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Abstract. Cryptocurrency and blockchain continue to build on an in-
novative computation model that has paved the way for a large vari-
ety of applications. Privacy is a huge concern for cryptocurrencies and
blockchains as most of these systems log everything in the clear. This has
resulted in several academic and industrial initiatives to address privacy.
Starting with the UTXO model of Bitcoin, initial works brought con-
fidentiality and anonymity to payments. Recent works have expanded
to support more generalized forms of private computation. Such solu-
tions tend to be highly involved as they rely on advanced cryptographic
primitives and creative techniques to handle issues related to dealing
with private records (e.g. concurrency and private coin tracking to pre-
vent double spending). This situation makes it hard to comprehend the
current state-of-the-art, much less build on top of it.
To address these challenges, we provide a systematization of knowledge
for privacy-preserving solutions in blockchain. To the best of our knowl-
edge, our work is the first of its kind. After motivating design chal-
lenges, we study the zero-knowledge proof systems used in supporting
blockchain privacy, categorizing them based on their key features and
limitations. Then, we develop a systematization of knowledge frame-
work—using which we classify the state-of-the-art privacy preserving
solutions based on several dimensions such as supported functionality,
work model, where the private computation is performed, and crypto-
graphic primitives used. Finally, we touch upon challenges including lim-
ited functionality, practicality, and accommodating new developments.

1 Introduction

Following their revolutionary economic impact, cryptocurrencies and blockchain
technology continue to build on an innovative computation model. Researchers
and practitioners alike are racing to build new applications and transform ex-
isting systems into fully decentralized ones by utilizing the unique features of
blockchain. While early systems focused mainly on payment transfer, newer
smart contract-enabled blockchains allow individuals to build applications pro-
cessing highly sensitive data, such as those involved in medical records tracking,
trading, and voting.

However, lack of privacy is a huge concern. Popular systems like Bitcoin and
Ethereum do not support privacy out of the box. All records are logged in the



clear on the blockchain, allowing anyone to read their contents. Moreover, while
no real identities are required, several studies have shown how seemingly random-
looking addresses can be linked to the real identities of their owners [66,67,51,13].
This is problematic; users do not want their payment activity to be disclosed,
not to mention their more sensitive data such as votes or health-related infor-
mation. Although front-running is a fairness issue, lack of privacy also makes
users susceptible to front-running attacks [32]. That is, a malicious actor moni-
tors broadcast transactions and races to issue her own transaction and have it
be confirmed before the observed transaction (e.g. racing to win an auction).
At the same time, revealing a coin’s history may result in “tainted” currency;
these are coins that no one wants to own or accept as a payment due to some
undesired coin history (e.g. being used in some illegal trade).

All these concerns resulted in several academic and industrial initiatives to
bring privacy to blockchains [54,68,22,18,71,76,26,45,48]. Starting with the sim-
pler UTXO model from Bitcoin, early works aimed to provide confidential (hid-
ing transfer amount) and anonymous (hiding user addresses) payments. Focus
shifted to supporting privacy in the account-based model, with a desire to build
private smart contracts. Such smart contracts would allow for arbitrary compu-
tation to be performed on the blockchain with input/output privacy. Extending
privacy goals further, interest has emerged in supporting function privacy so
that even the computation itself is hidden.

A common theme to these solutions is their reliance on advanced crypto-
graphic primitives such as homomorphic commitments/encryption [68,22] and
various zero knowledge proof systems [60,41,23]. This is in addition to the need
for creative techniques to handle issues arising from supporting privacy, such
as resolving concurrent transactions operating on private account state, dealing
with anonymity sets, tracking private coins to prevent double spending, and ad-
dressing efficiency problems. All these facets make it hard to comprehend the
current state-of-the-art, much less build on top of it.

Contributions. To address this challenge, we conduct a systematization of
knowledge of privacy-preserving solutions in cryptocurrencies and blockchains,
which (to the best of our knowledge) is the first of its kind. On one hand, such
a study makes it easier for newcomers to understand the landscape. On the
other hand, our work paves the way towards more advancements by identify-
ing missing features and open questions. After motivating design challenges and
providing a brief background on the main cryptographic building blocks used in
supporting privacy (Section 2), we develop two systematization frameworks. The
first is employed to survey zero-knowledge proof (ZKP) systems that blockchain
privacy-preserving solutions adopt, with a focus on impactful facets—including
their flexibility, security, and efficiency (Section 3). The second framework is used
to survey state-of-the-art privacy-preserving solutions for blockchain and map
them into three categories (Section 4). The first category is private payments,
which cover payments that do not disclose their currency amounts and/or the
addresses of the sender and the recipient. The second category is private com-
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putation, which allows for arbitrary (user-specified) computation operating on
private inputs and producing private outputs. Lastly, we look at function privacy,
which also hides the computation itself.

For the second category, we further classify the solutions based on (1) where
the private computation is performed and (2) the design paradigm it uses to
enable the private computation. Most schemes follow one of two paradigms that
we call homomorphic encryption-based or zero knowledge proof-based. We go on
to assess the benefits and tradeoffs of these paradigms.

After that, we briefly discuss technical proposals to address private com-
puting for multi-user inputs, along with efficiency and trust issues (Section 5).
Throughout these discussions, we seek to provide useful insights for the commu-
nity to guide future work directions.

Scope. The blockchain space encompasses a massive body of work taking on sev-
eral forms (e.g. peer-reviewed papers, white papers, technical reports, or even
blog posts). Vetting and describing all these works is clearly infeasible. Thus, we
study influential and representative solutions; we focus on peer-reviewed works
(where possible) that have been used in operational projects or have served as
the basis for new and creative design paradigms. This paper is not an attempt
to describe in detail how each system or solution works, nor it is about provid-
ing formal definitions of protocols and their security aspects. Instead, its goal
is to describe design paradigms and explore their key features, limitations, and
tradeoffs. Moreover, anonymity is not the main focus; we target confidentiality
(hiding inputs/outputs) and function privacy (hiding the computation itself).
We discuss anonymity only for systems that support the other forms of privacy
(the interested reader may consult [8] for a SoK on anonymity in blockchains).
Furthermore, we do not focus on privacy for specific use-case blockchain-based
systems like private decentralized exchanges or private voting applications. In-
stead, we study solutions that support privacy-preserving payments or arbitrary
computation for a variety of applications. In particular, we study the following
schemes:

– Payments: Monero [59] is one of the first private deployed cryptocurrencies,
with numerous subsequent academic works on it. Zerocash [68] is a peer-
reviewed paper with a resulting operational project Zcash. Quisquis [34] is
a peer-reviewed work proposing a unique system model (account UTXO
hybrid).

– Computation: Hawk [49] is one of the first peer-reviewed works in private
blockchain computing. Zether [22] is a peer-reviewed work supporting con-
fidential transactions on Ethereum; it is the first to build on the homomor-
phic encryption-based approach we introduce in Section 4. Zexe [18] is a
peer-reviewed work, resulting in the operational project Aleo. Zkay [71] is a
peer-reviewed work and operational project with an extensive open-source
codebase to support private smart contracts on Ethereum. Kachina [48] is
a peer-reviewed work from IOHK, one of the first theoretical works to for-
mally model private smart contracts. Arbitrum [45] is a peer-reviewed work,
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with a resulting operational project from Offchain Labs. Ekiden [26] is a
peer-reviewed work, with a resulting operational project from Oasis Labs.

We note that privacy-preserving solutions are generally designed to be modu-
lar—such that they are not explicitly tied down to using a specific proof scheme.
Hence, in implementing these schemes, some operational projects switched to
more efficient building blocks (e.g. ZKP systems) than what was originally pro-
posed in their peer-reviewed papers. This is a natural result of technical ad-
vancements, leading to more optimized cryptographic primitives than what was
originally available. We describe schemes based on the peer-reviewed papers to
unify the discussion and, when appropriate, mention the changes that opera-
tional projects adopted.

2 Background

To facilitate the discussion, we first present an overview of blockchain design,
differentiate between the UTXO and account-based model (along with simple
payments and smart contracts), and informally examine the notion of privacy
in the context of blockchain. Finally, we review the main cryptographic building
blocks used in the surveyed solutions.

