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Abstract. In CRYPTO 2019, Gohr introduced deep learning into crypt-
analysis, and for the first time successfully applied it to key recovery
attacks on Speck32/64 reduced to 11 and 12 rounds, with complexities
comparable with traditional differential cryptanalysis. In this paper, we
introduce the technique of generalized neutral bits into Gohr’s framework,
and successfully mount the first practical key recovery attacks against 13-
round Speck32/64 with time 248 and data 229 for a success rate of 0.21.
Compared against the best differential attacks in literature with time
251 for 12 rounds or impractical time 257 on a single GPU for 13 rounds,
the full implementation of our 13-round attack is able to complete ex-
ecution within 3 days. We also extend the framework to Simon32/64,
and reduce the data complexity for the practical 16-round attack from
1/6 of the codebook to 221. This is arguably the first time to witness
deep learning based cryptanalysis having a considerable advantage over
traditional methods.

Keywords: Neural Distinguisher, Key Recovery Attack, Differential Crypt-
analysis, Simon, Speck, Generalized Neutral Bits, Bayesian Search

1 Introduction

Whether machine learning is useful for cryptanalysis has been a long standing
open problem to the cryptography research community, especially given its break-
through in applications like image classification, autonomous vehicles, and board
games like chess. In CRYPTO 2019, Gohr [8] made the first successful attempt
to Speck32/64, where complexities comparable to that by the traditional crypt-
analysis were obtained for 11 and 12 rounds. Gohr’s attack tries to mimic the
traditional differential cryptanalysis, where the underlying distinguisher with a
high probability differential was replaced by a neural-network based distinguisher
and the key recovery phase by Bayesian search. It was observed that, the success
rate for a pure neural distinguisher (ND) will decrease drastically when rounds
increase, Gohr overcame this problem by training a short ND and prepending a
traditional high probability differential path (DP) to it. This approach is simi-
lar to differential-linear cryptanalysis [15]. The DP and ND have to connect to



each other, i.e., the output difference of DP has to match the expected input
difference of ND, and the two essentially form a long differential path. Due to
the prepended DP with a probability, not every pair of input will follow the DP.
These data will be not usable and become noise, and hence reduce the success
rate of the succeeding ND. Neutral bits were introduced to group the conforming
pairs of the DP, thus increase the density at a local point. They are neutral in
the sense that a given conforming pair of the DP will result in additional con-
forming pairs with probability one at no cost by flipping the neutral bits. The
increased success rate in turn reduces the overall attack complexity and extends
the attack to even more rounds.

The idea of using neutral bits to boost the conforming pairs of differentials
can be tracked back to 2004 by Biham and Chen [3] on a collision attack against
SHA-0. This was extended to probabilistic neutral bits in [5], where the addi-
tional conforming pairs are valid with some probability after flipping the neutral
bits. The essential effect is similar to auxiliary differential paths [13] used to at-
tack SHA-1, where the additional conforming pairs are valid when the auxiliary
differential paths are followed. In 2010 [14], conditional differential was proposed
for cryptanalysis of NLFSR-based crypto-systems.

In this paper, we extend Gohr’s attack framework in the following ways.

– Firstly, in addition to single neutral bit used in [8], we find there exists a more
sophisticated combination of bits, which allows to find additional conforming
pairs by flipping the set simultaneously, and we call them “simultaneous
neutral bit-set” (SNBS).

– Secondly, in addition to neutral bits that find the additional conforming pairs
with probability one, we are also interested in those with lower probabilities.
Some of the probabilistic transitions can be fulfilled deterministically by
prefixing some bits in the plaintext chosen, which brings the probability of
the neutral bits (close) to one. We call it “conditional neutral bit” (CNB),
or “conditional simultaneous neutral bit-set” when the condition is on a set
of simultaneous neutral bits.

– Thirdly, we note the output difference of DP matters to ND, but not the
input difference. Hence, more than one differential paths can be prepended
to ND, as long as they share the same output difference. Surprisingly, some
neutral bits can be shared by multiple such differential paths.

– Lastly, besides the Residual Network (ResNet) [10] considered by Gohr, other
neutral networks developed in recent years have also demonstrated their ad-
vantages. Dense Network (DenseNet) [12] shows advantages in parameter effi-
ciency, implicit deep supervision, and feature reuse. Squeeze-and-Excitation
Network (SENet) [11], which won the first place in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC 2017) classification task, reduced the
Top-5 error to 2.251%. It can also be combined with existing deep architec-
tures to boost their performance at minimal additional computational cost.
On top of the choices of different neutral networks, the ND can also be
trained by different ways including key-averaging and staged training, in
this paper we pick the best combination with the highest accuracy.
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Both Speck32/64 and Simon32/64 have a block size of 32 bits, which are
small enough for us to find all SNBS (flipping simultaneously up to 4 bits) in a
bruteforce search or in an algebraic method basing on Gröbner basis. For finding
CNB, the manual analysis supported by experiments was applied. Together with
a search of multiple DPs using a solver named CryptoSMT [16], we find the first
practical key recovery attack against 13-round Speck32/64 and also achieved
lower data complexities for 12-round Speck32/64 and 16-round Simon32/64
when compared with the best attacks by traditional methods. These results are
summarized in Table 1.

Table 1: Summary of key-recovery attacks on Speck32/64 and Simon32/64
Target #R Time

(GPU h)
Time
(CPU h)

Time
(#Enc)

Data Succ.
Rate

Dist. Ref.

Speck32/64

11 - - 246 214 - DD [6]
- 0.139 238∗

213.6(214.5) 0.52 (1) ND [8]

12
- - 251 219 - DD [6]
<1 12 243.40∗

222.97 0.40 ND [8]
- 4 241.81∗

218.6 0.32 ND Sect. 4.3

13
- - 257 225 - DD [6]
64 - 245.81∗+r 229 0.21 ND Sect. 4.2
32 - 244.81∗+r 228 0.12 ND Sect. 4.2

Simon32/64 16
- - 226.48 229.48 0.62 DD [1]
4 - 241.81∗+r 221 0.49 ND Sect. 6.2

* Under the assumption that one second equals the time of 228 executions of
Speck32/64 or Simon32/64 on a CPU.
r : log2(cpu/gpu), where cpu is the CPU time and gpu is the GPU time running an
attack. In our computing systems, r = 2.4 (The worse case execution time of the core
of the 12-round attack on Speck32/64 (without guessing the one key bit of k0) took
6637 seconds on CPU and 1265 seconds on GPU).

Organization. The rest of the paper is organized as follows. Section 2 gives the
preliminary on machine learning based differential cryptanalysis, and introduces
the design of Simon and Speck. Section 3 introduces the generalized neutral bits
technique and the framework of our conditional differential-neutral cryptanalysis.
The applications to Speck32/64 and Simon32/64 are presented in Section 4
and 6, respectively. Besides, Section 5 presented various of neural distinguishers
on Simon32/64 reduced up to 11 rounds. Section 7 concludes the paper.

3



2 Preliminary

2.1 Brief Description of Speck and Simon

Notations. Denote by n the word size in bits, 2n the state size in bits. Denote
by (xr, yr) the left and right branches of a state after the encryption of r rounds.
Denote by x[i] (resp. y[i]) the i-th bit of x (resp. y) counted starting from 0;
Denote by [j] the index of the j-th bit of the state, i.e.,, the concatenation of
x and y, where y[0] is the 0-th bit, and x[0] is the 16-th bit. Denotes by ⊕ the
bit-wise XOR, ⊞ the addition modulo 2n, · or & the bit-wise AND, x≪s or
x ≪ s the bit-wise left rotation by s positions, x≫s or x ≫ s the bit-wise
right rotation by s positions. Denote by Fk (resp. F −1

k ) the round function (resp.
inverse of the round function) using subkey k of the encryption.

Brief Description of Speck32/64 and Simon32/64. Speck32/64 and Si-
mon32/64 are small members in the lightweight block cipher family Speck and
Simon [2] designed by researchers from the National Security Agency (NSA) of
the USA. Both Speck32/64 and Simon32/64 are of Feistel constructions, has
32-bit block and 64-bit key. The round functions use combinations of rotation,
XOR, and addition modulo 216 (Speck) or bit-wise AND (Simon). Speck32/64
has 22 rounds and Simon32/64 has 32 rounds. The encryption algorithm of
Speck32/64 and Simon32/64 are listed in Algorithms 1 and 2. The subkeys of
16-bit for each round are generated from a master key of 64-bit by the non-linear
key schedule using the same round function (Speck32/64), or linear functions
of simple rotation and XOR (Simon32/64).

Algorithm 1: Encryption of
Simon32/64

Input: P = (x0, y0) and
{k0, · · · , k31}

Output: C = (x32, y32)
1 for r = 0 to 31 do
2 xr+1 ← (x≪1

r · x≪8
r )⊕

x≪2
r ⊕ yr ⊕ kr

3 yr+1 ← xr

4 end

Algorithm 2: Encryption of
Speck32/64

Input: P = (x0, y0) and
{k0, · · · , k21}

Output: C = (x22, y22)
1 for r = 0 to 21 do
2 xr+1 ← x≫7

r ⊞ yr ⊕ kr

3 yr+1 ← y≪2
r ⊕ xr+1

4 end

2.2 Differential-based Neural Distinguishers

The work in [8] shows that neural network could be trained to capture the
non-randomness of the distribution of values of output pairs when the input
pairs to round-reduced Speck32/64 are of specific difference, and thus play the
role of distinguisher in cryptanalysis. Although, this is still in the framework of
the traditional differential cryptanalysis, the employed neural network is a non-
traditional component. This differential-based neural distinguisher is the first
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known machine learning model that successfully performed cryptanalysis task
on modern ciphers (beyond the applications on side-channel attacks).

In the following, the way of training the differential-based neural distinguisher
introduced in [8] is briefly recalled.

The Training Data and Input Representation. For a target cipher, the
neural network is to be trained to distinguish between examples of ciphertext
pairs corresponding to plaintext pairs with particular difference and those cor-
responding to random plaintext pairs. Thus, each of the training data is a data
pair of the form (C, C ′) together with a label taking a value 0 or 1, where 0
means the corresponding plaintext pair is generated randomly, and 1 from a
particular plaintext difference ∆I . For Speck32/64, the ∆I is chosen to be of a
single active bit, i.e., (0x0040, 0000), which is the intermediate difference lying
in a known best differential characteristic.

The state of Speck32/64 has left and right parts, thus, a pair of data is
transformed into a quadruple of words (x, y, x′, y′) where C = x∥y and C ′ =
x′∥y′. The word quadruple is then interpreted into a 4 × 16-matrix with each
word as a row-vector before fed into the neural network with an input layer
consists of 64 units. Among the set of training data and verification data, half
are positive examples labelled by 1, and the other half are negative examples
labelled by 0.

