
Tri-op redactable blockchains with block modification,
removal, and insertion

Mohammad Sadeq Dousti1 and Alptekin Küpçü2

1 Johannes Gutenberg University of Mainz, Mainz, Germany
modousti@uni-mainz.de

2 Koç University, İstanbul, Turkey
akupcu@ku.edu.tr

Abstract. In distributed computations and cryptography, it is desirable to record events on a public ledger,
such that later alterations are computationally infeasible. An implementation of this idea is called blockchain,
which is a distributed protocol that allows the creation of an immutable ledger. While such an idea is very
appealing, the ledger may be contaminated with incorrect, illegal, or even dangerous data, and everyone
running the blockchain protocol has no option but to store and propagate the unwanted data. The ledger
is bloated over time, and it is not possible to remove redundant information. Finally, missing data cannot
be inserted later. Redactable blockchains were invented to allow the ledger to be mutated in a controlled
manner. To date, redactable blockchains support at most two types of redactions: block modification and
removal. The next logical step is to support block insertions. However, we show that this seemingly in-
nocuous enhancement renders all previous constructs insecure. We put forward a model for blockchains
supporting all three redaction operations, and construct a blockchain that is provably secure under this
formal definition.

Keywords: Bitcoin, blockchain, redactable blockchain, block change, block insertion, block removal

1 Introduction

A traditional problem in distributed computing and cryptography is joint agreement: A set
of parties want to reach at an agreement (consensus), while the communication is noisy, and
some parties may cooperate and deliberately act maliciously [1]. Nakomoto [15] proposed a
solution in the context of cryptocurrencies, called Bitcoin. The goal was a decentralized digi-
tal currency, where the peers jointly agree on performing financial transactions and register
them in a distributed ledger. Since the transactions were grouped together to form blocks,
and blocks were chained together in such a way that changing them is computationally
infeasible, the protocol is referred to as blockchain. Blockchain provides a mechanism to
append any type of data to the ledger, and it can be seen as a protocol to jointly agree upon
and irrevocably register events on a distributed ledger.

In general, a blockchain can be permissionless or permissioned [12]: Bitcoin is per-
missionless, as the parties do not need authentication to join the protocol. Permissioned
blockchains, on the other hand, require a party to authenticate first before being able to
take part in the protocol. The latter type is quite common in exclusive environments, such
as corporate applications (e.g., [4]). Due to the ability to identify parties and the possibility to
remove the malicious ones, permissioned blockchains can make simplifying assumptions to
achieve higher performance. However, they are not useful in environments without central
trust.

Several issues with blockchains were brought into attention: Since the ledgers are
immutable, unwanted data can be recorded in the ledger. Blockchain participants, who
save the ledger locally and propagate the changes, have therefore no option but to save
and propagate the unwanted data, including child pornography [10,11] and malware [17].
In some jurisdictions, the propagator of such illegal content is considered a complicit [14].
However, with an immutable ledger, the participants have no option to remove the illegal
content, or stop propagating it.

Another possible issue with immutability is lack of privacy. Once private information is
recorded in an immutable ledger, it cannot be removed. Therefore, immutable blockchains
cannot observe the “right to be forgotten”, endowed to users by privacy laws such as the EU
General Data Protection Regulation (GDPR) or California Consumer Privacy Act (CCPA).

Protocol or implementation flaws pose another threat to immutability. In one famous
case, the Ethereum cryptocurrency had an implementation flaw that made the DAO At-
tack [5] possible. As a result, malicious transactions were recorded in the immutable ledger
of Ethereum. The only possible solution was for the majority of participants to upgrade
their software. The new software resolved the flaw, effectively invalidating the malicious
transactions. This is called a hard fork, and it is the last line of defense against such
influential attacks on immutable blockchains.

Immutability has other drawbacks as well: The size of the ledger increases over time,
and storing and processing it becomes increasingly resource intensive. There is no possibil-
ity to reduce the size of ledger by removing redundant information from it. Furthermore,
there is no option to insert a block within the ledger, even if the participants later note that
a block is mistakenly not registered (due to protocol issues, implementation mistakes, or
oversight).

2

For these reasons, the concept of redactable blockchains was introduced. A redactable
blockchain allows the ledger to be controllably mutated, once the need arises. In [8], two
types of redactable blockchains were identified: (1) Moderated: In protocols of this type
[2,6,9,8], a centralized authority (one or more administrators) have a secret redaction key.
Once a redaction request is approved, it performs the required changes to the ledger using
the secret key. The changes can be verified by all participants using the associated public
key. (2) Unmoderated: In protocols of this type [18,7], the parties vote on redaction re-
quests. Once a certain quorum of votes is attained, the redaction is applied. The votes are
added to the ledger as evidence.

An important remark is to distinguish these concepts with permissioned or permis-
sionless blockchains, as moderation has nothing to do with user authentication. Moderation
authority exists only for controlling the redaction operations, but not permitting users to
join the normal system. A blockchain can be both permissioned and moderated, but even in
that case it is possible to have two sets of authorities: one for authorizing users to join the
blockchain, and one for authorizing the redactions.

In this work, we opted for the moderated setting, since there are some serious attacks
[7,8] against the existing unmoderated protocols.