2.1 Blockchain Components

A blockchain is an append only log (usually referred to as a distributed ledger),
representing the backbone of any cryptocurrency. This ledger records all trans-
actions in the system, allowing mutually trustless parties to exchange payments.
A blockchain is maintained and extended by miners who compete to win the
rights of mining the next block and, hence, collecting the mining rewards. The
current state of a blockchain is agreed upon through the consensus protocol that
these miners run. End users (lightweight clients) can then use the service by
broadcasting transactions to the miners and tracking only their own records,
rather than the full blockchain.

In general, cryptocurrencies can be classified into one of two categories based
on the way in which they track currency owned by clients. The first of which
is the unspent transaction output (UTXO) model, initially proposed by Bit-
coin [58]. About half a decade later, Ethereum went on to pioneer an account-
based model [74]. In the former model, miners need to maintain all unspent
transactions, with a client’s currency balance computed as the total value of all
unspent transactions destined to her address(es). In the latter, each address has
an account on the blockchain associated with a balance that is updated based
on the currency transfer transactions this account issues or receives.

Furthermore, cryptocurrencies can be classified into two categories based on
the functionality they support. In the first category, only currency transfer oper-
ations are supported with limited scripting capability to make conditional pay-
ments. We refer to this as the Bitcoin-like model. While in the second category,
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the end user can deploy arbitrary programs on the blockchain for the miners to
execute on demand in the form of smart contracts. We refer to these as smart
contract-enabled cryptocurrencies, where Ethereum was the first to introduce
this model.

Security of a blockchain can be defined in terms of a set of security proper-
ties [15,36,61]. Informally, a ledger L is secure if it satisfies the following [36]:

– Persistence: For any two honest parties P1 and P2, and any two time rounds
t1 and t2 such that t1 ≤ t2, the ledger maintained by P1 at t1 is a prefix of
the ledger maintained by party P2 at time t2 with overwhelming probability.

– Liveness: If a transaction tx is broadcast at time round t, then with over-
whelming probability tx will be recorded on the ledger L at time t+u, where
u is the liveness parameter.

Persistence covers what is called consistency and future self-consistency in [61].
Liveness includes chain growth and quality (i.e., a ledger L records only valid
transactions and blocks), defined in [61]. [15] also adds fairness, which states
that miners will collect rewards in proportion to the mining power they put in
the system.

2.2 Privacy Domain in Blockchains

Privacy shares the general theme of hiding user data. However, in the context
of blockchain, this can take on several forms. The first type of privacy is in-
put/output privacy (also known as confidentiality), which allows us to hide the
inputs and outputs of an operation or function. Confidential currency transfer
can be viewed as a restricted form of I/O privacy, since it translates to hiding
the amount being sent along with the balances of the sender and recipient ad-
dresses. For more general smart contracts, I/O privacy translates to hiding the
inputs and outputs of the functions defined within the code of smart contracts.
The second type of privacy is function privacy, allowing us to hide the compu-
tation itself. Function privacy may be of particular interest for proprietary code
or when the code leaks information on the type of processed inputs (potentially
having privacy implications). Finally, user anonymity is a form of privacy since
it deals with hiding the users’ addresses involved in a transaction or a compu-
tation. As mentioned earlier, we focus on the former two types of privacy in our
work.

In terms of security notions, a privacy-preserving cryptocurrency must satisfy
the security properties of a blockchain outlined in the previous section along
with additional properties to capture privacy. Informally, these privacy related
properties include [68,22]:

– Ledger indistinguishability: An adversary cannot distinguish between two
versions of the ledger that differ in at least one transaction with non-negligible
probability.

– Balance or overdraft safety: An adversary cannot spend more currency than
he rightfully owns, even if the values are hidden and the currency cannot be
tracked.
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The above notion of ledger indistinguishability can be formulated differently
to state that a ledger does not reveal any additional information about private
data (or computation) beyond what can be inferred from public records. Such
a definition would allow us to cover private computation with I/O privacy and
function privacy. The notion of balance/overdraft safety will remain the same
for these categories, meaning that even if an adversary requests I/O or function
privacy-preserving operations, she will not be able to obtain free coins in the
system.

Why is privacy harder for smart contracts than for payments? First,
note that a smart contract can be any program of the user’s choice. It may
involve complex operations (more than just the addition used in currency trans-
fer) and have application-dependent conditions to be checked for the inputs. In
the account model, unavoidable concurrency issues occur from trying to oper-
ate on encrypted balances using zero-knowledge proofs. Second, smart contracts
may operate on inputs from different users, meaning that these inputs are en-
crypted with respect to different keys. Allowing such interoperation is non-trivial
and requires sophisticated cryptographic primitives. Third, efficiency issues from
providing privacy (particularly from the use of ZKPs) are compounded in pri-
vate computation extensions. Lastly, the flexibility provided by smart contracts
raises several questions related to correctness and legitimacy of the deployed
code. What if this code simply reveals all inputs and/or users addresses? This
places a huge burden on the end user to vet such applications and contracts
before using them.

2.3 Cryptographic Building Blocks

Privacy-preserving solutions are centered around a handful of cryptographic
primitives. These are (informally) defined in what follows.

Commitments. A non-interactive commitment scheme is composed of three
efficient algorithms: Setup, Commit, and Open. Setup takes as input a security
parameter κ and generates a set of public parameters pp. Commit takes pp, a
message m, and randomness r as inputs, and outputs a commitment c to m.
Open takes pp and c as inputs and produces a decommitment d = (m, r).

A secure commitment scheme must satisfy two properties: hiding, mean-
ing that commitment c does not reveal any information about m, and binding,
meaning that a commitment c cannot be opened to m′ such that m′ 6= m. Such
properties allow for recording private data on the blockchain, hidden in com-
mitments, with the guarantee that the owner cannot change the original data
without being detected. A formal definition of a commitment scheme and its
security can be found in [39].

Some commitment constructions are additively homomorphic in the sense
that given c1 and c2, which are commitments to messages m1 with randomness
r1 and m2 with randomness r2, respectively, c3 = c1 + c2 is a commitment to
m1+m2 with randomness r1+r2. This allows for operating on committed values
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(such as account balances) without opening them. An additively homomorphic
commitment is valuable in private payments as it allows for updating a private
(committed) account balance by adding and subtracting (committed) currency
amounts. Pedersen commitments [62] support such features.

Homomorphic encryption. A homomorphic encryption (HE) scheme, like a
regular encryption scheme, is composed of three efficient algorithms: KeyGen
which generates encryption/decryption keys (and any other public parameters
based on the construction), Encrypt which encrypts a message m to produce a
ciphertext ct, and Decrypt which decrypts a ciphertext ct to get the plaintext
message m back.

Homomorphic encryption schemes allow for performing computations on ci-
phertexts such that the output ciphertext will decrypt to the same plaintext
output as if one had operated directly on the underlying plaintexts. Additively
homomorphic encryption schemes only support addition homomorphisms (i.e.
operations). That is, let ct1 be a ciphertext of m1, and ct2 be a ciphertext of
m2, then ct1 + ct2 = ct3 is a ciphertext of m1 + m2. This supports an equiv-
alent purpose as homomorphic commitments—updating an encrypted account
balance by adding and subtracting (encrypted) currency amounts. Some encryp-
tion schemes can only support homomorphic multiplication (i.e. ct4 = ct1 · ct2
is a ciphertext of m1 · m2). For example, the ElGamal encryption scheme can
be either additively homomorphic or multiplicatively homomorphic, based on
whether m is encrypted in the exponent, but not both.3

Fully homomorphic encryption (FHE) supports both addition and multi-
plication of ciphertexts. This allows for performing any computation over en-
crypted inputs to produce encrypted outputs. All currently known schemes rely
on lattice-based cryptography, thus providing post-quantum security guarantees.
The first FHE scheme was introduced by Gentry [37] and was followed up by a
large body of works devising more optimized constructions [20,33,57,73,38,21,25].
FHE continues to be an active research area given increased interest in privacy
and computation outsourcing.

