
KEMTLS with Delayed Forward Identity Protection
in (Almost) a Single Round Trip

Felix Günther and Patrick Towa

Department of Computer Science, ETH Zurich, Zurich, Switzerland

Abstract. The recent KEMTLS protocol (Schwabe, Stebila and Wiggers, CCS’20)
is a promising design for a quantum-safe TLS handshake protocol. Focused on
the web setting, wherein clients learn server public-key certi�cates only during
connection establishment, a drawback compared to TLS 1.3 in terms of latency
is that KEMTLS introduces an additional round trip before the server can send
data. In many scenarios, including IoT and embedded settings, client devices
may however have the targeted server certi�cate pre-loaded, so that such per-
formance penalty seems unnecessarily restrictive.
This work proposes a variant of KEMTLS tailored to such scenarios. The pro-
tocol leverages the fact that clients know the server public keys in advance
to decrease handshake latency while protecting client identities. It combines
medium-lived with long-term server public keys to enable a delayed form of
forward secrecy even from the �rst data �ow on, and full forward secrecy upon
the �rst round trip. The protocol is proved to achieve strong security guaran-
tees, based on the security of the underlying building blocks, in a new model for
multi-stage key exchange with medium-lived keys.

1 Introduction

The Transport Layer Security (TLS) protocol is a widely deployed cryptographic pro-
tocol. It is used to securely access web pages, email servers, Internet-of-Things (IoT)
gateways or even servers in Cooperative Intelligent Transport Systems [30] (C-ITSs).
In the TLS handshake sub-protocol, a client and a server authenticate each other (at
least the server to the client) and jointly establish a symmetric key that is then used
in the record sub-protocol to privately communicate authenticated application data.
The latest version of the protocol, standardized in 2018 [28], is TLS 1.3 and uses an
ephemeral Di�e–Hellman key exchange to establish keys that remain secure even
after a potential compromise of the parties’ long-term keys, i.e., enabling so-called
forward secrecy.

Post-QuantumTLS. In anticipation of large-scale quantum computers, several candi-
dates for a post-quantum version of the TLS handshake protocol have emerged. These
for instance include the CECPQ2 experiment [25,27] by Google that combines X25519
ECDH with the NTRU-HRSS lattice-based key exchange in the TLS 1.3 handshake, or
the Open Quantum Safe initiative [32] with prototype integrations in the OpenSSL
library of TLS 1.3 key exchange with hybrid security.

A promising candidate in this area is the KEMTLS protocol recently proposed by
Schwabe, Stebila and Wiggers [29]. It is free of handshake signatures and only re-
lies on key encapsulation to provide both key establishment and authentication in a
quantum-safe way. The main idea is reminiscent of the OPTLS protocol [24] (which
in turn inspired the TLS 1.3 handshake design): at its core are encapsulations against
the respective partner’s public key, using the resulting secrets to establish a shared
key. As the resulting shared key can only be recovered with the partner’s secret key,
this approach implicitly authenticates the partner. Besides, to enable forward secrecy,
the client also sends at the beginning of the protocol an ephemeral public key that the
server encapsulates against to obtain an ephemeral contribution. The prototype im-
plementation of KEMTLS showed that its bandwidth was over 50% lighter than that of
a size-optimized post-quantum instantiation of TLS 1.3, and that it reduces the amount
of CPU cycles by almost 90% compared to a speed-optimized post-quantum instantia-
tion of TLS 1.3.

However, the KEMTLS protocol only treats the classical web scenario in which
the client has no prior knowledge of the server public key, although the client could
in practice cache the server certi�cate during an initial handshake. In IoT settings or
embedded devices, the server public key is often even hardcoded, e.g., in �rmware.
The client therefore knows the server public key ahead of time in many practical sce-
narios. This knowledge not only has the bene�t of allowing the client to verify the
server certi�cate only once before any handshake (thereby speeding handshakes and
saving power for IoT devices), but could potentially lead to a protocol with fewer mes-
sage round trips, which, as in the web setting, in practice is crucial to reduce network
latency and power consumption.

Indeed, in the KEMTLS protocol, the client can only send application data after two
round trips (i.e., it is a two-Round-Trip-Time or 2-RTT protocol) and the server cannot
send application data before the client does, which contrasts with TLS 1.3 wherein the
server can send application data (e.g., a server banner, an IoT-hub certi�cate) from its
�rst message �ow and the client can do so after a single round trip. The underlying
reason is that after her initial message, the client must wait for the server public key to
then encapsulate against it in order to implicitly authenticate the server, since there are
no handshake signatures as in TLS 1.3. Scenarios in which the client knows the server
public key from the beginning of the protocol hence promise to enable substantial
performance improvements.

No Forward Identity Protection in a Single Round Trip. In case the client must
also authenticate herself to the server, as it is for instance necessary for IoT devices
or vehicles in C-ITSs, the issue is that the TLS protocol is expected to also provide
identity protection [22], namely that the client’s identity should only be recoverable
by a server that is already authenticated. The client can of course leverage the server
public key that she already knows to encrypt her certi�cate (as illustrated on Figure 1),
but since there is no ephemeral contribution from the server yet, an adversary that
compromises the server secret key could recover the client’s identity even after the
handshake is completed. In other words, there would be no forward(-secure) identity
protection.

2

Client Server

cert [pk2], sk2 , cert [pkB] skB

(pk4 , sk4) ← KEM4 .KG
(
1_

)
(B ,CB) ← KEMB .Encaps(pkB)
 1 ← KDF (B)

pk4 ,CB ,AEAD 1 (cert [pk2])

 B ← KEMB .Decaps (skB ,CB)
 1 ← KDF (B)

(4 ,C4) ← KEM4 .Encaps
(
pk4

)
; (2 ,C2) ← KEM2 .Encaps

(
pk2

)
 2,2 , ′2,2 , 2,B ,

′
2,B ← KDF (B , 4 , 2)

�4 ,�2 ,AEAD 2,B (key con�rmation),AEAD ′2,B (app. data)

 4 ← KEM4 .Decaps (sk4 ,C4) ; 2 ← KEM2 .Decaps (sk2 ,C2)
 2,2 , ′2,2 , 2,B ,

′
2,B ← KDF (B , 4 , 2)

AEAD 2,2 (key con�rmation),AEAD ′2,2 (app. data)

Fig. 1: A 1-RTT Protocol without Forward Identity Protection.

Despite the e�ciency bene�ts of a 1-RTT protocol, forgoing forward identity pro-
tection altogether might be too great of a compromise, especially when privacy is a
primary concern. For instance, the European Telecommunications Standards Institute
identi�es the high risk of user pro�ling as a main privacy challenge in IoT [15]. The US
National Institute of Standards and Technology considers as a high-level risk mitiga-
tion “safeguarding the con�dentiality . . . of data . . . collected by, stored on, processed
by, or transmitted to or from the IoT device” [16] and stated that an IoT device should
have “the ability to use demonstrably secure cryptographic modules for standardized
cryptographic algorithms . . . to prevent the con�dentiality . . . of the device’s stored
and transmitted data from being compromised” [17]; in the present case, the client
identity belongs to such transmitted data.

Nevertheless, to maintain client privacy (in a protocol using only key encapsula-
tion) even if the server long-term keys are later compromised, the client cannot send
her certi�cate before the server has made an ephemeral contribution in a �rst round
trip. This means the client cannot be authenticated before the server encapsulates
against her public key in a second round trip (see Figure 2). There seems to be no way
of fully leveraging the knowledge of the server public key to have a 1-RTT protocol
while maintaining forward identity protection.

1.1 Contributions

The �rst contribution of this paper is a protocol (in Section 3) that bridges the gap
between forward identity protection and a 1-RTT protocol solely based on key encap-

3

Client Server

cert [pk2], sk2 , cert [pkB] skB

(pk4 , sk4) ← KEM4 .KG
(
1_

)
(B ,CB) ← KEMB .Encaps(pkB)

pk4 ,CB

 B ← KEMB .Decaps (skB ,CB)
(4 ,C4) ← KEM4 .Encaps

(
pk4

)
�4

 4 ← KEM4 .Decaps (sk4 ,C4)
 1 ← KDF(B , 4)

AEAD 1 (cert [pk2])

 1 ← KDF(B , 4)
(2 ,C2) ← KEM2 .Encaps(pk2)

 2,2 , ′2,2 , 2,B ,
′
2,B ← KDF (B , 4 , 2)

�2 ,AEAD 2,B (key con�rmation),AEAD ′2,B (app. data)

 2,2 , ′2,2 , 2,B ,
′
2,B ← KDF (B , 4 , 2)

AEAD 2,2 (key con�rmation),AEAD ′2,2 (app. data)

Fig. 2: A 2-RTT Protocol with Forward Identity Protection.

sulation, under the assumption that the client knows the server public key at the start
of the protocol (see Figure 3 for a sketch). The main idea is to introduce semi-static
public keys on the server side which the client also know at the start of the protocol.
These semi-static keys are periodically refreshed (e.g., once every other day), and if the
corresponding secret key is not compromised before it expires, the client’s identity can
no longer be recovered, even if the server long-term secret key is later compromised.
In this sense, the protocol satis�es a delayed form of forward identity protection, and
does so without any extra round compared to a 1-RTT protocol without forward iden-
tity protection. As the semi-static keys are not assumed to be certi�ed (the protocol
would otherwise be impractical), they must be transmitted during an initial handshake
that then consists of two round trips. The protocol takes care of this mechanism, and
allows for semi-static keys to roll over between two time periods, so that servers can
serve clients using both the key for the current and the next time periods.

Section 4 presents a model that formalizes the properties expected from a protocol
involving semi-static keys, and Section 5 proves (in the reductionist framework and in
exact-security terms) that the protocol does satisfy them under standard assumptions.
The model in Section 4 is closely related to the model for authenticated key exchange

4

Client Server

cert [pk2], sk2 , cert [pkB], pkCB skB , skCB

(pk4 , sk4) ← KEM4 .KG
(
1_

)
(B ,CB) ← KEMB .Encaps(pkB);

(
 CB ,C

C
B

)
← KEMB .Encaps

(
pkCB

)
 1 ← KDF

(
 B ,

C
B

)
pk4 ,CB ,C

C
B ,AEAD 1 (cert [pk2])

 B ← KEMB .Decaps (skB ,CB) ; CB ← KEMB .Decaps
(
skCB ,C

C
B

)
 1 ← KDF

(
 B ,

C
B

)
(4 ,C4) ← KEM4 .Encaps

(
pk4

)
; (2 ,C2) ← KEM2 .Encaps

(
pk2

)
 2,2 , ′2,2 , 2,B ,

′
2,B ← KDF

(
 B ,

C
B , 4 , 2

)
�4 ,�2 ,AEAD 2,B (key con�rmation),AEAD ′2,B (app. data)

 4 ← KEM4 .Decaps (sk4 ,C4) ; 2 ← KEM2 .Decaps (sk2 ,C2)
 2,2 , ′2,2 , 2,B ,

′
2,B ← KDF

(
 B ,

C
B , 4 , 2

)
AEAD 2,2 (key con�rmation),AEAD ′2,2 (app. data)

Fig. 3: Sketch of the Main Protocol.

proposed for TLS 1.3 by Dowling, Fischlin, Günther and Stebila [12, 13] and that for
KEMTLS [29], but it also accounts for the semi-static keys and their lifetime. Section 5
then shows that the protocol achieves the intended security levels across the various
stages of the handshake, relying only on standard-model assumptions.

2 Preliminaries

This section introduces the notation used throughout the paper and the cryptographic
primitives on which the protocols herein rely.

2.1 Notation

The security parameter is denoted _ and is encoded in unary when given as input to
algorithms. For an integer = ≥ 1, È=É denotes the set {1, . . . , =}.

2.2 Hash Functions

A hash function � : X → {0, 1}ℓ is a map from a potentially in�nite set X to the set
of bit strings of a �xed length ℓ (_). The advantage of an adversary � in �nding a
collision for � is de�ned as Pr

[
G ≠ ~ ∧ � (G) = � (~) : (G,~) ← �

(
1_

)]
.

5

2.3 Pseudorandom Functions

A Pseudo Random Function (PRF) [19] is an e�ciently computable function with val-
ues computationally indistinguishable from uniformly random values.

Formally, a function PRF : K × X → Y is a (), @, Y)-secure PRF with key space
K , input space X and range Y (all assumed to be �nite and of size depending on a
security parameter _) if the advantage���Pr [

1← �
PRF(, ·) : ←$ K

]
− Pr

[
1← �

' (·) : ' ←$ YX
] ���

of every adversary � that runs in time at most) (_) and makes at most @(_) queries
is at most Y (_).

A function PRF is a (), @, Y)-secure dual PRF [1] if PRF′ : (G,~) ↦→ PRF(~, G) is a
(), @, Y)-secure PRF.

2.4 Key-Derivation Functions

A Key-Derivation Function (KDF) is an algorithm which computes pseudorandom
keys of appropriate length from a source key material which is not necessarily uni-
formly distributed, but still has high entropy despite potential partial adversarial knowl-
edge. The results can then be used as secret keys for cryptosystems.

Syntax. A key-derivation function [23] KDF(SKM,XTS,CTX , !) → takes as input a
source key material SKM , an extractor-salt value XTS, some context information CTX
and a length !, and returns an !-bit string .

