
Enhancing Differential-Neural Cryptanalysis

Zhenzhen Bao1,2,4(B) , Jian Guo2 , Meicheng Liu3 , Li Ma3 , and Yi
Tu2

1 Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University,
Beijing, China zzbao@tsinghua.edu.cn

2 School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore guojian@ntu.edu.sg, tuyi0002@e.ntu.edu.sg

3 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China liumeicheng@iie.ac.cn,

skloismary@gmail.com
4 Zhongguancun Laboratory, Beijing, China

Abstract. In CRYPTO 2019, Gohr shows that well-trained neural net-
works can perform cryptanalytic distinguishing tasks superior to tradi-
tional differential distinguishers. Moreover, applying an unorthodox key
guessing strategy, an 11-round key-recovery attack on a modern block
cipher Speck32/64 improves upon the published state-of-the-art result.
This calls into the next questions. To what extent is the advantage of
machine learning (ML) over traditional methods, and whether the advan-
tage generally exists in the cryptanalysis of modern ciphers? To answer
the first question, we devised ML-based key-recovery attacks on more ex-
tended round-reduced Speck32/64. We achieved an improved 12-round
and the first practical 13-round attacks. The essential for the new results
is enhancing a classical component in the ML-based attacks, that is, the
neutral bits. To answer the second question, we produced various neural
distinguishers on round-reduced Simon32/64 and provided comparisons
with their pure differential-based counterparts.

Keywords: Differential Cryptanalysis, Machine Learning, Speck, Si-
mon, Neural Distinguisher, Key Recovery, Neutral Bits

1 Introduction

Cryptography and machine learning (ML) share many concerns, e.g., distin-
guishing, classification, decision, searching, and optimization. It has been a long-
standing challenge to answer whether computers could “learn to perform crypt-
analytic tasks” [27]. These years, ML has made rapid progress in application
domains ranging from machine translation, visual recognition, and autonomous
vehicles to playing board games at superhuman levels [28]. ML has also been used
to construct new types of cryptographic schemes [1] or crack ancient ciphers [16].

However, whether ML models can learn from scratch and then break mod-
ern ciphers at a superior level is still unpredictable. Nevertheless, one can still
look forward to the prospect that ML approaches become substantial positive

https://orcid.org/0000-0003-2839-6687
https://orcid.org/0000-0001-8847-6748
https://orcid.org/0000-0002-5259-1848
https://orcid.org/0000-0002-6192-7526
https://orcid.org/0000-0002-2051-8806

additions to the existing cryptanalysis toolkit, which has already been true in
side-channel cryptanalysis [26].

For using ML to assist classical cryptanalysis, there are several questions to
explore. That might include the follows:

– Can ML models learn new features with/without prior human cryptanalysis?
– Can ML provide more accurate and efficient measurements of known fea-

tures?
– Can various ML approaches combined with various cryptanalysis techniques

perform cryptanalysis tasks at a superior level to orthodox techniques, then
be interpreted, and in turn, help to develop innovative and general cryptan-
alytic techniques?

In CRYPTO 2019, a remarkable work by Gohr [15] shows that commonly
used neural networks could be trained to be superior cryptographic distinguish-
ers. The work shed light on positive answers to the first two questions. It showed
that deep neural-network distinguisher could exploit features that strong classi-
cal distinguishers fail to capture for Speck. In [15], neural networks were trained
with principles of differential cryptanalysis in mind. They show a remarkable
capability in distinguishing attacks. More importantly, combining them with
classical differentials and a highly selective key search policy forms a power-
ful key-recovery attack. Specifically, using the obtained neural distinguishers
(NDs) as the main engines, prepending them with a classical differential (CD),
applying basic reinforcement learning mechanisms, i.e., the Upper Confidence
Bounds (UCB) and Bayesian optimization, an 11-round key-recovery attack on
Speck32/64 can achieve an unparalleled speed. However, to attack more rounds,
one has to extend either the classical component, i.e., the prepended CD, or the
ND. Both are facing obstacles that have not been overcome since [15].

In EUROCRYPT 2021, Ghor’s ND got a deeper interpretation by Benamira
et al. [7]. They were found to have learned not only the differential distribution on
the output pairs but also the differential distribution in penultimate and ante-
penultimate rounds. Still, the other enhanced new component, i.e., the UCB
and Bayesian optimization-based key-recovery phase in the superior 11-round
attack in [15], has not been fully interpreted and theorized, thus still missing
necessary guidance on tuning various parameters and sound theoretical models
on analyzing data/time complexity and success probability.

Note that one of the main difficulties in evaluating the scope of applica-
bility of ML algorithms is the lack of a formally specified theoretical model.
Strong theoretical models for ML-based cryptanalysis are vital for generalizing
the techniques. However, in parallel or even before our community achieve sound
theoretical models, devising a sufficient number of successful attacks as positive
examples in this new setting is essential. Without providing the best attacks as
examples, it might be harder to obtain a theoretical model that produces the
most powerful attacks. This work provides strong positive examples and exten-
sive experimental data to support the first steps towards a realistic theoretical
model for effective ML-based cryptanalysis.

2

Our contribution. The contribution of this work includes the following.

– Practical attacks and rules of thumb
• The first practical 13-round and an improved 12-round ND-based key-

recovery attacks on Speck32/64 are devised. They have considerable
advantages in time complexity over attacks devised using orthodox crypt-
analysis. In addition, the first practical 16-round ND-based key-recovery
attack on Simon32/64 is devised, which has a considerable advantage
in data complexity. These results are summarized in Table 1.

• Substantial illustrations unveil previously hidden details of the unortho-
dox key-recovery phase. Furthermore, observations derived from the il-
lustrations provide rules of thumb for tuning critical parameters.

– Applications of enhanced cryptanalytic techniques
The improved attacks are achieved by enhancing the classical components
in the differential-neural attack scheme in [15], which are the CD’s neutral
bits (NBs). NBs and NB sets were first introduced by Biham and Chen in the
cryptanalysis of hash function SHA-0 [9]. Later, many extensions and related
concepts were proposed and applied in classical cryptanalysis, including mes-
sage modification [32], tunnels [22], boomerangs [21], probabilistic NBs [4],
and free bits [23]. Flipping an NB of a differential’s conforming pair, the
resulting pair also conforms to the differential. Thus, NBs can be used to
derive a batch of data pairs from a single pair, and they conform or do not
conform to the differential simultaneously. Single-bit NBs are employed in
ML-based attacks in [15] to boost signals from NDs. However, NBs of long
CD are too scarce to boost signals from a weak but long ND, thus inhibiting
the ML-based attack from extending more rounds. In this work, we exploit
various generalized NBs to make weak ND usable again. Particularly, we em-
ployed conditional simultaneous neutral bit-sets (CSNBS) and switching bit
for adjoining differentials (SBfAD), which are essential for achieving efficient
12-round and practical 13-round attacks.

– New observations
• We note the output difference of the CD matters to ND, but not the

input difference. Hence, more than one CD can be prepended to ND,
as long as they share the same output difference. Some neutral bits can
be shared by multiple such differentials. Using such differentials might
enable data reuse, thus slightly reducing data complexity.

• We find that there are additional constraints on subkeys for some differ-
ential trails used in the presented attacks as well as the previous best
attacks on Speck32/64 [10, 13, 29]. Thus, the attacks only work for a
subspace of the keys, i.e., weak keys up to half of the keyspace.

– Various NDs and DDT-based distinguishers (DD) for Simon32/64
• Besides the Residual Network (ResNet) [18] considered by Gohr in [15],

other neural networks that have shown advantages on ResNet in specific
tasks, including Dense Network (DenseNet) [20] and the Squeeze-and-
Excitation Network (SENet) [19], are investigated. Additionally, various
training schemes, including direct training, key-averaging, and staged

3

training, were attempted. This effort results in various NDs covering up
to 11-round Simon32/64.

• The full distribution of differences induced by the input difference (0x0000,
0x0040) up to 11 rounds are computed for Simon32/64, which results
in various DDs. These DDs provide solid baselines for ND. We note that
r-round ND should be compared with (r− 1)-round DD for Simon (dif-
ferent from Speck). The results show that r-round NDs achieve similar
but weaker classification accuracy than (r− 1)-round DDs (see Table 5).
We conjecture that r-round NDs can learn to “decrypt” one un-keyed
round and try to learn the distribution of the (r − 1)-round differential,
but fails to learn more features beyond the distribution of differences.

The source codes of the new attacks and the new NDs can be found via
https://github.com/differential-neural-cryptanalysis/speck32_simon32.

Table 1: Summary of key-recovery attacks on Speck32/64 and Simon32/64
Target #R Time

(#Enc)
Data
(#CP)

Succ.
Rate

Weak
keys

Configure Ref.

Speck32/64

11 246 214 - 264 1+6 +4 [13]
238⋆

213.6 0.52 264 1+2 +7+1 [15]

12

251 219 - 264 1+7 +4 [13]
243.40⋆

222.97 0.40 264 1+2 +8+1 [15]
244.89⋆

222.00 0.86 264 1+2 +8+1 Fig. 6 Sect. 4.3
242.97⋆

218.58 0.83 263 1+3 +7+1 Fig. 7 Sect. 4.3

13
257 225 - 264 1+8 +4 [13]
248.67⋆+r 229 0.82 263 1+3 +8+1 Fig. 5 Sect. 4.2

14 262.47 230.47 - 264 1+9 +4 [29]

Simon32/64 16 226.48 229.48 0.62 264 2+12 +2 [3]
241.81⋆+r 221 0.49 264 1+3 +11+1 Sect. E.4

18 246.00 231.2 0.63 264 1+13 +4 [2]
21 255.25 231.0 - 264 4+13 +4 [31]

- Not available.
⋆ Under the assumption that one second equals the time of 228 executions of Speck32/64 or
Simon32/64 on a CPU.
r : log2(cpu/gpu), where cpu and gpu are the CPU and GPU time running an attack,
respectively. In our computing systems, r = 2.4 (The worse case execution time of the core of
the 12-round attack on Speck32/64 (without guessing the one key bit of k0) took 6637 and
1265 seconds on CPU and GPU, respectively).
In the column entitled “Configure”, the numbers colored in blue and red are the numbers of
round covered by CDs and NDs, respectively.
Please see [5] for the full version of this article.

Organization. The rest of the paper is organized as follows. Section 2 gives
the preliminary on ML-based differential cryptanalysis and introduces the design
of Speck and Simon. Section 3 introduces concepts of generalized neutral bits
and some new notice on differential trails of Speck32/64. The framework of the
enhanced differential-neural cryptanalysis and its applications to Speck32/64
and Simon32/64 are presented in Section 4 and Section E. Section 5 exhibits
details of important statistics during the key-recovery phase. Rules of thumb

4

https://github.com/differential-neural-cryptanalysis/speck32_simon32

are provided for tuning various parameters for the attacks. Section 6 presents
various of NDs and DDs on Simon32/64 reduced up to 11 rounds.

2 Preliminary

2.1 Brief Description of Speck32/64 and Simon32/64

Notations. Denote by n the word size in bits, 2n the state size in bits. Denote
by (xr, yr) the left and right branches of a state after the encryption of r rounds.
Denote by x[i] (resp. y[i]) the i-th bit of x (resp. y) counted starting from 0;
Denote by [j] the index of the j-th bit of the state, i.e., the concatenation of x
and y, where y[0] is the 0-th bit, and x[0] is the 16-th bit. Denote by ⊕ the bit-
wise XOR, ⊞ the addition modulo 2n, & the bit-wise AND, x≪s the bit-wise left
rotation by s positions, x≫s the bit-wise right rotation by s positions. Denote
by Fk (resp. F −1

k) the round function (resp. inverse of the round function) using
subkey k of the encryption.

Brief Description of Speck32/64 and Simon32/64. Speck32/64 and Si-
mon32/64 are small members of the lightweight block cipher families Speck and
Simon [6] designed by researchers from the National Security Agency (NSA) of
the USA. Both Speck32/64 and Simon32/64 have a Feistel-like structure 5, a
block size and a key size of 32 resp. 64 bits. The round functions use combinations
of rotation, XOR, and addition modulo 216 (Speck) or bit-wise AND (Simon).
Speck32/64 has 22 rounds, and Simon32/64 has 32 rounds. The encryption
algorithms of Speck32/64 and Simon32/64 are listed in Algorithms 1 and 2.
The subkeys of 16-bit for each round are generated from a master key of 64-bit
by the non-linear key schedule using the same round function (Speck32/64) or
linear functions of simple rotation and XOR (Simon32/64).

Algorithm 1: Encryption of
Speck32/64

Input: P = (x0, y0), {k0, · · · , k21}
Output: C = (x22, y22)
for r = 0 to 21 do

xr+1 ← x≫7
r ⊞ yr ⊕ kr

yr+1 ← y≪2
r ⊕ xr+1

end

Algorithm 2: Encryption of
Simon32/64

Input: P = (x0, y0), {k0, · · · , k31}
Output: C = (x32, y32)
for r = 0 to 31 do

xr+1 ←
(x≪1

r &x≪8
r)⊕ x≪2

r ⊕ yr ⊕ kr

yr+1 ← xr

end

2.2 Differential-based Neural Distinguishers

The work in [15] shows that a neural network could be trained to capture the
non-randomness of the distribution of values of output pairs when the input
5 Speck can be represented as a composition of two Feistel maps [6].

5

pairs to round-reduced Speck32/64 are of specific difference, and thus play
the role of distinguisher in cryptanalysis. This differential-based ND is the first
known machine learning model that successfully performed cryptanalysis tasks
on modern ciphers (beyond the applications on side-channel attacks).

In the following, the way of training the differential-based ND introduced
in [15] is briefly recalled.

The Training Data and Input Representation. For a target cipher, the
neural network is trained to distinguish between examples of ciphertext pairs
corresponding to plaintext pairs with particular difference and those correspond-
ing to random plaintext pairs. Thus, each of the training data is a data pair
of the form (C, C ′) together with a label taking a value 0 or 1, where 0 means
the corresponding plaintext pair is generated randomly, and 1 from a particular
plaintext difference ∆I . For Speck32/64, the ∆I is chosen to be of a single
active bit, i.e., (0x0040, 0000), which is the intermediate difference lying in a
known best differential characteristic.

The state of Speck32/64 has left and right parts; thus, a pair of data is
transformed into a quadruple of words (x, y, x′, y′) where C = x‖y and C ′ =
x′‖y′. The word quadruple is then interpreted into a 4 × 16-matrix with each
word as a row-vector before being fed into the neural network with an input layer
consisting of 64 units. Among the training data (and verification data), half are
positive and half are negative examples, labeled by 1 and 0, respectively.

Training Schemes. The neural network structure used in [15] is a deep residual
network. There are three training schemes proposed in [15]. The first is a basic
training scheme that is sufficient for successfully training short-round distinguish-
ers. The second is an improved training scheme for r-round distinguishers that
simulate the output of the KeyAveraging algorithm used with an (r−1)-round
distinguisher. Using the second scheme, the best ND on 7-round Speck32/64
was achieved in [15]. The third is a staged training method that turns an already
trained (r−1)-round distinguisher into an r-round distinguisher in several stages.
Using the third scheme, the longest ND on Speck32/64, which is an 8-round
one, was achieved.

2.3 Upper Confidence Bounds and Bayesian Optimization

Besides a basic key-recovery attack, an improved attack using specifics of the tar-
geted cipher (i.e., the wrong key randomization hypothesis does not hold when
only one round of trial decryption is performed) and elements from reinforce-
ment learning (i.e., automatic exploitation versus exploration trade-off based on
upper confidence bounds) was proposed in [15].

The improved key-recovery attack employs an r-round main and an (r − 1)-
round helper ND trained with data pairs corresponding to input pairs with
difference ∆I ; a short s-round differential, ∆I′ →∆I with probability denoted
by 2−p, is prepended on top of the NDs (refer to Fig. 1 for an illustration of the

6

Fk0 Fk1 · · · Fks
Fks+1 · · · Fs+r−1 Fs+r Fs+r+1

x0

y0

x̃1

ỹ1

x2

y2

xs

ys

xs+1

ys+1

xs+2

ys+2

xs+r−1

ys+r−1

xs+r

ys+r

xs+r+1

ys+r+1

xs+r+2

ys+r+2

1-round
free

s-round classical differential
∆′I → ∆I

(r − 1)-round neural distinguisher
∆I → (xr−1, yr−1, x

′
r−1, y

′
r−1)

1-round key-guessing
ks+r

r-round neural distinguisher
∆I → (xr, yr, x

′
r, y
′
r)

1-round key-guessing
ks+r+1

(1 + s + r + 1)-round key-recovery attack

Fig. 1: Components of the key-recovery attacks

components of the key-recovery attack.) About c·2p (denoted by ncts) data pairs
with difference ∆I′ are randomly generated, where c is a small constant; Neutral
bits of the s-round differential are used to expand each data pair to a structure
of nb data pairs. The resulting ncts structures of data pairs are decrypted by one
round with 0 as the subkey 6 to get plaintext structures. All plaintext structures
are queried to obtain the corresponding ciphertext structures.

Each ciphertext structure is to be used to generate candidates of the last
subkey by the r-round main ND (and latter of the second to the last subkey by
the (r− 1)-round helper ND) with a highly selective key search policy based on
a variant of Bayesian optimization.

More specifically, the key search policy depends on an important observation
that the expected response of the distinguisher upon wrong-key decryption will
depend on the bit-wise difference between the trial key and the real key. This
wrong key response profile, which can be precomputed, is used to recommend
new candidate values for the key from previous candidate values by minimizing
the weighted Euclidean distance as the criteria in an BayesianKeySearch
(see Alg. 4.) It recommends a set of subkeys and provides their scores without
exhaustively performing trail decryptions.

The use of ciphertext structures is also highly selective using a standard
exploration-exploitation technique, namely Upper Confidence Bounds (UCB).
Each ciphertext structure is assigned a priority according to the scores of the
subkeys they recommended and how often they were visited.

An important detail in the BayesianKeySearch is that the responses vi,k

from the ND on ciphertext pairs in the ciphertext structure (of size nb) are
combined using the Formula 1 and used as the score sk of the recommended
subkey k (refer to Alg. 4). This score is highly decisive for the execution time and
success rate of the attack. It will determine whether the recommended subkey
will be further treated as its score passes or fails to pass the cutoff and also
determine the priority of ciphertext structures to be visited. The number of
ciphertext pairs in each structure is decisive when the ND has low accuracy.

sk :=
nb−1∑
i=0

log2(vi,k

1− vi,k
) (1)

6 For Speck, there is no whitening key and the first subkey is XORed after the first
non-linear operation, which makes the first round free in differential attack (see the
top of Fig. 3).

7

3 Deep Exploring of Neutral Bits

3.1 The Motivation of Neutral Bits

Typically, the more rounds a ND covers, the lower its accuracy. When the accu-
racy becomes marginally higher than 0.5, it is hard to be used in a practical key-
recovery attack. Thus, Gohr in [15] used the combined response (Formula 1) of
the ND over large number of samples of the same distribution as a distinguisher
(named as combined-response-distinguisher, CRD). By doing so, the signal from
the ND is boosted, and the distinguishability is increased. For a CRD built on
top of a weak ND to reach its most potential with respect to distinguishability,
the number of samples of the same distribution should be sufficiently large (see
Sect. C for a detailed experimental study on the relation between the distin-
guishability of CRD and the number of combined samples).

For the hybrid differential distinguisher used in the key-recovery attack in [15],
it is not straightforward to aggregate enough samples of the same distribution fed
to theND due to the prepended CD. To overcome this problem, Gohr in [15] used
the neutral bits of the CD, which is a notion first introduced by Biham and Chen
for attacking SHA-0 [9]. The neutral bit has many extensions and related con-
cepts, including message modification [32], tunnels [22], boomerangs [21], prob-
abilistic neutral bits [4], and free bits [23]. Changing the values at the neutral
bits of an input pair does not change the conformability to the differential. Thus,
one can use m neutral bits to derive 2m data pairs from a single pair such that
they conform or do not conform to the differential simultaneously. The more
neutral bits there are for the prepended CD, the more the samples of the same
distribution that could be generated for the ND. However, generally, the longer
the CD, the fewer the neutral bits.

Finding enough neutral bits for prepending a long CD over a weak ND be-
comes a difficult problem for devising a key-recovery to cover more rounds. Thus,
the first part of this work focuses on finding various types of neutral bits.

3.2 Neutral Bits and Generalized Neutral Bits

Notations. Let δ := ∆in→∆out be a differential of an r-round encryption F r.
Let (P, P ′) be the input pair and (C, C ′) be the output pair, where P⊕P ′ = ∆in,
C = F r(P), and C ′ = F r(P ′). If C⊕C ′ = ∆out, (P, P ′) is said to conform to the
differential δ (conforming pairs, or correct pairs of the differential). The primary
notion of neutral bits can be interpreted as follows.

Definition 1 (Neutral bits of a differential, NBs [9]). Let e0, e1, . . . , en−1
be the standard basis of Fn

2 . Let i be an index of a bit (starting from 0). The
i-th bit is a neutral bit of the differential ∆in→∆out, if for any conforming pair
(P, P ′), (P ⊕ ei, P ′ ⊕ ei) is also a conforming pair.