Zero knowledge proofs. A (non-interactive) zero knowledge proof (ZKP) sys-
tem allows a prover to convince a verifier that it knows a witness ω for some
statement x without revealing anything about the witness beyond what can be
implied by x itself. An example could be proving that a given ciphertext encrypts
an integer y that lies in the range [a, b], without revealing the exact value of y.

A ZKP system is composed of three algorithms: Setup, Prove, and Verify.
Setup takes as inputs security parameter κ and specifications of the NP relation
(which determines the set of all valid statements x) for which proofs are to be
generated, and outputs a set of public parameters pp. Prove takes as inputs pp,

3 Note that for simplicity we represent homomorphic addition and multiplication using
’+’ and ’·’. Based on the scheme, the exact implementation of each operation may
vary (e.g. in additively homomorphic ElGamal encryption, ciphertexts are multiplied
with each other to have a ciphertext of m1 + m2).
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a statement x, and a witness ω for x and outputs a proof π proving correctness
of x (that it satisfies the NP relation). Lastly, Verify takes pp, statement x, and
π and outputs 1 if the proof is valid (0, otherwise).

A secure ZKP system must satisfy several properties including completeness,
soundness, and zero-knowledge. Completeness ensures that any proof that is
generated in an honest way will be accepted by the verifier. Soundness (or proof-
of-knowledge) states that if a verifier accepts a proof for a statement x then the
prover knows a witness ω for x. Put differently, this means that a prover cannot
convince a verifier of false statements. Finally, zero knowledge ensures that a
proof π for a statement x does not reveal anything about the witness ω. An
additional (efficiency-related) property is succinctness—such that proof size is
constant and verification time is linear in the size of the input, regardless of the
circuit size representing the underlying NP relation. A ZKP system that satisfies
all four of these properties is denoted as a zk-SNARK (zero knowledge succinct
non-interactive argument of knowledge). Formal definitions of ZKP systems and
zk-SNARKs can be found in [39,14].

ZKPs are heavily utilized in private cryptocurrency and blockchain applica-
tions. They allow for proving that an input satisfies certain conditions, that an
operation has been performed correctly, or that the ledger state has been up-
dated successfully, without revealing anything about the underlying private data.

Multiparty computation. A multiparty computation (MPC) protocol allows a
set of mutually-distrusted parties to evaluate a function over their private inputs
without revealing anything about these inputs beyond what can be inferred from
the output. Most MPC protocols in the literature use two approaches: the secret
sharing based approach [12] or garbled circuits [11].

An MPC protocol is secure if it satisfies three properties: correctness, privacy,
and fairness. Correctness ensures that an MPC protocol executing a function f
will produce the same output that f would produce if it were to operate on
the inputs in the clear. Privacy ensures that no information about the parties’
inputs is leaked apart from what the output may reveal. Finally, fairness ensures
that either all or none of the parties learn the output. These properties are
often captured using an ideal functionality notion for the intended computation,
along with a simulation-based security proof comparing an ideal execution of
the protocol with a real world one. The interested reader may consult [24] for
further details and formal definitions.

MPC protocols are mainly used to distribute trust, thereby replacing a
trusted entity with a set of parties to perform the same functionality in a pri-
vate way. In blockchain systems, MPC protocols were mainly used to execute a
trusted setup when needed (e.g. producing a common reference string for non-
interactive ZKPs) [19,7]. As we will discuss later, MPC can also be utilized to
execute off-chain private computations over inputs coming from multiple users.
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Proof System PHGR13 [60] PHGR13+
Kosba [50]

Bulletproofs [23] GM17 [43]

Used in Zerocash Hawk* Quisquis, Zether* Zexe, Zkay

Universal X X X X

Transparent X X X X

Prover Time Quasilinear Quasilinear Linear Quasilinear

Verifier Time Linear Quasilinear Linear Linear

Size Constant Quasilinear Logarithmic Constant

Table 1: Comparison of the major ZKP systems used in private computing for
blockchains. Note that the starred schemes use variants of these proof systems
(specifically Hawk uses a variant of PHGR13 and Zether uses a variant of Bul-
letproofs).

3 A Bird’s Eye View of Zero Knowledge Proof Systems

In providing privacy on blockchain, parties often need to prove that conditions
on their hidden inputs have been satisfied for the appropriate application. In
private currency transfer, for example, this might mean ensuring that the hid-
den amount being sent is non-negative. Zero-knowledge proofs (ZKPs) provide
a cryptographic solution to this problem. The vast majority of blockchain con-
structions offering privacy rely on ZKPs. Accordingly, research in ZKPs has
exploded in the past years, with a goal of constructing lightweight ZKPs for the
blockchain setting. Of the 10 works we survey in this paper, only 2 of them do
not make use of ZKPs.4

These proof systems share many features in common as they were chosen
carefully to suit blockchain applications. Thus, we focus on properties that im-
pact practical deployment. In doing so, we identify three main features—flexibility,
security, and efficiency—and discuss how these features affect deployment of
privacy-preserving computing solutions in blockchain.

3.1 Proof Systems Used

We examine three major proof systems ([60], [23], [43]) that are used to sup-
port privacy-preserving computing in blockchain. All of them use elliptic curves,
are (or can be made) non-interactive, and support proving relations for general
arithmetic circuits.

PHGR13 and variants. This proof system [60] is a type of zk-SNARK that
relies on pairings to produce constant-sized proofs. Its security relies on the
knowledge of exponent assumption, a non-falsifiable security assumption [29].

4 Kachina [48] is a theoretical protocol to support private smart contracts using non-
interactive zero-knowledge proofs (NIZK). As it does not rely on any particular
proof system, we abstain from discussing it further in this section as the following
considerations are not applicable.
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PHGR13 was first used in Zerocash to achieve succinct proofs for private cur-
rency transfer [68]. Such zk-SNARK proof systems can be transformed to support
simulation extractability, thus ensuring that an adversary, who does know a wit-
ness, cannot forge a proof despite seeing an arbitrary number of valid proofs [41].
Hawk [49], a private smart contract platform, requires this feature and applies
Kosba’s transformation ([50]) to achieve this.

Bulletproofs and variants. Bulletproofs [23] allow for fairly efficient loga-
rithmic sized range proofs (in addition to supporting relations for arithmetic
circuits). This proof system has the advantage of relying solely on the discrete
logarithm assumption. Bulletproofs were initially used to support private cur-
rency transfer in Quisquis [34] (and eventually in the operational project for
Monero [59]). Zether employs a variant of Bulletproofs called Σ-Bullets that
make Bulletproofs interoperable with Sigma protocols, thereby allowing them to
efficiently prove that algebraically encoded values lie in a particular range [22].

GM17. This proof system [43] is another type of zk-SNARK that relies on pair-
ings to produce highly succinct (constant-sized) proofs for arithmetic circuits. Its
security relies on an assumption similar to the knowledge of exponent assump-
tion [31]. Unlike PHGR13, GM17 provides simulation extractability out of the
box. The private computation schemes Zexe [18] and Zkay [71] both use GM17
as the basis of their constructions.

3.2 Flexibility

In looking at flexibility, we emphasize universality—such that a single reference
string be used to prove any NP statement [75]. However, a challenges arises in
providing lightweight ZKPs; the most lightweight constructions in practice are
non-universal.

Universality. Non-universality presents no immediate problems for private cur-
rency transfer as the construction is usually limited to supporting a fixed num-
ber of known relations. Accordingly, the first proposed private currency transfer
scheme, Zerocash [68], adopted a non-universal ZKP scheme. Subsequent private
payment works (like Quisquis [34] and even Monero itself in practical deploy-
ment) moved to using universal proof systems such as Bulletproofs.

