1, · · · , 𝒗` ∈ F𝑛 , we write

𝑞◦ (𝒗1, · · · , 𝒗`) :=

(
𝑞(𝒗1 [𝑖] , · · · , 𝒗` [𝑖])

)𝑛
𝑖=1

∈ F𝑛,

i.e., evaluating the polynomial 𝑞 on these vectors using Hadamard

product for multiplication. If 𝒗1, · · · , 𝒗` have different sizes, the

length of 𝑞◦ (𝒗1, · · · , 𝒗`) is the maximal size of these vectors. Simi-

larly,

𝑞 ⟨·, ·⟩ (𝒗1, · · · , 𝒗`) :=

𝑛∑
𝑖=1

𝑞(𝒗1 [𝑖] , · · · , 𝒗` [𝑖]) − (𝑛 − 1)𝑐 ∈ F,

is the result of evaluating 𝑞 over these vectors using inner product

for multiplication, where 𝑐 is the constant term of 𝑞, the degree-

two terms 𝑋𝑖𝑋 𝑗 are evaluated to ⟨𝒗𝑖 , 𝒗 𝑗 ⟩, the linear terms 𝑋𝑖 are

evaluated to ⟨𝒗𝑖 , 1𝑛⟩, and subtracting (𝑛 − 1)𝑐 ensures that the

constant term is added only once. Obviously, 𝑞 ⟨·, ·⟩ (𝒗1, · · · , 𝒗`) =
⟨𝑞◦ (𝒗1, · · · , 𝒗`), 1𝑛⟩ − (𝑛 − 1)𝑐 .

Finally, we introduce the indexed relation, a convenient notion

for defining protocols that have offline preprocessings. An indexed

relation R is a set of triples (i,x,w) where i is the index, x is the

instance, andw is the witness. The indexed language induced by

R is L(R) := {(i,x) : ∃w, (i,x,w) ∈ R}.

2.2 Interactive Proof for Indexed Relations
This work focuses on protocols that admit a preprocessing proce-

dure which, on inputting an index of the relation, produces helpful

information for the prover and the verifier in the protocol. For

convenience, whenever we mention “interactive proof”, we are re-

ferring to “preprocessing interactive proof”, unless otherwise stated.

Similarly, by “PIOP” and “zkSNARK”, we refer to the preprocessing

versions by default.

Definition 2.1 (Preprocessing Interactive Proof). A preprocessing
interactive proof is a tuple of PPT algorithms (I, P,V) named the

indexer, the prover, and the verifier, respectively:

• I takes input i and outputs helpful information i𝑃 and i𝑉

for I and V, respectively;

• P takes inputs i𝑃 ,x,w and V takes inputs i𝑉 ,x; they interact

with each other; in the end, V outputs 𝑏 ∈ {0, 1}.
The above procedure is denoted by 𝑏 ← ⟨I(i), P(x,w),V(x)⟩.

In general, an interactive proof should have completeness and
soundness defined as below.

Completeness: for any (i,x,w) ∈ R,

Pr[𝑏 = 0 | 𝑏 ← ⟨I(i), P(x,w),V(x)⟩] ≤ Y𝑐 ,

where Y𝑐 ∈ [0, 1/3] is called the completeness error.
Soundness: for any (i,x) ∉ L(R) and unbounded algorithm P∗,

Pr[𝑏 = 1 | 𝑏 ← ⟨I(i), P∗,V(x)⟩] ≤ Y𝑠 .

where Y𝑠 ∈ [0, 1/3] is called the soundness error.

In addition, we say (I, P,V) has perfect completeness (resp. sound-
ness) if Y𝑐 = 0 (resp. Y𝑠 = 0). The protocol is public-coin if all the

randomnesses used by V are public coins, i.e., they are sent to the

prover immediately after they are read by the verifier from the

random tape.

In this paper, we focus on zero-knowledge (ZK) protocols which
require that any (potentially malicious) verifier cannot acquire any

information by interacting with the honest prover. This notion is

formalized by a simulator that samples the transcript indistinguish-
ably from those of honest executions. We recall that the transcript

of an execution of (I, P,V), denoted by tr⟨I(i), P(x,w),V(x)⟩, con-
sists of i𝑉 and all the messages exchanged between P and V. In the

context of public-coin protocols, it suffices to consider a weaker ver-

sion of ZK, called honest-verifier zero-knowledge (HVZK), which only
requires that the simulator exists for the honest verifier. Public-coin

HVZK proofs can be transformed into zkSNARKs in the random

oracle model via the Fiat-Shamir heuristic [19].

Definition 2.2 (Honest-Verifier Zero-Knowledge). The preprocess-
ing interactive proof (I, P,V) for the indexed relation R is honest-

verifier zero-knowledge (HVZK) if there exists a PPT algorithm S
such that for any (i,x,w) ∈ R, the statistical distance between the

distributions of the following two random variables tr and tr′ is
𝑂 (2−(|i |+ |x |+ |w |)):

tr← tr⟨I(i), P(x,w),V(x)⟩ and tr′ ← S(i,x),

where the distributions are over all random coins. If the statistical

distance is constantly zero, we say this protocol has perfect ZK.
Otherwise, we say the ZK is statistical, or the protocol is HVSZK.

4

VOProof: Efficient zkSNARKs from Vector Oracle Compilers ACM CCS, 2022

2.3 Polynomial IOP
A PIOP (Polynomial Interactive Oracle Proof) [13] is an interactive

proof where, unlike in ordinary interactive proofs, the prover and

the indexer may send polynomial oracles to the verifier. A poly-

nomial oracle encapsulates a polynomial, say 𝑓 (𝑋) ∈ F[𝑋], and
replies 𝑓 (𝑧) when queried with any 𝑧 ∈ F. We denote the polyno-

mial oracle for 𝑓 (𝑋) by [𝑓 (𝑋)].

Definition 2.3 (Preprocessing PIOP). A preprocessing PIOP with

degree bound 𝐷 is a public-coin interactive proof (I, P,V), except:
• I and P do not send messages to V; instead, they output

polynomials of degree less than 𝐷 .

• For every polynomial 𝑓 (𝑋) output by I or P, V has access

to the evaluation oracle of 𝑓 (𝑋), denoted by [𝑓 (𝑋)]. Specif-
ically, the verifier may query [𝑓 (𝑋)] with arbitrary 𝑧 ∈ F
and receives the reply 𝑦 = 𝑓 (𝑧).

For PIOP, the notions completeness and soundness follow directly

from those of interactive proofs. However, the definition of HVZK

should be handled carefully, as the verifier no longer reads the entire

polynomials but only their evaluations at a few points. Moreover,

the randomness for computing the evaluation queries should also

be simulated, although they do not appear in the verifier messages.

Therefore, we define HVSZK for PIOP to be the same as Def. 2.2

except that the notion transcript is replaced by a more general

notion called the verifier’s view. Specifically, this view for PIOP

consists of (1) i𝑉 , (2) all the verifier randomnesses, and (3) the

replies from the polynomial oracles. For an interactive proof, the

verifier’s view is simply the transcript.

2.4 Universal zkSNARK
A SNARK is a non-interactive protocol with verification and com-

munication costs logarithmic in the statement size. It is known that

zkSNARKs exist only in non-plain (e.g., common-reference-string)

models [9].

Definition 2.4 (Universal Preprocessing zkSNARK). Let R be an

indexed relation. A zkSNARK forR is a tuple of four PPT algorithms

(G, I, P,V) named the setup, the indexer, the prover and the verifier,

respectively:

• G takes the security parameter 1
_
and a size bound 𝐷 , and

outputs a common reference string crs;
• I takes crs, an index i with |i| ≤ 𝐷 , and outputs two strings

𝜎𝑃 and 𝜎𝑉 , called the proving key and the verification key

respectively
4
;

• P takes 𝜎𝑃 and an instance-witness pair (x,w), and outputs

a string 𝜋 called the proof;

• V takes 𝜎𝑉 , an instance x and a proof 𝜋 , and outputs 𝑏 ∈
{0, 1} indicating whether to accept or not.

A zkSNARK satisfies the following properties:

Completeness: for every 𝐷 , every (i,x,w) ∈ R such that |i| ≤ 𝐷 ,
and security parameter _, Pr[𝑏 = 1 | crs← G(1_, 𝐷), (𝜎𝑃 , 𝜎𝑉) ←
I(crs, i), 𝜋 ← P(𝜎𝑃 ,x,w), 𝑏 ← V(𝜎𝑉 ,x, 𝜋)] = 1.

Argument-of-Knowledge: for any PPT adversary P∗, there exists a
PPT extractor E such that for every large enough security parameter

4
Also refered to as the circuit-specific CRS.

_, every 𝐷 , and every auxiliary tape 𝑧, Pr[(i,x,w) ∉ R ∧ 𝑏 = 1 |
crs ← G(1_, 𝐷), (i,x, 𝜋, 𝜎𝑉) ← P∗ (crs, z),w ← E(crs, z), 𝑏 ←
V(𝜎𝑉 ,x, 𝜋)] = 𝑂 (2−_).

Succinctness: The proof size is𝑂 (_ · polylog(|i| + |x| + |w|)) and
the running time of V is 𝑂 (_ · (|x| + polylog(|i| + |w|))).

Zero-knowledge: There exists a PPT simulator S such that for any

𝐷 , any (i,x,w) ∈ R and security parameter _, the following two

distributions are distinguished with probability 𝑂 (2−_):(𝜎𝑉 , 𝜋)
��������
crs← G(1_, 𝐷),
(𝜎𝑃 , 𝜎𝑉) ← I(crs, i),
𝜋 ← P(𝜎𝑃 ,x,w),
𝑏 ← V(𝜎𝑉 ,x, 𝜋)

 and

{
S(i,x, 1_, 𝐷)

}
.

We note that there are zkSNARKs that are non-universal, e.g.,

Groth16 [23]. The definition of non-universal zkSNARK is the same

as Definition 2.4, except that the algorithm G is removed.

Next, we recall a workflow for constructing zkSNARKs which,

as pointed out by Bünz et al. [13], is explicitly or implicitly followed

by most zkSNARK constructions in the literature.

2.5 The zkSNARK Construction Workflow
Here we illustrate the three-step zkSNARK construction workflow

(Fig. 1) in more detail. The starting point of this workflow is a

computation, usually represented by an arithmetic circuit 𝐶 that

computes a function over F.
The first step of this workflow, called arithmetization, transforms

the arithmetic circuit into a constraint system formalized as indexed

relations. Several constraint systems are available for this step. In

this paper, we build zkSNARKs for the following popular constraint

systems:

• R1CS (Rank-1 Constraint System) is used in Pinocchio [26],

Groth16 [23], Aurora [7], Fractal [18], Spartan [28], and

Marlin [16].

• HPR (Hadamard Product Relation) was proposed by Boo-

tle et al. [10]. Its variations are used in BulletProofs [12],
Sonic [25], and Claymore [29]. A recent lattice-based zk-

SNARK [4] also chooses this relation.

• The constraint system ofPLONK is used solely inPLONK [21],

one of the most efficient and popular zkSNARKs.

The second step in the workflow produces a PIOP for verifying

the constraint system. This step is where most zkSNARK construc-

tions vary and is the focus of this work.

In the final step, the PIOP is compiled into a zkSNARK via two

cryptographic tools. First, replace the polynomial oracles with poly-

nomial commitments and the evaluation queries with an execution

of the opening protocol of this polynomial commitment scheme.

This step turns the PIOP into an interactive proof in the standard

model. Next, this interactive proof is turned into a zkSNARK by

the Fiat-Shamir transformation [19] that replaces the verifier mes-

sages by query replies from a random oracle approximated by a

collision-resistant hash function.

3 THE VOPROOF METHOD
Now we introduce VOProof, a new method for constructing zk-

SNARKs. This method is inspired by observing a mismatch between

the constraint systems, whose key components are vector-related

5

ACM CCS, 2022 Yuncong Zhang, Alan Szepieniec, Ren Zhang, Shifeng Sun, Geng Wang, and Dawu Gu

operations, and the PIOPs, in which the main objects are polynomi-

als. Based on this observation, in VOProof, we propose a new type

of protocol, called the Vector Oracle (VO) protocol, where the parties
have access to a rich set of functionalities for operating vectors.

After formalizing the VO protocols, the remaining task is to trans-

form them into zkSNARKs. Since the PIOP-to-zkSNARK compiler

is available and extensively studied in the literature [13, 16, 21, 24],

it suffices for us to provide a compiler to transform VO protocols

into PIOPs.

Next, we illustrate the key components in VOProof, the VO

protocols and the VO-to-PIOP compiler, in more detail.

3.1 Vector Oracle Protocols
Vector Oracle Model. To formalize the concept of VO protocols,

we propose the VO model, in which the protocol participants have

access to a vector oracle denoted by O. The oracle provides a rich set
of vector-related functionalities to the parties. The main purpose of

these functionalities is to allow the verifier to check if one or more

vectors satisfy certain properties, without reading the content of

these possibly large vectors. These functionalities can be roughly

grouped into three categories: (1) to submit new vectors to the

vector oracle; (2) to manipulate existing vectors stored in the oracle;

and (3) to check certain properties among the vectors. The details

are specified in the following definition.

Definition 3.1 (Vector Oracle). A vector oracle of size 𝑛 internally

maintains a set of vectors that is initially empty. The oracle accepts

the following queries:

• VEC(𝒗 ∈ F𝑚): stores 𝒗 and returns a handle ℎ𝒗 to 𝒗;
• POW(𝛼 ∈ F, 𝑘 ∈ [𝑛]): stores 𝒗 := 𝜶𝑘 and returns ℎ𝒗 ;

• LIN(ℎ𝒗1
, · · · , ℎ𝒗𝑚 , 𝒄 ∈ F𝑚): stores 𝒗 :=

∑𝑚
𝑖=1

𝒄 [𝑖] · 𝒗𝑖 and
returns ℎ𝒗 ;

• SHR(ℎ𝒖 , 𝑘 ∈ [𝑛]): stores 𝒗 := 𝒖→𝑘 and returns ℎ𝒗 ;

• HAD(ℎ𝒗1
, · · · , ℎ𝒗`

, 𝑞 ∈ F[𝑋1, · · · , 𝑋`]≤2):
returns 1 if 𝑞◦ (𝒗1, · · · , 𝒗`) [1..𝑛] ≠ 0 otherwise ⊥.
• INN(ℎ𝒗1

, · · · , ℎ𝒗`
, 𝑞 ∈ F[𝑋1, · · · , 𝑋`]≤2):

returns 1 if 𝑞 ⟨·, ·⟩ (𝒗1 [1..𝑛] , · · · , 𝒗` [1..𝑛]) ≠ 0 otherwise ⊥.
The handles contain no information about the vectors. If a query

is not of the specified format, or any handle in the query refers to a

non-existent vector, the oracle also returns ⊥.

In practice, ` is a small constant fixed by the protocol. In this

work, most HAD queries are used to check equations of the form

𝒂 ◦ 𝒃 ?

= 𝒄 ◦ 𝒅 where ` ≤ 4, and likewise the INN queries.

