
Conditional Differential-Neural Cryptanalysis

Zhenzhen Bao1, Jian Guo1, Meicheng Liu2, Li Ma2, and Yi Tu1

1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore.

{zzbao,guojian}@ntu.edu.sg, tuyi0002@e.ntu.edu.sg
2 State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, China.
{meicheng.liu,skloismary}@gmail.com

Abstract. Although it has been a long-standing question that whether
computers can learn to perform cryptanalytic tasks, positive answers
made by breakthrough machine-learning-based cryptanalysis are still
rare. In CRYPTO 2019, a remarkable work made by Gohr shed light
on a positive answer. It shows that well-trained neural networks can
perform cryptanalytic distinguishing tasks at a superior level to tradi-
tional differential-based distinguishers. Additionally, a non-traditional
key-recovery procedure was devised, integrating with the Upper Con-
fidence Bounds and Bayesian optimization. Combining the neural dis-
tinguishers with a classical differential, integrating the advanced key-
recovery procedure, an 11-round key-recovery attack on Speck32/64,
a small-sized modern cipher designed by researchers from NSA, was
achieved, which has a competitive performance compared with the state-
of-the-art result. However, it turns out to be still difficult for the com-
munity to achieve a comparable performance increase on longer reduced-
versions of the same cipher. This difficulty calls into a question: to what
extent is the advantage of machine-learning approaches over traditional
ones, and whether the advantage generally exists on modern ciphers?
To answer these questions, we devised the first practical 13-round and
improved 12-round neural-distinguisher-based key-recovery attacks on
Speck32/64 and 16-round key-recovery attacks on Simon32/64. The
results confirm the advantages of using machine-learning approaches in
cryptanalysis. However, the main reason lies in the enhancement made on
the classical components. The crucial technical element for the improved
attacks is the concept of conditional (simultaneous) neutral bits/bit-sets,
which is derived from the concept of neutral bit with a long history in
cryptanalysis. This fact indicates an outcome: a strengthened combina-
tion between the classical cryptanalysis and machine learning approaches
is one way for machine-learning-based cryptanalysis to maximize its ad-
vantage.
Apart from best attacks, we exhibit substantial details of the key-recovery
phase that is missing a theoretical model to analyze its complexity and
success probability. Some observations on important statistics could serve
as a rule of thumb on tuning parameters and making trade-offs.
To answer whether the advantage of machine learning approaches shown
in the cryptanalysis of Speck32/64 can also be obtained on other prim-

itives, we produce various neural distinguishers and traditional DDT-
based distinguisher on Simon32/64. The answer is slightly negative. The
same approaches for Speck32/64 indeed apply to Simon32/64. How-
ever, the advantage over the pure differential-based approach seems to
be limited.

Keywords: Neural Distinguisher, Key Recovery Attack, Differential Crypt-
analysis, Simon, Speck, Generalized Neutral Bits, Bayesian Search

1 Introduction

Cryptography and machine learning share many common concerns, e.g., dis-
tinguishing, classification, decision, searching, and optimization. It has been a
long-standing challenge to answer whether computers could “learn to perform
cryptanalytic tasks” [23]. Artificial intelligence (AI) and machine learning (ML)
have made rapid progress in application domains ranging from machine transla-
tion, visual recognition, autonomous vehicles to playing various board games at
superhuman levels [24]. In addition, ML has also been utilized to construct new
types of cryptographic schemes [1] or crack ancient ciphers [15].

However, it is still an unforeseen future for machine learning models learning
from scratch and then completely breaking modern ciphers. Yet, one can still
look forward to that machine learning approaches and deep learning models be a
strong positive addition to the existing cryptanalysis toolkit, which has already
been true in side-channel cryptanalysis [22].

For using ML to assist classical cryptanalysis, there are several questions to
explore and directions to attempt. That might include the follows:

– Is it possible for ML models discovering new features with/without prior
human cryptanalysis?

– Is it possible for ML approaches to provide a more accurate and efficient
measurement of known features?

– Is it possible for compositions of various ML approaches and cryptanalysis
techniques to perform cryptanalysis tasks at a superior level to orthodox
cryptanalysis, then be dissected and interpreted, and in turn help to develop
innovative and general cryptanalytic techniques?

– Is it possible for ML approaches to be used in developing efficient and intel-
ligent tools to explore a vast space of attack vectors?

These questions, together with plenty of exciting achievements of ML in var-
ious fields, motivate the community to an unorthodox explore, although break-
through cryptanalysis using machine learning is still rare.

In CRYPTO 2019, a remarkable work by Gohr [14] shows that commonly
used neural networks could be trained to be superior cryptographic distinguish-
ers. The work shed light on positive answers to the first two questions, and
showed that for Speck, deep neural-network distinguisher could exploit features
that strong classical distinguishers fail to capture. In [14], neural networks were

2

trained with principles of differential cryptanalysis in mind. They show a re-
markable capability in distinguishing attacks. More importantly, when combin-
ing them with classical differentials and using a highly selective key search policy,
the formed differential-neural cryptanalysis can be a powerful key recovery at-
tack. Specifically, using the obtained neural distinguishers as the main engines,
prepending them with a classical differential, applying basic reinforcement learn-
ing mechanisms, i.e., the Upper Confidence Bounds (UCB) and Bayesian opti-
mization, results in an 11-round key-recovery attack on Speck32/64 with an
unparalleled speed. However, attacking more rounds, either the classical compo-
nent, i.e., the prepended differential, be extended, or the neural distinguisher be.
Both are facing obstacles that have not been overcome since [14].

In EUROCRYPT 2021, Ghor’s neural distinguishers got deeper interpreta-
tion by Benamira et al. [7]. They were found to have learned not only the dif-
ferential distribution on the output pairs but also the differential distribution in
penultimate and ante-penultimate rounds. Still, the other enhanced new compo-
nent, i.e., the UCB and Bayesian optimization based key-recovery phase in the
superior 11-round attack in [14], has not been fully interpreted and theorized,
thus still missing necessary guidance on how to tuning various parameters and
sound theoretical models on the relationship between various parameters with
the data/time complexity and the success probability.

Note that one of the main difficulties in evaluating and characterizing the
scope of applicability of machine learning algorithms is the lack of a formally spec-
ified theoretical model. Strong theoretical models for machine-learning-based
cryptanalysis are vital for generalizing the technique used in practical attacks
on small-size ciphers to theoretical attacks on large ones. However, in parallel or
even before our community manages to achieve sound theoretical models (which
is inevitable very difficult), devising a sufficient number of successful attacks as
positive examples in this new setting is essential. Without providing the best
successful attacks as examples, it might be harder to obtain a theoretical model
that produces the most powerful attacks. This work provides strong positive ex-
amples and substantial experimental data to support the first steps towards a
realistic theoretical model for machine-learning-based cryptanalysis.

Our contribution. The contribution of this work includes the follows.

– Practical attacks and illustrations
• The first practical neural-distinguisher-based 13-round key-recovery at-

tack and an improved 12-round key-recovery attack on Speck32/64
were devised, which have a considerable advantage in time complexity
over attacks devised using orthodox cryptanalysis. In addition, the first
practical neural-distinguisher-based 16-round key-recovery attack on Si-
mon32/64 was devised, which has a considerable advantage in data com-
plexity over the attack devised using orthodox cryptanalysis. These re-
sults are summarized in Table 1.

• Substantial illustrations on previously hidden details of the key-recovery
phase are displayed. Important observations (especially Observation 1)

3

together with these exhibitions of details provide some rule of thumb on
tuning important parameters and making better trade-offs.

– Enhanced cryptanalytic technique
The improved attacks were achieved by enhancing the classical components
in the differential-neural attack scheme in [14]. Specifically, we deeply ex-
plored more generalized neutral bits of differentials, which we call condi-
tional (simultaneous) neutral bit/bit-sets. Note that the concept of neutral
bit has a long history and heroic role in various cryptanalysis on various
primitives [4, 6, 8, 14]. We name the attacks equipped with this generalized
concept of neutral bit the conditional differential-neural cryptanalysis. This
might be of independent interest for cryptanalysis in the classical setting.
• Firstly, in addition to the single neutral bits used in [14], a more sophisti-

cated combination of bits, which allows generating additional conforming
pairs by flipping the set simultaneously, was found and exploited. We call
them “simultaneous neutral bit-sets” (SNBS’s).

• Secondly, in addition to neutral bits that generate the additional con-
forming pairs with probability one (named as complete neutral bits),
those with lower probabilities are also of interest (named as probabilistic
neutral bits). We find that some probabilistic neutral bits can be turned
to complete by imposing conditions on the chosen inputs. We call them
“conditional neutral bits” (CNB’s), or “conditional simultaneous neutral
bit-sets” (CSNBS’s).

• We find all SNBS’s (flipping simultaneously up to 4 bits) in a brute-
force search or an algebraic method basing on Gröbner basis. For finding
CNB’s, the manual analysis supported by experiments was applied.

– New observations
• We note the output difference of differential path matters to neural dis-

tinguisher (ND), but not the input difference. Hence, more than one
differential can be prepended to ND, as long as they share the same out-
put difference. Surprisingly, some neutral bits can be shared by multiple
such differentials. Using such differentials might enable data reuse, thus
slightly reduce data complexity.

• We find that there are additional constraints on subkeys for some differ-
ential trails used in the presented attacks as well as the previous best
attacks on Speck32/64 [9,12,25]. Thus, the attacks only work for a sub-
space of the keys, i.e., weak keys up to half of the keyspace. Interestingly,
within these weak keys and knowledge of these constraints, the attacks
can generally be improved in time and data complexities.

– Various neural distinguishers and DDT-based distinguishers for Simon32/64
• Besides the Residual Network (ResNet) [17] considered by Gohr in [14],

other neural networks that have shown advantages on ResNet in specific
tasks, including Dense Network (DenseNet) [19] and the Squeeze-and-
Excitation Network (SENet) [18], are investigated. Additionally, various
training schemes, including direct training, key-averaging, and staged
training, were attempted. This effort results in various neural distin-
guishers covering up to 11-round Simon32/64.

4

• Full distribution of differences for Simon32/64 induced by the input dif-
ference 0x0000/0040 up to 11 rounds are computed. These pure differential-
based distinguishers (DD) provide solid baselines for neural-network-
based distinguishers (ND). The results show that r-round ND achieves
similar but weaker classification accuracy than (r − 1)-round DD (see
Table 5). Besides, in a key ranking task on 11-round Simon32/64, ND
can perform well but still cannot do better than its counterpart DD (see
Table 6). In this sense, r-round ND can learn to “decrypt” one un-keyed
round and try to learn the distribution of the (r − 1)-round differential,
but fails to learn more features beyond the distribution of differences. Re-
sults by these efforts support Benamira et al.’s interpretation, but mean-
while indicate a difference about the advantage of neural-distinguishers
over classical differential distinguishers between Speck and Simon.

Table 1: Summary of key-recovery attacks on Speck32/64 and Simon32/64
Target #R Time

(GPU h)
Time
(CPU h)

Time
(#Enc)

Data Succ.
Rate

Weak
keys

Dist. Conf. Ref.

Speck32/64

11 - - 246 214 - 264 DD 1+6+4 [12]
- 0.139 238⋆

213.6 0.52 264 ND 1+2+7+1 [14]

12
- - 251 219 - 264 DD 1+7+4 [12]
<1 12 243.40⋆

222.97 0.40 264 ND 1+2+8+1 [14]
- 33.7 244.89⋆

222.00 0.86 264 ND 1+2+8+1 Sect. 4.3 Fig. 6
- 11.6 243.35⋆

218.58 0.81 263 ND 1+3+7+1 Sect. 4.3 Fig. 7

13 - - 257 225 - 264 DD 1+8+4 [12]
1043.2 - 249.84⋆+r 230 0.75 263 ND 1+3+8+1 Sect. 4.2 Fig. 4
652.8 - 249.16⋆+r 229 0.61 263 ND 1+3+8+1 Sect. 4.2 Fig. 5

14 - - 262‡
230‡

- 263‡
DD 1+9+4 [12]

- - 261.47‡
229.47‡

- 263‡
DD 1+9+4 [25]

Simon32/64 16 - - 226.48 229.48 0.62 264 DD 2+12+2 [3]
4 - 241.81⋆+r 221 0.49 264 ND 1+3+11+1 Sect. D.4

18 - - 246.00 231.2 0.63 264 DD 1+13+4 [2]
19 - - 234.00 231.5 - 264 DD 2+13+4 [9]
21 - - 255.25 231.0 - 264 DD 4+13+4 [27]

- Not available.
⋆ Under the assumption that one second equals the time of 228 executions of Speck32/64 or
Simon32/64 on a CPU.
r : log2(cpu/gpu), where cpu is the CPU time and gpu is the GPU time running an attack. In our
computing systems, r = 2.4 (The worse case execution time of the core of the 12-round attack on
Speck32/64 (without guessing the one key bit of k0) took 6637 seconds on CPU and 1265 seconds
on GPU).
‡ Revised complexity due to newly found constraints on subkeys (Sect. C)

Organization. The rest of the paper is organized as follows. Section 2 gives the
preliminary on machine-learning-based differential cryptanalysis and introduces
the design of Simon and Speck. Section 3 introduces concepts of generalized
neutral bits and some new notice on differential trails of Speck32/64. The frame-
work of the conditional-differential neural cryptanalysis and its applications to

5

Speck32/64 and Simon32/64 are presented in Section 4 and D. Section 5 ex-
hibits details of important statistics during the key-recovery phase. In addition,
rules of thumb are provided for tuning various parameters for the attacks. Sec-
tion 6 presents various of ND’s and DD’s on Simon32/64 reduced up to 11
rounds.

2 Preliminary

2.1 Brief Description of Speck32/64 and Simon32/64

Notations. Denote by n the word size in bits, 2n the state size in bits. Denote
by (xr, yr) the left and right branches of a state after the encryption of r rounds.
Denote by x[i] (resp. y[i]) the i-th bit of x (resp. y) counted starting from 0;
Denote by [j] the index of the j-th bit of the state, i.e., the concatenation of
x and y, where y[0] is the 0-th bit, and x[0] is the 16-th bit. Denote by ⊕ the
bit-wise XOR, ⊞ the addition modulo 2n, · or & the bit-wise AND, x≪s or
x ≪ s the bit-wise left rotation by s positions, x≫s or x ≫ s the bit-wise
right rotation by s positions. Denote by Fk (resp. F −1

k) the round function (resp.
inverse of the round function) using subkey k of the encryption.

Brief Description of Speck32/64 and Simon32/64. Speck32/64 and Si-
mon32/64 are small members in the lightweight block cipher families Speck and
Simon [5] designed by researchers from the National Security Agency (NSA) of
the USA. Both Speck32/64 and Simon32/64 are of Feistel constructions, has
32-bit block and 64-bit key. The round functions use combinations of rotation,
XOR, and addition modulo 216 (Speck) or bit-wise AND (Simon). Speck32/64
has 22 rounds and Simon32/64 has 32 rounds. The encryption algorithms of
Speck32/64 and Simon32/64 are listed in Algorithms 1 and 2. The subkeys of
16-bit for each round are generated from a master key of 64-bit by the non-linear
key schedule using the same round function (Speck32/64), or linear functions
of simple rotation and XOR (Simon32/64).

Algorithm 1: Encryption of
Simon32/64

Input: P := (x0, y0),
{k0, · · · , k31}

Output: C = (x32, y32)
1 for r = 0 to 31 do
2 xr+1 ←

(x≪1
r · x≪8

r)⊕ x≪2
r ⊕ yr ⊕ kr

3 yr+1 ← xr

4 end

Algorithm 2: Encryption of
Speck32/64

Input: P := (x0, y0),
{k0, · · · , k21}

Output: C = (x22, y22)
1 for r = 0 to 21 do
2 xr+1 ← x≫7

r ⊞ yr ⊕ kr

3 yr+1 ← y≪2
r ⊕ xr+1

4 end

6

2.2 Differential-based Neural Distinguishers

The work in [14] shows that neural network could be trained to capture the non-
randomness of the distribution of values of output pairs when the input pairs to
round-reduced Speck32/64 are of specific difference, and thus play the role of
distinguisher in cryptanalysis. This differential-based neural distinguisher is the
first known machine learning model that successfully performed cryptanalysis
task on modern ciphers (beyond the applications on side-channel attacks).

In the following, the way of training the differential-based neural distinguisher
introduced in [14] is briefly recalled.

The Training Data and Input Representation. For a target cipher, the
neural network is to be trained to distinguish between examples of ciphertext
pairs corresponding to plaintext pairs with particular difference and those cor-
responding to random plaintext pairs. Thus, each of the training data is a data
pair of the form (C, C ′) together with a label taking a value 0 or 1, where 0
means the corresponding plaintext pair is generated randomly, and 1 from a
particular plaintext difference ∆I . For Speck32/64, the ∆I is chosen to be of a
single active bit, i.e., (0x0040, 0000), which is the intermediate difference lying
in a known best differential characteristic.

The state of Speck32/64 has left and right parts, thus, a pair of data is
transformed into a quadruple of words (x, y, x′, y′) where C = x∥y and C ′ =
x′∥y′. The word quadruple is then interpreted into a 4 × 16-matrix with each
word as a row-vector before fed into the neural network with an input layer
consisting of 64 units. Among the set of training data and verification data, half
are positive examples labelled by 1, and the other half are negative examples
labelled by 0.

Training Schemes. The neural network structure used in [14] is a deep resid-
ual network. There are three training schemes proposed in [14]. The first is
a basic training scheme that is sufficient for successfully training short round
distinguishers. The second is an improved training scheme for r-round distin-
guishers that simulate the output of the KeyAveraging algorithm used with
an (r − 1)-round distinguisher. Using the second scheme, the best neural dis-
tinguisher on 7-round Speck32/64 was achieved in [14]. The third is a staged
training method that turns an already trained (r − 1)-round distinguisher into
an r-round distinguisher in several stages. Using the third scheme, the longest
neural distinguisher on Speck32/64, which is an 8-round one, was achieved.

2.3 Upper Confidence Bounds and Bayesian Optimization

Besides a basic key-recovery attack, an improved attack using specifics of the tar-
geted cipher (i.e., the wrong key randomization hypothesis does not hold when
only one round of trial decryption is performed) and elements from reinforce-
ment learning (i.e., an automatic exploitation versus exploration trade-off based
on upper confidence bounds) was proposed in [14].

7

The improved key-recovery attack employs an r-round main and an (r −
1)-round helper neural distinguisher trained with data pairs corresponding to
input pairs with difference ∆I ; a short s-round differential, ∆I′ → ∆I with
probability denoted by 2−p, is prepended on top of the neural distinguishers
(refer to Fig. 1 for an illustration of the components of the key-recovery attack.)
About c · 2p (denoted by ncts) data pairs with difference ∆I′ are randomly
generated, where c is a small constant; Neutral bits of the s-round differential
are used to expand each data pair to a structure of nb data pairs. The resulted
ncts structures of data pairs are decrypted by one round with 0 as the subkey
to get plaintext structures. All plaintext structures are queried to obtain the
corresponding ciphertext structures.

Each ciphertext structure is to be used to generate candidates of the last
subkey by the r-round main neural distinguisher (and latter of the second to last
subkey by the (r − 1)-round helper neural distinguisher) with a highly selective
key search policy based on a variant of Bayesian optimization.

More specifically, the key search policy depends on an important observation
that the expected response of the distinguisher upon wrong-key decryption will
depend on the bitwise difference between the trial key and the real key. This
wrong key response profile, which can be precomputed, is used to recommend
new candidate values for the key from previous candidate values with minimizing
the weighted Euclidean distance as the criteria in an BayesianKeySearch
Algorithm 3. It recommends a set of subkeys and provides their scores without
exhaustively performing trail decryptions.

The use of ciphertext structures is also highly selective using a standard
exploration-exploitation technique, namely Upper Confidence Bounds (UCB).
Each ciphertext structure is assigned a priority according to the scores of the
subkeys they recommended and the visited times of them.