Non-universality limits the flexibility of users to engage in more general pur-
pose private computation since a new reference string would need to be gener-
ated for each new application. This setup process can be expensive to perform,
calling into question the practicality of supporting arbitrary applications via
non-universal ZKPs. In spite of this challenge, three of the four private com-
puting solutions utilizing ZKPs propose using proof systems with non-universal
reference strings for maximum efficiency.
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3.3 Security

In looking at security, we focus on trust level. A number of the ZKPs require
a “trusted setup,” in which a trusted party generates some initial parameters
used in the proof system. While it is not the case that a trusted setup implies
non-universality, in the body of work we look at, these two features go hand-in-
hand.

Trust. The earliest works in both private currency transfer (Zerocash) and pri-
vate computing (Hawk) require a trusted third party to perform the initial setup
process. This involves generating the common parameters of the system, as well
as a preprocessing step that provides the verifier with a succinct representation
of the relation being proved. Preprocessing has a direct impact on efficiency as
it significantly cuts down on the proof verification time.

Nonetheless, as the name suggests, trusted setups are a source of security
issues if this trusted third party does not behave honestly (i.e. reveals the ran-
domness used to generate the reference string or any other secret trapdoors).
In particular, this party can use the secret information to potentially break the
soundness of the proof system and, hence, spend currency she does not actu-
ally own [68]. A popular mitigation strategy is to distribute trust by employing
multi-party computation so that many parties can participate in the setup pro-
cess [19,7]. Thus, as long as at least one party is honest, the whole setup will be
secure. If the parties act honestly, any secret information will be destroyed after
finishing the setup as instructed.

One of the first documented MPC ceremonies for generating system param-
eters was for Zcash [6] (the operational project implementing Zerocash). The
six participants went to great lengths to ensure honest generation—including
air gapping their machines, recording protocol communication via append-only
DVDs, and physically destroying their hardware after the process was complete.
More recent MPC ceremonies [1,4] to generate parameters have involved larger
numbers of participants and often volunteers.

Due to these security implications, later works such as Quisquis and Zether
moved to using transparent proof systems (i.e. proof systems without trusted se-
tups) like Bulletproofs. However, new cryptocurrency designs supporting more
general forms of private computation (i.e. Zexe and Zkay) did not adopt this
trend. ZKPs with trusted setups continue to be popular because of their effi-
ciency.

3.4 Efficiency

In using ZKPs in a distributed setting like blockchain, efficiency is arguably the
biggest concern. Users (who serve as the provers) are often lightweight nodes
with limited computational power, thus proof generation cannot be too expen-
sive for them. Although miners (who serve as the verifiers) likely have access
to more powerful machines, they may need to verify all proofs produced in the
system, so minimizing verification time is important to ensure high throughput.
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Additionally, miners must track the entire blockchain, which may include all
proofs produced in the system. Thus, proof size should be as small as possi-
ble, ideally with size independent of the circuit representing the underlying NP
statement.

ZKP efficiency has so many facets that it deserves its own SoK to do the topic
proper justice. We provide a brief overview of the main considerations—time
and space overheads—and motivate how these factors affect private computing
in blockchains.

Theory vs. practice. While the difference between the proof systems may
look stark in terms of asymptotic Big O notation, performance in practice is
not quite as clear cut. In practice, Bulletproofs tend to be about one order of
magnitude larger than the PHGR13’s zk-SNARKs [60] when proving statements
for confidential payments. Additionally, it can be difficult to compare concrete
performance across papers as the authors take advantage of different techniques
and provide non-standardized benchmarks. For example, authors may use many
cores (Zkay, 12 cores), high RAM (Zexe, 256GB RAM), or manually optimize
the arithmetic circuit representing the NP statement to be proved (Zerocash).
Thus, we focus primarily on asymptotic behavior with the goal of providing an
intuition of the cost. It should be noted that this too can be misleading as various
proof systems quote asymptotic behavior with respect to different parameters.

Time. Private operations (whether a transaction or a smart contract function
invocation) will be accompanied by a proof, generated upon issuing this oper-
ation and verified upon accepting/executing it in the system. Initial schemes,
like Zerocash, used zk-SNARKs with quasi-linear proof generation time as these
tended to behave like a constant function for most statements the user might
need to prove [68]. Later constructions employed proof systems with both lin-
ear and quasi-linear proving times. In terms of proof verification, almost all the
proof systems we look at offer linear verification time.

A potential optimization for verification is batching (supported in Bullet-
proofs). Batching makes it cheaper to verify n proofs together than verifying
each proof on its own [23]. It relies on the observation that verification is es-
sentially many multi-exponentiations that can be efficiently combined together
to reduce the work. With this technique, verification time grows logarithmically
initially and then linearly [23].

Another consideration is the time needed to execute the ZKP setup process,
especially for non-universal proofs. This is not particularly important for sys-
tems that only support private payments as these systems consist of a set of fixed
statements to be proved (so setup will be performed only once when the system
is launched). General private computing schemes, on the other hand, could be
more sensitive to such factors since a new setup may be needed whenever a new
application is deployed. Setup time is non-trivial and often takes on the order of
minutes; setup time for the zk-SNARK in Zexe supporting privacy on two inputs
takes over 1.5 minutes (using a server), whereas setup for the zk-SNARK in Ze-
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rocash takes over 4 minutes (using a modest machine) [18,68]. Compounding the
problem further, these non-universal proofs also use trusted setup; recall that, in
deployment, a trusted setup is often executed as an MPC ceremony. Repeating
this MPC process many times over (when users want to prove new statements
for private applications) will be costly and require a non-trivial amount of coor-
dination/cooperation.

Space. Miners must store the full blockchain history; unfortunately, a ZKP
can often be the largest contributor to a transaction’s size. Using constant-
sized proofs can help manage the chain’s growth. This observation was realized
early on in Zerocash, which pioneered the use of zk-SNARKs with constant-sized
proofs. Subsequent works attempting to extend the Zerocash protocol gravitated
towards proof systems with constant-sized proofs as well. Yet, these constant-
sized proofs come at a cost. The keys needed to produce the succinct proofs can
be very large (i.e. many orders of magnitude larger than the individual proofs
themselves in practice). As an example, we look at Zerocash; for the “pour”
relation representing the NP statement of the proof needed for a basic private
transaction, the proof size is 288 bytes whereas the necessary proving key is 896
MiB [68].

Private computing solutions with universal and transparent ZKPs, such as
Quisquis and Zether, produce logarithmic-sized proofs [23]. While these proofs
tend to be about one to two orders of magnitude larger in practice than PHGR13
and GM17’s zk-SNARKs, they have the advantage of not requiring a proving
key (only a small public reference string) [23].

4 The Landscape: Existing Privacy-Preserving Solutions

In this section, we review the solutions developed in the past decade to bring
privacy to blockchain and cryptocurrencies. We begin by describing our system-
atization of knowledge framework, followed by a study of these solutions. This
study focuses on important features such as work model, security, and efficiency.
We also examine how to handle several technical challenges (e.g. double spending
and concurrency) that become non-trivial when dealing with private blockchain
records.

4.1 Systematization Framework

We develop a systematization of knowledge framework to fit surveyed solutions
into relevant categories based on distinguishing features. As shown in Figure 1,
our framework follows the evolution of these solutions with respect to supported
functionality. It also classifies them based on other dimensions such as work
model (UTXO vs. account model), where a private computation (if any) is per-
formed (off-chain vs. on-chain), along with the core cryptographic building blocks
used to enable privacy. We utilize the main three categories (with respect to the
supported functionality dimension) to facilitate discussion in this section, with
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Fig. 1: Systematization framework diagram. ZKP-based and HE-based refer to
approaches we define in Section 4.3.

subcategories based on other dimensions presented under each of the main cat-
egories.

Private payments. The earliest category came as a response to Bitcoin’s lack of
privacy. It focuses on providing confidentiality and sender/recipient anonymity.
We review three schemes [68,34,59] here.