Vector Oracle Protocol. A VO protocol is an interactive protocol

where the parties have access to the vector oracle.

Definition 3.2 (Preprocessing VO Protocol). A preprocessing VO

protocol with vector size 𝑛 for an indexed relation R is a tuple of

PPT algorithms (I, P,V) that have access to a vector oracle O with

vector size 𝑛, such that:

• (I, P,V) is a preprocessing interactive protocol for R;
• P does not send any messages to V except vector handles;

• V outputs 1 if and only if the oracle never returns ⊥.
The notions completeness, soundness, and public-coin follow from

preprocessing interactive proofs.

Note that in an honest execution of a VO protocol, the verifier

does not receive any information from the prover or O except the

vector handles. Therefore, the view of the verifier simply consists

of its own random coins and the vector handles, so any VO protocol

trivially satisfies HVZK. We remark that although the VEC query

allows the vector to be of arbitrary length, the elements at positions

beyond [1..𝑛] will never affect the property checks, so submitting

vectors larger than𝑛 is unnecessary.We also remark that the verifier

should not query VEC with large and dense vectors because we

expect the verifier to be efficient in terms of computation time and

storage. However, the verifier may use the POW query because

this query only requires specifying 𝛼 and 𝑘 and the verifier does

not need to explicitly store the power vector in the memory. After

compiled to PIOP, the corresponding polynomial oracles can be

efficiently simulated using the geometric sum.

VO Protocols for Simple Example Relations (Fig. 2). For the
readers to better understand how to use the VO model to design

protocols, we present VO protocols for several simple relations,

mainly for demonstrative purpose. Some of these VO protocols

will be used as building blocks for constructing general-purpose

zkSNARKs. Specifically, we construct VO protocols for range proof
5

(Equation 1), set commitment with membership proof (Equation 2),

vector commitment with batched opening (Equation 3), sum check

(Equation 4), product check (Equation 5), permutation check (Equa-

tion 6), inner-product check (Equation 7), and subset-sum (Equa-

tion 8). We present these VO protocols in Fig. 2.

RRP :=

©«
i : (𝑛, ℓ)
x : (𝑖, ℎ𝒗)
w : 𝒗

ª®¬
������ ℎ𝒗 is a handle to 𝒗 ∈ F𝑛
𝑖 ∈ [𝑛]
𝒗 [𝑖] ∈ [0..2ℓ − 1]

 (1)

RSet :=

©«
i : 𝑛

x :

(
ℎ𝒗 , {𝑣𝑖 }𝑚𝑖=1

)
w : 𝒗

ª®®¬
������ ℎ𝒗 is a handle to 𝒗 ∈ F𝑛
𝑣𝑖 ∈ 𝒗,∀𝑖 ∈ [𝑚]
𝑣𝑖 ≠ 𝑣 𝑗 for 𝑖 ≠ 𝑗

 (2)

RVBatch :=

©«
i : 𝑛

x :

(
ℎ𝒗 , (𝑘𝑖 , 𝑣𝑖)𝑚𝑖=1

)
w : 𝒗

ª®®¬
���� ℎ𝒗 is a handle to 𝒗 ∈ F𝑛
𝒗 [𝑘𝑖] = 𝑣𝑖 ,∀𝑖 ∈ [𝑚]

(3)

RSum :=

©«
i : 𝑛

x : (ℎ𝒗 , ℓ, 𝑐)
w : 𝒗

ª®¬
���� ℎ𝒗 is a handle to 𝒗 ∈ F𝑛∑ℓ

𝑖=1
𝒗 [𝑖] = 𝑐

 (4)

RProd :=

©«
i : 𝑛

x : (ℎ𝒖 , ℎ𝒗 , ℓ)
w : (𝒖, 𝒗)

ª®¬
������ ℎ𝒖 is a handle to 𝒖 ∈ F𝑛
ℎ𝒗 is a handle to 𝒗 ∈ F𝑛∏ℓ
𝑖=1

𝒖 [𝑖] =
∏ℓ
𝑖=1

𝒗 [𝑖]

 (5)

RPerm :=

©«
i : 𝑛

x : (ℎ𝒖 , ℎ𝒗 , ℓ)
w : (𝒖, 𝒗)

ª®¬
��������
ℎ𝒖 is a handle to 𝒖 ∈ F𝑛
ℎ𝒗 is a handle to 𝒗 ∈ F𝑛
𝒖 [1..ℓ] and 𝒗 [1..ℓ] are
permutations of each other

(6)

5
The finite field F should have large characteristic for range proof to be meaningful.

Multiple-entry range proofs can be implemented using techniques from Plookup [20]

and are left to future work.

6

VOProof: Efficient zkSNARKs from Vector Oracle Compilers ACM CCS, 2022

RIP :=

©«
i : 𝑛

x : (ℎ𝒖 , ℎ𝒗 , ℓ, 𝑐)
w : (𝒖, 𝒗)

ª®¬
������ ℎ𝒖 is a handle to 𝒖 ∈ F𝑛
ℎ𝒗 is a handle to 𝒗 ∈ F𝑛
⟨𝒖 [1..ℓ] , 𝒗 [1..ℓ]⟩ = 𝑐

 (7)

RSubsetSum :=

©«
i : 𝑛

x : (𝒗, 𝑡)
w : 𝒔

ª®¬
�� 𝒔 ∈ {0, 1}𝑛, 𝒗 ∈ F𝑛, ⟨𝒗, 𝒔⟩ = 𝑡

(8)

Note that relations (1) to (7) would be trivial if the witness vectors

have not been committed. This is why these relations have vector

handles in their instances. If we compile the VO protocols for these

relations using a VO-to-SNARK compiler, the vector handles will be

replaced with vector commitments, i.e., short random-like strings

bound to the vectors, and the VO protocols are transformed into

Commit-and-Prove SNARKs [14, 15]. For the subset-sum relation,

which is NP-hard, committing the witness vector is unnecessary.

Compiling the VO protocol SubsetSum produces a specialized zk-

SNARK for the subset-sum problem.

For ease of understanding, we will present the VO protocols

using the following descriptions:

• We say “submits 𝒗” instead of “querying VEC(𝒗)”, and we

will use the name 𝒗 in the place of its handle ℎ𝒗 .

• We say “submits 𝜶𝑘 ” instead of “querying POW(𝛼, 𝑘)”, and
we will refer to this vector by 𝜶𝑘 instead of its handle. When

we need to explicity refer to the handle, we will denote the

handle by ℎ𝜶𝒌 ; similarly for the LIN and SHR queries.

• To describe a HAD query, e.g., HAD(ℎ𝒂, ℎ𝒃 , ℎ𝒄 , 𝑞), where
𝑞 = 𝑋1𝑋2 − 2𝑋3 − 4, we say “checks 𝒂 ◦ 𝒃 ?

=𝑛 2𝒄 + 4 · 1𝑛”,
where “

?

=𝑛” refers to comparing the first 𝑛 entries between

two vectors; similarly for the INN queries.

• To keep the protocol concise, we allow aHAD (or INN) query
to refer to a vector submitted by a POW (or LIN, SHR) query
without explicitly including their submissions in the descrip-

tion. In this case, we assume this vector has already been

submitted by the verifier previously.

• A HAD (or INN) query may use vector concatenation 𝒖∥𝒗
instead of 𝒖 +𝒗→|𝒖 | . It may also use sparse vectors, e.g., 𝒆1 +
2𝒆3, assuming they are implicitly submitted by the verifier.

We have introduced the VO protocols and demonstrated how

to construct them. Next, we construct the second component of

the VOProof method, a compiler that transforms VO protocols into

zero-knowledge PIOPs.

3.2 VO-to-PIOP Compiler
Our compiler is based on the canonical monomial basis representa-

tion of vectors, i.e., the vectors are embedded into the coefficients of

the polynomials.
6
This compiler is partially inspired by the batched

Hadamard protocol in Claymore [29]. Here we present a high-level
overview of the compiler. A detailed step-to-step construction is

shown in the proof of Theorem 3.3 in Appendix C.

Given any VO protocol (VO.I,VO.P,VO.V), the compiled PIOP,

namely (I, P,V), works exactly the same as the VO protocol, except:

6
The compilation can alternatively be implemented in the Reed-Solomon (RS) code
basis. See Appendix B for more details.

1. Vector handles are replaced by polynomial oracles. Specif-
ically, the vector handle ℎ𝒗 is replaced by the polynomial oracle

[𝑓𝒗 (𝑋)]. According to the source of this handle, the polynomial

oracle is generated in different ways:

• If ℎ𝒗 is sent from VO.P (or VO.I) to VO.V, then in the PIOP,

P or I sends the polynomial oracle [𝑓𝒗 (𝑋)] to V, regardless
of the query type from which this handle is returned.

• If ℎ𝒗 is returned from a query issued by VO.V itself, then

VO.V (thus V) has all the information of the vector 𝒗 and

V may simulate the polynomial oracle [𝑓𝒗 (𝑋)] locally, i.e.,
given any 𝑧 ∈ F, V may compute 𝑦 = 𝑓𝒗 (𝑧) by itself. Specif-

ically, if ℎ𝒗 is returned from a VEC(𝒗) query, V evaluates

this polynomial directly using the coefficient vector 𝒗; for
a POW(𝛼, 𝑘) query, V simulates this polynomial oracle by

locally computing
(𝛼 ·𝑧)𝑘−1

𝛼 ·𝑧−1
for 𝛼𝑧 ≠ 1 or 𝑘 for 𝛼𝑧 = 1; for

a LIN query, V queries the polynomial oracles for the input

vectors one by one and linearly combines the results; for a

SHR(ℎ𝒗 , 𝑘) query, V queries the polynomial oracle [𝑓𝒗 (𝑋)]
and multiplies the result by 𝑧𝑘 .

2. Property checking queries are replaced by interactions.
The INN and HAD queries are replaced by interactions between P
and V following specific protocols. First, without loss of generality,

VO.V may postpone all property check queries to the end of the

protocol, such that the INN queries are ordered before the HAD
queries. Next, we compile these property check queries into PIOP

by the following two steps:

• Replace all the INN queries by an execution of the BatchIP
protocol (which is a VO protocol) in Fig. 3. Note that the

BatchIP protocol has no INN query. This step removes the

INN queries while introduces more vector handles and HAD
queries. These vector handles are replaced by polynomial

oracles as above, and the HAD queries are processed in the

next step together with the remaining HAD queries.

• Replace all theHAD queries by an execution of the BatchHP
protocol in Fig. 3. Note that although the input vector list in

each INN or HAD query may be different, we can take the

union of all these vectors and reindex the variables of the

corresponding quadratic polynomials properly, so we only

need to input one vector list into the batched inner-product

and Hadamard-product protocols.

The above PIOP is not zero-knowledge. To achieve zero-knowledge,

P appends 𝑟 uniformly random coefficients to every polynomial

sent to V, where the choice of 𝑟 is discussed in the following proof

sketch. These random coefficients are positioned appropriately to

avoid breaking the HAD and INN queries. See the complete proof

of Theorem 3.3 for details.

We summarize the properties of the above compiler in Theo-

rem 3.3. The complete proof of this theorem is left to Appendix C.

Theorem 3.3. Let (VO.I, VO.P, VO.V) be a preprocessing VO pro-
tocol with vector size 𝑛 that verifies the indexed relation R with com-
pleteness error Y𝑐 and soundness error Y𝑠 . Assume that VO.I submits𝑚
vectors, VO.P submits 𝑡 vectors, VO.V issues 𝑡𝐻 HAD queries, 𝑡𝐼 INN
queries. Then there exists a preprocessing PIOP protocol (I, P,V) with
degree bound at most 4𝑛+1 that verifies R that has completeness error
Y𝑐 and soundness error Y𝑠 + 𝑡𝐻 +𝑡𝐼 +6𝑛+6|F |−2

, and satisfies HVZK. Moreover,
7

ACM CCS, 2022 Yuncong Zhang, Alan Szepieniec, Ren Zhang, Shifeng Sun, Geng Wang, and Dawu Gu

procedure RangeProof(ℎ𝒗 ; 𝒗)
P computes 𝒃 ∈ {0, 1}ℓ ⊂ Fℓ , the bit-expansion of 𝒗 [𝑖] ;

P submits 𝒃 and sends ℎ𝒃 to V and V checks 𝒃 ◦ 𝒃 ?

=𝑛 𝒃 ;

V checks ⟨𝒃, 2ℓ ⟩ − ⟨𝒗, 𝒆𝑖 ⟩
?

= 0.

procedure SetMember(ℎ𝒗 , {𝑣𝑖 }𝑚𝑖=1
; 𝒗)

P reorders 𝒗 into 𝒗 ′ such that 𝒗 ′[𝑖] = 𝑣𝑖 for 𝑖 ∈ [𝑚], submits 𝒗 ′

and sends ℎ𝒗′ to V;

V checks

(
𝒗 ′ −∑𝑚𝑖=1

𝑣𝑖 · 𝒆𝑖
)
◦
(∑𝑚
𝑖=1

𝒆𝑘
) ?

=𝑛 0;
Run PermCheck(ℎ𝒗 , ℎ𝒗′, 𝑛; 𝒗, 𝒗 ′).

procedure VBatch(ℎ𝒗 , {𝑘𝑖 , 𝑣𝑖 }𝑚𝑖=1
; 𝒗)

V checks

(
𝒗 −∑𝑚𝑖=1

𝑣𝑖 · 𝒆𝑘𝑖
)
◦
(∑𝑚
𝑖=1

𝒆𝑘𝑖
) ?

=𝑛 0.

procedure SumCheck(ℎ𝒗 , ℓ, 𝑐 ; 𝒗)

V checks ⟨𝒗 − 𝑐 · 𝒆1, 1ℓ ⟩
?

= 0.

procedure ProdCheck(ℎ𝒖 , ℎ𝒗 , ℓ ; 𝒖, 𝒗)

P submits 𝒓 :=

(∏
𝑗 ∈[𝑖]

𝒖 [𝑗]
𝒗 [𝑗]

)ℓ
𝑖=1

and sends ℎ𝒓 to V;

V checks 𝒓→𝑛−ℓ ◦ 𝒗→𝑛−ℓ ?

=𝑛 (1∥𝒓)→𝑛−ℓ ◦ 𝒖→𝑛−ℓ ;
V checks 𝒓 ◦ 𝒆ℓ

?

=𝑛 𝒆ℓ .

procedure PermCheck(ℎ𝒖 , ℎ𝒗 , ℓ ; 𝒖, 𝒗)

V samples 𝛽
$← F and sends 𝛽 to P;

Run ProdCheck(ℎ𝒖+𝛽 ·1ℓ , ℎ𝒗+𝛽 ·1ℓ , ℓ ; 𝒖 + 𝛽 · 1ℓ , 𝒗 + 𝛽 · 1ℓ).

procedure InnerProductCheck(ℎ𝒖 , ℎ𝒗 , ℓ, 𝑐 ; 𝒖, 𝒗)
V checks ⟨𝒖→𝑛−ℓ , 𝒗→𝑛−ℓ ⟩ − 𝑐 ?