Hash-Based Key Derivation. Krawczyk proposed [23] a hash-bashed KDF that fol-
lows the extract-then-expand paradigm. It consists of two functionalities, namely an
Extract(SKM,XTS) → PRK algorithm that computes a key for pseudo-random eval-
uation from the source key material and the salt, and an Expand(PRK,CTX , !) →

algorithm that computes an !-bit key via successive pseudo-random evaluations from
the pseudo-random key and the context information.

2.5 Message-Authentication Codes

A Message-Authentication Code (MAC) is a primitive that attests the authenticity of
a message using a private key. It consists of an algorithm KG

(
1_

)
→ that gen-

erates a private key and an algorithm MAC(,") → g that computes a tag g on a
message " using a key . A MAC is considered (), @, Y)-Existentially UnForgeable
against Chosen-Message Attacks (EUF-CMA) if for every algorithm � that runs in
time at most) (_) and makes at most @(_) oracle queries,

Pr
[
MAC (, `) = g ∧ ` ∉ & : ← KG

(
1_

)
;& ← ∅

(`, g) ← �
� (, ·)

]
≤ Y (_),

with � an oracle which, on input , replies to a query on a message " by computing
and returning MAC (,") and adding " to & .

6

2.6 Key-Encapsulation Mechanisms

A Key-Encapsulation Mechanism (KEM) is a public-key primitive which allows a party
to privately send a symmetric key to another party using the public key of the latter. It
consists of an algorithm KG

(
1_

)
→ (pk, sk) that generates a pair of public and secret

keys, an encapsulation algorithm Encaps(pk) → (,C) which computes a symmetric
key in a set K and a ciphertext, and a decapsulation algorithm Decaps(sk,C) →

that computes a symmetric key on the input of a secret key and a ciphertext.
A KEM is deemed X-correct [21] if

Pr
[
 ≠ Decaps(sk,C) : (pk, sk) ← KG

(
1_

)
(,C) ← Encaps(pk)

]
≤ X (_).

The security of a KEM requires the keys it generates to be indistinguishable from
random values in K , and in certain cases even if an adversary is given access to a
decapsulation oracle. If the adversary is given access to such an oracle, the security
notion is referred to as INDistinguishability under Chosen Ciphertext Attacks (or IND-
CCA security), and otherwise as INDistinguishability under Chosen Plaintext Attacks
(or IND-CPA security).

Formally, for atk ∈ {CPA,CCA}, a KEM satis�es (), @, Y)-IND-atk security if for
every adversary � that runs in time at most) (_) and makes at most @(_) oracle
queries, �����������

Pr

1 = 1 ′ :

(
pk★, sk★

)
← KG

(
1_

)
1 ←$ {0, 1}(

 ★
0 ,C

★
0
)
← Encaps

(
pk★

)
 ★
1 ←$ K

1 ′← �
�atk (sk★,C★, ·)

(
pk★,C★, ★

1

)

− 1/2

�����������
≤ Y (_),

with �atk an oracle which, on input C★, to replies to a decapsulation query on a ci-
phertext C with

– Decaps
(
sk★,C

)
if C ≠ C★ and atk = CCA,

– ⊥ otherwise.

(), Y)-IND-1CCA security refers to (), 1, Y)-IND-CCA security, i.e., a security notion
in which the adversary makes at most one decapsulation query.

3 Protocol

This section presents a key-exchange protocol with mutual authentication that solely
relies on KEMs for key establishment and authentication between a client and a server.
The protocol assumes the client to have prior knowledge of the server certi�cate, as
it is often the case for embedded or IoT devices and other applications of TLS. This,
together with novel insights, allows the client to send application data after a sin-
gle round trip, and the server from its �rst �ow, as in TLS 1.3. In comparison, in the
KEMTLS protocol [29] the client can only send application data after two round trips
in the case of mutual authentication, and the server can only do so from its second
�ow regardless of client authentication.

7

3.1 Protocol Description

Components. The protocol involves three KEMs:

– KEM4 for establishing ephemeral secrets and enabling forward secrecy,
– KEM2 for implicit client authentication, and
– KEMB for implicit server authentication.

All three could be instantiated with the same scheme or be chosen di�erently de-
pending on various optimization factors. For instance, KEM4 could be chosen so as
to minimize the key-generation time and alleviate client computation, whereas KEM2

and KEMB could be selected as schemes with fast encapsulation even though key gen-
eration might be long, with an even stronger computational-e�ciency requirement
for the client than for the server.

Besides, the protocol also uses

– Krawczyk’s hash-based key-derivation function HKDF [23] as keystone of the key
schedule to extract randomness from the KEM-generated secrets and derive stage
keys, and

– HMAC [2] as message-authentication code for explicit party authentication.
– a hash function � , e.g., SHA-256, to compute expansion labels for HKDF as well

as compress the handshake messages before explicit authentication.

Outline. The protocol shares similarities with the KEMTLS protocol, which is itself
modeled after the OPTLS protocol [24]. However, it strongly relies on an independent
idea to reconcile client privacy (even if server long-term keys are later compromised)
and a 1-RTT handshake: it introduces server semi-static KEM keys which the client
encapsulates and mixes into the key schedule at the beginning of the protocol, so that
only a party privy to the semi-static secret key can decipher the client identity.

Key Lifetime. A pair of semi-static keys is only to be used in a given time period,
e.g., a duration of two days, after which the server refreshes the pair. Though the
privacy guarantees are not as strong as those of a 2-RTT handshake which uses fully
ephemeral secrets to protect client certi�cates, they are still relevant in practice and it
is a fair compromise for the e�ciency bene�ts.

Clocks. The server keeps track of time periods with an integer counter. Only the server
must maintain a clock, just to know when to refresh the keys. The client need only
store the latest semi-static public key she received from the server along with the
corresponding time period, which is indicated by the server. It means that the protocol
can even be used with clients that may not have a clock as it is the case for some IoT
devices.

Time-Period Transition. The server generates the keys for a time period before its be-
ginning and sends the public key to the client as part of a handshake during a transition
phase from the previous time period, e.g., the last hour. During this transition phase,

8

the server not only accepts handshake requests with the current key, but also with the
next one, so that the client can use the next key as soon as she receives it.

In case the client does not connect to the server during this transition phase, the
client simply initiates the protocol with the latest known key (if any) in addition to
the server long-term key. The server then just rejects the ciphertext encrypting the
client certi�cate and returns the current public key, and the client can encapsulate it
and encrypt her certi�cate anew. This delays by a full round trip the step from which
the client can send application data, but it is only for the �rst handshake during the
time period. Afterwards, the client can do so after a single round trip.

Protocol Notation. Table 1 summarizes the notation used for the protocol secrets. More-
over, on Figures 4 and 5,
– MSG :" denotes that message MSG is sent and contains " .
– {MSG}stage: : " denotes the AEAD encryption of a message MSG containing "

under an AEAD key derived from the secret accepted at stage : (the derivation
is not made explicit on the �gures). A star (*) as superscript indicates that the
message is only sent the during the transition from the current server time period
to the next.

Inputs. At the beginning of the protocol, in addition to her certi�cate cert [pk2] and
secret key sk2 , the client holds a server long-term certi�cate cert [pkB] and the latest
server semi-static key pkCB,2B known to the client in a time period CB,2 . By convention,
pkCB,2B B ⊥ and CB,2 B −∞ if the client has never obtained a semi-static key from the
intended partner server. As for the server, it is given as input a long-term secret key skB
and a semi-static secret skCBB corresponding to the current server time period CB . Note
that the long-term public keys are certi�cated out of band by an external certi�cation
authority. In constrast, the semi-static public keys are not assumed to be certi�ed.

Protocol Steps. The main steps of the protocol are as follows.

– The client �rst generates a pair (pk4 , sk4) of ephemeral keys. She encapsulates
against the server long-term and semi-static keys, and sends the resulting cipher-
texts CB resp. CCB,2B together with pk4 and a fresh nonce =2 in a ClientHello mes-
sage. The latter message also contains the latest time period CB,2 for which the
client has a semi-static key from server B as well as the list of algorithms the client
supports.

– The KEM secret B encapsulated in CB is used to compute an early key-schedule
secret ES, which implicitly authenticates the server as B cannot be e�ciently
recovered without skB .

– Next, the secret CB,2B encapsulated in CCB,2B is injected into the key schedule to com-
pute a handshake secret HS and further implicitly authenticate the server in pe-
riod CB,2 .

– The client derives a handshake-tra�c secret CHTS from the handshake secret and
computes a key from it to AEAD-encrypt and send her certi�cate in a dedicated
ClientCertificate message. This ensures that only a party with the knowledge
of both the long-term and the semi-static secret key used can infer the client’s
identity.

9

– When the server receives the client’s initial ClientHello and ClientCertificate
messages, two cases arise: either the client time period CB,2 matches the current
server time period CB or not.
If CB,2 = CB C C (or CB,2 = CB+1 during the transition from CB to CB+1) as in Figure 4, the
server has the semi-static secret key skCB and can thus compute CHTS and decrypt
the client certi�cate. Both parties compute a derived handshake secret dHS that
they keep as current state of the key schedule.
∗ The server encapsulates against pk2 and pk4 and sends in a ServerHello mes-

sage the corresponding ciphertexts C2 and C4 , together with a fresh nonce and
the algorithms selected from the algorithms supported by the client.
∗ The two parties now compute an intermediate master secret from the KEM se-

cret 4 encapsulated in C4 , then expand a derived intermediate master secret
dIMS and �nally compute a master secret MS from the KEM secret 2 encap-
sulated in C2 . Secret 4 enables forward secret and 2 implicitly authenticates
the client.
∗ From the master secret, both parties compute (mutually) authenticated handshake-

tra�c secrets SAHTS and CAHTS for the server and the client. These are used
to derive AEAD keys to encrypt the rest of the handshake messages.
∗ Both parties compute from the master secret MAC “�nished” keys �B and
�2 for explicit authentication as well application-transport secrets SATS and
CATS from which AEAD keys are derived to encrypt application data.
∗ The server explicitly authenticates himself by computing a MAC of the tran-

script with �B , i.e., a con�rmation message, and can now send application
data.
During the transition phase from the current time period to the next, the
server also sends the public key pkC+1B for the next time period.1 The client
saves this key only after verifying the server con�rmation message.
∗ Upon receiving the server “�nished” message, the client explicitly authenti-

cates herself to the server by computing a MAC of the transcript with �2 and
can send application data.

If CB,2 ≠ CB (and CB,2 ≠ CB +1 during the transition from CB to CB +1) as on Figure 5, the
server does not hold skCB,2B and cannot compute the client handshake-tra�c secret
(denoted CHTS′) and recover the client certi�cate. The server therefore rejects the
stage-1 key.
∗ Yet, the server can already encapsulate the ephemeral key and inject it into

the key schedule to achieve forward secrecy for the following stage keys.
∗ Both parties can now compute server and client handshake-tra�c secrets
SHTS and CHTS, and derive keys to encrypt handshake messages.
∗ Since the client does not have the current server semi-static key pkCBB , the

server sends it to the client for the following handshakes in period CB , though
it is not useful in this handshake anymore to protect the client certi�cate: the

1 The server does so once per client that follows the protocol, as such a client switches to the
next key for the subsequent handshakes and as the server already accepts the next key during
the transition phase from the current period to the next.

10

Client Server

cert [pk2], sk2 , cert [pkB], CB,2 , pk
CB,2
B skB , CB , sk

CB
B

(pk4 , sk4) ← KEM4 .KG
(
1_

)
(B ,CB) ← KEMB .Encaps(pkB)(

CB,2
B ,CCB,2B

)
← KEMB .Encaps

(
pkCB,2B

)
CH B ClientHello : =2 ←$ {0, 1}256, pk4 ,CB , CB,2 ,C

CB,2
B , supported algs.

 B ← KEMB .Decaps (skB ,CB)
ES← HKDF.Extract (0, B)

dES← HKDF.Expand (ES, "derived")
CB,2 = CB C C

 CB ← KEMB .Decaps
(
skCB ,C

C
B

)
HS← HKDF.Extract

(
dES, CB

)
accept CHTS← HKDF.Expand (HS, "c hs traffic"‖� (CH))

stage 1
dHS← HKDF.Expand (HS, "derived")

{CC ≔ ClientCertificate}stage1 : cert [pk2]

(4 ,C4) ← KEM4 .Encaps
(
pk4

)
(2 ,C2) ← KEM2 .Encaps

(
pk2

)
SH B ServerHello : =B ←$ {0, 1}256,C4 ,C2 , selected algs.