1.1 Related work in the moderated setting

The concept of redactable blockchains was pioneered by Ateniese et al. [2]. Their main idea
was to construct a protocol on top of Bitcoin, and therefore had to cope with the limitations
posed by Bitcoin. The resulting construct was therefore complicated: They introduced a
primitive called enhanced chameleon hash function, in which collisions are hard to find
except for an entity owning a secret key. The suggested construction of such hash functions
required non-standard assumptions and a large redaction witness (e.g., under the DLIN
assumption, it required 39 group elements). Derler et al. [6] show how this idea can be
further fine tuned to make the primitive policy based: Any entity that has enough privileges
to satisfy a policy can find collisions. The idea is implemented by incorporating another
primitive called a ciphertext-policy attribute-based encryption (CP-ABE).

Grigoriev and Shpilrain [9] suggested a simple and efficient solution based on RSA, but
their construct is insecure [8]. Dousti and Küpçü [8] provided another simple solution based
on any strongly unforgeable digital signature. The efficiency of their protocol is a result

3

of completely departing from Bitcoin, and not being restricted to its data structures and
verification algorithms.

Except for [2], all previous work [6,9,8,18,7] (both moderated and unmoderated) support
only one type of redaction: Changing blocks. In [2], the authors show how block removals
can be supported as well.

1.2 Contributions

We propose the first model and security definition for redactable blockchains that support
three redaction operations: block change (chg), block insertion (ins) and block removal (rem).
All previous redactable blockchains supported block change. Removal is previously used in
one work [2] to shrink the ledger. To the best of our knowledge, we initiate the support for
block insertion. While frequent insertions cause the ledger to bloat, discreet use of insertion
might be useful in some scenarios. For instance, the participants might decide that a block
B must have been recorded at index i, but the ledger did not record it due to a bug in the
blockchain protocol/software, an oversight, or an attack. Instead of a hard fork, the ledger
can be redacted by inserting B at index i.

Interestingly, we show that naively incorporating the seemingly innocuous insert op-
eration renders the previous constructs insecure. We demonstrate this by what we call a
“twin-block attack” on [2,6,9], and a “change-of-operation attack” on [8].

We then create a secure construct, and prove its security under our improved model.
The construct alleviates all previous issues by introducing the concept of triple versioning,
where each block holds three types of “versions”: A globally unique version number, the type
of operation based on which the block is created, and the intended index of the block. Our
construct uses a single digital signature per redaction, and is thus very efficient. Further-
more, it does not require on any non-standard assumptions.

It is noteworthy that while devising our security model, we faced a choice. One choice
resulted in a simpler model, but the security definition was be stricter. The other choice
resulted in a more complex model with a laxer security definition. We opted for the former
one. Surprisingly, it resulted in a simpler construct and a simpler security proof than the
alternative choice, the security guarantee is stronger (due to the stricter security definition).

4

1.3 Organization

The rest of this paper is organized as follows: Section 2 provides the necessary background
for the rest of the paper. In Section 3, we illustrate the four types of block operations in
the ledger, and introduce the utility functions Ind, Prev, Next and Pivot used throughout the
paper. In Section 4, we propose our model and security definition for blockchains supporting
three types of redaction. Section 5 shows why previous constructs are insecure in this model.
In Section 6 we incorporate an idea called triple versioning to build an improved construct,
and show that it is secure under the proposed model. Section 7 suggests some possible
enhancements, and concludes the paper.

2 Background

Notation. Deterministic assignments are denoted by z := 9, while probabilistic assignments
are denoted by an arrow: z ← B(n) for the output of a probabilistic algorithm B, or z ← S
for uniformly random selection from a finite set S. The symbol x = y is used for check-
ing/asserting equality.

Lists. Let L= [B0, . . . ,B`] be a list. Note that we use 0 and ` as the indices of the first and the
last element of the list, respectively. The list may grow arbitrarily, but ` is always updated
accordingly to be the index of the last element. The elements of the list can be addressed by
their index: L[i]= Bi for 0≤ i ≤ `. For integers i, j with 0≤ i ≤ j ≤ `, define L[i : j] def= [Bi, . . . ,
B j]. If j < i, then L[i : j] = [] by definition. If L1 and L2 are two lists, their concatenation is
denoted by L1 +L2.

Negligible function. A function negl : N→ [0,1] is called negligible if it decays faster than
the inverse of any positive polynomial. Formally, for any c ∈N, there exists n0 ∈N, such that
for all integers n > n0 we have negl(n)< n−c.

Definition 1 (Strongly unforgeable signature scheme). Consider a signature scheme
(GenSig,Sign,VerifySig) where GenSig generates a pair of public and secret keys, Sign generates
a signature given the secret key and a message, and VerifySig verifies a signature on some
message using the public key. The signature scheme is called strongly unforgeable under
chosen-message attack (sUF-CMA), if for any efficient adversary taking part in the follow-
ing game, there exists a negligible function negl, such that the probability of the adversary
winning is at most negl(λ), where λ is the security parameter.

5

– GenSig(1λ) generates a pair of public and secret keys (pk, sk).
– The adversary is given pk, as well as access to the signing oracle Signsk(·). The signing

oracle receives a message, and returns a valid signature on it. The adversary may interact
with the oracle polynomially many times.

– The adversary outputs a pair (m∗,σ∗). She is said to win the game if VerifySig(pk,m∗,
σ∗)= 1, and σ∗ is never returned by the signing oracle on input m∗.

Our construction assumes the existence of sUF-CMA signature schemes. The assumption
is equivalent to the existence of ordinary (i.e., not necessarily strong) UF-CMA signature
schemes [13], which can be constructed from one-way functions [19]. However, very efficient
constructs of sUF-CMA signature schemes exists [3, p. 230].