Let {i1, i2, . . . , in} be the set of NBs of a differential ∆in → ∆out. Denote
the subspace of Fn

2 with basis {ei1 , ei2 , . . . , ein} by S. Then, from one input pair

8

(P, P ′) where P ⊕ P ′ = ∆in, one can generate a set {(Pi, P ′
i) | Pi ∈ P ⊕S, P ′

i =
Pi⊕∆in} that forms a structure with the same conformability to the differential.

For a differential ∆in → ∆out of F r, in the view of a system of equations
defined on the derivative function of F r, i.e., D∆in

F r(P) = ∆out, a set of neutral
bits NB partitions the solution space of D∆inF r(x) = ∆out into equivalence
classes. It can be seen that the more neutral bits for a differential, the more
structured the solution space.

Generalization of Neutral Bits. In general, neutral bits of non-trivial differentials
are scarce. In [15], because of the lack of neutral bits for the 2-round differential
of Speck32/64, probabilistic neutral bits (PNBs for short) are exploited. This
notion of PNB has already been introduced by Aumasson et al. in previous
differential cryptanalysis of stream ciphers Salsa20 and Chacha, and compression
function Rumba [4]. Formally, it can be defined as follows.

Definition 2 (Probabilistic neutral bits, PNBs [4]). Let i be an index of
a bit. The i-th bit is a p-probabilistic neutral bit of the differential ∆in→∆out,
if the event that when (P, P ′) conforms to the differential then (P ⊕ ei, P ′ ⊕ ei)
also conforms to the differential under the same key, has a probability p (over
the choice of P and the key).

In the sequel attacks, the higher the probability p is, the higher the neutrality
quality, and the more useful the neutral bit becomes. For convenience, when
p = 1, the neutral bits are said to be deterministic neutral bits.

In this work, two types of generalized neutral bits are considered beyond the
(probabilistic) neutral bits considered in [15]. The first type, named simultaneous-
neutral bit-set (SNBSs for short), has already been introduced together with
the notion of neutral bit in [9]. That is, for a differential, given a conforming
pair, complementing individual bits, the conformability might be changed, but
simultaneously complementing a set of bits does not change the conformability
of the resulted pair. Formally, it can be defined as follows.

Definition 3 (Simultaneous-neutral bit-sets, SNBSs [9]). Let Is = {i1,
i2, . . ., is} be a set of bit indices. Denote fIs

=
⊕

i∈Is
ei. The bit-set Is is a

simultaneous-neutral bit-set of the differential ∆in→∆out, if for any conforming
pair (P, P ′), (P ⊕ fIs , P ′ ⊕ fIs) is also a conforming pair, while for any subsets
of Is, the conformability of the resulted pair does not always hold.

If we view that finding neutral bits is to form a subspace of Fn
2 in which the

corresponding data have the same conformability to the differential, the essence
of generalizing to SNBS is that, instead of only considering the standard basis
corresponding to single-bit NBs, we now consider arbitrary bases.

The second type, which is a natural generalization, is named in this work
as conditional (simultaneous-) neutral bit(-set)s (CSNBSs for short), that is, the
bits or bit-sets are neutral for input pairs fulfilling specific conditions. Formally,
it can be defined as follows.

9

Definition 4 (Conditional (simultaneous-) neutral bit(-set)s, CSNBSs).
let Is = {i1, i2, . . . , is} be a set of bit indices. Denote fIs =

⊕
i∈Is

ei. Let C be
a set of constraints on the value of an input P , and PC be the set of inputs
that fulfill the constraints C. The bit-set Is is a conditional simultaneous-neutral
bit-set of the differential ∆in→∆out, if for any conforming pair (P, P ′) where
P ∈ PC, (P ⊕ fIs

, P ′ ⊕ fIs
) is also a conforming pair.

The most straightforward constraints can be that some bit values of P are
fixed. However, the constraints on the values of input P can be a more involved
system of linear or non-linear equations.

Remark 1. Interestingly, various ‘tunnels’ have been used in [22] to speed up
the search of MD5 collisions. They are essentially (generalized) neutral bits,
including PNBs and CNBs. For consistency, in this paper, we use the extended
names of the more well-known concept of ‘neutral bits’ instead of ‘tunnels’.

Remark 2. The neutrality of CSNBSs depends on the values of some particular
bits. The selected data is at an intermediate round in our attacks in this work,
although the difference does not depend on the round-key, the values do. Thus,
using CSNBSs, the attack requires guessing some key bits of the first round.

3.3 Automatic Procedure to Search for CSNBSs

To find CSNBSs, we use an automatic procedure to experimentally evaluate the
conditional neutral probability of candidate SNBSs. Concretely, we investigate
how the neutrality of each candidate SNBS is influenced by values of bits in
some involved and controllable variables (for Speck32/64, such variables are
supposed to be the variables involved in the first modular addition, particularly,
they are x1, y1, and x1

≫7 ⊕ y1
7), and search CSNBSs conditioned on bits of

these variables with the procedure in Algorithm 3.

3.4 Switching Bits for Adjoining Differentials

One knows that for a differential δ1 = ∆in1→∆out, flipping a non-neutral bit of
a conforming pair might make the resulting pair not conform to the differential.
However, it is interesting that the resulted pair might turn into a conforming pair
of another differential δ2 = ∆in2 →∆out (after adjusting the input difference).
If flipping this bit turns all conforming pairs of δ1 into all conforming pairs
of δ2, then δ2 has the same probability as δ1. Since δ1 and δ2 have the same
probability and share the same output difference, which will be the connecting
difference in a hybrid distinguisher, the two differential are equally useful. In this
case, that non-neutral bit can play the same role as neutral bits for generating
structures of pairs simultaneously satisfying the connecting difference in a hybrid
distinguisher. Formally, we define such bits that relate two differential as follows.
7 In these considered variables, (x1, y1) = (x̃1 ⊕ k0, ỹ1 ⊕ k0) is the real input to the
CD (see Fig. 3), where (x̃1, ỹ1) is the chosen data in the key-recovery attack (since,
in the key-recovery attack, the CD will be freely extended one round backward).

10

Algorithm 3: An automatic procedure to search for CSNBSs
1. Generate N random conforming pairs of the differential, each with a different

random key.
2. For each candidate SNBS, denoted by I, for each bit b of a variable x possibly

influencing the neutrality, and for c ∈ {0, 1}, do the following.
3. Experimentally evaluate the following probabilities over the conforming pairs.

– Pr[I is neutral], i.e., the neutral probability of I;
– Pr[b = c], i.e., the probability of b taking value c;
– Pr[I is neutral and b = c], i.e., the probability of I is neutral and b taking

value c for a random conforming pair;
4. Compute Pr[I is neutral | b = c] as Pr[I is neutral and b=c]

Pr[b=c] (when Pr[b = c] = 0, set
Pr[I is neutral | b = c] as 0.

5. If Pr[I is neutral | b = c]− Pr[I is neutral] > τ and Pr[I is neutral | b = c] > ξ,
take I as a useful CSNBS and b = c as its condition, and store in a set CNB.

– In our experiments, N takes 1000. Statistics using 10, 100, 5000 conforming pairs were also
made as preliminary tests. The statistical results do not have obvious divergence when using
more than 100 conforming pairs, thus 1000 should be sufficient.

– In this procedure, τ and ξ are thresholds which can be adjusted to make trade-offs between
the cost of imposing the condition, the number of CNBs, and the quality of CNBs. Typically,
set τ be 0.2 and ξ be 0.8 will work well.

Definition 5 (Switching bits for adjoining differentials, SBfADs). Let i
be an index of a bit. The i-th bit is an switching bit of two differentials δ1 =
∆in1 →∆out and δ2 = ∆in2 →∆out, if for any conforming pair (P, P ⊕ ∆in1)
of δ1, flipping the i-th bit and adjusting the input difference, the resulted pair
(P ⊕ ei, P ⊕ ei ⊕ ∆in2) conforms to δ2 under the same key. We call δ1 and δ2
adjoining differentials.

Conceivably, such adjoining differentials and switching bit should be rare.
However, they do exist. Currently, we found one type for XOR (⊕) differential
of addition modulo 2n (⊞), and the details can be found in Sect. A.1. A concrete
example can be found in Sect. 4.1.

3.5 Paired Differentials Sharing the Same Neutral Bits

From the connecting difference between the CD and theND propagating upward,
there might be multiple differentials similar to CD and have equally good prob-
ability. These similar differentials are likely to share many neutral bits. When
a shared neutral bit happens to be exactly the difference between input differ-
ences of two differentials, one can re-group ciphertext pairs within each cipher-
text structure corresponding to one differential, and obtain ciphertext structures
corresponding to the other differential without additional queries, i.e., doubling
the number of ciphertext structures for free. Formally, one has the following.

Definition 6 (Paired Differentials). let δ1 = ∆in1→∆out and δ2 = ∆in2→
∆out be two differentials with the same output difference and with input differ-
ences satisfying ∆in1 ⊕∆in2 = ∆nbi

. Suppose nbi is a NB/SNBS for both δ1 and
δ2. Then, once a pair of input pair {(P, P ⊕∆in1), (P ⊕∆nbi , P ⊕∆in1 ⊕∆nbi)}

11

is generated for differential δ1, one can re-pair the inputs as {(P, P ⊕ ∆in1 ⊕
∆nbi), (P ⊕∆nbi , P ⊕∆in1)} and obtain a pair of input pair for differential δ2.
Thus, by re-pairing the corresponding ciphertext pairs, the number of ciphertext
structures is doubled. Such two differentials are said to be paired differentials.

Exploiting paired differentials can reduce the data complexity by half, but is
only of interest when the two differentials are with almost equally good probabil-
ity and share enough neutral bits to be used in key-recovery attacks. An example
can be found in Sect. 4.1.

Remark 3. Noticeably, the example of paired differentials is exactly the example
of adjoining differentials in Sect. 4.1. However, this same example plays different
roles when employed as paired differentials or as adjoining differentials. Employ-
ing as the former is to reuse data by re-pairing, employing as the latter is to
achieve the effect of neutral bits. If a single pair of differentials acts as paired
differentials and adjoining differentials simultaneously, the generated data pairs
will be all different. Thus, two differentials can play both roles at the same time.

Remark 4. Reusing data to form different pairs adds dependencies between the
chosen data pairs. However, the influence of such dependencies should not matter.
We performed the attacks with and without reusing the data. The results show
that as long as the total number of ciphertext structures and their size are the
same, the success rates are roughly the same.

Remark 5. There is an implicit relation between neutral bits of a differential and
high-order differential. An SNBS Is of a differential ∆in→∆out defines a special
high-order differential ∆a1,a2→0, where a1 = ∆in and a2 =

⊕
i∈Is

ei.
Besides, there is an interesting relation between neutral bits and the mixture-

differential distinguisher of AES [17]. Some neutral bits found for Speck32/64
and Simon32/64 in this work can result in some bit-level mixture quadruples.

4 Key Recovery Attack on Round-Reduced Speck32/64

This section shows that the neural distinguishers have not reached their full po-
tential in the key-recovery attacks in [15]. They could be harnessed to cooperate
with classical cryptanalytic tools and perform key-recovery attacks competitive
to the attacks devised by orthodox cryptanalysis. In the following, we present key-
recovery attacks employing the same neural distinguishers used in the 11-round
and 12-round attacks on Speck32/64 in [15]. The first neural distinguishers
based 13-round attack and an improved 12-round attack were obtained.

The improved attacks follow the framework of the improved key-recovery at-
tacks in [15]. An r-round main and an (r − 1)-round helper NDs are employed,
and an s-round CD is prepended. The key guessing procedure applies a simple
reinforcement learning procedure. The last subkey and the second to last sub-
key are to be recovered without exhaustively using all candidate values to do
one-round decryption. Instead, a Bayesian key search employing the wrong key
response profile is to be used.

12

The prepended CDs to be used in the improved attacks include the same
2-round differential used in the attack in [15] and four new 3-round differentials.
The preliminary is to find enough NBs of these differentials to obtain enough
samples of the same distribution so that we can use the combined response from
the NDs. In the following, the SNBSs, CNBs, and SBfADs introduced in Sect. 3
are to be found and exploited.

4.1 Finding CSNBSs for Speck32/64

For finding NBs of the differential of round-reduced Speck32/64, we used an
exhaustive search for empirical results because of the complexity brought by the
carry of modular addition.

Finding SNBSs for 2-round Differential. For the prepended 2-round CD on
top of the NDs, one can experimentally obtain three deterministic NBs and two
SNBSs (simultaneously complementing up to 4 bits) using an exhaustive search.
Besides, bits and bit-sets that are (simultaneous-)neutral with high probabilities
are also detected. Concretely, for the 2-round differential (0x0211, 0x0a04)→
(0x0040, 0x0000), bits and bit-sets that are (probabilistic) (simultaneous-)neutral
are summarized in Table 2.

Table 2: (Probabilistic) SNBSs for 2-round differential (0x0211, 0x0a04) →
(0x0040, 0x0000) of Speck32/64. The statistics were performed on 1000 correct pairs,
each with a different random key. For comparison, one can find the NBs used by attacks
in [15] in Table 9.

NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr.

[20] 1 [21] 1 [22] 1 [9, 16] 1 [2, 11, 25] 1 [14] 0.965 [15] 0.938
[6, 29]0.91 [23] 0.812 [30] 0.809 [7] 0.806 [0] 0.754 [11, 27]0.736 [8] 0.664

Finding SNBSs for 3-round Differential. The 2-round differential
(0x0211, 0x0a04) → (0x0040, 0x0000) can be extended to two optimal (prob.
≈ 2−11) 3-round differentials, i.e.,
(0x0a20, 0x4205)→(0x0040, 0x0000), (0x0a60, 0x4205)→(0x0040, 0x0000).

However, the NBs/SNBSs of these two optimal differentials are very scarce.
There are four sub-optimal 3-round differentials (prob. ≈ 2−12 when being es-
timated following Markov model, but are actually 2−11 for 263 keys and 0 for
another 263 keys, see Sect. D for more details), i.e.,

(0x8020, 0x4101)→(0x0040, 0x0000), (0x8060, 0x4101)→(0x0040, 0x0000),
(0x8021, 0x4101)→(0x0040, 0x0000), (0x8061, 0x4101)→(0x0040, 0x0000).

For these 3-round differentials, the hamming weights of the input differences are
low, and they have more NBs/SNBSs. Still, the numbers of NBs/SNBSs are not

13

enough for appending a weak neural network distinguisher. Thus, conditional
ones were searched using the procedure in Algorithm 3. For ξ = 0.7, the ob-
tained CSNBSs and their conditions are summarized together with unconditional
NBs/SNBSs in Table 4. In the table, the columns titled ‘Post.’ are finally verified
neutral probabilities of the (C)SNBSs when all four conditions are fulfilled.

For each of the four differentials, there are three linear conditions (xy-type)
that are necessary for a pair ((x, y), (x′, y′)) to conform to it, which are listed in
Table 3 (without coloring in gray). For each linear condition, once it is fulfilled,
the probability of the differential increases by a factor of 21. In the following
key-recovery attacks, the linear conditions can be fulfilled by chosen data once
the corresponding bits of k0 are guessed.

Table 3: Necessary conditions to conform to the 3-round differentials (or the dominant
trail in the differential, intermediate differences in the dominant trail are colored in
gray, the condition for the trail instead of the differential is colored in gray, where
c = (x≫7 ⊞ y)⊕ (x≫7 ⊕ y). Each column corresponds to one differential (trail).)

(0x8020, 0x4101) (0x8060, 0x4101) (0x8021, 0x4101) (0x8061, 0x4101)
(0x0201, 0x0604) (0x0201, 0x0604) (0x0201, 0x0604) (0x0201, 0x0604)
(0x1800, 0x0010) (0x1800, 0x0010) (0x1800, 0x0010) (0x1800, 0x0010)
(0x0040, 0x0000) (0x0040, 0x0000) (0x0040, 0x0000) (0x0040, 0x0000)
x[7] = 0,

x[5]⊕ y[14] = 1,

x[15]⊕ y[8] = 0,

x[0]⊕ y[9] = 0.

x[7] = 0,

x[5]⊕ y[14] = 0,

x[15]⊕ y[8] = 0,

x[0]⊕ y[9] = 0.

x[7] = 0,

x[5]⊕ y[14] = 1,

x[15]⊕ y[8] = 1,

y[9]⊕ c[9] = 0.

x[7] = 0,

x[5]⊕ y[14] = 0,

x[15]⊕ y[8] = 1,

y[9]⊕ c[9] = 0.

Table 4: (C)SNBSs for 3-round differential (0x8020, 0x4101) → (0x0040, 0x0000),
(0x8060, 0x4101) → (0x0040, 0x0000), (0x8021, 0x4101) → (0x0040, 0x0000), and
(0x8061, 0x4101)→(0x0040, 0x0000) of Speck32/64.

(8020, 4101) (8060, 4101) (8021, 4101) (8061, 4101)
Bit-set Pre. Post. Pre. Post. Pre. Post. Pre. Post. Condition
[22] 0.995 1.000 0.995 1.000 0.996 1.000 0.997 1.000 –
[20] 0.986 1.000 0.997 1.000 0.996 1.000 0.995 1.000 –
[13] 0.986 1.000 0.989 1.000 0.988 1.000 0.992 1.000 –
[12, 19] 0.986 1.000 0.995 1.000 0.993 1.000 0.986 1.000 –
[14, 21] 0.855 0.860 0.874 0.871 0.881 0.873 0.881 0.876 –
[6, 29] 0.901 0.902 0.898 0.893 0.721 0.706 0.721 0.723 –
[30] 0.803 0.818 0.818 0.860 0.442 0.442 0.412 0.407 –
[0, 8, 31] 0.855 0.859 0.858 0.881 0.000 0.000 0.000 0.000 –
[5, 28] 0.495 1.000 0.495 1.000 0.481 1.000 0.469 1.000 x[12]⊕y[5] = 1
[15, 24] 0.482 1.000 0.542 1.000 0.498 1.000 0.496 1.000 y[1] = 0
[4, 27, 29] 0.672 0.916 0.648 0.905 0.535 0.736 0.536 0.718 x[11]⊕y[4] = 1
[6, 11, 12, 18] 0.445 0.903 0.456 0.906 0.333 0.701 0.382 0.726 x[2]⊕y[11] = 0
A condition at the end of a row is specific to the bit-set at the same row. ‘-’ means that there is no
condition for the corresponding bit-set.
Pre.: probability obtained using 1000 correct pairs without imposing the conditions.
Post.: probability obtained using 1000 correct pairs and imposing all conditions in the last column.
□□□: Neutral bit(-set)s used in the 13-round attack ASpeck13R on Speck32/64.
□□□: Neutral bit(-set)s used in the 12-round attack ASpeck12R on Speck32/64.

14

Exploiting SBfADs. Among the four 3-round differentials, (0x8020, 0x4101)→
(0x0040, 0x0000) and (0x8060, 0x4101) → (0x0040, 0x0000) are adjoining dif-
ferentials, and (0x8021, 0x4101) → (0x0040, 0x0000) and (0x8061, 0x4101) →
(0x0040, 0x0000) are adjoining differentials (refer to Sect. 3.4). The bit 5 of x
(the bit 21 of x‖y) is the SBfAD of both pairs. An SBfAD plays the same role
as a deterministic unconditional NB, thus is better to be used than probabilis-
tic and conditional NBs. Specifically, employing SBfAD saves one guessed key
bit and reduces both time and data complexity by half compared to employing
the CSNBS. In the presented 13-round (resp. 12-round) attacks, this SBfAD is
employed, and one CSNBS (resp. PNBS) in Table 4 can be dismissed.

The reasoning on why one can switch between these differentials by bit 5 of
x can be found in Sect. A.2. Experiments were performed and have verified that
this SBfAD plays a better role than a CSNBS or a PNBS.

Exploiting paired differentials. The four 3-round differentials share most of
the high-probabilistic NBs and the conditions on the NBs. Besides, the neutral
bit [22] makes
(0x8020, 0x4101)→(0x0040, 0x0000) and (0x8060, 0x4101)→(0x0040, 0x0000)
(resp.
(0x8021, 0x4101)→(0x0040, 0x0000) and (0x8061, 0x4101)→(0x0040, 0x0000))
be paired differentials as introduced in Sect 3.5.

Specifically, take the first two differentials for example. They share the neutral
bit [22] and all other useful NB. Since (0x8020, 0x4101) ⊕ (0x8060, 0x4101) =
(0x0040, 0000), while bit [22] corresponds to difference ∆22 = (0x0040, 0000),
ciphertext structures for (0x8060, 0x4101)→ (0x0040, 0x0000) can be directly
obtained from that of (0x8020, 0x4101)→ (0x0040, 0x0000) (refer to Sect. 3.5).
Thus, using a paired differentials (as in the following attack ASpeck13R on the
13-round Speck32/64), one can generate half of the required data pairs for free.
Accordingly, the data complexity to get one pair of ciphertexts is one instead of
two.