An important detail in the BayesianKeySearch is that the responses vi,k

from the neural distinguisher on ciphertext pairs in the ciphertext structure
(of size nb) are combined using the Formula 1 and used as the score sk of the
recommended subkey k (refer to Algorithm 3). This score is highly decisive for
the execution time and success rate of the attack. It will determine whether the
recommended subkey will be further treated as it score passes or fails to pass
the cutoff and also determine the priority of ciphertext structures to be visited.
The number of ciphertext pairs in each structure is decisive when the neural
distinguisher has a low accuracy.

sk :=
nb−1∑
i=0

log2(vi,k

1− vi,k
) (1)

3 Deep Exploring of Neutral Bits
3.1 Motivation of Neutral Bits
In general, the more rounds the neural distinguisher covers, the lower the ac-
curacy is. Theoretically, a neural distinguisher with an accuracy that is higher

8

Fk0 Fk1 · · · Fks
Fks+1 · · · Fs+r−1 Fs+r Fs+r+1

x0

y0

x̃1

ỹ1

x2

y2

xs

ys

xs+1

ys+1

xs+2

ys+2

xs+r−1

ys+r−1

xs+r

ys+r

xs+r+1

ys+r+1

xs+r+2

ys+r+2

1-round
free

s-round classical differential
∆′I → ∆I

(r − 1)-round neural distinguisher
∆I → (xr−1, yr−1, x

′
r−1, y

′
r−1)

1-round key-guessing
ks+r

r-round neural distinguisher
∆I → (xr, yr, x

′
r, y
′
r)

1-round key-guessing
ks+r+1

(1 + s + r + 1)-round key-recovery attack

Fig. 1: Components of the key-recovery attacks

than 0.5 should have some distinguishing advantage over a random distinguisher.
However, when the accuracy being marginally higher than 0.5, it is hard to be
used in practical key recovery attack [14]. Thus, Gohr in [14] used the com-
bined response (as in Formula 1) of the neural distinguisher over large number
of samples of same distribution as a distinguisher (named as combined-response-
distinguisher). By doing so, the signal from the neural distinguisher is amplified
and the distinguishability is increased. For a combined-response-distinguisher
built on top of a weak neural distinguisher to reach its most potential with re-
spect to distinguishability, the number of samples of the same distribution should
be sufficiently large.

For the hybrid differential distinguisher used in the key-recovery attack in [14],
it is not straightforward to aggregate enough number of samples of same distri-
bution fed to the neural distinguisher due to the prepended classical differential.
To overcome this problem, Gohr in [14] used the neutral bits of the classical dif-
ferential, which is a notion introduced by Biham and Chen for collision attacking
SHA-0 [8] and frequently used in previous attacks of different types on various
primitives [4,6]. That is, changing the values at the neutral bits of an input pair
does not change the conformability for the differential. The more the neutral
bits of the prepended differential, the larger the number of samples of same dis-
tribution could be generated and fed into the neural distinguisher. However, in
general, the longer the classical differential, the lesser the number of neutral bits.

Finding enough neutral bits for prepending a long differential over a long but
weak neural distinguisher becomes a difficult problem for devising a key-recovery
to cover more rounds.

Thus, the first part of this work focuses on finding new types of neutral bits.

3.2 Neutral Bits and Generalized Neutral Bits

Notations. Let ∆in → ∆out be a differential with input difference ∆in and output
difference ∆out of an r-round encryption F r. Let (P, P ′) be the input pair and
(C, C ′ | C = F r(P), C ′ = F r(P ′)) be the output pair, where P ⊕ P ′ = ∆in. If
C ⊕ C ′ = ∆out, (P, P ′) is said to be conforming the differential ∆in → ∆out.

The primary notion of neutral bits can be interpreted as follows.

Definition 1 (Neutral bits of a differential, NB’s [8]). Let e0, e1, . . . , en−1
be the standard basis of Fn

2 . Let i be an index of a bit (starting from 0). The i-th

9

bit is a neutral bit of the differential ∆in → ∆out, if for any conforming pair
(P, P ′), (P ⊕ ei, P ′ ⊕ ei) is also a conforming pair.

Let {i1, i2, . . . , in} be the set of neutral bits of a differential ∆in → ∆out.
Denote the subspace of Fn

2 with basis {ei1 , ei2 , . . . , ein
} by S. Then, from one

input pair (P, P ′) where P ⊕ P ′ = ∆in, one can generate a set {(Pi, P ′
i) | Pi ∈

P ⊕S, P ′
i = Pi⊕∆in} that forms a data structure with the same conformability

for the differential.
For a differential ∆in → ∆out of F r, in the view of system of equations defined

on the derivative function of F r, i.e., D∆inF r(P) = ∆out, a set of neutral bits
NB partitions the solution space of D∆in

F r(x) = ∆out into equivalence classes.
It can be seen that, the more neutral bits for a differential, the more structured
the solution space.

Generalization of Neutral Bits. In general, neutral bits of non-trivial differentials
are scarce. In [14], because of the lack of neutral bits for the 2-round prepended
differential of Speck32/64, probabilistic neutral bits (PNB’s for short) are ex-
ploited. This notion of PNB has already been introduced by Aumasson et al. in
previous differential cryptanalysis of stream ciphers Salsa20 and Chacha, and
compression function Rumba [4]. Formally, it can be defined as follows.

Definition 2 (Probabilistic neutral bits, PNB’s [4]). Let i be an index of
a bit. The i-th bit is a p-probabilistic neutral bit of the differential ∆in → ∆out,
if for any conforming pair (P, P ′), (P ⊕ ei, P ′ ⊕ ei) conform the differential at
the same time with a probability p.

In the sequel attacks, the higher the probability p is, the higher the neutrality
quality, and the more useful the neutral bit becomes. For convenience, the neutral
bits are said to be complete neutral bits when p = 1.

In this work, two types of generalized neutral bits are considered beyond
the (probabilistic) neutral bits considered in [14]. The first type, named as
simultaneous-neutral bit-set (SNBS’s for short), has already been introduced
together with the notion of neutral bit in [8]. That is, for a differential, given
a conforming pair, complementing individual bits, the conformability might be
changed, but simultaneously complementing a set of bits does not change the
conformability of the resulted pair. Formally, it can be defined as follows.

Definition 3 (Simultaneous-neutral bit-sets, SNBS’s [8]). Let Is = {i1, i2, . . . , is}
be a set of bit indices. Denote fIs

=
⊕

i∈Is
ei. The bit-set Is is a simultaneous-

neutral bit-set for the differential ∆in → ∆out, if for any conforming pair (P, P ′),
(P ⊕fIs , P ′⊕fIs) is also a conforming pair, while for any subsets of Is, the con-
formability of the resulted pair does not always hold.

The second type, which is a natural generalization, is named in this work, as
conditional (simultaneous-) neutral bit(-set)s (CSNBS’s for short), that is, the
bits or bit-sets are neutral for input pairs fulfilling specific conditions. Formally,
it can be defined as follows.

10

Definition 4 (Conditional (simultaneous-) neutral bit(-set)s, CSNBS’s).
let Is = {i1, i2, . . . , is} be a set of bit indices. Denote fIs

=
⊕

i∈Is
ei. Let C be a

set of constraints on the value of an input P , and PC be the set of inputs that
fulfill the constraints C. The bit-set Is is a conditional simultaneous-neutral bit-
set for the differential ∆in → ∆out, if for any conforming pair (P, P ′ | P ∈ PC),
(P ⊕ fIs

, P ′ ⊕ fIs
) is also a conforming pair.

The most straightforward constraints can be that some bit values of P
are fixed. However, the constraints on the values of input P can be more in-
volved system of linear or non-linear equations, and correspondingly named as
linear-conditional (simultaneous-) neutral bit(-set)s (LCSNBS’s for short) and
nonlinear-conditional (simultaneous-) neutral bit(-set)s (NCSNBS’s for short).

Specifically, in this work for Simon32/64 and Speck32/64, conditional neu-
tral bits are slightly different in the following ways:

– for Speck32/64, a set of bits is neutral only when the value of some specific
bits are fixed to a particular value. Thus, one chooses particular data instead
of random one to form ciphertext-structure, but always uses the same set of
neutral bit-sets (refer to Sect. 4.1).

– for Simon32/64, depending on the value of specific bits, one can always
obtain a neutral bit-sets by grouping different bits. Thus, one randomly
generates a data pair, then selects different neutral bit-sets depending on the
values of specific bits of the random pair to generate a ciphertext-structure
(refer to Sect. D.5).

An observation on neutral bits of reduced-round differential of Speck32/64
is that, the lower the Hamming weight of a differential, the more the number
of neutral bits. Thus, for some of the sequel key-recovery attacks, differentials
with sub-optimal probability but with low Hamming weight are of interests and
eventually used.

Remark 1. The neutrality of CSNBS’s depends on values of some particular bits.
The selected data is at intermediate round in our attacks in this work, although
the difference does not depend on the round-key, the values do. Thus, using
CSNBS’s, the attack requires to guess some key bits of the first round.

Remark 2. In the sequel attacks on Simon32/64, with involved analysis, condi-
tions on the neutral bits are explicit, and thus, under the known conditions, all
used (generalized) neutral bits are complete. For Speck32/64, it is difficult to
fully capture all explicit conditions for some bits to be neutral because of the
complicated modular addition. Thus, some used (generalized) neutral bits are
not completely neutral but neutral with high probability. That means, besides
those explicit conditions observed, there are still some hidden conditions that
can be fulfilled with high probability.

11

3.3 Exploiting Multiple Differentials Sharing Same Neutral Bits

For the prepended classical differential, the goal is to propagate more rounds with
as less plaintext requirement as possible while leaving enough positive samples
to the neural distinguisher.

From the connecting difference between the classical differential and the neu-
ral distinguisher propagating upward, there might be multiple similar differen-
tials with equally good probability. The observation is that, these similar differ-
entials are likely to share many neutral bits. When a shared neutral bit happens
to be exactly the difference between input differences of two differentials, one
can re-group ciphertext pairs within each ciphertext structure corresponding
to one differential, and obtain ciphertext structures corresponding to the other
differential without additional queries, i.e., doubling the number of ciphertext
structures for free.

Formally, let D1 = ∆in1 → ∆out and D2 = ∆in2 → ∆out be two differentials
with input differences satisfying ∆in1 ⊕∆in2 = ∆nbi

and with the same output
difference. Suppose nbi is a neutral bit for both D1 and D2. Then, once a pair
of input pair {(P, P ⊕ ∆in1), (P ⊕ ∆nbi , P ⊕ ∆in1 ⊕ ∆nbi)} is generated for
differential D1, one can re-pair the inputs as {(P, P⊕∆in1⊕∆nbi), (P⊕∆nbi , P⊕
∆in1)} and obtain a pair of input pair for differential D2. Thus, by re-pairing the
corresponding ciphertext pairs, the number of ciphertext structures is doubled.
Such a pair of differentials are said to be matched differentials.

This can reduce the data complexity by half, but is only of interest when
the two differentials are with almost equally good probability and share enough
other neutral bits to be used in key-recovery attacks.

An example can be found in Sect. 4.1. One useful differential might match
with many useful differentials in this sense. The more matched differentials found,
the lower the final data complexity will be.

Remark 3. There is an implicit relation between neutral bits of a differential
and high-order differential. A simultaneous-neutral bit-set Is of a differential
∆in → ∆out defines a special high-order differential ∆a1,a2 → 0, where a1 = ∆in

and a2 =
⊕

i∈Is
ei.

Besides, there is an interesting relation between neutral bits and the mixture-
differential distinguisher of AES [16]. Some neutral bits found for Speck32/64
and Simon32/64 in this work can result in some bit level mixture quadruples.

4 Key Recovery Attack on Round-Reduced Speck32/64

This sections shows that the neural distinguishers have not reached their full
potential in the key-recovery attacks in [14]. They could be harnessed to coop-
erate with classical cryptanalytic tools and perform key-recovery attacks that
are more competitive to the attacks devised purely by classical cryptanalysis
techniques.

In the following, we present key-recovery attacks employing the same neural
distinguishers used in the 11-round and 12-round attacks on Speck32/64 in [14].

12

The first 13-round attack and an improved 12-round attack that use neural
distinguishers on Speck32/64 were obtained.

The improved attacks follow the same framework of the improved key-recovery
attacks on Speck32/64 in [14]. An r-round main and an (r−1)-round helper neu-
ral distinguishers are employed and an s-round classical differential is prepended.
The key guessing procedure applies a simple reinforcement learning procedure.
The last subkey and the second to last subkey are to be recovered without exhaus-
tively using all candidate values to do one-round decryption. Instead, Bayesian
key search employing wrong key response profile is to be used.

The prepended classical differentials to be used in the improved attacks in-
clude the same 2-round differential used in the attack in [14] and four new 3-
round differentials. The preliminary is to find enough NB’s of these differentials
to obtain enough samples of same distribution, so that to use the combined re-
sponse from the neural distinguishers. In the following, the simultaneous neutral
bit-sets and CNB’s introduced in Sect. 3 are to be found.

4.1 Finding CSNBS’s for Speck32/64

For finding NB’s of the differential of round-reduced Speck32/64, we used an
exhaustive search for empirical results because of the complexity brought by the
carry of modular addition.

Finding SNBS’s for 2-round Differential. For the prepended 2-round dif-
ferential on top of the neural distinguishers, one can experimentally obtain 3
complete NB’s and 2 SNBS’s (simultaneously complementing up to 4 bits) us-
ing exhaustive search. Besides, bits and bit-sets that are (simultaneous-)neutral
with high probabilities are also detected. Concretely, for the 2-round differential
(0x0211, 0x0a04) → (0x0040, 0x0000), bits and bit-sets that are (probabilistic)
(simultaneous-)neutral are summarized in Table 2.

Table 2: (Probabilistic) SNBS’s for 2-round differential (0x0211, 0x0a04) →
(0x0040, 0x0000) of Speck32/64

NB’s Pr. NB’sPr. NB’sPr. NB’s Pr. NB’s Pr. NB’s Pr. NB’sPr.

[20] 1 [21] 1 [22] 1 [9, 16] 1 [2, 11, 25] 1 [14] 0.965 [15] 0.938
[6, 29] 0.91 [23] 0.812 [30] 0.809 [7] 0.806 [0] 0.754 [11, 27]0.736 [8] 0.664

Finding SNBS’s for 3-round Differential. The 2-round differential (0x0211, 0x0a04)→
(0x0040, 0x0000) can be extended to two optimal (prob. ≈ 2−11) 3-round differ-
entials, i.e.,

(0x0a20, 0x4205)→ (0x0040, 0x0000), (0x0a60, 0x4205)→ (0x0040, 0x0000).

13

However, the NB’s/SNBS’s of these two optimal differentials are very scarce.
There are four sub-optimal 3-round differentials (prob. ≈ 2−12 when being es-
timated following Markov model, but are actually 2−11 for 263 keys and 0 for
another 263 keys, see Sect. C for more details), i.e.,

(0x8020, 0x4101)→ (0x0040, 0x0000), (0x8060, 0x4101)→ (0x0040, 0x0000),
(0x8021, 0x4101)→ (0x0040, 0x0000), (0x8061, 0x4101)→ (0x0040, 0x0000).

For these sub-optimal 3-round differentials, the hamming weights of the input
differences are low, and they have more SNBS’s. Still, the numbers of SNBS’s
are not enough for appending a weak neural network distinguisher. Thus, condi-
tional ones were searched. The concrete approach for finding CNB’s/CNBS’s is
empirical.

At a high-level, the empirical approach is as follows. First, the sufficient
conditions for a bit or a set of bits to be neutral are observed. Next, the necessity
of the sufficient conditions is tested. Concretely, let (x̃, ỹ) be the chosen data
for the 3-round differential. Because the 3-round differential will be neutrally
extended one round to the backward in the key-recovery attack, in the real
encryption, (x, y) = (x̃⊕ k0, ỹ ⊕ k0) is the real input to the 3-round differential
(refer to Fig. 3). The considered sufficient conditions are on the values of each
bit of the following four variables, i.e., x, y, (x ≫ 7)⊕ y, (x ≫ 7) · y. All bits
of these variables are examined to see if any of them keeps as a constant 0 or
1 among all correct pairs in the structure generated by each candidate CNBS.
Concerning values of x and y is for examining the conditions on the values of the
inputs; concerning the values of the later two is for examining the conditions on
the values that will be involved in the modular addition. We observed that for
some bits/bits-sets that are neutral with relatively high probabilities, some bits
pi’s of (x ≫ 7)⊕ y for the correct pairs are always b (b ∈ {0, 1}), from which we
obtained the sufficient conditions for the bits/bits-sets to be neutral. We then
fixed the corresponding bits pi’s to be b, and examined the probabilities for the
bits/bits-sets to be neutral. Exploited experimental results are summarized in
Table 4. Besides, we observed that for each of the four sub-optimal differentials,
there are three sufficient (linear) conditions for a pair ((x, y), (x′, y′)) to conform
the 3-round differentials, as listed in Table 3.

Table 3: Sufficient conditions to conform the 3-round differentials

(0x8020, 0x4101) (0x8060, 0x4101) (0x8021, 0x4101) (0x8061, 0x4101)
↓ ↓ ↓ ↓

(0x0040, 0x0000) (0x0040, 0x0000) (0x0040, 0x0000) (0x0040, 0x0000)
x[7] = 0,

x[5]⊕ y[14] = 1,

x[15]⊕ y[8] = 0.


x[7] = 0,

x[5]⊕ y[14] = 0,

x[15]⊕ y[8] = 0.


x[7] = 0,

x[5]⊕ y[14] = 1,

x[15]⊕ y[8] = 1.


x[7] = 0,

x[5]⊕ y[14] = 0,

x[15]⊕ y[8] = 1.

Note that the first condition x[7] = 0 are shared among the four differentials,
while for the other two conditions, they are complementary. Since the condi-

14

tions are linear, once a condition be fulfilled, the probability of the differential
increases by a factor of 21. However, in the key-recovery attacks, because of the
extended one round on top of these 3-round differentials, these conditions cannot
be fulfilled by chosen data without guessing corresponding bits of k0.

Table 4: (Probabilistic) (simultaneous-)neutral bit/bit-sets for 3-round differen-
tial (0x8020, 0x4101) → (0x0040, 0x0000), (0x8060, 0x4101) → (0x0040, 0x0000),
(0x8021, 0x4101) → (0x0040, 0x0000), and (0x8061, 0x4101) → (0x0040, 0x0000) of
Speck32/64

(8020, 4101) (8060, 4101) (8021, 4101) (8061, 4101)
Bit-set Pre. Post. Pre. Post. Pre. Post. Pre. Post. Condition
[22] 0.995 1.000 0.995 1.000 0.996 1.000 0.997 1.000 –
[20] 0.986 1.000 0.997 1.000 0.996 1.000 0.995 1.000 –
[13] 0.986 1.000 0.989 1.000 0.988 1.000 0.992 1.000 –
[12, 19] 0.986 1.000 0.995 1.000 0.993 1.000 0.986 1.000 –
[14, 21] 0.855 0.860 0.874 0.871 0.881 0.873 0.881 0.876 –
[6, 29] 0.901 0.902 0.898 0.893 0.721 0.706 0.721 0.723 –
[30] 0.803 0.818 0.818 0.860 0.442 0.442 0.412 0.407 –
[0, 8, 31] 0.855 0.859 0.858 0.881 0.000 0.000 0.000 0.000 –
[5, 28] 0.495 1.000 0.495 1.000 0.481 1.000 0.469 1.000 x[12]⊕y[5] = 1
[15, 24] 0.482 1.000 0.542 1.000 0.498 1.000 0.496 1.000 y[1] = 1
[6, 11, 12, 18] 0.445 0.903 0.456 0.906 0.333 0.701 0.382 0.726 x[2]⊕y[11] = 0
[4, 27, 29] 0.672 0.916 0.648 0.905 0.535 0.736 0.536 0.718 x[11]⊕y[4] = 1
Pre.: probability obtained using 1000 correct pairs without fulfilling the conditions.
Post.: probability obtained using with 1000 correct pairs and fulfilling all the four conditions in the
last column.
□□□: Neutral bit(-set)s used in the 13-round attack ASpeck13R on Speck32/64.
□□□: Neutral bit(-set)s used in the 12-round attack ASpeck12R on Speck32/64.

Exploiting Multiple Differentials. The four differentials share most of the
high-probabilistic NB’s and the conditions on the NB’s (except for the [30],
[0, 8, 31]). Besides, the neutral bit [22] makes (0x8020, 0x4101)→ (0x0040, 0x0000)
and (0x8060, 0x4101)→ (0x0040, 0x0000) matched differentials, and (0x8021, 0x4101)→
(0x0040, 0x0000) and (0x8061, 0x4101) → (0x0040, 0x0000) also matched dif-
ferentials as introduced in Sect 3.3. More specifically, take (0x8020, 0x4101) →
(0x0040, 0x0000) and (0x8060, 0x4101) → (0x0040, 0x0000) for example, they
share neutral bit [22] and all other useful NB. Since (0x8020, 0x4101)⊕(0x8060, 0x4101) =
(0x0040, 0000), while the neutral bit [22] corresponds to difference ∆22 = (0x0040, 0000),
ciphertext structures for (0x8060, 0x4101) → (0x0040, 0x0000) can be directly
obtained from that of (0x8020, 0x4101)→ (0x0040, 0x0000) (refer to Sect. 3.3).
Thus, using a pair of matched differentials (as in the following attack ASpeck13R

on the 13-round Speck32/64), one can generate half of the required data pairs
for free. Accordingly, the data complexity to get one pair of ciphertexts is one
instead of two.