3 Blockchain operations

This section illustrates the ways a ledger can be modified using diagrams in Figure 1. To
this end, let us first fix the block structure. The most important part of a block is the block
content C. Blocks must also contain a witness W supporting the validity of redactions. Other
information, such as block prefix, version number, randomness and so on are immaterial to
the discussion of this section. We simply use an ellipsis (· · ·) to show the omission of such
extra information.

The first type of blockchain operation is appending a block. It does not require access
to the secret key. Here, we define the pivot block as the block being appended. All other
operations that can be performed on the ledger are redactions. They require access to the
secret key. For each redaction operation, we define one block as the pivot block: It is the block
for which a new witness is computed (using the secret key). The specifics for each operation
is explained next:

Append operation apd (Figure 1a): Consider the appending request (apd, i,B), asking to
append the block B at location i. When the last block of the ledger is at location `, the
operation is only successful for i = `+1. Here, the pivot block is the block being appended
(B).

Change operation chg (Figure 1b): Consider the redaction request (chg, i,C′), asking to
change the content of the ith block to C′. Here, the pivot block is the block being changed

6

· · · B` (apd, i, B)

i = `+ 1

B = (· · · , C,W)

· · · B`

W

C

· · ·

Bi: Pivot Block

(a) Append operation (apd, i,B). The pivot block is the one being appended.

Bi−1

Prev = i− 1

Wi

Ci

· · ·

Bi

Bi+1

Next = i+ 1

(chg, i, C) Bi−1

W ′i

C ′i := C

· · ·

B′i: Pivot Block

Bi+1

(b) Redaction operation (chg, i,C). The pivot block is the one being changed.

Bi−1

Prev = i− 1

Bi

Next = i

(ins, i, C) Bi−1

W ′i

C ′i := C ′

· · ·

B′i: Pivot Block

B′i+1 = Bi

(c) Redaction operation (ins, i,C). The pivot block is the one being inserted.

Bi−2

Prev = i− 2

Wi−1

Ci−1

· · ·

Bi−1

Bi Bi+1

Next = i + 1

(rem, i, C) Bi−2

W ′i−1

C ′i−1 := C

· · ·

B′i−1: Pivot Block

B′i
=

Bi+1

(d) Redaction operation (rem, i,C). The pivot block is the one preceding the block being removed.

Fig. 1. Illustration of various block redaction operations. The grayed fields of the pivot block are affected by the
corresponding operation.

7

Table 1. Various operations for a redactable blockchain. Ind`(op) denotes the set of valid indices i for operation op on a
ledger whose last index is `. For each operation, previous and next indices are listed. Note that they refer to block indices
in the ledger prior to performing the operation.

Operation Name Redaction? Ind`(op) Prev(op, i) Next(op, i) Pivot(op, i)

apd Append No {`+1} i−1 i+1 i

chg Change Yes {1, . . . ,`} i−1 i+1 i
ins Insert Yes {1, . . . ,`} i−1 i i
rem Remove Yes {1, . . . ,`} i−2 i+1 i−1

(the ith block). The administrator uses the secret key sk to find a proper witness W ′
i so that

the redaction is valid.

Insertion operation ins (Figure 1c): Consider the redaction request (ins, i,C′), asking to
insert a block with content C′ at index i. Here, the pivot block is the block being inserted
(the ith block). The administrator uses the secret key sk to find a proper witness W ′

i .

Removal operation rem (Figure 1d): Consider the redaction request (rem, i), asking to remove
the block at index i. Here, the pivot block is the block preceding the block being removed (the
block with index i−1). The administrator uses the secret key sk to find a proper witness
W ′

i−1.

Table 1 summarizes the operations, as well as utility functions Ind, Prev, Next, and
Pivot. These utility functions are used in later sections of the paper to simplify definitions.
Ind gives the set of valid indices for an operation. Pivot returns the index of the pivot block
for each operation, while Prev and Next return the index of the previous and next blocks.
Notice that all indices refer to the locations in the ledger prior to performing the operation.

4 The tri-op model

Our model augments that of [8] with two types of new redactions: Block removal, and block
insertion. The model is described as a game between a challenger and an adversary. The
challenger generates a pair of keys, and initializes the ledger. The public key is handed over
to the adversary. She also receives a read-only access to the ledger, as well as oracle access
to the challenger. The adversary can make two types of queries to the challenger:

8

1. Installation query: The adversary asks the challenger to install a block at a specific
location in the ledger, while performing one of the four types of operations (append,
change, remove, or insert). The challenger verifies the request, and performs it in case it
is valid.

2. Redaction query: The adversary asks the challenger to redact a block using one of
three redaction operations (change, remove, or insert). The challenger verifies the re-
quest. If the operation is valid, the challenger uses the secret key to perform the opera-
tion, and returns a block that can later be installed by the adversary in the ledger using
an installation query.

This model abstracts out the distributed nature of a blockchain. As a result, it does
not capture all real-world attacks. For instance, the adversary does not get the option to
change multiple blocks at once. Therefore, as shown in the next section, the constructs need
not worry about chaining the blocks together. In some sense, it is an ideal-world model of
redactions. When used with real-world constructs, it should somehow be composed with a
blockchain model that captures attacks against ordinary blockchains. Our model is simple
enough, and is suitable for proof-reading constructs against non-distributed attacks. In
Section 7, we discuss possible extensions to to capture a distributed model.