= 0.

procedure SubsetSum(𝒗, 𝑡 ; 𝒔)
P submits 𝒔 and sends ℎ𝒔 to V;

V checks 𝒔 ◦ 𝒔 ?

=𝑛 𝒔 and ⟨𝒗, 𝒔⟩ ?

= 𝑡 .

Figure 2: Demonstrative VO Protocols for Simple Relations. The input to each protocol has two parts, separated by semicolon.
The first part is the public input learned by both parties, and the second part is the witness learned only by the prover.

procedure BatchIP({ℎ𝒗𝑖 }
`

𝑖=1
, {𝑞𝑖 (𝑋1, · · · , 𝑋`)}𝑚𝑖=1

; {𝒗𝑖 }`𝑖=1
)

VO.V samples 𝛽
$← F and sends 𝛽 to VO.P;

Run InnerProduct({ℎ𝒗𝑖 }
`

𝑖=1
,
∑𝑚
𝑖=1

𝛽𝑖−1𝑞𝑖 ; {𝒗𝑖 }`𝑖=1
).

procedure BatchHP({[𝑓𝒗𝑖 (𝑋)]}
`

𝑖=1
, {𝑞𝑖 (𝑋1, · · · , 𝑋`)}𝑚𝑖=1

; {𝒗𝑖 }`𝑖=1
)

V samples 𝛼
$← F and sends 𝛼 to P;

Run Hadamard({[𝑓𝒗𝑖 (𝑋)]}
`

𝑖=1
,
∑𝑚
𝑖=1

𝛼𝑖−1𝑞𝑖 ; {𝒗𝑖 }`𝑖=1
).

procedure InnerProduct({ℎ𝒗𝑖 }
`

𝑖=1
, 𝑞(𝑋1, · · · , 𝑋`); {𝒗𝑖 }`𝑖=1

)

Let 𝑞(𝑋1, · · · , 𝑋`) = 𝑞0 (𝑋1, · · · , 𝑋`) + 𝑐 where 𝑞0 has zero con-

stant and 𝑐 ∈ F;
VO.P computes 𝒓 := 𝑞◦

0
(𝒗1, · · · , 𝒗`);

VO.P submits 𝒓 :=

(∑𝑖
𝑗=1

𝒓 [𝑗]
)𝑛
𝑖=1

and sends ℎ�̃� to VO.V;

VO.V checks 𝒓−𝒓→1
?

=𝑛 𝑓
◦

0
(𝒗1, · · · , 𝒗`) and (𝒓 +𝑐 ·𝒆𝑛) ◦𝒆𝑛

?

=𝑛 0.

procedure Hadamard({[𝑓𝒗𝑖 (𝑋)]}
`

𝑖=1
, 𝑞(𝑋1, · · · , 𝑋`); {𝒗𝑖 }`𝑖=1

)

P samples 𝜹
$← F𝑟 ;

P computes 𝒕 := 𝜹 ∥𝑞◦ (𝒗1, · · · , 𝒗`) [𝑛..] and sends [𝑓𝒕 (𝑋)] to V;
Let 𝒗`+1 := 0𝑛 ∥1𝑛 and V simulates [𝑓𝒗`+1 (𝑋)] locally;
Let 𝒗`+2 := 𝒕→𝑛−𝑟 and V simulates [𝑓𝒗`+2 (𝑋)] by querying

[𝑓𝒕 (𝑋)] with 𝑧 and multiplying the with 𝑧𝑛−𝑟 ;
Let 𝑝 (𝑋1, · · · , 𝑋`+2) := 𝑞(𝑋1, · · · , 𝑋`) − 𝑋`+1 · 𝑋`+2;
Assume 𝑝 (𝑋1, · · · , 𝑋`+1) =

∑
𝑖, 𝑗 𝑝𝑖 𝑗 · 𝑋𝑖𝑋 𝑗 +

∑
𝑖 𝑝𝑖 · 𝑋𝑖 + 𝑐;

V samples 𝜔
$← F and sends 𝜔 to P;

P computes ℎ(𝑋) :=
∑
𝑖, 𝑗 𝑝𝑖 𝑗 · 𝑓𝒗𝑖 (𝜔𝑋−1) 𝑓𝒗 𝑗

(𝑋) + ∑
𝑖 𝑝𝑖 ·

𝑓1𝑛 (𝜔𝑋−1) 𝑓𝒗𝑖 (𝑋) + 𝑐 · 𝜔
𝑛−1

𝜔−1
;

Assume ℎ(𝑋) = ∑
1≤𝑖≤𝐷 ℎ−𝑖𝑋

−𝑖 + ℎ𝑖𝑋 𝑖 ;
P computes

¯ℎ𝑖 := ℎ𝑖/(𝛾𝑖 − 1) for 𝑖 ≠ 0 and samples
¯ℎ0

$← F,
where 𝛾 is the generator of the multiplicative group F∗;

P computes
¯ℎ(𝑋) :=

∑
𝑖

¯ℎ𝑖𝑋
𝑖
and sends [𝑋𝐷 ¯ℎ(𝑋)] to V;

V samples 𝑧
$← F and checks the identity ℎ(𝑧) ?

= ¯ℎ(𝛾𝑧) − ¯ℎ(𝑧),
where ℎ(𝑋) is evaluated by querying 𝑓𝒗𝑖 (𝑋) with 𝑧 or 𝜔𝑧 and com-

posing the results according to the definition of ℎ(𝑋), and ¯ℎ(𝑋) is
evaluated by querying [𝑋𝐷 ¯ℎ(𝑋)].

Figure 3: Batched Inner Product and Hadamard Product Protocols.

I sends𝑚 polynomial oracles to V, P sends 𝑡 + 3 polynomial oracles to
V, and V makes at most 2(𝑚 + 𝑡) + 6 evaluation queries at 3 distinct
points.

If 𝑡𝐼 = 0, i.e., the VO protocol does not use any INN queries, P
sends 𝑡 + 2 online polynomial oracles, and the verifier makes at most
2(𝑚 + 𝑡) + 4 evaluation queries at 3 distinct points.

Proof Sketch. The security of the batched protocols follows

from Schwartz-Zippel Lemma. The security of the InnerProduct
protocol follows from the fact that 𝑞

⟨·, ·⟩
0
(𝒗1, · · · , 𝒗`) equals the

sum of elements in 𝒓 := 𝑞◦
0
(𝒗1, · · · , 𝒗`), and that the last ele-

ment of 𝒓 is exactly the sum of elements in 𝒓 . The security of

the Hadamard protocol follows from the fact that the constant

term of ℎ(𝑋) is a polynomial of 𝜔 whose coefficient vector is

𝑞◦ (𝒗1, · · · , 𝒗`) − (0𝑛 ∥1𝑛) ◦ 𝒕→𝑛−𝑟 . Therefore, if the HAD query

is rejected, by Schwartz-Zippel Lemma, the constant term of ℎ(𝑋)
is nonzero with overwhelming probability. The identity ℎ(𝑋) =
¯ℎ(𝛾𝑋) − ¯ℎ(𝑋) guarantees that the constant term of ℎ(𝑋) is indeed
zero. We refer to Appendix C for a more rigorous proof of com-

pleteness and soundness.

8

VOProof: Efficient zkSNARKs from Vector Oracle Compilers ACM CCS, 2022

𝑦 = 𝐹 (𝑥,𝑤) Constraint System VO Protocol PIOP zkSNARK

arithmetization protocol design vo compile crypto compile

Figure 4: The VOProof zkSNARK construction workflow.

HVZK follows from the fact that every polynomial is queried

at most twice (at 𝑧 and 𝜔𝑧−1
, or 𝑧 and 𝛾𝑧 for ¯ℎ(𝑋)), and that each

polynomial sent by the prover contains at least 𝑟 uniformly random

coefficient in F, except for ¯ℎ(𝑋), which contains only one random

coefficient ℎ0. Therefore, by letting 𝑟 = 2, we ensure that all the

evaluation results are uniformly random and independent of each

other, except for the last query to
¯ℎ(𝑋). However, the simulator

can solve for the last query result using ℎ(𝑧) = ¯ℎ(𝛾𝑧) − ¯ℎ(𝑧). □

We remark that the upper bounds on polynomial oracles and

evaluation queries given in Theorem 3.3 are rather loose and are

achieved only in extreme cases: in our work, the compiled PIOPs

have much smaller numbers. On the other hand, the soundness

error in Theorem 3.3 is precise: directly analyzing the resulting

PIOPs gives the same soundness errors.

3.3 The VOProof Workflow
With the VO protocols and VO-to-PIOP compiler, the designers are

now ready to construct zkSNARKs via the VOProof workflow illus-

trated in Fig. 4. In this workflow, the designer needs only to manually
accomplish the second step (i.e., the VO protocol design), and the

other steps are completed automatically by existing tools. VOProof
thus facilitates simpler zkSNARK designs than prior works.

Next, we apply this workflow to construct zkSNARKs for popular

constraint systems. The simplicity of VO protocols allows us to

present three zkSNARKs in one section, whereas each of them

might require an entire paper presented in traditional methods.

4 ZKSNARKS FROM VOPROOF
We construct zkSNARKs for three circuit-based constraint systems:

R1CS, HPR and PLONK defined in Equations (9), (10), (11), respec-

tively. We present the VO protocols for these relations, namely

VOR1CS, VOHPR and VOPLONK. Afterward, these VO protocols

can be compiled to zkSNARKs via the compilers.

Note that both R1CS and HPR involve matrix-vector multipli-

cations, where the matrix is usually sparse in practice. Therefore,

we develop the SMVP (Sparse Matrix-Vector Product) protocol as

a building block shared by VOR1CS and VOHPR. Regarding the

PLONK relation in Equation (11), we remark that this version mod-

ifies the original constraint system in the PLONK paper [21] for

reasons explained in Sect. 4.2. The SMVP protocol and the PLONK
relation are the most complex constructions in this section, so we

provide high-level overviews to highlight the ideas behind them.

The VO protocols forVOR1CS,VOHPR andVOPLONK are straight-

forward combinations of the building blocks.

RR1CS =

©«
(
𝐻,𝐾, ℓ

𝑨,𝑩, 𝑪

)
,

𝒙,
𝒘

ª®®®¬
��������
𝑨,𝑩, 𝑪 ∈ F𝐻×𝐾
𝒙 ∈ Fℓ ,𝒘 ∈ F𝐾−ℓ−1

(𝑨𝒛) ◦ (𝑩𝒛) = 𝑪𝒛
where 𝒛 = 1∥𝒙 ∥𝒘

 (9)

RHPR =

©«
(
𝐻,𝐾, ℓ

𝑨,𝑩, 𝑪, 𝒅

)
,

𝒙,
𝒘1,𝒘2,𝒘3

ª®®®¬
����������
𝑨,𝑩, 𝑪 ∈ F𝐻×𝐾 , 𝒅 ∈ F𝐻
𝒙 ∈ Fℓ ,𝒘1,𝒘2,𝒘3 ∈ F𝐾
𝒘1 ◦𝒘2 = 𝒘3

𝑨𝒘1 + 𝑩𝒘2 + 𝑪𝒘3 + 𝒅
= 𝒙 ∥0𝐻−ℓ

(10)

RPLK =

©«
©«
𝐶𝑐 ,𝐶𝑎,

𝐶𝑚, 𝒅,
𝜎,I𝑥

ª®¬
𝒙,

(𝒂, 𝒃, 𝒄)

ª®®®®®¬

����������������

𝐶 := 𝐶𝑎 +𝐶𝑚
𝜎 ∈ Σ([3𝐶 +𝐶𝑐])
𝒂, 𝒃, 𝒄 ∈ F𝐶 , 𝒙 ∈ F3𝐶 , 𝒅 ∈ F𝐶𝑐

𝒂 [1..𝐶𝑚] ◦ 𝒃 [1..𝐶𝑚] = 𝒄 [1..𝐶𝑚]
𝒂 [𝐶𝑚+1..𝐶] + 𝒃 [𝐶𝑚+1..𝐶] =

𝒄 [𝐶𝑚+1..𝐶]
(𝒂∥𝒃 ∥𝒄) [𝑖] = 𝒙 [𝑖] for 𝑖 ∈ I𝑥
𝜎 (𝒂∥𝒃 ∥𝒄 ∥𝒅) = 𝒂∥𝒃 ∥𝒄 ∥𝒅

(11)

We present the VO protocols for the above relations in Fig. 5. The

following theorems state that these protocols have completeness

and soundness. The proofs are left to Appendix D.

Theorem 4.1. The VOR1CS protocol in Fig. 5 is a VO protocol
for the relation RR1CS with perfect completeness and soundness error

3𝐻+𝐾
|F |−3𝐻−𝐾 .

Theorem 4.2. The VOHPR protocol in Fig. 5 is a VO protocol
for the relation RHPR with perfect completeness and soundness error

3𝐾+𝐻+1
|F |−𝐻−3𝐾−1

.

Theorem 4.3. The VOPLONK protocol in Fig. 5 is a VO proto-
col that validates the relation RPLK with completeness error 3𝐶+𝐶𝑐

|F | ,

soundness error 15𝐶+5𝐶𝑐

|F | .

4.1 Overview of SMVP Protocol
Let𝑴 ∈ F𝐻×𝐾 be a sparse matrix with at most 𝑆 nonzero elements.

Given the handles to vectors 𝒂, 𝒃 , the protocol SMVP allows the

verifier to check that 𝒃 [1..𝐻] = 𝑴𝒂 [1..𝐾] . We highlight the key

ideas as follows:

Random linear combination. We multiply a random vector 𝒓𝛼 with

special structure (defined in step 3 of Fig. 5) to both sides of the

equation. By Lemma D.1, it suffices to check that 𝒓𝛼T𝒃 [1..𝐻] =

𝒓𝛼T𝑴𝒂 [1..𝐾] and the verifier has confidence that the original equa-

tion holds. To check this new equation, the prover submits 𝒄 :=

𝒓𝛼T𝑴 ∈ F𝐾 and sends ℎ𝒄 to the verifier. By substituting 𝒄 , the new
equation becomes ⟨𝒓𝛼T, 𝒃⟩ = ⟨𝒄, 𝒂⟩. After validating 𝒓𝛼 (step 5) and

this new equation (step 6), the problem is reduced to validating 𝒄 ,
i.e., the equation 𝒄 = 𝒓𝛼T𝑴 ∈ F𝐾 .

We repeat the above procedure by similarly multiplying vector

𝒓𝛽 to both sides of the equation. After validating 𝒓𝛽 (step 10), the

problem is finally reduced to verifying ⟨𝒄, 𝒓𝛽 ⟩ = 𝒓𝛼T𝑴𝒓𝛽 , which
we deal with next.

Sparse Representation ofMatrix. Assume thematrix𝑴 has 𝑆 nonzero

entries, with row indices (row1, · · · , row𝑆) ∈ [𝐻]𝑆 , column indices

(col1, · · · , col𝑆) ∈ [𝐾]𝑆 and values 𝒗 ∈ F𝑆 . By the definition of

𝒓𝛼 , 𝒓𝛽 and matrix-vector product,

𝒓𝛼
T𝑴𝒓𝛽 =

𝐻,𝐾∑
𝑖, 𝑗=1

𝑴 [𝑖, 𝑗] ·𝒓𝛼 [𝑖] ·𝒓𝛽 [𝑗] =
∑
𝑖∈[𝑆]

𝒗 [𝑖]
(𝛼 − 𝛾 row𝑖) (𝛽 − 𝛾col𝑖)

.