Further, the data complexity can be slightly reduced by using both paired dif-
ferentials when the attack requires no more than six NBs (the number of shared
unconditional NBs). For the ease of notation, let us denote (0x8020, 0x4101)
as example difference ∆1

E , and (0x8021, 0x4101) as ∆2
E . Six queries of a plain-

text structure consisting of (P , P ⊕ ∆1
E , P ⊕ ∆22, P ⊕ ∆1

E ⊕ ∆22, P ⊕ ∆2
E ,

P ⊕∆2
E⊕∆22) result in eight pairs to be used in the upcoming attack ASpeck12R

on the 12-round Speck32/64. The eight pairs are two pairs (P, P ⊕ ∆1
E) and

(P ⊕ ∆22, P ⊕ ∆1
E ⊕ ∆22) following input difference ∆1

E , two pairs (P, P ⊕
∆1

E ⊕∆22), (P ⊕∆22, P ⊕∆1
E) following input difference ∆1

E ⊕∆22, two pairs
(P, P ⊕∆2

E), (P ⊕∆22, P ⊕∆2
E ⊕∆22) following input difference ∆2

E , and two
pairs (P, P ⊕∆2

E⊕∆22), (P ⊕∆22, P ⊕∆2
E) following input difference ∆2

E⊕∆22.
In such a way, the average data complexity to get one pair of ciphertexts reduces
from 2 to 3/4.

15

4.2 Key Recovery Attack on 13-round Speck32/64

Employing two classical differentials that can simultaneously act as adjoining dif-
ferentials and paired differentials, and combining them with neural distinguishers,
we examine how far a practical attack can go on reduced-round Speck32/64. A
13-round attack, denoted by ASpeck13R , is devised as follows.

The preliminary components that capture characteristics of Speck32/64 for
devising the attack ASpeck13R are as follows.

1. Two 3-round CDs (0x8020, 0x4101)→(0x0040, 0x0000), (0x8060, 0x4101)→
(0x0040, 0x0000) (refer to the rounds colored in blue in Fig. 3), which act
as both adjoining differentials and paired differentials (refer to Remark 3),
11 common NBs (including single-bit NBs, SNBSs, CSNBSs), i.e., NB: {[22],
[13], [20], [5, 28], [15, 24], [12, 19], [6, 29], [4, 27, 29], [14, 21], [0, 8, 31], [30]}
(refer to the columns framed by blue lines in Table 4), and a SBfAD [21];

2. An 8-roundND, namedNDSpeck8R , trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck8R .µ and NDSpeck8R .σ;

3. A 7-round ND, named NDSpeck7R , trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck7R .µ and NDSpeck7R .σ.

The parameters for recovering the last two subkeys are denoted as follows.

1. nkg: the number of possible values for the few guessed bits of k0.
2. ncts: the number of ciphertext structures.
3. nb: the number of ciphertext pairs in each ciphertext structure, i.e., 2|N B|+1.
4. nit: the total number of iterations on the ciphertext structures.
5. c1 and c2: the cutoffs with respect to the scores of the recommended last

subkey and second to last subkey, respectively.
6. nbyit1, ncand1 and nbyit2, ncand2: the number of iterations and number of key

candidates within each iteration in the BayesianKeySearch procedures
(refer to Alg. 4) for guessing each of the last and second to last subkeys.

The attack procedure is as follows (refer to Figures 2 and 3).

1. Initialize variables Gbestkey ← (None, None), Gbestscore ← −∞.
2. For each of the nkg values of the 5 key bits k0[7], k0[15]⊕k0[8], k0[12]⊕k0[5],

k0[1], k0[11]⊕ k0[4] 8,
(a) Generate ncts/2 random data pairs, i.e., (x̃1||ỹ1, x̃′

1||ỹ′
1)’s, with difference

(0x8020, 0x4101), and satisfying the conditions for conforming pairs,

i.e.,
{

x̃1[7] = k0[7],
x̃1[15]⊕ ỹ1[8] = k0[15]⊕ k0[8],

and the conditions for three CSNBSs

i.e.,

x̃1[12]⊕ ỹ1[5]⊕ 1 = k0[12]⊕ k0[5],
ỹ1[1] = k0[1],
x̃1[11]⊕ ỹ1[4]⊕ 1 = k0[11]⊕ k0[4],

(refer to Tables 3 and 4).

8 Since the first two 3-round CDs are used as paired differentials, the key bit k0[5] ⊕
k0[14] does not need to be guessed. Besides, since the CSNBS [6, 11, 12, 18] in Table
4 is not used in the attack, the key bit k0[2]⊕ k0[11] does not need to be guessed. In
total only 5 bits of k0 are guessed

16

(b) From the ncts/2 random data pairs, generate ncts/2 structures using the
NBs in NB, marking the correspondence between old pairs and new pairs
that are generated using the NB [22].

(c) Use the SBfAD [21] to double the number of pairs in each of the ncts/2
structures. The new pairs are generated by flipping the [21] bit in the
original pairs and adjusting the difference to be (0x8060, 0x4101).

(d) Decrypt one round using zero as the subkey for all data in the structures
obtained above and obtain ncts/2 plaintext structures;

(e) Query for the ciphertexts under 13-round Speck32/64 of the ncts/2 ×
nb × 2 plaintexts, obtaining ncts/2 ciphertext structures.

(f) For each couple of ciphertext pairs, denoted by (c1, c′
1) and (c2, c′

2),
whose corresponding couple of data pairs are related by flipping the
neutral bit [22], that is the couple (x̃1||ỹ1, x̃1||ỹ1 ⊕ (0x8020, 0x4101))
and (x̃1||ỹ1⊕(0x0040, 0000), x̃1||ỹ1⊕(0x8020, 0x4101)⊕(0x0040, 0000)),
obtain a new couple of ciphertext pairs, that is (c1, c′

2) and (c2, c′
1). As

a result, the new couples generated in this way correspond to couples
of plaintext pairs for the second differential (0x8060, 0x4101) and its
neutral bit [22]. Thus, additional ncts/2 ciphertext structures can be ob-
tained without new queries. In total, ncts ciphertext structures, denoted
by {C1, . . . , Cncts}, are obtained.

(g) Initialize an array wmax and an array nvisit to record the highest scores
and the numbers of visits obtained by ciphertext structures.

(h) Initialize variables bestscore ← −∞, bestkey ← (None, None), bestpos ←
None to record the best score, the corresponding best-recommended val-
ues for the two subkeys obtained among all ciphertext structures and
the index of this ciphertext structure.

(i) For j from 1 to nit:
i. Compute the priority of each of the ciphertext structures as follows:

si = wmaxi+α·
√

log2(j)/nvisiti, for i ∈ {1, . . . , ncts}, and α = √ncts;
This formula of priority is designed according to a general method
in reinforcement learning for achieving automatic exploitation ver-
sus exploration trade-off based on Upper Confidence Bounds. It is
motivated to focus the key search on the most promising ciphertext
structures [15].

ii. Pick the ciphertext structure with the highest priority score for fur-
ther processing in this j-th iteration, denote it by C, and its index
by idx, nvisitidx ← nvisitidx + 1.

iii. Run BayesianKeySearch with C, the neural distinguisherNDSpeck8R

and its wrong key response profile NDSpeck8R .µ and NDSpeck8R .σ,
ncand1, and nbyit1 as input parameters; obtain the output, that is a
list L1 of nbyit1 × ncand1 candidate values for the last subkey and
their scores, i.e., L1 = {(g1i, v1i) : i ∈ {1, . . . , nbyit1 × ncand1}}.

iv. Find the maximum v1max among v1i in L1, if v1max > wmaxidx,
wmaxidx ← v1max.

v. For each recommended last subkey g1i ∈ L1, if the score v1i > c1,

17

A. Decrypt the ciphertexts in C using the g1i by one round and
obtain the ciphertext structure C′ of 12-round Speck32/64.

B. Run BayesianKeySearch with C′, NDSpeck7R and its wrong
key response profile NDSpeck7R .µ and NDSpeck7R .σ, ncand2, and
nbyit2 as input parameters; obtain the output, that is a list L2 of
nbyit2×ncand2 candidate values for the second to last subkey and
their scores, i.e., L2 = {(g2i, v2i) : i ∈ {1, . . . , nbyit2 × ncand2}}.

C. Find the maximum among v2i and the corresponding g2i in L2,
and denote them by v2max and g2max.

D. If v2max > bestscore, update
bestscore ← v2max, bestkey ← (g1i, g2max), bestpos ← idx.

vi. If bestscore > c2, go to Step 2j.
(j) Make a final improvement using VerifierSearch [14] on the value of

bestkey by examining whether the scores of a set of keys obtained by
changing at most 2 bits on top of the incrementally updated bestkey
could be improved recursively until no improvement is obtained, up-
date bestscore to the best score in the final improvement; If bestscore >
Gbestscore, update Gbestscore ← bestscore, Gbestkey ← bestkey.

3. Return Gbestkey, Gbestscore.

Remark 6. In Gohr’s implementations of the attack [14], two bits of g1 are ran-
domly assigned instead of being recommended by minimizing the weighted eu-
clidean distance. This is based on observation of the symmetry of the wrong
key response profiles, which indicates that values of the last two bits of the last
subkey have almost the same influence on the response, thus hard to be correctly
guessed. In our implementations, guessing these two bits in the last subkey is
integrated into guessing the second to the last subkey, which is done using the
stronger helper ND. The wrong key response profile with respect to the helper
ND are thus on 18 key bits. In doing so, these two key bits can be correctly
recommended with a higher probability.

In the experimental verification of the attack ASpeck13R , the 8-round and 7-
round neural distinguishers provided in [14] were used. The accuracy ofNDSpeck8R

(resp. NDSpeck7R) is about 0.514 (resp. 0.616). Concrete parameters and the
complexity of ASpeck13R are as follows (see Figure 5).

nkg = 25, nb = 211+1, ncts = 212, nit = 4× ncts

c1 = 18, c2 = −500, nbyit1 = nbyit2 = 5, ncand1 = ncand2 = 32

The data complexity is nkg×nb×ncts, that is, 25+11+1+12, i.e., 229 plaintexts
(because of the use of two matched differentials, data complexity for getting each
ciphertext pair is 1 instead of 2.)

To make the experimental verification economic, we tested the core of the
attack with the five conditions being fulfilled only. That is, tested whether a
particular one of 2nkg loops in Step 2 can successfully recover the last two subkeys.
In that particular loop, the trialed value of the 5 bits of k0 is correct. In the other
loops, the trialed values deviate from the correct value by at least one bit. The

18

other loops can be expected to obtain worse scores and wrong key guesses than
that particular loop. Besides, since the prepended classical differentials are valid
to keys fulfilling k2[12] 6= k2[11], we tested for these valid keys only, and the
presented attack works for 263 keys (refer to Sect. D).

The core of the attack was examined in 40 trials. We count a key guess
as successful if the returned last two subkeys and the real two subkeys have
a Hamming distance at most two in total. Among the 40 trials, there are 33
successful trials. Thus, the success rate is 33/40, which is 0.8250.

The trials were executed using a server with 8 GPUs9. The maximum execu-
tion time (worst-case run time) among the 40 runs is 14.5 hours (which runs all
the nit, i.e., 214 iterations). For 25 loops in Step 2, the worst situation is that
within each loop, all nit iterations are executed. Accordingly, the full attack
requires about 25 × 14.5, i.e., 464 GPU hours, which is equivalent to 248.67+r

executions of Speck32/64 10.

Remark 7. For invalid guesses of the few bits of k0, worse scores and wrong key
guesses for the last two subkeys will be obtained. Invalided guesses of bits of
k0 directly cause all or most ciphertext pairs in all ciphertext structures to be
nonconforming pairs (wrong ciphertext structures). For wrong ciphertext struc-
tures, the scores of the recommended last and the second to last subkeys will be
very low such that fewer last subkeys will pass cutoff c1, and almost no second
to the last subkey will pass cutoff c2. Therefore, under invalid key guesses of k0,
all nit iterations will be used. Using nkg times the worst-case run-time (which is
taken by a failed trial using all the nit iterations) of an attack core provides a
conservative estimation of the time complexity of a full attack.

4.3 Key Recovery Attack on 12-round Speck32/64

To devise key-recovery attack on 12-round Speck32/64, Gohr in [15] used the 2-
round classical differential (0x0211, 0x0a04)→(0x0040, 0x0000) combined with
the 8-round and 7-round NDs. For amplifying the weak signal from the 8-round
neural distinguisher, 13 single-bit NBs of the prepended 2-round CD were ex-
ploited. However, many of the 13 NBs are neutral with probabilities that are
not high (refer to Table 9). Besides, 500 ciphertext structures and 2000 iter-
ations were used to achieve a success rate of 0.40. Thus, the data complexity
is 500 × 213 × 2, i.e., 222.97 plaintexts. The attack takes roughly 12 hours on a
quad-core PC (as listed in Table 1).

From Table 2, one can see that there are many SNBSs being deterministically
neutral or neutral with relatively high probability. Using 13 SNBSs, cutting the
required data by nearly half, and using the following parameters, our experiments
9 Tesla V100-SXM2-32GB, computeCapability: 7.0; coreClock: 1.53GHz; coreCount:

80; deviceMemorySize: 31.72GB; deviceMemoryBandwidth: 836.37GB/s)
10 Under the assumption that one second equals the time of 228 executions of

Speck32/64 on a CPU, and r = log2(cpu/gpu), where cpu is the CPU time and gpu
is the GPU time running an attack. In our computing systems, r = 2.4

19

show that the success rate of the resulting attack can be increased to 0.86 using
fewer data (see Fig. 6).

nkg = 0, nb = 213, ncts = 28, nit = 210

c1 = 15, c2 = 500, nbyit1 = nbyit2 = 5, ncand1 = ncand2 = 32

However, the data complexity is still bounded by the weakness of the 8-
round ND. To further reduce the data requirement, we employ the 3-round CDs
and combine them with the stronger 7-round (and 6-round) ND. In this case,
unconditional SNBSs are enough for the 7-round ND. Thus, those conditional
ones can be dismissed in such a 12-round attack. Besides, since bit [21] is an
SBfAD which switches the first two and the last two differentials, it can be used
to replace a probabilistic NB. The four 3-round differentials share enough NBs,
thus, all can be employed, which makes it possible to obtain one plaintext pair
with 3/4 instead of 2 queries (as discussed in Sect. 4.1).

Concretely, the components of the 12-round key-recovery attack, denoted by
ASpeck12R , are as follows.

1. Four 3-round CDs (0x8020, 0x4101)→(0x0040, 0x0000), (0x8060, 0x4101)→
(0x0040, 0x0000), (0x8021, 0x4101)→(0x0040, 0x0000), (0x8061, 0x4101)→
(0x0040, 0x0000), five neutral bit(-set)sNB: {[22], [13], [20], [12, 19], [14, 21]}
(refer to the rows framed by green lines in Table 4), one SBfAD [21];

2. A 7-round ND, named NDSpeck7R , trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck7R .µ and NDSpeck7R .σ;

3. A 6-round ND, named NDSpeck6R trained with difference (0x0040, 0x0000)
and its wrong key response profiles NDSpeck6R .µ and NDSpeck6R .σ.

The framework of the 12-round attack ASpeck12R follows that of ASpeck13R .
The difference is that, in the beginning, we only guess one key bit of k0, that
is k0[7], because for all four 3-round differentials, there is only one common
condition for conforming pairs, i.e., x1[7] = 0 (refer to Table 3). Thus, nkg is 21,
and there are only 2 outermost loops.

The concrete parameters and complexity of ASpeck12R are as follows (see
Fig. 7 for details). The accuracy of NDSpeck7R (resp. NDSpeck6R) is about 0.616
(resp. 0.788).

nkg = 21, nb = 25+1, ncts = 212, nit = 213

c1 = 8, c2 = 10, nbyit1 = nbyit2 = 5, ncand1 = 2× ncand2 = 64

The data complexity is nkg×ncts×nb×3/4, that is, 218.58 plaintexts. To compare
with previous attacks, the experiments were done using CPUs. Concretely, 128
trials were done with 32 threads in a CPU server11. Within the 128 trials, 2 trials
have no correct ciphertext structures. In the remaining 126 trials, there are 107
successful trials (the returned last two subkeys have a Hamming distance to the
real subkeys at most two). The success rate is 107/128, i.e., 0.8359.
11 Equipped with a 32-core Intel Cascade-Lake Xeon(R) Platinum 9221 2.30 GHz, and

with 384GB RAM, on CentOS 7.6.

20

The maximum execution time among the trials is 4.4 hours (which runs all
the nit, i.e., 8192 iterations). Repeating 21 times, the maximum run time should
be about 8.8 CPU hours, which is equivalent to 242.97 executions of Speck32/64.

Trade-off. If accepting a success rate of 0.6016, the data complexity can be
further reduced to 217.58 (by setting ncts = 211, c1 = 7, ncand1 = 32) (see Fig. 8
for details).

Comparison. Compared to classical attacks on Speck32/64 (refer to Table 1),
these new attacks commonly employ longer distinguishers consisting of short CDs
and NDs, and their key-guessing phase covers fewer rounds. As for complexity,
their advantage is considerable in terms of time. Compared to previous ML-based
results in [15], for attacking 12-round, the success rate improves considerably
using fewer data; most importantly, one more round is covered.

5 Tuning Parameters for the Key Recovery Attacks

The key-recovery attack with UCB and BayesianKeySearch has shown its
effectiveness in guessing keys in [15] and this work. However, the tuning of the
parameters, especially the cutoffs, which determine the execution time and the
success rate, is still missing theoretical guidance up to the time of this work. Thus,
in this section, we provide detailed experimental data and derived observations to
bring some light on tuning important parameters and making better trade-offs.

5.1 Exhibitions of important statistics in various attacks

It is noticed that v1max (i.e., max({v1i | v1i ∈ L1})) in the key-recovery phase
is an important variable determining the priority of each ciphertext structure and
indicates whether promising sub-keys are discovered in each run of BayesianKey-
Search. Investigating the distributions of this variable corresponding to correct
ciphertext structures (denoted by Dv1max

r) and wrong ciphertext structures (de-
noted by Dv1max

w) is helpful. These distributions can be used to learn how to
tune cutoff c1 to make trade-offs between time complexity and success rate. In-
vestigating the distributions of v2max (i.e., max({v2i | v2i ∈ L2})) could be
used to learn how to tune cutoff c2 (denoted by Dv2max

r and Dv2max
w for correct

ciphertext structures and wrong structures, respectively). Thus, together with
the information on attack configurations, attack complexity, and success rate,
histograms are given to show Dv1max

r , Dv1max
w , Dv2max

r , Dv2max
w for each presented

attack (ASpeck13R and ASpeck12R). Concretely, for each attack, details of the fol-
lowing statistics are illustrated in its corresponding figure (e.g., Figures 5 to 8).

– Dv1max
w , Dv1max

r , Dv1max
s : indicated using rand, real, and succ in the his-

tograms, respectively; Dv1max
s is the distribution of v1max corresponding to

the successfully recovered subkeys.
– qctw, qctr: percentage of v1max’s corresponding to wrong (resp. correct) ci-

phertext structures passing cutoff c1;

21

– percentage of passing samples if different cutoffs are set, including both the
quantile plot with the samples and the plot with the best fitting generalized
logistic distribution on the samples;

– similar statistics for v2max (including Dv2max
r , Dv2max

w , Dv2max
s)12;

– distribution of Hamming distances between returned and the real subkeys;
– distribution of the used number of iterations in successful attacks.

5.2 Some rules of thumb

Apart from substantial illustrations of previously hidden details of the key-
recovery phase, the following observations are made to provide some rules of
thumb for deciding the number of data required and the cutoff c1. Before that,
we note that compared to c1, cutoff c2 is much easier to decide because a suc-
cessful attack requires the value of c2 to be ‘at the top rank’ (compared with a
‘threshold’ sense of cutoff c1). Thus, it is safe to select a value for c2 that is just
large enough to be uncovered by Dv2max

w .

Observation 1 Suppose in the above attack framework, the probability of the
prepended differential is p, the number of ciphertext structures is ncts. Denote
the attack success probability by Ps.

Note that Ps ≤ 1 − (1 − p · q)ncts , where q is the probability for the re-
sponse v1max from a correct ciphertext structure pass the cutoff c1, i.e., q =
PrCr [v1max ≥ c1], where Cr is space of correct ciphertext structures.

Thus, the following relation should be fulfilled:

ncts ≥
log2(1− Ps)

log2(1− p · q)
.

For given ncts, p, and Ps, the cutoff c1 should be chosen such that

c1 ≤ Q(1− 1− (1− Ps)
1

ncts

p
),

where Q(·) is the quantile function of the distribution of v1max corresponding to
correct ciphertext structures, i.e., Dv1max

r .

For example, in the attack configuration in Fig. 5, after correctly guessing
the key bits in k0, the probability p of the prepended differential is 2−9; suppose
c1 is selected as 18 so that q is 0.31; then, to have a success probability of 0.82,
the required number of ciphertext structures, i.e., ncts should satisfy ncts ≥
log 2(1 − 0.82)/ log 2(1 − 2−9 · 0.31) ≈ 2831.33 ≈ 211.4673. On the other hand,
suppose one selects ncts to be 212, and aims Ps to be 0.82; since p is 2−9, this
requires c1 ≤ Q(1− (1− (1− 0.82)2−12)/2−9) = Q(1− 0.2143) ≈ 20.5.