We next provide a definition of tri-op redactable blockchains, which as the name sug-
gests, support three types of redaction operations. The definition uses the following useful
function:

Transform(L, (op, i,B)) def= L[
0 : Prev(op, i)

]+ [B]+L[
Next(op, i) : `

]
(1)

It defines the transformation performed on ledger L when performing an installation of
block B at location i using operation op ∈ {apd,chg,rem,ins}. It is assumed that i ∈ Ind`(op),
as otherwise it will be rejected.

Definition 2. A quintuple of efficient algorithms 3RBC = (Gen,Create,Redact,Verify, Install)
is called a tri-op redactable blockchain scheme if:

1. Algorithm Gen takes the security parameter 1λ in unary and generates a pair of public
and private keys (pk, sk), along with the initialized ledger L.

2. Algorithm Create creates a new block B, when executed on input the public key pk, the
ledger L and some block content C.

3. Algorithm Redact generates a redacted block using the secret key. More specifically, Redact(sk,
L, (op, i,C)) outputs a redacted block B for operation op ∈ {chg,ins,rem} at index i of
ledger L, where sk is the secret key and C is some block content.

9

4. Algorithm Verify verifies the validity of an operation on the ledger. More specifically, let
(op, i,B) denote putting block B at index i of the ledger by performing operation op ∈ {apd,
chg,ins,rem}. Then, Verify(pk,L, (op, i,B)) returns 1 if and only if this operation is valid.
We observed that splitting the verification algorithm into two separate checks makes it
much more flexible, as one part can be independent of the history of ledger transforms:
The first part (algorithm Φ) verifies whether the operation is valid on the current ledger.
The second part (algorithm Ψ) verifies whether the (resulting) ledger is valid, regardless
of the operation. For the first part, the blockchain designer should decide what part of
each block is involved in the verification. We call that part the “version of the (pivot)
block”:

V :=Version(L[Pivot(op, i)]) . (2)

We also extract the version of all existing blocks in the ledger prior to the operation:

~V := [Version(L[0]), . . . ,Version(L[`])] . (3)

Algorithm Φ then compares the new version information against the existing ones, when
op is the operation and i is the index: Φ(~V ,op, i,V). It returns 1 if and only if the
operation is deemed valid.
The second algorithm Ψ(pk,L∗) checks the consistency of the whole ledger assuming the
transformation is done:

L∗ :=Transform(L, (op, i,B)) . (4)

In one sense, Ψ performs a static check on the ledger, while Φ performs a dynamic check
on the operation. The verification algorithm returns 1 if and only if both Φ(~V ,op, i,V)
and Ψ(pk,L∗) return 1.

5. Algorithm Install modifies the ledger according to the requested operation. More specifi-
cally, when executed as Install(pk,L, (op, i,B)), the algorithm first performs Verify(pk,L,
i,B), and returns 0 if the verification fails. Otherwise, it performs L = Transform(L, (op,
i,B)), and returns 1.

Any tri-op redactable blockchain 3RBC should be correct, meaning that when the al-
gorithms Create and Redact are executed on valid inputs, their output must satisfy the
verification algorithm:

Definition 3. Let λ be any security parameter, and 3RBC = (Gen,Create,Redact,Verify, Install)
be as in Definition 2. Let (pk, sk,L)←Gen(1λ), and assume that L is transformed any number
of times by applying the Install algorithm. The following correctness conditions should hold:

10

1. Algorithm Create is correct: Let B be generated by Create(pk,L,C). Then

Content(B)= C ∧ Verify(pk,L, (apd,`+1,B))= 1 . (5)

2. Algorithm Redact is correct: For any op ∈ {chg,ins,rem} and i ∈ Ind`(op), let B be
generated by Redact(sk,L, (op, i,C)). Then

Content(B)= C ∧ Verify(pk,L, (op, i,B))= 1 . (6)

We can now give the security definition for a tri-op redactable blockchain, which is
based on Experiment 1. The experiment uses a set Hist to keep track of queries made to
the redaction oracle: When a valid query (op, i,C) is made to this oracle and a block B
is returned as response, the element (op, i,B) is added to Hist. The adversary wins if she
performs a valid install query for a redacted block not in Hist.

It is noteworthy that once a valid installation query is processed, the experiment emp-
ties the set Hist. This provides the adversary with a great opportunity: She can win even if
she can get two redacted blocks from the administrator, and install both of them. In other
words, for a secure 3RBC, once a redacted block is installed, all previously obtained redacted
blocks must be rendered invalid.

The above definition is very strict. Alternatively, we could have kept all previously
obtained blocks in Hist to relax the definition. However, since the insertion and removal
of blocks relocates all succeeding blocks, the index i in corresponding elements of Hist must
be readjusted: A block insertion should add 1 to the index of triplets in Hist, whose index
is after the installation location. Similarly, a block removal should subtract 1 from those
indices. While the relaxation in security definition is perceivable, we did not incorporate it in
Experiment 1, as otherwise it would unnecessarily complicate the experiment. Surprisingly,
this stricter model simplified our construction and security proof (next section) compared to
the alternative.

Definition 4. A tri-op redactable blockchain scheme 3RBC is secure) if for all efficient ad-
versaries A who takes part in Experiment 1, there exists a negligible function negl such that
Pr

[
RedactA,3RBC(λ)= 1

]≤ negl(λ).