9

ACM CCS, 2022 Yuncong Zhang, Alan Szepieniec, Ren Zhang, Shifeng Sun, Geng Wang, and Dawu Gu

procedure VOR1CSoffline(𝑨,𝑩, 𝑪)
Run SMVPoffline (𝑴 = (𝑨T∥𝑪T∥𝑩T)T ∈ F3𝐻×𝐾).

procedure VOR1CSonline(𝒙 ;𝒘)
P submits𝒘 and 𝒚 := 𝑴 (1∥𝒙 ∥𝒘) and sends ℎ𝒘 , ℎ𝒚 to V;
Run SMVPonline (ℎ1∥𝒙 ∥𝒘 , ℎ𝒚 ; 1∥𝒙 ∥𝒘,𝒚);
V checks 𝒚 ◦𝒚→2𝐻 ?

=𝑛 1[2𝐻+1..3𝐻] ◦𝒚→𝐻 .

procedure VOHPRoffline(𝑨,𝑩, 𝑪, 𝒅)
Run SMVPoffline (𝑴 = (𝑨∥𝑪 ∥𝑩) ∈ F𝐻×(3𝐾+1)).

procedure VOHPRonline(𝒙 ;𝒘1,𝒘2,𝒘3)

P submits𝒘 := 𝒘1∥𝒘3∥𝒘2 and sends ℎ𝒘 to V;
Run SMVP(ℎ

1∥𝒘 , ℎ𝒙 ; 1∥𝒘, 𝒙);
V checks𝒘 ◦𝒘→2𝐾 ?

=𝑛 1[2𝐾+1..3𝐾] ◦𝒘→𝐾 .

procedure VOPLONKoffline(𝐶𝑐 ,𝐶𝑎,𝐶𝑚, 𝒅, 𝜎,I𝑥)
I submits 𝒅,𝝈 :=

(
𝛾𝜎 (𝑖)−1

)
3𝐶+𝐶𝑐

𝑖=1

where 𝐶 = 𝐶𝑎 +𝐶𝑚 ;

I sends 𝒅,𝝈 to P, and ℎ𝒅 , ℎ𝝈 to V.

procedure VOPLONKonline(𝒙 ; 𝒂, 𝒃, 𝒄)
P submits 𝒖 := 𝒂∥𝒃 [1..𝐶𝑚] , 𝒗 := 𝒃 [𝐶𝑚+1..𝐶] ∥𝒄 and sends ℎ𝒖 , ℎ𝒗

to V;

V checks 𝒖→𝐶 ◦ 𝒖 ?

=𝑛 𝒗→𝐶𝑚 ◦ 1[𝐶+1..𝐶+𝐶𝑚] ;

V checks (𝒖→𝐶𝑎 + 𝒗→𝐶 − 𝒗) ◦ 1[𝐶+1..𝐶+𝐶𝑎]
?

=𝑛 0;
Run VBatch(ℎ𝒖 ∥𝒗 , {𝑖, 𝒙 [𝑖] }𝑖∈I𝑥 ; 𝒖∥𝒗);

V samples 𝛽
$← F and sends 𝛽 to P;

V submits𝒘 := 𝒖∥𝒗∥𝒅, 𝒔 := 𝝈 + 𝛽 ·𝒘 , 𝒕 := 𝜸3𝐶+𝐶𝑐 + 𝛽 ·𝒘 ;
Run PermCheck(ℎ𝒕 , ℎ𝒔 , 3𝐶 +𝐶𝑐 ; 𝒕, 𝒔).

procedure SMVPoffline(𝑴)

Assume that 𝑴 ∈ F𝐻×𝐾 has 𝑆 nonzero entries with row indices

{row𝑖 ∈ [𝐻]}𝑆𝑖=1
, column indices {col𝑖 ∈ [𝐾]}𝑆𝑖=1

and values {val𝑖 ∈
F}𝑆
𝑖=1

;

Let 𝛾 be the generator of the multiplicative group F∗;

I submits 𝒖 = (𝛾 row𝑖)𝑆𝑖=1
,𝒘 =

(
𝛾col𝑖

)𝑆
𝑖=1

, 𝒗 = (val𝑖)𝑆𝑖=1
and 𝒚 =

𝒖 ◦𝒘 ;
I sends 𝒖,𝒘, 𝒗,𝒚 to P, and ℎ𝒖 , ℎ𝒘 , ℎ𝒗 , ℎ𝒚 to V.

1: procedure SMVPonline(ℎ𝒂, ℎ𝒃 ; 𝒂, 𝒃)

2: V samples 𝛼
$← F and sends 𝛼 to P;

3: P submits 𝒓𝛼 :=

(
1

𝛼−𝛾𝑖
)𝐻
𝑖=1

and 𝒄 := 𝒓T𝛼𝑴 and sends ℎ𝒓𝛼 , ℎ𝒄

to V;

4: V checks 𝒓𝛼 ◦ (𝛼 · 1𝑛 −𝜸𝐻)
?

=𝑛 1𝐻 ;

5: V checks ⟨𝒓𝛼 , 𝒃⟩
?

= ⟨𝒄, 𝒂⟩ and 𝒄 ◦
(
1𝑛−𝐾

)→𝐾
?

=𝑛 0;

6: V samples 𝛽
$← F and sends 𝛽 to P;

7: P submits 𝒓𝛽 :=

(
1

𝛽−𝛾𝑖
)𝐾
𝑖=1

and 𝒕 :=

(
1

(𝛼−𝛾 row𝑖) (𝛽−𝛾 col𝑖)

)𝑆
𝑖=1

and

sends ℎ𝒓𝛽 , ℎ𝒕 to V;

8: V checks 𝒓𝛽 ◦ (𝛽 · 1𝑛 −𝜸𝐾)
?

=𝑛 1𝐾 ;

9: V checks 𝒕 ◦ (𝛼𝛽 · 1𝑛 − 𝛼 ·𝒘 − 𝛽 · 𝒖 +𝒚) ?

=𝑛 1𝑆 ;

10: V checks ⟨𝒓𝛽 , 𝒄⟩
?

= ⟨𝒕, 𝒗⟩.

Figure 5: VO Protocols for General-Purpose zkSNARKs.

This is the inner product between 𝒗 and 𝒕 :=

(
1

(𝛼−𝛾 row𝑖) (𝛽−𝛾 col𝑖)

)𝑆
𝑖=1

.

The prover submits the vector 𝒕 , which is validated by step 11, and

the equation becomes ⟨𝒗, 𝒕⟩ ?

= ⟨𝒄, 𝒓𝛽 ⟩ which is checked in step 12.

4.2 Overview of the Modified PLONK Relation
The constraint system of PLONK, defined by the index relation

RPLK, is a characterization of the computations by fan-in-two cir-

cuits. We explain the transformation from fan-in-two circuits to

the relation RPLK as follows.

Assume the circuit contains𝐶 gates, including𝐶𝑎 addition gates,

𝐶𝑚 multiplication gates and 𝐶𝑐 constant gates, such that 𝐶 = 𝐶𝑎 +
𝐶𝑚 +𝐶𝑐 . For the 𝑖-th gate, denote its left input by 𝑎𝑖 , its right input

by 𝑏𝑖 and its output by 𝑐𝑖 . These variables satisfy the following

constraints:

• addition constraints: let I𝑎 ⊂ [𝐶] be the index set for the
addition gates, then 𝑎𝑖 + 𝑏𝑖 = 𝑐𝑖 for 𝑖 ∈ I𝑎 ;
• multiplication constraints: let I𝑚 ⊂ [𝐶] be the index set
for the multiplication gates, then 𝑎𝑖 · 𝑏𝑖 = 𝑐𝑖 for 𝑖 ∈ I𝑚 ;

• constant constraints: let I𝑐 ⊂ [𝐶] be the index set for the
constant gates, and for 𝑖 ∈ I𝑐 , denote the constant value of

the 𝑖-th gate by 𝑑𝑖 , which is publicly known as part of the

circuit description, then 𝑐𝑖 = 𝑑𝑖 for 𝑖 ∈ I𝑐 ;
• public input/output: let 𝒘 := (𝑎𝑖)𝐶𝑖=1

∥(𝑏𝑖)𝐶𝑖=1
∥(𝑐𝑖)𝐶𝑖=1

∈
F3𝐶

be the vector of all variables, I𝑥 ⊂ [3𝐶] be the indices
where the variable values are publicly known, then𝒘 [𝑖] = 𝑥𝑖
for 𝑖 ∈ I𝑥 where 𝑥𝑖 are the publicly known values;

• copy constraints: let 𝑆1 ∪ · · · ∪ 𝑆𝐿 be a partition over [3𝐶]
such that variables connected by wires fall into the same

partition, then for any pair of (𝑖, 𝑗) ∈ [3𝐶]2 in the same

partition,𝒘 [𝑖] = 𝒘 [𝑗] .

PLONK collects these variables into three vectors 𝒂, 𝒃, 𝒄 ∈ F𝐶 . To
characterize the above constraints, PLONK introduces five vectors

𝒒𝑳 , 𝒒𝑹 , 𝒒𝑶 , 𝒒𝑴 and 𝒒𝑪 . By properly setting the values of these

five vectors, the first three types of constraints are equivalent to

𝒂 ◦ 𝒒𝑳 + 𝒃 ◦ 𝒒𝑹 + 𝒄 ◦ 𝒒𝑶 + 𝒂 ◦ 𝒃 ◦ 𝒒𝑴 + 𝒒𝑪 = 0. (12)

PLONK handles the public input/output constraints by dummy

gates, which we omit here for simplicity. For the copy constraints,

PLONK relies on the permutation check, which we briefly describe

as follows.

10

VOProof: Efficient zkSNARKs from Vector Oracle Compilers ACM CCS, 2022

Let 𝒗 ∈ F3𝐶
be a vector. For any permutation 𝜎 over [3𝐶], and

any 𝑖 ∈ [3𝐶], by starting from 𝑖 and repeatedly applying 𝜎 , we

can get a sequence of integers 𝑖, 𝜎 (𝑖), · · · , 𝜎−1 (𝑖), 𝑖 that cycles back
to 𝑖 . All such cycles form a partition over [3𝐶]. For any partition

𝑆1 ∪ · · · ∪ 𝑆𝐿 over [3𝐶], we can find a 𝜎 whose cycles exactly form

this partition. It is straightforward to check that if 𝒗 is invariant

under the permutation 𝜎 , i.e., 𝒗 = 𝜎 (𝒗) := (𝒗 [𝜎 (𝑖)])𝑛𝑖=1
, then 𝒗

satisfies the copy constraints for the cycle partition of 𝜎 .

We optimize the PLONK relation to better suit the VO model.

First, we sort the gates in the circuit by their types. Specifically,

we index the multiplication gates by [1..𝐶𝑚], the addition gates by

[𝐶𝑚 + 1..𝐶𝑚 +𝐶𝑎], and the constant gates by [𝐶𝑚 +𝐶𝑎 + 1..𝐶]. As a
result of sorting, the vectors 𝒒𝑳, 𝒒𝑹 , 𝒒𝑶 and 𝒒𝑴 become consecutive

ones and can be eliminated from the index, and 𝒒𝑪 becomes a

shorter vector, which we denote by 𝒅 ∈ F𝐶𝑐
. Moreover, the last 𝐶𝑐

elements of both 𝒂 and 𝒃 (corresponding to the inputs to constant

gates) are irrelevant to the circuit, and the last 𝐶𝑐 elements of 𝒄 are
exactly 𝒅. Therefore, we can redefine the witness vectors 𝒂, 𝒃 , and 𝒄
to contain only the outputs of the addition and multiplication gates.

For simplicity of notation, we also redefine𝐶 as𝐶𝑎 +𝐶𝑚 instead of

𝐶𝑎 +𝐶𝑚 +𝐶𝑐 in the relation and the protocol. The modified PLONK
relation is summarized in Equation (11).

5 IMPLEMENTATION AND COMPARISON
To evaluate the feasibility of the VOProof method and the perfor-

mance of VOProof-based zkSNARKs, we implement, in Python, a

framework for describing VO protocols, and a VO compiler7 that
transforms the VO protocols into the fully functional code of zk-

SNARKs in Rust
8
. This VO compiler is the combination of our

VO-to-PIOP compiler with the batched version of the KZG poly-

nomial commitment scheme [24] proposed in PLONK [21]. Our

compiler relies on the Sympy library for symbolic evaluations. The

Rust code of the compiled zkSNARKs uses the finite fields and

elliptic curves implemented by the arkworks9 team.

Our implementation applies several optimizations to the com-

piler given in Sect. 3.2. We highlight the most important optimiza-

tions as follows.

5.1 Optimizations
Homomorphic combination of polynomial commitments. In-
spired by a technique in PLONK (attributed toMaryMaller in Sect. 4

of [21]), we reduce the number of evaluation queries exploiting the

additive homomorphism of KZG. As a showcase, consider checking

the polynomial identity 𝑓1 (𝜔𝑋−1) ·𝑔1 (𝑋)−𝑓2 (𝜔𝑋−1) ·𝑔2 (𝑋) = ℎ(𝑋)
at a random point 𝑧. The verifier first queries 𝑓1 (𝑋) and 𝑓2 (𝑋) with
𝜔 · 𝑧−1

and receives 𝑦1 and 𝑦2, then computes the polynomial

commitment for 𝑔(𝑋) = 𝑦1 · 𝑔1 (𝑋) − 𝑦2 · 𝑔2 (𝑋) − ℎ(𝑋) by linearly

combining the commitments of 𝑔1 (𝑋), 𝑔2 (𝑋) and ℎ(𝑋). The verifier
then queries 𝑔(𝑋) at 𝑧 and check if the result is 0. In this example,

the optimization saves 2 queries compared to naïvely querying each

of 𝑔1 (𝑋), 𝑔2 (𝑋) and ℎ(𝑋).
Reducing the number of FFTs. In the last step of the Hadamard
protocol in Fig. 3, the verifier needs to check the identity ℎ(𝑧) =
7
https://github.com/yczhangsjtu/voproof-scripts

8
https://github.com/yczhangsjtu/voproof

9
https://github.com/arkworks-rs

¯ℎ(𝛾𝑧) − ¯ℎ(𝑧), where ℎ(𝑋) includes the sum of terms of the form

𝑓𝒗𝑖 (𝜔𝑋−1) 𝑓𝒗 𝑗
(𝑋). Assume that there are 𝑚 such terms. Naïvely

computing ℎ(𝑋) requires𝑚 dense polynomial multiplications that

has𝑂 (𝑛 log𝑛) complexity using FFT. However, note that each poly-

nomial 𝑓𝒗𝑖 (𝑋) can be written in the form of linear combination∑
𝑠𝑖 (𝑋) 𝑓𝑖 (𝑋) where 𝑓𝑖 (𝑋) is a polynomial sent from the prover or

the indexer, and the coefficients 𝑠𝑖 (𝑋) are locally evaluable poly-
nomials—polynomials that admit fast evaluation, e.g., sparse or

power polynomials. By expanding these linear combinations and

collecting like terms, the prover only needs FFT in multiplications

between prover-polynomials. The number of FFTs thus depends

only on the number of prover-polynomials.