Note that Observation 1 provides an upper bound on the value of the cutoff
c1. As for a lower bound on c1, we provide the following observations.
12 Some v2max’s corresponding to success cases are lower than cutoff c2; that is due to

the final improvement.

22

The cutoff c1 seems to be the smaller, the better for having a high success
probability. However, a smaller cutoff c1 is not a better choice for having a good
time complexity than a larger one. On the one hand, even using the correct
ciphertext structures, if a recommended subkey gets a small score v1, then, typ-
ically, it also has a large Hamming distance towards the real subkeys; thus, it
is hard to produce good recommendations for the second to last subkeys. On
the other hand, too small cutoff c1 results in a high percentage of v1 from the
wrong ciphertext structures passing it. As a consequence, a lot of running time
will be wasted on the wrong ciphertext structures. Thus, the cutoff c1 is better
to be large enough such that a low percentage of v1 of bad recommendations of
last subkeys (e.g., with more than Hamming distance 3 to the real subkey) from
both correct and wrong ciphertext structures is passing it.

The preliminary to use these observations as guidance to tune the parameters
is to have a good knowledge of the distribution Dv1max

r and Dv1max
w . Experimental

investigations on Dv1max
r and Dv1max

w can be found in Sect. B.3.

6 Neural Distinguishers on Round-Reduced Simon32/64

This section presents the neural distinguishers on Simon32/64 obtained in this
work, using which a key-recovery attack covering 16 rounds is devised and pre-
sented in Sect. E. Besides, DDT-based DDs are computed and provide baselines
for NDs. Comparisons between DDs and NDs are made accordingly.

6.1 The Choice of the Network Architecture

Considering that several state-of-the-art neural network structures have been
developed, a preliminary search for a better network other than the Residual
Network (ResNet) [18] used in [15] was conducted. Specifically, Dense Network
(DenseNet) [20] shows advantages in parameter efficiency, implicit deep supervi-
sion, and feature reuse. Squeeze-and-Excitation Network (SENet) [19] won the
first place in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC
2017) for classification tasks. SENet can also be combined with existing deep
architectures to boost performance at a minimal additional computational cost.
One example is the SE-ResNeXt that employs squeeze-and-excitation blocks
and uses the ResNeXt as backbone. Thus, these two networks, together with
ResNet, were investigated. The results on the performance of distinguishers that
cover 7 to 9 rounds Simon32/64 under the three different network structures
are presented in Table 5. From the comparison, for longer rounds, SENet yields
distinguishers that are superior to that of the other two. In the following, we
only report essential details of the distinguishers trained using the SENet.

6.2 The Training of Neural Distinguishers

The training schemes follow that in [15]. All three schemes are attempted. For
short rounds, the basic training scheme already works well. For longer rounds,

23

the KeyAverageing and Staged schemes are necessary to achieve distinguishers
with non-marginal advantage. Due to the specific round structure of Simon,
distinguishers fed with partial values combined with partial differences between
ciphertext pairs, instead of full values of ciphertext pairs, should be more useful
than their counterparts for carrying out key-recovery attacks. Thus, we trained
distinguishers accepting data composed partial values and partial differences.

The input difference is (0x0000, 0x0040). This choice takes into account both
the ND and the prepended CD, whose output difference is this input difference of
the ND. The goal is to obtain the best hybrid distinguisher to make the longest
key-recovery attack. Therefore, the firstly examined were the intermediate dif-
ferences in the best 13-round differential trail [10]. All intermediate differences
were examined by training NDs. This difference, (0x0000, 0x0040), yielded the
best 7, 8, and 9-round NDs and, at the same time, allows prepending a good CD,
thus resulting in the best hybrid distinguisher. Note that since the differentials
of Simon32/64 has a rotational equivalent property along with the 16-bit word,
all r-round NDs with input difference (0, ei) and (r− 1)-round NDs with input
difference (ei, 0) were found to have similar accuracy, for 0 ≤ i < 16.

Training using the basic scheme. Using the basic training scheme and adopt-
ing SENet (more precisely, the adopted is the SE-ResNeXt variant), neural distin-
guishers to recognize output pairs of 7-, 8-, 9-round Simon32/64 with the input
difference (0x0000, 0x0040) are obtained. That is, given an output pair (x, y)
and (x′, y′) and represented in the form of (x, y, x′, y′), they can predict whether
the data corresponds to input pairs with difference (0x0000, 0x0040) of the 7-, 8-,
9-round Simon32/64. To make a distinction from their counterparts accepting
transformed data, i.e., (x, x′, y⊕y′), the 7-, 8-, 9-round neural distinguishers pre-
sented here are named as NDSimon7R

VV , NDSimon8R

VV , and NDSimon9R

VV , respectively.
The 7-round NDSimon7R

VV achieves an accuracy as high as 0.9825, which drops by
0.17 per round to 0.8151 and 0.6325 for NDSimon8R

VV and NDSimon9R

VV , respectively.

Training to simulate KeyAverageing algorithm. Successful training of the
10-round distinguisher is achieved by adopting the training scheme of simulating
a KeyAverageing Algorithm [15] used with the 9-round NDSimon9R

VV . Concretely, a
size 220 sample set S of ciphertext pairs for 10-round Simon32/64 is generated,
one half corresponds to plaintext pairs with difference (0x0000, 0x0040) and the
other half corresponds to random plaintext pairs. The labels of these samples are
not assigned directly but using the KeyAverageing Algorithm calling the 9-round
NDSimon9R

VV . That is, each ciphertext pair ci in the set S is decrypted by one-
round using all possible values of the 10-th round subkey; thus 216 intermediate
values c′

i,j ’s for j ∈ {0, 1}16 are generated; grading the c′
i,j ’s using the 9-round

NDSimon9R

VV , and combining the 216 scores into a score for the ciphertext pair ci

by transforming the scores into real-vs-random likelihood ratios and averaging.
This combined score is then taken as the label of ci in S. Using the sample set
S with the labels so obtained, a training, which follows the training of the best

24

7-round neural distinguisher in [15], is performed from a randomly initialized
network state. This training procedure results in a 10-round distinguisher, named
NDSimon10R

VV , with an accuracy of 0.5551.

Training using the Staged Training Method. The best 10-round and 11-
round distinguisher are trained using the staged training method, which was the
same method used to train the 8-round distinguisher of Speck32/64 in [15].
Concretely, for training an 11-round ND, in the first stage, the best 9-round
distinguisher NDSimon9R

VV is retained to recognize 8-round Simon32/64 with the
input difference (0x0440, 0x0100). Note that the most likely difference to appear
three rounds after the input difference (0x0000, 0x0040) is (0x0440, 0x0100),
and the probability is about 2−4. In this first stage, the number of examples
for training and for testing are 228 and 226, respectively. The number of epochs
is 10 and the learning rate is 10−4. In the second stage, the resulted network
of the first stage is retained to recognize 11-round Simon32/64 with the input
difference (0x0000, 0x0040). For this training, 230 examples are freshly generated
and fed, and 228 examples are for verification. One epoch with a learning rate
of 10−4 is done. In the last stage, the resulting network of the second stage is
retained in two epochs with 230 freshly generated data for training and 228 data
for verification. The learning rate is 10−5. The resulting distinguisherNDSimon11R

VV
achieves an accuracy of 0.5174.

Training using Data of Form (x, x′, y ⊕ y′). Notice that once the output
of the r-th round (xr, x′

r, yr, y′
r) is known, one can directly compute (xr−1, x′

r−1,
yr−1 ⊕ y′

r−1) without knowing the (r − 1)-th subkey. Thus, an (r − 1)-round
distinguisher accepting data of the form (x, x′, y⊕ y′) can be used as an r-round
distinguisher in the key-recovery attack. With this consideration, (r − 1)-round
distinguishers accepting data of the form (x, x′, y⊕y′) are trained to see whether
they are superior to r-round distinguishers accepting data of the form (x, x′, y, y′).
To make a distinction, let us denote the former by NDSimon(r−1)R

VD and the latter
by NDSimonrR

VV .
The results show that NDSimon(r−1)R

VD could achieve slightly better accuracy
than NDSimonrR

VV . Besides, the wrong key response profiles of NDSimon8R

VD and
that of NDSimon9R

VV share observable pattern and symmetry. For key values that
have little different from the real value, responses from NDSimon8R

VD are higher
than responses from NDSimon9R

VV . Similar observations can be derived from a
comparison between that of NDSimon9R

VD and that of NDSimon10R

VV .
Summaries on various distinguishers are presented in Table 5 for detailed

accuracy and in Fig. 19 for their wrong key response profiles.

6.3 Computing DDs and Further Interpretations

To provide baselines for NDs, we calculate the full distribution of differences
for Simon32/64 induced by the input difference 0x0000/0040 up to 11 rounds

25

Table 5: Summary of neural distinguishers on Simon32/64
#R Name Network Accuracy True Positive Rate True Negative Rate

6 DDSimon6R
DD DDT 0.9918 0.9995 0.9841

7 ResNet 0.9823 ± 1.2 × 10−4 0.9996 ± 2.7 × 10−5 0.9650 ± 2.3 × 10−4

NDSimon7R
VV SENet† 0.9802 ± 1.3 × 10−4 0.9987 ± 4.2 × 10−5 0.9617 ± 2.4 × 10−4

DenseNet 0.9244 ± 2.7 × 10−4 0.9670 ± 2.2 × 10−4 0.8818 ± 4.5 × 10−4

7 DDSimon7R
DD DDT 0.8465 0.8641 0.8288

8 NDSimon8R
VV SENet† 0.8150 ± 4.2 × 10−4 0.8418 ± 5.5 × 10−4 0.7882 ± 5.1 × 10−4

ResNet 0.7912 ± 4.2 × 10−4 0.8041 ± 5.5 × 10−4 0.7783 ± 6.2 × 10−4

DenseNet 0.7789 ± 4.4 × 10−4 0.7709 ± 6.8 × 10−4 0.7868 ± 5.6 × 10−4

8 DDSimon8R
DD DDT 0.6628 0.5781 0.7476

8 NDSimon8R
VD SENet† 0.6587 ± 4.8 × 10−4 0.5586 ± 7.4 × 10−4 0.7588 ± 5.6 × 10−4

9 NDSimon9R
VV SENet† 0.6515 ± 5.3 × 10−4 0.5334 ± 7.0 × 10−4 0.7695 ± 5.7 × 10−4

ResNet 0.6296 ± 4.5 × 10−4 0.5164 ± 6.3 × 10−4 0.7429 ± 5.5 × 10−4

DenseNet 0.6443 ± 4.1 × 10−4 0.5337 ± 6.1 × 10−4 0.7550 ± 5.0 × 10−4

9 DDSimon9R
DD DDT 0.5683 0.4691 0.6674

9 NDSimon9R
VD SENet† 0.5657 ± 4.9 × 10−4 0.4748 ± 7.1 × 10−4 0.6565 ± 6.6 × 10−4

10 NDSimon10R
VV

+ SENet† 0.5610 ± 4.5 × 10−4 0.4761 ± 6.0 × 10−4 0.6460 ± 7.2 × 10−4

NDSimon10R
VV

∗ SENet† 0.5549 ± 4.6 × 10−4 0.4605 ± 6.5 × 10−4 0.6493 ± 7.7 × 10−4

10 DDSimon10R
DD DDT 0.5203 0.5002 0.5404

11 NDSimon11R
VV SENet† 0.5174 ± 5.3 × 10−4 0.5041 ± 7.1 × 10−4 0.5307 ± 7.9 × 10−4

11 DDSimon11R
DD DDT 0.5044 0.4852 0.5236

† More precisely, the adopted is the SE-ResNeXt variant.
- The network structure and parameters for the ResNet follow exactly that used in [14] for training
the NDs on Speck32/64 except for the learning rate. Using a smaller learning rate (i.e.,
cyclic_lr(10,0.001,0.00001)) instead of the original learning rate (i.e., cyclic_lr(10,0.002,0.0001))
results in a better accuracy (e.g., 0.6296 vs 0.6110 for 9-round) for NDs on Simon32/64.
* This neural distinguisher is trained using the KeyAveraging algorithm.
+ This neural distinguisher is trained using the staged training method.

(see Table 5). This is done using the framework of Gohr’s implementation for
Speck32/64 and integrating the algorithm for computing one-round differential
probability for Simon offered by Kölbl et al. in [24]. Note that, the fed data to
r-round ND are values of ciphertexts, from which, for Simon, one can directly
compute the differences on (r − 1)-round outputs without knowing the subkey.
Thus, NDSimonrR

VV or NDSimon(r−1)R

VD should be compared with NDSimon(r−1)R

DD .

The results show that NDSimonrR

VV and NDSimon(r−1)R

VD achieve similar but
weaker classification accuracy than NDSimon(r−1)R

DD . To further evaluate the gaps
between the advantage of DD over ND, we devised a key ranking task, as done
by Gohr for comparing NDs and DDs on Speck32/64 in [15]. Specifically, a sim-
ple key ranking procedure to recover the last subkey on 11-round Simon32/64
can be performed both by DDSimon8R

DD or NDSimon8R

VD in a configuration of 1+8+2.
Table 6 shows the performance of DDSimon8R

DD and NDSimon8R

VD in the ranking for
real subkeys among 216 candidate subkeys. It can be seen that they both work
well in this task; the data requirement is 64 chosen plaintexts to achieve a success

26

Table 6: Comparing ND and DD on Simon32/64 using statistics in a simple key
recovery attack on 11-round Simon32/64. The configuration is 1+8+1+1, i.e., a free
prepended invert round, an 8-round distinguisher, a free inverting round, and a key-
guessing (last) round. All data are based on 1000 trials of the respective attacks, all
measurements of these statistics follow that in [15]: The rank of the real subkey is
in the range [0, 216); it is defined as the number of subkeys ranked higher, i.e., rank
0 corresponds to successful key recovery. When several keys were ranked equally, the
right key was assumed to be in a random position among the equally ranked keys.
The reported error bars around the mean are for a 2σ confidence interval, where σ is
calculated based on the observed standard deviation of the key rank. #D indicates the
number of chosen plaintexts.

#D Distinguisher Mean of key rank Median key rank Success rate

32 × 2 DDSimon8R
DD 11.8 ± 3.1 1.0 0.238

NDSimon8R
VD 43.9 ± 21.4 2.0 0.188

64 × 2 DDSimon8R
DD 0.9 ± 0.2 1.0 0.415

NDSimon8R
VD 1.3 ± 0.2 1.0 0.335

rate of around 20%. However, NDSimon8R

VD is slightly inferior to DDSimon8R

DD . To
achieve the same success rate, NDSimon8R

VD requires more data than DDSimon8R

DD ,
but the difference is less than twice.

These comparisons suggest that r-round NDSimonrR

VV can “decrypt” one un-
keyed round to obtain the (r − 1)-round difference and learn the differential
distribution, which confirms the interpretation in [7], but fails to learn more
features beyond the distribution of differences.

Remark 8. This fact for Simon is different from the corresponding conclusion for
Speck. For Speck, knowing values of ciphertexts, without knowing the subkey,
one can only compute half but not full of the differences on (r−1)-round outputs.
Thus, the counterpart of r-round ND is r-round DD. From [15], r-round ND
learns additional features beyond differences and has better classification accu-
racy than r-round DD. We conjecture that the mean reason is that, for Speck,
pure XOR-difference DDs cannot provide the best baselines for NDs. On the one
hand, they are not accurate because of being computed following the Markov
assumption. On the other hand, features related to generalized XOR-difference
through modular addition and multi-bit constraints [12, 25] might be useful to
capture the additional features in outputs of Speck32/64. For examples, Ta-
bles 7 and 8 present generalized constraints beyond XOR-differences on some
differential trails, considering which the probability of the trails could be refined.
In contrast, for Simon32/64, the XOR-differences distribution table computed
using the Markov model might already be an accurate approximation for the
actual differential distribution.

We note that the NDs on Speck32/64 might also “decrypt” half of the “un-
keyed” last round to retrieve the input values on the right branch yr−1. This
interesting fact that the NDs can “learn to decrypt up to the values not messed
up by outer subkey” might be due to the design by Gohr, as explained in [15]

27

as “the use of the initial width-1 convolutional layer is intended to make the
learning of simple bit-sliced functions such as bit-wise addition easier”. Remark-
ably, for Simon32/64, the NDs seems to have also successfully peeled off the
nonlinear bit-wise AND layer in the last round. For deeper look into the NDs
on Simon32/64, please refer to Sect. G.

7 Conclusions and Future Work

This paper shows practical key-recovery attacks up to 13 rounds of Speck32/64.
This advances state of the art on practical attacks by one round. It shows that the
way the underlying neural distinguishers were used in the previous differential-
neural attacks is not optimal. Accordingly, the differential-neural cryptanalysis
on Speck32/64 has more potential than it originally exhibited.

The methods developed, particularly those generalized neutral bits, are not
intrinsically linked to neural network-based cryptanalysis. They are expected
to be useful for the conversion of a wider range of deep weak distinguishers to
competitive key recovery attacks in general.

The experiments and comparisons made on various distinguishers on round-
reduced Simon32/64 indicate that differential-based neural-distinguishers should
work well in general on modern ciphers. Still, they may not always be superior to
their classical counterparts. Their advantages might be easier to show on ciphers,
on which the differential-like properties have not been accurately evaluated using
existing tools.

The provided rules of thumb on turning parameters in the UCB and Bayesian
optimization-based key-recovery phase are helpful but far from perfect. For this
advanced key-recovery strategy to be widely applied, a rigorous theoretical model
on the relation between attack parameters, attack complexity, and success prob-
ability is missing, and the building of which is left as future work.

Acknowledgments

The authors would like to thank anonymous reviewers for their insightful and
helpful comments which helped us improve the manuscript significantly. This re-
search is partially supported by Nanyang Technological University in Singapore
under Start-up Grant 04INS000397C230, and Ministry of Education in Singapore
under Grants RG91/20 and MOE2019-T2-1-060; Zhenzhen Bao was supported
by the Gopalakrishnan – NTU Presidential Postdoctoral Fellowship 2020; the Ts-
inghua University in China under Start-up Grant 533344001; the National Key
R&D Program of China (Grant No. 2018YFA0704701), the Major Program of
Guangdong Basic and Applied Research (Grant No. 2019B030302008), the Shan-
dong Province Key R&D Project (Nos. 2020ZLYS09 and 2019JZZY010133). Me-
icheng Liu was supported by the National Natural Science Foundation of China
(Grant Nos. 62122085 and 12231015), and the Youth Innovation Promotion As-
sociation of Chinese Academy of Sciences.

28

References
1. M. Abadi and D. G. Andersen. Learning to protect communications with adver-

sarial neural cryptography. arXiv preprint arXiv:1610.06918, 2016.
2. F. Abed, E. List, S. Lucks, and J. Wenzel. Differential cryptanalysis of round-

reduced Simon and Speck. In C. Cid and C. Rechberger, editors, FSE 2014, volume
8540 of LNCS, pages 525–545. Springer, Heidelberg, Mar. 2015.

3. H. A. Alkhzaimi and M. M. Lauridsen. Cryptanalysis of the SIMON family of block
ciphers. Cryptology ePrint Archive, Report 2013/543, 2013. https://eprint.iacr.
org/2013/543.

4. J.-P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. New features
of latin dances: Analysis of Salsa, ChaCha, and Rumba. In K. Nyberg, editor,
FSE 2008, volume 5086 of LNCS, pages 470–488. Springer, Heidelberg, Feb. 2008.

5. Z. Bao, J. Guo, M. Liu, L. Ma, and Y. Tu. Enhancing differential-neural cryptanal-
ysis. Cryptology ePrint Archive, Report 2021/719, 2021. https://eprint.iacr.
org/2021/719.

6. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers.
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404, 2013. https://eprint.iacr.org/2013/404.

7. A. Benamira, D. Gérault, T. Peyrin, and Q. Q. Tan. A deeper look at machine
learning-based cryptanalysis. In A. Canteaut and F.-X. Standaert, editors, EURO-
CRYPT 2021, Part I, volume 12696 of LNCS, pages 805–835. Springer, Heidelberg,
Oct. 2021.

8. T. Beyne and V. Rijmen. Differential cryptanalysis in the fixed-key model. Cryptol-
ogy ePrint Archive, Paper 2022/837, 2022. https://eprint.iacr.org/2022/837.

9. E. Biham and R. Chen. Near-collisions of SHA-0. In M. Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 290–305. Springer, Heidelberg, Aug.
2004.

10. A. Biryukov, A. Roy, and V. Velichkov. Differential analysis of block ciphers SI-
MON and SPECK. In C. Cid and C. Rechberger, editors, FSE 2014, volume 8540
of LNCS, pages 546–570. Springer, Heidelberg, Mar. 2015.