 4 ← KEM4 .Decaps(sk4 ,C4)
 2 ← KEM2 .Decaps(sk2 ,C2)

IMS← HKDF.Extract (dHS, 4)
dIMS← HKDF.Expand (IMS, "derived")

MS← HKDF.Extract (dIMS, 2)
accept SAHTS← HKDF.Expand (MS, "s ahs traffic"‖� (CH · · · SH))

stage 2
accept CAHTS← HKDF.Expand (MS, "c ahs traffic"‖� (CH · · · SH))

stage 3
�B ← HKDF.Expand (MS, "s finished")

{SPK B ServerPublicKey}∗stage2 : C + 1, pk
C+1
B

{EE B EncryptedExtensions}stage2
{ServerFinished}stage2 : SF← HMAC

(
�B , � (CH · · · EE)

)
abort if SF ≠ HMAC

(
�B , � (CH · · · EE)

)(
CB,2 + 1, pkCB,2+1B

)
←

(
C + 1, pkC+1B

)
accept SATS← HKDF.Expand (MS, "s app traffic"‖� (CH · · · SF))

stage 4
record layer, AEAD-encrypted with key derived from SATS

�2 ← HKDF.Expand (MS, "c finished")

{ClientFinished}stage3 : CF← HMAC
(
�2 , � (CH · · · SF)

)
abort if CF ≠ HMAC

(
�2 , � (CH · · · SF)

)
accept CATS← HKDF.Expand (MS, "c app traffic"‖� (CH · · · CF))

stage 5
record layer, AEAD-encrypted with key derived from CATS

Fig. 4: Protocol in the Case of Matching Time Periods.

11

Client Server

cert [pk2], sk2 , cert [pkB], CB,2 , pk
CB,2
B skB , CB , sk

CB
B

(pk4 , sk4) ← KEM4 .KG
(
1_

)
(B ,CB) ← KEMB .Encaps(pkB)(

CB,2
B ,CCB,2B

)
← KEMB .Encaps

(
pkCB,2B

)
CH B ClientHello : =2 ←$ {0, 1}256, pk4 ,CB , CB,2 ,C

CB,2
B , supported algs.

 B ← KEMB .Decaps (skB ,CB)
ES← HKDF.Extract (0, B)

dES← HKDF.Expand (ES, "derived")
CB,2 ≠ CB

HS′ ← HKDF.Extract
(
dES, CB

)
accept stage1 : CHTS′ ← HKDF.Expand (HS′, "c hs traffic"‖� (CH)) reject stage1
dHS′ ← HKDF.Expand (HS′, "derived")

{CC′ B ClientCertificate}stage1 : cert [pk2]

(4 ,C4) ← KEM4 .Encaps
(
pk4

)
SH B ServerHello : =B ←$ {0, 1}256,C4 , selected algs.

 4 ← KEM4 .Decaps(sk4 ,C4)
HS← HKDF.Extract (dES, 4)

accept SHTS← HKDF.Expand (HS, "s hs traffic"‖� (CH · · · SH))
stage 2

accept CHTS← HKDF.Expand (HS, "c hs traffic"‖� (CH · · · SH))
stage 3

dHS← HKDF.Expand (HS, "derived")

{SPK B ServerPublicKey}stage2 : CB , pk
CB
B

{EE B EncryptedExtensions}stage2

{CC B ClientCertificate}stage3 : cert [pk2]

(2 ,C2) ← KEM2 .Encaps(pk2)

{SKC B ServerKEMCiphertext}stage2 : C2

 2 ← KEM2 .Decaps(sk2 ,C2)
MS← HKDF.Extract (dHS, 2)

accept SAHTS← HKDF.Expand (MS, "s ahs traffic"‖� (CH · · · SKC))
stage 4

accept CAHTS← HKDF.Expand (MS, "c ahs traffic"‖� (CH · · · SKC))
stage 5

�B ← HKDF.Expand (MS, "s finished")

{ServerFinished}stage4 : SF← HMAC
(
�B , � (CH · · · SKC)

)
abort if SF ≠ HMAC

(
�B , � (CH · · · SKC)

)(
CB,2 , pk

CB,2
B

)
←

(
CB , pk

CB
B

)
accept SATS← HKDF.Expand (MS, "s app traffic"‖� (CH · · · SF))

stage 6
record layer, AEAD-encrypted with key derived from SATS

�2 ← HKDF.Expand (MS, "c finished")

{ClientFinished}stage5 : CF← HMAC
(
�2 , � (CH · · · SF)

)
abort if CF ≠ HMAC

(
�2 , � (CH · · · SF)

)
accept CATS← HKDF.Expand (MS, "c app traffic"‖� (CH · · · CF))

stage 7
record layer, AEAD-encrypted with key derived from CATS

Fig. 5: Protocol in the Case of Unmatching Time Periods.

12

ephemeral secret has already been mixed into the key schedule and the client
certi�cate is encrypted with CHTS which is fully forward secret. Once again,
the client only saves this semi-static key after verifying the server con�rma-
tion message.
∗ The client sends her certi�cate and in this case bene�ts from better privacy

than in the case CB,2 = CB since the certi�cate is protected by a fully ephemeral
secret rather than a semi-static one.
∗ The server encapsulates the client public key and implicitly authenticates her

by using the resulting KEM secret to compute a master secret.
∗ The parties proceed with con�rmation MAC values as in the case CB,2 = CB . ut

Discussion. In case an adversary were to change CB,2 , the parties would indeed not ex-
ecute the correct branch of the protocol. However, the handshake secrets they would
compute would simply di�er without their secrecy being threatened, and the con-
�rmation messages would not pass veri�cation, meaning that both parties would be
aware that the ClientHello message was tampered with.

Note also that it is important for the client to only use authentic semi-static keys
(i.e., obtained from a previous handshake in which the server was explicitly authenti-
cated), as otherwise an adversary could send the client a semi-static key it generated
itself and later recover the client’s identity in a past handshake by only corrupting the
server long-term key.

Lastly, exporter and resumption secrets could also be derived from the master se-
cret as in TLS 1.3. Though these are omitted from the protocol description, they can
be readily added to the key schedule and would satisfy the same security properties
as the application-transport secrets.

CAHTS/SAHTS Client/Server Auth. Handshake-Tra�c Secret
CATS/SATS Client/Server Application-Transport Secret
CHTS/SHTS Client/Server Handshake-Tra�c Secret
dES/dHS/dIMS Derived Early/Handshake/Intermediate Master Secret
ES/HS/(I)MS Early/Handshake/(Intermediate) Master Secret
�2/�B Client/Server Finished Key

Table 1: Glossary of Protocol Secrets.

Application to the KEMTLS Protocol with Client Authentication. The idea of
introducing semi-static keys to shorten the handshakes by a full round trip (while
maintaining forward identity protection) can also be applied to the KEMTLS protocol
with client authentication [29, Appendix C.1]: it su�ces to run the full protocol for
the �rst handshake in a time period and have the server send the current semi-static
public key along with the server certi�cate. The client can then save the long-term
and semi-static public keys and for subsequent handshakes in the time period run the
protocol from this section.

13

4 Model

This section introduces the model for the key-exchange protocol presented in Sec-
tion 3. It is close to the model for authenticated key exchange proposed by Dowling,
Fischlin, Günther and Stebila [12, 13] and that for KEMTLS by Schwabe, Stebila, and
Wigger [29]. Their models follow a line of work [18, 20] concerned with multi-stage
key exchange protocols in which keys are computed at multiple stages of each sin-
gle protocol execution. It originated from Bellare and Rogaway’s model [3] that in-
troduced the paradigm of session-key indistinguishability, and for which Brzuska et
al. [6,7] formalized the composability with arbitrary protocols based on symmetrically
distributed keys.

In the security model, the adversary controls the network and can passively eaves-
drop, modify and orchestrate the communication across several concurrent sessions of
the protocol. The adversary can further expose the long-term and semi-static secrets
of honest parties and the keys established during protocol runs. The protocol is then
deemed secure if such an adversary cannot distinguish a key established at a stage of
a non-compromised session from a uniformly random key.

Authentication. The model supports mutual authentication, as required in the sce-
nario of IoT or embedded devices. For the authentication of each stage key, implicit and
explicit authentication are distinguished. Implicit authentication refers to the property
that the stage key can only be recovered by the intended partner, whereas explicit au-
thentication guarantees that the partner actively participated in the protocol and also
established a stage key. The authentication of a stage key can further be lifted from
unauthenticated or implicit to explicit once a later stage of the protocol is accepted,
i.e., a stage key can be retroactively explicitly authenticated.

Forward Secrecy. The model also covers forward secrecy, the notion that stage keys
remain secret even if the long-term keys involved in its computation are later com-
promised. As the protocol in Section 3 introduces server semi-static keys (i.e., keys
that are periodically refreshed) for servers in addition to long-term keys, the notion of
forward secrecy is here re�ned to also take the compromise of such keys into account.

More precisely, the model considers two types of forward secrecy determined by
whether the semi-static key used to compute a stage key may be corrupted or not.

– A stage key satis�es (full) forward secrecy if the adversary either remained passive
until the session accepted the stage or did not corrupt the long-term key of the
intended communication partner before the latter was explicitly authenticated.
The semi-static key used to compute the stage key may be corrupted at any time.

– A stage key satis�es delayed forward secrecy if, in addition to the previous condi-
tions, the adversary did not corrupt the semi-static key used to compute the stage
key. In particular, if the long-term key of the intended partner is not corrupted be-
fore the semi-static key expires, the secrecy of the stage key is equivalent to that
of a key satisfying full forward secrecy. In this sense, this (informal) de�nition of
delayed forward secrecy is related to Boyd and Gellert’s [5].

14

Key Usage. The use of stage keys is also speci�ed, i.e., whether a key is meant to be
used internally within the protocol (e.g., to encrypt handshake tra�c) or externally
(to for example encipher application message with a symmetric scheme).

4.1 Syntax

Similarly to the model for TLS 1.3 proposed by Dowling et al. [12, 13], a multi-stage
key-exchange protocol is characterized by a set of values. In the present case, these
are as follows.

– " ∈ N : the number of protocol stages, i.e., the number of keys derived in a
session.

– FS ∈ {dfs, fs}" : for 8 ∈ È"É, FS8 speci�es the type of forward secrecy expected
from the key computed at stage 8 .

– iauthB ∈ {1, . . . , "} : a variable indicating the stage from which the server is
implicitly authenticated.

– iauth2 ∈ {iauthB , . . . , "} : a variable that speci�es the stage from which the client
is implicitly authenticated. It is here assumed that the server is always the �rst
party to be authenticated, which is in line with identity protection.

– eauth = ((D1,<1), . . . , (D1,<")) with D8 ≤ <8 ∈ {8, . . . , ",∞} for all 8 ∈ È"É : a
pair tuple encoding the intended explicit-authentication pattern. For example, the
8-th pair (D8 ,<8) means that the key computed at stage 8 reaches explicit server
authentication once stage D8 ≥ 8 is accepted and explicit client and server (i.e.,
mutual) authentication once stage <8 is accepted2. The value ∞ indicates that
unilateral (D8 = ∞) or mutual (<8 = ∞) authentication is never reached for the
corresponding stage.

– use ∈ {internal, external}" : the usage indicator for each stage key, with use8
denoting the usage of the key established at stage 8 . An internal key may be used
in the key exchange protocol (and also externally), whereas an external key is not
to be used in the protocol in order to allow for generic composition.

The set of participants is denoted ID = Γ ∪ Σ, with Γ the set of clients and Σ the
set of servers (the union need not be disjoint). Each identity id ∈ ID is associated with
a certi�ed long-term public key pkid and a corresponding secret key skid . The root
certi�cate of the certi�cate authority is assumed to be pre-distributed to all parties.
The clients are also assumed to be given the certi�cates of the servers to which they
may connect, prior to any handshake request. In addition to long-term keys, each server
participant B ∈ Σ also holds a pair of semi-static keys

(
pkCBB , sk

CB
B

)
for each local time

period CB ∈ N (the pair is generated shortly before the beginning of period CB), and these
are erased when the next period begins. The semi-static public keys are not assumed
to be given to the clients out of band; the servers must transmit them during protocol
executions.

Each participant (client or server) can run several concurrent instances of the pro-
tocol, with each local instance referred to as a session, and each session consisting of
multiple stages, i.e., computation steps at which keys are derived. A session is identi�ed
with a pair f = (id, =) ∈ ID×Nwhich denotes the =-th local session of participant ? . A
participant running a session locally maintains the session-speci�c information below.

15

– id : the identity of the session owner.
– pid ∈ ID∪{∗} : the identity of the intended partner. In case id ∈ Σ3and the identity

of the intended partner client is currently unknown, the special symbol ∗ is used,
and it may later be updated to a speci�c identity once by the protocol. That is
to say, the identity of the communication partner may only be known during the
execution of the protocol (e.g., through exchanged certi�cates), capturing post-
speci�ed peers [9].

– role ∈ {initiator, responder} : speci�es the role of the session.
– status ∈ {⊥, running, accepted, rejected}" : the status of each stage. It is initially set

to (running,⊥, . . . ,⊥). status8 ← accepted once the stage 8 is accepted. status8 ←
rejected if the stage 8 is rejected.

– stage ∈ {0, . . . , "} : indicates the last completed stage. This variable is initially set
to 0, and stage← 8 if status8 is updated to accepted or rejected.

– cid ∈ ({0, 1}∗ ∪ {⊥})" : records the contributive identi�er at each stage. For all
8 ∈ È"É, cid8 is initially set to ⊥ and may be updated until the stage is either
accepted or rejected.

– sid ∈ ({0, 1}∗ ∪ {⊥})" : holds the session identi�er at each stage. For all 8 ∈ È"É,
sid8 is initially set to ⊥ and is updated once (and only once) upon acceptance of
stage 8 .