Training Schemes. The neural network structure used in [8] is a deep resid-
ual network (refer to [7, 8] for more details). There are three training schemes
proposed in [8]. The first is a basic training scheme that is sufficient for suc-
cessfully training short round distinguishers (i.e., 5-round and 6-round). The
second is an improved training scheme for r-round distinguishers that simulate
the output of the KeyAveraging algorithm used with an (r − 1)-round dis-
tinguisher. Using the second scheme, the best neural distinguisher on 7-round
Speck32/64 was achieved in [8]. The third is a staged training method that
turns an already trained (r−1)-round distinguisher into an r-round distinguisher
in several stages. In the first stage, the positive data examples are output pairs
of (r − i)-round, which correspond to input pairs with difference that appears
with the highest probability from ∆I after i rounds, where i is small, e.g., i = 3.
In the latter stages, the positive data examples are the output pairs of r-round,
which correspond to input pairs with difference ∆I , while the learning rate drops
from stage to stage. Using the third scheme, the longest neural distinguisher on
Speck32/64, which is an 8-round one was achieved.

2.3 Upper Confidence Bounds and Bayesian Optimization

Besides a basic key-recovery attack, an improved attack using both elements
in specifics of the targeted cipher and elements in reinforcement learning was
proposed in [8].
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The improved key-recovery attack employs an r-round main and an (r −
1)-round helper neural distinguisher trained with data pairs corresponding to
input pairs with difference ∆I ; a short s-round differential, ∆I′ → ∆I with
probability denoted by 2−p, is prepended on top of the neural distinguishers
(refer to Fig. 1 for an illustration of the components of the key-recovery attack.)
About c · 2p (denoted by ncts) data pairs with difference ∆I′ are randomly
generated (where c is a small constant); Neutral bits of the s-round differential
are used to expand each data pair to a structure of nb data pairs. The resulted
ncts structures of data pairs are decrypt by one round with 0 as the subkey
to get plaintext structures. All plaintext structures are queried to obtain the
corresponding ciphertext structures.

Each ciphertext structure is to be used to generate candidates of the last
subkey by the r-round main neural distinguisher (and latter of the second to last
subkey by the (r − 1)-round helper neural distinguisher) with a highly selective
key search policy based on a variant of Bayesian optimization.

More specifically, the key search policy depends on an important observation
that the expected response of the distinguisher upon wrong-key decryption will
depend on the bitwise difference between the trial key and the real key. This
wrong key response profile, which can be precomputed, is used to recommend
new candidate values for the key from previous candidate values with minimizing
the weighted Euclidean distance as the criteria in an BayesianKeySearch
Algorithm 3. It recommends a set of subkeys and provides their scores without
exhaustively performing trail decryptions.

The use of ciphertext structures is also highly selective using a standard
exploration-exploitation technique, namely Upper Confidence Bounds (UCB).
Each ciphertext structure is assigned a priority according to the scores of the
subkeys they recommended and the visited times of them.

An important detail in the BayesianKeySearch Algorithm 3 is that the
responses from the neural distinguisher on ciphertext pairs in the ciphertext
structure are combined using the Formula 1 and used as the score of the recom-
mended subkey. This score is highly decisive for the execution time and success
rate of the attack. It will determine whether the recommended subkey will be
further treated as it score pass or fail to pass the cutoff and also determine the
priority of ciphertext structures to be visited. The number of ciphertext pairs in
each structure is decisive when the neural distinguisher has a low accuracy.

sk :=
nb−1∑
i=0

log2( vi,k

1− vi,k
) (1)

3 Deep Exploring of Neutral Bits

3.1 Motivation of Neutral Bits

In general, the more rounds the neural distinguisher covers, the lower its accu-
racy. Theoretically, a neural distinguisher with accuracy higher than 0.5 means
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∆I → (xr, yr, x

′
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′
r)

1-round key-guessing
ks+r+1

(1 + s + r + 1)-round key-recovery attack

Fig. 1: Components of the key-recovery attacks

Algorithm 3: BayesianKeySearch Algorithm [8]
/* The description of this BayesianKeySearch Algorithm in [8] has a

small typo and is inconsistent with that in the implementation
codes [7], the description here corrects it according to [7]. */

Input: Ciphertext structure C := {C0, · · · , Cnb−1}, a neural distinguisher ND,
and its wrong key response profile µ and σ, the number of candidates
to be generated within each iteration ncand, the number of iterations
nbyit

Output: The list L of tuples of recommended keys and their scores
1 S := {k0, k1, . . . , kncand−1} ← choose ncand values at random without

replacement from the set of all subkey candidates.
2 L← {}
3 for t = 1 to nbyit do
4 for ∀ki ∈ S do
5 for j = 0 to nb − 1 do
6 C′

j,ki
= F −1

ki
(Cj)

7 vj,ki = ND(C′
j,ki

)
8 sj,ki = log2(vj,ki /(1− vj,ki ))
9 end

10 ski =
∑nb−1

j=0 sj,ki ; /* the combined score of ki */
11 L← L||(ki, ski )
12 mki =

∑nb−1
j=0 vj,ki /nb

13 end
14 for k ∈ {0, 1, · · · , 216 − 1} do
15 λk =

∑ncand−1
i=0 (mki − µki⊕k)2/σ2

ki⊕k

16 end
17 S ← argsortk(λ)[0 : ncand − 1] ; /* Pick ncand keys with the ncand

smallest score to form the new set of candidate keys S */
18 end
19 return L

some distinguishing advantage over a random distinguisher. However, when the
accuracy being marginally higher than 0.5, it is hard to be used in practical key
recovery attack. Thus, Gohr in [8] used the combined response (using Formula 1)
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of the neural distinguisher over large number of samples of same distribution as
a distinguisher (named as combined-score-distinguisher). By doing so, the signal
from the neural distinguisher is amplified and the distinguishability is increased.
For a combined-score-distinguisher built on top of a weak neural distinguisher
to reach its most potential with respect to distinguishability, the number of sam-
ples of the same distribution should be sufficiently large. It is observed that, the
required number of samples on which the response from a neural distinguisher
are to be combined is closely related with the bias of the accuracy of the neural
distinguisher. We have the following Conjecture 1, which is supported by the
data in our attacks to be presented in the sequel.

Conjecture 1. For a combined-score distinguisher derived from a neural distin-
guisher with accuracy lager than 0.5 and of bias ϵ to be successfully used in
the improved attack using Upper Confidence Bound and BayesianKeySearch
Algorithm, the size of samples from the same distribution should be about
c× 1/(2ϵ)2, where c is a small constant.

For the hybird differential distinguisher used in the key-recovery attack in [8],
it is not straightforward to aggregate enough number of samples of same distri-
bution fed to the neural distinguisher due to the prepended classical differential.
To overcome this problem, Gohr in [8] used the neutral bits of the classical differ-
ential, which is a notion introduced in collision attacks on hash function [3] and
frequently used in previous attacks of different types. That is, changing the val-
ues at the neutral bits of an input pair does not change the conformability for the
differential. The more the neutral bits of the prepended differential, the larger
the number of samples of same distribution could be generated and fed into the
neural distinguisher. However, in general, the longer the classical differential, the
lesser the number of neutral bits.

Finding enough neutral bits for prepending a long differential over a long but
weak neural distinguisher becomes a difficult problem for devising a key-recovery
to cover more rounds.

Thus, the first part of this work focuses on finding new types of neutral bits.

3.2 Neutral Bits and Generalized Neutral Bits

Notations. Let ∆in → ∆out be a differential with input difference ∆in and output
difference ∆out of an r-round encryption F r. Let (P, P ′) be the input pair and
(C, C ′ | C = F r(P ), C ′ = F r(P ′)) be the output pair, where P ⊕ P ′ = ∆in. If
C ⊕ C ′ = ∆out, (P, P ′) is said to be conforming the differential ∆in → ∆out.

The primary notion of neutral bits can be interpreted as follows. Let e0, e1, . . . , en−1
be the standard basis of Fn

2 . Let i be an index of a bit (starting from 0). The
i-th bit is a neutral bit for the differential ∆in → ∆out, if for any conforming
pair (P, P ′), (P ⊕ ei, P ′ ⊕ ei) is also a conforming pair.

Let {i1, i2, . . . , in} be the set of neutral bits of a differential ∆in → ∆out.
Denote the subspace of Fn

2 with basis {ei1 , ei2 , . . . , ein
} by S. Then, from one

input pair (P, P ′) where P ⊕ P ′ = ∆in, one can generate a set {(Pi, P ′
i ) | Pi ∈
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P ⊕S, P ′
i = Pi⊕∆in} that forms a data structure with the same conformability

for the differential.
For a differential ∆in → ∆out of F r, in the view of system of equations defined

on the derivative function of F r, i.e., D∆inF r(P ) = ∆out, a set of neutral bits
NB partitions the solution space of D∆in

F r(x) = ∆out into equivalence classes.
It can be seen that, the more neutral bits for a differential, the better structured
the solution space.

Generalization of Neutral Bits. In this work, two types of generalized neutral
bits are considered beyond the neutral bits considered in [8]. The first type,
named as simultaneous-neutral bit-set (SNBS for short), has already been intro-
duced together with the notion of neutral bit in [3], that is, for an input pair,
complementing the values of a set of bits simultaneously does not change its
conformability for the differential. Formally, it can be defined as follows.

Definition 1 (Simultaneous-neutral bit-sets [3]). Let Is = {i1, i2, . . . , is}
be a set of bit indices. Denote fIs

=
⊕

i∈Is
ei. The bit-set Is is a simultaneous-

neutral bit-set for the differential ∆in → ∆out, if for any conforming pair (P, P ′),
(P ⊕ fIs , P ′ ⊕ fIs) is also a conforming pair.

The second type, which is a natural generalization, is named in this work,
as conditional (simultaneous-) neutral bit(-set)s (CSNBS for short), that is, the
bits or bit-sets are neutral for input pairs fulfilling specific conditions. Formally,
it can be defined as follows.
Definition 2 (Conditional (simultaneous-) neutral bit(-set)s). let Is =
{i1, i2, . . . , is} be a set of bit indices. Denote fIs

=
⊕

i∈Is
ei. Let C be a set of

constraints on the value of an input P , and PC be the set of input that fulfilling
constraints C. The bit-set Is is a conditional simultaneous-neutral bit-set for the
differential ∆in → ∆out, if for any conforming pair (P, P ′ | P ∈ PC), (P ⊕
fIs , P ′ ⊕ fIs) is also a conforming pair.

The most straightforward constraints can be that some bit values of P are
fixed. However, the constraints on the values of input P can be more involved
system of linear or non-linear equations, and correspondingly named as linear-
conditional (simultaneous-) neutral bit(-set)s (LCSNBS for short) and nonlinear-
conditional (simultaneous-) neutral bit(-set)s (NCSNBS for short).

Specifically, in this work for Simon32/64 and Speck32/64, conditional neu-
tral bits are slightly different in the following ways:

– for Speck32/64, a set of bits is neutral only when the value of some specific
bits are fixed to a particular value. Thus, one chooses particular data instead
of random one to form ciphertext-structure, but always uses the same set of
neutral bit-sets (refer to Sect. 4.1).