11

1. Let (pk, sk,L)←Gen(1λ). The set of query-responses Hist is initialized to the empty set
;.

2. Adversary A is given pk and a read-only access to the ledger L. She can query two
oracles REDCsk,L(·, ·, ·) and INSTpk,L(·, ·, ·), which operate as explained below.

3. Upon receiving (op, i,C) where op ∈ {chg,ins,rem}, the redaction oracle REDC generates
B by running Redact(sk,L, (op, i,C)). If B 6= ⊥, it adds (op, i,B) to Hist. Finally B is
returned.

4. Upon receiving (op, i,B), the installation oracle INST executes Install(pk,L, (op, i,B)).
Let b be the output of the installation algorithm. If b = 0, the experiment ends by
returning 0. Otherwise,
– If: op 6= apd and (op, i,B) ∉Hist: The adversary A succeeds.

The experiment ends by returning 1.
– Else: In case (op, i,B) ∈Hist, the installation oracle sets Hist :=;.

The adversary receives 1, and the experiment continues.

Experiment 1. The redaction experiment RedactA,3RBC (λ).

B0

P1 := f(B0)

B1

(ins, i, C)

B0

P := f(B0)

C

W

B

P1 := f(B0)

B1

Fig. 2. Illustration of how twin blocks are created.

5 Attacks on previous work

In this section, we show how adding support for block insertion renders previous moder-
ated blockchains insecure. Most previous constructs succumb to what we call a “twin-block
attack” (Section 5.1), while one construct is susceptible to a “change-of-operation attack”
(Section 5.2).

5.1 Twin-block attack

Most of the previous redactable blockchains in the moderated setting [2,6,9] follow the
following structure: Blocks contain a prefix P, some content C, and a witness W . The witness
is computed by the administrator when redacting a block. The prefix of a block is computed
as a function of the previous block: Pi+1 := f (Bi), where f is some deterministic function.

12

Once insertion is recognized as an operation, the deterministic nature of f becomes an
issue: When a block is inserted between two blocks, its prefix equals to that of the next
block: see Figure 2, and read on for a formal proof. We refer to two consecutive blocks
with the same prefixes as twin blocks. Next, it is shown how the adversary can create and
exploit such blocks to make some arbitrary modifications to the ledger, without consulting
the administrator first.

Consider a “toy” ledger L= [B0,B1]. By definition, P1 is a deterministic function of the
previous block:

P1 := f (B0) . (7)

Two-step setup: The adversary A performs the following:

1. A queries Redact on (ins,1,C), and receives block B = (P,C,W). In particular, W is set in
such a way that the prefix of the next block B1 remains valid: In the context of enhanced
chameleon hash functions introduced in Section 1.1, the administrator uses its secret
key to find W such that B and B0 form a collision for f .

2. A queries Install on (ins,1,B). The resulting ledger is L= [B0,B,B1].

The following identities hold in the ledger:

P = f (B0), (8)

P1 = f (B) . (9)

Equation (8) holds since B is a valid next block of B0, and Equation (9) holds because B1 is
a valid next block of B. Together with Equation (7) we get:

P = P1 = f (B0)= f (B) . (10)

Attack 1: Without any other Redact queries, adversary can ask Install on (ins,1,B), resulting
in the valid ledger L= [B0,B,B,B1]. The ledger is valid because B is a valid next block of B0

(as was the case before), and B is a valid next block of itself: P = f (B) as per Equation (10).
Therefore, the adversary can insert B in the ledger indefinitely by querying Install on (ins,
1,B) an arbitrary number of times.

13

Attack 2: Starting with L = [B0,B,B,B1] obtained in the previous attack, A can ask the
redaction oracle to change the block B at index 1, but apply it to its “twin block” B at index
2:

1. A queries Redact on (chg,1, C̃), and receives block B̃ = (P̃, C̃,W̃), satisfying the following
identities:

P̃ = f (B0), P = f (B̃) . (11)

2. A queries Install on (chg,2, B̃), resulting in the valid ledger L = [B0,B, B̃,B1]. This is
because combining Equations (10) and (11), we get:

P̃ = f (B), P1 = f (B̃) . (12)

Therefore B̃ is a valid next block of B, and B1 is a valid next block of B̃.

5.2 Change-of-operation attack

The construct of [8] has the block structure B = (C,V ,W), where C is the block content, V is
the block version number, and W is a witness to be provided whenever a block is redacted.
Notice that blocks do not have a prefix, as the model is abstract, and chaining blocks occurs
at a lower level.

– The versioning scheme is global, meaning that each block will have a unique version
number. In other words, with each installation (be it an append or a redaction), a new
version number is introduced.

– The witness for a non-redacted block is the empty string ε. Once a block is redacted, the
witness becomes a digital signature on a value specified below. The signing secret key is
only known to the administrator.

Let L = [(C1,1,ε), (C2,2,ε), (C3,3,ε)] be the current ledger, and assume we want to ap-
pend a block whose content is C4. The version number of this block must be unique in the
ledger, so we set it to 4. The witness is set to the empty string. Therefore, the forth block is
B4 = (C4,4,ε), and the updated ledger becomes L= [(C1,1,ε), (C2,2,ε), (C3,3,ε), (C4,4,ε)].