– key ∈ ({0, 1}∗ ∪ {⊥})" : holds the key established at each stage. For all 8 ∈ È"É,
key8 is initially set to ⊥ and is set upon acceptance of stage 8 .

A variable, e.g., id, pertaining to a particular session f is denoted f.id.

Partnering. Two sessions f and f ′ are considered partnered at stage 8 if they are
distinct and share the same session identi�er at that stage, i.e., f ≠ f ′ and f.sid8 =
f ′.sid8 ≠ ⊥.

4.2 Security De�nitions

As in the work of Brzuska et al. [7], the security of key-exchange protocols is here
de�ned via two notions: multi-stage security (which here combines session-key indis-
tinguishability and explicit authentication) and match security. Session-key indistin-
guishability ensures that keys computed at non-compromised stages are indistinguish-
able from uniformly random keys. Explicit authentication captures the idea that no
session stage expecting an explicitly authenticated peer maliciously accepts without
such. Match security �nally guarantees that in a multi-stage setting, session identi�ers
correctly identify sessions that are partnered in e�ect. These two notions are formal-
ized via respective security games in which an adversary interacts with a challenger.
The adversary is given access to challenger-controlled oracles through which it can
initiate concurrent protocol executions, interact with honest participants (run by the
challenger), and control the messages they send, i.e., forward, delay, modify, drop or

3 Post-speci�ed peers are only allowed in the case of server sessions as client sessions must be
given from the beginning of the execution the server identity for which they use the semi-
static public key.

16

even change the order of the messages. At the end of the interaction, the challenger
returns a bit indicating whether conditions that contradict the security notion being
de�ned are ful�lled. The advantage of the adversary in the game is then de�ned as the
probability of this event.

GameVariables. Throughout the interaction with the adversary, the challenger main-
tains the following variables for each server identity B ∈ Σ.

– CB ∈ N : the current time period of server B , initialized to 0.
– (pk′B , sk′B) : the pair of keys for the current time period, initialized during the game

setup. The value of sk′B while variable CB holds a value C ∈ N is denoted skCB in
De�nition 4.2.

–
(
pk′′B , sk

′′
B

)
: the pair of keys for the next time period, initialized to (⊥,⊥).

For each client identity 2 ∈ Γ, the challenger maintains

– a pair (CB,2 , pk′B,2) of time period and semi-static key for each server identity B ∈ Σ.
Each such pair is initialized to (−∞,⊥) and may be updated throughout the game.

Moreover, in addition to the variables maintained by each session run by the chal-
lenger, the latter maintains for each sessionf that it runs, the following game variables.

– period ∈ N∪ {−∞} : records the time period of the server semi-static key used by
the session. If f.role = initiator , then period ← Cf.pid,f .id and cannot be updated.
If f.role = responder , then period ← Cf.id and may be updated once to period + 1
once by the protocol (during the transition from a period to another).

– revealed ∈ {TRUE, FALSE}" : a vector recording the stage keys that were revealed
to the adversary. All entries are initially set to FALSE.

– tested ∈ {TRUE, FALSE}" : a vector recording which stage keys were tested by
the adversary, i.e., for which the adversary was returned either the stage key or a
uniformly random key. All entries are initially set to FALSE.

Game Oracles. In the security games, the adversary is given access to the following
oracles.

– NewSession(?, @, role) : creates a new session f with owner f.id ← ? , intended
peer f.pid ← @ and role f.role ← role. If role = responder , the identity @ may be
unspeci�ed, i.e., set to ∗. The oracle returns f .

– Send(f,<) : returns ⊥ if session f does not exist (i.e., was not started by a query
to oracle NewSession), otherwise runs the protocol algorithm of the participant
with the current state on input <, updates the state and returns the response (if
any) and

(
f.stage, f .statusf.stage

)
. To initiate a session in case f.role = initiator ,

the adversary may submit the special message< B init.
If f.statusf.stage is updated to accepted, then the execution is halted. This allows
the adversary to test an internal key before it is used in the protocol, which is
forbidden at a later point in the execution to prevent trivial wins (see oracle Test
below). Once the execution is halted, the adversary may perform operations on
other sessions, test the stage key (i.e., submit a Test(f, f.stage) query) or submit a
Send(f, continue) query to resume the computation.

17

∗ If there exists a distinct session f ′ such that f.sidf.stage = f ′.sidf.stage and
f ′.testedf.stage = TRUE, then
⊲ the challenger sets f.testedf.stage ← TRUE. This ensures that if a part-

nered session was already tested, then subsequent test queries are appro-
priately answered.

⊲ if usef.stage = internal, then f.keyf.stage ← f ′.keyf.stage . That is, if the
key is internal, then it is set consistently with the key from the partnered
session. (This assumes the property that if two partnered sessions accept
a stage key, then these are equal, i.e., a guarantee of match security to be
formally de�ned later.)

∗ If the adversary resumes the computation and f.stage < " , then the chal-
lenger sets f.statusf.stage+1 ← running and the oracle returns the next proto-
col message and (f.stage + 1, f .statusf.stage+1).

– Reveal(f, 8) : returns ⊥ if session f does not exist or if f.status8 ≠ accepted, oth-
erwise returns f.key8 . The challenger then sets f.revealed8 ← TRUE.

– NextPeriod(B ∈ Σ) : if
(
pk′′B , sk

′′
B

)
≠ (⊥,⊥), i.e., if server B is transitioning from

CB to CB + 1, then the oracle returns ⊥, otherwise the oracle overwrites
(
pk′′B , sk

′′
B

)
with a fresh pair of keys and returns pk′′B .

– EndCurrentPeriod(B ∈ Σ) : sets CB ← CB +1,
(
pk′B , sk

′
B

)
←

(
pk′′B , sk

′′
B

)
and

(
pk′′B , sk

′′
B

)
← (⊥,⊥).

– Corrupt(id) : returns the long-term secret key skid of participant id.
– SemiStaticCorrupt(B ∈ Σ, 3 ∈ {0, 1}) : returns sk′B if 3 = 0; the key in period CB is

now considered corrupt. If 3 = 1, returns sk′′B ; if sk′′B ≠ ⊥, the key in period CB + 1
is now considered corrupt.

– Test(f, 8) : based on a bit 1 �xed throughout the game, this oracle returns either
the key that f computed at stage 8 if 1 = 0 or a uniformly random key if 1 = 1,
unless f does not exist or conditions which prevent the adversary from readily
distinguishing the two cases are not met.
∗ If f does not exist, then return ⊥.
∗ If f.status8 ≠ accepted or there exists a session f ′ (not necessarily distinct)

such that f.sid8 = f ′.sid8 and f ′.tested8 = TRUE, then the oracle returns ⊥. In
other words, a stage key is tested at most once.
∗ If f.use8 = internal and there exists a session f ′ (not necessarily distinct)

such that f.sid8 = f ′.sid8 and f ′.status8+1 ≠ ⊥, then the oracle returns ⊥.
This guarantees that a potential partnered session, which may have already
established this internal key, has not already used it.
∗ The challenger sets f.tested8 ← TRUE.
∗ ← f.key8 if 1 = 0, otherwise is drawn uniformly at random from the key

space.
∗ If f.use8 = internal, then the challenger sets f.key8 ← to remain consistent

with later use of the key.
∗ For any session f ′ ≠ f such that f.sid8 = f ′.sid8 and f ′.status8 ← accepted,

the challenger sets f ′.tested8 ← TRUE, and if additionally f.use8 = internal,
then the challenger sets f ′.key8 ← .
∗ The oracle ultimately returns to the adversary.

18

Remark. Although the adversary can reveal session keys and corrupt long-term and
semi-static keys, the model does not go as far as capturing leakage of variables internal
to a session as in other models [8, 26]. In particular, the adversary is not given access
to any potential ephemeral values. These are assumed to be in practice erased as soon
as they are no longer needed, which is crucial to allow for forward secrecy.

Match Security. A key-exchange protocol satis�es the match property if session
identi�ers properly determine which sessions are e�ectively partnered, in the sense
expressed by the winning conditions of the following security game.

De�nition 4.1 (Match Security). Let KE be a multi-stage key-exchange protocol char-
acterized by a tuple (", FS, iauthB , iauth2 , eauth, use), and ID be a set of participants.
Consider an adversary � which interacts with the challenger of the game de�ned below
and further denoted �Match

KE,� .

Setup. The challenger generates a pair of long-term keys (pkid, skid) for each participant
identity id ∈ ID. For each server identity B ∈ Σ, the challenger generates a fresh pair
of semi-static keys

(
pk′B , sk

′
B

)
(for the initial time period). The challenger samples a

uniformly random bit 1 ←$ {0, 1} for the test oracle.
Query. � is given access to all the oracles speci�ed above (1 parametrizes the test oracle).
Stop. � ultimately terminates its computation with no output.

�Match
KE,� returns 1 (i.e., � wins the game) if at least one of the following conditions holds.

1. More than two sessions share the same identi�er at some stage, i.e., three pairwise
distinct sessions f , f ′ and f ′′ and a stage 8 ∈ È"É such that f.sid8 = f ′.sid8 =

f ′′.sid8 ≠ ⊥.
2. Two sessions share the same identi�er at some stage but have non-opposite roles, i.e.,

two distinct sessions f and f ′ and a stage 8 ∈ È"É such that f.sid8 = f ′.sid ≠ ⊥
and f.role = f ′.role.

3. Two sessions share the same identi�er at some stage but computed di�erent stage
keys,i.e., two sessions f and f ′ and a stage 8 ∈ È"É such that f.sid8 = f ′.sid8 ≠ ⊥
and f.key8 ≠ f

′.key8 .
4. Two sessions share the same identi�er but have distinct or unspeci�ed contributive

identi�ers at some stage, i.e., two distinct sessions f and f ′ and a stage 8 ∈ È"É such
that f.sid8 = f ′.sid8 ≠ ⊥ and either f.cid8 ≠ f ′.cid8 or f.cid8 = f ′.cid8 = ⊥.

5. Two distinct stages share the same session identi�er, i.e., two sessions f and f ′ (not
necessarily distinct) and two stages 8 ≠ 9 ∈ È"É such that f.sid8 = f ′.sid 9 ≠ ⊥.

6. A stage has (retroactively) reached explicit authentication, but the partnered session
does not belong to the intended peer. Formally, there exist two distinct sessions f and
f ′ with f.role = initiator and f ′.role = responder as well as two stages 9 ≤ 8 ∈ È"É
such that f.sid8 = f ′.sid8 ≠ ⊥ and f.sid 9 = f ′.sid 9 ≠ ⊥, and either
– f.eauth 9,1 ≤ 8 and f.pid ≠ f ′.id, or
– f ′.eauth 9,2 ≤ 8 and f ′.pid ≠ f.id.

Protocol KE satis�es (), @�, Y)-match security for

� ∈ {NewSession, Send,Reveal,NextPeriod, EndCurrentPeriod,
Corrupt, SemiStaticCorrupt, Test}

19

if for any adversary� that runs in time at most) (_) and makes at most @� (_) queries,
the advantage Pr

[
�Match
KE,� → 1

]
of� in the game is at most Y (_).

Multi-Stage Security. The notion of multi-stage security captures the idea that keys
computed at non-compromised stages should be indistinguishable from uniformly
random keys, and it includes aspects such as forward secrecy and implicit authentica-
tion. Non-compromised stages are formally de�ned through the sub-notion of fresh-
ness. Multi-stage security also covers explicit authentication, which is formalized via
the sub-notion of malicious acceptance. The latter requires a partnered session to ex-
ist once a stage has (retroactively) reached explicit authentication, provided that the
adversary did not corrupt the secret keys of the partner up to that computation step.

De�nition 4.2 (Freshness). The 8-th stage of a session f is considered fresh if all of
the conditions hereafter hold.

1. The key session f or a potential partner computed at stage 8 was not revealed, i.e., for
any session f ′ such that f.sid8 = f ′.sid8 , f ′.revealed8 = FALSE.

2. If f.FS8 = fs, then
(a) there exists a session f ′ ≠ f such that f.cid8 = f ′.cid8 and f.role ≠ f ′.role, or
(b) (Implicit Authentication) the partner is implicitly authenticated from a stage at

most 8 (f.iauthB ≤ 8 if f.role = initiator and f.iauth2 ≤ 8 otherwise) and skf.pid
is not corrupt, or

(c) (Forward Secrecy) stage 8 reached explicit partner authentication (that is to say,
f.statusf.eauth8,1 = accepted if f.role = initiator and f.statusf.eauth8,2 = accepted
otherwise) and the adversary did not corrupt skf.pid before f accepted the corre-
sponding stage.

3. If f.FS8 = dfs, then
(a) (Server Implicit Authentication) f.role = initiator and either skf.period

f.pid is not
corrupt or the server is implicitly authenticated from a stage atmost 8 (f.iauthB ≤
8) and skf.pid is not corrupt, or

(b) f.role = responder and
i. there exists a session f ′ ≠ f such that f.cid8 = f ′.cid8 and f.role ≠ f ′.role,
and skf.period

f.id is not corrupt, or
ii. (Client Implicit Authentication) the client is implicitly authenticated from a

stage at most 8 (f.iauth2 ≤ 8) and skf.pid is not corrupt, or
iii. (Delayed Forward Secrecy) stage 8 reached explicit mutual authentication

(f.statusf.eauth8,2 = accepted), skf.pid was not corrupted before f accepted
stage eauth8,2 and sk

f.period
f.id is not corrupt.