Splitting the polynomial ℎ(𝑋). In the Hadamard protocol in

Fig. 3, the prover can show that ℎ(𝑋) has a zero constant term

in an alternative method. This method is only efficient when com-

bined with the homomorphic combination optimization which is

not available for general PIOP. This method works by splitting

the polynomial ℎ(𝑋) into ℎ1 (𝑋) · 𝑋−𝐷−1 + ℎ2 (𝑋) · 𝑋 and sending

[ℎ1 (𝑋)]10 and [ℎ2 (𝑋)] to the verifier. The verifier checks the iden-

tity ℎ1 (𝑧) · 𝑧−𝐷−1 + ℎ2 (𝑧) = ℎ(𝑧) · 𝑧. This optimization saves one

distinct query point 𝛾𝑧 at the cost of one more online polynomial

oracle, thus the proof size of the KZG polynomial commitment

scheme is not affected. Meanwhile, the maximal polynomial degree

is reduced from 4𝑛 to 2𝑛.

Removeunnecessary randomizations. Several vectors sent from
the prover are public and do not need to be randomized for zero-

knowledge. Our compiler allows the protocol designer to manually

mark vectors as public and save the overhead caused by random-

ization.

Besides the aforementioned optimization techniques in the com-

piler, we also considered another technique in the VO protocol

level, which we call the vector combination. The idea is to let the

prover concatenate all the vectors that are sent in one round of

interaction into a large vector. This technique reduces the proof size

and the verification costs, though it sometimes causes higher setup,

indexing, and proving costs, and a larger SRS size. This tradeoff

is worthwhile when the verification and storage costs are more

critical, e.g., in a blockchain system like Ethereum. We apply this

technique to the SMVP and VOPLONK protocols manually, and

leave automatic vector combination to future work. The resulting

VO protocols are presented in Fig. 7 in Appendix A.

Applying this framework, we generate the Rust code of the zk-

SNARKs constructed in Sect. 4, and their verifier-efficient versions

that adopt the vector combination technique. Next, we evaluate

and compare these zkSNARKs with prior works in the proof size

and the running time, including the setup time, the indexing (or

preprocessing) time, the proving time, and the verification time.

5.2 Comparison of Proof Size
We compare our zkSNARKs to state-of-the-art constructions with

constant verification time and proof size:Marlin [16], Groth16 [23]
and PLONK [21], where Groth16 requires a per-circuit trusted

setup, while others (including ours) support universal setups for all

10
We assume here that the degree bound of PIOP is exactly 𝐷 . If the degree bound

is 𝐷′ > 𝐷 , then the prover should send ℎ1 (𝑋) · 𝑋𝐷′−𝐷
instead, and the verifier

multiplies the query result with 𝑧−𝐷
′−1

.

11

https://github.com/arkworks-rs

ACM CCS, 2022 Yuncong Zhang, Alan Szepieniec, Ren Zhang, Shifeng Sun, Geng Wang, and Dawu Gu

circuits within a certain bound. Although Sonic [25] also belongs

to this category of zkSNARKs, we do not include it in comparison

because there is no working implementation of the unhelped ver-

sion of Sonic at the time of writing. There are also zkSNARKs that

support transparent setup, i.e., the setup can be executed by an

untrusted party. However, these zkSNARKs typically have much

larger proof sizes and verification costs than the ones relying on

trusted setups, so we also exclude them from the comparison.

The implementations of Marlin, Groth16 and PLONK we select

are all based on the arkworks toolchain. Specifically, the Marlin
andGroth16 implementations are developed by the arkworks team.

This team has not provided an implementation of PLONK at the

time of writing, so we picked another implementation
11

that uses

the same toolchain. The number forMarlin is reported in the docu-

ment of the arkworks implementation of Marlin, which is smaller

than the number reported in the Marlin paper [16]. For other zk-

SNARKs, we use the ark-serialize crate for encoding the proof
and measuring the proof size. The number for PLONK is larger

than we expected for reasons that will be discussed later.

Table 1 shows that all the VOProof-based zkSNARKs have shorter

proofs than Marlin and PLONK.12

Table 1: Comparison of Proof Sizes (in Bytes), with BLS12-
381 Curve. The “*” refers to the verifier-efficient version.

zkSNARK Proof Size zkSNARK Proof Size zkSNARK Proof Size
VOR1CS* 496 VOHPR* 496 VOPLONK* 400

VOR1CS 672 VOHPR 672 VOPLONK 448

Marlin 784 Groth16 192 PLONK 1040

5.3 Comparison of Running Time
To evaluate the running time of the zkSNARKs, we execute the

setup, the indexing, and the proving algorithms on an HP-Z8-G4

workstation with the system Ubuntu 20.04 LTS, 512 GB memory,

and 2.30 GHz 64-core Intel(R) Xeon(R) Gold 5218 CPU. For the

verification algorithm, we run it on a laptop with a MacOS sys-

tem, 8 GB memory, and a 3.1 GHz Intel Core i5 CPU. We choose

different platforms because in real-life situations the zkSNARK

proof generation is time-consuming and is expected to run on a

powerful machine, while the proof verification is typically running

on machines with weaker computation power, e.g., a laptop. The

programs are executed in single threads.

We select the Merkle-path verification as the benchmarking com-

putation, which is a common component in various applications.

The hash function we choose for the Merkle-tree is Poseidon [22], a

SNARK-friendly cryptographic hash function. We exclude VOHPR
from the evaluation, due to the lack of tools for transforming circuits

into HPR matrices.

Figure 6 shows thatVOProof-based zkSNARKs outperformPLONK
andMarlin in setup, indexing and verification.

Setup time. Groth16 does not have the universal setup step and

is not included in the comparison of this metric. The setup time

depends on the maximal polynomial degree and the polynomial

11
https://github.com/ZK-Garage/plonk

12
Although the proof size of Groth16 is significantly smaller than others, this perfor-

mance comes at the cost of per-circuit trusted setup.

commitment scheme. VOPLONK and its verifier-efficient variant

have roughly the same performance compared to PLONK, which is

actually unexpected, because VOPLONK has a larger degree for the

same circuit. The reasons for VOPLONK performing the same as

PLONK despite the larger maximal degree include: a) VOPLONK
uses the original polynomial commitment scheme proposed in the

PLONK paper [21] which has fast setup, while the implementation

of PLONK in our experiment uses the KZG10 scheme provided in

the arkworks toolchain, which is heavier than the one in [21] (this

also explains the larger-than-expected proof size); and b) PLONK re-

quires the degree to be padded to a power of two, while VOPLONK
does not. In comparison, both versions of VOR1CS have a shorter

setup time than the rest.

Indexing time. Both VOR1CS and VOPLONK perform better than

the state of the art, except Groth16.

Proving time. Both VOR1CS and VOPLONK are outperformed by

Marlin, and Groth16 still has the best performance.

Verification time. VOR1CS and VOPLONK are competitive com-

pared to others. Note that the verification time of Groth16 depends
heavily on the size of public inputs to the circuit. Specifically, the

verification time is dominated by two pairings (three for Groth16)
and scalar-multiplications inG1. ForGroth16, each public input con-
tributes one more scalar-multiplication. For the other zkSNARKs,

the size of public inputs only affects the number of field operations

which are considerably cheaper than group operations. Therefore,

we benchmarked Groth16 with 3 and 50 public inputs respectively.

Figure 6d shows that the verifier of Marlin is roughly the same

as Groth16 when the number of public inputs is 50. In compari-

son, VOR1CS, VOPLONK and PLONK have a smaller number of

scalar-multiplications (roughly 20 as we estimated).

Remarks. Most of the efficiency improvements of the VOProof-
based zkSNARKs result from combining the monomial-basis tech-

niques fromClaymore and several techniques from PLONK [21], in-

cluding the lightweight KZG and exploitation of the homomorphic

addition of polynomial commitments. Although these optimiza-

tions are not VO-specific, i.e., we can present all our constructions

and apply these optimizations without the VO formalization, such

presentations are cumbersome and repetitive: the compilation logic

must be adapted and repeated in every protocol’s description.

Note that the implementation of PLONK in our experiment could

benefit from choosing the lightweight polynomial commitment

presented in [21] and perform better than as shown in Table 1 and

Fig. 6. However, Marlin may not switch to this lightweight scheme

becauseMarlin requires individual degree bound for the committed

polynomials, while PLONK and all the VOProof-based zkSNARKs

do not have this requirement.

6 CONCLUSION
We introduced VOProof, which simplifies designing zkSNARKs for

various specialized problems and constraint systems for general-

purpose computations. Although sufferring from the inevitable

loss of generality and flexibility compared to directly using PIOP,

our new workflow enjoys the benefit of simplicity. Such simplicity

comes from: (1) on the application side, VO provides an interface

matching with the operations of constraint systems, and (2) on the

implementation side, VO conceals the application-specific logics to

12

https://github.com/ZK-Garage/plonk

VOProof: Efficient zkSNARKs from Vector Oracle Compilers ACM CCS, 2022

(a) Setup Time (b) Indexing Time (c) Proving Time (d) Verification Time

Figure 6: Comparison between the running time of zkSNARKs. The “*” refers to the verifier-efficient versions. The Groth16
verification time depends linearly on the public input size (denoted by ell). Note that the lines for VOPLONK and VOPLONK*
are very close in the left three subfigures.

focus on implementing the VO queries. Such functional separation

opens the possibility for a broad class of zkSNARKs with different

combinations of properties.

The zkSNARKs generated using our tool show competitive ef-

ficiency compared to the state of the art. In particular, they out-

perform prior works in proof sizes and verification times, with

the sole exception of Groth16 whose efficiency comes at the cost

of a circuit-specific trusted setup. We believe such advantage in

verification efficiency outweighs the slight sacrifice in proving effi-

ciency compared to Marlin and Groth16. For example, on Ethereum,

assuming an ETH is $2000, the transaction fee for verifying each

SNARK proof is typically two magnitudes greater than the cost of

generating this proof [2].

Future work. The VOProof methodology reveals many opportu-

nities for further investigation. The zkSNARKs in this work might

be improved by an alternative compiler, e.g., a compiler working in

the Reed-Solomon basis, or a compiler that circumvents PIOP and

compiles VO protocols directly into zkSNARKs. Another promising

direction is to unify all prior zkSNARKs in one framework using

the language of the VO model. Analyzing existing protocols in this

framework may provide more thorough explanations for the dif-

ferent features in prior constructions, and potentially reveal new

directions for improvements.

Acknowledgement. This work is partially supported by National

Key Research and Development Project 2020YFA0712300.

REFERENCES
[1] 2021. Aztec. (2021). https://zk.money.

[2] 2021. ZK-Rollup development experience sharing. (2021). https://www.fluidex.

io/en/blog/zkrollup-intro1/.

[3] 2021. zkSync. (2021). https://zksync.io.

[4] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth, and

Vadim Lyubashevsky. 2018. Sub-linear Lattice-Based Zero-Knowledge Argu-

ments for Arithmetic Circuits. In Advances in Cryptology - CRYPTO 2018 (LNCS),
Vol. 10992. Springer, 669–699. https://doi.org/10.1007/978-3-319-96881-0_23

[5] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,

transparent, and post-quantum secure computational integrity. IACR Cryptol.
ePrint Arch. 2018 (2018), 46. http://eprint.iacr.org/2018/046

[6] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP 2014.
IEEE Computer Society, 459–474. https://doi.org/10.1109/SP.2014.36

[7] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars

Virza, and Nicholas P. Ward. 2019. Aurora: Transparent Succinct Arguments for

R1CS. In Advances in Cryptology - EUROCRYPT 2019 (LNCS), Vol. 11476. Springer,
103–128. https://doi.org/10.1007/978-3-030-17653-2_4

[8] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2012. From

extractable collision resistance to succinct non-interactive arguments of knowl-

edge, and back again. In Innovations in Theoretical Computer Science 2012. ACM,

326–349. https://doi.org/10.1145/2090236.2090263

[9] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-Interactive Zero-

Knowledge and Its Applications (Extended Abstract). In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing. ACM, 103–112. https://doi.

org/10.1145/62212.62222

[10] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe

Petit. 2016. Efficient Zero-Knowledge Arguments for Arithmetic Circuits in

the Discrete Log Setting. In Advances in Cryptology - EUROCRYPT 2016 (LNCS),
Vol. 9666. Springer, 327–357. https://doi.org/10.1007/978-3-662-49896-5_12

[11] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Ha-

jiabadi, and Sune K. Jakobsen. 2017. Linear-time zero-knowledge proofs for

arithmetic circuit satisfiability. In International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 336–365.

[12] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,

and Gregory Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transac-

tions and More. In 2018 IEEE Symposium on Security and Privacy, SP 2018. IEEE
Computer Society, 315–334. https://doi.org/10.1109/SP.2018.00020

[13] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. 2020. Transparent SNARKs

from DARK Compilers. In Advances in Cryptology - EUROCRYPT 2020 (LNCS),
Vol. 12105. Springer, 677–706. https://doi.org/10.1007/978-3-030-45721-1_24

[14] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and Hadrián

Rodríguez. 2021. Lunar: A Toolbox for More Efficient Universal and Updat-

able zkSNARKs and Commit-and-Prove Extensions. In Advances in Cryptol-
ogy - ASIACRYPT 2021, Proceedings, Part III (Lecture Notes in Computer Sci-
ence), Mehdi Tibouchi and Huaxiong Wang (Eds.), Vol. 13092. Springer, 3–33.

https://doi.org/10.1007/978-3-030-92078-4_1

[15] Matteo Campanelli, Dario Fiore, and Anaïs Querol. 2019. LegoSNARK: Modular

Design and Composition of Succinct Zero-Knowledge Proofs. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS
2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz

(Eds.). ACM, 2075–2092. https://doi.org/10.1145/3319535.3339820

[16] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,

and Nicholas P. Ward. 2020. Marlin: Preprocessing zkSNARKs with Universal and

Updatable SRS. In Advances in Cryptology - EUROCRYPT 2020 (LNCS), Vol. 12105.
Springer, 738–768. https://doi.org/10.1007/978-3-030-45721-1_26

[17] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. 2021. Post-

Quantum Succinct Arguments: Breaking the Quantum Rewinding Barrier. Cryp-

tology ePrint Archive, Report 2021/334. (2021). https://ia.cr/2021/334.

[18] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. 2020. Fractal: Post-quantum

and Transparent Recursive Proofs from Holography. In Advances in Cryptology -
EUROCRYPT 2020 (LNCS), Vol. 12105. Springer, 769–793. https://doi.org/10.1007/
978-3-030-45721-1_27

[19] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In Advances in Cryptology - CRYPTO ’86
(LNCS), Vol. 263. Springer, 186–194. https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12.

