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Abstract

Consider a server with a large set S of strings {x1, x2 . . . , xN} that would like to publish a small hash
h of its set S such that any client with a string y can send the server a short message allowing it to
learn y if y ∈ S and nothing otherwise. In this work, we study this problem of two-round private set
intersection (PSI) with low (asymptotically optimal) communication cost, or what we call laconic private
set intersection (`PSI) and its extensions. This problem is inspired by the recent general frameworks for
laconic cryptography [Cho et al. CRYPTO 2017, Quach et al. FOCS’18].

We start by showing the first feasibility result for realizing `PSI based on the CDH assumption, or
LWE with polynomial noise-to-modulus ratio. However, these feasibility results use expensive non-black-
box cryptographic techniques leading to significant inefficiency. Next, with the goal of avoiding these
inefficient techniques, we give a construction of `PSI schemes making only black-box use of cryptographic
functions. Our construction is secure against semi-honest receivers, malicious senders and reusable in
the sense that the receiver’s message can be reused across any number of executions of the protocol. The
scheme is secure under the φ-hiding, decisional composite residuosity and subgroup decision assumptions.

Finally, we show natural applications of `PSI to realizing a semantically-secure encryption scheme that
supports detection of encrypted messages belonging to a set of “illegal” messages (e.g., an illegal video)
circulating online. Over the past few years, significant effort has gone into realizing laconic cryptographic
protocols. Nonetheless, our work provides the first black-box constructions of such protocols for a natural
application setting.

1 Introduction

Laconic cryptography [CDG+17, QWW18, DGI+19, DGGM19] is an emerging paradigm which enables
realizing cryptographic tasks with asymptotically-optimal communication in just two messages. In this
setting, the receiver has a potentially large input, and the size of her protocol message only depends on the
security parameter, and not her input size. The second message, sent by the sender, may grow with the size
of the sender’s input, but should be independent of the receiver’s input size.

The pioneering work of [CDG+17] introduced the notion of laconic oblivious transfer (laconic OT), which
allows a receiver with a large input D ∈ {0, 1}n to send a short hash digest h of her input D. Next, a sender
with an input (i ∈ [n],m0,m1), sends a short message ots to the receiver, enabling the receiver to learn mD[i],
and nothing more. We require (a) the sizes of h and ots be poly(log(n), λ), where λ is the security parameter;
(b) the sender’s computation time be poly(log(n), λ) and (c) and receiver’s second-phase computation time
be poly(log(n), λ).
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The notion of laconic OT, and the techniques built around it, have led to breakthrough results in the last
few years, which, among others, include the first construction of identity-based encryption from CDH [DG17b,
DG17a, BLSV18, DGHM18], and two-round MPC protocols from minimal assumptions [GS17, GS18, BL18].

Laconism beyond OT? Motivated by the developments enabled by laconic OT, it is natural to ask
whether we can push the boundary further, realizing laconism for richer functionalities. Laconic OT by itself
does not seem to be sufficient for this task (at least generically). Specifically, the general laconic OT+garbled
circuit based approach for a function f(·, ·) results in protocols in which the size of the sender’s protocol
message grows with the receiver’s input size.

The work of Quach, Wee and Wichs [QWW18] shows how to realize laconic cryptography for general
functionalities using LWE. However, two significant issues remain. Firstly, it is not clear whether we can
achieve laconism from other assumptions, for functionalities beyond OT. As mentioned above, research in
laconic OT has led to several breakthrough feasibility results, motivating the need for developing techniques
that can be realized using wider assumptions and for richer functionalities. Secondly, existing constructions of
laconic primitives are non-black-box, leading to inefficient constructions. Addressing the above shortcomings,
our goals are twofold: (1) Feasibility: Can we realize laconic primitives beyond OT from assumptions other
than LWE? and (2) Black-boxness: Can we make the constructions black-box?