Now assume the administrator wants to approve a change to the second block, so that
its new content becomes C′

2. The new block must have a unique version in the ledger, so the

14

version is set to 5. Finally, the witness of the redacted block must be set. The signature is
computed on the concatenation of three items: (1) The content of the redacted block, (2) the
version of the redacted block, and (3) the version of the next block. The first two components
are there to ensure that the adversary does not change the block content or version after
she received a signed redacted block from the administrator. The third component is there to
prevent an adversary to relocate a signed redacted block (i.e., receive a redaction for location
i, but later install it at location i′). In our example, the current version of the redacted block
is 5, and the version of the next block in the ledger is 3. Therefore, W ′

2 is the administrator’s
signature on the following string: C′

2 ||5 ||3, and the ledger after installation of this block
becomes L= [(C1,1,ε), (C′

2,5,W ′
2), (C3,3,ε), (C4,4,ε)].

Let us exemplify one last modification to our example ledger. To change the content
of the third block to C′

3, its version is set to 6, and its witness W ′
3 is set to a signature on

C′
3 ||6 ||4. The ledger is updated to L= [(C1,1,ε), (C′

2,5,W ′
2), (C′

3,6,W ′
3), (C4,4,ε)].

The issue here is that W ′
2 is no longer a valid signature, since the version number on the

next block is changed. The construct resolved this issue by defining a conditional signature
checking algorithm: The signature is only checked if the version of the current block is less
than that of the next block (i.e., the next block is not changed after the current block). The
algorithm Ψ is defined as the logical AND:

∧`
i=1ψ(pk,L[i−1],L[i]), where ψ is defined as

follows for any two blocks B = (C,V ,W) and B′ = (C′,V ′,W ′):

ψ(pk,B,B′) def=
1 if V ′ >V ,

VerifySig(pk,C ||V ||V ′,W) if V ′ <V .
(13)

While the above construct is provably secure in the single-operation model, it suffers
from a simple change-of-operation attack. Consider a toy example ledger L= [(C1,1,ε), (C2,2,
ε)]. The adversary requests the redaction (chg,1,C′

1), and receives the block B′
1 = (C′

1,3,W ′
1),

where W ′
1 is a signature on C′

1||3||2. However, instead of installing (chg,1,B′
1), the adversary

requests to install (ins,2,B′
1). Notice that the requested operation is changed from chg to

ins, and the location is changed from 1 to 2. If succeeds, the ledger will become L = [(C1,
1,ε), (C′

1,3,W ′
1), (C2,2,ε)], while the administrator’s approved redaction was L= [(C′

1,3,W ′
1),

(C2,2,ε)].

The above attack succeeds because the construct checks two conditions: (1) The redacted
block version is globally unique. In this case, the version is 3, and satisfies this condition. (2)

15

The condition in Equation (13), which also passes: W ′
1 is a valid signature on its own block

content and version, as well as the version of the next block.

The reason why the above attack works is that the construct does not readily generalize
to the tri-op settings: The adversary can always request a redaction using one operation,
and install it at the proper location with another operation. As the above example shows,
the result can be catastrophic: The adversary can make structural changes to the ledger
that are not approved by the administrator. In the next section, we make some changes, and
suggest a new construct that is provably secure under the tri-op model.

6 Construction

In this section, we construct a tri-op redactable blockchain (Section 6.1) based on the idea of
triple versioning. We then prove its security (Section 6.2) according to our proposed model
and security definition.

6.1 A secure construct based on triple versioning

For a secure tri-op redactable blockchain, we improve the construct described in Section 5.2.
The idea is to change the block structure to carry extra information regarding the operation
and location for which the block is generated. In Definition 2, the only part of the verification
algorithm that has access to this information is Φ(~V ,op, i,V). Therefore, the appropriate
place to add the operation and location of the block is its version element. Accordingly, the
version of each block becomes a triplet V = (Vme,Vop,Vidx), where:

– Vme is the actual version of the current block, and should be globally unique.
– Vop ∈ {apd,chg,ins,rem} is the operator for which the block is generated.
– Vidx is the location for which the block is generated.

We then define the following verification algorithms (~V is as defined in Equation (3)):

MaxV(~V) def= 1+ max
0≤i≤`

~Vme[i] , (14)

Φ(~V ,op, i,V) def= (
op ∈ {apd,chg,ins,rem}

)∧ (
i ∈ Ind|~V |(op)

)
(
Vop = op

)∧ (
Vidx = i

)∧ (
Vme =MaxV(~V)

)
, (15)

16

ψ(pk,B) def=
1 if Vop 6= apd,

VerifySig(pk,C ||V ,W) otherwise.
, (16)

Ψ(pk,L) def= ∧
0≤i≤`

ψ(pk,L[i]) . (17)

Algorithm MaxV(~V) finds the maximum Vme in the ledger, and adds 1 to it. Algorithm Φ

ensures that the block being installed is valid: It has the proper operation, the location at
which it is installed matches the operation, and its version triplet is correct. Algorithm ψ

checks whether the block is installed using a redaction operation, and if so the witness W is
a valid signature on C ||V . Finally, Ψ applies ψ to all blocks in the ledger, and returns 1 if
all of them return 1.

Construct 1 Let 3RBCtv be a tri-op redactable blockchain, defined as follows. Each block is
structured as a triple B = (C,V ,W), where C is the block content, V is the block version and
W is a redaction witness. The block version is a triplet V = (Vme,Vop,Vidx).

– Gen(1λ) calls the generator of some signature scheme to generate a key pair: (pk, sk)←
GenSig(1λ). It then initializes the ledger as list containing a single element B0 := (

ε, (1,
apd,0),ε

)
.