For the ease of notation, let us denote (0x8020, 0x4101) as example difference
∆1

E , and (0x8021, 0x4101) as ∆2
E . Six queries of a plaintext structure consisting

of (P , P ⊕∆1
E , P ⊕∆22, P ⊕∆1

E ⊕∆22, P ⊕∆2
E , P ⊕∆2

E ⊕∆22) result in eight
pairs to be used in the upcoming attack ASpeck12R on the 12-round Speck32/64.
The eight pairs are two pairs (P, P ⊕∆1

E) and (P ⊕∆22, P ⊕∆1
E⊕∆22) following

15

input difference ∆1
E , two pairs (P, P ⊕∆1

E ⊕∆22), (P ⊕∆22, P ⊕∆1
E) following

input difference ∆1
E ⊕ ∆22, two pairs (P, P ⊕ ∆2

E), (P ⊕ ∆22, P ⊕ ∆2
E ⊕ ∆22)

following input difference ∆2
E , and two pairs (P, P⊕∆2

E⊕∆22), (P⊕∆22, P⊕∆2
E)

following input difference ∆2
E ⊕∆22. In such a way, the average data complexity

to get one pair of ciphertexts reduces from 2 to 3/4, equivalent with the saving
by a factor of 21.42.

Note that, to use these CNBS’s, one has to guess the value corresponding
to the conditions, i.e., some key bits or their linear combinations. For example,
guessing 4 linear combinations of key bits, one can additionally get 4 more NBS’s
of high probability; The more the guessed bits, the larger each cipher-structure
one can expand to, thus the higher the success probability of the key-recovery
attack. However, more guessed key bits also result in higher time and data com-
plexities. Thus, one has to determine the trade-off between success rate and
attack complexity through the number of guessed key bits of k0.

4.2 Key Recovery Attack on 13-round Speck32/64

Employing two classical differentials that have identical CNB’s that have been
identified using the above method, and combining them with neural distinguish-
ers, we examine how far a practical attack can go on reduced-round Speck32/64.
A 13-round attack, denoted by ASpeck13R , is devised as follows.

The preliminary components that capture characteristics of Speck32/64 for
devising the attack ASpeck13R are as follows.

1. Two 3-round classical differentials sharing the same output difference
(0x8020, 0x4101)→ (0x0040, 0x0000) and (0x8060, 0x4101)→ (0x0040, 0x0000)
(refer to the rounds colored in blue in Fig. 3), and the set of their 12 NBS’s,
i.e.,NB: {[22], [13], [20], [5, 28], [15, 24], [12, 19], [6, 29], [6, 12, 11, 18], [4, 27, 29],
[14, 21], [0, 8, 31], [30]} (refer to the columns framed by blue lines in Table 4);

2. An 8-round neural distinguisherNDSpeck8R trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck8R .µ and NDSpeck8R .σ;

3. A 7-round neural distinguisherNDSpeck7R trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck7R .µ and NDSpeck7R .σ.

The parameters for recovering the last two subkeys are denoted as follows.

1. nkg: the number of possible values for the bits of k0, on which the conditions
depend.

2. ncts: the number of ciphertext structures.
3. nb: the number of ciphertext pairs in each ciphertext structure, i.e., 2|N B|.
4. nit: the total number of iterations on the ciphertext structures.
5. c1 and c2: the cutoffs with respect to the scores of the recommended last

subkey and second last subkey, respectively.
6. nbyit1, ncand1 and nbyit2, ncand2: the number of iterations and number of key

candidates within each iteration in the BayesianKeySearch procedures
for guessing each of the last and the second last subkeys, respectively.

16

The attack procedure is as follows (refer to Fig. 2 and 3).

1. Initialize variables Gbestkey ← (None, None), Gbestscore ← −∞.
2. For each of the nkg values of the 6 key bits k0[7], k0[15]⊕k0[8], k0[12]⊕k0[5],

k0[1], k0[2]⊕ k0[11], k0[11]⊕ k0[4],
(a) Generate ncts/2 random data pairs , i.e., (x̃1||ỹ1, x̃′

1||ỹ′
1)’s, with differ-

ence (0x8020, 0x4101), and satisfying the conditions for being conform-

ing pairs, i.e.,

{
x̃1[7] = k0[7],
x̃1[15]⊕ ỹ1[8] = k0[15]⊕ k0[8],

(refer to Table 3), and

the conditions for increasing the neutrality probability of four bits i.e.,
x̃1[12]⊕ ỹ1[5]⊕ 1 = k0[12]⊕ k0[5],
ỹ1[1]⊕ 1 = k0[1],
x̃1[2]⊕ ỹ1[11] = k0[2]⊕ k0[11],
x̃1[11]⊕ ỹ1[4]⊕ 1 = k0[11]⊕ k0[4],

(refer to Table 4).

(b) From the ncts/2 random data pairs, generate ncts/2 structures using the
NBS’s in NB, marking the correspondence between old pairs and new
pairs that are generated using the NB [22].

(c) Decrypt one round using zero as the subkey for all data in the structures
obtained above (i.e., the round in green depicted in Fig. 3) and obtain
ncts/2 plaintext structures;

(d) Query for the ciphertexts under 13-round Speck32/64 of the ncts/2 ×
nb × 2 plaintexts, thus obtain ncts/2 ciphertext structures.

(e) For each couple of ciphertext pairs, denoted by (c1, c′
1) and (c2, c′

2),
whose corresponding couple of data pairs are related by flipping the neu-
tral bit [22], that is the couple (x̃1||ỹ1, x̃1||ỹ1 ⊕ (0x8020, 0x4101)) and
(x̃1||ỹ1⊕(0x0040, 0000), x̃1||ỹ1⊕(0x8020, 0x4101)⊕(0x0040, 0000)), ob-
tain a new couple of ciphertext pairs, that is (c1, c′

2) and (c2, c′
1). As a

result, the new couples generated in this way are corresponding to cou-
ples of plaintext pairs for the second differential (0x8060, 0x4101) and its
neutral bit [22]. Thus, additional ncts/2 ciphertext structures can be ob-
tained without new queries. In total, ncts ciphertext structures, denoted
by {C1, . . . , Cncts}, are obtained.

(f) Initialize an array wmax and an array nvisit to record the highest distin-
guisher score obtained so far and the number of visits have received in
the last subkey search for the ciphertext structures.

(g) Initialize variables bestscore ← −∞, bestkey ← (None, None), bestpos ←
None to record the best score, the corresponding best recommended
values for the two subkeys obtained among all ciphertext structures and
the index of this ciphertext structure.

(h) For j from 1 to nit:
i. Compute the priority of each of the ciphertext structures as follows:

si = wmaxi+α·
√

log2(j)/nvisiti, for i ∈ {1, . . . , ncts}, and α = √ncts;
This formula of priority is designed according to a general method
in reinforcement learning for achieving automatic exploitation ver-
sus exploration trade-off based on Upper Confidence Bounds. It is

17

motivated to focus the key search on the most promising ciphertext
structures [14].

ii. Pick the ciphertext structure with the highest priority score for fur-
ther processing in this j-th iteration, denote it by C, and its index
by idx, nvisitidx ← nvisitidx + 1.

iii. Run BayesianKeySearch Algorithm 3 with C, the neural distin-
guisher NDSpeck8R and its wrong key response profile NDSpeck8R .µ
and NDSpeck8R .σ, ncand1, and nbyit1 as input parameters; obtain
the output, that is a list L1 of nbyit1 × ncand1 candidate values
for the last subkey and their scores, i.e., L1 = {(g1i, v1i) : i ∈
{1, . . . , nbyit1 × ncand1}}.

iv. Find the maximum v1max among v1i in L1, if v1max > wmaxidx,
wmaxidx ← v1max.

v. For each of the recommended last subkey g1i ∈ L1, if the score
v1i > c1,
A. Decrypt the ciphertexts in C using the g1i by one round and

obtain the ciphertext structure C′ of 12-round Speck32/64.
B. Run BayesianKeySearch Algorithm 3 with C′, the neural dis-

tinguisherNDSpeck7R and its wrong key response profileNDSpeck7R .µ
and NDSpeck7R .σ, ncand2, and nbyit2 as input parameters; obtain
the output, that is a list L2 of nbyit2×ncand2 candidate values for
the second to last subkey and their scores, i.e., L2 = {(g2i, v2i) :
i ∈ {1, . . . , nbyit2 × ncand2}}.

C. Find the maximum among v2i and the corresponding g2i in L2,
and denote them by v2max and g2max.

D. If v2max > bestscore, update bestscore ← v2max, bestkey ← (g1i, g2max),
bestpos ← idx.

vi. If bestscore > c2, go to Step 2i.
(i) Make a final improvement using VerifierSearch [13] on the value of

bestkey by examining whether the scores of a set of keys obtained by
changing at most 2 bits on top of the incrementally updated bestkey could
be improved recursively until no improvement obtained, update bestscore
to the best score in the final improvement; If bestscore > Gbestscore,
update Gbestscore ← bestscore, Gbestkey ← bestkey.

3. Return Gbestkey, Gbestscore.

Remark 4. In Gohr’s implementations of the attack [13], two bits of g1 are ran-
domly assigned instead of being recommended by minimizing the weighted eu-
clidean distance. This is based on observation on the symmetry of the wrong
key response profiles, which indicates that values of the last two bits of the
last subkey have almost the same influence on the response, thus hard to be
correctly guessed. In our implementations, guessing these two bits in the last
subkey is integrated into guessing the second last subkey, which is done using
the stronger helper ND. The wrong key response profile with respect to the
helper ND NDSpeck7R .µ and NDSpeck7R .σ is thus on 18 key bits. In doing so,
these two key bits can be correctly recommended with a higher probability.

18

In the experimental verification of the attack ASpeck13R , the 8-round and 7-
round neural distinguishers provided in [13] were used. The accuracy ofNDSpeck8R

is about 0.514, and that of NDSpeck7R is about 0.616. Concrete parameters and
the complexity of ASpeck13R are as follows (see Figure 5).

nkg = 26, nb = 212, ncts = 211, nit = 4× ncts

c1 = 20, c2 = −500, nbyit1 = nbyit2 = 5, ncand1 = 2× ncand2 = 64

The data complexity is nkg × nb × ncts, that is, 26+11+12, i.e., 229 plaintexts
(because of the using of two matched differentials, data complexity for getting
each ciphertext pair is 1 instead of 2.)

To make the experimental verification economic, we tested the core of the
attack with the six conditions being fulfilled only. That is, tested whether a
particular one of 26 loops in Step 2 can successfully recover the last two subkeys.
In that particular loop, the trialed value of the 6 bits of k0 is real. In other loops,
the trialed values deviate from the real value by at least one bit. The other
loops can be expected to obtain worse scores and wrong key guesses than that
particular loop. Besides, because the prepended classical differentials are valid
to keys fulfilling k2[12] ̸= k2[11], thus we tested for these valid keys only, and
the presented attack works for 263 keys (refer to Sect. C).

The core of the attack was examined in 80 trials. Among the 80 trials, 2 trials
failed because of no correct ciphertext structure as for the prepended differential.
We count a key guess as successful if the sum of the Hamming weights of the
differences between the returned last two subkeys and the real two subkeys is
at most two. Within the remaining 78 trials in which the neural distinguishers
are called, there are 49 succeeded trials. Thus, the success rate is 49/80, which
is 0.6125.

The trials were executed using a server with 8 GPUs3. The maximum execu-
tion time among the 80 runs is 10.2 hours (which runs all the nit, i.e., 8192 itera-
tions). For 26 loops in Step 2, the worst situation is that within each loop, all nit

iterations are executed. Accordingly, the full attack requires about 26×10.2, i.e.,
652.8 GPU hours, which is equivalent to 249.16+r executions of Speck32/64 4.

Trade-offs. Using double the amount of data (i.e., ncts = 212), reducing ncand1
by half (i.e., ncand1 = 32) and lower cutoff c1 to 18, the success rate can be
increased to 0.75 without doubling the time (equivalent to 249.84+r executions
of Speck32/64) (see Fig. 4).

4.3 Key Recovery Attack on 12-round Speck32/64

To devise key-recovery attack on 12-round Speck32/64, Gohr in [14] used the 2-
round classical differential (0x0211, 0x0a04)→ (0x0040, 0x0000) combined with
3 Tesla V100-SXM2-32GB, computeCapability: 7.0; coreClock: 1.53GHz; coreCount:

80; deviceMemorySize: 31.72GB; deviceMemoryBandwidth: 836.37GB/s)
4 Under the assumption that one second equals the time of 228 executions of

Speck32/64 on a CPU, and r = log2(cpu/gpu), where cpu is the CPU time and gpu
is the GPU time running an attack. In our computing systems, r = 2.4

19

the 8-round and 7-round neural distinguishers. For amplifying the weak signal
from the 8-round neural distinguisher, 13 single-bit NB’s of the prepended 2-
round classical differential were exploited. However, many of the 13 NB’s are
neutral with probabilities that are not high (refer to App. Table 10). Besides,
500 ciphertext structures and 2000 iterations were used to achieve a success rate
of 0.40. Thus, the data complexity is 500 × 213 × 2, i.e., 222.97 plaintexts. The
attack takes roughly 12 hours on a quad-core PC (as listed in Table 1).

From Table 2, it can be seen that there are SNBS’s that are completely neutral
or are neutral with high probability. Using 13 SNBS’s from Table 2, cutting the
required data by nearly half, and using the following parameters, our experiments
show that the success rate of the resulted attack can be increased to 0.86 using
fewer data (see Fig. 6).

nkg = 0, nb = 213, ncts = 28, nit = 210

c1 = 15, c2 = 500, nbyit1 = nbyit2 = 5, ncand1 = ncand2 = 32

However, the data complexity is still bounded by the weakness of the 8-round
distinguisher. To further reduce the data requirement, we considered combining
the 3-round classical differential and the stronger 7-round (and 6-round) neural
distinguisher. In this case, unconditional SNBS’s are enough for the 7-round
neural distinguisher. Thus, those conditional ones can be dismissed in such a
12-round attack. Therefore, all the four 3-round differentials sharing the many
NB’s can be employed, which makes it possible to obtain one plaintext pair with
3/4 instead of 2 queries (i.e., by obtaining 8 ciphertext pairs with 6 queries as
introduced in Sect. 4.1).

Concretely, the components of the 12-round key-recovery attack on Speck32/64,
denoted by ASpeck12R , are as follows.
1. Four 3-round classical differentials (0x8020, 0x4101) → (0x0040, 0x0000),

(0x8060, 0x4101)→ (0x0040, 0x0000), (0x8021, 0x4101)→ (0x0040, 0x0000),
(0x8061, 0x4101) → (0x0040, 0x0000) and the set of their 6 neutral bit(-
set)s, i.e., NB: {[22], [13], [20], [12, 19], [14, 21], [6, 29]} (refer to the rows
framed by green lines in Table 4);

2. A 7-round neural distinguisherNDSpeck7R trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck7R .µ and NDSpeck7R .σ;

3. A 6-round neural distinguisherNDSpeck6R trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck6R .µ and NDSpeck6R .σ.

The framework of the 12-round attack ASpeck12R follows that of ASpeck13R

(refer to Fig. 2). The difference is that, at the beginning, we only guess one key
bit of k0, that is k0[7], because for all four 3-round differentials, the common
condition for correct pairs is x1[7] = 0 (refer to Table 3). Thus, nkg is 2, and
there are only 2 outermost loops.

The concrete parameters and attack complexity of ASpeck12R are as follows
(see Fig. 7). The accuracy of NDSpeck7R is about 0.616, and that of NDSpeck6R

is about 0.788.
nkg = 21, nb = 26, ncts = 212, nit = 213

c1 = 7, c2 = 10, nbyit1 = nbyit2 = 5, ncand1 = 2× ncand2 = 64

20

The data complexity is nkg×ncts×nb×3/4, that is, 218.58 plaintexts. To compare
with previous attacks, the experiments were done using CPU. Concretely, 160
trials were done with 32 threads in a CPU server5. Within the 160 trials, 3 trials
have no correct ciphertext structures. In the remaining 157 trials, there are 130
successful trials (the returned last two subkeys have a Hamming distance to the
real subkeys at most two). The success rate is 130/160, i.e., 0.8125.

The maximum execution time among the trials is 5.8 hours (which runs all
the nit, i.e., 8192 iterations). For 21 loops in Step 2, the maximum run time
should be about 11.6 CPU hours, which is equivalent to 243.35 executions of
Speck32/64.

Trade-off. If accepting a success rate of 0.5625, the data complexity can be
further reduced to 217.58 (by setting ncts = 211) (see Fig. 8).

5 Turning Parameters for the Key Recovery Attacks

The key-recovery attack with Upper Confidence Bounds and BayesianKey-
Search has shown its effectiveness in guessing keys in [14] and this work. How-
ever, the turning of the parameters, especially the cutoffs, which determine the
execution time and the success rate, is still missing theoretical guidance up to
the time of this work.

Thus, in this section, we provide detailed experimental data and important
observations to bring some light on how to tune important parameters and make
better trade-offs.

5.1 Exhibitions of important statistics in various attacks

It is noticed that v1max (i.e., max({v1i | v1i ∈ L1})) in the key-recovery phase
is an important variable determining the priority of each ciphertext structure and
indicates whether promising sub-keys are discovered in each run of BayesianKey-
Search. Investigating the distributions of this variable corresponding to correct
ciphertext structures (denoted by Dv1max

r) and wrong ciphertext structures (de-
noted by Dv1max

w) is helpful. These distributions can be used to learn how to
tune cutoff c1 to make trade-offs between time complexity and success rate. In-
vestigating the distributions of v2max (i.e., max({v2i | v2i ∈ L2})) could be
used to learn how to tune cutoff c2 (denoted by Dv2max

r and Dv2max
w for correct

ciphertext structures and wrong structures, respectively). Thus, together with
the information of attack configurations, attack complexity, and success rate,
histograms are given to show Dv1max

r , Dv1max
w , Dv2max

r , Dv2max
w for each presented

attack (ASpeck13R and ASpeck12R).
Concretely, for each attack, details of the following statistics are illustrated

in its corresponding figure (e.g., Figures 4 to 8).
5 Equipped with a 32-core Intel Cascade-Lake Xeon(R) Platinum 9221 2.30 GHz, and

with 384GB RAM, on CentOS 7.6.

21

– Dv1max
w , Dv1max

r , Dv1max
s : indicated using rand, real, and succ in the his-

tograms, respectively; Dv1max
s is the distribution of v1max corresponding to

the successfully recovered subkeys (the score of the subkey before final im-
provement);

– qctw, qctr: percentage of v1max’s corresponding to wrong (resp. correct) ci-
phertext structures passing cutoff c1;

– percentage of passing samples if different cutoffs are set, including both the
quantile plot with the samples and the plot with the best fitting generalized
logistic distribution on the samples;

– similar statistics for v2max (including Dv2max
r , Dv2max

w , Dv2max
s)6;

– distribution of Hamming distances between the returned subkeys and the
real subkeys;

– distribution of the used number of iterations in successful attacks.

5.2 Some rules of thumb

Apart from substantial illustrations on previously hidden details of the key-
recovery phase, the following observations are made to provide some rules of
thumb on deciding the number of data required and the cutoff c1. Before that,
we note that compared to c1, cutoff c2 is much easier to decide because a suc-
cessful attack requires the value of c2 to be ‘at the top rank’ (compared with a
‘threshold’ sense of cutoff c1). Thus, it is safe to select a value for c2 that is just
large enough to be uncovered by Dv2max

w .

Observation 1 Suppose in the above attack framework, the probability of the
prepended differential is p, the number of ciphertext structures is ncts. Denote
the attack success probability by Ps.

Note that Ps ≤ 1 − (1 − p · q)ncts , where q is the probability for the re-
sponse v1max from a correct ciphertext structure pass the cutoff c1, i.e., q =
PrCr

[v1max ≥ c1], where Cr is space of correct ciphertext structures.
Thus, the following relation should be fulfilled:

ncts ≥
log2(1− Ps)

log2(1− p · q)
.

For given ncts, p, and Ps, the cutoff c1 should be chosen such that

c1 ≤ Q(1− 1− (1− Ps)
1

ncts

p
),

where Q(·) is the quantile function of the distribution of v1max corresponding to
correct ciphertext structures, i.e., Dv1max

r .

6 Some v2max’s corresponding to success cases are lower than cutoff c2, that is due to
the final improvement.

22

For example, in the attack configuration in Fig. 5, after correctly guessing the
key bits in k0, the probability p of the prepended differential is 2−9; suppose c1
is selected as 20 so that q is 0.32; then, to have a success probability of 0.61,
the required number of ciphertext structures, i.e., ncts should satisfy ncts ≥
log 2(1 − 0.61)/ log 2(1 − 2−9 · 0.32) = 1506. On the other hand, suppose one
selects ncts to be 211, and aims Ps to be 0.61; since p is 2−9, this requires
c1 ≤ Q(1− (1− (1− 0.61)2−11)/2−9) = Q(1− 0.24) = 22.