11. M. Brickenstein, A. Dreyer, B. Erocal, M. Albrecht, S. King, and C. Bouil-
laguet. Sage 9.3 Reference Manual: Polynomials: Boolean Polynomi-
als. https://doc.sagemath.org/html/en/reference/polynomial_rings/sage/
rings/polynomial/pbori/pbori.html. Accessed: 2021-5.

12. C. De Cannière and C. Rechberger. Finding SHA-1 characteristics: General results
and applications. In X. Lai and K. Chen, editors, ASIACRYPT 2006, volume 4284
of LNCS, pages 1–20. Springer, Heidelberg, Dec. 2006.

13. I. Dinur. Improved differential cryptanalysis of round-reduced Speck. In A. Joux
and A. M. Youssef, editors, SAC 2014, volume 8781 of LNCS, pages 147–164.
Springer, Heidelberg, Aug. 2014.

14. A. Gohr. Implementation of the Improving Attacks on Round-Reduced Speck32/64
Using Deep Learning. GitHub Repository. https://github.com/agohr/deep_
speck, 2019.

15. A. Gohr. Improving attacks on round-reduced Speck32/64 using deep learning. In
A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part II, volume 11693
of LNCS, pages 150–179. Springer, Heidelberg, Aug. 2019.

16. A. N. Gomez, S. Huang, I. Zhang, B. M. Li, M. Osama, and L. Kaiser. Unsupervised
cipher cracking using discrete gans. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018.

29

https://eprint.iacr.org/2013/543
https://eprint.iacr.org/2013/543
https://eprint.iacr.org/2021/719
https://eprint.iacr.org/2021/719
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2022/837
https://doc.sagemath.org/html/en/reference/polynomial_rings/sage/rings/polynomial/pbori/pbori.html
https://doc.sagemath.org/html/en/reference/polynomial_rings/sage/rings/polynomial/pbori/pbori.html
https://github.com/agohr/deep_speck
https://github.com/agohr/deep_speck

17. L. Grassi. Mixture differential cryptanalysis: a new approach to distinguishers and
attacks on round-reduced AES. IACR Trans. Symm. Cryptol., 2018(2):133–160,
2018.

18. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer
Society, 2016.

19. J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu. Squeeze-and-excitation networks.
IEEE Trans. Pattern Anal. Mach. Intell., 42(8):2011–2023, 2020.

20. G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 2261–2269.
IEEE Computer Society, 2017.

21. A. Joux and T. Peyrin. Hash functions and the (amplified) boomerang attack. In
A. Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 244–263. Springer,
Heidelberg, Aug. 2007.

22. V. Klima. Tunnels in hash functions: MD5 collisions within a minute. Cryptology
ePrint Archive, Report 2006/105, 2006. https://eprint.iacr.org/2006/105.

23. S. Knellwolf, W. Meier, and M. Naya-Plasencia. Conditional differential crypt-
analysis of NLFSR-based cryptosystems. In M. Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 130–145. Springer, Heidelberg, Dec. 2010.

24. S. Kölbl, G. Leander, and T. Tiessen. Observations on the SIMON block cipher
family. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part I,
volume 9215 of LNCS, pages 161–185. Springer, Heidelberg, Aug. 2015.

25. G. Leurent. Construction of differential characteristics in ARX designs application
to Skein. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 241–258. Springer, Heidelberg, Aug. 2013.

26. J. Rijsdijk, L. Wu, G. Perin, and S. Picek. Reinforcement learning for hyper-
parameter tuning in deep learning-based side-channel analysis. IACR TCHES,
2021(3):677–707, 2021. https://tches.iacr.org/index.php/TCHES/article/
view/8989.

27. R. L. Rivest. Cryptography and machine learning (invited lecture). In H. Imai,
R. L. Rivest, and T. Matsumoto, editors, ASIACRYPT’91, volume 739 of LNCS,
pages 427–439. Springer, Heidelberg, Nov. 1993.

28. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144,
2018.

29. L. Song, Z. Huang, and Q. Yang. Automatic differential analysis of ARX block
ciphers with application to SPECK and LEA. Cryptology ePrint Archive, Report
2016/209, 2016. https://eprint.iacr.org/2016/209.

30. Stefan Kölbl. CryptoSMT: An easy to use tool for cryptanalysis of symmetric
primitives. https://github.com/kste/cryptosmt.

31. N. Wang, X. Wang, K. Jia, and J. Zhao. Differential attacks on reduced SIMON
versions with dynamic key-guessing techniques. Cryptology ePrint Archive, Report
2014/448, 2014. https://eprint.iacr.org/2014/448.

32. X. Wang and H. Yu. How to break MD5 and other hash functions. In R. Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 19–35. Springer, Heidel-
berg, May 2005.

30

https://eprint.iacr.org/2006/105
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://eprint.iacr.org/2016/209
https://github.com/kste/cryptosmt
https://eprint.iacr.org/2014/448

A SBfADs for XOR-addition modulo differentials

A.1 One type of SBfAD

The following introduces one type of SBfAD for XOR (⊕) differential of addition
modulo 2n (⊞).

For simplicity, consider an ⊕-difference propagation through a single ⊞, de-
noted by δ = (α, β 7→ γ). For an input pair ((x, y), (x ⊕ α, y ⊕ β)) to conform
to the difference propagation δ, that is (x ⊞ y) ⊕ ((x ⊕ α) ⊞ (y ⊕ β)) = γ,
the conforming conditions can be explicitly listed bit-by-bit. Among the bit-by-
bit conditions, one type, denoted by xy-type, is linear and is in the form of
x[i]⊕ y[i] = a; another type, denoted by c-type, is non-linear and is in the form
of x[i] ⊕ c[i] = a or y[i] ⊕ c[i] = a, where a ∈ {0, 1}, c[i] is the i-th bit of the
carry c, and c = (x ⊞ y)⊕ (x⊕ y).

For two ⊕-difference propagation through a single ⊞, δ1 and δ2, if all con-
forming conditions are the same except one, e.g., x[i] ⊕ y[i] = 0 for δ1 and
x[i]⊕y[i] = 1 for δ2, and the i-th bit of x together with the i-th bit of y forms an
SNBS of δ1, then for a conforming pair ((x, y), (x⊕ α, y⊕ β)) of δ1, flipping x[i]
or y[i] and changing the input difference, the resulted pair conforms to δ2. Thus,
the i-th bit of x or of y is an SBfAD for adjoining differentials δ1 and δ2. For two
⊕-differentials propagating several rounds, the x means the input to the first ⊞.
That is, the i-th bit referred is the ((i + 7) mod 16)-th bit of x in Speck32/64.

A.2 An SBfAD for the 3-round Differentials of Speck32/64

The following analysis how
(0x8020, 0x4101)→(0x0040, 0x0000) and (0x8060, 0x4101)→(0x0040, 0x0000)
(resp.
(0x8021, 0x4101)→(0x0040, 0x0000) and (0x8061, 0x4101)→(0x0040, 0x0000))
can be switched by bit 5 of x.

We note that each of the four differentials consists of a dominant trail. Four
dominant trails of the four differentials share the same inner core (colored in
gray in rows 2 and 3 of Table 3). Specifying to these dominant trails, there is
an additional necessary condition (colored in gray in the last row of Table 3) for
conforming to each of the dominant trails 13. For each of the dominant trails,
the additional necessary condition together with the above three necessary con-
ditions form necessary and sufficient conditions for conforming to the outermost
round differential, which is the only different part among the four trails.

Accordingly, from Table 3, the dominant trails of differentials
(0x8020, 0x4101)→(0x0040, 0x0000) and (0x8060, 0x4101)→(0x0040, 0x0000)
(resp.
13 These additional conditions are not necessary to the differentials because they are not

necessary for subordinate trails in the differentials. However, the subordinate trails
have far small probabilities than the dominant ones. Thus, these additional condi-
tions can be seen as almost necessary to the differentials (about 99.5% conforming
pairs fulfill the additional conditions).

31

(0x8021, 0x4101)→(0x0040, 0x0000) and (0x8061, 0x4101)→(0x0040, 0x0000))
have only one different condition, that is x[5] ⊕ y[14] equals 1 or 0. Besides,
from Table 4, the bit 14 of y and the bit 5 of x (the 21 bit of x‖y) forms an
SNBS. Thus, according to Sect. A.1, (0x8020, 0x4101)→ (0x0040, 0x0000) and
(0x8060, 0x4101)→(0x0040, 0x0000) (resp. (0x8021, 0x4101)→(0x0040, 0x0000)
and (0x8061, 0x4101)→(0x0040, 0x0000)) can be seen as adjoining differentials,
and the bit 5 of x is their switching bit.

B Visualizations and Experimental Investigations

B.1 Visualizing the framework and the components of the
key-recovery attacks on Speck32/64

32

Start Core
j ← 0, wmax ← {−∞}, nvisit ← {0}

bestkey ← (None,None),
bestscore ← −∞, bestpos ← None

End Core
Final improvement by Veri-

fierSearch(bestpos, bestkey, bestscore)
If bestscore > Gbestscore,
Gbestscore ← bestscore,
Gbestkey ← bestkey

Upper Confidence Bound
j ← j + 1,

si := wmaxi + α ·
√

log2(j)/nvisiti,
for i ∈ {1, . . . , ncts}

Selected Ciphertext Structure

idx ← argmax(si), C ← Cidx,
nvisitidx ← nvisitidx + 1

BayesianKeySearch with C, NDr,
NDr.µ, NDr.σ, ncand1, nbyit1

Candidates for k−1 and their scores

L1 = {(g1i, v1i) : i ∈
{1, . . . , nbyit1 × ncand1}}

if max (v1i ∈ L1) > wmaxidx,
wmaxidx ← max (v1i ∈ L1).

∃ non-visited (g1i, v1i) ∈
L1 s.t. v1i > cutoff c1

C′ ← F−1
g1i

(C)
BayesianKeySearch with C′, NDr−1,
NDr−1.µ, NDr−1.σ, ncand2, nbyit2

Candidates for k−2 and their scores

L2 = {(g2i, v2i) : i ∈
{1, . . . , nbyit2 × ncand2}}

(v2max, g2max) ←
(v2i′ , g2i′) s.t. v2i′ = max(v2i ∈ L2).

If v2max > bestscore,
bestscore ← v2max, bestkey ←
(g1i, g2max), bestpos ← idx

(j > nit) or (bestscore > cutoff c2)

Yes

No

No

Yes

Test the next value of the
guessed key bits of k0.

Generate ciphertext struc-
tures {C1, . . . , Cncts}

∃ untested value out of the nkg

values of guessed key bits of k0

Start
Initialize Gbestkey ←

(None,None), Gbestscore ← −∞

End
Output Gbestkey as the

guessed value for (k−1, k−2)

Yes

No

The core of the attack

Fig. 2: Framework of the key-recovery attacks

33

≫ (7)

≪ (2)0{
1000 0000 0010 0000

1000 0000 0110 0000

0100 0001 0000 0001

0100 0001 0000 0001

}

x0 y0

x̃1 ỹ1

k0

≫ (7)

≪ (2)k1

x1 y1

...
...

≫ (7)

≪ (2)k3

x3 y3

0000 0000 0100 0000 0000 0000 0000 0000

≫ (7)

≪ (2)k4

x4 y4

...
...

≫ (7)

≪ (2)k10

x10 y10

≫ (7)

≪ (2)k11

x11 y11vvvv vvvv vvvv vvvv vvvv vvvv vvvv vvvv

≫ (7)

≪ (2)k12

x12 y12vvvv vvvv vvvv vvvv vvvv vvvv vvvv vvvv

x13 y13

1-R
PK

3-R
CD

8-R
ND

1-R
KG

7-R
ND

1-R
KG

• PK:
Free one round
with Partial Key
guess

• CD:
Classical
Differential

• ND:
Neural
Distinguisher

• KG:
Key Guess

Fig. 3: Components for key-recovery attack ASpeck13R on 13-round
Speck32/64

≪ (1)

≪ (8)

≪ (2)

&

0

0000 0100 0100 0000 0001 0000 0000 0000

x0 y0

x̃1 ỹ1

k0

≪ (1)

≪ (8)

≪ (2)

&

k1

x1 y1

...
...

≪ (1)

≪ (8)

≪ (2)

&

k4

x3 y3

0000 0000 0000 0000 0000 0000 0100 0000

≪ (1)

≪ (8)

≪ (2)

&

k5

x4 y4

≪ (1)

≪ (8)

≪ (2)

&

k6

x5 y5

...
...

≪ (1)

≪ (8)

≪ (2)

&

k13

x13 y13vvvv vvvv vvvv vvvv dddd dddd dddd dddd

≪ (1)

≪ (8)

≪ (2)

&

k14

x14 y14

≪ (1)

≪ (8)

≪ (2)

&

k15

x15 y15vvvv vvvv vvvv vvvv vvvv vvvv vvvv vvvv

x16 y16

1-R
PK

3-R
CD

11-R
ND
VV

1-R
KG

9-R
ND
VD

1-R
FR

1-R
KG

• PK:
Free one round
with Partial Key
guess

• CD:
Classical
Differential

• ND:
Neural
Distinguisher

• FD:
Free one round
by computing
value of xi and
Difference of yi

• KG:
Key Guess

Fig. 4: Components for key-recovery attack ASimon16R
I on 16-

round Simon32/64

34

B.2 Visualizing distributions of statistics for various attacks

5 0 5 10 15 20 25 30 35 40 45
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.0

0.1

0.2

0.3

0.4

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

Comp.: 1+3+8+1
Conf.: nkg : 25 nb : 211 + 1 c1 : 18.0 c2 : 500.0
Conf.: ncts : 212 nit : 214 ncand1 : 32 ncand2 : 32 nbyit : 5
Test Done: 40 succ.: 33 succ. rate: 0.8250
Have Real: 40 succ.: 33 succ. rate: 0.8250
Max time: 52171 secs = 14.5 hours
Time cplx.: 25×52171 secs = 25×14.5 hours (GPU)
Time cplx.: 248.67 + r Encs (228 Encs/sec)
Data cplx.: 229.00 CPs

rand #218.2170 w: 13.4439 w: 5.9567 qctw: 0.2246
real #29.1344 r: 15.6574 r: 7.2232 qctr: 0.3149
succ #25.0444

s : 26.6410 s : 6.3005 min : 18.5831

(a) Attack information and distributions of v1max

1000 900 800 700 600 500 400 300 200 100 0 100 200 300 400 500 600 700 800 900 1000 1100
v2max : = max({v2i v2i L2})

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.000

0.002

0.004

0.006

0.008

0.010

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

rand #218.2219 w:-838.8867 w: 30.3200 qctw: 0.0000
real #210.3652 r:-761.5303 r:255.6485 qctr: 0.0485
succ #25.0444

s : 386.7259 s : 521.9770 min : 672.3280

(b) Distributions of v2max during the attack and those when successfully recovered the key

12 14 16 18 20 22 24 26 28 30 32
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

18

0.22

18

0.31

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(c) Percentage of samples passing various cutoffs in 5a

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Hamming distance between gk 1||gk 2 and k 1||k 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

D
en

si
tie

s
of

 s
am

pl
es

Total # 40

(d) Hamming distances between gk−1||gk−2 and k−1||k−2

0 800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800 9600104001120012000128001360014400152001600016800
used

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
tie

s
of

 s
am

pl
es

succ: #33.0000 a:5774.7273 max:16384.0000

(e) Used number of iterations before return

Fig. 5: Detailed information for attack ASpeck13R
I

35

15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

Comp.: 1+2+8+1
Conf.: nkg : 20 nb : 213 c1 : 15.0 c2 : 500.0
Conf.: ncts : 28 nit : 210 ncand1 : 32 ncand2 : 32 nbyit : 5
Test Done: 14 succ.: 12 succ. rate: 0.8571
Have Real: 14 succ.: 12 succ. rate: 0.8571
Max time: 121477 secs = 33.7 hours
Avg time: 51483 secs = 14.3 hours
Time cplx.: 20×121477 secs = 20×33.7 hours (CPU)
Time cplx.: 244.89 Encs (228 Encs/sec)
Data cplx.: 222.00 CPs

rand #212.2058 w: 8.2360 w: 8.6514 qctw: 0.1990
real #28.1085 r: 17.2664 r: 11.6814 qctr: 0.5036
succ #23.5850

s : 30.8707 s : 9.6950 min : 17.4776

(a) Attack information and distributions of v1max

2000 1800 1600 1400 1200 1000 800 600 400 200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
v2max : = max({v2i v2i L2})

0.000

0.002

0.004

0.006

0.008

0.010

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

rand #212.1941 w:-1806.9862 w: 84.0514 qctw: 0.0006
real #210.3718 r:-1652.4326 r:468.4770 qctr: 0.0143
succ #23.5850

s : 1459.6375 s : 553.9709 min : 616.6309

(b) Distributions of v2max during the attack and those when successfully recovered the key

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

15

0.20

15

0.50

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(c) Percentage of samples passing various cutoffs in 6a

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Hamming distance between gk 1||gk 2 and k 1||k 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

D
en

si
tie

s
of

 s
am

pl
es

Total # 14

(d) Hamming distances between gk−1||gk−2 and k−1||k−2

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800 840 880 920 960
used

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
en

si
tie

s
of

 s
am

pl
es

succ: #12.0000 a:350.2500 max:922.0000

(e) Used number of iterations before return

Fig. 6: Detailed information for attack ASpeck12R
I

36

10 5 0 5 10 15 20 25 30 35
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

Comp.: 1+3+7+1
Conf.: nkg : 21 nb : 25 + 1 c1 : 8.0 c2 : 10.0
Conf.: ncts : 212 nit : 213 ncand1 : 64 ncand2 : 32 nbyit : 5
Test Done: 128 succ.: 107 succ. rate: 0.8359
Have Real: 126 succ.: 107 succ. rate: 0.8492
Max time: 16009 secs = 4.4 hours
Time cplx.: 21×16009 secs = 21×4.4 hours (CPU)
Time cplx.: 242.97 Encs (228 Encs/sec)
Data cplx.: 218.58 CPs

rand #218.5892 w: 3.9835 w: 3.7231 qctw: 0.1412
real #28.7448 r: 8.6821 r: 6.8977 qctr: 0.4406
succ #26.7415

s : 15.4115 s : 6.0969 min : 8.0750

(a) Attack information and distributions of v1max

75 60 45 30 15 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240
v2max : = max({v2i v2i L2})

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.00

0.01

0.02

0.03

0.04

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

rand #217.9368 w:-43.3973 w: 7.9459 qctw: 0.0000
real #212.1206 r:-12.2944 r: 50.5523 qctr: 0.1660
succ #26.7415

s : 151.3679 s : 45.7007 min : 12.1410

(b) Distributions of v2max during the attack and those when successfully recovered the key

2 4 6 8 10 12 14 16 18 20 22 24 26
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

8

0.14

8

0.44

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(c) Percentage of samples passing various cutoffs in 7a

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Hamming distance between gk 1||gk 2 and k 1||k 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

D
en

si
tie

s
of

 s
am

pl
es

Total # 126

(d) Hamming distances between gk−1||gk−2 and k−1||k−2

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600 6000 6400 6800 7200 7600
used

0

1

2

3

4

5

6

7

D
en

si
tie

s
of

 s
am

pl
es

succ: #107.0000 a:2235.1869 max:7394.0000

(e) Used number of iterations before return

Fig. 7: Detailed information for attack ASpeck12R
II

37

10 5 0 5 10 15 20 25 30 35 40
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

Comp.: 1+3+7+1
Conf.: nkg : 21 nb : 25 + 1 c1 : 7.0 c2 : 10.0
Conf.: ncts : 211 nit : 213 ncand1 : 32 ncand2 : 32 nbyit : 5
Test Done: 128 succ.: 77 succ. rate: 0.6016
Have Real: 111 succ.: 77 succ. rate: 0.6937
Max time: 15988 secs = 4.4 hours
Time cplx.: 21×15988 secs = 21×4.4 hours (CPU)
Time cplx.: 242.96 Encs (228 Encs/sec)
Data cplx.: 217.58 CPs

rand #218.9077 w: 2.3703 w: 4.0297 qctw: 0.1320
real #29.0140 r: 6.7498 r: 6.7842 qctr: 0.3965
succ #26.2668

s : 15.2585 s : 6.4452 min : 7.1799

(a) Attack information and distributions of v1max

75 60 45 30 15 0 15 30 45 60 75 90 105 120 135 150 165 180 195 210
v2max : = max({v2i v2i L2})

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

su
cc

.

rand #218.1438 w:-43.6714 w: 7.9322 qctw: 0.0000
real #211.8357 r:-19.7212 r: 46.3451 qctr: 0.1207
succ #26.2668

s : 144.3523 s : 53.1859 min : 6.2427

(b) Distributions of v2max during the attack and those when successfully recovered the key

2 4 6 8 10 12 14 16 18 20 22
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

7

0.13

7

0.40

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(c) Percentage of samples passing various cutoffs in 8a

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Hamming distance between gk 1||gk 2 and k 1||k 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

D
en

si
tie

s
of

 s
am

pl
es

Total # 111

(d) Hamming distances between gk−1||gk−2 and k−1||k−2

400 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600 6000 6400 6800 7200 7600 8000 8400
used

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
en

si
tie

s
of

 s
am

pl
es

succ: #77.0000 a:2776.2208 max:8192.0000

(e) Used number of iterations before return

Fig. 8: Detailed information for attack ASpeck12R
III

38

B.3 Investigations on Dv1max
r and Dv1max

w

The experimental investigations on Dv1max
r and Dv1max

w were done through sam-
pling about 216 correct ciphertext structures and 216 wrong ciphertext structures
and analyzing the values of v1max statistically (Figures 9 to 13). These experi-
ments use exactly the same procedure of the key-recovery attack but generate
ciphertext structures by accessing the subkeys; besides, it does not run into guess-
ing the second to the last subkey. The same neutral bits used in actual attacks
are also used here to generate the ciphertext structures. Since some neutral bits
are probabilistic, using ciphertext structures generated by different neutral bits,
the simulation of the Dv1max

r and Dv1max
w will be slightly different. This is aimed

at using these investigations to guide the actual attacks.
Apart from Dv1max

r and Dv1max
w , for correct ciphertext structures, distribution

of v1max corresponding to the recommended subkeys of low Hamming distances
(from 0 to 3 bits) towards the real subkey are investigated and presented together
(e.g., Figures 11 to 13).