On Freshness. Beyond ruling out the trivial attack of both revealing and testing a
session key (within the same or two partnered sessions), the above de�nition distin-
guishes two main cases depending on the expected forward secrecy of the considered
stage key.

In the case of (full) forward secrecy (i.e., f.FS8 = fs), the rationale behind the fresh-
ness conditions is that ephemeral values are used in the computation of these stage

20

keys and are erased once the session is terminated. The conditions then exclude situa-
tions in which the adversary has access to both the ephemeral values and the long-term
key of the intended partner and could thus reconstruct the stage key. For instance, if
the adversary did not corrupt the long-term key of the partner before the latter was
explicitly authenticated, it is guaranteed that the honest intended partner participated
in the protocol and the ephemeral values are therefore unknown to the adversary.

For stage keys that rather satisfy delayed forward secrecy (i.e., f.FS8 = dfs), no
ephemeral values are involved in their computation. The closest equivalent in this case
are semi-static values. However, since servers have semi-static keys but clients do not,
there is an asymmetry in the conditions on client sessions and those on server ses-
sions. As for clients, once a client session is closed and the internal values are erased,
the semi-static KEM encapsulation can only be recovered with the semi-static secret
key. This means that the adversary cannot distinguish from random such a client stage
key if it does not corrupt the semi-static secret key used to compute it; the servers are
in a sense also authenticated through their semi-static keys. Note that the freshness
conditions do not involve the stage from which the server is explicitly authenticated as
there is no fresh semi-static contribution from the server (because clients do not have
semi-static keys). The guarantee that the honest intended partner server was live is
therefore irrelevant. For server keys, the conditions are closer to those of full forward
secrecy, except that when the corruption of the partner client key is allowed, the cor-
ruption of the semi-static key is not. In case there is an honest contributive identi�er,
the adversary could otherwise compute all stage keys by also corrupting the long-term
keys of both parties. In case the client is explicitly authenticated and her long-term key
was not corrupted before that, it is indeed guaranteed that there is a fresh honest semi-
static contribution from the client, but corrupting of the corresponding semi-static key
would allow the adversary to recover it.

De�nition 4.3 (Malicious Acceptance). A session f is said to have maliciously ac-
cepted a stage 8 if the latter (retroactively) reached explicit partner authentication (i.e.,
f.eauth8,1 if f.role = initiator and f.eauth8,2 otherwise), the adversary did not corrupt
skf.pid before f accepted the corresponding stage and there is no session f ′ ≠ f such that
f.sid8 = f ′.sid8 .

De�nition 4.4 (Multi-Stage Security). LetKE be amulti-stage key-exchange protocol
characterized by a tuple (", FS, iauthB , iauth2 , eauth, use), and ID a set of participants.
Consider an adversary � interacting with the challenger of the game de�ned below and
further denoted �Multi−Stage

KE,� .

Setup. The challenger generates a pair of long-term keys (pkid, skid) for each participant
identity id ∈ ID. For each server identity B ∈ Σ, the challenger generates a fresh pair
of semi-static keys

(
pk′B , sk

′
B

)
(for the initial time period). The challenger samples a

uniformly random bit 1 ←$ {0, 1} for the test oracle.
Query. � is given access to all the oracles de�ned above (1 parametrizes the test oracle).
Stop. � ultimately terminates its computation and returns a bit 1 ′.
Finalize. – If a tested stage is not fresh then 1 ′←$ {0, 1}.

– If a session maliciously a stage then 1 ′← 1.
�

Multi−Stage
KE,� returns 1 if 1 = 1 ′ and otherwise returns 0.

21

Protocol KE satis�es (), @�, Y)-multi-stage security for

� ∈ {NewSession, Send,Reveal,NextPeriod, EndCurrentPeriod,
Corrupt, SemiStaticCorrupt, Test}

if for any adversary� that runs in time at most) (_) and makes at most @� (_) queries,
the advantage

���Pr [
�

Multi−Stage
KE,� → 1

]
− 1/2

��� of� in the game is at most Y (_).

Comparison with Existing Models. A major di�erence from existing models is
the introduction of time periods; semi-static keys have not been used in TLS-related
models but appeared in models for other protocols [18]. The model handles these via
the time-related identity and session game variables, the oracles that gives the adver-
sary full control over time periods as well as the oracle to corrupt semi-static keys,
and a re�nement of forward secrecy that takes semi-static keys into account. These
considerations naturally impact the freshness predicate, which is crucial to the formal
de�nition of key indistinguishability.

Apart from these aspects, the present model is closest to the model for TLS 1.3 due
to Dowling et al. [12, 13] but it still departs from it in several ways. First, it covers ex-
plicit authentication through the notion of malicious acceptance (inspired by the def-
inition in the KEMTLS model [29]), in contrast to the model from [12, 13] which only
formalizes implicit authentication. The model also considers a single authentication
mode (i.e., mutual) per protocol instead of several ones as in the TLS 1.3 model [12,13].
This simpli�cation is possible because both parties always authenticate themselves in
the protocol from Section 3. Besides, the model in [12, 13] also deals with cases in
which parties share symmetric keys obtained from previous sessions (i.e., so-called
pre-shared keys) and resumption mechanisms, but these are not considered in this pa-
per. Message replays, which are supported in 0-RTT handshakes based on pre-shared
keys, are consequently not considered either.

Another major technical di�erence from the model by Dowling et al. [12, 13] is
in the de�nition of the freshness predicate. Indeed, De�nition 4.2 involves the stages
from which the parties are explicitly authenticated whereas key indistinguishability
in their model is only concerned with implicit authentication. They can do so because
implicit and explicit authentication happen simultaneously in the TLS 1.3 protocol. It
thereby naturally excludes the attack in which an adversary impersonates the intended
partner up to the stage of implicit authentication, halts the protocol execution before
reaching explicit authentication and later corrupts the long-term key of the intended
partner. However, this attack is clearly possible in the protocol from Section 3, and that
is why the conditions of forward secrecy enforce that if the adversary ever corrupts
the long-term key of the intended partner, then it must be after the intended partner is
explicitly authenticated, which ensures that the adversary does not have access to the
ephemeral values of the execution. This concern also arises in the analysis of KEMTLS
protocol [29] which introduces several levels of forward secrecy that tacitly integrate
di�erent levels of authentication. Although forward secrecy and authentication are
related, the above model syntactically disentangles the two properties for clarity and
remains in this sense closer to the one in [12, 13].

22

5 Security Analysis

This section speci�es the syntactic values of the Section 3 protocol and then discusses
the security properties that it satis�es in the model from Section 4.

5.1 Properties

The characteristic values of the protocol and the session-speci�c values are here de-
�ned, in both the cases of matching and unmatching time periods.

Matching Time Periods. In this case, the properties the protocol aims to satisfy are
as follows.
– " = 5 stages as shown in Figure 4.
– FS = (dfs, fs, fs, fs, fs). That is, the �rst stage key satis�es delayed forward secrecy

and all the others full forward secrecy.
– iauthB = 1, the server is implicitly authenticated from stage 1.
– iauth2 = 2, the client is implicitly authenticated from stage 2.
– eauth = ((4, 5), (4, 5), (4, 5), (4, 5), (5, 5)). The server is explicitly authenticated

from stage 4 and the client from stage 5.
– use = (internal : {1, 2, 3}, external : {4, 5}) The �rst three stage keys are used to

encrypt handshake tra�c, i.e., for internal use.

Session and Contributive Identi�ers. Recall that each instance of a protocol algorithm
maintains a set of session identi�ers and contributive identi�ers. The session identi�er
at each stage is computed once the stage is accepted, and it consists of all the handshake
messages up to the acceptance of the stage. It the present case, denoting by SC B
ServerCertificate the server certi�cate cert [pkB], the session identi�ers are

sid1 = (“CHTS”, SC, CH) ,
sid2 = (“SAHTS”, SC, CH, CC, SH) ,
sid3 = (“CAHTS”, SC, CH, CC, SH) ,
sid4 = (“SATS”, SC, CH, CC, SH, SPK∗, EE, SF) ,
sid5 = (“CATS”, SC, CH, CC, SH, SPK∗, EE, SF, CF) .

As for the contributive identi�ers, the parties compute them as speci�ed below.
– Upon sending (resp. receiving) the ClientHello message, the client (resp. the

server) sets cid1 ← (“CHTS”, SC, CH).
– Upon sending (resp. receiving) the ClientCertificate message, the client (resp.

the server) sets cid2 ← (“SAHTS”, SC, CH, CC).
– Upon sending (resp. receiving) the ServerHello message, the server (resp. the

client) sets cid2 ← (“SAHTS”, SC, CH, CC, SH).
– The client and the server set

cid3 ← (“CAHTS”, SC, CH, CC, SH) ,
cid4 ← (“SATS”, SC, CH, CC, SH) and
cid5 ← (“CATS”, SC, CH, CC, SH)

after they respectively compute sid3, . . . , sid5.

23

Unmatching Time Periods. In case the time periods of the client and of the server
do not match, the protocol targets the following properties.

– " = 7 stages as on Figure 5.
– FS = (dfs, fs, fs, fs, fs, fs, fs). The �rst stage key, only accepted by the client, satis�es

delayed forward secrecy and all the others full forward secrecy.
– iauthB = 1. The server is implicitly authenticated from the start of the protocol.
– iauth2 = 4. The client secret key is mixed into the key schedule at stage 4.
– eauth = ((∞,∞), (6, 7), (6, 7), (6, 7), (6, 7), (6, 7), (7, 7)). The server is explicitly au-

thenticated from stage 6, and the client from stage 7.
– use = (internal : {1, 2, 3, 4, 5}, external : {6, 7}) Only the application-transport keys

which are computed at stages 6 and 7 are for external use.

Session and Contributive Identi�ers. Recall that SC B ServerCertificate denotes the
server certi�cate cert [pkB]. The session identi�ers consist are

sid1 =

{
(“CHTS”, SC, CH) if f.role = initiator
⊥ otherwise,

sid2 = (“SHTS”, SC, CH, SH) ,
sid3 = (“CHTS”, SC, CH, SH) ,
sid4 = (“SAHTS”, SC, CH, SH, SPK, EE, CC, SKC) ,
sid5 = (“CAHTS”, SC, CH, SH, SPK, EE, CC, SKC) ,
sid6 = (“SATS”, SC, CH, SH, SPK, EE, CC, SKC, SF) ,
sid7 = (“CATS”, SC, CH, SH, SPK, EE, CC, SKC, SF, CF) .

To compute the contributive identi�ers, the parties proceed as follows.

– Upon sending (resp. receiving) the ClientHello message, the client (resp. the
server) sets cid1 ← (“CHTS”, SC, CH).

– Upon sending the ClientCertificate message, the client sets cid2 ← (“SHTS”,
SC, CH, CC′).

– Upon receiving the ClientHello message, since the time periods do not match,
the server sets cid1 ← sid1 ← ⊥.

– Upon sending the ServerHellomessage, the server sets cid2 ← (“SHTS”, SC, CH, SH).
– Upon receiving the ServerHello message, as it does not contain a KEM2 cipher-

text, the client knows the time periods did not match and then updates cid2 ←
(“SHTS”, SC, CH, SH).

– The client and the server set

cid3 ← (“CHTS”, SC, CH, SH) ,
cid4 ← (“SAHTS”, SC, CH, SH) ,
cid5 ← (“CAHTS”, SC, CH, SH) ,
cid6 ← (“SATS”, SC, CH, SH) and
cid7 ← (“CATS”, SC, CH, SH)

after they respectively compute sid3, . . . , sid7.

24

Remark. The fact that the contributive identi�ers at all stages only include messages
up to SH (in both the cases of matching and unmatching time periods) means that if
is enough for the SH to be delivered to prove the secrecy of fs stage keys (cf. Case (2)
(c) in De�nition 4.2), and also of dfs keys if the adversary does not corrupt the server
semi-static key (cf. Case (3) (b) (i) in De�nition 4.2).

5.2 Security Proofs

This section proves the security of the Section 3 protocol in the model presented in
Section 4.

Match Security. The following theorem formalizes the match security of the proto-
col.

Theorem 5.1 (Match Security). Assuming KEMB , KEM4 and KEM2 to respectively be
XB , X4 and X2 -correct, the advantage of any adversary that makes at most=f B @NewSession
queries to oracle NewSession in the match-security game for the Section 3 protocol (in
both the cases ofmatching and unmatching periods) is atmost (2XB + X4 + X2) =f+2−257=2f .

Proof. The theorem statement does not impose any restriction on the computational
power of the adversary. The match security of the protocol is thereby information
theoretic, and it su�ces to bound the probability that each of the winning conditions
is satis�ed.

1. More than two sessions share the same identi�er at some stage.At each stage, the ses-
sion identi�er includes the random nonce from the ClientHello and ServerHello
messages, so three pairwise distinct sessions can share the same identi�er only if
at least two of them share the same nonce. The probability of this event is at most(
=f
2
)
2−256 ≤ 2−257=2f .