Note that Observation 1 provides an upper bound on the value of the cutoff
c1. As for a lower bound on c1, we provide the following observations.

The cutoff c1 seems to be the smaller, the better for having a high success
probability. However, a smaller cutoff c1 is not a better choice for having a good
time complexity than a larger one. On the one hand, even using the correct
ciphertext structures, if a recommended subkey gets a small score v1, then, typ-
ically, it also has a large Hamming distance towards the real subkeys, thus hard
to produce good recommendations for the second last subkeys. On the other
hand, too small cutoff c1 results in a high percentage of v1 from wrong cipher-
text structures passing it. As a consequence, a lot of running time will be wasted
on the wrong ciphertext structures. Thus, cutoff c1 is better to be large enough
such that a low percentage of v1 of bad recommendations of last subkeys (e.g.,
with more than 3 bits Hamming distance towards the real subkey) from both
correct and wrong ciphertext structures passing it.

The preliminary to use these observations as guidance to tune the parameters
is to have a good knowledge of the distribution Dv1max

r and Dv1max
w .

5.3 Investigations on Dv1max
r and Dv1max

w

The experimental investigations on Dv1max
r and Dv1max

w were done through sam-
pling about 216 correct ciphertext structures and 216 wrong ciphertext structures
and analyze the values of v1max statistically. These experiments use exactly the
same procedure of the key-recovery attack but generate ciphertext structures by
accessing the subkeys; besides, it does not run into guessing the second last sub-
key. The same neutral bits used in actual attacks are also used here to generate
the ciphertext structures. Since some neutral bits are probabilistic, using cipher-
text structures generated by different neutral bits, the simulation of the Dv1max

r

and Dv1max
w are slightly different. This is aimed at using these investigations to

guide the actual attacks.
Apart from Dv1max

r and Dv1max
w , for correct ciphertext structures, distribution

of v1max corresponding to the recommended subkeys of low Hamming distances
(from 0 to 3 bits) towards the real subkey are investigated and presented together
(e.g., Figures 11 to 14).

For experimental results, we have the following observation.

Observation 2 Among various distributions, including Normal, Chi-squared,
Generalized logistic, Logistic, and Gamma, the Generalized logistic dis-

23

tribution 7 (denote by genlogistic) provides the best fit for both Dv1max
r and Dv1max

w .
Besides, Dv1max

r ’s are heavy right-skewed.

In figures that display Dv1max
r and Dv1max

w , the parameters of the best fitting
generalized logistic distribution are thus provided.

The influence on Dv1max
r and Dv1max

w when changing the size of ciphertext
structures (nb) (determined by the number of used neutral bits), the number of
recommended keys in each iteration inside BayesianKeySearch (ncand), and the
number of iterations in each BayesianKeySearch (nbyit) are investigated.

To quantify the influence , the Kullback-Leibler Divergence KL(real||rand)
in range [µr, maxr] is considered, where µr is the mean of v1max from correct
ciphertext structures and maxr is the maximum. Considering only this range is
because, in the actual attacks, the cutoffs are generally selected to be no less than
µr. Subfigures in Fig. 9 show how the distributions change when changing nb.
From Figures 9a and 9c, for that attack configuration, increasing nb from 25 to
26, the KL(real||rand) increases considerably. Increasing from 26 to 27 (Fig. 9c
and 9e), the mean increase approximately 2 times, however, the KL(real||rand)
does not increase but slightly decreases. That can be understood by looking at
Figures 17g and 17h, which show that if combining responses on 26 samples,
the two distributions of combined-response on random samples and real sam-
ples are already separated. From the quantile plot in Figures 9b and 9d, setting
cutoff to be 8, when nb = 25, approximately 17% of v1max from wrong cipher-
text structures pass, and 30% from correct ciphertext structures pass; whereas
when nb = 26, 9% from wrong ciphertext structures pass and 35% from correct
ciphertext structures pass. Thus, the latter is much better for achieving a good
trade-off between time complexity and success rate for the attack. Such an ob-
vious advantage cannot be seen for nb = 27 over nb = 26. Thus, nb = 26 is
sufficient for the corresponding attacks.

Similar comparisons among Figures (10a, 10b), (10c, 10d), and (10e, 10f)
indicate that increasing ncand is more effective than increasing nbyit for sepa-
rating the two distributions. Thus, turning ncand could achieve better trade-offs
between time complexity and success rate than turning nbyit.

For different attacks, the significance of the influence by increasing ncand

are different. Increasing ncand might fail to result in considerable improvements
in separating the distributions (see Fig. 11 and 12 for attacks of composition
1+3+8+1). However, the probability that guessed subkeys with low hamming
distances to the real subkey can increase to be doubled (comparing Fig. 11c
and 12c). Thus, ncand can still be used to make trade-offs between time com-
plexity and success probability without changing data complexity for the attacks.

7 Type I generalized logistic distribution with probability density function f(y, c) =
c e−y

(1+e−y)c+1 , where y = (x−loc)
scale

, for x ≥ 0 and c > 0.

24

6 Neural Distinguishers on Round-Reduced Simon32/64

This section presents the neural distinguishers on Simon32/64 obtained in this
work, using which, key-recovery attacks covering 16 rounds are devised and pre-
sented in Sect. D. The advantage in data complexity further confirms that ma-
chine learning can produce powerful cryptographic distinguishers that can be
used to devise efficient key-recovery attacks. Besides, DDT-based DD’s are com-
puted and provide baselines for ND’s. Comparisons between DD’s and ND’s are
made accordingly.

6.1 The Choice of the Network Architecture

Considering that several state-of-the-art neural network structures have been
developed, a preliminary search for a better network other than the Residual
Network (ResNet) [17] used in [14] were conducted. Specifically, Dense Network
(DenseNet) [19] shows advantages in parameter efficiency, implicit deep supervi-
sion, and feature reuse. Squeeze-and-Excitation Network (SENet) [18] won the
first place in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC
2017) for classification task. SENet can also be combined with existing deep
architectures to boost performance at minimal additional computational cost.
Thus, these two networks, together with ResNet, were investigated. The results
on the performance of distinguishers that cover 7 to 9 rounds Simon32/64 un-
der the three different network structures are presented in Table 5. From the
comparison, for longer rounds, SENet yields distinguishers that are superior to
that of the other two. In the following, we only report essential details of the
distinguishers trained using the SENet.

6.2 The Training of Neural Distinguishers

The training schemes follow that in [14]. All three schemes are attempted. For
short rounds, the basic training scheme already works well. For longer rounds,
KeyAverageing and Staged schemes are necessary to achieve distinguishers with
non-marginal advantage. Due to the specific round structure of Simon, distin-
guishers fed with partial values combined with partial differences between cipher-
text pairs, instead of full values of ciphertext pairs, should be more useful than
their counterparts to do key-recovery attacks. Thus, we trained distinguishers
accepting data composed with partial values and partial differences.

Training using the basic scheme. Using the basic training scheme and
adopting SENet, neural distinguishers to recognize output pairs of 7-, 8-, 9-
round Simon32/64 with the input difference (0x0000, 0x0040) are obtained.
That is, given an output pair (x, y) and (x′, y′) and represented in the form of
(x, y, x′, y′), they can predict whether the data corresponds to input pairs with
difference (0x0000, 0x0040) of the 7-, 8-, 9-round Simon32/64. To make a dis-
tinction from their counterparts accepting transformed data, i.e., (x, x′, y ⊕ y′),

25

the 7-, 8-, 9-round neural distinguishers presented here are named as NDSimon7R

VV ,
NDSimon8R

VV , and NDSimon9R

VV , respectively. The 7-round NDSimon7R

VV achieves an
accuracy as high as 0.9825, which drops by 0.17 per round to 0.8151 and 0.6325
for NDSimon8R

VV and NDSimon9R

VV , respectively. Summaries are presented in Table 5
for detailed accuracy and in Fig. 19 for the wrong key response profile.

Training to simulate KeyAverageing algorithm. A successful training of
the 10-round distinguisher is achieved by adopting the training scheme of simu-
lating a KeyAverageing Algorithm [14] used with the 9-round NDSimon9R

VV . Con-
cretely, a size 220 sample set S of ciphertext pairs for 10-round Simon32/64 is
generated, one half corresponds to plaintext pairs with difference (0x0000, 0x0040)
and the other half corresponds to random plaintext pairs. The labels of these
samples are not assigned directly, but using the KeyAverageing Algorithm calling
the 9-round NDSimon9R

VV . That is, each ciphertext pair ci in the set S is decrypted
by one-round using all possible values of the 10-th round subkey; thus 216 inter-
mediate values c′

i,j ’s for j ∈ {0, 1}16 are generated; grading the c′
i,j ’s using the

9-round NDSimon9R

VV , and combining the 216 scores into a score for the cipher-
text pair ci by transforming the scores into real-vs-random likelihood ratios and
averaging. This combined score is then taken as the label of ci in S. Using the
sample set S with the labels so obtained, a training, which follows the training
of the best 7-round neural distinguisher in [14], is performed from a randomly
initialized network state. This training procedure results in a 10-round distin-
guisher, named as NDSimon10R

VV with accuracy 0.5551, as summarized in Table 5
for detailed accuracy and Fig. 19 for the wrong key response profile.

Training using the Staged Training Method. The best 11-round distin-
guisher that is successfully used in a practical key-recovery attack, is trained
using the staged training method, which was the same method used to train
the 8-round distinguisher of Speck32/64 in [14]. Concretely, in the first stage,
the best 9-round distinguisher NDSimon9R

VV is retained to recognize 8-round Si-
mon32/64 with the input difference (0x0440, 0x0100). Note that, the most likely
difference to appear three rounds after the input difference (0x0000, 0x0040) is
(0x0440, 0x0100), and the probability is about 2−4. In this first stage, the num-
ber of examples for training and for testing are 228 and 226, respectively. The
number of epochs is 10 and the learning rate is 10−4. In the second stage, the
resulted network of the first stage is retained to recognize 11-round Simon32/64
with the input difference (0x0000, 0x0040). For this training, 230 examples are
freshly generated and fed, and 228 examples are for verification. One epoch with
learning rate 10−4 is done. In the last stage, the resulted network of the second
stage is retained in two epochs with 230 freshly generated data for training and
228 data for verification. The learning rate is 10−5. The resulted distinguisher
NDSimon11R

VV achieves an accuracy 0.5173 (refer to Table 5 for detailed accuracy
and Fig. 19 for the wrong key response profile.)

26

Table 5: Summary of neural distinguishers on Simon32/64
#R Name Network Accuracy True Positive Rate True Negative Rate

6 DDSimon6R
DD DDT 0.9918 0.9995 0.9841

7 ResNet 0.9823 ± 1.2 × 10−4 0.9996 ± 2.7 × 10−5 0.9650 ± 2.3 × 10−4

N DSimon7R
VV SENet 0.9802 ± 1.3 × 10−4 0.9987 ± 4.2 × 10−5 0.9617 ± 2.4 × 10−4

DenseNet 0.9244 ± 2.7 × 10−4 0.9670 ± 2.2 × 10−4 0.8818 ± 4.5 × 10−4

7 DDSimon7R
DD DDT 0.8465 0.8641 0.8288

8 N DSimon8R
VV SENet 0.8150 ± 4.2 × 10−4 0.8418 ± 5.5 × 10−4 0.7882 ± 5.1 × 10−4

ResNet 0.7912 ± 4.2 × 10−4 0.8041 ± 5.5 × 10−4 0.7783 ± 6.2 × 10−4

DenseNet 0.7789 ± 4.4 × 10−4 0.7709 ± 6.8 × 10−4 0.7868 ± 5.6 × 10−4

8 DDSimon8R
DD DDT 0.6628 0.5781 0.7476

8 N DSimon8R
VD SENet 0.6587 ± 4.8 × 10−4 0.5586 ± 7.4 × 10−4 0.7588 ± 5.6 × 10−4

9 N DSimon9R
VV SENet 0.6515 ± 5.3 × 10−4 0.5334 ± 7.0 × 10−4 0.7695 ± 5.7 × 10−4

ResNet 0.6296 ± 4.5 × 10−4 0.5164 ± 6.3 × 10−4 0.7429 ± 5.5 × 10−4

DenseNet 0.6443 ± 4.1 × 10−4 0.5337 ± 6.1 × 10−4 0.7550 ± 5.0 × 10−4

9 DDSimon9R
DD DDT 0.5683 0.4691 0.6674

9 N DSimon9R
VD SENet 0.5657 ± 4.9 × 10−4 0.4748 ± 7.1 × 10−4 0.6565 ± 6.6 × 10−4

10 N DSimon10R
VV

+ SENet 0.5610 ± 4.5 × 10−4 0.4761 ± 6.0 × 10−4 0.6460 ± 7.2 × 10−4

N DSimon10R
VV

∗ SENet 0.5549 ± 4.6 × 10−4 0.4605 ± 6.5 × 10−4 0.6493 ± 7.7 × 10−4

10 DDSimon10R
DD DDT 0.5203 0.5002 0.5404

11 N DSimon11R
VV SENet 0.5174 ± 5.3 × 10−4 0.5041 ± 7.1 × 10−4 0.5307 ± 7.9 × 10−4

11 DDSimon11R
DD DDT 0.5044 0.4852 0.5236

The network structure and parameters for the ResNet follow exactly that used in [13] for training
the ND’s on Speck32/64 except for the learning rate. Using a smaller learning rate (i.e.,
cyclic_lr(10,0.001,0.00001)) instead of the original learning rate (i.e., cyclic_lr(10,0.002,0.0001))
results in a better accuracy (e.g., 0.6296 vs 0.6110 for 9-round) for ND’s on Simon32/64.
* This neural distinguisher is trained using the KeyAveraging algorithm.
+ This neural distinguisher is trained using the staged training method.

Table 6: Comparing ND and DD on Simon32/64 using statistics in a simple key re-
covery attack on 11-round Simon32/64. The configuration is 1+8+1+1, i.e., a free
prepended invert round, 8-round distinguisher, a free inverting round, and a key-
guessing (last) round. All data are based on 1000 trials of the respective attacks, all
measurements of these statistics follow that in [14]: The rank of the real subkey is
in the range [0, 216), it is defined as the number of subkeys ranked higher, i.e., rank
0 corresponds to successful key recovery. When several keys were ranked equally, the
right key was assumed to be in a random position among the equally ranked keys.
The reported error bars around the mean are for a 2σ confidence interval, where σ is
calculated based on the observed standard deviation of the key rank. #D indicates the
number of chosen plaintexts.

#D Distinguisher Mean of key rank Median key rank Success rate

32 × 2 DDSimon8R
DD 11.8 ± 3.1 1.0 0.238

N DSimon8R
VD 43.9 ± 21.4 2.0 0.188

64 × 2 DDSimon8R
DD 0.9 ± 0.2 1.0 0.415

N DSimon8R
VD 1.3 ± 0.2 1.0 0.335

27

Training directly using data of form (x, x′, y ⊕ y′). Notice that, once
the output of the r-th round (xr, x′

r, yr, y′
r) is known, one can directly compute

(xr−1, x′
r−1, yr−1⊕y′

r−1) without knowing the (r−1)-th subkey. Thus, an (r−1)-
round distinguisher accepting data of the form (x, x′, y ⊕ y′) can be used as an
r-round distinguisher in the key-recovery attack. With this consideration, (r−1)-
round distinguishers accepting data of the form (x, x′, y ⊕ y′) are trained to see
whether they are superior to r-round distinguishers accepting data of the form
(x, x′, y, y′). To make a distinction, let us denote the former by NDSimon(r−1)R

VD
and the latter by NDSimonrR

VV .
The results show that NDSimon(r−1)R

VD indeed could achieve slightly better
accuracy than NDSimonrR

VV (refer to Table 5). Besides, from Fig. 19, the wrong
key response profiles of NDSimon8R

VD (Fig. 19b) and that of NDSimon9R

VV (Fig. 19c)
share observable pattern and symmetry. For key values that have little different
from the real value, responses from NDSimon8R

VD are higher than responses from
NDSimon9R

VV . Similar observations can be derived from a comparison between
that of NDSimon9R

VD (Fig. 19d) and that of NDSimon10R

VV (Fig. 19e). Thus, these
NDSimon(r−1)R

VD trained using data of form (x, x′, y ⊕ y′) were used in the key-
recovery attacks presented in Sect. D.

6.3 Computing DD’s and Further Interpretations

To provide baselines for ND’s, we calculate the full distribution of differences
for Simon32/64 induced by the input difference 0x0000/0040 up to 11 rounds
(see Table 5). This is done using the framework of Gohr’s implementation for
Speck32/64 and integrating the algorithm for computing one-round differential
probability for Simon offered by Kölbl et al. in [20]. Note that, the fed data to
r-round ND are values of ciphertexts, from which, for Simon32/64, one can di-
rectly compute the differences on (r−1)-round outputs without knowing the sub-
key. Thus, NDSimonrR

VV or NDSimonr−1R

VD should be compared with NDSimon(r−1)R

DD .
The results show that NDSimonrR

VV and NDSimon(r−1)R

VD achieve similar but
weaker classification accuracy than NDSimon(r−1)R

DD . To further evaluate the gaps
between the advantage of DD over ND, we devised a key ranking task, as done by
Gohr for comparing ND’s and DD’s on Speck32/64 in [14]. Specifically, a simple
key ranking procedure to recover the last subkey on 11-round Simon32/64 can
be performed both by DDSimon8R

DD or NDSimon8R

VD in a configuration of 1+8+2.
Table 6 shows the performance of DDSimon8R

DD and NDSimon8R

VD in the ranking for
real subkeys among 216 candidate subkeys. It can be seen that they both work
well in this task; the data requirement is 64 chosen plaintexts to achieve a success
rate of around 20%. However, NDSimon8R

VD is slightly inferior to DDSimon8R

DD . To
achieving the same success rate, NDSimon8R

VD requires more data than DDSimon8R

DD ,
but the difference is less than twice.

These comparisons suggest that r-round ND can “decrypt” one un-keyed
round to obtain the (r−1)-round difference and learn the differential distribution,

28

which confirms the interpretation in [7], but fails to learn more features beyond
distribution of differences.

Remark 5. This fact for Simon is different from the corresponding conclusion
for Speck. For Speck, knowing values of ciphertexts, without knowing the sub-
key, one can only compute half but not full of the differences on (r − 1)-round
outputs. Thus, the counterpart of r-round ND is the r-round DD. From [14],
r-round ND learns additional features beyond differences and has better classifi-
cation accuracy than r-round DD. We conjecture that the mean reason is that,
for Speck, pure XOR-difference DD’s cannot provide the best baselines for ND’s.
On the one hand, they are not accurate because of being computed following the
Markov assumption. On the other hand, features related to generalized XOR-
difference through modular addition and multi-bit constraints [11, 21] might be
useful to capture the additional features in outputs of Speck32/64. For exam-
ples, Tables 7 and 8 present generalized constraints beyond XOR-differences on
some differential trails, considering which, the probability of the trails could
be refined. In contrast, for Simon32/64, the XOR-differences distribution table
computed using the Markov model might already be an accurate approximation
for the actual differential distribution.

We note that the ND’s on Speck32/64 also “decrypt” half of the “unkeyed”
last round to retrieve the input values on the right branch yr−1. This interesting
fact that the ND’s can “learn to decrypt up to the values not messed up by outer
subkey” might due to the design by Gohr as explained in [14] as “the use of the
initial width-1 convolutional layer is intended to make the learning of simple bit-
sliced functions such as bitwise addition easier”. Remarkably, for Simon32/64,
the ND’s seems to have also successfully peeled off the nonlinear bitwise AND
layer in the last round.

These experiments on Simon and comparisons with Speck suggest that
differential-based neural-distinguishers might work well in general on modern
ciphers. Still, they might not always be superior to their classical counterparts.
Their advantages might be easier to show on ARX ciphers, for which differential
propagation has not been accurately evaluated using existing tools.

References

1. M. Abadi and D. G. Andersen. Learning to protect communications with adver-
sarial neural cryptography. arXiv preprint arXiv:1610.06918, 2016.

2. F. Abed, E. List, S. Lucks, and J. Wenzel. Differential cryptanalysis of round-
reduced Simon and Speck. In C. Cid and C. Rechberger, editors, FSE 2014, volume
8540 of LNCS, pages 525–545. Springer, Heidelberg, Mar. 2015.

3. H. A. Alkhzaimi and M. M. Lauridsen. Cryptanalysis of the SIMON family of block
ciphers. Cryptology ePrint Archive, Report 2013/543, 2013. https://eprint.iacr.
org/2013/543.