Private computation. Private payments are inherently restricted in their func-
tionality; they only support transferring currency from one party to another
based on a limited set of conditions encoded in simple system-prescribed scripts.
Addressing these limitations is the motivation for the schemes under this cat-
egory; these schemes mainly took one of two paths to support private compu-
tation. The first is on-chain private computation (via what we call the homo-
morphic encryption-based approach), where users instruct the miners to execute
arbitrary computations over private inputs and produce private outputs. The
second is off-chain via what we call the ZKP-based approach, where the work
is offloaded to the user who implements the computation locally and produces
ZKPs that miners must verify before accepting the output and updating the
blockchain state. Other constructions under the off-chain category do not fol-
low the ZKP-based approach; instead, they rely on alternative techniques (i.e.
trusted hardware/managers) to achieve their goal. The private computation cat-
egory encompasses seven schemes [22,18,71,45,26,48,49].

Function privacy. The final category extends the previous two to support a
more ambitious goal—hiding the computation itself along with hiding input-
s/outputs. This allows for protecting proprietary code or preventing information
leaks that may result from knowing the computation (e.g. inferring the data type
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of inputs/outputs to be medical records or trading information). Function pri-
vacy can also be useful to hide the exchange of user-defined assets since leaking
the function may reveal the token type. To the best of our knowledge, there are
only two schemes that belong to this category [18,48]; both of them follow the
off-chain ZKP-based approach mentioned above.

4.2 Private Payments

As the first successful cryptocurrency, Bitcoin served as the starting point (or
base system) for private payment solutions. All of these solutions center around
hiding the user’s payment activity. This translates to hiding transaction amounts
and issuer/recipient addresses to provide confidentiality, anonymity, and trans-
action unlinkability. We study three schemes in the private payments category:
Zerocash [68], Monero [59], and Quisquis [34]. All of them follow the same generic
paradigm; hide a transaction value inside a commitment, provide ZKPs showing
that the transaction issuer indeed owns the hidden coins she wants to spend and
that she cannot spend more than the input value (besides meeting other system
specific conditions), and, lastly, rely on anonymity sets to disguise the issuer and
recipient’s addresses.

As one may expect, having a fully functional private cryptocurrency is not
straightforward. It requires handling several challenges and devising new tech-
niques to process a ledger with private records instead of only public ones. In
what follows, we examine such issues (e.g. handling double spending, output
range checking, and storage/memory considerations) while showing how they
are handled in these schemes. Please note that most of these issues and tech-
niques are common to the private computation category as well, so we only
discuss them in detail here.

Work model. Zerocash and Monero are based on Bitcoin, thus inheriting its
UTXO-based model. Quisquis combines UTXOs with a notion of accounts, re-
sulting in a hybrid model—that is, each user will have an account but a trans-
action will contain UTXO inputs rather than accounts. This is made possible
thanks to updatable public keys [34], a primitive that allows for having multiple
distinct public keys tied to the same private key. All these keys are derived from
the original public key generated when creating a specific account. Thus, UTXOs
are defined in terms of these updated public keys; a user can spend all UTXOs
that belong to her account using the same private key. Quisquis’ novel approach
makes handling double spending and breaking transaction linkability simpler as
we will see shortly.

Confidentiality. Commitments are used to hide (and bind) private data. Addi-
tive homomorphisms may be required if a scheme needs to perform a computa-
tion over these commitments. For example, Quisquis adopts an account notion
and needs additive homomorphisms to update account balances based on private
currency transfers. Also, transactions in Monero and Quisquis must show that
the sum of the input coins equals the sum of the output coins, so that no one can
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spend more coins than what she owns. This can be done without disclosing any
of the I/O values by operating on the commitments themselves. Zerocash does
not need additive homomorphisms since checking the prior condition is part of
the NP statement of the ZKP system it uses instead (i.e. it is part of the arith-
metic circuit that the proof must satisfy).

Handling double spending. Another challenge is preventing a party from
spending a hidden coin multiple times. In Bitcoin (and other public cryptocurren-
cies), this is trivial since all transactions are logged in the clear on the blockchain.
Thus, anyone can check if some UTXO has already been spent by checking the
ledger. In private cryptocurrencies, additional machinery is required.

The core idea employed by private cryptocurrencies is to tie each unspent coin
with a unique value (or capability) such that, when a coin is spent, this value is
revealed (or this capability is disabled). For example, Zerocash assigns a unique
sequence number to each coin that is published publicly on the blockchain when
the coin is spent. Hence, a new transaction that produces a sequence number(s)
that has already been revealed indicates a double spending attempt and will be
rejected. In Quisquis, the unique value is the public key itself; since a transaction
updates all input public keys, any key will appear only once on the input side of
any transaction. Thus, the reuse of the same input key indicates double spending.
Monero, on the other hand, adopts the unique approach of one time signatures.
The key that appears in a UTXO can be used only once to produce a valid ring
signature to spend that UTXO. This is due to recording an image (salted hash)
of the public key on the blockchain when the UTXO is spent. Therefore, any
transaction with a signature tied to an already published image will be rejected
since it will be recognized as double spending.

Both techniques—whether unique value or capability based—require search-
ing publicly published data on the blockchain to prevent double spending, similar
to how double spending in prevented for public cryptocurrencies.

Output range checking. 5 Operating on hidden (committed) values intro-
duces another challenge; a malicious transaction issuer can mint free coins. She
can create an output to herself with a very small negative value that will be
translated into a very large positive value when applying finite field modular op-
erations. To prevent this attack, a transaction issuer must prove that all currency
values in a transaction’s outputs are positive and within the range allowed in
the system. Range checking can be part of the same NP statement of the ZKP
(as in Zerocash) or proved separately using range proofs (as in Quisquis). In
contrast, Monero uses ring signatures [59] to handle this task, where values are
represented in binary expanded format and a ring signature cannot be produced
if the coefficients are not within the allowed range.

5 Input value checking, i.e., total input value equals total output value (which is not
range checking), was discussed under confidentiality.
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Anonymity and transaction linkability. Anonymity can be achieved via
anonymity sets. Any transaction will be tied to a set of private UTXOs (or coins)
such that a spent coin may be any coin within this set. Hence, a transaction
issuer needs to prove that she owns one (or more) of the hidden coins in the set
without revealing which coin it is. The larger the anonymity set, the better—as
the probability of guessing the actual input coin (and, thus, the owner’s address)
will become smaller.

Zerocash employs this exact approach, with the proof of ownership as part
of the same NP statement of the underlying zk-SNARK proof. Monero instead
uses ring signatures; the anonymity set is a public key matrix that is used in the
ring signature a party generates when signing a newly issued transaction. This
signature proves that the signer is a member of the group (i.e. she knows the
secret key of one of the public keys in the key matrix) without specifying which
member.

Quisquis, on the other hand, combines anonymity sets with updatable keys to
support anonymity. All input public keys (the sender, recipient, and anonymity
set) will be updated; the balances of the anonymity set accounts stay as they are,
while the sender’s balance is decremented and recipient’s balance is incremented
based on the transferred currency amount. Any public key will be used at most
twice in the network—once, when it is generated on the output side and, finally,
when it is spent on the input side of a transaction. Since the updated keys look
like freshly generated ones, Quisquis protects against transaction linkability.

Zerocash provides a higher level of anonymity since its anonymity set in-
cludes all private coins in the system. Newly added private coins automatically
become part of this set (called a shielded pool). Spent coins cannot be removed
since they cannot be identified (otherwise anonymity would be compromised).
When a sender wants to spend her coins, she provides a proof that she owns
coins in the shielded pool without specifying which coins. Hence, this sender
can be any private coin owner in the set. Although Monero and Quisquis can
support a large anonymity set (covering all private coins in the system), it would
greatly impact efficiency since more operations would need to be performed for
each additional member in the set (producing a signed commitment in Monero
and a key update in Quisquis). In contrast, for Zerocash, the cost of the ZKP
does not rely on the size of the anonymity set. Nonetheless, empirical studies
reveal weaknesses in these schemes when it comes to anonymity. The reuse of
public keys in Monero’s ring signatures allow for breaking its anonymity [55].
Additionally, the anonymity set of a deployed version of Zcash (the operational
project built upon Zerocash) can be shrunk considerably using heuristics based
on identifiable usage patterns [46].