[20] Ariel Gabizon and Zachary J. Williamson. 2020. plookup: A simplified polynomial

protocol for lookup tables. IACR Cryptol. ePrint Arch. 2020 (2020), 315. https:
//eprint.iacr.org/2020/315

[21] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. 2019. PLONK: Permu-

tations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowl-

edge. IACR Cryptol. ePrint Arch. 2019 (2019), 953. https://eprint.iacr.org/2019/953
[22] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and

Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge

13

https://zk.money
https://www.fluidex.io/en/blog/zkrollup-intro1/
https://www.fluidex.io/en/blog/zkrollup-intro1/
https://zksync.io
https://doi.org/10.1007/978-3-319-96881-0_23
http://eprint.iacr.org/2018/046
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/62212.62222
https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1007/978-3-030-45721-1_26
https://ia.cr/2021/334
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953

ACM CCS, 2022 Yuncong Zhang, Alan Szepieniec, Ren Zhang, Shifeng Sun, Geng Wang, and Dawu Gu

Proof Systems. In 30th USENIX Security Symposium, USENIX Security 2021, August
11-13, 2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIX Association,

519–535.

[23] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In

Advances in Cryptology - EUROCRYPT 2016 (LNCS), Vol. 9666. Springer, 305–326.
https://doi.org/10.1007/978-3-662-49896-5_11

[24] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size

Commitments to Polynomials and Their Applications. In Advances in Cryptology
- ASIACRYPT 2010 (LNCS), Vol. 6477. Springer, 177–194. https://doi.org/10.1007/
978-3-642-17373-8_11

[25] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019. Sonic:

Zero-Knowledge SNARKs from Linear-Size Universal and Updateable Structured

Reference Strings. IACR Cryptol. ePrint Arch. 2019 (2019), 99. https://eprint.iacr.
org/2019/099

[26] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:

Nearly Practical Verifiable Computation. In 2013 IEEE Symposium on Security and
Privacy, SP 2013. IEEE Computer Society, 238–252. https://doi.org/10.1109/SP.

2013.47

[27] Carla Ràfols and Arantxa Zapico. 2021. An algebraic framework for universal

and updatable SNARKs. In Annual International Cryptology Conference. Springer,
774–804.

[28] Srinath Setty. 2020. Spartan: Efficient and General-Purpose zkSNARKs Without

Trusted Setup. In Advances in Cryptology - CRYPTO 2020 (LNCS), Vol. 12172.
Springer, 704–737. https://doi.org/10.1007/978-3-030-56877-1_25

[29] Alan Szepieniec and Yuncong Zhang. 2020. Polynomial IOPs for Linear Algebra

Relations. IACR Cryptol. ePrint Arch. 2020 (2020), 1022. https://eprint.iacr.org/
2020/1022

[30] Justin Thaler. 2020. Proofs, arguments, and zero-knowledge. (2020).

[31] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and

Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover

Computation. In Advances in Cryptology - CRYPTO 2019 (LNCS), Vol. 11694.
Springer, 733–764. https://doi.org/10.1007/978-3-030-26954-8_24

[32] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2018. vRAM: Faster Verifiable RAM with Program-

Independent Preprocessing. In 2018 IEEE Symposium on Security and Privacy, SP
2018. IEEE Computer Society, 908–925. https://doi.org/10.1109/SP.2018.00013

A ALTERNATIVE PROTOCOLS
We present in Fig. 7 the verifier-efficient versions of the SMVP and

VOPLONK protocols where the vector combination technique is

applied. The offline protocol of SMVP is the same as in Fig. 5 and

is omitted here.

R1CS-lite [14], defined in Equation (13), is a variant of R1CS that

is more lightweight yet still NP-complete. It is straightforward to

adapt VOR1CS for R1CS-lite, and the VO protocol is presented in

Fig. 8.

RR1CSLite =

©«
(
𝐻, ℓ

𝑨,𝑩

)
,

𝒙,
𝒘

ª®®®¬
��������
𝑨,𝑩 ∈ F𝐻×𝐻
𝒙 ∈ Fℓ ,𝒘 ∈ F𝐻−ℓ−1

(𝑨𝒛) ◦ (𝑩𝒛) = 𝒛
where 𝒛 = 1∥𝒙 ∥𝒘

 (13)

B VO-TO-PIOP COMPILER IN
REED-SOLOMON BASIS

The compiler presented in this work uses the monomial basis. The

VO-to-PIOP compiler can alternatively be implemented using the

Reed-Solomon (RS) code basis, where a vector is identified by its

interpolation polynomials over a structured domain 𝐻 ⊂ F. The RS
code is an important component in many zkSNARKs. To construct

RS code based compiler, however, the VO model should be modified

to avoid several efficiency issues.

• In the monomial basis, the polynomial for power vector 𝜶𝑘

admits fast evaluation. This is not the case for the RS code

basis. The vector with a similar role in the RS code basis is

(ℎ𝑖)ℎ∈𝐻 corresponding to the monomial 𝑓 (𝑋) := 𝑋 𝑖 . More-

over, the vector

(
1

𝛼−ℎ

)
ℎ∈𝐻

is also available, as the polyno-

mial
𝑣𝐻 (𝑋) ·𝑣𝐻 (𝛼)−1−1

𝑋−𝛼 has fast evaluation method exploiting

the structure of𝐻 , where 𝑣𝐻 (𝑋) is the vanishing polynomial

over𝐻 . We should replace POWwith queries for submitting

these types of vectors instead.

• In the Reed-Solomon code basis, the Hadamard product is

identified with the polynomial multiplication. Therefore, the

multivariate polynomials of the HAD query are no longer

restricted to be quadratic. However, every degree contributes

𝑛 to the maximal degree of the resulting PIOP.

• In the Reed-Solomon code basis, the INN queries can be

batched together and checked by one invocation of the uni-
variate sumcheck protocol [7, 16, 18]. Similar to the HAD
queries, the polynomials in INN are no longer restricted to

be quadratic.

• In the monomial basis, shifting a vector 𝒗 effectively multi-

plies𝑋𝑘 to the polynomial 𝑓𝒗 (𝑋). In the Reed-Solomon code

basis, the shifting is implemented by replacing 𝑓 (𝑋) with
𝑓 (𝑔−𝑘 ·𝑋) assuming𝐻 is a multiplicative subgroup generated

by 𝑔 ∈ F∗. This shifting is cyclic rather than zero-padded,

and the SHR query should be redefined accordingly.

We will not dive into the details and leave this alternative com-

piler to future work.

C PROOF OF THEOREM 3.3
First, we introduce the Schwartz-Zippel lemma, which is used in-

tensively in all the proofs thereafter.

LemmaC.1 (Schwartz-Zippel). For a𝑢-variate polynomial 𝑓 (𝑋1, · · · , 𝑋𝑢)
of total degree 𝑑 over F, let 𝑆 be a finite subset of F and 𝑧1, · · · , 𝑧𝑢 be
selected at random independently and uniformly from 𝑆 . Then

Pr[𝑓 (𝑧1, · · · , 𝑧𝑢) = 0] ≤ 𝑑

|𝑆 | .

Now we present the proof of Theorem 3.3. We will define a se-

quence of models {VO𝑖 } that starts from the VO model and ends

with an alternative formalization of the PIOP model. Correspond-

ingly, starting from the original VO protocol (VO.I,VO.P,VO.V),
we construct a sequence of protocols {(VO.I(𝑖) ,VO.P(𝑖) ,VO.V(𝑖))},
one for each of the models, and the last of the sequence would be

the PIOP protocol with the desired properties.

VO0. This is exactly the VO model.

VO1. VO1 is the same as VO0, except that the vector handle lists

in HAD and INN queries include all the vector handles that is ever

returned from the oracle, listed in the order of the time they are

returned. The quadratic polynomials in the queries do not change,

except that the indeterminants are reindexed accordingly. Since all

the HAD and INN queries have the same vector handle list, we can

simply omit it from the query syntax. This step is merely a change

of notation, such that when we can conveniently add the quadratic

polynomials in different queries together.

VO2. VO2 is the same as VO1, except that the queries VEC(𝒗) allow
|𝒗 | ≥ 𝑛. Clearly, this change only affects the part of the vectors

outside the [1..𝑛] window, and VO2 is equivalent to VO1.

14

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2019/099
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2020/1022
https://eprint.iacr.org/2020/1022
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1109/SP.2018.00013

VOProof: Efficient zkSNARKs from Vector Oracle Compilers ACM CCS, 2022

procedure SMVPonline(ℎ𝒂, ℎ𝒃 ; 𝒂, 𝒃)

V samples 𝛼
$← F and sends 𝛼 to P;

P computes 𝒓𝛼 :=

(
1

𝛼−𝛾𝑖
)𝐻
𝑖=1

and 𝒄 := 𝒓T𝛼𝑴 ;

P submits 𝒔 := 𝒓𝛼 ∥𝒄 and sends ℎ𝒔 to V;

V checks 𝒔 ◦ (𝛼 · 1𝐻 −𝜸𝐻) ?

=𝑛 1𝐻 ;

V checks ⟨𝒔, 𝒃 ∥(−𝒂)⟩ ?

= 0 and 𝒔 ◦
(
1𝑛−(𝐻+𝐾)

)→𝐻+𝐾
?

=𝑛 0;

V samples 𝛽
$← F and sends 𝛽 to P;

P computes 𝒓𝛽 :=

(
1

𝛽−𝛾𝑖
)𝐾
𝑖=1

and 𝒕 :=

(
1

(𝛼−𝛾 row𝑖) (𝛽−𝛾 col𝑖)

)𝑆
𝑖=1

;

P submits 𝒉 := 𝒓𝛽 ∥𝒕 and sends ℎ𝒉 to V;

V checks 𝒉 ◦ (𝛽 · 1𝐾 −𝜸𝐾) ?

=𝑛 1𝐾 ;

V checks 𝒉 ◦ (𝛼𝛽 · (0𝐾 ∥1𝑛−𝐾) − 𝛼 ·𝒘→𝐾 − 𝛽 · 𝒖→𝐾 +𝒚→𝐾) ?

=𝑛

0𝐾 ∥1𝑆 ;
V checks ⟨𝒉→𝐻 , 𝒄⟩ ?

= ⟨𝒕, 𝒗→𝐾 ⟩.

procedure VOPLONKoffline(𝐶𝑐 ,𝐶𝑎,𝐶𝑚, 𝒅, 𝜎,I𝑥)
Let 𝐶 = 𝐶𝑎 +𝐶𝑚 ;

Let 𝜏 ∈ Σ([3𝐶+𝐶𝑐]) be a permutation that swaps [𝐶+1..2𝐶] and
[2𝐶 + 1..3𝐶], i.e., for 𝑖 ∈ [𝐶], 𝜏 (𝐶 + 𝑖) = 2𝐶 + 𝑖 and 𝜏 (2𝐶 + 𝑖) = 𝐶 + 𝑖;

Let 𝜋 ∈ Σ([3𝐶+𝐶𝑐]) swap [2𝐶+1..2𝐶+𝐶𝑚] and [2𝐶+𝐶𝑚+1..3𝐶],
i.e., for 𝑖 ∈ [𝐶𝑚], 𝜋 (2𝐶 +𝑖) = 2𝐶 +𝐶𝑎 +𝑖 and for 𝑖 ∈ [𝐶𝑎], 𝜋 (2𝐶 +𝑖) =
2𝐶 −𝐶𝑚 + 𝑖;

Let 𝜎 ′ := 𝜎 (𝜋 (𝜏 (·)));
I submits 𝒅,𝝈 :=

(
𝛾𝜎
′ (𝑖)−1

)
3𝐶+𝐶𝑐

𝑖=1

;

I sends 𝒅,𝝈 to P, and ℎ𝒅 , ℎ𝝈 to V.

procedure VOPLONKonline(𝒙 ; 𝒂, 𝒃, 𝒄)
P submits 𝒖 := 𝒂∥𝒄 ∥𝒃 [𝐶𝑚+1..𝐶] ∥𝒃 [1..𝐶𝑚] and sends ℎ𝒖 to V;

V checks 𝒖→2𝐶+𝐶𝑎 ◦ 𝒖 ?

=𝑛 𝒖→𝐶+𝐶𝑎 ◦ 1[2𝐶+𝐶𝑎 ..3𝐶] ;

V checks (𝒖→𝐶+𝐶𝑎 + 𝒖→𝐶𝑎 − 𝒖) ◦ 1[2𝐶+1..2𝐶+𝐶𝑎]
?

=𝑛 0;
Run VBatch(ℎ𝒖 , {𝜋 (𝜏 (𝑖)), 𝒙 [𝑖] }𝑖∈I𝑥 ; 𝒖);

V samples 𝛽
$← F and sends 𝛽 to P;

V submits𝒘 := 𝒖∥𝒅, 𝒔 := 𝝈 + 𝛽 ·𝒘 , 𝒕 := 𝜸3𝐶+𝐶𝑐 + 𝛽 ·𝒘 ;
Run PermCheck(ℎ𝒕 , ℎ𝒔 , 3𝐶 +𝐶𝑐 ; 𝒕, 𝒔).

Figure 7: Verifier-Efficient Versions of VO Protocols.

procedure VOR1CSLiteoffline(𝑨,𝑩)
Run SMVPoffline (𝑴 = (𝑨T∥𝑩T)T ∈ F2𝐻×𝐻).

procedure VOR1CSLiteonline(𝒙 ;𝒘)
P submits𝒘 and 𝒚 := 𝑴 (1∥𝒙 ∥𝒘) and sends ℎ𝒘 , ℎ𝒚 to V;
Run SMVPonline (ℎ1∥𝒙 ∥𝒘 , ℎ𝒚 ; 1∥𝒙 ∥𝒘,𝒚);
V checks 𝒚 ◦𝒚→𝐻 ?

=𝑛 0𝐻 ∥1∥𝒙 ∥𝒘 .

Figure 8: VO Protocol for R1CS-lite.

We also modify a bit of the protocol in this model. Specifically,

let VO.P(2) be the same as VO.P(1) except that for any vector 𝒗
submitted byVO.P(1) ,VO.P(2) uniformly randomly samples 𝜹 ∈ F𝑟
and submits 𝒗∥𝜹 ∈ F𝑛+𝑟 instead, where 𝑟 is a small integer to

be determined later. This does not affect completeness since the

appended 𝜹 never affects the part of the vectors in the window, nor

soundness which does not rely on the prover.

VO3. VO3 is the same as VO.P(2) , except that the LIN query is

removed. We then modify the verifier as follows. VO.V(3) is the
same as VO.V(2) except that all the LIN queries are not issued,

and for every HAD or INN query that involves one or more vector

handles returned from LIN queries, those vectors are substituted

by the linear combination of vectors as defined by the LIN query.

Specifically, if ℎ𝒗 is returned from the query LIN(ℎ𝒗1
, · · · , ℎ𝒗𝑘 ,𝒄),

then in every HAD or INN query where ℎ𝒗 appears, ℎ𝒗 is removed

from the vector handle list. Assume without loss of generality that

ℎ𝒗 is the first parameter to theHAD query, then𝑋1 in the quadratic

polynomial is substituted by 𝒄 [𝑖1]𝑋𝑖1 + · · · + 𝒄 [𝑖𝑘]𝑋𝑖𝑘 , where 𝑖 𝑗 is
the index of ℎ𝒗 𝑗

in the new vector handle list. It is straightforward

to check that VO.V(3) is equivalent to VO.V(2) .