4. J.-P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. New features
of latin dances: Analysis of Salsa, ChaCha, and Rumba. In K. Nyberg, editor,
FSE 2008, volume 5086 of LNCS, pages 470–488. Springer, Heidelberg, Feb. 2008.

29

https://eprint.iacr.org/2013/543
https://eprint.iacr.org/2013/543

5. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers.
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404, 2013. https://eprint.iacr.org/2013/404.

6. C. Beierle, G. Leander, and Y. Todo. Improved differential-linear attacks with
applications to ARX ciphers. In D. Micciancio and T. Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 329–358. Springer, Heidel-
berg, Aug. 2020.

7. A. Benamira, D. Gérault, T. Peyrin, and Q. Q. Tan. A deeper look at machine
learning-based cryptanalysis. In A. Canteaut and F.-X. Standaert, editors, EURO-
CRYPT 2021, Part I, volume 12696 of LNCS, pages 805–835. Springer, Heidelberg,
Oct. 2021.

8. E. Biham and R. Chen. Near-collisions of SHA-0. In M. Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 290–305. Springer, Heidelberg, Aug.
2004.

9. A. Biryukov, A. Roy, and V. Velichkov. Differential analysis of block ciphers SI-
MON and SPECK. In C. Cid and C. Rechberger, editors, FSE 2014, volume 8540
of LNCS, pages 546–570. Springer, Heidelberg, Mar. 2015.

10. M. Brickenstein, A. Dreyer, B. Erocal, M. Albrecht, S. King, and C. Bouil-
laguet. Sage 9.3 Reference Manual: Polynomials: Boolean Polynomi-
als. https://doc.sagemath.org/html/en/reference/polynomial_rings/sage/
rings/polynomial/pbori/pbori.html. Accessed: 2021-5.

11. C. De Cannière and C. Rechberger. Finding SHA-1 characteristics: General results
and applications. In X. Lai and K. Chen, editors, ASIACRYPT 2006, volume 4284
of LNCS, pages 1–20. Springer, Heidelberg, Dec. 2006.

12. I. Dinur. Improved differential cryptanalysis of round-reduced Speck. In A. Joux
and A. M. Youssef, editors, SAC 2014, volume 8781 of LNCS, pages 147–164.
Springer, Heidelberg, Aug. 2014.

13. A. Gohr. Implementation of the Improving Attacks on Round-Reduced Speck32/64
Using Deep Learning. GitHub Repository. https://github.com/agohr/deep_
speck, 2019.

14. A. Gohr. Improving attacks on round-reduced Speck32/64 using deep learning. In
A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part II, volume 11693
of LNCS, pages 150–179. Springer, Heidelberg, Aug. 2019.

15. A. N. Gomez, S. Huang, I. Zhang, B. M. Li, M. Osama, and L. Kaiser. Unsupervised
cipher cracking using discrete gans. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018.

16. L. Grassi. Mixture differential cryptanalysis: a new approach to distinguishers and
attacks on round-reduced AES. IACR Trans. Symm. Cryptol., 2018(2):133–160,
2018.

17. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer
Society, 2016.

18. J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu. Squeeze-and-excitation networks.
IEEE Trans. Pattern Anal. Mach. Intell., 42(8):2011–2023, 2020.

19. G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 2261–2269.
IEEE Computer Society, 2017.

30

https://eprint.iacr.org/2013/404
https://doc.sagemath.org/html/en/reference/polynomial_rings/sage/rings/polynomial/pbori/pbori.html
https://doc.sagemath.org/html/en/reference/polynomial_rings/sage/rings/polynomial/pbori/pbori.html
https://github.com/agohr/deep_speck
https://github.com/agohr/deep_speck

20. S. Kölbl, G. Leander, and T. Tiessen. Observations on the SIMON block cipher
family. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part I,
volume 9215 of LNCS, pages 161–185. Springer, Heidelberg, Aug. 2015.

21. G. Leurent. Construction of differential characteristics in ARX designs application
to Skein. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 241–258. Springer, Heidelberg, Aug. 2013.

22. J. Rijsdijk, L. Wu, G. Perin, and S. Picek. Reinforcement learning for hyper-
parameter tuning in deep learning-based side-channel analysis. IACR TCHES,
2021(3):677–707, 2021. https://tches.iacr.org/index.php/TCHES/article/
view/8989.

23. R. L. Rivest. Cryptography and machine learning (invited lecture). In H. Imai,
R. L. Rivest, and T. Matsumoto, editors, ASIACRYPT’91, volume 739 of LNCS,
pages 427–439. Springer, Heidelberg, Nov. 1993.

24. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144,
2018.

25. L. Song, Z. Huang, and Q. Yang. Automatic differential analysis of ARX block
ciphers with application to SPECK and LEA. Cryptology ePrint Archive, Report
2016/209, 2016. https://eprint.iacr.org/2016/209.

26. Stefan Kölbl. CryptoSMT: An easy to use tool for cryptanalysis of symmetric
primitives. https://github.com/kste/cryptosmt.

27. N. Wang, X. Wang, K. Jia, and J. Zhao. Differential attacks on reduced SIMON
versions with dynamic key-guessing techniques. Cryptology ePrint Archive, Report
2014/448, 2014. https://eprint.iacr.org/2014/448.

31

https://tches.iacr.org/index.php/TCHES/article/view/8989
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://eprint.iacr.org/2016/209
https://github.com/kste/cryptosmt
https://eprint.iacr.org/2014/448

Supplementary Material

A Illustrations for Attack Procedures and for Turning
Parameters for the Key Recovery Attacks

A.1 Visualizing the components and the framework of the
key-recovery attacks on Speck32/64

Start Core
j ← 0, wmax ← {−∞}, nvisit ← {0}

bestkey ← (None,None),
bestscore ← −∞, bestpos ← None

End Core
Final improvement by Veri-

fierSearch(bestpos, bestkey, bestscore)
If bestscore > Gbestscore,
Gbestscore ← bestscore,
Gbestkey ← bestkey

Upper Confidence Bound
j ← j + 1,

si := wmaxi + α ·
√

log2(j)/nvisiti,
for i ∈ {1, . . . , ncts}

Selected Ciphertext Structure

idx ← argmax(si), C ← Cidx,
nvisitidx ← nvisitidx + 1

BayesianKeySearch with C, NDr,
NDr.µ, NDr.σ, ncand1, nbyit1

Candidates for k−1 and their scores

L1 = {(g1i, v1i) : i ∈
{1, . . . , nbyit1 × ncand1}}

if max (v1i ∈ L1) > wmaxidx,
wmaxidx ← max (v1i ∈ L1).

∃ non-visited (g1i, v1i) ∈
L1 s.t. v1i > cutoff c1

C′ ← F−1
g1i

(C)
BayesianKeySearch with C′, NDr−1,
NDr−1.µ, NDr−1.σ, ncand2, nbyit2

Candidates for k−2 and their scores

L2 = {(g2i, v2i) : i ∈
{1, . . . , nbyit2 × ncand2}}

(v2max, g2max) ←
(v2i′ , g2i′) s.t. v2i′ = max(v2i ∈ L2).

If v2max > bestscore,
bestscore ← v2max, bestkey ←
(g1i, g2max), bestpos ← idx

(j > nit) or (bestscore > cutoff c2)

Yes

No

No

Yes

Test the next value of the
guessed key bits of k0.

Generate ciphertext struc-
tures {C1, . . . , Cncts}

∃ untested value out of the nkg

values of guessed key bits of k0

Start
Initialize Gbestkey ←

(None,None), Gbestscore ← −∞

End
Output Gbestkey as the

guessed value for (k−1, k−2)

Yes

No

The core of the attack

Fig. 2: Framework of the key-recovery attacks

32

≫ (7)

≪ (2)0{
1000 0000 0010 0000

1000 0000 0110 0000

0100 0001 0000 0001

0100 0001 0000 0001

}

x0 y0

x̃1 ỹ1

k0

≫ (7)

≪ (2)k1

x1 y1

...
...

≫ (7)

≪ (2)k3

x3 y3

0000 0000 0100 0000 0000 0000 0000 0000

≫ (7)

≪ (2)k4

x4 y4

...
...

≫ (7)

≪ (2)k10

x10 y10

≫ (7)

≪ (2)k11

x11 y11vvvv vvvv vvvv vvvv vvvv vvvv vvvv vvvv

≫ (7)

≪ (2)k12

x12 y12vvvv vvvv vvvv vvvv vvvv vvvv vvvv vvvv

x13 y13

1-R
PK

3-R
CD

8-R
ND

1-R
KG

7-R
ND

1-R
KG

• PK:
Free one round
with Partial Key
guess

• CD:
Classical
Differential

• ND:
Neural
Distinguisher

• KG:
Key Guess

Fig. 3: Components for key-recovery attack on 13-round Speck32/64

33

A.2 Visualizing the distributions of important statistics for various
attacks

5 0 5 10 15 20 25 30 35 40 45
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

Comp.: 1+3+8+1
Conf.: nkg : 26 nb : 212 c1 : 18.0 c2 : 500.0
Conf.: ncts : 212 nit : 214 ncand1 : 32 ncand2 : 32 nbyit : 5
Test Done: 40 succ.: 30 succ. rate: 0.7500
Have Real: 40 succ.: 30 succ. rate: 0.7500
Max time: 58644 secs = 16.3 hours
Time cplx.: 26×58644 secs = 26×16.3 hours (GPU)
Time cplx.: 249.84 + r Encs (228 Encs/sec)
Data cplx.: 230.00 CPs

rand #218.4132 w: 13.4082 w: 5.9860 qctw: 0.2242
real #29.5098 r: 15.2185 r: 6.6791 qctr: 0.3265
succ #24.9069

s : 22.6787 s : 3.5526 min : 18.0025

(a) Attack information and distributions of v1max

1000 900 800 700 600 500 400 300 200 100 0 100 200 300 400 500 600 700 800 900 1000110012001300
v2max : = max({v2i v2i L2})

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

rand #218.4119 w:-839.0235 w: 30.0364 qctw: 0.0000
real #210.5324 r:-777.8938 r:226.7425 qctr: 0.0378
succ #24.9069

s : 294.4085 s : 629.5477 min : 657.2530

(b) Distributions of v2max during the attack and those when successfully recovered the key

12 14 16 18 20 22 24 26 28 30
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

18

0.22

18

0.33

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(c) Percentage of samples passing various cutoffs in 4a

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Hamming distance between gk 1||gk 2 and k 1||k 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

D
en

si
tie

s
of

 s
am

pl
es

Total # 40

(d) Hamming distances between gk−1||gk−2 and k−1||k−2

800 0 800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800 9600104001120012000128001360014400152001600016800
used

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
tie

s
of

 s
am

pl
es

succ: #30.0000 a:6199.1000 max:16384.0000

(e) Used number of iterations before return

Fig. 4: Detailed information for attack ASpeck13R
I

A.3 Illustrations for Investigations on Dv1max
r and Dv1max

w

34

5 0 5 10 15 20 25 30 35 40 45 50
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

Comp.: 1+3+8+1
Conf.: nkg : 26 nb : 212 c1 : 20.0 c2 : 500.0
Conf.: ncts : 211 nit : 213 ncand1 : 64 ncand2 : 32 nbyit : 5
Test Done: 80 succ.: 49 succ. rate: 0.6125
Have Real: 78 succ.: 49 succ. rate: 0.6282
Max time: 36540 secs = 10.2 hours
Time cplx.: 26×36540 secs = 26×10.2 hours (GPU)
Time cplx.: 249.16 + r Encs (228 Encs/sec)
Data cplx.: 229.00 CPs

rand #218.5285 w: 15.8529 w: 5.6604 qctw: 0.2297
real #29.6257 r: 17.7024 r: 6.6186 qctr: 0.3203
succ #25.6147

s : 27.2005 s : 6.6985 min : 20.1280

(a) Attack information and distributions of v1max

1000 900 800 700 600 500 400 300 200 100 0 100 200 300 400 500 600 700 800 900 1000110012001300
v2max : = max({v2i v2i L2})

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

rand #218.7181 w:-838.3405 w: 30.0332 qctw: 0.0000
real #211.0901 r:-750.5545 r:273.9204 qctr: 0.0550
succ #25.6147

s : 438.5663 s : 646.4454 min : 643.8513

(b) Distributions of v2max during the attack and those when successfully recovered the key

14 16 18 20 22 24 26 28 30 32
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

20

0.23

20

0.32

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(c) Percentage of samples passing various cutoffs in 5a

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Hamming distance between gk 1||gk 2 and k 1||k 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

D
en

si
tie

s
of

 s
am

pl
es

Total # 78

(d) Hamming distances between gk−1||gk−2 and k−1||k−2

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600 6000 6400 6800 7200 7600 8000 8400
used

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
en

si
tie

s
of

 s
am

pl
es

succ: #49.0000 a:2884.5102 max:8192.0000

(e) Used number of iterations before return

Fig. 5: Detailed information for attack ASpeck13R
II

35

15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

Comp.: 1+2+8+1
Conf.: nkg : 20 nb : 213 c1 : 15.0 c2 : 500.0
Conf.: ncts : 28 nit : 210 ncand1 : 32 ncand2 : 32 nbyit : 5
Test Done: 14 succ.: 12 succ. rate: 0.8571
Have Real: 14 succ.: 12 succ. rate: 0.8571
Max time: 121477 secs = 33.7 hours
Avg time: 51483 secs = 14.3 hours
Time cplx.: 20×121477 secs = 20×33.7 hours (CPU)
Time cplx.: 244.89 Encs (228 Encs/sec)
Data cplx.: 222.00 CPs

rand #212.2058 w: 8.2360 w: 8.6514 qctw: 0.1990
real #28.1085 r: 17.2664 r: 11.6814 qctr: 0.5036
succ #23.5850

s : 30.8707 s : 9.6950 min : 17.4776

(a) Attack information and distributions of v1max

2000 1800 1600 1400 1200 1000 800 600 400 200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
v2max : = max({v2i v2i L2})

0.000

0.002

0.004

0.006

0.008

0.010

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

rand #212.1941 w:-1806.9862 w: 84.0514 qctw: 0.0006
real #210.3718 r:-1652.4326 r:468.4770 qctr: 0.0143
succ #23.5850

s : 1459.6375 s : 553.9709 min : 616.6309

(b) Distributions of v2max during the attack and those when successfully recovered the key

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

15

0.20

15

0.50

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(c) Percentage of samples passing various cutoffs in 6a

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Hamming distance between gk 1||gk 2 and k 1||k 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

D
en

si
tie

s
of

 s
am

pl
es

Total # 14

(d) Hamming distances between gk−1||gk−2 and k−1||k−2

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800 840 880 920 960
used

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
en

si
tie

s
of

 s
am

pl
es

succ: #12.0000 a:350.2500 max:922.0000

(e) Used number of iterations before return

Fig. 6: Detailed information for attack ASpeck12R
I

36

10 5 0 5 10 15 20 25 30 35
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.00

0.05

0.10

0.15

0.20

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

Comp.: 1+3+7+1
Conf.: nkg : 21 nb : 26 c1 : 7.0 c2 : 10.0
Conf.: ncts : 212 nit : 213 ncand1 : 64 ncand2 : 32 nbyit : 5
Test Done: 160 succ.: 130 succ. rate: 0.8125
Have Real: 157 succ.: 130 succ. rate: 0.8280
Max time: 20890 secs = 5.8 hours
Time cplx.: 21×20890 secs = 21×5.8 hours (CPU)
Time cplx.: 243.35 Encs (228 Encs/sec)
Data cplx.: 218.58 CPs

rand #218.9004 w: 3.9462 w: 3.7154 qctw: 0.2028
real #28.9600 r: 8.9560 r: 6.9958 qctr: 0.5321
succ #27.0224

s : 15.8283 s : 5.9610 min : 7.0451

(a) Attack information and distributions of v1max

75 60 45 30 15 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240
v2max : = max({v2i v2i L2})

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

rand #218.9584 w:-43.7303 w: 7.9243 qctw: 0.0000
real #212.4883 r:-15.0250 r: 49.1926 qctr: 0.1462
succ #27.0224

s : 148.8043 s : 39.7451 min : 25.2110

(b) Distributions of v2max during the attack and those when successfully recovered the key

2 4 6 8 10 12 14 16 18 20 22 24 26
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

7

0.20

7

0.53

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(c) Percentage of samples passing various cutoffs in 7a

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Hamming distance between gk 1||gk 2 and k 1||k 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

D
en

si
tie

s
of

 s
am

pl
es

Total # 157

(d) Hamming distances between gk−1||gk−2 and k−1||k−2

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600 6000 6400 6800 7200
used

0

1

2

3

4

5

6

7

8

D
en

si
tie

s
of

 s
am

pl
es

succ: #130.0000 a:2066.2462 max:7064.0000

(e) Used number of iterations before return

Fig. 7: Detailed information for attack ASpeck12R
II

37

10 5 0 5 10 15 20 25 30 35
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

Comp.: 1+3+7+1
Conf.: nkg : 21 nb : 26 c1 : 7.0 c2 : 10.0
Conf.: ncts : 211 nit : 212 ncand1 : 64 ncand2 : 32 nbyit : 5
Test Done: 128 succ.: 72 succ. rate: 0.5625
Have Real: 113 succ.: 72 succ. rate: 0.6372
Max time: 18439 secs = 5.1 hours
Time cplx.: 21×18439 secs = 21×5.1 hours (CPU)
Time cplx.: 243.17 Encs (228 Encs/sec)
Data cplx.: 217.58 CPs

rand #218.0376 w: 3.9579 w: 3.7028 qctw: 0.2025
real #28.2432 r: 8.5949 r: 6.8145 qctr: 0.4950
succ #26.1699

s : 15.1272 s : 5.4956 min : 7.1025

(a) Attack information and distributions of v1max

75 60 45 30 15 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225
v2max : = max({v2i v2i L2})

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

rand #218.0810 w:-43.7561 w: 7.9032 qctw: 0.0000
real #211.9076 r:-17.8195 r: 45.2997 qctr: 0.1278
succ #26.1699

s : 148.7909 s : 38.3918 min : 16.5861

(b) Distributions of v2max during the attack and those when successfully recovered the key

2 4 6 8 10 12 14 16 18 20 22 24 26
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

7

0.20

7

0.50

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(c) Percentage of samples passing various cutoffs in 8a

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Hamming distance between gk 1||gk 2 and k 1||k 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

D
en

si
tie

s
of

 s
am

pl
es

Total # 113

(d) Hamming distances between gk−1||gk−2 and k−1||k−2

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
used

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
en

si
tie

s
of

 s
am

pl
es

succ: #72.0000 a:1408.8472 max:3889.0000

(e) Used number of iterations before return

Fig. 8: Detailed information for attack ASpeck12R
III

38

5 0 5 10 15 20 25 30
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+7+1 nb : 25 ncand : 32 nbyit : 5

Statistical distances in range [r:6.8225 maxr : 29.9336]
KL(rand || real): 0.1040 bits
KL(real || rand): 2.7774 bits
JS(real || rand): 1.4407 bits

rand #216.0000 w: 5.5129 w: 2.6737 maxw : 18.8306
real #216.0000 r: 6.8225 r: 3.2955 maxr : 29.9336
rand fit genlogistic ppf: c = 1.5289, loc = 4.4275, scale = 1.7211
real fit genlogistic ppf: c = 3.6045, loc = 2.8064, scale = 2.3420

(a) Distributions Dv1max
r and Dv1max

w when using 5 NBs

6 8 10 12 14
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(b) Percentage of samples passing various cutoffs in 9a

10 5 0 5 10 15 20 25 30 35 40 45
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+7+1 nb : 26 ncand : 32 nbyit : 5

Statistical distances in range [r:6.9105 maxr : 46.5115]
KL(rand || real): 0.4651 bits
KL(real || rand): 20.4433 bits
JS(real || rand): 10.4542 bits

rand #216.0000 w: 2.3009 w: 4.0024 maxw : 21.9529
real #216.0017 r: 6.9105 r: 7.0255 maxr : 46.5115
rand fit genlogistic ppf: c = 2.3659, loc = 1.1079, scale = 2.8420
real fit genlogistic ppf: c = 427.0260, loc = 28.5140, scale = 5.3308

(c) Distributions Dv1max
r and Dv1max

w when using 6 NBs

0 2 4 6 8 10 12 14 16 18 20 22 24
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(d) Percentage of samples passing various cutoffs in 9c

25 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
v1max : = max({v1i v1i L1})

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+7+1 nb : 27 ncand : 32 nbyit : 5