Plausible deniability. Plausible deniability allows a party to deny having
participated in a private transaction. Both Monero and Quisquis support this
feature since a transaction issuer can pick any public key in the system to be
part of the anonymity set without the consent of the key owner [34]. Zerocash
does not support this property, since the anonymity set includes all private coins
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in the system. Thus, in Zerocash, a user agrees to be part of the anonymity set
as soon as she owns a private coin.

Space/permanent memory. A distinguishing feature of the schemes discussed
in this section is the size of the UTXO set that miners maintain in the system.
Both Zerocash and Monero have a growing list of UTXOs (since a UTXO is not
identified when it is spent to preserve anonymity), preventing miners from storing
a concise version for the blockchain. Although Zerocash computes a Merkle tree
over this list, which helps to reduce the cost of generating a ZKP, all UTXOs
must still be kept. Quisquis’s use of updatable keys solves this problem. Any
updated public key with a zero balance will have a proof indicating such, so that
other parties will remove it from the UTXO pool in the system; this advantage
is one of the main motivations behind developing Quisquis.

Discussion. The updatable key primitive allows for the hybrid UTXO-account
model of Quisquis which offers additional advantages. One advantage is simplify-
ing how to handle double spending and private key bookkeeping for lightweight
clients (since any account is managed using a single secret key). Moreover, since
transactions are still in terms of UTXOs (so all ZKPs are with respects to these
UTXOs), account operation concurrency is not an issue. By this, we mean that
updating account states does not impact validity of pending transactions’ ZKPs.
However, in contrast to a pure account model, a client’s wallet must track all
UTXOs tied to an account (including all their updated public keys) rather than
the account state only.

Another point to highlight is the ZKP NP statement a scheme relies on to
ensure validity of private transactions. Zerocash packs all conditions into a sin-
gle NP statement (one representative arithmetic circuit). Quisquis and Monero
use separate techniques to ensure that the conditions are satisfied. The lat-
ter approach may allow for more performance optimizations, especially when
lightweight customized techniques are used. For example, the use of additively
homomorphic commitments allows for checking that currency is preserved be-
tween inputs and outputs in a much cheaper way than using a ZKP. At the
same time, having a single constant-sized ZKP with short verification time may
compensate for the performance gains that customized approaches may offer.

4.3 Private Computation

Building on ideas from private currency transfer, private computation schemes
sought to provide I/O privacy for arbitrary computations on blockchain. Ex-
ample applications of where I/O privacy is valuable include auctions, voting,
user-defined assets, and decentralized exchanges.

Depending on where the private computation is performed, existing schemes
can be grouped into two major categories: on-chain in which the miners operate
over users’ private data or off-chain in which the users themselves (or trusted
third parties) compute over their inputs locally. We classify each category further
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based on the approach used to enable the private computation. The on-chain
category relies on one approach that we term the homomorphic encryption (HE)-
based approach. It extends ideas from Quisquis and Monero to support more
complex private computations using homomorphic operations performed by the
miners on-chain.6 The off-chain category relies on two different approaches; the
first, which we call ZKP-based approach, builds on ideas from Zerocash by asking
the user to produce a ZKP to prove she performed the off-line computation
correctly—without the need for homomorphic operations. The second makes use
of trusted managers/hardware to facilitate the off-chain computation (without
any ZKPs). Both approaches can be used regardless of the system model (i.e.
account vs. UTXO). However, the model chosen to support private computation
has important security implications we go on to consider.

In what follows, we discuss each of these categories (marked by C1 for on-
chain and C2 for off-chain) along with design issues common for the on-chain
HE-based approach and off-chain ZKP-based approach. At the end, we discuss
the off-chain non-ZKP based schemes.

(C1) On-chain: HE-based approach. The goal of this category is to support
arbitrary computation with I/O privacy on-chain. All of the schemes (that we
are aware of) under this category employ the HE-based approach in the account-
based model.

At a high level, the HE-based paradigm works as follows. The user pro-
vides encrypted inputs for the desired computation, along with a ZKP proving
that necessary (application-specific) conditions have been satisfied on her in-
puts. These encrypted inputs and the ZKP are posted on-chain. Miners verify
the ZKP and then perform the requested computation directly on the encrypted
inputs. The types of computation supported over ciphertexts are determined by
the homomorphic properties of the chosen encryption scheme. If an additively
homomorphic encryption scheme is used, then private computation is restricted
to addition only (i.e. users can only request additive computations). To sup-
port I/O privacy for arbitrary computation, an encryption scheme that is both
additively and multiplicatively homomorphic (i.e. FHE) is required.

Zether [22] was the first construction to employ the HE-based approach,
encrypting a user’s account balance and updating it via homomorphic addi-
tion. While the primary goal of Zether is to support confidential payments atop
Ethereum via a new token, Zether can also support a restricted class of private
smart contracts. As ElGamal encryption is used, Zether can only support I/O
privacy for additive computations. Nevertheless, addition suffices for the few ap-
plications Zether considers—hiding a bid on a fixed number of items (sealed-bid
auctions) or hiding a vote (confidential voting by stake size).

smartFHE [70] takes this further and uses an FHE scheme to enable build-
ing private smart contracts with arbitrary computations on users’ encrypted

6 ZKPs are still used here to prove well-formedness of encrypted inputs, but not to
attest for the computation result as in the off-chain category.
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inputs. In particular, it employs the BGV scheme [20], in conjunction with Bul-
letproofs [23] and a proof system suitable for proving lattice-based relations
[65]. Building on ideas from Ethereum and Zether, smartFHE permits arbitrary
public and private smart contracts.7

(C2.1) Off-chain: ZKP-based approach. This paradigm asks the user to
perform the computation offline on her plaintext inputs to get plaintext out-
puts. The user then encrypts both the inputs and outputs and produces a ZKP
proving that this offline computation, the ledger state update (if any), were
done correctly. The encrypted inputs, encrypted outputs, and ZKP are posted
on chain. The miners’ role here is to simply check the ZKP and then update the
blockchain state accordingly. The schemes under this category include Zexe [18],
Zkay [71], and Kachina [48].

Seeking to extend the limited scripting capability of Zerocash, Zexe adopts
the ZKP-based approach to allow for flexible conditional payments in the UTXO
model. Zexe generalizes the idea of coins as records with some data payload
(similar to coins with scripts attached to them). Each record has a birth and
death predicate to control spending. To spend a coin, a user must show (via
a ZKP) that the old death predicate and the new birth predicate have been
simultaneously satisfied. In other words, the ZKP attests to the validity of the
conditional computation performed off-chain and allows for spending the private
coins. Unfortunately, it is unclear how to support loops based on private control
conditions using their system.

Zkay takes the ZKP-based approach further by applying it in the context of
smart contracts (i.e. account model). They observe that writing private smart
contracts is an error prone process that can be difficult for developers. For this
reason, they propose a language to enable developers to indicate which data is
private and to which account it belongs. They also build a compiler to transform
contracts written in this language into ones that can be deployed atop Ethereum
(while incorporating ZKPs as appropriate for computations over private data).
The compiler enforces several conditions needed to make compilation feasible,
such as operating on private inputs belonging to only a single user, preventing
loops with private control conditions, or requiring certain inputs to be public to
allow building the underlying ZKP circuit.

Unfortunately, the ZKP-based approach can also be very computationally
intensive for the user. Producing the needed ZKP can easily take the user over
a minute, even on a powerful machine [18,71,49]. One potential solution to this
problem is to delegate proof generation to some semi-trusted third party. Hawk
adopts this modified ZKP-based approach. Rather than asking the data owner
(i.e. the user) to perform the computation and produce the appropriate ZKP
himself, Hawk instead delegates this work to a semi-trusted manager. The man-
ager is trusted with maintaining the privacy of the users’ inputs, but not trusted

7 We do not consider this work further since it is not peer-reviewed as of this time.
However, it represents an interesting example of the evolution of private computation
on blockchain.
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for correct execution of the computation. By delegating proof generation to a
semi-trusted manager, the user loses some privacy by sharing her data with
some third party. Lastly, it should be noted that Hawk focuses on extending the
Zerocash protocol and thus uses the UTXO model.