For experimental results, we have the following observation.

Observation 2 Among various distributions, including Normal, Chi-squared,
Generalized logistic, Logistic, and Gamma, the Generalized logistic dis-
tribution 14 (denote by genlogistic) provides the best fit for both Dv1max

r and
Dv1max

w . Besides, Dv1max
r ’s are heavy right-skewed.

In figures that display Dv1max
r and Dv1max

w , the parameters of the best fitting
generalized logistic distributions are thus provided.

The influence on Dv1max
r and Dv1max

w when changing the size of ciphertext
structures (nb) (determined by the number of used neutral bits), the number of
recommended keys in each iteration inside BayesianKeySearch (ncand), and the
number of iterations in each BayesianKeySearch (nbyit) are investigated.

To quantify the influence , the Kullback-Leibler Divergence KL(real||rand)
in the range [µr, maxr] is considered, where µr is the mean of v1max from correct
ciphertext structures and maxr is the maximum. Considering only this range is
because, in the actual attacks, the cutoffs are generally selected to be no less than
µr. Subfigures in Fig. 9 show how the distributions change when changing nb.
From Figures 9a and 9c, for that attack configuration, increasing nb from 25 to
26, the KL(real||rand) increases considerably. Increasing from 26 to 27 (Fig. 9c
and 9e), the mean increase approximately 2 times, however, the KL(real||rand)
does not increase but slightly decreases. That can be understood by looking at
Figures 17g and 17h, which show that if combining responses on 26 samples, the
two distributions of combined-response on random samples and real samples are
already separated. From the quantile plot in Figures 9b and 9d, setting cutoff
to be 8, when nb = 25, approximately 17% of v1max from the wrong ciphertext
structures pass, and 30% from the correct ciphertext structures pass; whereas
when nb = 26, 9% from the wrong ciphertext structures pass and 35% from the
14 Type I generalized logistic distribution with probability density function f(y, c) =

c e−y

(1+e−y)c+1 , where y = (x−loc)
scale

, for x ≥ 0 and c > 0.

39

correct ciphertext structures pass. Thus, the latter is much better for achieving
a good trade-off between time complexity and success rate for the attack. Such
an obvious advantage cannot be seen for nb = 27 over nb = 26. Thus, nb = 26 is
sufficient for the corresponding attacks.

Similar comparisons among Figures (10a, 10b), (10c, 10d), and (10e, 10f) in-
dicate that increasing ncand is more effective than increasing nbyit for separating
the two distributions. Thus, tuning ncand could achieve better trade-offs between
time complexity and success rate than tuning nbyit.

For different attacks, the significance of the influence by increasing ncand

are different. Increasing ncand might fail to result in considerable improvements
in separating the distributions (see Fig. 11 and 12 for attacks of composition
1+3+8+1). However, the probability that guessed subkeys with low hamming
distances to the real subkey can increase to be doubled (comparing Fig. 11c
and 12c). Thus, ncand can still be used to make trade-offs between time com-
plexity and success probability without changing data complexity for the attacks.

40

5 0 5 10 15 20 25 30
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l
1+3+7+1 nb : 25 ncand : 32 nbyit : 5

Statistical distances in range [r:6.8225 maxr : 29.9336]
KL(rand || real): 0.1040 bits
KL(real || rand): 2.7774 bits
JS(real || rand): 1.4407 bits

rand #216.0000 w: 5.5129 w: 2.6737 maxw : 18.8306
real #216.0000 r: 6.8225 r: 3.2955 maxr : 29.9336
rand fit genlogistic ppf: c = 1.5289, loc = 4.4275, scale = 1.7211
real fit genlogistic ppf: c = 3.6045, loc = 2.8064, scale = 2.3420

(a) Distributions Dv1max
r and Dv1max

w when using 5 NBs

6 8 10 12 14
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(b) Percentage of samples passing various cutoffs in 9a

10 5 0 5 10 15 20 25 30 35 40 45
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+7+1 nb : 26 ncand : 32 nbyit : 5

Statistical distances in range [r:6.9105 maxr : 46.5115]
KL(rand || real): 0.4651 bits
KL(real || rand): 20.4433 bits
JS(real || rand): 10.4542 bits

rand #216.0000 w: 2.3009 w: 4.0024 maxw : 21.9529
real #216.0017 r: 6.9105 r: 7.0255 maxr : 46.5115
rand fit genlogistic ppf: c = 2.3659, loc = 1.1079, scale = 2.8420
real fit genlogistic ppf: c = 427.0260, loc = 28.5140, scale = 5.3308

(c) Distributions Dv1max
r and Dv1max

w when using 6 NBs

0 2 4 6 8 10 12 14 16 18 20 22 24
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(d) Percentage of samples passing various cutoffs in 9c

25 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
v1max : = max({v1i v1i L1})

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+7+1 nb : 27 ncand : 32 nbyit : 5

Statistical distances in range [r:13.6800 maxr : 93.1438]
KL(rand || real): 0.4682 bits
KL(real || rand): 19.9629 bits
JS(real || rand): 10.2156 bits

rand #216.0000 w: 4.4713 w: 7.9507 maxw : 43.2416
real #216.0092 r: 13.6800 r: 14.1560 maxr : 93.1438
rand fit genlogistic ppf: c = 2.3055, loc = 2.0819, scale = 5.6104
real fit genlogistic ppf: c = 427.1838, loc = 57.1560, scale = 10.6546

(e) Distributions Dv1max
r and Dv1max

w when using 7 NBs

0 2 4 6 8 101214161820222426283032343638404244464850
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(f) Percentage of samples passing various cutoffs in 9e

Fig. 9: Distributions of v1max from correct ciphertext structures (real) and from wrong
ciphertext structures (rand) of size nb for nb ∈ {25, 26, 27}

41

10 5 0 5 10 15 20 25 30 35 40 45
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l
1+3+7+1 nb : 26 ncand : 32 nbyit : 5

Statistical distances in range [r:6.9105 maxr : 46.5115]
KL(rand || real): 0.4651 bits
KL(real || rand): 20.4433 bits
JS(real || rand): 10.4542 bits

rand #216.0000 w: 2.3009 w: 4.0024 maxw : 21.9529
real #216.0017 r: 6.9105 r: 7.0255 maxr : 46.5115
rand fit genlogistic ppf: c = 2.3659, loc = 1.1079, scale = 2.8420
real fit genlogistic ppf: c = 427.0260, loc = 28.5140, scale = 5.3308

(a) Distributions Dv1max
r and Dv1max

w when nb = 26, ncand = 32, nbyit = 5

0 2 4 6 8 10 12 14 16 18 20 22 24
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(b) Percentage of samples passing various cutoffs in 10a

10 5 0 5 10 15 20 25 30 35 40 45 50
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+7+1 nb : 26 ncand : 64 nbyit : 5

Statistical distances in range [r:9.6217 maxr : 50.0741]
KL(rand || real): 0.7470 bits
KL(real || rand): 31.5547 bits
JS(real || rand): 16.1508 bits

rand #216.0000 w: 3.8999 w: 3.6830 maxw : 21.4975
real #216.0121 r: 9.6217 r: 7.3943 maxr : 50.0741
rand fit genlogistic ppf: c = 1.7726, loc = 1.8515, scale = 2.4683
real fit genlogistic ppf: c = 502.4548, loc = 28.7666, scale = 5.6358

(c) Distributions Dv1max
r and Dv1max

w when nb = 26, ncand = 64, nbyit = 5

2 4 6 8 10 12 14 16 18 20 22 24 26
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(d) Percentage of samples passing various cutoffs in 10c

10 5 0 5 10 15 20 25 30 35 40 45 50
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+7+1 nb : 26 ncand : 32 nbyit : 10

Statistical distances in range [r:8.7250 maxr : 47.7396]
KL(rand || real): 0.5911 bits
KL(real || rand): 25.0315 bits
JS(real || rand): 12.8113 bits

rand #216.0000 w: 3.9128 w: 3.6026 maxw : 22.4126
real #215.9999 r: 8.7250 r: 6.9566 maxr : 47.7396
rand fit genlogistic ppf: c = 1.9752, loc = 1.5190, scale = 2.4592
real fit genlogistic ppf: c = 635.9890, loc = 27.5011, scale = 5.1345

(e) Distributions Dv1max
r and Dv1max

w when nb = 26, ncand = 32, nbyit = 10

2 4 6 8 10 12 14 16 18 20 22 24 26
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(f) Percentage of samples passing various cutoffs in 10e

Fig. 10: Distributions of v1max from correct ciphertext structures (real) and from
wrong ciphertext structures (rand) with nb fix to 26, ncand ∈ {32, 64}, nb ∈ {5, 10}

42

5 0 5 10 15 20 25 30 35 40 45 50
v1max : = max({v1i v1i L1})

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+8+1 nb : 212 ncand : 32 nbyit : 5

Statistical distances in range [r:15.4180 maxr : 51.5177]
KL(rand || real): 0.0670 bits
KL(real || rand): 2.1070 bits
JS(real || rand): 1.0870 bits

rand #216.0000 w: 13.3115 w: 5.9362 maxw : 40.9927
real #216.0112 r: 15.4180 r: 6.8935 maxr : 51.5177
rand fit genlogistic ppf: c = 3.0679, loc = 6.6569, scale = 4.4016
real fit genlogistic ppf: c = 4.4840, loc = 5.3183, scale = 5.1704

(a) Sampling 216 correct/wrong ciphertext structures to study the distributions Dv1max
r and Dv1max

w

involved in attack ASpeck13R

12 14 16 18 20 22 24 26 28 30 32
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(b) Percentage of samples passing various cutoffs in 11a

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
tie

s
of

 s
am

pl
es

hw 0: pr. 2 6.5580 #29.4533 0: 30.1435 0: 8.2989 min0: 7.4510 median0: 29.9378 max0: 51.5177
hw 1: pr. 2 5.7957 #210.2155 1: 26.6233 1: 8.2695 min1: 4.0187 median1: 26.9728 max1: 51.3717
hw 2: pr. 2 5.2522 #210.7591 2: 22.7595 2: 8.3655 min2: 2.6252 median2: 22.3735 max2: 51.2651
hw 3: pr. 2 4.7609 #211.2503 3: 19.8535 3: 7.7663 min3: -0.2976 median3: 19.6247 max3: 48.5147

(c) Distribution of combined responses using correct ciphertext structures when the corresponding
recommended subkey has Hamming distance hw with the real subkey

Fig. 11: Distribution of the combined responses on outputs of decrypting one round
using recommended subkeys from correct ciphertext structures (real) and from wrong
ciphertext structures (rand)

43

0 5 10 15 20 25 30 35 40 45 50 55
v1max : = max({v1i v1i L1})

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+8+1 nb : 212 ncand : 64 nbyit : 5

Statistical distances in range [r:18.0364 maxr : 52.6721]
KL(rand || real): 0.1378 bits
KL(real || rand): 2.2839 bits
JS(real || rand): 1.2108 bits

rand #217.0000 w: 15.6199 w: 5.5883 maxw : 51.4407
real #217.0129 r: 18.0364 r: 6.7471 maxr : 52.6721
rand fit genlogistic ppf: c = 2.2864, loc = 11.0401, scale = 3.9655
real fit genlogistic ppf: c = 4.1387, loc = 8.7777, scale = 4.9612

(a) Sampling 217 correct/wrong ciphertext structures to study the distributions Dv1max
r and Dv1max

w

involved in attack ASpeck13R

14 16 18 20 22 24 26 28 30 32 34
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(b) Percentage of samples passing various cutoffs in 12a

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
tie

s
of

 s
am

pl
es

hw 0: pr. 2 5.6831 #211.3298 0: 30.1366 0: 7.2681 min0: 7.7382 median0: 29.4136 max0: 50.3384
hw 1: pr. 2 5.1219 #211.8910 1: 28.5589 1: 8.5080 min1: 3.3012 median1: 28.2677 max1: 52.6721
hw 2: pr. 2 4.8032 #212.2098 2: 25.1165 2: 7.9175 min2: 3.4602 median2: 25.0594 max2: 51.1559
hw 3: pr. 2 4.6163 #212.3966 3: 21.5182 3: 7.3743 min3: 3.0331 median3: 20.6399 max3: 44.6365

(c) Distribution of combined responses using correct ciphertext structures when the corresponding
recommended subkey has Hamming distance hw with the real subkey

Fig. 12: Distribution of the combined responses on outputs of decrypting one round
using recommonded subkeys from correct ciphertext structures (real) and from wrong
ciphertext structures (rand)

44

10 5 0 5 10 15 20 25 30 35 40 45 50
v1max : = max({v1i v1i L1})

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
en

si
tie

s
of

 s
am

pl
es

 fo
r

ra
nd

 a
nd

 r
ea

l

1+3+7+1 nb : 26 ncand : 64 nbyit : 5

Statistical distances in range [r:9.6217 maxr : 50.0741]
KL(rand || real): 0.7470 bits
KL(real || rand): 31.5547 bits
JS(real || rand): 16.1508 bits

rand #216.0000 w: 3.8999 w: 3.6830 maxw : 21.4975
real #216.0121 r: 9.6217 r: 7.3943 maxr : 50.0741
rand fit genlogistic ppf: c = 1.7726, loc = 1.8515, scale = 2.4683
real fit genlogistic ppf: c = 502.4548, loc = 28.7666, scale = 5.6358

(a) Sampling 216 correct/wrong ciphertext structures to study the distributions Dv1max
r and Dv1max

w

involved in attack ASpeck12R

2 4 6 8 10 12 14 16 18 20 22 24 26
cutoff

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Pe
rc

en
ta

ge

ctw: fit genlogistic dist
ctw: experimental
ctr: fit genlogistic dist
ctr: experimental

(b) Percentage of samples passing various cutoffs in 13a

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5
v1max : = max({v1i v1i L1})

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
en

si
tie

s
of

 s
am

pl
es

hw 0: pr. 2 3.5075 #212.5046 0: 20.1801 0: 6.4670 min0: -0.0715 median0: 19.9763 max0: 50.0741
hw 1: pr. 2 3.2181 #212.7940 1: 17.8236 1: 6.5571 min1: -2.3788 median1: 17.5119 max1: 44.1257
hw 2: pr. 2 3.6554 #212.3567 2: 14.8465 2: 6.5758 min2: -3.1805 median2: 14.4840 max2: 41.0329
hw 3: pr. 2 3.9184 #212.0937 3: 11.9559 3: 6.3369 min3: -3.6091 median3: 11.3813 max3: 39.5732

(c) Distribution of combined responses using correct ciphertext structures when the corresponding
recommended subkey has Hamming distance hw with the real subkey

Fig. 13: Distribution of the combined responses on outputs of decrypting one round
using recommended subkeys from correct ciphertext structures (real) and from wrong
ciphertext structures (rand)

45

C Distributions of the Combined-response with Various
Number of Blocks

To investigate how many samples from the same distribution should be com-
bined to achieve a good combine-response distinguisher (CRD), that is how
many neutral bits are necessary, the accuracy of the CRD and the distribu-
tions of the combine-responses were experimentally investigated. The relation
curves between the accuracy of the resulting CRDs and the number of combined
samples can be seen in Fig. 14. The resulting distributions are illustrated us-
ing histogram plots. Besides, parameters of the best fitting distributions among
{Normal, Chi-squared, Generalized logistic, Logistic, Gamma} are pro-
vided.

From Figures 15, 16, 17, 18, for Gohr’s lightweight 5-, 6-, 7-, 8-round neural
distinguishers (with accuracy listed in Table 10), the distributions corresponding
to wrong and correct ciphertext structures can be separated when combining 20,
23 ∼ 24, 26 ∼ 27, and 212 ∼ 213 samples, respectively. Combining that many
samples, the accuracy of the resulting CRDs can be higher than 0.95, which can
be seen in Fig. 14. Thus, for using these distinguishers to do key-recovery and
when there are only several correct ciphertext structures could occur, roughly,
one needs to exploit about 0, 3 ∼ 4, 6 ∼ 7, and 12 ∼ 13 neutral bits.

20 21 22 23 24 25 26 27 28 29 210 211 212 213

number of blocks

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

ND5
ND6
ND7
ND8

Fig. 14: The accuracy curve when combining a various number of samples from the
same distribution

46

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Combined scores from 5-round ND with 20 samples

0

20

40

60

80

100

120

140

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 1.2180592734234635e-297 parm: (0.39609293005304214, 2.8509433725411253e-10, 0.2500476688241958)

Y1: Best fit dist. norm p: 0.0 parm: (0.8896674, 0.23980394)

Y=0 Random
Y=1 Real

(a) Combining responses of 20 samples from NDSpeck5R

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Combined scores from 5-round ND with 21 samples

0

20

40

60

80

100

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.065871015, 0.10690286)

Y1: Best fit dist. norm p: 0.0 parm: (0.9402602, 0.14136717)

Y=0 Random
Y=1 Real

(b) Combining responses of 21 samples from NDSpeck5R

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05
Combined scores from 5-round ND with 22 samples

0

10

20

30

40

50

60

70

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.042811524, 0.057859685)

Y1: Best fit dist. norm p: 0.0 parm: (0.96727955, 0.07052364)

Y=0 Random
Y=1 Real

(c) Combining responses of 22 samples from NDSpeck5R

0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 5-round ND with 23 samples

0

10

20

30

40

50

60

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.031347558, 0.031172875)

Y1: Best fit dist. norm p: 0.0 parm: (0.97942764, 0.030002592)

Y=0 Random
Y=1 Real

(d) Combining responses of 23 samples from NDSpeck5R

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 5-round ND with 24 samples

0

10

20

30

40

50

60

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.025922459, 0.018116588)

Y1: Best fit dist. norm p: 0.0 parm: (0.9841161, 0.01390796)

Y=0 Random
Y=1 Real

(e) Combining responses of 24 samples from NDSpeck5R

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 5-round ND with 25 samples

0

10

20

30

40

50

60

70

80

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. genlogistic p: 4.0293551033266853e-131 parm: (455.4634476461855, -0.03323582776507718, 0.008430374574812358)

Y1: Best fit dist. genlogistic p: 2.4033617754635275e-175 parm: (0.1356802103428173, 0.9935161583728382, 0.0010526250698648025)

Y=0 Random
Y=1 Real

(f) Combining responses of 25 samples from NDSpeck5R

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 5-round ND with 26 samples

0

20

40

60

80

100

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. chi2 p: 8.284332240662243e-19 parm: (12.059626185428465, 0.0036455429971263397, 0.0015365578583675385)

Y1: Best fit dist. genlogistic p: 1.0644133114737432e-264 parm: (0.24582677618008114, 0.9913598969668043, 0.001224994834087929)

Y=0 Random
Y=1 Real

(g) Combining responses of 26 samples from NDSpeck5R

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 5-round ND with 27 samples

0

20

40

60

80

100

120

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 5.088086990929161e-06 parm: (10.64147249310497, 0.004599497825237048, 0.0015931545936711594)

Y1: Best fit dist. genlogistic p: 3.9128659423788826e-219 parm: (0.37954848438254996, 0.9898378683563382, 0.0012314058258432845)

Y=0 Random
Y=1 Real

(h) Combining responses of 27 samples from NDSpeck5R

Fig. 15: The distribution of combined responses from NDSpeck5R (sampled with 220

combined ciphertext-pairs)

47

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 6-round ND with 20 samples

0

2

4

6

8

10

12

14

16

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.29191887, 0.19254076)

Y1: Best fit dist. norm p: 0.0 parm: (0.70607597, 0.2899791)

Y=0 Random
Y=1 Real

(a) Combining responses of 20 samples from NDSpeck6R

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 6-round ND with 21 samples

0

1

2

3

4

5

6

7

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.28386295, 0.14530206)

Y1: Best fit dist. norm p: 0.0 parm: (0.76429886, 0.21864201)

Y=0 Random
Y=1 Real

(b) Combining responses of 21 samples from NDSpeck6R

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 6-round ND with 22 samples

0

1

2

3

4

5

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. genlogistic p: 1.2146198486424728e-134 parm: (638.6526402802658, -0.2732601591685082, 0.07800250241309326)