Statistical distances in range [r:13.6800 maxr : 93.1438]
KL(rand || real): 0.4682 bits
KL(real || rand): 19.9629 bits
JS(real || rand): 10.2156 bits

rand #216.0000 w: 4.4713 w: 7.9507 maxw : 43.2416
real #216.0092 r: 13.6800 r: 14.1560 maxr : 93.1438
rand fit genlogistic ppf: c = 2.3055, loc = 2.0819, scale = 5.6104
real fit genlogistic ppf: c = 427.1838, loc = 57.1560, scale = 10.6546

(e) Distributions Dv1max
r and Dv1max

w when using 7 NBs

0 2 4 6 8 101214161820222426283032343638404244464850
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(f) Percentage of samples passing various cutoffs in 9e

Fig. 9: Distributions of v1max from correct ciphertext structures (real) and from wrong ciphertext structures (rand) of size nb for
nb ∈ {25, 26, 27} 39

10 5 0 5 10 15 20 25 30 35 40 45
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+7+1 nb : 26 ncand : 32 nbyit : 5

Statistical distances in range [r:6.9105 maxr : 46.5115]
KL(rand || real): 0.4651 bits
KL(real || rand): 20.4433 bits
JS(real || rand): 10.4542 bits

rand #216.0000 w: 2.3009 w: 4.0024 maxw : 21.9529
real #216.0017 r: 6.9105 r: 7.0255 maxr : 46.5115
rand fit genlogistic ppf: c = 2.3659, loc = 1.1079, scale = 2.8420
real fit genlogistic ppf: c = 427.0260, loc = 28.5140, scale = 5.3308

(a) Distributions Dv1max
r and Dv1max

w when nb = 26, ncand = 32, nbyit = 5

0 2 4 6 8 10 12 14 16 18 20 22 24
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(b) Percentage of samples passing various cutoffs in 10a

10 5 0 5 10 15 20 25 30 35 40 45 50
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+7+1 nb : 26 ncand : 64 nbyit : 5

Statistical distances in range [r:9.6217 maxr : 50.0741]
KL(rand || real): 0.7470 bits
KL(real || rand): 31.5547 bits
JS(real || rand): 16.1508 bits

rand #216.0000 w: 3.8999 w: 3.6830 maxw : 21.4975
real #216.0121 r: 9.6217 r: 7.3943 maxr : 50.0741
rand fit genlogistic ppf: c = 1.7726, loc = 1.8515, scale = 2.4683
real fit genlogistic ppf: c = 502.4548, loc = 28.7666, scale = 5.6358

(c) Distributions Dv1max
r and Dv1max

w when nb = 26, ncand = 64, nbyit = 5

2 4 6 8 10 12 14 16 18 20 22 24 26
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(d) Percentage of samples passing various cutoffs in 10c

10 5 0 5 10 15 20 25 30 35 40 45 50
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+7+1 nb : 26 ncand : 32 nbyit : 10

Statistical distances in range [r:8.7250 maxr : 47.7396]
KL(rand || real): 0.5911 bits
KL(real || rand): 25.0315 bits
JS(real || rand): 12.8113 bits

rand #216.0000 w: 3.9128 w: 3.6026 maxw : 22.4126
real #215.9999 r: 8.7250 r: 6.9566 maxr : 47.7396
rand fit genlogistic ppf: c = 1.9752, loc = 1.5190, scale = 2.4592
real fit genlogistic ppf: c = 635.9890, loc = 27.5011, scale = 5.1345

(e) Distributions Dv1max
r and Dv1max

w when nb = 26, ncand = 32, nbyit = 10

2 4 6 8 10 12 14 16 18 20 22 24 26
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(f) Percentage of samples passing various cutoffs in 10e

Fig. 10: Distributions of v1max from correct ciphertext structures (real) and from wrong ciphertext structures (rand) with nb fix
to 26, ncand ∈ {32, 64}, nb ∈ {5, 10} 40

5 0 5 10 15 20 25 30 35 40 45 50
v1max : = max({v1i v1i L1})

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+8+1 nb : 212 ncand : 32 nbyit : 5

Statistical distances in range [r:15.4180 maxr : 51.5177]
KL(rand || real): 0.0670 bits
KL(real || rand): 2.1070 bits
JS(real || rand): 1.0870 bits

rand #216.0000 w: 13.3115 w: 5.9362 maxw : 40.9927
real #216.0112 r: 15.4180 r: 6.8935 maxr : 51.5177
rand fit genlogistic ppf: c = 3.0679, loc = 6.6569, scale = 4.4016
real fit genlogistic ppf: c = 4.4840, loc = 5.3183, scale = 5.1704

(a) Sampling 216 correct/wrong ciphertext structures to study the distributions Dv1max
r and Dv1max

w

involved in attack ASpeck13R

12 14 16 18 20 22 24 26 28 30 32
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(b) Percentage of samples passing various cutoffs in 11a

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
tie

s
of

 s
am

pl
es

hw 0: pr. 2 6.5580 #29.4533 0: 30.1435 0: 8.2989 min0: 7.4510 median0: 29.9378 max0: 51.5177
hw 1: pr. 2 5.7957 #210.2155 1: 26.6233 1: 8.2695 min1: 4.0187 median1: 26.9728 max1: 51.3717
hw 2: pr. 2 5.2522 #210.7591 2: 22.7595 2: 8.3655 min2: 2.6252 median2: 22.3735 max2: 51.2651
hw 3: pr. 2 4.7609 #211.2503 3: 19.8535 3: 7.7663 min3: -0.2976 median3: 19.6247 max3: 48.5147

(c) Distribution of combined responses using correct ciphertext structures when the corresponding
recommended subkey has Hamming distance hw with the real subkey

Fig. 11: Distribution of the combined responses on outputs of decrypting one round using recommended subkeys from correct
ciphertext structures (real) and from wrong ciphertext structures (rand)

41

0 5 10 15 20 25 30 35 40 45 50 55
v1max : = max({v1i v1i L1})

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+8+1 nb : 212 ncand : 64 nbyit : 5

Statistical distances in range [r:18.0364 maxr : 52.6721]
KL(rand || real): 0.1378 bits
KL(real || rand): 2.2839 bits
JS(real || rand): 1.2108 bits

rand #217.0000 w: 15.6199 w: 5.5883 maxw : 51.4407
real #217.0129 r: 18.0364 r: 6.7471 maxr : 52.6721
rand fit genlogistic ppf: c = 2.2864, loc = 11.0401, scale = 3.9655
real fit genlogistic ppf: c = 4.1387, loc = 8.7777, scale = 4.9612

(a) Sampling 217 correct/wrong ciphertext structures to study the distributions Dv1max
r and Dv1max

w

involved in attack ASpeck13R

14 16 18 20 22 24 26 28 30 32 34
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(b) Percentage of samples passing various cutoffs in 12a

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
tie

s
of

 s
am

pl
es

hw 0: pr. 2 5.6831 #211.3298 0: 30.1366 0: 7.2681 min0: 7.7382 median0: 29.4136 max0: 50.3384
hw 1: pr. 2 5.1219 #211.8910 1: 28.5589 1: 8.5080 min1: 3.3012 median1: 28.2677 max1: 52.6721
hw 2: pr. 2 4.8032 #212.2098 2: 25.1165 2: 7.9175 min2: 3.4602 median2: 25.0594 max2: 51.1559
hw 3: pr. 2 4.6163 #212.3966 3: 21.5182 3: 7.3743 min3: 3.0331 median3: 20.6399 max3: 44.6365

(c) Distribution of combined responses using correct ciphertext structures when the corresponding
recommended subkey has Hamming distance hw with the real subkey

Fig. 12: Distribution of the combined responses on outputs of decrypting one round using recommonded subkeys from correct
ciphertext structures (real) and from wrong ciphertext structures (rand)

42

15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
v1max : = max({v1i v1i L1})

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+8+1 nb : 213 ncand : 64 nbyit : 5

Statistical distances in range [r:15.1833 maxr : 85.9581]
KL(rand || real): 0.2143 bits
KL(real || rand): 10.6354 bits
JS(real || rand): 5.4248 bits

rand #216.0000 w: 10.1474 w: 7.6255 maxw : 51.2454
real #215.9855 r: 15.1833 r: 12.7172 maxr : 85.9581
rand fit genlogistic ppf: c = 7.2761, loc = 4.3924, scale = 5.8450
real fit genlogistic ppf: c = 957.2245, loc = 49.9257, scale = 8.7064

(a) Sampling 216 correct/wrong ciphertext structures to study the distributions Dv1max
r and Dv1max

w

involved in attack ASpeck13R

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(b) Percentage of samples passing various cutoffs in 13a

5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
tie

s
of

 s
am

pl
es

hw 0: pr. 2 5.2903 #210.6952 0: 48.7309 0: 16.2450 min0: 0.8282 median0: 47.4974 max0: 85.9581
hw 1: pr. 2 4.7821 #211.2033 1: 37.9271 1: 16.1920 min1: -4.9858 median1: 37.0312 max1: 77.4861
hw 2: pr. 2 4.4861 #211.4993 2: 30.0813 2: 15.7221 min2: -2.6699 median2: 28.6212 max2: 73.7850
hw 3: pr. 2 4.3598 #211.6257 3: 21.4767 3: 12.9612 min3: -4.5347 median3: 19.7038 max3: 62.5040

(c) Distribution of combined responses using correct ciphertext structures when the corresponding
recommended subkey has Hamming distance hw with the real subkey

Fig. 13: Distribution of the combined responses on outputs of decrypting one round using recommended subkeys from correct
ciphertext structures (real) and from wrong ciphertext structures (rand)

43

10 5 0 5 10 15 20 25 30 35 40 45 50
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+7+1 nb : 26 ncand : 64 nbyit : 5

Statistical distances in range [r:9.6217 maxr : 50.0741]
KL(rand || real): 0.7470 bits
KL(real || rand): 31.5547 bits
JS(real || rand): 16.1508 bits

rand #216.0000 w: 3.8999 w: 3.6830 maxw : 21.4975
real #216.0121 r: 9.6217 r: 7.3943 maxr : 50.0741
rand fit genlogistic ppf: c = 1.7726, loc = 1.8515, scale = 2.4683
real fit genlogistic ppf: c = 502.4548, loc = 28.7666, scale = 5.6358

(a) Sampling 216 correct/wrong ciphertext structures to study the distributions Dv1max
r and Dv1max

w

involved in attack ASpeck12R

2 4 6 8 10 12 14 16 18 20 22 24 26
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(b) Percentage of samples passing various cutoffs in 14a

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5
v1max : = max({v1i v1i L1})

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
en

si
tie

s
of

 s
am

pl
es

hw 0: pr. 2 3.5075 #212.5046 0: 20.1801 0: 6.4670 min0: -0.0715 median0: 19.9763 max0: 50.0741
hw 1: pr. 2 3.2181 #212.7940 1: 17.8236 1: 6.5571 min1: -2.3788 median1: 17.5119 max1: 44.1257
hw 2: pr. 2 3.6554 #212.3567 2: 14.8465 2: 6.5758 min2: -3.1805 median2: 14.4840 max2: 41.0329
hw 3: pr. 2 3.9184 #212.0937 3: 11.9559 3: 6.3369 min3: -3.6091 median3: 11.3813 max3: 39.5732

(c) Distribution of combined responses using correct ciphertext structures when the corresponding
recommended subkey has Hamming distance hw with the real subkey

Fig. 14: Distribution of the combined responses on outputs of decrypting one round using recommended subkeys from correct
ciphertext structures (real) and from wrong ciphertext structures (rand)

44

B Distributions of the Combined-response with Various
Number of Blocks

To investigate how many samples from the same distribution should be combined
to achieve a good combine-response distinguisher, that is how many neutral bits
are necessary, the distributions of the combine-responses were experimentally
investigated. The resulted distributions are illustrated using histogram plots. Be-
sides, parameters of the best fitting distributions among {Normal, Chi-squared,
Generalized logistic, Logistic, Gamma} are provided.

From Figures 15, 16, 17, 18, for Gohr’s lightweight 5-, 6-, 7-, 8-round neural
distinguishers (with accuracy listed in Table 11), the distributions corresponding
to wrong and correct ciphertext structures can be separated when combining
20, 23 ∼ 24, 26 ∼ 27, and 212 ∼ 213 samples, respectively. Thus, for using
these distinguishers to do key-recovery and when there are only several correct
ciphertext structures could occur, one should exploit 0, 3 ∼ 4, 6 ∼ 7, and 12 ∼ 13
neutral bits.

45

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Combined scores from 5-round ND with 20 samples

0

20

40

60

80

100

120

140

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 1.2180592734234635e-297 parm: (0.39609293005304214, 2.8509433725411253e-10, 0.2500476688241958)

Y1: Best fit dist. norm p: 0.0 parm: (0.8896674, 0.23980394)

Y=0 Random
Y=1 Real

(a) Combining responses of 20 samples from N DSpeck5R

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Combined scores from 5-round ND with 21 samples

0

20

40

60

80

100

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.065871015, 0.10690286)

Y1: Best fit dist. norm p: 0.0 parm: (0.9402602, 0.14136717)

Y=0 Random
Y=1 Real

(b) Combining responses of 21 samples from N DSpeck5R

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Combined scores from 5-round ND with 22 samples

0

10

20

30

40

50

60

70

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.042811524, 0.057859685)

Y1: Best fit dist. norm p: 0.0 parm: (0.96727955, 0.07052364)

Y=0 Random
Y=1 Real

(c) Combining responses of 22 samples from N DSpeck5R

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 5-round ND with 23 samples

0

10

20

30

40

50

60

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.031347558, 0.031172875)

Y1: Best fit dist. norm p: 0.0 parm: (0.97942764, 0.030002592)

Y=0 Random
Y=1 Real

(d) Combining responses of 23 samples from N DSpeck5R

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 5-round ND with 24 samples

0

10

20

30

40

50

60

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.025922459, 0.018116588)

Y1: Best fit dist. norm p: 0.0 parm: (0.9841161, 0.01390796)

Y=0 Random
Y=1 Real

(e) Combining responses of 24 samples from N DSpeck5R

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 5-round ND with 25 samples

0

10

20

30

40

50

60

70

80

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. genlogistic p: 4.0293551033266853e-131 parm: (455.4634476461855, -0.03323582776507718, 0.008430374574812358)

Y1: Best fit dist. genlogistic p: 2.4033617754635275e-175 parm: (0.1356802103428173, 0.9935161583728382, 0.0010526250698648025)

Y=0 Random
Y=1 Real

(f) Combining responses of 25 samples from N DSpeck5R

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 5-round ND with 26 samples

0

20

40

60

80

100

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. chi2 p: 8.284332240662243e-19 parm: (12.059626185428465, 0.0036455429971263397, 0.0015365578583675385)

Y1: Best fit dist. genlogistic p: 1.0644133114737432e-264 parm: (0.24582677618008114, 0.9913598969668043, 0.001224994834087929)

Y=0 Random
Y=1 Real

(g) Combining responses of 26 samples from N DSpeck5R

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 5-round ND with 27 samples

0

20

40

60

80

100

120

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 5.088086990929161e-06 parm: (10.64147249310497, 0.004599497825237048, 0.0015931545936711594)

Y1: Best fit dist. genlogistic p: 3.9128659423788826e-219 parm: (0.37954848438254996, 0.9898378683563382, 0.0012314058258432845)

Y=0 Random
Y=1 Real

(h) Combining responses of 27 samples from N DSpeck5R

Fig. 15: The distribution of combined responses from 5-round ND (sampled with 220 combined ciphertext-pairs)

46

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 6-round ND with 20 samples

0

2

4

6

8

10

12

14

16

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.29191887, 0.19254076)

Y1: Best fit dist. norm p: 0.0 parm: (0.70607597, 0.2899791)

Y=0 Random
Y=1 Real

(a) Combining responses of 20 samples from N DSpeck6R

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 6-round ND with 21 samples

0

1

2

3

4

5

6

7

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.28386295, 0.14530206)

Y1: Best fit dist. norm p: 0.0 parm: (0.76429886, 0.21864201)

Y=0 Random
Y=1 Real

(b) Combining responses of 21 samples from N DSpeck6R

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 6-round ND with 22 samples

0

1

2

3

4

5

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. genlogistic p: 1.2146198486424728e-134 parm: (638.6526402802658, -0.2732601591685082, 0.07800250241309326)

Y1: Best fit dist. norm p: 0.0 parm: (0.79803324, 0.15610181)

Y=0 Random
Y=1 Real

(c) Combining responses of 22 samples from N DSpeck6R

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 6-round ND with 23 samples

0

1

2

3

4

5

6

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. genlogistic p: 4.0686911795691355e-20 parm: (44.29985237101043, 0.02042364048962176, 0.0577294437413273)

Y1: Best fit dist. norm p: 0.0 parm: (0.81865937, 0.10972888)

Y=0 Random
Y=1 Real

(d) Combining responses of 23 samples from N DSpeck6R

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 6-round ND with 24 samples

0

1

2

3

4

5

6

7

8

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.00017474434864354462 parm: (9.927055938168536, 0.10877778369623933, 0.01615053777012138)

Y1: Best fit dist. norm p: 0.0 parm: (0.8301008, 0.076566644)

Y=0 Random
Y=1 Real

(e) Combining responses of 24 samples from N DSpeck6R

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 6-round ND with 25 samples

0

2

4

6

8

10

12

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.03237469630012735 parm: (18.100129477041214, 0.11566966399023171, 0.008401093570341942)

Y1: Best fit dist. genlogistic p: 8.743e-320 parm: (0.39677757023538396, 0.8755282391190669, 0.019286095166176576)

Y=0 Random
Y=1 Real

(f) Combining responses of 25 samples from N DSpeck6R

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Combined scores from 6-round ND with 26 samples

0

2

4

6

8

10

12

14

16

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.36335858812310795 parm: (35.53313656175325, 0.11675196193828015, 0.0042281921488204685)

Y1: Best fit dist. genlogistic p: 4.107195280191064e-236 parm: (0.5301610826403247, 0.8607630134772402, 0.016799365173631835)

Y=0 Random
Y=1 Real

(g) Combining responses of 26 samples from N DSpeck6R

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Combined scores from 6-round ND with 27 samples

0

5

10

15

20

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.01563803872118948 parm: (67.82170492920562, 0.12008040770690698, 0.002160475897005281)

Y1: Best fit dist. genlogistic p: 5.446883559580866e-213 parm: (0.6500195860410589, 0.8528227791364726, 0.014163030777681631)

Y=0 Random
Y=1 Real

(h) Combining responses of 27 samples from N DSpeck6R

Fig. 16: The distribution of combined responses from 6-round ND (sampled with 220 combined ciphertext-pairs)

47

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Combined scores from 7-round ND with 20 samples

0

1

2

3

4

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. genlogistic p: 1.5559987699149654e-303 parm: (372.524631651316, -0.14138783057248394, 0.09176569242419197)

Y1: Best fit dist. norm p: 0.0 parm: (0.5337745, 0.14683612)

Y=0 Random
Y=1 Real

(a) Combining responses of 20 samples from N DSpeck7R

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Combined scores from 7-round ND with 21 samples

0

1

2

3

4

5

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 7.171004476177538e-100 parm: (8.568449837356749, 0.20555857622942547, 0.029251919129941975)

Y1: Best fit dist. gamma p: 4.843480101747072e-158 parm: (14.428106894081665, 0.12021090442754565, 0.028934200520604518)

Y=0 Random
Y=1 Real

(b) Combining responses of 21 samples from N DSpeck7R

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Combined scores from 7-round ND with 22 samples

0

1

2

3

4

5

6

7

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. chi2 p: 7.504077688210544e-05 parm: (23.473832431371015, 0.24296710903960778, 0.009075247217029434)

Y1: Best fit dist. gamma p: 2.0232518621083232e-56 parm: (66.6501201555601, -0.10496209199902162, 0.009663150351941888)

Y=0 Random
Y=1 Real

(c) Combining responses of 22 samples from N DSpeck7R

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Combined scores from 7-round ND with 23 samples

0

2

4

6

8

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.0016230489911323984 parm: (26.552216541600927, 0.22884083538450917, 0.008540247546206498)

Y1: Best fit dist. gamma p: 1.6914391567137345e-15 parm: (112.8616600442972, -0.06377870218121331, 0.005345775105535036)

Y=0 Random
Y=1 Real

(d) Combining responses of 23 samples from N DSpeck7R

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Combined scores from 7-round ND with 24 samples

0

2

4

6

8

10

12

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.10667477485568866 parm: (53.50044493102709, 0.22736000267817247, 0.00426660463082579)

Y1: Best fit dist. gamma p: 0.012852027042416773 parm: (219.27091419458839, -0.0638320981016886, 0.0027539023432276597)

Y=0 Random
Y=1 Real

(e) Combining responses of 24 samples from N DSpeck7R

0.35 0.40 0.45 0.50 0.55 0.60 0.65
Combined scores from 7-round ND with 25 samples

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.0032899699947093906 parm: (106.81417556963908, 0.22713221375647347, 0.0021392677167331)