2. Two sessions share the same identi�er at some stage but have non-opposite roles.
Assuming that at most two sessions can share the same identi�er (which is the case
except with the above probability), no two responders or initiators can hold the
same identi�er since they never accept ClientHello and ServerHello messages
typed with a non-opposite role.

3. Two sessions share the same identi�er at some stage but computed di�erent stage
keys. The key a session computes at any stage is entirely determined by the mes-
sages it received up to the stage, and these are included in the session identi�er. It
follows that two partnered sessions can compute di�erent keys only if the correct-
ness of one of the KEMs fails. In a protocol execution, the participants together
decapsulate one KEM4 ciphertext, one KEM2 ciphertext and either two KEMB ci-
phertexts in the case of matching time periods or one in the case of unmatching
time periods. The probability that two partnered sessions compute di�erent stage
keys is thus at most (2XB + X4 + X2) =f .

4. Two sessions share the same identi�er but have distinct or unspeci�ed contributive
identi�ers at some stage. By construction of the protocol, the �nal contributive
identi�er at any stage is always equal to the session identi�er once the session
accepts the stage.

25

5. Two distinct stages share the same session identi�er. This event never occurs as each
session identi�er carries a unique label.

6. A stage has (retroactively) reached explicit authentication, but the partnered session
does not belong to the intended peer. A server sessions learns the identity of the
partner client through the ClientCertificate message which is included in the
session identi�er of the stage from which the server is explicitly authenticated. It
thus guarantees that honest sessions with matching session identi�ers agree on
the client identity.
A client session learns the server identity via the preloaded server certi�cate which
is in all session identi�ers. Partnered session identi�ers thereby agree on the server
identity.

Multi-Stage Security. The following two theorems formalize the multi-stage secu-
rity of the main protocol.

Theorem 5.2 (Multi-Stage Security – Matching Time Periods). Suppose that for

(S,A) ∈ {(KEM2 , IND-CCA), (KEMB , IND-CCA),
(KEM4 , IND-1CCA), (HKDF.Extract, PRF),

(HKDF.Extract, dual-PRF), (HKDF.Expand, PRF),
(HMAC, EUF-CMA)},

S is
(
) A
S , @

A
S , Y

A
S

)
-A-secure. Let� be an algorithm that runs in time at most)� and makes

at most @� oracle queries for

� ∈ {NewSession, Send,Reveal,NextPeriod, EndCurrentPeriod,
Corrupt, SemiStaticCorrupt, Test}.

There exists a real constant ^ ≤ 1 such that if)� + @Send + @Test ≤ ^ min
(S,A)

(
) A
S

)
and

if =f B @NewSession ≤ min
(S,A)

(
@AS

)
, then there exist (explicit) reduction algorithms to the

respective
(
) A
S , @

A
S , Y

A
S

)
-A security of S such that the advantage of� in the match security

game in the case of matching time periods is at most

2−257=2f + YColl� + 5=f

©«

=id

©«
YIND−CCAKEM2

+ YIND−CCAKEMB

+ 3YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract

+ 5YPRFHKDF.Expand + Y
EUF−CMA
HMAC

ª®®®¬
+=f

©«
YIND−1CCAKEM4

+ YIND−CCAKEMB

+ 2YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract

+ 4YPRFHKDF.Expand + Y
EUF−CMA
HMAC

ª®®®¬

ª®®®®®®®®®®®¬
,

with =id B |ID | and YColl�
the probability that an algorithm given in the proof �nds a

collision for � by running � as subroutine.

26

Proof. The proof consists in a sequence of games that starts with the multi-stage se-
curity game and which are indistinguishable under the theorem assumptions. In the
last game, the stage keys are uniformly random values and no session can maliciously
accept a stage, i.e., the advantage of the adversary is nil.

Game 0. This is the multi-stage security game as in De�nition 4.4.
Game 1. The challenger of this games returns 1 (i.e., the adversary wins the game) if

there exists two distinct honest sessions with the same role that share the same
nonce. The advantage in distinguishing this game from the previous one is at most(
=f
2
)
2−256 ≤ 2−257=2f .

Game 2. In this game, the challenger returns 1 if any two honest sessions compute
the same hash value on di�erent inputs to the hash function � . The advantage in
distinguishing this game from the previous one is at most the probability that the
challenger, with the adversary as subroutine, computes a collision for� . This col-
lision can then be used by an algorithm that reduces the problem of distinguishing
the two games to �nding a collision for � .

The next step consists in restricting the adversary to a single Test query. More
precisely, for an algorithm � as in the theorem statement, let ℬ be an algorithm
that interacts with the challenger of Game 2 and runs � as a subroutine. ℬ chooses
an integer C ∈ È5=fÉ uniformly at random at the beginning of the game; the range
accounts for the maximum total number of stages across all sessions. For the �rst C −1
Test queries � makes, algorithm ℬ returns the key computed by the tested session
at the stage of the query. ℬ forwards the C-th query from � to the challenger and for
the remaining queries, ℬ returns uniformly random keys. Dowling et al. showed [13,
Appendix A] that (in their model,) the advantage of ℬ is at least a fraction 5=f of the
advantage of � via a standard hybrid argument.

However, the proof is not entirely trivial because oracles Send and Test overwrite
the internal keys computed by sessions partnered at a tested stage, and session iden-
ti�ers are de�ned by handshake messages in clear text. It means that ℬ must be able
to decrypt handshake messages to determine which sessions are partnered and prop-
erly emulate the game to �, i.e., take into account the Test queries that ℬ does not
forward. To decrypt handshake tra�c and identify potential partnered sessions, ℬ
submits additional Reveal queries for the internal keys of the session involved in the
Send or Test query. Denoting by "8 the number of internal keys, that means at most
"8 (@Send + @Test) additional Reveal queries are made. The crux of the matter is then
to show that these additional Reveal queries do not cause the only Test query for-
warded by ℬ to be rejected when it would have otherwise been replied to. Although
the model from Section 4 di�ers from the model of Dowling et al., the Send, Reveal
and Test oracles are very similarly de�ned in the two models and the other oracles
do not impact Test queries. The arguments of Dowling et al. thereby also apply in the
present context.

In summary, ℬ makes at most one Test query, at most @Reveal + "8 (@Send + @Test)
Reveal queries and the same amount of queries as � to the remaining oracles, and the
advantage of ℬ is at least a fraction @Test of the advantage of �. Besides, considering
AEAD encryption and decryption operations to be constant time, the runtime of ℬ

27

is of order)� +$ (@Send + @Test). On this account, the advantage of the adversary can
�rst be analyzed in a game restricted to a single Test query and then later extrapolated
to a game with multiple queries.

Game 3. Only the �rst Test query in this game may be replied to with anything else
than ⊥. As explained above, there exists an algorithm that runs the adversary as
subroutine and has an advantage of at least a 5=f fraction of the advantage of �
in the previous game by making at most one Test query, @Reveal +"8 (@Send + @Test)
Reveal queries and the same amount of queries as � for the other oracles. Besides,
the algorithm runs in time)� +$ (@Send + @Test).

For the unique Test query that the adversary may make on some session and
stage (f, 8), which is now known in advance, two main cases are now distinguished:

A. 8 = 1, i.e., the adversary tests the key computed at stage 1 which satis�es delayed
forward secrecy, and

B. 8 > 1, i.e., the adversary tests a stage key that satis�es forward secrecy.

These cases are further subdivided into the following sub-cases.

A.I. (a) f.role = initiator and skf.pid is not corrupt (recall that the server is implicitly
authenticated from stage 1).

(b) f.role = initiator and skf.period
f.pid is not corrupt.

A.II. (a) f.role = responder and there exists a session f ′ ≠ f such that f.cid1 = f ′.cid1
and f.role ≠ f ′.role, and skf.period

f.id is not corrupt.
(b) f.role = responder , f.status5 = accepted and the adversary did not corrupt

skf.pid before f accepted stage 5.

B.I. There exists a session f ′ ≠ f such that f.cid8 = f ′.cid8 and f.role ≠ f ′.role.
B.II. (a) f.role = initiator and skf.pid is not corrupt (recall that the server is implicitly

authenticated from stage 1).
(b) f.role = responder and skf.pid is not corrupt (recall that 8 ≥ 2 = f.iauth2 in

case B).
B.III. (a) f.role = initiator , f.status4 = accepted and the adversary did not corrupt

skf.pid before f accepted stage 4.
(b) f.role = responder , f.status5 = accepted, the adversary did not corrupt skf.pid

before f accepted stage 5 and skf.period
f.pid is not corrupt.

Note that these cases somewhat correspond to the conditions for the tested session
to be fresh, cf. De�nition 4.2.

Case A.I.a: Tested Client with Non-Compromised Partner Long-Term Key

In this case, the secrecy of the client stage key relies on the indistinguishability of the
KEM2 ciphertext C2 since the server is implicitly authenticated from stage 1.

28

Game A.I.a.0 (Guess Partner Identity). The challenger guesses at the beginning of
the game the identity of the intended partner of the test session and aborts and
returns 0 if the guess is incorrect when the adversary makes its test query. This
decreases the advantage of the adversary by a factor at most =id .

Game A.I.a.1 (Server Long-Term KEM). In this game, B is replaced in f with a
uniformly random value. In any session of f.pid that receives the client ciphertext,
 B is replaced with the same value.
Distinguishing this game to the previous one can be reduced to the IND-CCA se-
curity of KEMB as follows. The reduction algorithm, upon receiving the challenge
tuple

(
pk★,C★, ★

)
, �rst sets pk★ as the server public key of f.pid. Then, it sets

C★ as the ciphertext CB in the ClientHello message of the test session and uses
 ★ as B . For any session of f.pid, if it receives CB then ★ is used as B . If it re-
ceives any other ciphertext, then the reduction algorithm makes a decapsulation
query and uses the returned value as (for that session. The reduction algorithm
eventually forwards the decision bit of the adversary to the IND-CCA challenger.

Game A.I.a.2 (ES). The early secret ES is now replaced in f with a uniformly random
value. The same value is used in any session of f.pid that received the ciphertext
CB sent by f .
Distinguishing this game from the previous is reducible to the dual PRF security of
HKDF.Extract. It su�ces for the reduction algorithm to make one oracle query on
0 (with B as the key of the dual PRF challenger), set the value as ES in f and any
session of f.pid that received CB , and forward the decision bit of the adversary.

Game A.I.a.3 (dES). The challenger replaces the derived early secret dES in f with
a uniformly random value. The same value is used in any session of f.pid that
received the ciphertext CB sent by f . The problem of distinguishing this game
from the previous can be reduced to the PRF security of HKDF.Expand.

Game A.I.a.4 (HS). The handshake secret HS is now replaced in f with a uniformly
random value. The same value is used in any session of f.pid that received the
ciphertextCB sent byf . Now the PRF security ofHKDF.Extract serves as argument
for the indistinguishability from the previous game.

Game A.I.a.5 (CHTS). The challenger of this game replaces client handshake tra�c
secret CHTS in f with a uniformly random value. Moreover, in any session of
f.pid that received the ciphertext CB sent by f , secret CHTS is also replaced with
a uniformly random value. If the ClientHello message was not altered, then it is
the same value as the one used in f , otherwise it is an independent random value
(recall that the game halts if the hashes of two distinct values collide). The PRF
security of HKDF.Expand is now used to argue for the indistinguishability of this
game from the previous.

Game A.I.a.6 (dHS). The derived handshake secret is here replaced with a uniformly
random value. The same value is used in any session of f.pid that received the
ciphertext CB sent by f . The indistinguishability of this game from the previous
one follows from the PRF security of HKDF.Expand.

Game A.I.a.7 (IMS). In this game, the intermediate master secret IMS is replaced in
f with a uniformly random value. The same value is used in any session of f.pid
that received the ciphertextCB sent by f . The PRF security ofHKDF.Extract allows
to argue for the indistinguishability between this game and the previous one.

29

Game A.I.a.8 (dIMS). This value is replaced with a uniformly value in f and the same
value is used in any session of f.pid that received the ciphertext CB sent by f . The
indistinguishabilty from the previous game relies again on the PRF security of
HKDF.Expand.

Game A.I.a.9 (MS). The master secret is replaced with a uniformly random value in
f and the same value is used in any session of f.pid that received the ciphertext
CB sent by f . The PRF security of HKDF.Extract is once again invoked to argue
that this game is indistinguishable from the previous one.

Game A.I.a.10 (SAHTS, CAHTS, �B , SATS, �2 and CATS). These values are replaced
with uniformly random ones in f and the same values are used in any session of
f.pid that received the ciphertext CB sent by f . The PRF security of HKDF.Expand
implies the indistinguishability between this game and the previous.

Game A.I.a.11 (MAC Forgery). The challenger of this game, running the tested client
session, rejects the ServerFinished message in case there is no partner session at
stage 4. The fact that there is no partner session at stage 4 implies that no honest
session computed a MAC tag on the transcript of the tested client session. In other
words, the adversary forged a MAC value and distinguishing this game from the
previous one is therefore reducible to the EUF-CMA security of HMAC.