– for Simon32/64, depending on the value of specific bits, one can always
obtain a neutral bit-sets by grouping different bits. Thus, one randomly
generates a data pair, then selects different neutral bit-sets depending on the
values of specific bits of the random pair to generate a ciphertext-structure
(refer to Sect. A.1).
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Besides, an observation on neutral bits of reduced-round differential of Speck32/64
is that, the lower the Hamming weight of a differential, the more the number
of neutral bits. Thus, for some of the sequel key-recovery attacks, differentials
with sub-optimal probability but with low Hamming weight are of interests and
eventually used.

Remark 1. The neutrality of the CSNBS depends on values of some particular
bits. The selected data is at intermediate round in our attacks in this work,
although the difference does not depend on the round-key, the values do. Thus,
using CSNBS, the attack requires to guess some key bits of the first round.

Remark 2. In general, neutral bits of non-trivial differentials are scarce. In [8],
because of the scarce of neutral bits for the 2-round prepended differential of
Speck32/64, probabilistic neutral bits (PNB for short) are exploited. Formally,
it can be defined as follows. Let i be an index of a bit (starting from 0). The
i-th bit is a p-probabilistic neutral bit for the differential ∆in → ∆out, if take
a random P and let P ′ be P ⊕ ∆in, (P, P ′) and (P ⊕ ei, P ′ ⊕ ei) conform the
differential at the same time with probability p. The higher the probability p
is, the more useful the neutral bit becomes. For convenience, the neutral bits
are said to be complete neutral bit when p = 1. In other view, the probabilistic
neutral bits can be seen as conditional neutral bits with unknown conditionals.

In the sequel attacks on Simon32/64, with involved analysis, conditions on
the neutral bits are explicit, and thus, under the known conditions, all used (gen-
eralized) neutral bits are complete. For Speck32/64, because of the complicated
modular addition, some of the used (generalized) neutral bits, including those
conditional ones, are in sense of with high probability. That means, besides those
explicit conditions observed, there are still some hidden conditions that can be
fulfilled with high probability.

3.3 Exploiting Multiple Differentials Sharing Same Neutral Bits

For the prepended classical differential, the goal is to propagate more rounds with
as less plaintext requirement as possible while leaving enough positive samples
to the neural distinguisher.

From the connecting difference between the classical differential and the neu-
ral distinguisher propagating upward, there might be multiple similar differen-
tials with equally good probability. The observation is that, these similar differ-
entials are likely to share many neutral bits. When a shared neutral bit happens
to be exactly the difference between input differences of two differentials, one
can re-group ciphertext pairs within each ciphertext structure corresponding
to one differential, and obtain ciphertext structures corresponding to the other
differential without additional queries, i.e., doubling the number of ciphertext
structures for free.

Formally, let D1 = ∆in1 → ∆out and D2 = ∆in2 → ∆out be two differentials
with input differences satisfying ∆in1 ⊕∆in2 = ∆nbi

and with the same output
difference. Suppose nbi is a neutral bit for both D1 and D2. Then, once a pair

10



of input pair {(P, P ⊕ ∆in1), (P ⊕ ∆nbi
, P ⊕ ∆in1 ⊕ ∆nbi

)} is generated for
differential D1, one can re-pair the inputs as {(P, P⊕∆in1⊕∆nbi

), (P⊕∆nbi
, P⊕

∆in1)} and obtain a pair of input pair for differential D2. Thus, by re-pairing the
corresponding ciphertext pairs, the number of ciphertext structures are doubled.
Such a pair of differentials are said to be matched differentials.

This can reduce the data complexity by half, but is only of interest when
the two differentials are with almost equally good probability and share enough
other neutral bits to be used in key-recovery attacks.

An example can be found in Sect. 4.1. One useful differential might match
with many useful differentials in this sense. The more matched differentials found,
the lower the final data complexity will be.

Remark 3. There is an implicit relation between neutral bits of a differential
and high-order differential. A simultaneous-neutral bit-set Is of a differential
∆in → ∆out defines a special high-order differential ∆a1,a2 → 0, where a1 = ∆in

and a2 =
⊕

i∈Is
ei.

Besides, there is an interesting relation between neutral bits and the mixture-
differential distinguisher of AES. Some neutral bits found for Speck32/64 and
Simon32/64 in this work can result in some bit level mixture quadruples.

4 Key Recovery Attack on Round-Reduced Speck32/64

This sections shows that the neural distinguishers have not reached their full
potential in the key-recovery attacks in [8]. They could be harnessed to cooperate
with classical cryptanalytic tools and perform key-recovery attacks that are more
competitive to the attacks devised purely by classical cryptanalysis techniques.

In the following, we present key-recovery attacks employing the same neural
distinguishers used in the 11-round and 12-round attacks on Speck32/64 in [7,8].
The first 13-round attack and an improved 12-round attack that use neural
distinguishers on Speck32/64 were obtained.

The improved attacks follow the same framework of the improved key-recovery
attacks on Speck32/64 in [8]. An r-round main and an (r−1)-round helper neu-
ral distinguishers are employed and an s-round classical differential is prepended.
The key guessing procedure applies a simple reinforcement learning procedure.
The last subkey and the second to last subkey are to be recovered without exhaus-
tively using all candidate values to do one-round decryption. Instead, Bayesian
key search employing wrong key response profile is to be used.

The prepended classical differentials to be used in the improved attacks in-
cludes the same 2-round differential used in the attack in [8] and four new 3-round
differentials. The preliminary is to find enough NB of these differentials to obtain
enough samples of same distribution, so that to use the combined response from
the neural distinguishers. In the following, the simultanous neutral bit-sets and
CNB introduced in Sect. 3 are to be found.
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4.1 Finding CSNBS for Speck32/64

For finding NB of the differential of round-reduced Speck32/64, we used an
exhaustive search for empirical results because of the complexity brought by the
carry of modular addition.

Finding SNBS for 2-round Differential. For the prepended 2-round dif-
ferential on top of the neural distinguishers, one can experimentally obtain 3
complete NB and 2 SNBS (simultaneously complementing up to 4 bits) using ex-
haustive search. Besides, bits and bit-sets that are (simultaneous-)neutral with
high probabilities (≥ 80%) are also detected. Concretely, for the 2-round differ-
ential (0x0211, 0x0a04) → (0x0040, 0x0000), bits and bit-sets that are (proba-
bilistically) (simultaneous-)neutral are summarized in Table 2.

Table 2: (Probabilistic) SNBS for 2-round differential (0x0211, 0x0a04) →
(0x0040, 0x0000) of Speck32/64

NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr.

[20] 1 [21] 1 [22] 1 [9, 16] 1 [2, 11, 25] 1
[14] 0.965 [15] 0.938 [6, 29] 0.91 [23] 0.812 [30] 0.809 [7] 0.806

Find SNBS for 3-round Differential. The 2-round differential (0x0211, 0x0a04)→
(0x0040, 0x0000) can be extended to two optimal (prob. ≈ 2−11) 3-round differ-
entials, i.e.,

(0x0a20, 0x4205)→ (0x0040, 0x0000), (0x0a60, 0x4205)→ (0x0040, 0x0000).

However, the NB/SNBS of these two optimal differential are very scarce. There
are four sub-optimal (prob. ≈ 2−12) 3-round differential, i.e.,

(0x8020, 0x4101)→ (0x0040, 0x0000), (0x8060, 0x4101)→ (0x0040, 0x0000),
(0x8021, 0x4101)→ (0x0040, 0x0000), (0x8061, 0x4101)→ (0x0040, 0x0000).

For these sub-optimal 3-round differentials, the hamming weights of the input
differences are low, and they have more SNBS. Still, the numbers of SNBS are
not enough for appending a weak neural network distinguisher. Thus, conditional
ones were searched. The concrete approach for finding CNB/CNBS is empirical.

At a high-level, the empirical approach is as follows. First, the sufficient
conditions for a bit or a set of bits to be neutral are observed. Next, the necessity
of the sufficient conditions is tested. Concretely, let (x̃, ỹ) be the chosen data
for the 3-round differential. Because the 3-round differential will be neutrally
extended one round to the backward in the key-recovery attack, in the real
encryption, (x, y) = (x̃⊕ k0, ỹ ⊕ k0) is the real input to the 3-round differential

12



(refer to Fig. 3). The considered sufficient conditions are on the values of each
bit of the following four variables, i.e., x, y, (x ≫ 7)⊕ y, (x ≫ 7) · y. All bits
of these variables are examined to see if any of them keeps as a constant 0 or
1 among all correct pairs in the structure generated by each candidate CNBS.
Concerning values of x and y is for examining the conditions on the values of the
inputs; Concerning the values of the later two is for examining the conditions on
the values that will be involved in the modular addition. We observed that for
some bits/bits-sets that are neutral with relatively high probabilities, some bits
pi’s of (x ≫ 7)⊕ y for the correct pairs are always b (b ∈ {0, 1}), from which we
obtained the sufficient conditions for the bits/bits-sets to be neutral. We then
fixed the corresponding bits pi’s to be b, and examined the probabilities for the
bits/bits-sets to be neutral. Exploited experimental results are summarized in
Table 3. Besides, we observed that for each of the four sub-optimal differentials,
there are three sufficient (linear) conditions for a pair ((x, y), (x′, y′)) to conform
the 3-round differential, as listed in Eq. 2.

(0x8020, 0x4101) (0x8060, 0x4101) (0x8021, 0x4101) (0x8061, 0x4101)
↓ ↓ ↓ ↓

(0x0040, 0x0000) (0x0040, 0x0000) (0x0040, 0x0000) (0x0040, 0x0000)
x[7] = 0,

x[5]⊕ y[14] = 1,

x[15]⊕ y[8] = 0.


x[7] = 0,

x[5]⊕ y[14] = 0,

x[15]⊕ y[8] = 0.


x[7] = 0,

x[5]⊕ y[14] = 1,

x[15]⊕ y[8] = 1.


x[7] = 0,

x[5]⊕ y[14] = 0,

x[15]⊕ y[8] = 1.

(2)
Notice that, the first condition x[7] = 0 on conforming pairs are shared among

the four differentials, while for the other two conditions, they are complementary.
Because the conditions are linear, fulfilling each condition, the probability is 2−1.
Thus, under the three conditions, the probability of the four differentials are 2−9.
However, in the key-recovery attacks, because of the extended one round on top
of these 3-round differentials, these conditions cannot be fulfilled by chosen data
without guessing corresponding bits of k0.