Y1: Best fit dist. gamma p: 0.09555353852700277 parm: (405.8593606159941, -0.047410962429811854, 0.0014479050705434593)

Y=0 Random
Y=1 Real

(f) Combining responses of 25 samples from N DSpeck7R

0.40 0.45 0.50 0.55 0.60 0.65
Combined scores from 7-round ND with 26 samples

0

5

10

15

20

25

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.0004652820843985058 parm: (219.93409202428845, 0.22409360853145793, 0.0010524935611987848)

Y1: Best fit dist. gamma p: 0.44609374669516033 parm: (711.2630383822747, -0.021251751974088504, 0.0007894574263664867)

Y=0 Random
Y=1 Real

(g) Combining responses of 26 samples from N DSpeck7R

0.40 0.45 0.50 0.55 0.60
Combined scores from 7-round ND with 27 samples

0

5

10

15

20

25

30

35

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.05663976989917541 parm: (464.0869967847427, 0.21779385949218727, 0.0005121215235158584)

Y1: Best fit dist. gamma p: 7.511988160156753e-07 parm: (1196.4204877986874, 0.0035962555808504316, 0.0004485021153939834)

Y=0 Random
Y=1 Real

(h) Combining responses of 27 samples from N DSpeck7R

Fig. 17: The distribution of combined responses from 7-round ND (sampled with 220 combined ciphertext-pairs)

48

0.35 0.40 0.45 0.50 0.55 0.60 0.65
Combined scores from 8-round ND with 20 samples

0

5

10

15

20

25

30

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.4993295, 0.018678525)

Y1: Best fit dist. norm p: 0.0 parm: (0.5008209, 0.01868204)

Y=0 Random
Y=1 Real

(a) Combining responses of 20 samples from N DSpeck8R

0.45 0.50 0.55
Combined scores from 8-round ND with 22 samples

0

10

20

30

40

50

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. logistic p: 0.0009225031505120825 parm: (0.49939313381674666, 0.005190414949222818)

Y1: Best fit dist. genlogistic p: 0.08147691618727759 parm: (1.1070724723220262, 0.4998961621494733, 0.005375799955940933)

Y=0 Random
Y=1 Real

(b) Combining responses of 22 samples from N DSpeck8R

0.50
Combined scores from 8-round ND with 24 samples

0

20

40

60

80

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 1.1058107515242246e-18 parm: (0.4993451, 0.0046750014)

Y1: Best fit dist. gamma p: 8.348502452181588e-12 parm: (2637.4061425043665, 0.2616417454225735, 9.067903374741101e-05)

Y=0 Random
Y=1 Real

(c) Combining responses of 24 samples from N DSpeck8R

0.50
Combined scores from 8-round ND with 26 samples

0

25

50

75

100

125

150

175

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.006655423253244691 parm: (0.49935085, 0.0023383056)

Y1: Best fit dist. norm p: 0.002588005524688615 parm: (0.5007852, 0.002354166)

Y=0 Random
Y=1 Real

(d) Combining responses of 26 samples from N DSpeck8R

0.50
Combined scores from 8-round ND with 28 samples

0

50

100

150

200

250

300

350

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.9694651913146539 parm: (0.4993487, 0.0011687127)

Y1: Best fit dist. norm p: 0.3067850011982737 parm: (0.50078315, 0.0011887781)

Y=0 Random
Y=1 Real

(e) Combining responses of 28 samples from N DSpeck8R

0.50
Combined scores from 8-round ND with 211 samples

0

200

400

600

800

1000

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.8188809702988278 parm: (0.49935013, 0.00041314395)

Y1: Best fit dist. norm p: 0.07039180907948772 parm: (0.5007803, 0.0004603153)

Y=0 Random
Y=1 Real

(f) Combining responses of 211 samples from N DSpeck8R

0.50
Combined scores from 8-round ND with 212 samples

0

200

400

600

800

1000

1200

1400

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.7802669881174968 parm: (0.4993502, 0.00029234946)

Y1: Best fit dist. norm p: 0.0015504720553424884 parm: (0.5007824, 0.00035478626)

Y=0 Random
Y=1 Real

(g) Combining responses of 212 samples from N DSpeck8R

0.50
Combined scores from 8-round ND with 213 samples

0

500

1000

1500

2000

2500

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.8602970852198111 parm: (0.49935013, 0.00020519852)

Y1: Best fit dist. gamma p: 0.41839908672022996 parm: (213.58431321597214, 0.496611402924442, 1.952331969086066e-05)

Y=0 Random
Y=1 Real

(h) Combining responses of 213 samples from N DSpeck8R

Fig. 18: The distribution of combined responses from 8-round ND (sampled with 220 combined ciphertext-pairs when combining no
more than 210, 218 for combining 210 ∼ 212, and 215 for combining 213 responses)

49

C Additional Constraints on Differential Trails of
Speck32/64

During this work, additional constraints beyond the XOR-differences on some
differential trails of Speck32/64 were found. Moreover, unexpectedly, in some
differential trails, constraints are on subkeys. In such a situation, the attacks
using differentials whose major contributed trails must fulfill these constraints
on keys can only work for a fraction of the keyspace.

This happens to the presented attacks that use the 3-round differentials
(0x8020, 0x4101) → (0x0040, 0x0000), (0x8060, 0x4101) → (0x0040, 0x0000),
(0x8021, 0x4101)→ (0x0040, 0x0000), and (0x8061, 0x4101)→ (0x0040, 0x0000).
Note that this also happens to previous best differential attacks on Speck32/64,
including those covering the most rounds (14-round) in [9,12,25], which was not
noticed before.

Table 7 presents the generalized constraints of the differential trails involved
in the proposed attacks (and other potentially useful trails), and Table 8 presents
those used in previous attacks [9,12,25]. These constraints can be obtained using
the existing tool ARXToolkit from [21].

For the used 3-round differential trails, there is 1 bit constraint on one subkey
(all four 3-round differential trails share this constraint) as shown in Table 7. In
the 11-round attack in [9] and the 14-round attacks in [12,25], the best 9-round
trail was used. In this trail, there is 1 bit constraint on one subkey as shown in
Table 8. In [25], the best 10-round differential trail was found. In this trail, there
are 3 bits constraints on the subkeys as shown in Table 8.

Since the probabilities of these trails are calculated using the Markov model,
and it is averaged over the whole keyspace, the real probability of these trails
should be about 2c times larger than the previous estimation for 264−c keys, and
0 for other keys, where c is the number of constraints on the subkeys. Accordingly,
the used 3-round differential trails whose probability is previously estimated as
2−12 should have a probability 2−11 for 263 keys and 0 for other keys. Similarly,
the 9-round differential trail whose probability is previously estimated as 2−30

used in [9,12,25] should be about 2−29 for 263 keys and 0 for other keys; the 10-
round differential trail whose probability is previously estimated as 2−35 found
in [25] should be about 2−32 for 261 keys and 0 for other keys 8.

Additionally, we found that for one of the best differential trails with input
difference 0x0040/0000 of 8-round Speck32/64, there are additional constraints
on subkeys (see Table 7). For the corresponding keys that fulfill constraint
k1[9] = k1[8], we trained a 7-round ResNet neural distinguisher with accuracy
0.6228 (while for keys such that k1[9] ̸= k1[8], the resulted neural distinguisher
has an accuracy 0.6164). This indicates the existence of better weak-key neural
distinguishers.

8 Thus, the complexity of previous attacks are revised according to these estimations
in Table 1.

50

Table 7: Generalized differences of the 3-round, 4-round, and 8-round differential trails used/involved in the attacks (obtained
using tools in [21,26])

3-round 4-round 8-round

R differences
hex(xi yi)

vars generalized
differences

R differences
hex(xi yi)

vars generalized
differences

R differences
hex(xi yi)

vars generalized
differences

0 8020 4101

x0 x-------0-x-----

0 1488 1008

x0 ---x-x--x---x---

0 0040 0000

x0 ---------x------
y0 -x-----x-------x y0 ---x--------x--0 y0 ----------------
z0 ------x--------x z0 ----------x- c

0 --x z0 x---------------
k0 ---------------- k0 ---------------- k0 ----------------

1 0201 0604

x1 ------x--------x

1 0021 4001

x1 --------0-x----x

1 8000 8000

x1 x---------------
y1 -----<x------x-- y1 -x-----!-------x y1 x---------------
z1 --->x-------- c

0 -- z1 ----->x--------x z1 x----->x--------
k1 ---!------------ k1 -----=---------- k1 ------=---------

2 1800 0010

x2 ---<x-----------

2 0601 0604

x2 ----->x--------x

2 8300 8302

x2 x----->x--------
y2 ---=-------x---- y2 -----<x------x-- y2 x-----xx------x-
z2 ---------x------ z2 --->x-------- c

1 -- z2 x---><x------- f
0 -

k2 ---------------- k2 ---!------------ k2 ---- 4
0 -----------

3 0040 0000
x3 ---------x------

3 1800 0010

x3 ---<x-----------

3 8e00 820a

x3 x--- 0
3 xx f

1 --------
y3 ---------------- y3 ---=-------x---- y3 x-----x-----x 1

0 x-
z3 ---------x------ z3 x-----xx--x-xxx-
k3 ---------------- k3 ----------------

4 0040 0000
x4 ---------x------

4 832e 8b04

x4 x-----xx-- 0
8 - 0

3 x 0
8 -

y4 ---------------- y4 x---x-<x-----x f
1 -

z4 --x-x-------- 2
0 x-

k4 ----------------

5 2802 0410

x5 --x-x---------x-
y5 -----x-----x----
z5 ---------x------
k5 ----------------

6 0040 1000

x6 ---------x------
y6 ---x------------
z6 x--x------------
k6 ----------------

7 9000 d000

x7 x--x------ 4
0 -----

y7 xx-x------------
z7 -x-x---x--x-----
k7 ----------------

8 5120 1123
x8 -x-x---x--x-----
y8 ---x---x--x---xx

P ra = 2−12 P ra = 2−17 P ra = 2−30

P rr =
{

2−11 for 263 keys
0 for others

P rr =
{

2−15 for 262 keys
0 for others

P rr =
{

2−26.58 for 260.58 keys
0 for others

P ra is the previous estimated probability over all keys, P rr is the revisited estimated probability for different keys.
-: ai = a′

i
c
0 : uncommon constraint “c20000c3” 0

8 : uncommon constraint “00824100”
x: ai ̸= a′

i
c
1 : uncommon constraint “c30000c2” 0

3 : uncommon constraint “00381c00”
0: ai = a′

i = 0 c
2 : uncommon constraint “c2000043” 0

4 : uncommon constraint “00418200”
1: ai = a′

i = 1 4
0 : uncommon constraint “430000c2” 1

0 : uncommon constraint “1400003c”
!: a′

i = ai ̸= ai−1
f
0 : uncommon constraint “ff0000f0” 2

0 : uncommon constraint “2800003c”
=: a′

i = ai = ai−1
f
1 : uncommon constraint “ff00000f” Constraints in red are on sub-keys.

<: a′
i ̸= ai = ai−1

>: a′
i ̸= ai ̸= ai−1

51

Table 8: Generalized differences of the 9-round and 10-round differential trails used
in [9, 25] (obtained using tools in [21])

9-round 10-round

R differences
hex(xi yi)

vars generalized
differences

R differences
hex(xi yi)

vars generalized
differences

0 8054 a900

x0 x--------x-x-x--

0 2040 0040

x0 --x------x------
y0 x-x-x--x-------- y0 ---------x------
z0 -- c

2 ------------- z0 x---------------
k0 ---------------- k0 ----------------

1 0000 a402

x1 ------- f
1 --------

1 8000 8100

x1 x---------------
y1 x-x--x--------x- y1 x------x--------
z1 x-x--x--------x- z1 x---------------
k1 ---------------- k1 ----------------

2 a402 3408

x2
0
4 -x--x--------x-

2 8000 8402

x2 x------ f
1 ------!-

y2 --<x-x------x--- y2 x----x!-------x-
z2 - 0

4 -x- c
2 --<x------ z2 x--->x-x------x-

k2 ---------------- k2 ----=-----------

3 50c0 80e0

x3 -x-x----xx------

3 8d02 9d08

x3 x--->x-x------x-
y3 x-------x<x----0 y3 x--<<x-x----x- f

1 -
z3 -------xx------x z3 -<x-- 4

0 --------x-
k3 ---------------- k3 -!--------------

4 0181 0203

x4 -------xx------x

4 6002 1420

x4 ->x-----------x-
y4 ------x-------xx y4 -!-x-x----x-----
z4 ------------>x01 z4 ---x-----xx-----
k4 ------------!--- k4 ----------------

5 000c 0800

x5 ------------<x--

5 1060 40e0

x5 -!-x-----xx-----
y5 ----x----------- y5 -x------x>x-----
z5 --x------------- z5 ------><x-------
k5 ---------------- k5 -------!--------

6 2000 0000

x6 --x-------------

6 0380 0001

x6 ------x>x-------
y6 ---------------- y6 -------=-----=-x
z6 ---------x------ z6 -------------x-0
k6 ---------------- k6 ----------------

7 0040 0040

x7 ---------x------

7 0004 0000

x7 -------------x--
y7 ---------x------ y7 ----------------
z7 x--------x------ z7 ----x-----------
k7 ---------------- k7 ----------------

8 8040 8140

x8 x--------x------

8 0800 0800

x8 ----x-----------
y8 x------x-x------ y8 ----x-----------
z8 ---------x------ z8 ----x------x----
k8 ---------------- k8 ----------------

9 0040 0542

x9 ---------x------

9 0810 2810

x9 ----x------x----
y9 -----x-x-x----x- y9 --x-x------x----

z9 ----x-----------
k9 ----------------

10 0800 a840
x10 ----x-----------
y10 x-x-x----x------

P ra = 2−30 P ra = 2−35

P rr =
{

2−29 for 263 keys
0 for others

P rr =
{

2−32 for 261 keys
0 for others

Symbols used are same as in Table 7

52

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 65536
Difference to real key

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
re

sp
on

se

(a) N DSimon8R
VV : directly trained with data of the form ((x, y, x′, y′))

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 65536
Difference to real key

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

M
ea

n
re

sp
on

se

(b) N DSimon8R
VD : directly trained with data of the form ((x, x′, y ⊕ y′))

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 65536
Difference to real key

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

M
ea

n
re

sp
on

se

(c) N DSimon9R
VV : directly trained with data of the form ((x, y, x′, y′))

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 65536
Difference to real key

0.490

0.495

0.500

0.505

0.510

0.515

M
ea

n
re

sp
on

se

(d) N DSimon9R
VD : directly trained with data of the form ((x, x′, y ⊕ y′))

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 65536
Difference to real key

0.495

0.500

0.505

0.510

0.515

M
ea

n
re

sp
on

se

(e) N DSimon10R
VV : trained using N DSimon9R

VV and KeyAveraging algorithm

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 65536
Difference to real key

0.4985

0.4990

0.4995

0.5000

0.5005

0.5010

M
ea

n
re

sp
on

se

(f) N DSimon11R
VV : trained using N DSimon9R

VV and DDSimon8R
(0440,0100) in staged training

method

Fig. 19: Wrong key response profile (only µδ shown) for neural distinguishers on Simon32/64 (used 214 ciphertexts for (a-e) and
218 for (f)) 53

D Key-recovery Attacks on Round-Reduced Simon32/64

D.1 Wrong Key Response Profile for the Neural Distinguishers on
Simon32/64

D.2 The First Attack on 16-round Simon32/64

Under a similar framework to the key-recovery attacks on Speck32/64, the
trained neural distinguishers can be prepended with a classical differential to
perform key-recovery attacks.

The attack presented in this section, named as ASimon16R

I , combines the
longest but weak neural distinguisher with a differential that has many SNBS.

In Appendix D.5, another attack, named as ASimon16R

II , is presented. It com-
bines relatively strong neural distinguishers with a differential that is one round
longer but has fewer neutral bits.ASimon16R

I is superior toASimon16R

II , butASimon16R

II

achieves better data complexity than previous attacks in literature. It succeeded
by using a few of the identified CSNBS of the longer classical differential. .

The classical component in the attack ASimon16R

I presented in the sequel is a
3-round differential (0x0440, 0x1000)→ (0x0000, 0x0040) (prob. ≈ 2−8).

Similar to attacks on Speck32/64, to obtain decent scores from the responses
of the neural distinguishers, combined response from the neural distinguisher
over a number of samples from the same distribution are to be used. Thus, to
obtain enough samples from the same distribution, neutral bits of the prepended
classical differential are exploited.

D.3 Finding Neutral Bits for the Classical Differentials

Finding SNBS for 3-round Differential. For the 3-round differential to
be prepended to the neural distinguishers, one can obtain all neutral bits and
SNBS (simultaneously complementing up to 4 bits) using the following algebraic
method.

Given the input and output differences (0x0440, 0x1000) and (0x0000, 0x0040),
one can build the non-linear equations on the derivative functions. Because the
degrees of the derivative functions corresponding to this 3-round differential is
low (i.e., 4), this system of non-linear equations can be solved by computing
the Gröbner basis, which can be done using the PolyBoRi library integrated
in SageMath [10]. In the obtained Gröbner basis, those disappeared variables
correspond to the single-bit neutral bits of the differential. To find SNBS, the
following method is used. For each of the 41448 sets (i.e., 32 + 496 + 4960 +
35960 sets) of at most four bits, in the resulted Gröbner basis, replace this set of
variables with their complements simultaneously; if the Gröbner basis does not
change, the set of variables corresponds to a SNBS.

Using the above algebraic method and experimental double-verification, all
the neutral bits and SNBS are obtained. There are 9 single neutral bits [2], [3],
[4], [6], [8], [9], [10], [18], [22]}, 2 2-SNBS {[0, 24], [12, 26]} (actually, there are 38
2-SNBS; but 36 out 38 are formed by combinations of the 9 single neutral bits);

54

all 3-SNBS and 4-SNBS are formed by combinations of the 9 single neutral bits
and 2 2-SNBS. Thus, there are 11 independent neutral bits and SNBS in total.

From the resulted Gröbner basis (also observed by experiments), for an in-
put pair ((x, y), (x′, y′)) to conform the 3-round differential (0x0440, 0x1000)→

(0x0000, 0x0040), one has

{
x[1] = x′[1] = 0,

x[3] = x′[3] = 0.
(2)

D.4 Key Recovery Attack on 16-round Simon32/64

The components of ASimon16R

I are as follows (refer to Fig. 21).

1. A 3-round classical differential (0x0440, 0x1000)→ (0x0000, 0x0040) (refer
to the rounds colored in blue in Fig. 21), and a set of its 11 NBS {[2], [3],
[4], [6], [8], [9], [10], [18], [22], [0, 24],[12, 26] };

2. A 11-round neural distinguisher NDSimon11R

VV trained using the staged ap-
proach under difference (0x0000, 0x0040), and its wrong key response pro-
files NDSimon11R

VV .µ and NDSimon11R

VV .σ.
3. A 9-round neural distinguisherNDSimon9R

VD trained under difference (0x0000, 0x0040)
and fed with data of type (x, x′, y ⊕ y′), and its wrong key response profiles
NDSimon9R

VD .µ and NDSimon9R

VD .σ.

The goal is to recover the last two subkeys k15 and k14. A difference with the
attack ASpeck13R is that, as one of the neural distinguishers NDSimon9R

VD accepts
data of type (x, x′, y⊕y′), after guessing k15 and k14 and decrypting a ciphertext
pair to (x14, y14), (x′

14, y′
14), one can compute (x13, x′

13, y13 ⊕ y′
13) by inverting

one round with 0 as the subkey, and thus can be feed to NDSimon9R

VD .
At the beginning, we guess two key bits of k0, that is k0[1] and k0[3], because

for the 3-round differential, the conditions for correct pairs are x1[1] = x′
1[1] = 0

and x1[3] = x′
1[3] = 0 (refer to Eq. 2); no more key bits need to be guessed

because the number of non-conditional neutral bits is enough). Thus, nkg is 2,
and there are 22 outermost loops.

The framework of attack ASimon16R

I is the same as that of ASpeck13R on
Speck32/64 (refer to Fig. 2). The concrete parameters of the attack are as
follows. The accuracy of NDSimon11R

VV is 0.5173, and that of NDSimon9R

VD is 0.5629.

nkg = 22, ncts = 27, nb = 211, nit = 29

c1 = 25, c2 = 100, nbyit1 = nbyit2 = 5, ncand1 = ncand2 = 32

The data complexity is nkg×ncts×nb×2, that is, 221 plaintexts. To examine the
performance of the attack, experiments are done using 8 threads on the same
GPU server testing ASpeck13R . In total 99 trials are run9. Within the 99 trials, all
trials have correct ciphertext pairs and all called the neural distinguishers. There
are 49 success trials, for which the returned last two subkeys have a Hamming
9 They are designed to run 20 trials each; but because of the walltime exceeded the

required, they were killed; In total, 99 trials had completed, 7 trials terminated
without finish (two almost finished and succeed).