Note that since the challenger rejects all ServerFinished message in case there
is no partner at stage 4, the event in which the client session accepts stage 4 with-
out a partner session never occurs. Besides, all stage keys are uniformly random. The
advantage of the adversary in the last game is therefore nil.

Besides, as a client session sets pk′f.pid,f .id received in a SPK message (during the
transition from f.period to f.period + 1, i.e., when pk′′f.pid ≠ ⊥) only after verifying
the tag of the ServerFinished message, the public semi-static key necessarily comes
from the partner session in the last game.

It follows that the advantage of the adversary in Game 3 is in this case at most

=id

(
YIND−CCAKEMB

+ 3YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract + 5Y

PRF
HKDF.Expand + Y

EUF−CMA
HMAC

)
.

Case A.I.b: Tested Client with Non-Compromised Partner Semi-Static Key

This case is fairly similar to the previous one, except that the secrecy of the stage-1
key now relies on the indistinguishability of the semi-static ciphertext CCB,2B .

Game A.I.b.0 (Guess Partner Identity). Same as Game A.I.a.0.
Game A.I.b.1 (Semi-Static KEM). Similar to Game A.I.a.1, but with CCB,2B and CB,2B

instead of CB and (. Note that the reduction algorithm must set the challenge
KEM public key pk★ as the semis-static key of f.pid in f.period.

Game A.I.b.2 (HS). The handshake secret HS in f is now replaced with a uniformly
random value. In any session of f.pid that received the ciphertext CCB,2B sent by f ,
the handshake secret HS is also replaced with a uniformly random value, while
maintaining consistency across all the sessions that share the same derived early
secret dES.

30

Distinguishing this game from the previous is reducible to the dual PRF security
of HKDF.Extract. It su�ces for the reduction algorithm to make oracle queries
on the session dES (CB,2B is tacitly set as the key of the dual PRF challenger) to
compute HS for f and any session of f.pid that received the CCB,2B sent by f , and
forward the decision bit of the adversary.
Note that if a session is not partnered at stage 8 but did receive the ciphertext CCB,2B

send by f , then even though the key is computed at stage 8 can be tested, the latter
is independent from the one compute by f .

Games A.I.b.3–A.I.b.9. Identical to Games A.I.a.5 to A.I.a.11.

In this case, the advantage of the adversary in Game 3 is therefore at most

=id

(
YIND−CCAKEMB

+ 2YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract + 4Y

PRF
HKDF.Expand + Y

EUF−CMA
HMAC

)
.

Case A.II.a: Tested Server with Honest Contributive Partner

The existence of an honest contributive partner and the fact that the server semi-static
key is not compromised ensure that the adversary cannot recover the semi-static value
used in the computation of the key.

Note that since no two sessions with the same role can share the same nonce, there
is exactly one session that shares the same contributive identi�er at stage 1. Denote
this session by f ′.

Game A.II.a.0 (Guess Contributive Session). The challenger guesses at the begin-
ning of the game the contributive partner session and aborts and returns 0 if the
guess is incorrect when the adversary makes its test query. This decreases the
advantage of the adversary by a factor at most =f .

Game A.II.a.1 (Semi-Static KEM). In this game, the challenger replaces the semi-
static value CB,2B in both f and f ′ with a uniformly random value (the same).
Distinguishing this game to the previous one can be reduced to the IND-CCA se-
curity of KEMB as follows. The reduction algorithm, upon receiving the challenge
tuple

(
pk★,C★, ★

)
, �rst sets pk★ as the server semi-static public key of f.id in

f.period. Then, it sets C★ as the ciphertext CCB,2B in the ClientHello messages of
f ′. Since f.cid1 = f ′.cid1, the ciphertext received by f is the same as the one f ′
sent. The reduction algorithm can thus replace CB,2B with ★ in both f and f ′.
It uses its decapsulation oracle to decapsulate any other ciphertexts for the pub-
lic key pk★ of f.id in f.period. The reduction algorithm eventually forwards the
decision bit of the adversary to the IND-CCA challenger.

Games A.II.a.2–A.II.a.8. Similar to Games A.I.a.4 to A.I.a.10, except that the replace-
ment is now only for f and f ′. This implies that the reduction algorithms need
only make one oracle query in each of the security games for HKDF.Extract and
HKDF.Expand.

Game A.II.a.9 (MAC Forgery). The challenger of this game, running the tested server
session, rejects the ClientFinished message in case there is no partner session at
stage 5. The fact that there is no partner session at stage 5 implies that no honest

31

session computed a MAC tag on the transcript of the tested client session. In other
words, the adversary forged a MAC value and distinguishing this game from the
previous one is therefore reducible to the EUF-CMA security of HMAC.

The advantage of the adversary in Game 3 is in this case at most

=f

(
YIND−CCAKEMB

+ 2YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract + 4Y

PRF
HKDF.Expand + Y

EUF−CMA
HMAC

)
.

CaseA.II.b: Tested ServerwithExplicitlyAuthenticatedClient andNon-Compromised
Semi-Static Key

The client’s secret key not being compromised before acceptance of stage 5 allows
to distinguish two cases: either the tested session accepts at stage 5 with an honest
partner, in which case the conditions for the prior Case A.II.a are satis�ed; or the tested
session accepts without an honest partner, in which case up to this point, the MAC key
of the client, used to compute the CF message that made the test session accept, is
secret. The secrecy of the MAC key is established as in Case A.I.a, but is based on
the client long-term KEM key 2 , the subsequent sequence of key derivations and the
unforgeability of the MAC:

=id

(
YIND−CCAKEM2

+ Ydual−PRFHKDF.Extract + Y
PRF
HKDF.Expand + Y

EUF−CMA
HMAC

)
.

Case B.I: Honest Contributive Partner

For keys with expected forward secrecy, the existence of an honest contributive part-
ner guarantees that the adversary does not have access to the ephemeral value gen-
erated by the server. The secrecy of these stage keys therefore mainly relies on the
indistinguishability of the ephemeral KEM.

As no two honest sessions with the same role share the same nonce, there is ex-
actly one contributive partner. Denote it by f ′. Let f2 ∈ {f, f ′} be such that f2 .role =
initiator and fB ∈ {f, f ′} such that fB .role = responder .

Game B.I.0 (Guess Contributive Session). Same as Game A.II.0.
Game B.I.1 (Ephemeral KEM) The challenger of this game replaces the ephemeral

secret value 4 in fB with uniformly random value, and uses the same value in f2
if the latter receives the ciphertext fB sent.
Distinguishing this game from the previous one can be reduced to the IND-1CCA
security of KEM4 as follows. Upon receiving the challenger tuple

(
pk★,C★, ★

)
,

the reduction algorithm sends pk★ as the ephemeral public key in the ClientHello
message. Note that since f2 .cid1 = fB .cid1, this ephemeral public key is delivered
to fB . The reduction algorithm then uses C★ as the ephemeral ciphertext in the
ServerHello message and ★ as the ephemeral secret in fB . If C★ is delivered
to f2 , then the reduction algorithm also uses ★ in f2 , otherwise it makes a de-
capsulation query to the IND-1CCA challenger and uses the returned value as
ephemeral secret. The decision bit of the adversary is ultimately forwarded to the
IND-1CCA challenger.

32

Game B.I.2 (IMS). In this game, the intermediate master secret MS in fB is replaced
with a uniformly random value, and the same value is used in f2 if the latter
received the ephemeral ciphertext sent by fB . The indistinguishability of this game
from the previous can be reduced to the dual PRF security of HKDF.Extract. The
reduction algorithm simply has a to make a single oracle query on dHS (the key
of the dual PRF challenger is implicitly set as 4).

Game B.I.3 (dIMS). The challenger of this game replaces the derived intermediate
master secret dIMS in fB with a uniformly random value. If f2 received the ci-
phertext sent by fB , then dIMS is also replaced in f2 with the same value (note
that since f2 .cid1 = fB .cid1, then the dES value is the same in both sessions). The
PRF security of HKDF.Expand (with a single oracle query) substantiates the indis-
tinguishability of this game from the previous one.

Game B.I.4 (MS). The master secret MS in fB is here replaced with a uniformly ran-
dom value. If f2 received the ciphertext sent by fB , then the same value is used
in f2 . The PRF security of HKDF.Extract (with a single oracle query) justi�es the
indistinguishability from the previous game.

Game B.I.5 (SAHTS, CAHTS, �B , SATS, �2 and CATS). These values are now re-
placed with uniformly random ones in fB . The same values are used in session
f2 if f2 and fB are partnered at stage 8 (which implies that both sessions have ac-
cepted stage 8), and they are otherwise replaced with independent uniformly ran-
dom values. Note that if the two sessions are not partnered, then the adversary
may query the stage keys computed by f2 , but these keys are independent from
those computed by fB . The indistinguishability from the previous game follows
from the PRF security of HKDF.Expand.

Game B.I.6 (MAC Forgery). The challenger of this game rejects the �nished mes-
sage of the intended partner message in case there is no partner session at the stage
explicit partner authentication (4 if f.role = initiator and 5 if f.role = responder).
The fact that there is no partner session at the latter stage implies that no honest
session computed a MAC tag on the transcript of the tested client session. In other
words, the adversary forged a MAC value and distinguishing this game from the
previous one is therefore reducible to the EUF-CMA security of HMAC.

The advantage of the adversary in Game 3 is thus in this case at most

=f

(
YIND−1CCAKEM4

+ YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract + 2Y

PRF
HKDF.Expand + Y

EUF−CMA
HMAC

)
.

Case B.II.a: Tested Client with Implicitly Authenticated Server

The secrecy of these keys rely on the indistinguishability of the KEMB ciphertext CB
encapsulating the server long-term secret. This case is handled very similarly to case
A.I.a, except that there is no need to replaced CHTS with a uniformly random value
as it is not tested and it is not involved in the computation of further values.

Games B.II.a.0–B.II.a.4 (HS). Identical to Games A.I.a.0 to A.I.a.4.
Game B.II.a.5 (dHS)–B.II.a.10. Identical to Games A.I.a.6 to A.I.a.11.

33

In this case, the advantage of the adversary in Game 3 is at most

=id

(
YIND−CCAKEMB

+ 3YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract + 4Y

PRF
HKDF.Expand + Y

EUF−CMA
HMAC

)
.

Case B.II.b: Tested Server with Implicitly Authenticated Client

The security of the KEM2 ciphertext C2 supports the secrecy of the stage keys in this
case.

Game B.II.b.0 (Guess Partner Identity). Identical to Game A.I.a.0.
Game B.II.b.1 (Client KEM). Similar to Game A.I.a.1, but with 2 and C2 instead of

 B and CB .
Game B.II.b.2 (MS). The challenger of this game replaces the master secret in f with

a uniformly random value. For any session of f.pid that received the ciphertext C2
sent by f , the master secret MS is also replaced with a uniformly random value,
while maintaining consistency across all the sessions that share the same derived
intermediate master secret dIMS.
Distinguishing this game from the previous is reducible to the dual PRF security
of HKDF.Extract. It su�ces for the reduction algorithm to make oracle queries on
the session dES (2 is tacitly set as the key of the dual PRF challenger) to compute
HS for f and any session of f.pid that received the C2 sent by f , and forward the
decision bit of the adversary.
Note that if a session is not partnered at stage 8 but did receive the ciphertext C2
send by f , then even though the key is computed at stage 8 can be tested, the latter
is independent from the one compute by f .

Game B.II.b.3 (SAHTS, CAHTS, �B , SATS, �2 and CATS). These values are now re-
placed with uniformly random ones in f . For any session of f.pid that received
the ciphertext C2 sent by f , the master secret MS is also replaced with a uniformly
random value, while maintaining consistency across all the sessions that share
the same master secret MS. In particular, the same values as in f are used for such
sessions if they are partnered at stage 8 , and they are otherwise replaced with
independent uniformly random values.
The PRF security of HKDF.Expand guarantees that this game is indistinguishable
from the previous.

Game B.II.b.4 (MAC Forgery). The challenger of this game, running the tested server
session, rejects the ClientFinished message in case there is no partner session at
stage 5. The fact that there is no partner session at stage 5 implies that no honest
session computed a MAC tag on the transcript of the tested client session. In other
words, the adversary forged a MAC value and distinguishing this game from the
previous one is therefore reducible to the EUF-CMA security of HMAC.

The advantage of the adversary in Game 3 is in this case at most

=id

(
YIND−CCAKEM2

+ Ydual−PRFHKDF.Extract + Y
PRF
HKDF.Expand + Y

EUF−CMA
HMAC

)
.

34

Case B.III.a: Tested Client with Explicitly Authenticated Server

The main di�erence between this case and case B.II.a is that the adversary may now
corrupt the server long-term key after the server is explicitly authenticated. This a
priori raises an issue in the replacement of the server long-term KEM (as in Game
B.II.a.1) since the reduction algorithm would not be able to return the challenge secret
key corresponding to the public key that it set as the server public key.

The main insight in this case is now to show that under the assumption that the
MAC used to compute the ServerFinished message is secure, the adversary cannot
make the client maliciously accept stage 4 without having �rst corrupted the server
long-term key. That is to say, no client session maliciously accepts stage 4 under the
assumption that the MAC is secure. Therefore, if a client session accepts stage 4, then
it is guaranteed that it has an honest partner at that stage (and only that partner could
recover the ephemeral value), and thus also at all prior stages given how session iden-
ti�ers are de�ned. A consequence is that stages from 1 to 4 all retroactively explicitly
authenticated, and the keys computed at these stages are indistinguishable from ran-
dom according to the analysis in case B.I.