Kachina [48] lays down a theoretical foundation for privacy preserving smart
contracts by presenting an ideal functionality-based definition. They realize this
functionality using the ZKP-based approach. In particular, a contract creator
will divide the contract state into two parts: a public on-chain state and a (local)
private off-chain state maintained by the user. Kachina introduces the concept
of state oracles (i.e., a way to query the ledger for particular state information)
to reduce proof generation costs by permitting users to involve only the relevant
parts of the public ledger state when generating the necessary ZKP proofs for
off-chain computations.

Concurrency. While the account model may seem like the most natural way
to support private smart contracts, it poses a unique concurrency challenge that
the UTXO-model does not suffer from. Each user maintains an account with
an associated private (encrypted) balance. As part of a confidential transaction,
the sender (Alice) will need to produce a ZKP with regards to her current state,
which includes her private balance. If Bob sends Alice currency after her trans-
action has been submitted but before being confirmed, her transaction will end
up being rejected as the ZKP is no longer valid (since the state has changed).
This is particularly problematic when there are fees associated with transactions,
as in Ethereum.

To solve this problem, Zether proposes the use of epochs which consist of
some fixed number of blocks. Transactions are processed in epochs, with funds
rolled over at the end of an epoch to prevent transactions from being rejected
due to state changes. Users must submit confidential transactions at the start of
an epoch to ensure they are processed in the same epoch. While this approach
suffices for handling confidential transactions, it’s unclear how (or if) this rollover
process could handle concurrency conflicts for private smart contracts spanning
multiple epochs.

Handling concurrency in Kachina is more complicated; it encompasses more
than account balances since their scheme involves computations that may change
the ledger state of a smart contract. They introduce a function to specify depen-
dencies between transactions. Dependencies could be an application-dependent;
hence, each contract will define its own function (as part of its public state).
It is the user’s responsibility to produce a sequence of transactions that do not
conflict.

Unfortunately, Zkay does not discuss how to resolve concurrency conflicts.
This is likely due to the fact that they are focused on automating the ZKP-based
approach for smart contracts by providing a language and a compiler.

Anonymity and techniques. Private computation schemes employ two tech-
niques to support anonymity—ring signatures and private anonymous channels.
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We briefly look at how Zether and Zexe support anonymity in their works.
Zether follows a similar approach to Monero, combining ring signatures with
range proofs to hide the sender’s account address. Unfortunately, users can only
initiate one anonymous transaction per epoch to prevent double-spending at-
tacks. Zexe, on the other hand, assumes a model in which each user has a pri-
vate anonymous channel [44] to every other user. However, no discussion around
implementing these channels is provided to assess feasibility.

The cost of privacy on Ethereum. Both Zether and Zkay seek to support
privacy on Ethereum. Regardless of the approach taken, working on Ethereum
presents its own unique set of challenges. Certain operations in Ethereum are
offered at a reduced cost via precompiles. As privacy solutions are heavy on
cryptographic operations, many of these operations should ideally be supported
as precompiles to reduce the overall cost. Nonetheless, introducing new precom-
piles requires the community consent as these are considered core changes to the
Ethereum network protocol. Unfortunately, many of the necessary cryptographic
operations used by Zether are not currently offered as precompiles; performing
a confidential transaction on Ethereum using Zether costs over 7.1 million gas,
with the majority of the cost coming from elliptic curve operations. At the
time of Zether’s proposal, a confidential transaction cost the sender around $1.5
USD [22]. With more recent gas prices,8 the same transaction now costs over
$1000 USD. Zkay fairs a bit better; they push computation offline and are poised
to take better advantage of precompiles with their pairing-based zk-SNARKs.
Their quoted cost depends on the particular contract being implemented (e.g.
medical statistics, reviews) along with the proposed transformation. This makes
it hard to directly compare with Zether’s confidential transaction cost. However,
the cost tends to range around 106 gas to obtain a transformed private contract,
with verification costing roughly the same amount [71]. At the time of Zkay’s
proposal, this worked out to around $0.50 USD [71]; this same transaction now
costs over $165 USD.

Given the high gas costs and the rapidly fluctuating cost of ETH, supporting
privacy on Ethereum may not make financial sense until cryptographic opera-
tions can be provided at a significantly reduced cost.

Discussion. Advantages depend on the role played in the system (user vs.
miner). For users, the HE-based approach reduces their overall computational
burden by pushing execution of the private computation to the miners. Con-
sequently, this approach can be expensive for the miners as it requires them
to perform the computation (in addition to checking the ZKP). Thus, the HE
scheme must be chosen carefully with performance in mind so as to reduce the
miners’ time spent executing the homomorphic computation.

Extending the HE-based approach to support FHE presents additional effi-
ciency challenges. Recent open-source libraries (such as Microsoft’s SEAL sup-

8 68 gwei/gas, 1 ETH = $2445 USD
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porting the BFV scheme) boast of fast execution time for homomorphic opera-
tions, with homomorphic multiplication and refreshing taking less than 1 second
on a modest machine [56]. Such results appear promising as they keep the miner’s
execution time down. However, ciphertext size poses a problem for FHE, partic-
ularly when working in the blockchain setting where on-chain information must
be minimized. The resulting ciphertext of a single homomorphic multiplication
operation surpasses over 100 kilobytes in size [69]. For reference, confidential
transactions tend to range in size from hundreds of bytes (for Zerocash with
highly efficient zk-SNARKs) to a single digit kilobyte (when less efficient Bullet-
proofs are used) [68,34,22]. Thus, it’s unclear how feasible it would be to store
FHE ciphertexts on chain.

For miners, the ZKP-based approach can reduce their overall computational
burden by pushing a majority of the work client-side and offline. Consequently,
this approach prioritizes blockchain throughput. Highly succinct ZKP systems
(such as those with constant proof size) can also be used to manage ledger growth
but at the cost of expensive proof generation for the user. Generating the ZKP
for even a simple computation can easily take over a minute for the user on a
powerful machine [18,71,49]. In Zexe, Zkay, and Hawk, proof setup would need
to be repeated for new applications as they use proof systems with non-universal
reference strings and trusted setups. Ideally, a universal proof system should be
chosen here to prevent the need for repeating a costly proof setup process (with
an MPC ceremony) for new applications.

(C2.2) Off-chain: Solutions without ZKPs. The two remaining privacy-
preserving solutions (Arbitrum [45] and Ekiden [26]) fall under the off-chain
category. However, instead of asking the user to perform the private computation
off-chain, they rely on trusted managers or trusted hardware to do so instead
(thus eliminating the need for a ZKP).

We view users as the data owners who want to run a private computation on
their inputs. In Ekiden, users delegate this computation to a third party with a
trusted execution environment (TEE). Ekiden refers to this party as “compute
nodes” as they are required to perform the computation and attest to the cor-
rectness of the update using digital signatures; the secret key used to produce
the signature is only known to the trusted hardware. Thus, miners only need to
verify the resulting signatures to ensure that the trusted hardware produced the
ledger state changes. Ekiden’s approach has the advantage of reducing both the
user’s and the miner’s computational burden by outsourcing the private com-
putation to TEEs. However, their approach requires putting trust in hardware
(Intel SGX, for example) which has suffered from various security attacks over
the years [40,72].

In Arbitrum, smart contracts are implemented as standalone virtual machines
(VMs) which are managed by some pre-determined set of managers. These man-
agers are tasked with ensuring that state changes from the VM are performed
correctly and provide a role separate from that of the blockchain miners. Man-
agers behave optimistically; they accept state changes without repeating the
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computation on-chain unless there is dispute among themselves. In the case of a
dispute, a bisection protocol occurs with a security deposit. Thus, correctness is
guaranteed so long as at least one manager is honest. Unfortunately, these man-
agers are trusted to maintain the privacy of users’ inputs and not reveal them to
others. Like Ekiden, Arbitrum has the advantage of minimizing miners’ work by
only requiring them to check managers’ signatures when receiving ledger state
updates (assuming no disagreement between managers has occurred). However,
it may be non-trivial to implement all smart contracts as VMs. It is also unclear
how managers would be chosen for each VM and how many would be needed to
guarantee that at least one manager is honest.