Exploiting Multiple Differentials. The four differentials share most of the
high-probabilistic NB and the conditions on the NB (except for the [30], [0, 8, 31]).
Besides, the neutral bit [22] makes (0x8020, 0x4101) → (0x0040, 0x0000) and
(0x8060, 0x4101)→ (0x0040, 0x0000) matched differentials, and (0x8021, 0x4101)→
(0x0040, 0x0000) and (0x8061, 0x4101) → (0x0040, 0x0000) also matched dif-
ferentials as introduced in Sect 3.3. More specifically, take (0x8020, 0x4101) →
(0x0040, 0x0000) and (0x8060, 0x4101) → (0x0040, 0x0000) for example, they
share neutral bit [22] and all other useful NB. Since (0x8020, 0x4101)⊕(0x8060, 0x4101) =
(0x0040, 0000), while the neutral bit [22] corresponds to difference ∆22 = (0x0040, 0000),
ciphertext structures for (0x8060, 0x4101) → (0x0040, 0x0000) can be directly
obtained from that of (0x8020, 0x4101)→ (0x0040, 0x0000) (refer to Sect. 3.3).
Thus, using a pair of matched differentials (as in the following attack ASpeck13R

on the 13-round Speck32/64), one can generate half of the required data pairs
for free. Accordingly, the data complexity to get one pair of ciphertexts is one
instead of two.
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Table 3: (Probabilistic) (simultaneous-)neutral bit/bit-sets for 3-round differen-
tial (0x8020, 0x4101) → (0x0040, 0x0000), (0x8060, 0x4101) → (0x0040, 0x0000),
(0x8021, 0x4101) → (0x0040, 0x0000), and (0x8061, 0x4101) → (0x0040, 0x0000) of
Speck32/64

(8020, 4101) (8060, 4101) (8021, 4101) (8061, 4101)
Bit-set Pre. Post. Pre. Post. Pre. Post. Pre. Post. Condition
[22] 0.995 1.000 0.995 1.000 0.996 1.000 0.997 1.000 –
[20] 0.986 1.000 0.997 1.000 0.996 1.000 0.995 1.000 –
[13] 0.986 1.000 0.989 1.000 0.988 1.000 0.992 1.000 –
[12, 19] 0.986 1.000 0.995 1.000 0.993 1.000 0.986 1.000 –
[14, 21] 0.855 0.860 0.874 0.871 0.881 0.873 0.881 0.876 –
[6, 29] 0.901 0.902 0.898 0.893 0.721 0.706 0.721 0.723 –
[30] 0.803 0.818 0.818 0.860 0.442 0.442 0.412 0.407 –
[0, 8, 31] 0.855 0.859 0.858 0.881 0.000 0.000 0.000 0.000 –
[5, 28] 0.495 1.000 0.495 1.000 0.481 1.000 0.469 1.000 x[12]⊕y[5] = 1
[15, 24] 0.482 1.000 0.542 1.000 0.498 1.000 0.496 1.000 y[1] = 1
[6, 11, 12, 18] 0.445 0.903 0.456 0.906 0.333 0.701 0.382 0.726 x[2]⊕y[11] = 0
[4, 27, 29] 0.672 0.916 0.648 0.905 0.535 0.736 0.536 0.718 x[11]⊕y[4] = 1
Pre.: probability obtained using 1000 correct pairs without fulfilling the conditions.
Post.: probability obtained using with 1000 correct pairs and fulfilling all the four conditions in the
last column.
□□□: Neutral bit(-set)s used in the 13-round attack ASpeck13R on Speck32/64.
□□□: Neutral bit(-set)s used in the 12-round attack ASpeck12R on Speck32/64.

For the ease of notation, let us denote (0x8020, 0x4101) as example difference
∆1

E , and (0x8021, 0x4101) as ∆2
E . Six queries of a plaintext structure consisting

of (P , P ⊕∆1
E , P ⊕∆22, P ⊕∆1

E ⊕∆22, P ⊕∆2
E , P ⊕∆2

E ⊕∆22) result in eight
pairs to be used in the upcoming attack ASpeck12R on the 12-round Speck32/64.
The eight pairs are two pairs (P, P ⊕∆1

E) and (P ⊕∆22, P ⊕∆1
E⊕∆22) following

input difference ∆1
E , two pairs (P, P ⊕∆1

E ⊕∆22), (P ⊕∆22, P ⊕∆1
E) following

input difference ∆1
E ⊕ ∆22, two pairs (P, P ⊕ ∆2

E), (P ⊕ ∆22, P ⊕ ∆2
E ⊕ ∆22)

following input difference ∆2
E , and two pairs (P, P⊕∆2

E⊕∆22), (P⊕∆22, P⊕∆2
E)

following input difference ∆2
E ⊕∆22. In such a way, the average data complexity

to get one pair of ciphertexts reduces from 2 to 3/4, equivalent with the saving
by a factor of 21.42.

Note that, to use these CNBS (in the following ASpeck13R), one has to guess
the value corresponding to the conditions, i.e., some key bits or their linear
combinations. For example, guessing 4 linear combinations of key bits, one can
additionally get 4 more NBS of high probability; The more the guessed bits,
the larger each cipher-structure one can expand to, thus the higher the success
probability of the key-recovery attack. However, more guessed key bits also result
in higher time and data complexities. Thus, one has to determine the trade-
off between success rate and attack complexity through the number of guessed
key bits of k0. For example, in the second 13-round attack ASpeck13R

II , the bit-
set [4, 27, 29] is used as a NBS without guessing the corresponding key bit to
explicitly fulfill the conditions in each guess.
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4.2 Key Recovery Attack on 13-round Speck32/64

Employing two classical differentials that have identical CNB that have been
identified using the above method, and combining them with neural distinguish-
ers, we examine how far a practical attack can go on reduced-round Speck32/64.
A 13-round attack, denoted by ASpeck13R , is devised as follows.

The preliminary components that capture characteristics of Speck32/64 for
devising the attack ASpeck13R are as follows.

1. Two 3-round classical differentials sharing the same output difference
(0x8020, 0x4101)→ (0x0040, 0x0000) and (0x8060, 0x4101)→ (0x0040, 0x0000)
(refer to the rounds colored in blue in Fig. 3), and the set of their 12 NBS, i.e.,
NB: {[22], [13], [20], [5, 28], [15, 24], [12, 19], [6, 29], [6, 12, 11, 18], [4, 27, 29],
[14, 21], [0, 8, 31], [30]} (refer to the columns framed by blue lines in Table 3);

2. An 8-round neural distinguisherNDSpeck8R trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck8R .µ and NDSpeck8R .σ;

3. A 7-round neural distinguisherNDSpeck7R trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck7R .µ and NDSpeck7R .σ.

The parameters for recovering the last two subkeys k12 and k11 are denoted
as follows.

1. nkg: the number of possible values for the bits of k0, on which the conditions
depend.

2. ncts: the number of ciphertext structures by ncts.
3. nb: the number of ciphertext pairs in each ciphertext structure, i.e., 2|N B|.
4. nit: the total number of iterations on the ciphertext structures.
5. c1 and c2: the cutoffs with respect to the scores of the recommended last

subkey and second last subkey, respectively.
6. nbyit1, ncand1 and nbyit2, ncand2: the number of iterations and number of key

candidates within each iteration in the BayesianKeySearch procedures
for guessing each of the last and the second last subkeys, respectively.

The attack procedure is as follows (refer to Fig. 2 and 3).

1. Initialize variables Gbestkey ← (None, None), Gbestscore ← −∞.
2. For each of the nkg values of the 6 key bits k0[7], k0[15]⊕k0[8], k0[12]⊕k0[5],

k0[1], k0[2]⊕ k0[11], k0[11]⊕ k0[4],
(a) Generate ncts/2 random data pairs , i.e., (x̃1||ỹ1, x̃′

1||ỹ′
1)’s, with differ-

ence (0x8020, 0x4101), and satisfying the conditions for being conform-

ing pairs, i.e.,

{
x̃1[7] = k0[7],
x̃1[15]⊕ ỹ1[8] = k0[15]⊕ k0[8],

(refer to Eq. 2), and

the conditions for increasing the neutrality probability of four bits i.e.,
x̃1[12]⊕ ỹ1[5]⊕ 1 = k0[12]⊕ k0[5],
ỹ1[1]⊕ 1 = k0[1],
x̃1[2]⊕ ỹ1[11] = k0[2]⊕ k0[11],
x̃1[11]⊕ ỹ1[4]⊕ 1 = k0[11]⊕ k0[4],

(refer to Table 3).
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(b) From the ncts/2 random data pairs, generate ncts/2 structures using the
NBS in NB, marking the correspondence between old pairs and new
pairs that are generated using the NB [22].

(c) Decrypt one round using zero as the subkey for all data in the structures
obtained above (i.e., the round in green depicted in Fig. 3) and obtain
ncts/2 plaintext structures;

(d) Query for the ciphertexts under 13-round Speck32/64 of the ncts/2 ×
nb × 2 plaintexts, thus obtain ncts/2 ciphertext structures.

(e) For each couple of ciphertext pairs, denoted by (c1, c′
1) and (c2, c′

2),
whose corresponding couple of data pairs are related by flipping the neu-
tral bit [22], that is the couple (x̃1||ỹ1, x̃1||ỹ1 ⊕ (0x8020, 0x4101)) and
(x̃1||ỹ1⊕(0x0040, 0000), x̃1||ỹ1⊕(0x8020, 0x4101)⊕(0x0040, 0000)), ob-
tain a new couple of ciphertext pairs, that is (c1, c′

2) and (c2, c′
1). As a

result, the new couples generated in this way are corresponding to cou-
ples of plaintext pairs for the second differential (0x8060, 0x4101) and its
neutral bit [22]. Thus, additional ncts/2 ciphertext structures can be ob-
tained without new queries. In total, ncts ciphertext structures, denoted
by {C1, . . . , Cncts

}, are obtained.
(f) Initialize an array wmax and an array nvisit to record the highest distin-

guisher score obtained so far and the number of visits have received in
the last subkey search for the ciphertext structures.

(g) Initialize variables bestscore ← −∞, bestkey ← (None, None), bestpos ←
None to record the best score, the corresponding best recommended
values for the two subkeys obtained among all ciphertext structures and
the index of this ciphertext structure.

(h) For j from 1 to nit:
i. Compute the priority of each of the ciphertext structures as follows:

si = wmaxi+α·
√

log2(j)/nvisiti, for i ∈ {1, . . . , ncts}, and α = √ncts;
ii. pick the ciphertext structure with the highest priority score for fur-

ther processing in this j-th iteration, denote it by C, and its index
by idx, nvisitidx ← nvisitidx + 1.

iii. Run BayesianKeySearch Algorithm 3 with C, the neural distin-
guisher NDSpeck8R and its wrong key response profile NDSpeck8R .µ
and NDSpeck8R .σ, ncand1, and nbyit1 as input parameters; obtain
the output, that is a list L1 of nbyit1 × ncand1 candidate values
for the last subkey and their scores, i.e., L1 = {(g1i, v1i) : i ∈
{1, . . . , nbyit1 × ncand1}}.

iv. Find the maximum v1max among v1i in L1, if v1max > wmaxidx,
wmaxidx ← v1max.

v. For each of the recommended last subkey g1i ∈ L1, if the score
v1i > c1,
A. Decrypt the ciphertexts in C using the g1i by one round and

obtain the ciphertext structure C′ of 12-round Speck32/64.
B. Run BayesianKeySearch Algorithm 3 with C′, the neural dis-

tinguisherNDSpeck7R and its wrong key response profileNDSpeck7R .µ
and NDSpeck7R .σ, ncand2, and nbyit2 as input parameters; obtain
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the output, that is a list L2 of nbyit2×ncand2 candidate values for
the second to last subkey and their scores, i.e., L2 = {(g2i, v2i) :
i ∈ {1, . . . , nbyit2 × ncand2}}.