55

distance to the real subkeys of at most two. Thus, the success rate is computed
as 49/99, i.e., 0.49.

The 99 (+7) trials took 78 core hours in total. For a trial, it shows that
running full 512 iterations requires less than 1 hour. Thus, the worst case to run
22 outermost loops (on guessed values of k0[0] and k0[3]) for a full attack takes
less than 4 GPU hours.

D.5 The Second Attack on 16-round Simon32/64

Details of Find CSNBS for 4-round Differential. For the 4-round dif-
ferential to be prepended to the neural distinguisher, i.e., (0x1000, 0x4440) →
(0x0000, 0x0040), NB and SNBS are scarce; there are only 2 single NB and 2
2-SNBS.

However, when fixing values of some input bits, more bits become neutral.
Given the 9 single NB and the 2 2-SNBS of the 3-round differential (0x0440, 0x1000)→
(0x0000, 0x0040), CSNBS for the 4-round differential can be constructed as fol-
lows. Denote the input bits to the 4-round Simon32/64 by x15, x14, . . ., x0,
y15, y14, . . ., y0. To deduce the conditions for these input bits to be neutral for
the 4-round differential, one considers one round transformation as depicted in
Fig. 20.

≪ (1)

≪ (8)

≪ (2)

&

kr

x15x14x13x12 x11x10x09x08 x07x06x05x04 x03x02x01x00 y15y14y13y12 y11y10y09y08 y07y06y05y04 y03y02y01y00

C31C30C29C28 C27A
12
26C25A

00
24 C23A22C21C20 C19A18C17C16 C15C14C13A

26
12 C11A10A09A08 C07A06C05A04 A03A02C01A

24
00

y15y14y13y12 y11y10y09y08 y07y06y05y04 y03y02y01y00
⊕

x14x13x12x11 x10x09x08x07 x06x05x04x03 x02x01x00x15
&

x07x06x05x04 x03x02x01x00 x15x14x13x12 x11x10x09x08
⊕

x13x12x11x10 x09x08x07x06 x05x04x03x02 x01x00x15x14

C31C30C29C28 C27A
12
26C25A

00
24 C23A22C21C20 C19A18C17C16

Fig. 20: Deduce conditional simultaneous-neutral bits/bit-sets for 4-round differential
of Simon32/64

Indicate the neutrality of bit i by Ai as neutral and Ci as non-neutral for the
3-round differential. Besides, indicate the neutrality of bit i under the condition
that simultaneously changing bits j by Aj

i as neutral. Corresponding to the 9
single NB [2], [3], [4], [6], [8], [9], [10], [18], [22] and two 2-SNBS [0, 24], [12, 26]
of the 3-round differential, we indicate the neutrality (with respect to the 3-round
differential) of the output of the first round of the 4-round as follows

C31C30C29C28 C27A12
26C25A00

24 C23A22C21C20 C19A18C17C16
C15C14C13A26

12 C11A10A09A08 C07A06C05A04 A03A02C01A24
00

Note that, for an input pair ((x, y), (x′, y′)) to conform the 4-round differen-

tial (0x1000, 0x4440)→ (0x0000, 0x0040), one have that

{
x5 = x′

5 = 0,

x3 = x′
3 = 0.

Firstly, one can directly deduce the 2 single NB and the 2 2-SNBS for the
4-round differential from that of the 3-round differential as follows.

56

– From the neutrality of A22 and A18 for the 3-round differential, and because{
y06 ⊕ x05x14 ⊕ x14 = A22,

y02 ⊕ x01x10 ⊕ x00 = A18,
we have that y06 and y02 (i.e., [2] and [6])

are neutral for the 4-round differential.
– From the neutrality of A10 and A18 for the 3-round differential, let us consider

the neutrality of x10. The variable x10 is involved in the following equations

in the one round transformation


x10 = A10,

y02 ⊕ x01 x10 ⊕ x00 = A18,

y12 ⊕ x11x04 ⊕ x10 = C28,

y11 ⊕ x10 x03 ⊕ x09 = C27.

Because

A10 and A18 are neutral for the appended 3-round differential, the first two
equations do not impose conditions for x10 to be neutral for the 4-round dif-
ferential. In the third equation, although C28 is non-neutral for the appended
3-round differential, there is a free variable y12 ; thus, complementing x10

and y12 simultaneously does not violate the non-neutrality of C28. In the
fourth equation, because x03 must be zero for all conforming pairs of the 4-
round differential, complementing x10 does not violate the non-neutrality
of C27. Thus, we have that x10 and y12 (i.e., [12, 26]) form a SNBS for the
4-round differential.

– From the simultaneous-neutrality of A26
12 and A12

26 for the 3-round differen-
tial, let us consider the neutrality of x12 and y10. Because x12 and y10
are involved in the following equations in the one round transformation

x12 = A26
12,

y10 ⊕ x09x02 ⊕ x08 = A12
26,

y14 ⊕ x13x06 ⊕ x12 = C30,

y04 ⊕ x03 x12 ⊕ x02 = C20, where x03 = 0,

similar to the above analy-

sis, we have that x12 , y10 , and y14 (i.e., [10, 14, 28]) form a SNBS for
the 4-round differential.

Next, let consider the conditional neutrality of input bits for the 4-round
differential.

– From the neutrality of A08 for the 3-round differential, let us consider the
neutrality of x08. The variable x08 is involved in the following equations in

the one round transformation


x08 = A08,

y10 ⊕ x09x02 ⊕ x08 = C26,

y09 ⊕ x08 x01 ⊕ x07 = C25,

y00 ⊕ x15 x08 ⊕ x14 = C16.

In the second

equation, to not violate the non-neutrality of C26, one should complement
x08 and y10 simultaneously. In the third equation, to not violate the non-

neutrality of C25, when x01 = 0, one can freely complement x08 ; when
x01 = 1, one should complement x08 and y09 simultaneously. In the fourth

57

equation, to not violate the non-neutrality of C16, when x15 = 0, one can
freely complement x08 ; when x15 = 1, one should complement x08 and
y00 simultaneously. Therefore, we have a CSNBS for the 4-round differential

as follows
[x08, y10], i.e., [24, 10] (x01, x15) = (0, 0);
[x08, y10, y09], i.e., [24, 10, 9] (x01, x15) = (1, 0);
[x08, y10, y00], i.e., [24, 10, 0] (x01, x15) = (0, 1);
[x08, y10, y09, y00], i.e., [24, 10, 9, 0] (x01, x15) = (1, 1).

– From the neutrality of A06 for the 3-round differential, let us consider the
neutrality of x06. The variable x06 is involved in the following equations in

the one round transformation


x06 = A06,

y08 ⊕ x07x00 ⊕ x06 = C24,

y07 ⊕ x06 x15 ⊕ x05 = C23,

y14 ⊕ x13 x06 ⊕ x12 = C30.

Similar to

the above analysis, we have a CSNBS for the 4-round differential as follows
[x06, y08], i.e., [22, 8] (x15, x13) = (0, 0);
[x06, y08, y07], i.e., [22, 8, 7] (x15, x13) = (1, 0);
[x06, y08, y14], i.e., [22, 8, 14] (x15, x13) = (0, 1);
[x06, y08, y07, y14], i.e., [22, 8, 7, 14] (x15, x13) = (1, 1).

– From the neutrality of A04 for the 3-round differential, let us consider the
neutrality of x04. The variable x04 is involved in the following equations in

the one round transformation


x04 = A04,

y06 ⊕ x05x14 ⊕ x04 = A22,

y05 ⊕ x04 x13 ⊕ x03 = C21,

y12 ⊕ x11 x04 ⊕ x10 = C28.

Similar to

the above analysis, we have a CSNBS for the 4-round differential as follows
[x04], i.e., [20] (x13, x11) = (0, 0);
[x04, y05], i.e., [20, 5] (x13, x11) = (1, 0);
[x04, y12], i.e., [20, 12] (x13, x11) = (0, 1);
[x04, y05, y12], i.e., [20, 5, 12] (x13, x11) = (1, 1).

– From the neutrality of A02 for the 3-round differential, let us consider the
neutrality of x02. The variable x02 is involved in the following equations in

the one round transformation


x02 = A02,

y04 ⊕ x03x12 ⊕ x02 = C20,

y03 ⊕ x02 x11 ⊕ x01 = C19,

y10 ⊕ x09 x02 ⊕ x08 = C26.

Similar to

58

the above analysis, we have a CSNBS for the 4-round differential as follows
[x02, y04], i.e., [18, 4] (x11, x09) = (0, 0);
[x02, y04, y03], i.e., [18, 4, 3] (x11, x09) = (1, 0);
[x02, y04, y10], i.e., [18, 4, 10] (x11, x09) = (0, 1);
[x02, y04, y03, y10], i.e., [18, 4, 3, 10] (x11, x09) = (1, 1).

– From the simultaneous neutrality of A24
00 and A00

24 for the 3-round differen-
tial, let us consider the neutrality of x00 and y08. The variable x00 and
y08 are involved in the following equations in the one round transformation

x00 = A24
00,

y02 ⊕ x01x10 ⊕ x00 = A18,

y01 ⊕ x00 x09 ⊕ x15 = C17,

y08 ⊕ x07 x00 ⊕ x06 = A00
24.

Similar to the above analysis, we have a

CSNBS for the 4-round differential as follows


[x00, y08], i.e., [16, 8] (x09, x07) = (0, 0);
[x00, y08, y01], i.e., [16, 8, 1] (x09, x07) = (1, 0);
[x00], i.e., [16] (x09, x07) = (0, 1);
[x00, y01], i.e., [16, 1] (x09, x07) = (1, 1).

In summary, for the 4-round differential (0x1000, 0x4440)→ (0x0000, 0x0040)
of Simon32/64, there are 9 complete NB/SNBS/CSNBS, that is
1. 2 single NB: [2], [6]
2. 2 SNBS: [12, 26], [10, 14, 28]
3. 5 CSNBS in Table 9.

Table 9: CSNBS for the 4-round differential (0x1000, 0x4440) → (0x0000, 0x0040) of
Simon32/64

Bit-set C. Bit-set C. Bit-set C. Bit-set C. Bit-set C.

x[1, 15] x[15, 13] x[13, 11] x[11, 9] x[9, 7]

[24, 10], 00 [22, 8], 00 [20], 00 [18, 4], 00 [16, 8], 00
[24, 10, 9], 10 [22, 8, 7], 10 [20, 5], 10 [18, 4, 3], 10 [16, 8, 1] 10
[24, 10, 0], 01 [22, 8, 14], 01 [20, 12], 01 [18, 4, 10], 01 [16], 01
[24, 10, 9, 0] 11 [22, 8, 7, 14] 11 [20, 12, 5] 11 [18, 4, 3, 10] 11 [16, 1] 11
C.: Conditions on x[i, j], e.g., x[i, j] = 10 means x[i] = 1 and x[j] = 0.

□□□: CSNBS that are used in the 16-round attack ASimon16R
II on Simon32/64.

Note that, for an input pair ((x, y), (x′, y′)) to conform the 4-round differen-

tial (0x1000, 0x4440)→ (0x0000, 0x0040), one have that

{
x[5] = x′[5] = 0,

x[3] = x′[3] = 0.
(3)

The attack ASimon16R

II . The components of ASimon16R

II are as follows (refer to
Fig. 22).

59

1. a 4-round classical differential (0x1000, 0x4440) → (0x0000, 0x0040) (refer
to the rounds colored in blue in Fig. 22), and a set of its 4 + 3 neutral
bit(-set)s (i.e., four non-conditional ones [2], [6], [12, 26], [10, 14, 28] and the
three ones conditioned on x[15, 13], x[13, 11], x[11, 9] (refer to the columns
framed by green lines in Table 9));

2. a 9-round neural distinguisherNDSimon9R

VD trained under difference (0x0000, 0x0040)
and fed with data of type (x, x′, y ⊕ y′), and its wrong key response profiles
NDSimon9R

VD .µ and NDSimon9R

VD .σ;
3. a 8-round neural distinguisherNDSimon8R

VD trained under difference (0x0000, 0x0040)
and fed with data of type (x, x′, y ⊕ y′). and its wrong key response profiles
NDSimon8R

VD .µ and NDSimon8R

VD .σ.

The goal is to recover the last two subkeys k15 and k14. A difference with
the attack ASpeck13R and ASimon16R

I is that, as the neural distinguishers accept
data of type (x, x′, y⊕y′), after guessing k15 and decrypting a ciphertext pair to
(x15, y15), (x′

15, y′
15), one can compute (x14, x′

14, y14 ⊕ y′
14) by inverse one round

with 0 as the subkey, and thus can be fed to NDSimon9R

VD . After guessing k14 and
decrypting a pair of (x15, y15), (x′

15, y′
15) to (x14, y14), (x′

14, y′
14), one can compute

(x13, x′
13, y13 ⊕ y′

13) by inverse one round with 0 as the subkey, and thus can be
fed to NDSimon8R

VD .
Another difference is that, at the beginning, we guessed two key bits of k0,

that is k0[3] and k0[5], because for the 4-round differentials, the conditions for
correct pairs is x1[5] = x′

1[5] = 0 and x1[3] = x′
1[3] = 0 (refer to Eq. 3); and

four key bits k0[15], k0[13], k0[11], k0[9] for employing three conditional neutral
bits (refer to Table 9). For different values of the chosen data pairs (x̃1, ỹ1),
with guessed values of the four key bits, we choose different neutral bit-sets to
generate the structures.

Thus, nkg is 2 + 4, and there are 26 outermost loops.
Except these differences, other part of the framework of attack ASimon16R

II is
the same as that of the 13-round attack ASpeck13R on Speck32/64. The concrete
parameters of the attack are as follows. The accuracy of NDSimon9R

VD is 0.5629,
and that of NDSimon8R

VD is 0.6587.

nkg = 22+4, ncts = 210, nb = 24+3, nit = 211

c1 = 20, c2 = 70, nbyit1 = nbyit2 = 5, ncand1 = ncand2 = 32

The data complexity is nkg × ncts × nb × 2, that is, 224 plaintexts. To examine
the performance of the attack, experiments were done using 8 threads on the
same GPU server testing ASpeck13R . Each thread ran 20 trails, thus, 160 trails
were run in total. Within the 160 trails, all trails have correct ciphertext pairs
and all called the neural distinguishers. There are 52 success trails (the returned
last two subkeys have hamming distance to the real subkeys at most two). Thus,
the success rate is computed as 52/160, i.e., 0.325.

The 160 trails took 120.25 core hours in total. For a trail, running full 2048
iterations requires less than 1 hour (about 50 minutes). Thus, the worst case to
run 26 outermost loops for a full attack should take roughly 64 GPU hours.

60

≪ (1)

≪ (8)

≪ (2)

&

0

0000 0100 0100 0000 0001 0000 0000 0000

x0 y0

x̃1 ỹ1

k0

≪ (1)

≪ (8)

≪ (2)

&

k1

x1 y1

...
...

≪ (1)

≪ (8)

≪ (2)

&

k4

x3 y3

0000 0000 0000 0000 0000 0000 0100 0000

≪ (1)

≪ (8)

≪ (2)

&

k5

x4 y4

≪ (1)

≪ (8)

≪ (2)

&

k6

x5 y5

...
...

≪ (1)

≪ (8)

≪ (2)

&

k13

x13 y13vvvv vvvv vvvv vvvv dddd dddd dddd dddd

≪ (1)

≪ (8)

≪ (2)

&

k14

x14 y14

≪ (1)

≪ (8)

≪ (2)

&

k15

x15 y15vvvv vvvv vvvv vvvv vvvv vvvv vvvv vvvv

x16 y16

1-R
PK

3-R
CD

11-R
ND
VV

1-R
KG

9-R
ND
VD

1-R
FR

1-R
KG

• PK:
Free one round
with Partial Key
guess

• CD:
Classical
Differential

• ND:
Neural
Distinguisher

• FD:
Free one round
by computing
value of xi and
Difference of yi

• KG:
Key Guess

Fig. 21: Components for key-recovery attack ASimon16R
I on 16-round

Simon32/64

≪ (1)

≪ (8)

≪ (2)

&

0

0001 0000 0000 0000 0100 0100 0100 0000

x0 y0

x̃1 ỹ1

k0

≪ (1)

≪ (8)

≪ (2)

&

k1

x1 y1

...
...

≪ (1)

≪ (8)

≪ (2)

&

k3

x3 y3

≪ (1)

≪ (8)

≪ (2)

&

k4

x4 y4

0000 0000 0000 0000 0000 0000 0100 0000

≪ (1)

≪ (8)

≪ (2)

&

k5

x5 y5

...
...

≪ (1)

≪ (8)

≪ (2)

&

k13

x13 y13vvvv vvvv vvvv vvvv dddd dddd dddd dddd

≪ (1)

≪ (8)

≪ (2)

&

k14

x14 y14vvvv vvvv vvvv vvvv dddd dddd dddd dddd

≪ (1)

≪ (8)

≪ (2)

&

k15

x15 y15

x16 y16

1-R
PK

4-R
CD

9-R
ND
VD

1-R
FR

1-R
KG

8-R
ND
VD

1-R
FR

1-R
KG

• PK:
Free one round
with Partial Key
guess

• CD:
Classical
Differential

• ND:
Neural
Distinguisher

• FD:
Free one round
by computing
value of xi and
Difference of yi

• KG:
Key Guess

Fig. 22: Components for key-recovery attack ASimon16R
II on 16-round

Simon32/64

61

E Details of the Key-recovery Attack in [14]

E.1 Neutral bits Used in [14]

Table 10: (Probabilistic) single-bit neutral bit for 2-round differential
(0x0211, 0x0a04)→ (0x0040, 0x0000) of Speck32/64

NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr.

[20] 1 [21] 1 [22] 1 [14] 0.965 [15] 0.938 [23] 0.812 [7] 0.806
[30] 0.809 [0] 0.763 [8] 0.664 [24] 0.649 [31] 0.644 [1] 0.574

E.2 Accuracy of the Neural Distinguishers on Speck32/64 in [14]

Table 11: Accuracy of Gohr’s neural distinguishers on Speck32/64 [14]
#R Name Accuracy True Positive Rate True Negative Rate

5 DDSpeck5R 0.911 0.877 0.947

5 N DSpeck5R 0.929 ± 5.13 × 10−4 0.904 ± 8.33 × 10−4 0.954 ± 5.91 × 10−4

6 DDSpeck6R 0.758 0.680 0.837

6 N DSpeck6R 0.788 ± 8.17 × 10−4 0.724 ± 1.26 × 10−3 0.853 ± 1.00 × 10−3

7 DDSpeck7R 0.591 0.543 0.640

7 N DSpeck7R 0.616 ± 9.70 × 10−4 0.533 ± 1.41 × 10−3 0.699 ± 1.30 × 10−3

8 DDSpeck8R 0.512 0.496 0.527

8 N DSpeck8R 0.514 ± 1.00 × 10−3 0.519 ± 1.41 × 10−3 0.508 ± 1.42 × 10−3

E.3 BayesianKeySearch Algorithm in [14]

62

Algorithm 3: BayesianKeySearch Algorithm [14]
/* The description of this BayesianKeySearch Algorithm in [14] has

a small typo and is inconsistent with that in the implementation
codes [13], the description here corrects it according to [13].
*/

Input: Ciphertext structure C := {C0, · · · , Cnb−1}, a neural distinguisher ND,
and its wrong key response profile µ and σ, the number of candidates
to be generated within each iteration ncand, the number of iterations
nbyit

Output: The list L of tuples of recommended keys and their scores
1 S := {k0, k1, . . . , kncand−1} ← choose ncand values at random without

replacement from the set of all subkey candidates.
2 L← {}
3 for t = 1 to nbyit do
4 for ∀ki ∈ S do
5 for j = 0 to nb − 1 do
6 C′

j,ki
= F −1

ki
(Cj)

7 vj,ki = ND(C′
j,ki

)
8 sj,ki = log2(vj,ki /(1− vj,ki))
9 end

10 ski =
∑nb−1

j=0 sj,ki ; /* the combined score of ki */
11 L← L||(ki, ski)
12 mki =

∑nb−1
j=0 vj,ki /nb

13 end
14 for k ∈ {0, 1, · · · , 216 − 1} do
15 λk =

∑ncand−1
i=0 (mki − µki⊕k)2/σ2

ki⊕k

16 end
17 S ← argsortk(λ)[0 : ncand − 1] ; /* Pick ncand keys with the ncand

smallest score to form the new set of candidate keys S */
18 end
19 return L

63

	Conditional Differential-Neural Cryptanalysis