VO4. VO4 is the same as VO3, except that the verifier can make

at most one INN query. If VO.V(3) does not issue any INN quries,

then VO.V(4) is the same as VO.V(3) . Otherwise, assume that the

INN queries made by VO.V(3) are INN(𝑞1), · · · , INN(𝑞𝑡𝐼). Then
VO.V(4) is the same as VO.V(3) except that these INN queries are

removed, and instead VO.V(4) samples 𝛽
$← F and queries O with

a single inner-product query INN(𝑞1 + · · · + 𝛽𝑡𝐼−1 · 𝑞𝑡𝐼). It is easy
to check that 𝑓 ⟨·, ·⟩ is linear w.r.t. its inputs. By Schwartz-Zippel

Lemma, if the original INN queries are accepted, this new INN
query will also be accepted. On the other hand, if at least of the

original INN queries is rejected, then this new INN query rejects

with probability at least 1 − 𝑡𝐼 /|F|. Therefore, the soundness error
of VO.V(4) increases by 𝑡𝐼 /|F| compared to the last step.

VO5. VO5 is the same as VO4, except that the verifier cannot make

any INN queries. IfVO.V(4) does not make INN query thenVO.V(5)

is the same as VO.V(4) . Otherwise, VO.V(5) is the same as VO.V(4)

except that the one INN query INN(𝑞) is replaced by an invocation

of the protocol InnerProduct in Fig. 3.

To justify this change, note that by definition, the sum of ele-

ments in𝑞◦ (𝒗 (1) , · · · , 𝒗 (`)) [1..𝑛] equals𝑞
⟨·, ·⟩
0
(𝒗1 [1..𝑛] , · · · , 𝒗` [1..𝑛]).

When the prover is honest and the original INN query is accepted,

i.e., 𝑞
⟨·, ·⟩
0
(𝒗1 [1..𝑛] , · · · , 𝒗` [1..𝑛]) +𝑐 = 0, then the sum of elements in

𝒓 is 𝑐 . By the definition of 𝒓 , we have 𝒓 [𝑛] = 𝑐 . It is straightforward
to check that VO.V(5) accepts.

On the other hand, if VO.V(5) accepts, then we know that there

exists a vector 𝒓 such that 𝒓 [𝑛] = 𝑐 and that 𝒓 [𝑖] − 𝒓 [𝑖−1] = 0

15

ACM CCS, 2022 Yuncong Zhang, Alan Szepieniec, Ren Zhang, Shifeng Sun, Geng Wang, and Dawu Gu

for every 𝑖 ∈ [𝑛] (where 𝒓 [0] is defined as 0) hold simultaneously.

By defining 𝒓 :=

(
𝒓 [𝑖] − 𝒓 [𝑖−1]

)𝑛
𝑖=1

= 𝒓 − 𝒓→1
and the fact that

VO.V(5) accepts, we conclude that the sum of the elements in

𝑞◦ (𝒗1 [1..𝑛] , · · · , 𝒗` [1..𝑛]) [1..𝑛] is 𝒓 [𝑛] = 𝑐 , which means VO.V(4)

should also accepts the INN(𝑞 + 𝑐) query. We conclude that the

soundness error of VO5 is the same as that of VO4.

VO6. VO6 modifies VO5 by requiring that the verifier issues at

most one HAD query. We then modify the verifier to suit this new

model as follows. If VO.V(5) does not make any HAD queries, then

VO.V(6) is the same as VO.V(5) . Otherwise, assume VO.V(5) makes

the HAD queries HAD(𝑞1), · · · , HAD(𝑞𝑡𝐻). Then VO.V(6) is the
same as VO.V(5) except that the HAD queries are removed, and

VO.V(6) instead execute the following procedure. VO.V(6) samples

𝛼
$← F and issues a single HAD query HAD(𝑞1 + · · · + 𝛼𝑡𝐻−1 · 𝑞𝑡𝐻).

By the same argument as for VO4, the soundness error of VO.V(6)

increases by 𝑡𝐻 /|F| compared to the previous step.

VO7. VO7 modifies VO6 by adding a new query EVAL(ℎ𝒗 , 𝑧) which
replies with 𝑓𝒗 (𝑧). This query is only available to the verifier, thus

does not affect soundness of the protocol.

VO8. VO8 modifiesVO7 by removing theHAD query.We thenmod-

ify the protocol to replace the only HAD query by the Hadamard
protocol in Fig. 3, where the polynomial oracles are viewed as vec-

tor handles and queries to the polynomial oracles are replaced by

EVAL queries to the vector handle.

We show that the probability of verifier acceptance is negligi-

bly different from that of the original HAD query. Note that the

constant term of ℎ(𝑋) is a polynomial of 𝜔 of degree at most

𝐷 := 2𝑛 + 𝑟 and the coefficient vector of this polynomial of 𝜔

is exactly 𝑞◦ (𝒗 (1) , · · · , 𝒗 (`)). Therefore, if the original HAD query

issued by VO.V(7) is accepted, then the constant term of ℎ(𝑋) is
zero. In this case, VO.V(8) accepts with probability 1.

On the other hand, if the HAD query by VO.V(7) is not accepted,
then for uniformly random 𝜔 , by Schwartz-Zippel Lemma, the con-

stant term of ℎ(𝑋) is nonzero except with probability (2𝑛 + 𝑟)/|F|.
However, for any polynomial

¯ℎ(𝑋), the constant term of
¯ℎ(𝛾𝑋)

must be the same as the constant term of
¯ℎ(𝑋), so VO.P(8) cannot

find any
¯ℎ(𝑋) such that ℎ(𝑋) = ¯ℎ(𝛾𝑋) − ¯ℎ(𝑋) hold. Therefore,

by Schwartz-Zippel Lemma, for uniformly random 𝑧, the equality

ℎ(𝑧) = ¯ℎ(𝛾𝑧) − ¯ℎ(𝑧) holds with probability (4𝑛 + 2𝑟)/|F|. We con-

clude that the soundness error of VO.V(8) increases by less than

(6𝑛 + 3𝑟)/|F| compared to the last step.

VO9. VO9 modifies VO8 by requiring that for any EVAL(ℎ𝒗 , 𝑧)
query, the vector handle ℎ𝒗 must be returned from a VEC query.

We modify the protocol subjecting to the above restriction as

follows. Let VO.V(9) be the same as VO.V(8) except that for every
EVAL(ℎ𝒗 , 𝑧) query, if the ℎ𝒗 is not returned from a VEC query,

VO.V(9) instead executes one of the following:

(1) ifℎ𝒗 is returned from a POW query, say POW(𝛼, 𝑘),VO.V(9)

computes the reply by 𝑦 =
(𝛼𝑧)𝑘−1

𝛼𝑧−1
or 𝑦 = 𝑘 · 1 if 𝛼𝑧 = 1;

(2) ifℎ𝒗 is returned from an SHR query, say SHR(ℎ𝒖 , 𝑘),VO.V(9)
first queries for 𝑦𝑠 = EVAL(ℎ𝒖 , 𝑧), then computes the reply

of this query by 𝑦 = 𝑧𝑘 · 𝑦𝑠 .

The equivalence between VO.V(9) and VO.V(8) follows directly
from the definition of EVAL query and the POW, SHR queries.

VO10. VO10 modifies VO9 by removing the POW and SHR queries.

Since the vectors submitted by these types of queries are never

referenced, we can safely remove all these queries from the protocol.

VO10 has only two types of queries left: VEC and EVAL. This
model is equivalent to the PIOP model, and the transformation

from the protocol (VO.I(10) ,VO.P(10) ,VO.V(10)) to a PIOP proto-

col (I, P,V) is straightforward: every VEC query corresponds to a

polynomial oracle sent from the indexer or the prover to the veri-

fier, and every EVAL query corresponds to an evaluation query to a

polynomial oracle. Note that the degree bound for the protocol is

at least 4𝑛 + 𝑟 − 1, which is one more than the maximal degree of

the polynomial
¯ℎ(𝑋). However, in PIOP model with higher degree

bound, the protocol also works, since VO10 does not limit the size

of the vectors submitted by the prover.

The number of polynomials sent by the indexer is still𝑚, while

the number of polynomials sent by the prover is 𝑡 + 3, where the

three additional polynomials are 𝑓�̃� (𝑋), 𝑓𝒕 (𝑋), and ¯ℎ(𝑋). Note that
in the final PIOP, the polynomial 𝑓�̃� (𝑋) is queried at most once,

𝑓𝒕 (𝑋) is queried at most once, and
¯ℎ(𝑋) is queried at most twice,

i.e., at 𝑧 and 𝛾 · 𝑧 respectively. For every vector submitted by the

VEC query in the original protocol, this vector is queried at most

twice in the end, once at 𝑧 and another time at 𝜔 · 𝑧−1
. Therefore,

there are at most 2(𝑚 + 𝑡) + 4 evaluation queries at 3 distinct points.

If the original protocol does not make any INN query, i.e., 𝑡𝐼 = 0, the

vector 𝒓 is no longer necessary, the prover polynomials becomes

𝑡 + 2 and the number of evaluation queries becomes 2(𝑚 + 𝑡) + 3.

The completeness error is Y𝑐 , and the soundness error is bound

by Y𝑠 + (𝑡𝐼 + 𝑡𝐻 + 6𝑛 + 3𝑟)/(|F| − 1).

Honest-Verifier Zero-Knowledge. We show that the PIOP protocol

(I, P,V) is honest-verifier zero-knowledge. Note that every poly-

nomial sent by P contains 𝑟 fresh uniformly random coefficients

𝜹 ∈ F𝑟 , except 𝑓𝒉 (𝑋), contains only one random coefficient 𝛿 ∈ F.
We construct a simulator S that given i,x samples the verifier

view. The verifier view contains the following values: the verifier

messages, i.e., the verifier messages in the original protocol together

with 𝛼, 𝛽, 𝜔, 𝑧, and the responses from the evaluation queries, i.e.,

𝑢𝑖 := 𝑓𝒗𝑖 (𝜔 ·𝑧−1), 𝑣𝑖 := 𝑓𝒗𝑖 (𝑧) for 𝑖 ∈ [𝑚 + 𝑡 + 2] where 𝒗𝑖 is the 𝑖-th
vector submitted by the VEC query, and𝑦1 = (𝛾 ·𝑧)2𝑛+𝑟 ¯ℎ(𝛾 ·𝑧), 𝑦2 =

𝑧2𝑛+𝑟 ¯ℎ(𝑧).
The simulator S samples the verifier view by simulating a run

of the protocol that differs from an honest run in the following

respects:

• the prover sends dummy polynomial oracles to the verifier;

• for each evaluation query:

– if it is a query for 𝑓𝒗𝑖 (𝜔𝑧−1) or 𝑓𝒗𝑖 (𝑧) where 𝑖 ∈ [𝑚],
i.e., this vector is submitted by the indexer, since S has

access to the index, S may compute 𝒗𝑖 and therefore the

polynomial evaluations accordingly;

– if it is a query for 𝑓𝒗𝑖 (𝜔𝑧−1) or 𝑓𝒗𝑖 (𝑧) where 𝑖 ∈ [𝑚+1..𝑚+
𝑡 + 2] or for 𝑦2, i.e., this vector is submitted by the prover,

S uniformly randomly sample the query result from F;
– finally, for the query 𝑦1 = ¯ℎ(𝛾 · 𝑧), compute 𝑦1 according

to the identity ℎ(𝑧) = ¯ℎ(𝛾 · 𝑧) − ¯ℎ(𝑧).
16

VOProof: Efficient zkSNARKs from Vector Oracle Compilers ACM CCS, 2022

We show that the output of the above-defined S only has a negli-

gible statistical difference from the verifier view. Since S has access

to all the information that the verifier has, the verifier messages

simulated by S follow exactly the same distribution of that of an

honest run of the protocol. We only need to show that the query

results 𝑢𝑖 , 𝑣𝑖 for 𝑖 ∈ [𝑚 + 1..𝑚 + 𝑡 + 2] and 𝑦2 in the real execution

are uniformly random over F independent of the rest of the verifier
view. Consider the following matrices:

𝑽 =

©«
𝒗T
𝑚+1
𝒗T
𝑚+2
.
.
.

𝒗T
𝑚+𝑡+2

ª®®®®¬
𝑿 =

©«

1 1

𝜔 · 𝑧−1 𝑧

(𝜔 · 𝑧−1)2 𝑧2

.

.

.
.
.
.

(𝜔 · 𝑧−1)𝑛+𝑟−1 𝑧𝑛+𝑟−1

ª®®®®®®¬
.

Note that every 2 rows of matrix𝑿 form an invertible sub-matrix

except when𝜔 ·𝑧−1 = 𝑧 which happens with probability bounded by
1

|F | . However, we can avoid this narrow case by letting the verifying

(and the simulator) resample 𝑧, which increases the soundness error

very slightly (the denominator is changed from |F| − 1 to |F| − 2).

Also note that every row of matrix 𝑽 contains 𝑟 uniformly random

elements in F. Let 𝑟 = 2, then we have

©«
𝑓𝒗𝑚+1 (𝜔𝑧−1) 𝑓𝒗𝑚+1 (𝑧)
𝑓𝒗𝑚+2 (𝜔𝑧−1) 𝑓𝒗𝑚+2 (𝑧)

.

.

.
.
.
.

𝑓𝒗𝑚+𝑡+2 (𝜔𝑧−1) 𝑓𝒗𝑚+𝑡+2 (𝑧)

ª®®®®¬
= 𝑽𝑿

is uniformly random over F(𝑟+2)×2
. Finally, since 𝒉 contains one

element 𝛿 ∈ F that is uniformly random over F, 𝑦2 is also uni-

formly random. In conclusion, the output of S has exactly the same

distribution with the verifier view.

D SECURITY PROOFS FOR VECTOR ORACLE
PROTOCOLS

D.1 Lemmas
Lemma D.1. Let 𝛾 be a generator of the multiplicative group F∗.

For any nonzero vector 𝒗 ∈ F𝐻 , for uniformly random 𝛼 ∈ F\{𝛾𝑖 }𝑖=1,

the probability Pr[⟨𝒓𝛼 , 𝒗⟩ = 0] ≤ 𝐻
|F |− |𝐻 | , where 𝒓𝛼 :=

(
1

𝛼−𝛾𝑖
)𝐻
𝑖=1

.

Proof. Note that

𝐻∑
𝑖=1

𝒗 [𝑖]
𝛼 − 𝛾𝑖

= 0⇔
𝐻∑
𝑖=1

𝒗 [𝑖]
∏
𝑗≠𝑖

(𝛼 − 𝛾 𝑗) = 0⇔ 𝒗T𝚪𝜶𝐻 = 0,

where 𝚪 is a matrix of size 𝐻 ×𝐻 whose 𝑖-th row is the coefficient

vector of polynomial

∏
𝑗≠𝑖 (𝑋 −𝛾 𝑗), which (after normalized) is the

Lagrange basis polynomial over {𝛾𝑖 }𝐻
𝑖=1

. Since the Lagrange basis

polynomials are linearly independent, 𝚪 is an invertible matrix,

therefore 𝒗T𝚪 ≠ 0. Since 𝒗T𝚪𝜶𝐻 = 𝑓𝒗T𝚪 (𝛼), the conclusion follows

from Schwartz-Zippel Lemma.