C. Find the maximum among v2i and the corresponding g2i in L2,
and denote them by v2max and g2max.

D. If v2max > bestscore, update bestscore ← v2max, bestkey ← (g1i, g2max),
bestpos ← idx.

vi. If bestscore > c2, go to Step 2i.
(i) Make a final improvement using VerifierSearch [7] on the value of

bestkey by examining whether the scores of a set of keys obtained by
changing at most 2 bits on top of the incrementally updated bestkey could
be improved recursively until no improvement obtained, update bestscore
to the best score in the final improvement; If bestscore > Gbestscore,
Gbestscore ← bestscore, Gbestkey ← bestkey.

3. Return Gbestkey, Gbestscore.

In the experimental verification of the attack ASpeck13R , the 8-round and 7-
round neural distinguishers provided in [7,9] were used. Concrete parameters and
the complexity of ASpeck13R are as follows. The accuracy of NDSpeck8R is about
0.514, and that of NDSpeck7R is about 0.616 (note that (2 · (0.514 − 0.5))2 ≈
2−10.32. Thus, by Conjecture 1, nb = 212 should be enough).

nkg = 26, ncts = 211, nb = 212, nit = 212

c1 = 25, c2 = −690, nbyit1 = nbyit2 = 5, ncand1 = ncand2 = 32

The data complexity is nkg × ncts × nb, that is, 26+11+12, i.e., 229 plaintexts
(because of the using of two matched differentials, data complexity for getting
each ciphertext pair is 1 instead of 2.)

To make the experimental verification economic, we only tested the core
of the attack under the situation when the 6 conditions are fulfilled. That is,
what tested is that whether one particular loop of the 26 loops in Step 2 can
successfully recover the last two subkeys. In that particular loop, the trialed
value of the 6 key bits of k0 is the real value. The other loops can be expected
to obtain worse scores and wrong key guesses than that particular loop. That is
because, when any of the first two conditions is not fulfilled, no correct pairs for
the prepended 3-round differential can be generated; When any of the other four
conditions is not fulfilled, the quality of the ciphertext structures corresponds
to the correct pairs becomes worse. That is, many samples expanded from the
correct pair using the neutral bits within a ciphertext structure are not correct
pairs. Thus, the combined score should be low. Even if they are indeed of good
quality by chance, the influence on the success rate is a positive one. That is
because in that case, the recommend key guess can be expected to be good, so
the success rate can be better than the results obtained under this assumption.
Besides, we assumed that when the there is no correct data pairs conforming
the prepended 3-round differentials, the recommended values for the last two
subkeys are not correct and the scores are low. Thus, to save time during the
experiments, we peeped the generated data pairs, when there is no correct pairs,
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we terminated that test and assumed it is a failed one and the time of this test
is that of running the full nit iterations. In these considerations, the success rate
reported below is an underestimation of the real success rate.

The core of the attack was examined in 149 trials. Among the 149 trials, 76
trials were considered to be doomed to failure because of no correct data pairs
for the prepended differential, and were terminated directly. We count a key
guess as successful if the sum of the hamming weights of the differences between
the returned last two subkeys and the real two subkeys is at most two. Within
the remaining 73 trials in which the neural distinguishers are called, there are
31 succeeded trials. Thus, we count the success rate as 31/149, which is 0.208
and approximately 0.21.

Start Core
j ← 0, wmax ← {−∞}, nvisit ← {0}

bestkey ← (None,None),
bestscore ← −∞, bestpos ← None

End Core
Final improvement by Veri-

fierSearch(bestpos, bestkey, bestscore)
If bestscore > Gbestscore,
Gbestscore ← bestscore,
Gbestkey ← bestkey

Upper Confidence Bound
j ← j + 1,

si := wmaxi + α ·
√

log2(j)/nvisiti,
for i ∈ {1, . . . , ncts}

Selected Ciphertext Structure

idx ← argmax(si), C ← Cidx,
nvisitidx ← nvisitidx + 1

BayesianKeySearch with C, NDr,
NDr.µ, NDr.σ, ncand1, nbyit1

Candidates for k−1 and their scores

L1 = {(g1i, v1i) : i ∈
{1, . . . , nbyit1 × ncand1}}

if max (v1i ∈ L1) > wmaxidx,
wmaxidx ← max (v1i ∈ L1).

∃ non-visited (g1i, v1i) ∈
L1 s.t. v1i > cutoff c1

C′ ← F−1
g1i

(C)
BayesianKeySearch with C′, NDr−1,
NDr−1.µ, NDr−1.σ, ncand2, nbyit2

Candidates for k−2 and their scores

L2 = {(g2i, v2i) : i ∈
{1, . . . , nbyit2 × ncand2}}

(v2max, g2max) ←
(v2i′ , g2i′ ) s.t. v2i′ = max(v2i ∈ L2).

If v2max > bestscore,
bestscore ← v2max, bestkey ←
(g1i, g2max), bestpos ← idx

(j > nit) or (bestscore > cutoff c2)

Yes

No

No

Yes

Test the next value of the
guessed key bits of k0.

Generate ciphertext struc-
tures {C1, . . . , Cncts}

∃ untested value out of the nkg

values of guessed key bits of k0

Start
Initialize Gbestkey ←

(None,None), Gbestscore ← −∞

End
Output Gbestkey as the

guessed value for (k−1, k−2)

Yes

No

The core of the attack

Fig. 2: Framework of the key-recovery attacks
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Fig. 3: Components for key-recovery attack on 13-round Speck32/64
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The 149 trials were executed using 8 threads of a server with 8 GPUs3, each
of 7 thread ran 20 trials, and 1 thread ran 9 trials4. Running all nit = 4096
iterations required sightly less than 1 hour (about 55 minutes). Thus, for the 76
trials doomed to be failure, the total executing time is expected to be 76 hours.
The full test of 149 trials when directly terminating the 76 trials required 51
hours and 8 minutes (the total core hours for all the 8 threads to terminate).
Thus, the full execution of 149 trials is expected to take 76 + 51 hours, that is
130 hours; and thus the average time for each trial is 127 / 149, that is, 0.85
hours. For 26 loops in Step 2, the worst situation is that within each loop, all
nit, i.e., 4096 iterations are executed. All in all, the full attack requires no more
than 26, i.e., 64 GPU hours.

Observing that without fulfilling the condition, the bit-set [4, 27, 29] also
has a biased probability to be neutral. Thus, we trialed an attack (denoted by
ASpeck13R

II ) in which, only 5 bits of k0 were guessed (i.e., enumerated in Step
2), in which, two bits are for the conforming pair, and 3 bits for the NB except
which, all other parameters are the same as the above. Thus, both the time and
data complexity can be reduced by 2, that is, 32 GPU hours and 228 chosen
plaintexts. However, the success rate also dropped; out of 160 trials, only 19
successful key guesses. That is, the success rate is approximately 0.12.

4.3 Key Recovery Attack on 12-round Speck32/64

To devise key-recovery attack on 12-round Speck32/64, Gohr in [7,9] used the
2-round classical differential (0x0211, 0x0a04) → (0x0040, 0x0000) combined
with the 8-round and 7-round neural distinguishers. For amplifying the weak
signal from the 8-round neural distinguisher, 13 single-bit NBs of the prepended
2-round classical differential were exploited. However, many of the 13 NBs are
neutral with probabilities that are not high (refer to App. Table 6). Besides, 500
ciphertext structures and 2000 iterations were used to achieve a success rate of
0.40. Thus, the data complexity is 500×213×2, i.e., 222.97 plaintexts. The attack
takes roughly 12 hours on a quad-core PC [7] (as listed in Table 1).

From Table 2, it can be seen that there are SNBSs that is completely neutral
or is neutral with high probability. Using these SNBSs in Table 2 instead of those
used in [7], our experiments show that the success rate of the resulted attack is
approximately 1. Note that within 500 ciphertext structures, there are enough
correct pairs, which is unlike that in the 11-round attack that uses the same
2-round prepended classical differential but only 100 ciphertext structures in [8].
Thus, when the quality of the ciphertext structures improved by using complete
or high-probabilistic neutral bit-sets, the success rate improved considerably.

However, the data complexity is bounded by the weakness of the 8-round
distinguisher. Thus, we further considered combining the 3-round classical dif-
ferential and the stronger 7-round (and 6-round) neural distinguisher to see how
3 Tesla V100-SXM2-32GB, computeCapability: 7.0; coreClock: 1.53GHz; coreCount:

80; deviceMemorySize: 31.72GB; deviceMemoryBandwidth: 836.37GB/s)
4 This thread was also designed to run 20 trials; but by accident, it terminated at its

ninth trial.
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much the data complexity can be reduced. In this case, SNBS are enough for the
7-round neural distinguisher. Thus, those conditional ones can be dismissed in
such a 12-round attack. Therefore, all the four 3-round differentials that sharing
the many NB can be employed, which makes it possible to obtain one plaintext
pair with 3/4 instead of 2 queries (i.e., by obtaining 8 ciphertext pairs with 6
queries as introduced in Sect. 4.1).

Concretely, the components of the 12-round key-recovery attack on Speck32/64,
denoted by ASpeck12R , are as followed.

1. four 3-round classical differentials (0x8020, 0x4101) → (0x0040, 0x0000),
(0x8060, 0x4101)→ (0x0040, 0x0000), (0x8021, 0x4101)→ (0x0040, 0x0000),
(0x8061, 0x4101) → (0x0040, 0x0000) and the set of their 6 neutral bit(-
set)s, i.e., NB: {[22], [13], [20], [12, 19], [14, 21], [6, 29]} (refer to the rows
framed by green lines in Table 3);

2. a 7-round neural distinguisherNDSpeck7R trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck7R .µ and NDSpeck7R .σ;

3. a 6-round neural distinguisherNDSpeck6R trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck6R .µ and NDSpeck6R .σ.

The framework of the 12-round attack ASpeck12R follows that of ASpeck13R

(refer to Fig. 2). The difference is that, at the beginning, we only guess one key
bit of k0, that is k0[7], because for all four 3-round differentials, the common
condition for correct pairs is x1[7] = 0 (refer to Eq. 2). Thus, nkg is 2, and there
are only 2 outermost loops.