Games B.III.a.0–B.III.a.10. Game B.III.a.0 is identical to Game B.II.a.0 and Games
B.III.a.1 to B.III.a.9 are de�ned similarly to Games B.II.a.1 to B.II.a.9, except that
the challenger aborts the interaction with the adversary and returns 1 (i.e., the ad-
versary wins) if the tested client session accepts stage 4 without a partner session.
Game B.III.a.10 is identical to Game B.II.a.10. Note that in the last game, the client
session never accepts stage 4 without a partner session.

In this case, the advantage of the adversary in Game 3 is at most

=id

(
YIND−CCAKEMB

+ 3YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract + 4Y

PRF
HKDF.Expand + Y

EUF−CMA
HMAC

)
.

Case B.III.b: Tested Server with Explicitly Authenticated Client

The same reasoning as for client sessions applies here, except that the client explicitly
authenticates herself at stage 5. The advantage of the adversary in Game 3 is in this
case at most

=id

(
YIND−CCAKEM2

+ Ydual−PRFHKDF.Extract + Y
PRF
HKDF.Expand + Y

EUF−CMA
HMAC

)
.

Overall Advantage

The advantage of the adversary in Game 3 is the maximum of its advantage in each of
the cases, which is at most

=id

©«
YIND−CCAKEM2

+ YIND−CCAKEMB

+ 3YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract

+ 5YPRFHKDF.Expand + Y
EUF−CMA
HMAC

ª®®®¬ + =f
©«
YIND−1CCAKEM4

+ YIND−CCAKEMB

+ 2YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract

+ 4YPRFHKDF.Expand + Y
EUF−CMA
HMAC

ª®®®¬ .
35

Therefore, the advantage of the adversary in the multi-stage security game (Game
0) is at most

2−257=2f + YColl� + 5=f

©«

=id

©«
YIND−CCAKEM2

+ YIND−CCAKEMB

+ 3YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract

+ 5YPRFHKDF.Expand + Y
EUF−CMA
HMAC

ª®®®¬
+=f

©«
YIND−1CCAKEM4

+ YIND−CCAKEMB

+ 2YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract

+ 4YPRFHKDF.Expand + Y
EUF−CMA
HMAC

ª®®®¬

ª®®®®®®®®®®®¬
.

ut
Theorem 5.3 (Multi-Stage Security – Unmatching Time Periods). Suppose that
for

(S,A) ∈ {(KEM2 , IND-CCA), (KEMB , IND-CCA),
(KEM4 , IND-1CCA), (HKDF.Extract, PRF),

(HKDF.Extract, dual-PRF), (HKDF.Expand, PRF),
(HMAC, EUF-CMA)},

S is
(
) A
S , @

A
S , Y

A
S

)
-A-secure. Let� be an algorithm that runs in time at most)� and makes

at most @� oracle queries for

� ∈ {NewSession, Send,Reveal,NextPeriod, EndCurrentPeriod,
Corrupt, SemiStaticCorrupt, Test}.

There exists a real constant ^ ≤ 1 such that if)� + @Send + @Test ≤ ^ min
(S,A)

(
) A
S

)
and

if =f B @NewSession ≤ min
(S,A)

(
@AS

)
, then there exist (explicit) reduction algorithms to the

respective
(
) A
S , @

A
S , Y

A
S

)
-A security of S such that the advantage of� in the match security

game in the case of matching time periods is at most

2−257=2f + YColl� + 7=f

©«

=id

©«
YIND−CCAKEM2

+ YIND−CCAKEMB

+ 3YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract

+ 7YPRFHKDF.Expand + Y
EUF−CMA
HMAC

ª®®®¬
+=f

©«
YIND−1CCAKEM4

+ YIND−CCAKEMB

+ 2YPRFHKDF.Extract + Y
dual−PRF
HKDF.Extract

+ 6YPRFHKDF.Expand + Y
EUF−CMA
HMAC

ª®®®¬

ª®®®®®®®®®®®¬
,

with =id B |ID | and YColl�
the probability that an algorithm given in the proof �nds a

collision for � by running � as subroutine.

Proof. The proof is similar to the proof of Theorem 5.2, except that there are seven
stages, i.e., two more stage keys (SHTS and CHTS) derived, hence the factor 7=f from
the reduction to a single Test query and the extra 2YPRFHKDF.Expand term in the bound. ut

36

5.3 Discussion

On the Security Proofs. The security proofs are similar to those of the KEMTLS proto-
col, are given in the standard model and do not rely on any form of adversary rewind-
ing. Existing techniques in the literature (e.g., Song’s “lifting lemma” [31]) can thus be
used to prove the protocol secure against quantum adversaries as long as the under-
lying primitives are.

However, the proofs are non-tight (with the precise losses spelled out in exact-
security terms) as they require to guess the test session as well as, depending on the
proof case, the contributive session or the identity of the intended peer. The proofs can
thus be understood as heuristic arguments for the soundness of the protocol design.
It is worth noting that except for very recent work on TLS 1.3 [10, 11], most proofs of
deployed authenticated key-exchange protocols are also non-tight.

Downgrade Resilience. The model in Section 4 does not capture algorithm negotiation
although any practical deployment of the protocol would support multiple instantia-
tions for each primitive. However, one can still informally argue that the downgrade
resilience properties of the protocol in Section 3 are similar to those of the KEMTLS
protocol. More precisely, an active adversary could in principle make a party choose
an algorithm other than the one it would have used if the adversary were passive, but
the adversary cannot make a party use an unsupported algorithm. Moreover, assuming
that the security of the building blocks is not breached before the con�rmation mes-
sages are received, the client and the server are guaranteed to share the same transcript
which includes negotiation messages. In other words, full downgrade resilience [4,14]
is satis�ed once the other party is explicitly authenticated.

Comparison with KEMTLS. The assumption that the client knows the server public key
from the beginning of the protocol is precisely what allows to reduce the handshake
by a full round-trip and have the server send application data from its �rst message
�ow, compared to the KEMTLS protocol. It also implies that the server certi�cate need
not be veri�ed during the handshake, which speeds up the handshake even further
and reduces power consumption.

However, as explained in the introduction, in a KEM-based protocol that achieves
mutual authentication in a single round trip (see Figure 1), an adversary could a priori
recover the client’s identity by corrupting the long-term key of the server even after
the handshake is completed (no forward identity protection). The semi-static keys
introduced in this paper mitigate this privacy loss and ensure, without extra round trip,
that the client’s identity cannot be recovered once the semi-static keys have expired.
The lifetime of the semi-static keys now depends on the desired trade-o� between
e�ciency and privacy: the shorter the lifetime is, the stronger the privacy guarantees
are for the client and the heavier the computational burden is on (mainly) the server.

Acknowledgments

This work was supported by the Eurostars ZERO-TOUCH Project (E113920).

37

References

1. M. Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In
C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 602–619. Springer, Heidelberg,
Aug. 2006.

2. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication.
In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 1–15. Springer, Heidelberg,
Aug. 1996.

3. M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R. Stinson,
editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Heidelberg, Aug. 1994.

4. K. Bhargavan, C. Brzuska, C. Fournet, M. Green, M. Kohlweiss, and S. Zanella-Béguelin.
Downgrade resilience in key-exchange protocols. In 2016 IEEE Symposium on Security and
Privacy, pages 506–525. IEEE Computer Society Press, May 2016.

5. C. Boyd and K. Gellert. A modern view on forward security. Cryptology ePrint Archive,
Report 2019/1362, 2019. https://eprint.iacr.org/2019/1362.

6. C. Brzuska. On the Foundations of Key Exchange. PhD thesis, Technische Universität, Darm-
stadt, 2013.

7. C. Brzuska, M. Fischlin, B. Warinschi, and S. C. Williams. Composability of Bellare-Rogaway
key exchange protocols. In Y. Chen, G. Danezis, and V. Shmatikov, editors, ACM CCS 2011,
pages 51–62. ACM Press, Oct. 2011.

8. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In B. P�tzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages
453–474. Springer, Heidelberg, May 2001.

9. R. Canetti and H. Krawczyk. Security analysis of IKE’s signature-based key-exchange pro-
tocol. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 143–161. Springer,
Heidelberg, Aug. 2002. http://eprint.iacr.org/2002/120/.

10. H. Davis and F. Günther. Tighter proofs for the SIGMA and TLS 1.3 key exchange protocols.
Cryptology ePrint Archive, Report 2020/1029, 2020. https://eprint.iacr.org/2020/
1029.

11. D. Diemert and T. Jager. On the tight security of TLS 1.3: Theoretically-sound cryptographic
parameters for real-world deployments. Cryptology ePrint Archive, Report 2020/726, 2020.
https://eprint.iacr.org/2020/726.

12. B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the TLS 1.3
handshake protocol candidates. In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS 2015,
pages 1197–1210. ACM Press, Oct. 2015.

13. B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of the TLS 1.3
handshake protocol. Journal of Cryptology, 2021. To appear. Available as Cryptology ePrint
Archive, Report 2020/1044. https://eprint.iacr.org/2020/1044.

14. B. Dowling and D. Stebila. Modelling ciphersuite and version negotiation in the TLS pro-
tocol. In E. Foo and D. Stebila, editors, ACISP 15, volume 9144 of LNCS, pages 270–288.
Springer, Heidelberg, June / July 2015.

15. Smartm2m; guidelines for security, privacy and interoperability in iot system de�nition; a
concrete approach. Technical Report ETSI SR 003 680, ETSI, 2020.

16. M. Fagan, K. Megas, K. Scarfone, and M. Smith. Foundational cybersecurity activities for
iot device manufacturers. Technical Report NISTIR 8259, NIST, 2020.

17. M. Fagan, K. Megas, K. Scarfone, and M. Smith. Iot device cybersecurity capability core
baseline. Technical Report NISTIR 8259A, NIST, 2020.

18. M. Fischlin and F. Günther. Multi-stage key exchange and the case of Google’s QUIC proto-
col. In G.-J. Ahn, M. Yung, and N. Li, editors, ACM CCS 2014, pages 1193–1204. ACM Press,
Nov. 2014.

38

https://eprint.iacr.org/2019/1362
http://eprint.iacr.org/2002/120/
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/726
https://eprint.iacr.org/2020/1044

19. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions (extended
abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press, Oct. 1984.

20. F. Günther. Modeling Advanced Security Aspects of Key Exchange and Secure Channel Proto-
cols. PhD thesis, Technische Universität, Darmstadt, 2018.

21. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-Okamoto
transformation. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS,
pages 341–371. Springer, Heidelberg, Nov. 2017.

22. H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Di�e-Hellman and
its use in the IKE protocols. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
400–425. Springer, Heidelberg, Aug. 2003.

23. H. Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In T. Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer, Heidelberg, Aug. 2010.

24. H. Krawczyk and H. Wee. The OPTLS protocol and TLS 1.3. Cryptology ePrint Archive,
Report 2015/978, 2015. http://eprint.iacr.org/2015/978.

25. K. Kwiatkowski and L. Valenta. The tls post-quantum experiment.
https://blog.cloud�are.com/the-tls-post-quantum-experiment/, 2019.

26. B. A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key ex-
change. In W. Susilo, J. K. Liu, and Y. Mu, editors, ProvSec 2007, volume 4784 of LNCS, pages
1–16. Springer, Heidelberg, Nov. 2007.

27. A. Langley. Cecpq2. https://www.imperialviolet.org/2018/12/12/cecpq2.html, 2018.
28. E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Proposed

Standard), Aug. 2018.
29. P. Schwabe, D. Stebila, and T. Wiggers. Post-quantum TLS without handshake signatures.

In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 20, pages 1461–1480. ACM Press,
Nov. 2020.

30. K. Sjöberg, P. Andres, T. Buburuzan, and A. Brakemeier. C-ITS deployment in europe -
current status and outlook. CoRR, abs/1609.03876, 2016.

31. F. Song. A note on quantum security for post-quantum cryptography. In M. Mosca, editor,
Post-Quantum Cryptography - 6th International Workshop, PQCrypto 2014, pages 246–265.
Springer, Heidelberg, Oct. 2014.

32. D. Stebila and M. Mosca. Post-quantum key exchange for the internet and the open quantum
safe project. In R. Avanzi and H. M. Heys, editors, SAC 2016, volume 10532 of LNCS, pages
14–37. Springer, Heidelberg, Aug. 2016.

39

http://eprint.iacr.org/2015/978

	 KEMTLS with Delayed Forward Identity Protection in (Almost) a Single Round Trip
	Introduction
	Contributions

	Preliminaries
	Notation
	Hash Functions
	Pseudorandom Functions
	Key-Derivation Functions
	Message-Authentication Codes
	Key-Encapsulation Mechanisms

	Protocol
	Protocol Description
	Components.
	Outline.
	Application to the KEMTLS Protocol with Client Authentication.

	Model
	Syntax
	Security Definitions

	Security Analysis
	Properties
	Security Proofs
	Discussion