Y1: Best fit dist. norm p: 0.0 parm: (0.79803324, 0.15610181)

Y=0 Random
Y=1 Real

(c) Combining responses of 22 samples from NDSpeck6R

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 6-round ND with 23 samples

0

1

2

3

4

5

6

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. genlogistic p: 4.0686911795691355e-20 parm: (44.29985237101043, 0.02042364048962176, 0.0577294437413273)

Y1: Best fit dist. norm p: 0.0 parm: (0.81865937, 0.10972888)

Y=0 Random
Y=1 Real

(d) Combining responses of 23 samples from NDSpeck6R

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 6-round ND with 24 samples

0

1

2

3

4

5

6

7

8

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.00017474434864354462 parm: (9.927055938168536, 0.10877778369623933, 0.01615053777012138)

Y1: Best fit dist. norm p: 0.0 parm: (0.8301008, 0.076566644)

Y=0 Random
Y=1 Real

(e) Combining responses of 24 samples from NDSpeck6R

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Combined scores from 6-round ND with 25 samples

0

2

4

6

8

10

12

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.03237469630012735 parm: (18.100129477041214, 0.11566966399023171, 0.008401093570341942)

Y1: Best fit dist. genlogistic p: 8.743e-320 parm: (0.39677757023538396, 0.8755282391190669, 0.019286095166176576)

Y=0 Random
Y=1 Real

(f) Combining responses of 25 samples from NDSpeck6R

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Combined scores from 6-round ND with 26 samples

0

2

4

6

8

10

12

14

16

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.36335858812310795 parm: (35.53313656175325, 0.11675196193828015, 0.0042281921488204685)

Y1: Best fit dist. genlogistic p: 4.107195280191064e-236 parm: (0.5301610826403247, 0.8607630134772402, 0.016799365173631835)

Y=0 Random
Y=1 Real

(g) Combining responses of 26 samples from NDSpeck6R

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Combined scores from 6-round ND with 27 samples

0

5

10

15

20

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.01563803872118948 parm: (67.82170492920562, 0.12008040770690698, 0.002160475897005281)

Y1: Best fit dist. genlogistic p: 5.446883559580866e-213 parm: (0.6500195860410589, 0.8528227791364726, 0.014163030777681631)

Y=0 Random
Y=1 Real

(h) Combining responses of 27 samples from NDSpeck6R

Fig. 16: The distribution of combined responses from NDSpeck6R (sampled with 220

combined ciphertext-pairs)

48

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Combined scores from 7-round ND with 20 samples

0

1

2

3

4

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. genlogistic p: 1.5559987699149654e-303 parm: (372.524631651316, -0.14138783057248394, 0.09176569242419197)

Y1: Best fit dist. norm p: 0.0 parm: (0.5337745, 0.14683612)

Y=0 Random
Y=1 Real

(a) Combining responses of 20 samples from NDSpeck7R

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Combined scores from 7-round ND with 21 samples

0

1

2

3

4

5

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 7.171004476177538e-100 parm: (8.568449837356749, 0.20555857622942547, 0.029251919129941975)

Y1: Best fit dist. gamma p: 4.843480101747072e-158 parm: (14.428106894081665, 0.12021090442754565, 0.028934200520604518)

Y=0 Random
Y=1 Real

(b) Combining responses of 21 samples from NDSpeck7R

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Combined scores from 7-round ND with 22 samples

0

1

2

3

4

5

6

7

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. chi2 p: 7.504077688210544e-05 parm: (23.473832431371015, 0.24296710903960778, 0.009075247217029434)

Y1: Best fit dist. gamma p: 2.0232518621083232e-56 parm: (66.6501201555601, -0.10496209199902162, 0.009663150351941888)

Y=0 Random
Y=1 Real

(c) Combining responses of 22 samples from NDSpeck7R

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Combined scores from 7-round ND with 23 samples

0

2

4

6

8

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.0016230489911323984 parm: (26.552216541600927, 0.22884083538450917, 0.008540247546206498)

Y1: Best fit dist. gamma p: 1.6914391567137345e-15 parm: (112.8616600442972, -0.06377870218121331, 0.005345775105535036)

Y=0 Random
Y=1 Real

(d) Combining responses of 23 samples from NDSpeck7R

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Combined scores from 7-round ND with 24 samples

0

2

4

6

8

10

12

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.10667477485568866 parm: (53.50044493102709, 0.22736000267817247, 0.00426660463082579)

Y1: Best fit dist. gamma p: 0.012852027042416773 parm: (219.27091419458839, -0.0638320981016886, 0.0027539023432276597)

Y=0 Random
Y=1 Real

(e) Combining responses of 24 samples from NDSpeck7R

0.35 0.40 0.45 0.50 0.55 0.60 0.65
Combined scores from 7-round ND with 25 samples

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.0032899699947093906 parm: (106.81417556963908, 0.22713221375647347, 0.0021392677167331)

Y1: Best fit dist. gamma p: 0.09555353852700277 parm: (405.8593606159941, -0.047410962429811854, 0.0014479050705434593)

Y=0 Random
Y=1 Real

(f) Combining responses of 25 samples from NDSpeck7R

0.40 0.45 0.50 0.55 0.60 0.65
Combined scores from 7-round ND with 26 samples

0

5

10

15

20

25

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.0004652820843985058 parm: (219.93409202428845, 0.22409360853145793, 0.0010524935611987848)

Y1: Best fit dist. gamma p: 0.44609374669516033 parm: (711.2630383822747, -0.021251751974088504, 0.0007894574263664867)

Y=0 Random
Y=1 Real

(g) Combining responses of 26 samples from NDSpeck7R

0.40 0.45 0.50 0.55 0.60
Combined scores from 7-round ND with 27 samples

0

5

10

15

20

25

30

35

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. gamma p: 0.05663976989917541 parm: (464.0869967847427, 0.21779385949218727, 0.0005121215235158584)

Y1: Best fit dist. gamma p: 7.511988160156753e-07 parm: (1196.4204877986874, 0.0035962555808504316, 0.0004485021153939834)

Y=0 Random
Y=1 Real

(h) Combining responses of 27 samples from NDSpeck7R

Fig. 17: The distribution of combined responses from NDSpeck7R (sampled with 220

combined ciphertext-pairs)

49

0.35 0.40 0.45 0.50 0.55 0.60 0.65
Combined scores from 8-round ND with 20 samples

0

5

10

15

20

25

30

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.0 parm: (0.4993295, 0.018678525)

Y1: Best fit dist. norm p: 0.0 parm: (0.5008209, 0.01868204)

Y=0 Random
Y=1 Real

(a) Combining responses of 20 samples from NDSpeck8R

0.45 0.50 0.55
Combined scores from 8-round ND with 22 samples

0

10

20

30

40

50

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. logistic p: 0.0009225031505120825 parm: (0.49939313381674666, 0.005190414949222818)

Y1: Best fit dist. genlogistic p: 0.08147691618727759 parm: (1.1070724723220262, 0.4998961621494733, 0.005375799955940933)

Y=0 Random
Y=1 Real

(b) Combining responses of 22 samples from NDSpeck8R

0.50
Combined scores from 8-round ND with 24 samples

0

20

40

60

80

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 1.1058107515242246e-18 parm: (0.4993451, 0.0046750014)

Y1: Best fit dist. gamma p: 8.348502452181588e-12 parm: (2637.4061425043665, 0.2616417454225735, 9.067903374741101e-05)

Y=0 Random
Y=1 Real

(c) Combining responses of 24 samples from NDSpeck8R

0.50
Combined scores from 8-round ND with 26 samples

0

25

50

75

100

125

150

175

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.006655423253244691 parm: (0.49935085, 0.0023383056)

Y1: Best fit dist. norm p: 0.002588005524688615 parm: (0.5007852, 0.002354166)

Y=0 Random
Y=1 Real

(d) Combining responses of 26 samples from NDSpeck8R

0.50
Combined scores from 8-round ND with 28 samples

0

50

100

150

200

250

300

350

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.9694651913146539 parm: (0.4993487, 0.0011687127)

Y1: Best fit dist. norm p: 0.3067850011982737 parm: (0.50078315, 0.0011887781)

Y=0 Random
Y=1 Real

(e) Combining responses of 28 samples from NDSpeck8R

0.50
Combined scores from 8-round ND with 211 samples

0

200

400

600

800

1000

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.8188809702988278 parm: (0.49935013, 0.00041314395)

Y1: Best fit dist. norm p: 0.07039180907948772 parm: (0.5007803, 0.0004603153)

Y=0 Random
Y=1 Real

(f) Combining responses of 211 samples from NDSpeck8R

0.50
Combined scores from 8-round ND with 212 samples

0

200

400

600

800

1000

1200

1400

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.7802669881174968 parm: (0.4993502, 0.00029234946)

Y1: Best fit dist. norm p: 0.0015504720553424884 parm: (0.5007824, 0.00035478626)

Y=0 Random
Y=1 Real

(g) Combining responses of 212 samples from NDSpeck8R

0.50
Combined scores from 8-round ND with 213 samples

0

500

1000

1500

2000

2500

D
en

si
tie

s
of

 c
om

bi
ne

d
sa

m
pl

es

Y0: Best fit dist. norm p: 0.8602970852198111 parm: (0.49935013, 0.00020519852)

Y1: Best fit dist. gamma p: 0.41839908672022996 parm: (213.58431321597214, 0.496611402924442, 1.952331969086066e-05)

Y=0 Random
Y=1 Real

(h) Combining responses of 213 samples from NDSpeck8R

Fig. 18: The distribution of combined responses from NDSpeck8R (sampled with 220

combined ciphertext-pairs when combining no more than 210, 218 for combining 210 ∼
212, and 215 for combining 213 responses)

50

D Additional Constraints on Differential Trails of
Speck32/64

During this work, additional constraints beyond the XOR-differences on some
differential trails of Speck32/64 were found. Moreover, unexpectedly, in some
differential trails, constraints are on subkeys. In such a situation, the attacks
using differentials whose major contributed trails must fulfill these constraints
on keys can only work for a fraction of the keyspace.

This happens to the presented attacks that use the 3-round differentials
(0x8020, 0x4101) → (0x0040, 0x0000), (0x8060, 0x4101) → (0x0040, 0x0000),
(0x8021, 0x4101)→(0x0040, 0x0000), and (0x8061, 0x4101)→(0x0040, 0x0000).
Note that this also happens to previous best differential attacks on Speck32/64,
including those covering the most rounds (14-round) in [10, 13, 29], which was
not noticed before.

Table 7 presents the generalized constraints of the differential trails involved
in the proposed attacks (and other potentially useful trails), and Table 8 presents
those used in previous attacks [10,13,29]. These constraints can be obtained using
the existing tool ARXToolkit from [25]. A recent work in [8] also independently
found this key-dependent phenomenon of the differential on Speck and provided
a theoretical treatment.

For the used 3-round differential trails, there is 1 bit constraint on one subkey
(all four 3-round differential trails share this constraint), as shown in Table 7. In
the 11-round attack in [10] and the 14-round attacks in [13,29], the best 9-round
trail was used. In this trail, there is 1 bit constraint on one subkey, as shown in
Table 8. In [29], the best 10-round differential trail was found. In this trail, there
are 3 bits constraints on the subkeys as shown in Table 8.

Since the probabilities of these trails are calculated using the Markov model,
and it is averaged over the whole keyspace, the real probability of these trails
should be about 2c times larger than the previous estimation for 264−c keys, and
0 for other keys, where c is the number of constraints on the subkeys. Accordingly,
the used 3-round differential trails whose probability was previously estimated as
2−12 should have a probability 2−11 for 263 keys and 0 for other keys. Similarly,
the 9-round differential trail, whose probability was previously estimated as 2−30

used in [10,13,29] should be about 2−29 for 263 keys and 0 for other keys; the 10-
round differential trail, whose probability is previously estimated as 2−35 found
in [29] should be about 2−32 for 261 keys and 0 for other keys.

Additionally, we found that for one of the best differential trails with input
difference 0x0040/0000 of 8-round Speck32/64, there are additional constraints
on subkeys (see Table 7). For the corresponding keys that fulfill constraint k1[9] =
k1[8], we trained a 7-round ResNet neural distinguisher with an accuracy of
0.6228 (while for keys such that k1[9] 6= k1[8], the resulted neural distinguisher
has an accuracy 0.6164). This indicates the existence of better weak-key neural
distinguishers.

51

Table 7: Generalized differences of the 3-round, 4-round, and 8-round differential trails
used/involved in the attacks (obtained using tools in [25,30])

3-round 4-round 8-round

R differences
hex(xi yi)

vars generalized
differences

R differences
hex(xi yi)

vars generalized
differences

R differences
hex(xi yi)

vars generalized
differences

0 8020 4101

x0 x-------0-x-----

0 1488 1008

x0 ---x-x--x---x---

0 0040 0000

x0 ---------x------
y0 -x-----x-------x y0 ---x--------x--0 y0 ----------------
z0 ------x--------x z0 ----------x- c

0 --x z0 x---------------
k0 ---------------- k0 ---------------- k0 ----------------

1 0201 0604

x1 ------x--------x

1 0021 4001

x1 --------0-x----x

1 8000 8000

x1 x---------------
y1 -----<x------x-- y1 -x-----!-------x y1 x---------------
z1 --->x-------- c

0 -- z1 ----->x--------x z1 x----->x--------
k1 ---!------------ k1 -----=---------- k1 ------=---------

2 1800 0010

x2 ---<x-----------

2 0601 0604

x2 ----->x--------x

2 8300 8302

x2 x----->x--------
y2 ---=-------x---- y2 -----<x------x-- y2 x-----xx------x-
z2 ---------x------ z2 --->x-------- c

1 -- z2 x---><x------- f
0 -

k2 ---------------- k2 ---!------------ k2 ---- 4
0 -----------

3 0040 0000
x3 ---------x------

3 1800 0010

x3 ---<x-----------

3 8e00 820a

x3 x--- 0
3 xx f

1 --------
y3 ---------------- y3 ---=-------x---- y3 x-----x-----x 1

0 x-
z3 ---------x------ z3 x-----xx--x-xxx-
k3 ---------------- k3 ----------------

4 0040 0000
x4 ---------x------

4 832e 8b04

x4 x-----xx-- 0
8 - 0

3 x 0
8 -

y4 ---------------- y4 x---x-<x-----x f
1 -

z4 --x-x-------- 2
0 x-

k4 ----------------

5 2802 0410

x5 --x-x---------x-
y5 -----x-----x----
z5 ---------x------
k5 ----------------

6 0040 1000

x6 ---------x------
y6 ---x------------
z6 x--x------------
k6 ----------------

7 9000 d000

x7 x--x------ 4
0 -----

y7 xx-x------------
z7 -x-x---x--x-----
k7 ----------------

8 5120 1123
x8 -x-x---x--x-----
y8 ---x---x--x---xx

P ra = 2−12 P ra = 2−17 P ra = 2−30

P rr =
{

2−11 for 263 keys
0 for others

P rr =
{

2−15 for 262 keys
0 for others

P rr =
{

2−26.58 for 260.58 keys
0 for others

P ra is the previous estimated probability over all keys, P rr is the revisited estimated probability for different keys.
-: ai = a′

i
c
0 : uncommon constraint “c20000c3” 0

8 : uncommon constraint “00824100”
x: ai 6= a′

i
c
1 : uncommon constraint “c30000c2” 0

3 : uncommon constraint “00381c00”
0: ai = a′

i = 0 c
2 : uncommon constraint “c2000043” 0

4 : uncommon constraint “00418200”
1: ai = a′

i = 1 4
0 : uncommon constraint “430000c2” 1

0 : uncommon constraint “1400003c”
!: a′

i = ai 6= ai−1
f
0 : uncommon constraint “ff0000f0” 2

0 : uncommon constraint “2800003c”
=: a′

i = ai = ai−1
f
1 : uncommon constraint “ff00000f” Constraints in red are on sub-keys.

<: a′
i 6= ai = ai−1

>: a′
i 6= ai 6= ai−1

52

Table 8: Generalized differences of the 9-round and 10-round differential trails used
in [10,29] (obtained using tools in [25])

9-round 10-round

R differences
hex(xi yi)

vars generalized
differences

R differences
hex(xi yi)

vars generalized
differences

0 8054 a900

x0 x--------x-x-x--

0 2040 0040

x0 --x------x------
y0 x-x-x--x-------- y0 ---------x------
z0 -- c

2 ------------- z0 x---------------
k0 ---------------- k0 ----------------

1 0000 a402

x1 ------- f
1 --------

1 8000 8100

x1 x---------------
y1 x-x--x--------x- y1 x------x--------
z1 x-x--x--------x- z1 x---------------
k1 ---------------- k1 ----------------

2 a402 3408

x2
0
4 -x--x--------x-

2 8000 8402

x2 x------ f
1 ------!-

y2 --<x-x------x--- y2 x----x!-------x-
z2 - 0

4 -x- c
2 --<x------ z2 x--->x-x------x-

k2 ---------------- k2 ----=-----------

3 50c0 80e0

x3 -x-x----xx------

3 8d02 9d08

x3 x--->x-x------x-
y3 x-------x<x----0 y3 x--<<x-x----x- f

1 -
z3 -------xx------x z3 -<x-- 4

0 --------x-
k3 ---------------- k3 -!--------------

4 0181 0203

x4 -------xx------x

4 6002 1420

x4 ->x-----------x-
y4 ------x-------xx y4 -!-x-x----x-----
z4 ------------>x01 z4 ---x-----xx-----
k4 ------------!--- k4 ----------------

5 000c 0800

x5 ------------<x--

5 1060 40e0

x5 -!-x-----xx-----
y5 ----x----------- y5 -x------x>x-----
z5 --x------------- z5 ------><x-------
k5 ---------------- k5 -------!--------

6 2000 0000

x6 --x-------------

6 0380 0001

x6 ------x>x-------
y6 ---------------- y6 -------=-----=-x
z6 ---------x------ z6 -------------x-0
k6 ---------------- k6 ----------------

7 0040 0040

x7 ---------x------

7 0004 0000

x7 -------------x--
y7 ---------x------ y7 ----------------
z7 x--------x------ z7 ----x-----------
k7 ---------------- k7 ----------------

8 8040 8140

x8 x--------x------

8 0800 0800

x8 ----x-----------
y8 x------x-x------ y8 ----x-----------
z8 ---------x------ z8 ----x------x----
k8 ---------------- k8 ----------------

9 0040 0542

x9 ---------x------

9 0810 2810

x9 ----x------x----
y9 -----x-x-x----x- y9 --x-x------x----

z9 ----x-----------
k9 ----------------

10 0800 a840
x10 ----x-----------
y10 x-x-x----x------

P ra = 2−30 P ra = 2−35

P rr =
{

2−29 for 263 keys
0 for others

P rr =
{

2−32 for 261 keys
0 for others

Symbols used are same as in Table 7

53

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 65536
Difference to real key

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
re

sp
on

se

(a) NDSimon8R
VV : directly trained with data of the form ((x, y, x′, y′))

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 65536
Difference to real key

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

M
ea

n
re

sp
on

se

(b) NDSimon8R
VD : directly trained with data of the form ((x, x′, y ⊕ y′))

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 65536
Difference to real key

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

M
ea

n
re

sp
on

se

(c) NDSimon9R
VV : directly trained with data of the form ((x, y, x′, y′))

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 65536
Difference to real key

0.490

0.495

0.500

0.505

0.510

0.515

M
ea

n
re

sp
on

se

(d) NDSimon9R
VD : directly trained with data of the form ((x, x′, y ⊕ y′))

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 65536
Difference to real key

0.495

0.500

0.505

0.510

0.515

M
ea

n
re

sp
on

se

(e) NDSimon10R
VV : trained using NDSimon9R

VV and KeyAveraging algorithm

0 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960 45056 49152 53248 57344 61440 65536
Difference to real key

0.4985

0.4990

0.4995

0.5000

0.5005

0.5010

M
ea

n
re

sp
on

se

(f) NDSimon11R
VV : trained using NDSimon9R

VV and DDSimon8R
(0440,0100) in staged training

method

Fig. 19: Wrong key response profile (only µδ shown) for neural distinguishers on Si-
mon32/64 (used 214 ciphertexts for (a-e) and 218 for (f))

54

E Key-recovery Attacks on Round-Reduced Simon32/64

E.1 Wrong Key Response Profile for the Neural Distinguishers on
Simon32/64

Figure 19 shows the wrong key response profiles of the trained NDs for Si-
mon32/64. From Fig. 19, the wrong key response profiles ofNDSimon8R

VD (Fig. 19b)
and that of NDSimon9R

VV (Fig. 19c) share observable patterns and symmetry. For
key values that have little different from the real value, responses fromNDSimon8R

VD
are higher than responses from NDSimon9R

VV . Similar observations can be de-
rived from a comparison between that of NDSimon9R

VD (Fig. 19d) and NDSimon10R

VV
(Fig. 19e).

E.2 An Attack on 16-round Simon32/64

Under a similar framework to the key-recovery attacks on Speck32/64, the
trained neural distinguishers can be prepended with a classical differential to per-
form key-recovery attacks. This section presents such an attack, namedASimon16R

I ,
which combines the longest but weak ND with a differential that has many
SNBSs.