The concrete parameters ofASpeck12R are as follows. The accuracy ofNDSpeck7R

is about 0.616, and that of NDSpeck6R is about 0.788 (note that (2 · (0.616 −
0.5))2 ≈ 2−4.22. Thus, by Conjecture 1, nb = 26 should be enough).

nkg = 21, ncts = 212, nb = 26, nit = 213

c1 = 10, c2 = 20, nbyit1 = nbyit2 = 5, ncand1 = ncand2 = 32

The data complexity is nkg×ncts×nb×3/4, that is, 218.58 plaintexts. To compare
with previous attacks, the experiment were done using CPU. Concretely, 320
trials were done with 16 threads in a CPU server5. Each thread ran 20 trials.
Within the 320 trials, 173 trials have no correct ciphertext pairs before being
expanded by neutral bit-sets thus were terminated directly and taken as failed
trials. In the remaining 147 trials, there are 103 success trials (the returned last
two subkeys have hamming distance to the real subkeys at most two). Thus, the
success rate is computed as 103/320, i.e., 0.32.

The 320 trials, among which 173 trials terminated directly and 147 trials calls
the neural distinguishers, took 162 CPU core hours in total. For a trial, running
full 8192 iterations requires about 1 hour and 50 minutes. Thus, the worse case
to run two outermost loops for a full attack takes less than 4 CPU hours.

5 Equipped with a 16-core Intel(R) Xeon(R) CPU E5-2680 0 2.70GHz, and 128GB
RAM, on CentOS 7.6.
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5 Neural Distinguishers on Round-Reduced Simon32/64

This section presents the neural distinguishers on Simon32/64 obtained in this
work, using which, key-recovery attacks covering 16 rounds are devised and pre-
sented in the next section. The advantage in terms of data complexity further
convince that machine learning can produce powerful cryptographic distinguish-
ers that can be used to devise efficient key-recovery attacks competitive to the
published results obtained using orthodox cryptanalysis methods.

5.1 The Choice of the Network Architecture

Considering that several state-of-the-art neural network structures have been de-
veloped in the field of machine learning, a preliminary search for a better network
other than the Residual Network (ResNet) [10] used in [8] were conducted.

Considering that both the Dense Network (DenseNet) [12] and the Squeeze-
and-Excitation Network (SENet) [11] show advantages in specific tasks than
ResNet, these two networks together with ResNet were investigated. The results
on the performance of distinguishers covers 7 to 9 rounds Simon32/64 under the
three different network structures are presented in Table 4. From comparison,
it can be seen that SENet yields distinguishers that are superior to that of the
other two. In the following, we only report essential details of the distinguishers
trained using the SENet.

5.2 The Training of Neural Distinguishers

The training schemes were followed from that in [8]. It was reported that there
was a gap between attacks that only use the information contained in observed
differences of ciphertext pairs and the full information contained in output val-
ues of ciphertext pairs. That indicates that neural distinguishers successfully
use features of the ciphertext pairs invisible to all differential distinguishers.
Our training on reduced-round Simon32/64 with pure differences of ciphertext
pairs confirm this observation, they are inferior to those trained with values of
ciphertext pairs.

However, we found that distinguishers fed with partial values combined with
partial differences between ciphertext pairs, instead of full values of ciphertext
pairs, could still perform good and be more useful than their counterparts to
do key-recovery attacks, due to the specific round structure of Simon compared
with Speck.

Training using the basic scheme. Using the basic training scheme and adopt-
ing SENet, neural distinguishers to recognize output pairs of 7-, 8-, 9-round
Simon32/64 with the input difference (0x0000, 0x0040) are obtained. That is,
given an output pair (x, y) and (x′, y′) and represented in the form of (x, y, x′, y′),
they can predict whether the data corresponds to input pairs with difference
(0x0000, 0x0040) of the 7-, 8-, 9-round Simon32/64. To make a distinction from
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their counterparts accepting transformed data, i.e., (x, x′, y ⊕ y′), the 7-, 8-, 9-
round neural distinguishers presented here are named as NDSimon7R

VV , NDSimon8R

VV ,
and NDSimon9R

VV , respectively.
The 7-round NDSimon7R

VV achieves an accuracy as high as 0.9825, which drops
by 0.17 per round to 0.8151 and 0.6325 for NDSimon8R

VV and NDSimon9R

VV , respec-
tively. Summaries are presented in Table 4 for detailed accuracy and in Fig. 4
for the wrong key response profile.

Thus, using this basic scheme, if accuracy drops constantly with the increas-
ing of number of round, the best can be achieved is expected to be a 9-round one,
which is indeed the case confirmed by our attempt to train 10 rounds resulting
in an accuracy of 0.5011 only.

Training to simulate KeyAverageing algorithm. A successful training of
the 10-round distinguisher is achieved by adopting the training scheme of simulat-
ing a KeyAverageing Algorithm [8] used with the 9-roundNDSimon9R

VV . Concretely,
a size 220 sample set S of ciphertext pairs for 10-round Simon32/64 is generated,
one half corresponds to plaintext pairs with difference (0x0000, 0x0040) and the
other half corresponds to random plaintext pairs. The labels of these samples
are not assigned directly, but using the KeyAverageing Algorithm calling the
9-round NDSimon9R

VV . That is, each ciphertext pair ci in the set S is decrypted
by one-round using all possible values of the 10-th round subkey; thus 216 inter-
mediate values c′

i,j ’s for j ∈ {0, 1}16 are generated; grading the c′
i,j ’s using the

9-round NDSimon9R

VV , and combining the 216 scores into a score for the cipher-
text pair ci by transforming the scores into real-vs-random likelihood ratios and
averaging. This combined score is then taken as the label of ci in S.

Using the sample set S with the labels so obtained, a training, which follows
the training of the best 7-round neural distinguisher in [8], is performed from a
randomly initialized network state for 300 epochs at batch size 5000 with a single
learning rate drops from 0.001 to 0.0001 at epoch 200. This training procedure
results in a 10-round distinguisher, named as NDSimon10R

VV with accuracy 0.5551,
as summarized in Table 4 for detailed accuracy and Fig. 4 for the wrong key
response profile.

Training using the Staged Training Method. The best 11-round distin-
guisher that can be successfully used in a practical key-recovery attack, is trained
using the staged training method, which was the same method used to train
the 8-round distinguisher of Speck32/64 in [8]. Concretely, in the first stage,
the best 9-round distinguisher NDSimon9R

VV is retained to recognize 8-round Si-
mon32/64 with the input difference (0x0440, 0x0100). Note that, the most likely
difference to appear three rounds after the input difference (0x0000, 0x0040) is
(0x0440, 0x0100), and the probability is about 2−4. In this first stage, the num-
ber of examples for training and for testing are 228 and 226, respectively. The
number of epochs is 10 and the learning rate is 10−4. In the second stage, the
resulted network of the first stage is retained to recognize 11-round Simon32/64
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Table 4: Summary of neural distinguishers on Simon32/64
#R Name Network Accuracy True Positive Rate True Negative Rate

7
ResNet 0.9197 0.8929 0.9504
DenseNet 0.9240 0.8888 0.9661

NDSimon7R
VV SENet 0.9802 0.9631 0.9986

8
ResNet 0.7248 0.7488 0.7051
DenseNet 0.7421 0.7643 0.7233

NDSimon8R
VV SENet 0.8148 0.7987 0.7987

NDSimon8R
VD SENet 0.6587 0.6979 0.6316

9
ResNet 0.6259 0.6681 0.6007
DenseNet 0.6442 0.6850 0.6182

NDSimon9R
VV SENet 0.6532 0.6982 0.6226

NDSimon9R
VD SENet 0.5629 0.5739 0.5548

10 NDSimon10R
VV

∗ SENet 0.5551 0.5679 0.5463

NDSimon10R
VV

+ SENet 0.5608 0.5732 0.5520

11 NDSimon11R
VV SENet 0.5173 0.5178 0.5168

* This neural distinguisher is trained using the KeyAveraging algorithm.
+ This neural distinguisher is trained using the staged training method.

with the input difference (0x0000, 0x0040). For this training, 230 examples are
freshly generated and fed, and 228 examples are for verification. One epoch with
learning rate 10−4 is done. In the last stage, the resulted network of the second
stage is retained in two epochs with 230 freshly generated data for training and
228 data for verification. The learning rate is 10−5.

The resulted distinguisher NDSimon11R

VV achieves an accuracy 0.5173 (refer to
Table 4 for detailed accuracy and Fig. 4 for the wrong key response profile.)

Training directly using data of form (x, x′, y ⊕ y′). Notice that, once
the output of the r-th round (xr, x′

r, yr, y′
r) is known, one can directly compute

(xr−1, x′
r−1, yr−1⊕y′

r−1) without knowing the (r−1)-th subkey. Thus, an (r−1)-
round distinguisher accepting data of the form (x, x′, y ⊕ y′) can be used as an
r-round distinguisher in the key-recovery attack. With this consideration, (r−1)-
round distinguishers accepting data of the form (x, x′, y ⊕ y′) are trained to see
whether they are superior to r-round distinguishers accepting data of the form
(x, x′, y, y′). To make a distinction, let us denote the former by NDSimon(r−1)R

VD
and the latter by NDSimonrR

VV .
The results show that NDSimon(r−1)R

VD indeed could achieve slightly better
accuracy than NDSimonrR

VV (refer to Table 4 for detailed accuracy and Fig. 4 for
their wrong key response profiles for more comparisons). Thus, they were used
in the key-recovery attacks presented in the next section.
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(a) N DSimon8R
VV : directly trained with data of the form ((x, y, x′, y′))

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 65536
Difference to real key

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

M
ea

n 
re

sp
on

se

(b) N DSimon8R
VD : directly trained with data of the form ((x, x′, y ⊕ y′))
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(c) N DSimon9R
VV : directly trained with data of the form ((x, y, x′, y′))
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(d) N DSimon9R
VD : directly trained with data of the form ((x, x′, y ⊕ y′))
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(e) N DSimon10R
VV : trained using N DSimon9R

VV and KeyAveraging algorithm
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VV : trained using N DSimon9R

VV and DDSimon8R
(0440,0100) in staged training

method

Fig. 4: Wrong key response profile (only µδ shown) for neural distinguishers on Simon32/64 (used 214 ciphertexts for (a-e) and 218
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6 Key-recovery Attacks on Round-Reduced Simon32/64

Under a similar framework to the key-recovery attacks on Speck32/64, the
trained neural distinguishers can be prepended with a classical differential to
perform key-recovery attacks.

The attack presented in this section, named as ASimon16R

I , combines the
longest but weak neural distinguisher with a differential that has many SNBS.

In Appendix A.1, another attack, named as ASimon16R

II , is presented. It com-
bines relatively strong neural distinguishers with a differential that is one round
longer but has fewer neutral bits.ASimon16R

I is superior toASimon16R

II , butASimon16R

II

achieves better data complexity than previous attacks in literature. It succeeded
by using a few of the identified CSNBS of the longer classical differential. .