– Create(pk,L,C) generates B := (
C, (Vme,apd,`+ 1),ε

)
, where Vme = MaxV(~V) as per

Equation (14).
– Redact(sk,L, (op, i,C)): If op ∉ {chg,ins,rem} or i ∉ Ind`(op), it returns ⊥. Otherwise, it

creates a block B := (C,V ,W) using content C, where V = (Vme,Vop,Vidx) = (MaxV(~V),
op, i) and:

W ← Signsk
(
C ||V)

. (18)

– Verify(pk,L, (op, i,B)): Let algorithms Φ and Ψ be as in Equation (15) and Equa-
tion (17), respectively. The verification algorithm sets L∗ := Transform(L, (op, i,B)), ex-
ecutes Φ(~V ,op, i,V) and Ψ(pk,L∗), and returns 1 if and only if both return 1.

– Install(pk,L, (op, i,B)): Operates in the same manner defined in Definition 2.

6.2 Security proof

We now prove that Construct 1 satisfies the correctness and security requirements of Sec-
tion 4.

17

Theorem 1 (Correctness). The tri-op redactable blockchain 3RBCtv is correct per Defi-
nition 3.

Proof. We prove the both correctness conditions hold.

Condition (1): Algorithm Create(pk,L,C) generates a block B := (
C, (MaxV(~V),apd,`+1),

ε
)
. The block content of B is C. Furthermore, the version of B is correctly computed

as required by Φ: The version triplet includes a globally unique version number, the
operation is valid, and index is in Ind`(apd). Finally, if L is already a valid chain, so is
L∗ :=L+ [B]. This is because ψ returns 1 on all blocks in L∗ prior to the last block (due
to the validity of L). For the last block B, since Versionop(B) = apd, the return value of
ψ(pk,B) is trivially 1. As a result, all blocks verify, and Ψ returns 1 as well.

Condition (2): Algorithm Redact(sk,L, (op, i,C)) generates ⊥ if op ∉ {chg,rem,ins} or op ∉
Ind`(op). Otherwise, it returns B := (

C, (MaxV(~V),op, i),W
)
. The block content of B is C.

Furthermore, the version of B is correctly computed as required by Φ: The version triplet
includes a globally unique version number, the operation is a valid redaction, and index
is in Ind`(apd). Finally, if L is already a valid chain, so is L∗ := Transform(L, (op, i,B)).
This is because ψ returns 1 on all blocks in L∗ prior to the last block (due to the validity
of L). For the last block B, due to Equation (18), W is a valid signature on C ||V . Hence,
the return value of ψ(pk,B) is 1, as per Equation (17).

We conclude that 3RBCtv is correct.

Theorem 2 (Security). 3RBCtv is secure per Definition 4, assuming (GenSig,Sign,VerifySig)
is an sUF-CMA signature scheme as defined in Definition 1.

Proof. For any (efficient) adversary A, who wins in Experiment 1 with probability ε, we
construct an efficient forger F , who forges a signature with the same probability.

The forger F is given as input the public key pk of the signature scheme, and can
query the signing oracle Signsk(·) polynomially many times. It initializes the set Hist to
empty, and the ledger L as specified by Construct 1. It then executes the adversary A(pk,L)
as a subroutine. Whenever the adversary makes an oracle request, the forger responds as
specified next:

– Queries to the redaction oracle REDC(op, i,C): If either op ∉ {chg,ins,rem} or i ∉
Ind`(op), the forger F returns 0 and halts. Otherwise, F creates a new block B := (

C,V ,
W

)
with content C, version triplet V := (MaxV(~V),op, i) and witness W . To compute the

18

witness, F sends the query (C ||V) to the signing oracle. It then sets Hist := Hist∪{(op, i,
B)}, and finally returns B to the adversary A for further processing.

– Queries to the installation oracle INST(op, i,B): The forger F acts exactly as in Step
4 of Experiment 1. That is, it calls the underlying Install operation, and returns 0 and
halts if installation fails. If installation succeeds on an append or a non-fresh redaction,
Hist is cleared and the game continues. Otherwise, the adversary is successful in the
game. In this case, the forger F parses B as the triple (C,V ,W). Since the installation
algorithm returns 1, we know that B is a valid block. In particular, W is a valid signature
on the message m def= (C ||V). In this case, F returns (m,W) as a valid forgery.

It remains to show that the returned pair is fresh, meaning that the signing oracle has
never returned the signature W when queried on input m. The forger has already checked
that (op, i,B) is not in the set Hist (as in Step 4 of Experiment 1). Therefore, we consider all
the remaining cases:

1. B was returned at some point by the REDC oracle, but was removed from Hist by
a subsequent call to INST: This is impossible because once INST is called, the maximum
version in the ledger is increased. Therefore, no previously obtained B remains valid.

2. (op′, i′,B) ∈Hist, where (op′, i′) 6= (op, i): This is impossible, as B includes as part of its
version both the operation and the location. Changing any of causes Φ to return 0.

3. (op, i,B′) ∈Hist for some block B′ = (C,V ,W ′): In this case, both blocks B and B′ have
the same content and version, but differ in their witnesses. As a result, both W and
W ′ verify as signatures on the message m def= (C ||V). This constitutes a strong signa-
ture forgery, and therefore (m,W) is a valid strong forgery on the underlying signature
scheme.

4. None of the above: In this case, m def= (C ||V) is new, and W is a valid signature on it.
This constitutes a normal signature forgery, and F can output (m,W) as a valid forgery.