The classical component in the attack ASimon16R

I presented in the sequel is a
3-round differential (0x0440, 0x1000)→(0x0000, 0x0040) (prob. ≈ 2−8).

Similar to attacks on Speck32/64, to obtain decent scores from the responses
of the NDs, combined responses from the NDs over a number of samples from
the same distribution are to be used. Thus, to obtain enough samples from the
same distribution, neutral bits of the prepended CD are exploited.

E.3 Finding Neutral Bits for the Classical Differentials

Finding SNBSs for 3-round Differential. For the 3-round differential to be
prepended to the NDs, one can obtain all neutral bits and SNBSs (simultane-
ously complementing up to 4 bits) using the following algebraic method.

Given the input and output differences (0x0440, 0x1000) and (0x0000, 0x0040),
one can build the non-linear equations on the derivative functions. Because the
degrees of the derivative functions corresponding to this 3-round differential is
low (i.e., 4), this system of non-linear equations can be solved by computing
the reduced Gröbner basis, which can be done using the PolyBoRi library inte-
grated in SageMath [11]. The reduced Gröbner basis is a unique representation
for the ideal with respect to a fixed monomial order. Thus, the computed is
a unique representation corresponding to the variety of the equations defined
by the derivative function corresponding to the differential. Thus, not changing
the reduced Gröbner basis is a necessary and sufficient condition for being an
NB/SNBS. Accordingly, to find SNBSs (including single-bit NBs), the following
method is used. For each of the 41448 sets (i.e., 32 + 496 + 4960 + 35960 sets)
of at most four bits, in the resulting reduced Gröbner basis, replace this set of

55

variables with their complements simultaneously; if the Gröbner basis does not
change, the set of variables corresponds to an SNBS.

Using the above algebraic method and experimental double-verification, all
the single-bit NBs and SNBSs are obtained. There are 9 single-bit NBs {[2], [3],
[4], [6], [8], [9], [10], [18], [22]}, 2 2-SNBSs {[0, 24], [12, 26]} (actually, there are
38 2-SNBSs; but 36 out 38 are formed by combinations of the 9 single-bit NBs);
all 3-SNBSs and 4-SNBSs are formed by combinations of the 9 single-bit NBs
and 2 2-SNBSs. Thus, there are 11 independent single-bit NBs and SNBSs in
total.

From the resulting Gröbner basis (also observed by experiments), for an input
pair ((x, y), (x′, y′)) to conform to the 3-round differential (0x0440, 0x1000)→

(0x0000, 0x0040), one has

{
x[1] = x′[1] = 0,

x[3] = x′[3] = 0.
(2)

E.4 Key Recovery Attack on 16-round Simon32/64

The components of ASimon16R

I are as follows (refer to Fig. 4).

1. A 3-round CD (0x0440, 0x1000) → (0x0000, 0x0040) (refer to the rounds
colored in blue in Fig. 4), and a set of its 11 NBs {[2], [3], [4], [6], [8], [9],
[10], [18], [22], [0, 24],[12, 26] };

2. A 11-round ND NDSimon11R

VV trained using the staged approach under dif-
ference (0x0000, 0x0040), and its wrong key response profiles NDSimon11R

VV .µ

and NDSimon11R

VV .σ.
3. A 9-round ND NDSimon9R

VD trained under difference (0x0000, 0x0040) and
fed with data of type (x, x′, y ⊕ y′), and its wrong key response profiles
NDSimon9R

VD .µ and NDSimon9R

VD .σ.

The goal is to recover the last two subkeys k15 and k14. A difference with
the attack ASpeck13R is that, as one of the NDs NDSimon9R

VD accepts data of
type (x, x′, y ⊕ y′), after guessing k15 and k14 and decrypting a ciphertext pair
to (x14, y14), (x′

14, y′
14), one can compute (x13, x′

13, y13 ⊕ y′
13) by inverting one

round with 0 as the subkey, and thus can be feed to NDSimon9R

VD .
At the beginning, we guess two key bits of k0, that is k0[1] and k0[3], because

for the 3-round differential, the conditions for correct pairs are x1[1] = x′
1[1] = 0

and x1[3] = x′
1[3] = 0 (refer to Eq. 2); no more key bits need to be guessed

because the number of non-conditional neutral bits is enough). Thus, nkg is 2,
and there are 22 outermost loops.

The framework of attack ASimon16R

I is the same as that of ASpeck13R on
Speck32/64 (refer to Fig. 2). The concrete parameters of the attack are as
follows. The accuracy of NDSimon11R

VV is 0.5173, and that of NDSimon9R

VD is 0.5629.

nkg = 22, ncts = 27, nb = 211, nit = 29

c1 = 25, c2 = 100, nbyit1 = nbyit2 = 5, ncand1 = ncand2 = 32

The data complexity is nkg×ncts×nb×2, that is, 221 plaintexts. To examine the
performance of the attack, experiments are done on the same GPU server testing

56

ASpeck13R . In total 99 trials are run. Within the 99 trials, all trials have correct
ciphertext pairs and all called the NDs. There are 49 success trials, for which
the returned last two subkeys have a Hamming distance to the real subkeys of
at most two. Thus, the success rate is computed as 49/99, i.e., 0.49.

The 99 (+7) trials took 78 core hours in total. For a trial, it shows that
running full 512 iterations requires less than 1 hour. Thus, the worst case to run
22 outermost loops (on guessed values of k0[0] and k0[3]) for a full attack takes
less than 4 GPU hours.

F Details of the Key-recovery Attack in [15]

F.1 Neutral bits Used in [14, 15]

Table 9: (Probabilistic) single-bit neutral bits for 2-round differential
(0x0211, 0x0a04) → (0x0040, 0x0000) of Speck32/64 used in the 11-round [15]
and/or 12-round [14] attacks by Gohr.

NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr. NBs Pr.

[20] 1 [21] 1 [22] 1 [14] 0.965 [15] 0.938 [23] 0.812 [7] 0.806
[30] 0.809 [0] 0.763 [8] 0.664 [24] 0.649 [31] 0.644 [1] 0.574

F.2 Accuracy of the Neural Distinguishers on Speck32/64 in [15]

Table 10: Accuracy of Gohr’s neural distinguishers on Speck32/64 [15]
#R Name Accuracy True Positive Rate True Negative Rate

5 DDSpeck5R 0.911 0.877 0.947

5 NDSpeck5R 0.929 ± 5.13 × 10−4 0.904 ± 8.33 × 10−4 0.954 ± 5.91 × 10−4

6 DDSpeck6R 0.758 0.680 0.837

6 NDSpeck6R 0.788 ± 8.17 × 10−4 0.724 ± 1.26 × 10−3 0.853 ± 1.00 × 10−3

7 DDSpeck7R 0.591 0.543 0.640

7 NDSpeck7R 0.616 ± 9.70 × 10−4 0.533 ± 1.41 × 10−3 0.699 ± 1.30 × 10−3

8 DDSpeck8R 0.512 0.496 0.527

8 NDSpeck8R 0.514 ± 1.00 × 10−3 0.519 ± 1.41 × 10−3 0.508 ± 1.42 × 10−3

F.3 BayesianKeySearch Algorithm in [15]

57

Algorithm 4: BayesianKeySearch Algorithm [15]
/* The description of this BayesianKeySearch Algorithm in [15] has

a small typo and is inconsistent with that in the implementation
codes [14], the description here corrects it according to [14].
*/

Input: Ciphertext structure C := {C0, · · · , Cnb−1}, a neural distinguisher ND,
and its wrong key response profile µ and σ, the number of candidates
to be generated within each iteration ncand, the number of iterations
nbyit

Output: The list L of tuples of recommended keys and their scores
1 S := {k0, k1, . . . , kncand−1} ← choose ncand values at random without

replacement from the set of all subkey candidates.
2 L← {}
3 for t = 1 to nbyit do
4 for ∀ki ∈ S do
5 for j = 0 to nb − 1 do
6 C′

j,ki
= F −1

ki
(Cj)

7 vj,ki = ND(C′
j,ki

)
8 sj,ki = log2(vj,ki /(1− vj,ki))
9 end

10 ski =
∑nb−1

j=0 sj,ki ; /* the combined score of ki */
11 L← L||(ki, ski)
12 mki =

∑nb−1
j=0 vj,ki /nb

13 end
14 for k ∈ {0, 1, · · · , 216 − 1} do
15 λk =

∑ncand−1
i=0 (mki − µki⊕k)2/σ2

ki⊕k

16 end
17 S ← argsortk(λ)[0 : ncand − 1] ; /* Pick ncand keys with the ncand

smallest score to form the new set of candidate keys S */
18 end
19 return L

58

G Deeper Look into the NDs on Simon32/64

G.1 On NDs for Simon32/64 having learned to take back the final
round

It would be interesting to test further the observation about the NDSimonrR

VV s for
Simon32/64 having learned to take back the final round. Following the idea of
one reviewer, we try to find good combiners among DDSimonn−1R

DD , NDSimonn−1R

VD ,
and NDSimonnR

VV to distinguish n-round output, where DDSimonn−1R

DD is the (n−1)-
round distinguisher that depends on the full DDT, NDSimonn−1R

VD is the (n− 1)-
round ND that uses data of form (xn−1, x′

n−1, yn−1 ⊕ y′
n−1), and NDSimonnR

VV is
the n-round ND that uses data of format (xn, x′

n, yn, y′
n).

The searching and evaluation procedure for a good combiner is as follows:

1. Transform each value p in the DDT to a value in the range of [0, 1] using
the formula p/(p + 2−32), such that the response of DDSimonn−1R

DD is in the
range of [0, 1], and 2−32 corresponds to 0.5.

2. For a set of data X (about 225 examples of n-round ciphertext pairs, half pos-
itive and half negative), obtain the scores from distinguishers DDSimonn−1R

DD ,
NDSimonn−1R

VD , and NDSimonnR

VV .
3. Extract cases where all distinguishers agree, construct data set A where each

entry is a tuple of scores given by different distinguishers on same examples
of ciphertext pair, labeling with the label of the ciphertext pair. Use this
data set A to fit a first linear regression model, denoted by LRa.

4. Extract cases where there exists a distinguisher who disagree, construct data
set D where each entry is a tuple of scores given by different distinguishers
on same examples of ciphertext pair, labeling with the label of the ciphertext
pair. Use this data set D to fit a second linear regression model, denoted by
LRb.

5. For a set of fresh data X (about 223 examples of n-round ciphertext pairs,
half positive and half negative) for testing, obtain the scores from distin-
guishers DDSimonn−1R

DD , NDSimonn−1R

VD , and NDSimonnR

VV .
6. For cases where all distinguishers agree, use the fitted linear regression model

LRa to predict their score.
7. For cases where there exists a distinguisher who disagree, use the fitted linear

regression model LRd to predict their score.

The best combiners obtained for n = 10 and n = 9 achieve almost the
same performance as that of DDSimonn−1R

DD , which is the best among the three.
They give almost 1 (e.g., 1.00353623 and 0.99973883) weights to the scores from
DDSimonn−1R

DD in both cases (agree and disagree).
Concrete results for n = 9 and 10 can be found in Table 11.
To look deeper into the relations of various distinguishers, we plot the re-

sponses of these distinguishers on a small set of examples. We found that on
most examples, different distinguishers have consistent scores (see Figures 20

59

6 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132
Rand Sample

0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40
0.44
0.48
0.52
0.56
0.60
0.64
0.68
0.72
0.76
0.80
0.84
0.88
0.92
0.96
1.00

Sc
or

es

Y = 1, Z_VV: :0.563 :0.201 min:0.002 max:0.993
Y = 1, Z_VD: :0.575 :0.207 min:0.013 max:0.998
Y = 1, Z_DD: :0.583 :0.208 min:0.006 max:0.999
Y = 1, Z_AD: :0.583 :0.208 min:0.006 max:0.999

(a) Scores from distinguishers DDSimon8R
DD , NDSimon8R

VD , and NDSimon9R
VV on 9-round positive examples

6 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132
Rand Sample

0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40
0.44
0.48
0.52
0.56
0.60
0.64
0.68
0.72
0.76
0.80
0.84
0.88
0.92
0.96

Sc
or

es

Y = 0, Z_VV: :0.417 :0.149 min:0.000 max:0.991
Y = 0, Z_VD: :0.417 :0.156 min:0.000 max:0.996
Y = 0, Z_DD: :0.417 :0.160 min:0.000 max:0.998
Y = 0, Z_AD: :0.417 :0.160 min:0.000 max:0.998

(b) Scores from distinguishers DDSimon8R
DD , NDSimon8R

VD , and NDSimon9R
VV on 9-round negative examples

Fig. 20: Scores from distinguishers DDSimon7R
AD , DDSimon8R

DD , NDSimon8R
VD , and NDSimon9R

VV
on 9-round examples

60

6 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132
Rand Sample

0.325
0.350
0.375
0.400
0.425
0.450
0.475
0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850

Sc
or

es

Y = 1, Z_VV: :0.512 :0.081 min:0.109 max:0.930
Y = 1, Z_VD: :0.515 :0.085 min:0.141 max:0.979
Y = 1, Z_DD: :0.516 :0.095 min:0.056 max:0.998
Y = 1, Z_AD: :0.516 :0.095 min:0.056 max:0.998

(a) Scores from distinguishers DDSimon9R
DD , NDSimon9R

VD , and NDSimon10R
VV on 10-round positive exam-

ples

6 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132
Rand Sample

0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72

Sc
or

es

Y = 0, Z_VV: :0.489 :0.070 min:0.070 max:0.925
Y = 0, Z_VD: :0.488 :0.071 min:0.075 max:0.962
Y = 0, Z_DD: :0.484 :0.079 min:0.000 max:0.991
Y = 0, Z_AD: :0.484 :0.079 min:0.000 max:0.991

(b) Scores from distinguishers DDSimon9R
DD , NDSimon9R

VD , and NDSimon10R
VV on 10-round negative exam-

ples

Fig. 21: Scores from distinguishers DDSimon8R
AD , DDSimon9R

DD , NDSimon9R
VD , and NDSimon10R

VV
on 9-round examples

61

Table 11: Accuracy of various distinguishers and combined ones on 9-round and 10-
round Simon32/64, and Key-averaging distinguisher on 5-round Speck32/64 basing
on 4-round DDT

On Simon32/64
#R Name ACC TPR TNR MSE

9 DDSimon7R
AD 0.663 0.579 0.748 0.211

9 DDSimon8R
DD 0.663 0.579 0.748 0.211

9 NDSimon8R
VD 0.659 0.559 0.759 0.210

9 NDSimon9R
VV 0.652 0.534 0.770 0.214

9 NDSimon9R
DD+VD+VV 0.663 0.578 0.747 0.209

10 DDSimon8R
AD 0.568 0.469 0.668 0.243

10 DDSimon9R
DD 0.568 0.469 0.668 0.243

10 NDSimon9R
VD 0.566 0.474 0.657 0.243

10 NDSimon10R
VV 0.561 0.476 0.646 0.244

10 NDSimon10R
DD+VD+VV 0.568 0.468 0.669 0.242

On Speck32/64
#R Name ACC TPR TNR MSE

5 DDSpeck4R
AD 0.936 0.917 0.956 0.048

5 DDSpeck5R
DD 0.911 0.877 0.944 0.066

6 DDSpeck5R
AD 0.795 0.731 0.858 0.142

6 DDSpeck6R
DD 0.758 0.679 0.837 0.162

7 DDSpeck6R
AD 0.624 0.543 0.705 0.227

7 DDSpeck7R
DD 0.591 0.543 0.639 0.236

8 DDSpeck7R
AD 0.519 0.492 0.547 0.249

8 DDSpeck8R
DD 0.512 0.497 0.527 0.250

Different distinguishers on the same rounds are tested with the same set of 223 fresh examples.

and 21). At the same time, each distinguisher misses some cases when there ex-
ists another distinguisher be correct (outliers are marked in Figures 20 and 21),
which indicates that there is no single super distinguisher that is better than all
the others.

From the close performance betweenDDSimonn−1R

DD ,NDSimonn−1R

VD andNDSimonnR

VV
for Simon32/64 (see Table 11, Figures 22 and 23) and considering possible
small deviation of the training process, we conclude that the performance of
NDSimonn−1R

VD is the upper bound of the performance of NDSimonnR

VV , and conjec-
tured that accepting data of form (xn, x′

n, yn, y′
n), NDSimonnR

VV s have learned to
detect the features of data (xn−1, x′

n−1, yn−1 ⊕ y′
n−1) that can be obtained by

manually taking (xn, x′
n, yn, y′

n) back by one round without knowing the last

62

subkey. That is, in the ideal training case, the performance of an NDSimonnR

VV
should be the same as that of an NDSimonn−1R

VD .

G.2 On NDs and DDs of Simon32/64 failing to detect potential
signals

It would be interesting to learn whether there exists a signal beyond that found
by a DDSimonr−1R

DD and if it exists, whether a NDSimonrR

VV and a NDSimonr−1R

VV
for Simon32/64 are failing to detect such a signal. As suggested by a reviewer,
this could be done by running a key-averaging distinguisher (refer to Algorithm 1
in [15]) against n rounds that relies on the DDT at n−2 rounds. Accordingly, we
built two key-averaging distinguishers against n rounds that rely on DDSimonn−2R

DD ,
denoted by DDSimonn−2R

AD , where n = 9 and 10.
Interestingly, these DDSimonn−2R

AD s have exactly the same performance (ACC,
TPR, TNR, and MSE) with DDSimonn−1R

DD s. This result is quite different from
that of Speck32/64 (see Table 11 for the experimental results on Speck32/64,
where DDSpeckn−1R

AD is an n-round key-averaging distinguisher relying on (n− 1)-
round full DDT). This indicates that, for Simon32/64, the computation of the
n-round DDT using (n−1)-round full DDT and the algorithm in [24] is accurate
in the sense of averaging over all subkeys. Therefore, there are no additional
signals beyond that found by a DDSimonn−1R

DD for a NDSimonn−1R

VD or a NDSimonnR

VV
to detect.

Please find the source code of the experiments and the raw data of the results
via https://github.com/differential-neural-cryptanalysis/speck32_simon32.

63

https://github.com/differential-neural-cryptanalysis/speck32_simon32

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Scores

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4

D
en

si
tie

s
of

 s
am

pl
es

Y = 1, Z_VV: :0.563 :0.201 min:0.002 max:0.993
Y = 1, Z_VD: :0.575 :0.207 min:0.013 max:0.998
Y = 1, Z_DD: :0.583 :0.208 min:0.006 max:0.999
Y = 1, Z_AD: :0.583 :0.208 min:0.006 max:0.999

(a) Distribution of scores from distinguishers DDSimon7R
AD , DDSimon8R

DD , NDSimon8R
VD , and NDSimon9R

VV on
9-round positive examples

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Scores

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

D
en

si
tie

s
of

 s
am

pl
es

Y = 0, Z_VV: :0.417 :0.149 min:0.000 max:0.991
Y = 0, Z_VD: :0.417 :0.156 min:0.000 max:0.996
Y = 0, Z_DD: :0.417 :0.160 min:0.000 max:0.998
Y = 0, Z_AD: :0.417 :0.160 min:0.000 max:0.998

(b) Distribution of scores from distinguishers DDSimon7R
AD , DDSimon8R

DD , NDSimon8R
VD , and NDSimon9R

VV on
9-round negative examples

Fig. 22: Distribution of scores from distinguishers DDSimon7R
AD , DDSimon8R

DD , NDSimon8R
VD ,

and NDSimon9R
VV on 9-round examples

64

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Scores

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
4.4
4.8
5.2
5.6
6.0
6.4
6.8
7.2
7.6
8.0
8.4
8.8
9.2
9.6

D
en

si
tie

s
of

 s
am

pl
es

Y = 1, Z_VV: :0.512 :0.081 min:0.109 max:0.930
Y = 1, Z_VD: :0.515 :0.085 min:0.141 max:0.979
Y = 1, Z_DD: :0.516 :0.095 min:0.056 max:0.998
Y = 1, Z_AD: :0.516 :0.095 min:0.056 max:0.998

(a) Distribution of scores from distinguishers DDSimon8R
AD , DDSimon9R

DD , NDSimon9R
VD , and NDSimon10R

VV
on 10-round positive examples

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Scores

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5
11.0

D
en

si
tie

s
of

 s
am

pl
es

Y = 0, Z_VV: :0.489 :0.070 min:0.070 max:0.925
Y = 0, Z_VD: :0.488 :0.071 min:0.075 max:0.962
Y = 0, Z_DD: :0.484 :0.079 min:0.000 max:0.991
Y = 0, Z_AD: :0.484 :0.079 min:0.000 max:0.991

(b) Distribution of scores from distinguishers DDSimon8R
AD , DDSimon9R

DD , NDSimon9R
VD , and NDSimon10R

VV
on 10-round negative examples

Fig. 23: Distribution of scores from distinguishers DDSimon8R
AD , DDSimon9R

DD , NDSimon9R
VD ,

and NDSimon10R
VV on 10-round examples

65

	Enhancing Differential-Neural Cryptanalysis