The classical component in the attack ASimon16R

I presented in the sequel is a
3-round differential (0x0440, 0x1000)→ (0x0000, 0x0040) (prob. ≈ 2−8).

Similar to attacks on Speck32/64, to obtain decent scores from the responses
of the neural distinguishers, combined response from the neural distinguisher
over a number of samples from the same distribution are to be used. Thus, to
obtain enough samples from the same distribution, neutral bits of the prepended
classical differential are exploited.

6.1 Finding Neutral Bits for the Classical Differentials

Finding SNBS for 3-round Differential. For the 3-round differential to
be prepended to the neural distinguishers, one can obtain all neutral bits and
SNBS (simultaneously complementing up to 4 bits) using the following algebraic
method.

Given the input and output differences (0x0440, 0x1000) and (0x0000, 0x0040),
one can build the non-linear equations on the derivative functions. Because the
degrees of the derivative functions corresponding to this 3-round differential is
low (i.e., 4), this system of non-linear equations can be solved by computing
the Gröbner basis, which can be done using the PolyBoRi library integrated in
SageMath [4]. In the obtained Gröbner basis, those disappeared variables corre-
spond to the single-bit neutral bits of the differential. To find SNBS, the following
method is used. For each of the 41448 sets (i.e., 32 + 496 + 4960 + 35960 sets)
of at most four bits, in the resulted Gröbner basis, replace this set of variables
with their complements simultaneously; if the Gröbner basis does not change,
the set of variables corresponds to a SNBS.

Using the above algebraic method and experimental double-verification, all
the neutral bits and SNBS are obtained. There are 9 single neutral bits [2], [3],
[4], [6], [8], [9], [10], [18], [22]}, 2 2-SNBS {[0, 24], [12, 26]} (actually, there are 38
2-SNBS; but 36 out 38 are formed by combinations of the 9 single neutral bits);
all 3-SNBS and 4-SNBS are formed by combinations of the 9 single neutral bits
and 2 2-SNBS. Thus, there are 11 independent neutral bits and SNBS in total.
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From the resulted Gröbner basis (also observed by experiments), for an in-
put pair ((x, y), (x′, y′)) to conform the 3-round differential (0x0440, 0x1000)→

(0x0000, 0x0040), one has

{
x[1] = x′[1] = 0,

x[3] = x′[3] = 0.
(3)

6.2 Key Recovery Attack on 16-round Simon32/64

The components of ASimon16R

I are as follows (refer to Fig. 6).

1. a 3-round classical differential (0x0440, 0x1000) → (0x0000, 0x0040) (refer
to the rounds colored in blue in Fig. 6), and a set of its 11 NBS {[2], [3], [4],
[6], [8], [9], [10], [18], [22], [0, 24],[12, 26] };

2. a 11-round neural distinguisher NDSimon11R

VV trained using the staged ap-
proach under difference (0x0000, 0x0040), and its wrong key response pro-
files NDSimon11R

VV .µ and NDSimon11R

VV .σ.
3. a 9-round neural distinguisherNDSimon9R

VD trained under difference (0x0000, 0x0040)
and fed with data of type (x, x′, y ⊕ y′), and its wrong key response profiles
NDSimon9R

VD .µ and NDSimon9R

VD .σ.

The goal is to recover the last two subkeys k15 and k14. A difference with the
attack ASpeck13R is that, as one of the neural distinguishers NDSimon9R

VD accepts
data of type (x, x′, y⊕y′), after guessing k15 and k14 and decrypting a ciphertext
pair to (x14, y14), (x′

14, y′
14), one can compute (x13, x′

13, y13 ⊕ y′
13) by inverting

one round with 0 as the subkey, and thus can be feed to NDSimon9R

VD .
At the beginning, we guess two key bits of k0, that is k0[1] and k0[3], because

for the 3-round differential, the conditions for correct pairs are x1[1] = x′
1[1] = 0

and x1[3] = x′
1[3] = 0 (refer to Eq. 3); no more key bits need to be guessed

because the number of non-conditional neutral bits is enough). Thus, nkg is 2,
and there are 22 outermost loops.

The framework of attack ASimon16R

I is the same as that of ASpeck13R on
Speck32/64 (refer to Fig. 2). The concrete parameters of the attack are as
follows. The accuracy of NDSimon11R

VV is 0.5173, and that of NDSimon9R

VD is 0.5629
(note that (2 · (0.5173− 0.5))2 ≈ 2−9.71. Thus, by Conjecture 1, nb = 211 should
be enough).

nkg = 22, ncts = 27, nb = 211, nit = 29

c1 = 25, c2 = 100, nbyit1 = nbyit2 = 5, ncand1 = ncand2 = 32

The data complexity is nkg×ncts×nb×2, that is, 221 plaintexts. To examine the
performance of the attack, experiments are done using 8 threads on the same
GPU server testing ASpeck13R . In total 99 trials are run6. Within the 99 trials, all
trials have correct ciphertext pairs and all called the neural distinguishers. There
are 49 success trials, for which the returned last two subkeys have a Hamming
6 They are designed to run 20 trials each; but because of the walltime exceeded the

required, they were killed; In total, 99 trials had completed, 7 trials terminated
without finish (two almost finished and succeed).
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distance to the real subkeys of at most two. Thus, the success rate is computed
as 49/99, i.e., 0.49.

The 99 (+7) trials took 78 core hours in total. For a trial, it shows that
running full 512 iterations requires less than 1 hour. Thus, the worst case to run
22 outermost loops (on guessed values of k0[0] and k0[3]) for a full attack takes
less than 4 GPU hours.

7 Conclusions and Future Work

In this work, potentials of neural distinguishers shown in [8] were further con-
firmed by the following results.

1. The first practical neural distinguishers-based 13-round key-recovery attack
and an improved 12-round key-recovery attack on Speck32/64 were devised,
which have considerable advantage in terms of time complexity than attacks
devised using orthodox cryptanalaysis;

2. Various neural distinguishers covers up to 11-round Simon32/64 were pre-
sented, some of which accept data including partial value and partial differ-
ence and turn out to be useful;

3. The first practical neural distinguishers-based 16-round key-recovery attack
on Simon32/64 was devised, which have considerable advantage in terms of
data complexity than the attack devised using orthodox cryptanalaysis.

These results were achieved by enhancing the classical components in the attack
scheme proposed in [8] (for Speck32/64 and Simon32/64) and training new
neural distinguishers using various of training schemes (for Simon32/64). The
classical components is mainly the neutral bits of the differentials prepended
to the neural distinguishers. Generalized neutral bits, including simultaneous-
neutral bit-sets and conditional neutral bits, were deeply explored. In doing so,
samples are well-structured and the density of positive samples at local points is
improved. Using the combinations of responses on the structured samples, weak
neural distinguishers could be used to successfully perform key-recovery.

We conjectured (refer to Conj. 1) that, for a neural distinguisher with ac-
curacy of bias ϵ being successfully used in the improved key-recovery attack
proposed in [8], it is required to have about c × 1/(2ϵ)2 samples in each ci-
phertext structure (thus requires log2(c× 1/(2ϵ)2) neutral bits). This conjecture
might provide a guide for future works. Experiments of our attacks support
this conjecture. However, a theoretical treatment remains as an interesting open
problem.

The key-recovery attack with Upper Confidence Bounds and BayesianKey-
Search has shown its effectiveness on guessing keys. However, the parameters,
especially the cutoffs, which determine the execution time and success rate, were
empirically decided in the situation of lacking theoretical guidance. Thus, the at-
tacks presented might have their better counterparts with a better cutoff settings.
It is an interesting future work to use other reinforcement learning methods to
design attacks in which the parameters can be adjusted to the best automatically.
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Supplementary Material

A A Second Attack and the Visualization of the Attacks
on 16-round Simon32/64

A.1 The Second Attack on 16-round Simon32/64

Details of Find CSNBS for 4-round Differential. For the 4-round dif-
ferential to be prepended to the neural distinguisher, i.e., (0x1000, 0x4440) →
(0x0000, 0x0040), NB and SNBS are scarce; there are only 2 single NB and 2
2-SNBS.

However, when fixing values of some input bits, more bits become neutral.
Given the 9 single NB and the 2 2-SNBS of the 3-round differential (0x0440, 0x1000)→
(0x0000, 0x0040), CSNBS for the 4-round differential can be constructed as fol-
lows. Denote the input bits to the 4-round Simon32/64 by x15, x14, . . ., x0,
y15, y14, . . ., y0. To deduce the conditions for these input bits to be neutral for
the 4-round differential, one considers one round transformation as depicted in
Fig. 5.
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Fig. 5: Deduce conditional simultaneous-neutral bits/bit-sets for 4-round differential
of Simon32/64

Indicate the neutrality of bit i by Ai as neutral and Ci as non-neutral for the
3-round differential. Besides, indicate the neutrality of bit i under the condition
that simultaneously changing bits j by Aj

i as neutral. Corresponding to the 9
single NB [2], [3], [4], [6], [8], [9], [10], [18], [22] and two 2-SNBS [0, 24], [12, 26]
of the 3-round differential, we indicate the neutrality (with respect to the 3-round
differential) of the output of the first round of the 4-round as follows

C31C30C29C28 C27A12
26C25A00

24 C23A22C21C20 C19A18C17C16
C15C14C13A26

12 C11A10A09A08 C07A06C05A04 A03A02C01A24
00

Note that, for an input pair ((x, y), (x′, y′)) to conform the 4-round differen-

tial (0x1000, 0x4440)→ (0x0000, 0x0040), one have that

{
x5 = x′

5 = 0,

x3 = x′
3 = 0.
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Firstly, one can directly deduce the 2 single NB and the 2 2-SNBS for the
4-round differential from that of the 3-round differential as follows.

– From the neutrality of A22 and A18 for the 3-round differential, and because{
y06 ⊕ x05x14 ⊕ x14 = A22,

y02 ⊕ x01x10 ⊕ x00 = A18,
we have that y06 and y02 (i.e., [2] and [6])

are neutral for the 4-round differential.
– From the neutrality of A10 and A18 for the 3-round differential, let us consider

the neutrality of x10. The variable x10 is involved in the following equations

in the one round transformation


x10 = A10,

y02 ⊕ x01 x10 ⊕ x00 = A18,

y12 ⊕ x11x04 ⊕ x10 = C28,

y11 ⊕ x10 x03 ⊕ x09 = C27.

Because

A10 and A18 are neutral for the appended 3-round differential, the first two
equations do not impose conditions for x10 to be neutral for the 4-round dif-
ferential. In the third equation, although C28 is non-neutral for the appended
3-round differential, there is a free variable y12 ; thus, complementing x10

and y12 simultaneously does not violate the non-neutrality of C28. In the
fourth equation, because x03 must be zero for all conforming pairs of the 4-
round differential, complementing x10 does not violate the non-neutrality
of C27. Thus, we have that x10 and y12 (i.e., [12, 26]) form a SNBS for the
4-round differential.