As explained above, cases 1 and 2 are impossible: the adversary never wins the game in
these cases, because her output is simply invalid. In the plausible cases 3 and 4, the forger
generates a valid signature whenever the adversary succeeds. Subsequently, F generates a
valid signature forgery with the same probability that A succeeds in Experiment 1, and the
theorem follows.

19

7 Summary and future work

In this paper, we defined a model for redactable blockchains that, for the first time, in-
corporated all three types of redactions: Block change, block removal, and block insertion.
We showed that enabling block insertions renders previous constructs susceptible to either
“twin-block attack” or “change-of-operation attack”. We then proposed a new construct that
is proved secure in this tri-op model.

While our model is simple enough to capture many types of attacks, it is still an abstrac-
tion of the real-world. In particular, it does not capture the distributed nature of blockchains,
since the model is designed as a game between an adversary and a challenger. It is a good
first step toward understanding the diversity of attacks and proof-reading existing con-
structs. However, a distributed model would better capture all types of real-world attacks.
Therefore, the next logical step is to cast our model in a multiparty setting similar to that
of [16].

References

1. Akkoyunlu, E.A., Ekanadham, K., Huber, R.V.: Some Constraints and Tradeoffs in the Design of Network
Communications. In: Proceedings of the 5th ACM Symposium on Operating Systems Principles. pp. 67–74 (1975)

2. Ateniese, G., Magri, B., Venturi, D., Andrade, E.: Redactable Blockchain–or–Rewriting History in Bitcoin and Friends.
In: EuroS&P. pp. 111–126. IEEE (2017)

3. Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Computational Diffie-Hellman. In: PKC.
pp. 229–240. Springer (2006)

4. Cachin, C.: Architecture of the Hyperledger Blockchain Fabric. In: Workshop on Distributed Cryptocurrencies and
Consensus Ledgers (2016)

5. CoinDesk: Understanding The DAO Attack (2016), https://tinyurl.com/dao-attack
6. Derler, D., Samelin, K., Slamanig, D., Striecks, C.: Fine-Grained and Controlled Rewriting in Blockchains: Chameleon-

Hashing Gone Attribute-Based. In: NDSS. pp. 1–15. The Internet Society (2019)
7. Deuber, D., Magri, B., Thyagarajan, S.A.K.: Redactable Blockchain in the Permissionless Setting. In: Symposium on

Security and Privacy. pp. 124–138. IEEE (2019)
8. Dousti, M.S., Küpçü, A.: Moderated Redactable Blockchains: A Definitional Framework with an Efficient Construct.

In: Data Privacy Management, Cryptocurrencies and Blockchain Technology, pp. 355–373. Springer (2020)
9. Grigoriev, D., Shpilrain, V.: RSA and Redactable Blockchains. International Journal of Computer Mathematics:

Computer Systems Theory 6(1), 1–6 (2021)
10. Hargreaves, S., Cowley, S.: How Porn Links and Ben Bernanke Snuck Into Bitcoin’s Code (2013), https://tinyurl.

com/bitcoin-snuck
11. Hopkins, C.: If You Own Bitcoin, You Also Own Links to Child Porn (2020), https://tinyurl.com/bitcoin-child
12. Kolb, J., AbdelBaky, M., Katz, R.H., Culler, D.E.: Core Concepts, Challenges, and Future Directions in Blockchain: A

Centralized Tutorial. ACM Computing Surveys 53(1), 1–39 (2020)
13. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Short Generic Transformation to Strongly Unforgeable Signature in the

Standard Model. In: ESORICS. pp. 168–181. Springer (2010)

20

https://tinyurl.com/dao-attack
https://tinyurl.com/bitcoin-snuck
https://tinyurl.com/bitcoin-snuck
https://tinyurl.com/bitcoin-child

14. Matzutt, R., Hiller, J., Henze, M., Ziegeldorf, J.H., Müllmann, D., Hohlfeld, O., Wehrle, K.: A Quantitative Analysis of
the Impact of Arbitrary Blockchain Content on Bitcoin. In: International Conference on Financial Cryptography and
Data Security. pp. 420–438. Springer (2018)

15. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009), available from http://www.bitcoin.org/
bitcoin.pdf

16. Pass, R., Shi, E.: FruitChains: A Fair Blockchain. In: Proceedings of the ACM Symposium on Principles of Distributed
Computing. pp. 315–324 (2017)

17. Pearson, J.: The Bitcoin Blockchain Could Be Used to Spread Malware, INTERPOL Says (2015), https://tinyurl.
com/bitcoin-malware

18. Puddu, I., Dmitrienko, A., Capkun, S.: µchain: How to Forget Without Hard Forks. Cryptology ePrint Archive, Report
2017/106 (2017)

19. Rompel, J.: One-Way Functions are Necessary and Sufficient for Secure Signatures. In: Proceedings of the 22nd annual
ACM Symposium on Theory of Computing. pp. 387–394 (1990)

21

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://tinyurl.com/bitcoin-malware
https://tinyurl.com/bitcoin-malware

	Tri-op redactable blockchains with block modification, removal, and insertion
	1 Introduction
	1.1 Related work in the moderated setting
	1.2 Contributions
	1.3 Organization

	2 Background
	3 Blockchain operations
	4 The tri-op model
	5 Attacks on previous work
	5.1 Twin-block attack
	5.2 Change-of-operation attack

	6 Construction
	6.1 A secure construct based on triple versioning
	6.2 Security proof

	7 Summary and future work