4.4 Function Privacy

Zexe [18] is the only concrete scheme providing function privacy.9 Coins in Zexe
have birth and death predicates associated with them (essentially scripts) that
control how and when coins are consumed so function privacy translates to
hiding the scripts associated with these coins. Users will need to prove in zero-
knowledge that both the previous coins’ death predicates and the new coin’s
birth predicates have been satisfied.

While this framework allows a user to hide how her coins were or can be
used, it is unclear how to support interoperation between coins belonging to
different users if the scripts associated with them are hidden. Users must know
what conditions need to be satisfied to be able to consume a coin. Presumably,
parties would coordinate and share such information offline with one another.
This issue isn’t unique to Zexe but exists for providing function privacy more
generally. In an account-based model, function privacy may translate to hiding
the smart contract’s code. Rational users are unlikely to participate in a smart
contract when they do not even know what operation is being performed on
their data; hence, function privacy makes sense only when the smart contract
author is the sole user of the contract (i.e. the only user providing its inputs) or
if some mutually trusted parties determined the computation and inputs to be
provided offline.

5 Discussion and the Road Ahead

Privacy-preserving solutions encounter several challenges; these include not only
technical aspects, but also non-technical ones such as regulatory compliance,
usability, and other societal impacts. Nevertheless, in this section, we highlight
potential directions for future technical work such as handling multi-user inputs,
improving efficiency, and eliminating trusted setups.

9 Kachina mentions that their private smart contract protocol can realize the function-
ality of Zexe, and hence, support function privacy. For this reason, we only discuss
Zexe in this section.
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5.1 Privacy for Multi-user Inputs

Neither the HE-based approach nor the ZKP-based approach discussed in Sec-
tion 4 support arbitrary computation on encrypted inputs belonging to different
users out of the box. In cryptography, there are two main primitives that can be
used to support computation with multi-user input privacy—multiparty compu-
tation and multi-key FHE. We consider how the HE-based approach could be
extended to support multi-user input privacy using multi-key FHE. Similarly,
we also look at how the ZKP-based approach could be extended to support this
capability via MPC.

Extending the HE-based approach via multi-key FHE. Multi-key FHE
supports homomorphic computation over encrypted inputs belonging to different
users (hence encrypted with respect to different keys) [57]. Any party can perform
this homomorphic computation but, to ensure semantic security, the output must
be jointly decrypted using all the corresponding secret keys.

In extending the HE-based approach, we could instead request that the
encryption scheme used to support private computation be a multi-key FHE
scheme.10 A user could still perform computations on her own inputs as she
would if using single-key FHE. However, now, she could also request computa-
tions on various combinations of her and others’ encrypted inputs. Each user will
still need to prove that some conditions on her own inputs hold via a ZKP. Min-
ers will check these ZKPs and then perform the requested computation directly
on the encrypted inputs.

Advantages to such an approach include that no coordination is needed for
the homomorphic computation since anyone can perform it. Additionally, recent
schemes [57] provide a one-round decryption process. However, to decrypt, each
participating party needs to broadcast her share (a partial decryption of the
computation output) to the others. This opens up a fairness issue; what if one
party observes all the partial decryptions (so that she can decrypt the result)
but refuses to share her own partial decryption with the others? This require
deploying additional techniques to address fairness. Also, as decryption would
likely take place off-chain, to preserve privacy of the output, coordinating this
process may be non-trivial. Moreover, multi-key FHE schemes with one round
decryption rely on either trusted setup [57] or garbled circuits [10]. Finally,
multi-key FHE is still fairly inefficient and, thus, currently impractical for the
blockchain setting.

Extending the ZKP-based approach via MPC. In a similar vein, MPC
can be used to extend the ZKP-based approach to allow for operating on private
inputs coming from several users. These users can perform any MPC protocol
offline such that this protocol will not only produce the output (which can be
private or public), but also a ZKP attesting to the correctness of this output.

10 This idea is proposed in smartFHE [70].
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MPC literature offers a variety of protocols with different trade-offs in terms of
communication complexity, interactivity, and security guarantees.

Nonetheless, this approach increases the load on end users who need to co-
ordinate the computation and stay online during execution. It also inherits any
limitations coming from the underlying MPC protocol such as the need for addi-
tional machinery to address lack of fairness [27] or the honest majority constraint
to preserve security [9,52]. On the positive side, MPC continues to witness huge
interest and advances, leading to the development of more efficient protocols for
various settings [47,30].

5.2 Customized Privacy-Preserving Solutions

There is always an ambition to provide general purpose solutions that can fit any
application (one size fits all, so to speak). This is usually viewed as an advan-
tage. However, given the performance constraints of the advanced cryptographic
primitives needed to preserve privacy, one might ask: can we develop use case-
specific cryptographic solutions that would be significantly more efficient than
general purpose ones?

Reflecting on other well-developed privacy-preserving fields, we consider MPC.
Many general purpose solutions exist; these can perform arbitrary computation
over private inputs such as in garbled circuits or secret sharing-based approaches.
However, a large body of works has also developed to handle specific popular
functions such as private set intersection, e.g. [63,28,64], optimizing for efficiency.

As another example, we look at FHE. All known FHE schemes are lattice-
based. Thus, when using the HE-based approach with an FHE scheme the first
thought that comes to mind is to use a lattice-based ZKP to prove relations
of FHE ciphertexts. Unfortunately, state-of-the-art lattice-based proofs [17,16]
tend to be 3 orders of magnitude bigger in size the those based on elliptic curve
cryptography. This problem has motivated efforts to investigate the possibility of
using elliptic curve-based ZKPs to prove certain lattice-based relations. One such
effort includes short discrete log proofs [65] which achieves significantly shorter
proof sizes than lattice-based ZKPs. We anticipate further work on customised
cryptographic solutions with respect to privacy-preserving computation.

5.3 The Future of ZKPs

Despite huge gains over the last decade, efficiency continues to be top of mind for
ZKP researchers. In exchange for small proof sizes and fast verification, proof
generation is often expensive for the user. One solution is to outsource this
expensive task to some worker or manager when building a private computation
scheme in the blockchain model. As we have briefly mentioned this in Section
4.3 for Hawk, we do not discuss this in further detail here. However, we note
that this idea has continued to persist in recent constructions [18] and will likely
continue to do so unless proof generation can be made significantly cheaper for
private computation schemes (taking the ZKP-based approach).
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A additional weakness in early cryptocurrency and blockchain projects was
the use of ZKPs with trusted setups. Accordingly, the field has rapidly evolved to
address such concerns by introducing new notions of trust. Trust has long been
treated as a black and white issue in the ZKP literature—either a ZKP is trans-
parent or it has an initial trusted setup process to generate common parameters.
Researchers are often forced to use proofs with trusted setups in their systems for
optimal efficiency (e.g. constant proof sizes). However, new notions of trust have
been proposed, revealing that trust may be viewed on a spectrum. One such
notion can be thought of as updateable trust, a hybrid approach achieved via
an updateable reference string [42,53,35]. With an updateable reference string
the setup process can continue indefinitely, allowing anyone to contribute if she
does not trust that the previous parties who generated the parameters were hon-
est. Unlike transparent ZKPs, state-of-the-art ZKPs with updateable reference
strings [53] can achieve constant sized proofs. A number of operational projects
(e.g., Zcash [5], Mina [3], Aztec [2]) are interested in using or upgrading to
ZKPs with updateable reference strings. Such advancements will contribute in
changing the landscape to reach a better trade-off between trust and efficiency.

6 Conclusion

Having existed for well over a decade, blockchain proves to have a technologically
revolutionary role beyond just currency transfer. However, privacy is a huge
concern, especially for applications dealing with sensitive data. We present the
first systematization of knowledge of privacy-preserving solutions developed thus
far for blockchain. Our work provides a critical study of the design paradigms
and approaches these solutions followed. It also highlights challenges related
to efficiency, usability, and technical avenues to advance the state-of-the-art. We
believe that the knowledge, insights, and perspective provided by this work make
for a timely contribution given the increasing interest in addressing privacy for
blockchains.
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