– From the simultaneous-neutrality of A26
12 and A12

26 for the 3-round differen-
tial, let us consider the neutrality of x12 and y10. Because x12 and y10
are involved in the following equations in the one round transformation

x12 = A26
12,

y10 ⊕ x09x02 ⊕ x08 = A12
26,

y14 ⊕ x13x06 ⊕ x12 = C30,

y04 ⊕ x03 x12 ⊕ x02 = C20, where x03 = 0,

similar to the above analy-

sis, we have that x12 , y10 , and y14 (i.e., [10, 14, 28]) form a SNBS for
the 4-round differential.

Next, let consider the conditional neutrality of input bits for the 4-round
differential.

– From the neutrality of A08 for the 3-round differential, let us consider the
neutrality of x08. The variable x08 is involved in the following equations in

the one round transformation


x08 = A08,

y10 ⊕ x09x02 ⊕ x08 = C26,

y09 ⊕ x08 x01 ⊕ x07 = C25,

y00 ⊕ x15 x08 ⊕ x14 = C16.

In the second

equation, to not violate the non-neutrality of C26, one should complement
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x08 and y10 simultaneously. In the third equation, to not violate the non-
neutrality of C25, when x01 = 0, one can freely complement x08 ; when
x01 = 1, one should complement x08 and y09 simultaneously. In the fourth
equation, to not violate the non-neutrality of C16, when x15 = 0, one can
freely complement x08 ; when x15 = 1, one should complement x08 and
y00 simultaneously. Therefore, we have a CSNBS for the 4-round differential

as follows
[x08, y10], i.e., [24, 10] (x01, x15) = (0, 0);
[x08, y10, y09], i.e., [24, 10, 9] (x01, x15) = (1, 0);
[x08, y10, y00], i.e., [24, 10, 0] (x01, x15) = (0, 1);
[x08, y10, y09, y00], i.e., [24, 10, 9, 0] (x01, x15) = (1, 1).

– From the neutrality of A06 for the 3-round differential, let us consider the
neutrality of x06. The variable x06 is involved in the following equations in

the one round transformation


x06 = A06,

y08 ⊕ x07x00 ⊕ x06 = C24,

y07 ⊕ x06 x15 ⊕ x05 = C23,

y14 ⊕ x13 x06 ⊕ x12 = C30.

Similar to

the above analysis, we have a CSNBS for the 4-round differential as follows
[x06, y08], i.e., [22, 8] (x15, x13) = (0, 0);
[x06, y08, y07], i.e., [22, 8, 7] (x15, x13) = (1, 0);
[x06, y08, y14], i.e., [22, 8, 14] (x15, x13) = (0, 1);
[x06, y08, y07, y14], i.e., [22, 8, 7, 14] (x15, x13) = (1, 1).

– From the neutrality of A04 for the 3-round differential, let us consider the
neutrality of x04. The variable x04 is involved in the following equations in

the one round transformation


x04 = A04,

y06 ⊕ x05x14 ⊕ x04 = A22,

y05 ⊕ x04 x13 ⊕ x03 = C21,

y12 ⊕ x11 x04 ⊕ x10 = C28.

Similar to

the above analysis, we have a CSNBS for the 4-round differential as follows
[x04], i.e., [20] (x13, x11) = (0, 0);
[x04, y05], i.e., [20, 5] (x13, x11) = (1, 0);
[x04, y12], i.e., [20, 12] (x13, x11) = (0, 1);
[x04, y05, y12], i.e., [20, 5, 12] (x13, x11) = (1, 1).

– From the neutrality of A02 for the 3-round differential, let us consider the
neutrality of x02. The variable x02 is involved in the following equations in

the one round transformation


x02 = A02,

y04 ⊕ x03x12 ⊕ x02 = C20,

y03 ⊕ x02 x11 ⊕ x01 = C19,

y10 ⊕ x09 x02 ⊕ x08 = C26.

Similar to
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the above analysis, we have a CSNBS for the 4-round differential as follows
[x02, y04], i.e., [18, 4] (x11, x09) = (0, 0);
[x02, y04, y03], i.e., [18, 4, 3] (x11, x09) = (1, 0);
[x02, y04, y10], i.e., [18, 4, 10] (x11, x09) = (0, 1);
[x02, y04, y03, y10], i.e., [18, 4, 3, 10] (x11, x09) = (1, 1).

– From the simultaneous neutrality of A24
00 and A00

24 for the 3-round differen-
tial, let us consider the neutrality of x00 and y08. The variable x00 and
y08 are involved in the following equations in the one round transformation

x00 = A24
00,

y02 ⊕ x01x10 ⊕ x00 = A18,

y01 ⊕ x00 x09 ⊕ x15 = C17,

y08 ⊕ x07 x00 ⊕ x06 = A00
24.

Similar to the above analysis, we have a

CSNBS for the 4-round differential as follows


[x00, y08], i.e., [16, 8] (x09, x07) = (0, 0);
[x00, y08, y01], i.e., [16, 8, 1] (x09, x07) = (1, 0);
[x00], i.e., [16] (x09, x07) = (0, 1);
[x00, y01], i.e., [16, 1] (x09, x07) = (1, 1).

In summary, for the 4-round differential (0x1000, 0x4440)→ (0x0000, 0x0040)
of Simon32/64, there are 9 complete NB/SNBS/CSNBS, that is

1. 2 single NB: [2], [6]
2. 2 SNBS: [12, 26], [10, 14, 28]
3. 5 CSNBS in Table 5.

Table 5: CSNBS for the 4-round differential (0x1000, 0x4440) → (0x0000, 0x0040) of
Simon32/64

Bit-set C. Bit-set C. Bit-set C. Bit-set C. Bit-set C.

x[1, 15] x[15, 13] x[13, 11] x[11, 9] x[9, 7]

[24, 10], 00 [22, 8], 00 [20], 00 [18, 4], 00 [16, 8], 00
[24, 10, 9], 10 [22, 8, 7], 10 [20, 5], 10 [18, 4, 3], 10 [16, 8, 1] 10
[24, 10, 0], 01 [22, 8, 14], 01 [20, 12], 01 [18, 4, 10], 01 [16], 01
[24, 10, 9, 0] 11 [22, 8, 7, 14] 11 [20, 12, 5] 11 [18, 4, 3, 10] 11 [16, 1] 11
C.: Conditions on x[i, j], e.g., x[i, j] = 10 means x[i] = 1 and x[j] = 0.

□□□: CSNBS that are used in the 16-round attack ASimon16R
II on Simon32/64.

Note that, for an input pair ((x, y), (x′, y′)) to conform the 4-round differen-

tial (0x1000, 0x4440)→ (0x0000, 0x0040), one have that

{
x[5] = x′[5] = 0,

x[3] = x′[3] = 0.
(4)
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The attack ASimon16R

II . The components of ASimon16R

II are as follows (refer to
Fig. 7).

1. a 4-round classical differential (0x1000, 0x4440) → (0x0000, 0x0040) (refer
to the rounds colored in blue in Fig. 7), and a set of its 4 + 3 neutral
bit(-set)s (i.e., four non-conditional ones [2], [6], [12, 26], [10, 14, 28] and the
three ones conditioned on x[15, 13], x[13, 11], x[11, 9] (refer to the columns
framed by green lines in Table 5));

2. a 9-round neural distinguisherNDSimon9R

VD trained under difference (0x0000, 0x0040)
and fed with data of type (x, x′, y ⊕ y′), and its wrong key response profiles
NDSimon9R

VD .µ and NDSimon9R

VD .σ;
3. a 8-round neural distinguisherNDSimon8R

VD trained under difference (0x0000, 0x0040)
and fed with data of type (x, x′, y ⊕ y′). and its wrong key response profiles
NDSimon8R

VD .µ and NDSimon8R

VD .σ.

The goal is to recover the last two subkeys k15 and k14. A difference with
the attack ASpeck13R and ASimon16R

I is that, as the neural distinguishers accept
data of type (x, x′, y⊕y′), after guessing k15 and decrypting a ciphertext pair to
(x15, y15), (x′

15, y′
15), one can compute (x14, x′

14, y14 ⊕ y′
14) by inverse one round

with 0 as the subkey, and thus can be fed to NDSimon9R

VD . After guessing k14 and
decrypting a pair of (x15, y15), (x′

15, y′
15) to (x14, y14), (x′

14, y′
14), one can compute

(x13, x′
13, y13 ⊕ y′

13) by inverse one round with 0 as the subkey, and thus can be
fed to NDSimon8R

VD .
Another difference is that, at the beginning, we guessed two key bits of k0,

that is k0[3] and k0[5], because for the 4-round differentials, the conditions for
correct pairs is x1[5] = x′

1[5] = 0 and x1[3] = x′
1[3] = 0 (refer to Eq. 4); and

four key bits k0[15], k0[13], k0[11], k0[9] for employing three conditional neutral
bits (refer to Table 5). For different values of the chosen data pairs (x̃1, ỹ1),
with guessed values of the four key bits, we choose different neutral bit-sets to
generate the structures.

Thus, nkg is 2 + 4, and there are 26 outermost loops.
Except these differences, other part of the framework of attack ASimon16R

II is
the same as that of the 13-round attack ASpeck13R on Speck32/64. The concrete
parameters of the attack are as follows. The accuracy of NDSimon9R

VD is 0.5629,
and that of NDSimon8R

VD is 0.6587 (note that (2 · (0.5629− 0.5))2 ≈ 2−5.98. Thus,
by Conjecture 1, nb = 27 should be enough).

nkg = 22+4, ncts = 210, nb = 24+3, nit = 211

c1 = 20, c2 = 70, nbyit1 = nbyit2 = 5, ncand1 = ncand2 = 32

The data complexity is nkg × ncts × nb × 2, that is, 224 plaintexts. To examine
the performance of the attack, experiments were done using 8 threads on the
same GPU server testing ASpeck13R . Each thread ran 20 trails, thus, 160 trails
were run in total. Within the 160 trails, all trails have correct ciphertext pairs
and all called the neural distinguishers. There are 52 success trails (the returned
last two subkeys have hamming distance to the real subkeys at most two). Thus,
the success rate is computed as 52/160, i.e., 0.325.
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The 160 trails took 120.25 core hours in total. For a trail, running full 2048
iterations requires less than 1 hour (about 50 minutes). Thus, the worst case to
run 26 outermost loops for a full attack should take roughly 64 GPU hours.

A.2 Visualization of the Attacks

B Details of the Key-recovery Attack in [9]

B.1 Neutral bits Used in [9]

Table 6: (Probabilistic) single-bit neutral bit for 2-round differential
(0x0211, 0x0a04)→ (0x0040, 0x0000) of Speck32/64

NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr.

[20] 1 [21] 1 [22] 1 [14] 0.965 [15] 0.938 [23] 0.812 [7] 0.806
[30] 0.809 [0] 0.763 [8] 0.664 [24] 0.649 [31] 0.644 [1] 0.574
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