□

Lemma D.2 (restate of Lemma A.3 of [21]). Let 𝒖, 𝒗 ∈ Fℓ . If 𝒖
and 𝒗 are not permutations of each other, then for uniformly random
𝛼 ∈ F, the probability that

∏
𝑖∈[ℓ] (𝒖 [𝑖] + 𝛼) =

∏
𝑖∈[ℓ] (𝒗 [𝑖] + 𝛼) is

bounded by ℓ
|F | .

Definition D.3 (Simultaneous Permutation). Let {𝒖 (𝑗) }𝑚
𝑗=1
, {𝒗 (𝑗) }𝑚

𝑗=1

be two groups of vectors in Fℓ . We say they are simultaneous per-

mutations of each other, denoted by {𝒖 (𝑗) }𝑚
𝑗=1
∼ {𝒗 (𝑗) }𝑚

𝑗=1
, if there

exists a permutation 𝜎 over [ℓ] such that 𝒖 (𝑗)[𝜎 (𝑖)] = 𝒗 (𝑗)[𝑖] for any
𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑚].

Lemma D.4. Let {𝒖 (𝑗) }𝑚
𝑗=1
, {𝒗 (𝑗) }𝑚

𝑗=1
be two groups of vectors in

Fℓ . If {𝒖 (𝑗) }𝑚
𝑗=1
≁ {𝒗 (𝑗) }𝑚

𝑗=1
, then for uniformly random 𝛼 ∈ F,

the probability that
∑𝑚
𝑗=1

𝛼 𝑗−1𝒖 (𝑗) ∼ ∑𝑚
𝑗=1

𝛼 𝑗−1𝒗 (𝑗) is bounded by
2(𝑚−1)ℓ
|F | .

Proof. Consider two sequences of tuples𝑈 := {(𝒖 (1)[𝑖] , · · · , 𝒖
(𝑚)
[𝑖])}𝑖∈[ℓ]

and 𝑉 := {(𝒗 (1)[𝑖] , · · · , 𝒗
(𝑚)
[𝑖])}𝑖∈[ℓ] . Since {𝒖

(𝑗) }𝑚
𝑗=1
≁ {𝒗 (𝑗) }𝑚

𝑗=1
,

obviously 𝑈 and 𝑉 are not permutations of each other. There-

fore, there exists some tuple (𝑎1, 𝑎2, · · · , 𝑎𝑚) that appears differ-
ent number of times in 𝑈 and 𝑉 . Let I𝑢 be the index set where

(𝒖 (1)[𝑖] , · · · , 𝒖
(𝑚)
[𝑖]) = (𝑎1, 𝑎2, · · · , 𝑎𝑚) and I𝑣 be the similarly de-

fined for 𝑉 . Then |I𝑢 | ≠ |I𝑣 |. For any tuple (𝑏1, 𝑏2, · · · , 𝑏𝑚) ≠

(𝑎1, 𝑎2, · · · , 𝑎𝑚), for uniformly random 𝛼 over F, the probability

that

∑𝑚
𝑗=1

𝛼 𝑗−1𝑎 𝑗 =
∑𝑚
𝑗=1

𝛼 𝑗−1𝑏 𝑗 is bounded by
𝑚−1

|F | , due to Schwartz-

Zippel Lemma. By the union bound, the probability that

∑𝑚
𝑗=1

𝛼 𝑗−1𝑎 𝑗 =∑𝑚
𝑗=1

𝛼 𝑗−1𝒖 (𝑗)[𝑖] for any 𝑖 ∉ I𝑢 or

∑𝑚
𝑗=1

𝛼 𝑗−1𝑎 𝑗 =
∑𝑚
𝑗=1

𝛼 𝑗−1𝒗 (𝑗)[𝑖] for

any 𝑖 ∉ I𝑣 is less than 2(𝑚−1)ℓ
|F | .

Therefore, exceptwith probability
2(𝑚−1)ℓ
|F | , the value

∑𝑚
𝑗=1

𝛼 𝑗−1𝑎 𝑗

appears exactly |I𝑢 | times in vector

∑𝑚
𝑗=1

𝛼 𝑗−1𝒖 (𝑗) and |I𝑣 | (i.e.
≠ |I𝑢 |) times in vector

∑𝑚
𝑗=1

𝛼 𝑗−1𝒗 (𝑗) , which ensures that the two

vectors are not permutations of each other.

□

D.2 Security Proofs for the Protocols
Lemma D.5. The SMVP protocol in Fig. 5 has perfect completeness

and soundness error 𝐻+𝐾
|F |−𝐻−𝐾 .

Proof. Completeness. If the prover is honest and 𝒃 [1..𝐻] = 𝑴𝒂 [1..𝐾] ,
then 𝒓𝛼 , 𝒓𝛽 , 𝒕 are computed as defined and the checks in step 5, 10

and 11 will pass. Moreover, 𝒄 = 𝒓T𝛼𝑴 and the correctness of 𝒕 imply

that step 6 and 12 will pass.

Soundness. If 𝒃 [1..𝐻] = 𝑴𝒂 [1..𝐾] , consider the strategy of a ma-

licious prover. Note that the prover must submit 𝒓𝛼 , 𝒓𝛽 and 𝒕 cor-
rectly, otherwise step 5, 10 and 11 directly fail. If the prover submits

the correct 𝒄 = 𝒓T𝛼𝑴 , then except with probability 𝐻/(|F| − 𝐻),
𝒓T𝛼𝑴𝒂 ≠ 𝒓T𝛼𝒂 and step 6 fails, according to Lemma D.1. Otherwise,

the prover submits an incorrect 𝒄 . If 𝒄 contains nonzero elements

in positions after 𝐾 , then step 6 will also fail (at the second check).

So 𝒄 must differ from the correct 𝒄 at one of the first 𝐾 positions.

Then by Lemma D.1 again, the inner product of 𝒄 and 𝒓𝛽 differs

from 𝒓T𝛼𝑴𝒓𝛽 , which equals the inner product of 𝒕 and 𝒗, except
with probability 𝐾/(|F| − 𝐾), which is also the probability that

step 12 passes. In conclusion, the soundness error is bounded by

(𝐻 + 𝐾)/(|F| −max{𝐻,𝐾}) ≤ (𝐻 + 𝐾)/(|F| − 𝐻 − 𝐾).
□

17

ACM CCS, 2022 Yuncong Zhang, Alan Szepieniec, Ren Zhang, Shifeng Sun, Geng Wang, and Dawu Gu

Theorem 4.1. The VOR1CS protocol in Fig. 5 is a VO protocol
for the relation RR1CS with perfect completeness and soundness error

3𝐻+𝐾
|F |−3𝐻−𝐾 .

Proof. Completeness. If the input is a correct instance of R1CS,
and𝒚 is computed honestly, then𝒚 [1..𝐻]◦𝒚 [2𝐻+1..3𝐻] = 𝒚 [𝐻+1..2𝐻] ,
and the SMVP protocol will pass due to completeness of SMVP.
The last check also passes because boths sides have 𝒚 [𝐻+1..2𝐻] at
the positions [2𝐻 + 1..3𝐻] and zero elsewhere.

Soundness. If the input is incorrect, then either𝒚 [1..𝐻]◦𝒚 [2𝐻+1..3𝐻] ≠
𝒚 [𝐻+1..2𝐻] or𝒚 ≠ 𝑴 (1∥𝒙 ∥𝒘). In the first case, the last check fails. In
the second case, the SMVP protocol rejects except with probability

(3𝐻 + 𝐾)/(|F| − 3𝐻 − 𝐾).
□

Theorem 4.2. The VOHPR protocol in Fig. 5 is a VO protocol
for the relation RHPR with perfect completeness and soundness error

3𝐾+𝐻+1
|F |−𝐻−3𝐾−1

.

Proof. Completeness. If the input is a correct instance of R1CS,
then 𝒘 [1..𝐾] ◦ 𝒘 [2𝐾+1..3𝐾] = 𝒘 [𝐾+1..2𝐾] , and the SMVP protocol

will pass due to completeness of SMVP. The last check also passes

because boths sides have𝒘 [𝐾+1..2𝐾] at the positions [2𝐾 + 1..3𝐾]
and zero elsewhere.

Soundness. If the input is incorrect, then either𝒘 [1..𝐾]◦𝒘 [2𝐾+1..3𝐾] ≠
𝒘 [𝐾+1..2𝐾] or 𝒙 ∥0 ≠ 𝑴 (1∥𝒘). In the first case, the last check fails. In
the second case, the SMVP protocol rejects except with probability

(3𝐾 + 𝐻 + 1)/(|F| − 3𝐾 − 𝐻 − 1).
□

Lemma D.6. The ProdCheck protocol in Fig. 2 is perfectly com-
plete when 𝒖 [1..ℓ] and 𝒗 [1..ℓ] do not contain any zero elements, and
perfectly sound.

Proof. Completeness.When 0 ≠
∏
𝑖∈[ℓ] 𝒖 [𝑖] =

∏
𝑖∈[ℓ] 𝒗 [𝑖] , the

vector 𝒓 is well-defined and 𝒓 [ℓ] = 1, so the last check passes. By

the definition of 𝒓 , 𝒓 [𝑖] · 𝒗 [𝑖] = 𝒓 [𝑖−1] · 𝒖 [𝑖] for every 𝑖 ∈ [2..ℓ], and
𝒓 [1] ·𝒗 [1] = 1 · 𝒖 [1] . Therefore, the verifier accepts with probability

1. Note that the right shift by 𝑛 − ℓ excludes the elements after

position ℓ from the check.

Soundness. If
∏
𝑖∈[ℓ] 𝒖 [𝑖] ≠

∏
𝑖∈[ℓ] 𝒗 [𝑖] , then 𝒓 [ℓ] ≠ 1. Therefore,

the prover either submits an incorrect 𝒓 and fails at the first HAD
query or submits the correct 𝒓 and fails at the second check.

□

Lemma D.7. The PermCheck protocol in Fig. 2 has completeness
error ℓ

|F | , soundness error
3ℓ
|F | .

Proof. Completeness. If 𝒖 [1..ℓ] ∼ 𝒗 [1..ℓ] then
∏ℓ
𝑖=1
(𝒖 [𝑖] + 𝛼) =∏ℓ

𝑖=1
(𝒗 [𝑖] +𝛽). Except with probability ℓ

|F |−1
, −𝛽 ∉ 𝒖 [1..ℓ] , which is

equivalent to−𝛽 ∉ 𝒗 [1..ℓ] . By the perfect completeness ofProdCheck
protocol, the completeness error of PermCheck protocol is

ℓ
|F |−1

.

Soundness. If 𝒖 [1..ℓ] ≁ 𝒗 [1..ℓ] , then by Lemma D.2,

∏ℓ
𝑖=1
(𝒖 [𝑖] +

𝛽) ≠ ∏ℓ
𝑖=1
(𝒗 [𝑖] + 𝛽) except with probability

ℓ
|F | . Moreover, except

with probability
2ℓ
|F |−1

, −𝛽 ∉ 𝒖 [1..ℓ] ∪ 𝒗 [1..ℓ] . By the perfect sound-

ness of ProdCheck protocol, the soundness error of PermCheck is

bounded by
3ℓ
|F | .

□

Theorem 4.3. The VOPLONK protocol in Fig. 5 is a VO proto-
col that validates the relation RPLK with completeness error 3𝐶+𝐶𝑐

|F | ,

soundness error 15𝐶+5𝐶𝑐

|F | .

Proof. Completeness. Note that 𝒖∥𝒗 is simply 𝒂∥𝒃 ∥𝒄 . If 𝒂, 𝒃, 𝒄
are valid witnesses, the first 𝐶𝑚 elements of 𝒖 multiply the last

𝐶𝑚 elements of 𝒖 should equal the middle 𝐶𝑚 elements of 𝒗, and
the middle 𝐶𝑎 elements of 𝒖 plus the first 𝐶𝑎 elements of 𝒗 should

equal the last 𝐶𝑎 elements of 𝒗, hence the first two HAD queries.

We have (𝒂∥𝒃 ∥𝒄) [𝑖] = 𝒙 [𝑖] for every 𝑖 ∈ I𝑥 , so the VBatch protocol

will succeed. Finally, since 𝒘 := 𝒂∥𝒃 ∥𝒄 ∥𝒅 is invariant under the

permutation 𝜎 , the vector pairs (𝜸3𝐶+𝐶𝑐 ,𝒘) and (𝝈 ,𝒘) are simulta-

neous permutations of each other by 𝜎 . Then 𝒕 := 𝜸3𝐶+𝐶𝑐 +𝛽 ·𝒘 and

𝒔 := 𝝈 + 𝛽 ·𝒘 are permutations of each other by 𝜎 . By completeness

of the PermCheck protocol, the completeness error of VOPLONK
is 3𝐶 +𝐶𝑐 .

Soundness. If 𝒂, 𝒃, 𝒄 are not valid witnesses, they fail at least one of
the addition condition, the multiplication condition, the consistence

with public inputs, or the permutation check. Failing any of the

first three conditions directly leads to rejection. If the last condition

does not hold, then the vector pairs (𝜸3𝐶+𝐶𝑐 ,𝒘) and (𝝈 ,𝒘) are
not simultaneous permutations of each other. By Lemma D.4, the

probability that 𝒕 and 𝒔 are permutations of each other is bounded

by 2(3𝐶 + 𝐶𝑐)/|F|. In case that 𝒕 and 𝒔 are not permutations of

each other, soundness of PermCheck implies that the probability of

verifier acceptance is bounded by 3(3𝐶 +𝐶𝑐)/|F|. By union bound,

the soundness error of VOPLONK protocol is bounded by (15𝐶 +
5𝐶𝑐)/|F|.

□

18

	Abstract
	1 Introduction
	1.1 Technical Overview
	1.2 Related Works

	2 Preliminaries
	2.1 Notations
	2.2 Interactive Proof for Indexed Relations
	2.3 Polynomial IOP
	2.4 Universal zkSNARK
	2.5 The zkSNARK Construction Workflow

	3 The VOProof Method
	3.1 Vector Oracle Protocols
	3.2 VO-to-PIOP Compiler
	3.3 The VOProof Workflow

	4 zkSNARKs from VOProof
	4.1 Overview of SMVP Protocol
	4.2 Overview of the Modified PLONK Relation

	5 Implementation and Comparison
	5.1 Optimizations
	5.2 Comparison of Proof Size
	5.3 Comparison of Running Time

	6 Conclusion
	References
	A Alternative Protocols
	B VO-to-PIOP Compiler in Reed-Solomon Basis
	C Proof of Theorem 3.3
	D Security Proofs for Vector Oracle Protocols
	D.1 Lemmas
	D.2 Security Proofs for the Protocols