Black-box techniques. We use the notion “black-box” techniques in the sense that the construction
should not use an explicit circuit-level description of cryptographic primitives. In this sense, we think of
constructions which e.g., compute cryptographic primitives inside garbled circuits (as previous laconic OT
constructions) or use general purpose NIZK proofs (which express statements in terms of NP-complete
languages) as “non-black-box” techniques.

Laconic PSI. We make the first progress toward the above two goals with respect to a non-trivial function-
ality: Laconic Private Set Intersection (`PSI) and its family. Private set intersection (PSI) is a cryptographic
primitive that allows two parties to learn the intersection of their input sets and nothing else. Because of
its usefulness and versatility, this cryptographic primitive has been extensively studied in numerous settings
throughout the years (see e.g., [KS05, PSZ14, HV17, RR17, KMP+17, PSWW18] and references therein).

Laconic PSI allows a receiver to send a short digest of its large data set, which in turn can be used by
a sender to compute a PSI second round message. We require that the total communication complexity as
well as the sender’s running time to be independent of the receiver’s input size.

1.1 Our Results

As our first result, we give a generic construction of laconic PSI from a primitive called anonymous hash
encryption, which in turn can be realized from CDH/LWE [DG17b, DG17a, BLSV18]. Our construction
builds on the Merkle-tree garbled circuit based approach of [DG17b, DG17a, BLSV18, GHMR18, GHM+19,
GV20], showing how to use garbled circuits to perform binary search on a set of sorted values. Prior
to our work there did not exist any construction of a laconic primitive from CDH beyond OT. We also
obtain an LWE instantiation with polynomial modulus to noise ration, improving the subexponential ratio
of [QWW18].

The above construction is non-black-box caused by the use of garbled circuits. As our second contribution,
we achieve a black-box construction of laconic PSI from the φ-hiding assumption.

Both constructions above are only semi-honest secure, and can be made malicious (UC) secure by using
Non-Interactive Zero Knowledge (NIZK).1 However, the eventual protocol will be non-black-box. To enhance
applicability, we show how to make our second construction secure against malicious senders, and semi-honest
receivers in the CRS model, by additionally assuming decisional composite residuosity (DCR) and subgroup

1Note that in the laconic setting we cannot prove malicious security against a receiver since it is information-theoretically
impossible to extract its input. Thus, since the NIZK will only be computed by the sender, the protocol will remain laconic.
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decision assumptions. We term this notion reusable malicious laconic PSI, meaning the receiver’s message
may be re-used.2

Applications. We show an application of laconic PSI in realizing a primitive that we dub self-detecting
encryption. A self-detecting encryption acts like a normal public-key encryption with a key difference that
it is possible to detect whether the underlying message of a given ciphertext belongs to a database of special
(e.g., “illegal”) messages. This can be determined just by knowing the database values, as opposed to the
system’s secret key. Such encryption systems provide a feature for detecting the presence of illegal contents,
without compromising the privacy of legal messages. There has only been a limited number of proposals for
this task so far, and all of them use heavy tools (e.g., FHE) for this purpose (see [Gre19] for more details).
We formally define this notion, and show how to realize it using laconic PSI.

In a self-detecting encryption, an authority (e.g., a government entity or a delegated NGO) publishes a
small hash value of a (possibly large) database of special messages such that a user can encrypt a message
using the system’s public key and the hash value. If the message belongs to the database, then the authority
can detect it; else, the message remains hidden to the authority. We require that the size of the hash and
the encryption running time to be independent of the database size.

We note that attribute-based encryption does not provide a solution to the above problem, because either
the authority should reveal its database to a master-key generator, or it should be the master-key generator
itself – both of which defeat our security purposes.

Additional new results: Labeled laconic PSI and malicious laconic OT (LOT). We extend our
laconic PSI techniques to build a reusable labeled laconic PSI. Labeled PSI [JL10, CHLR18] is a flavor of PSI,
where the sender holds a label `i associated with each set element xi, and the receiver will learn the labels
corresponding to the intersection elements. Labeled PSI has several practical applications (e.g., private web
service queries [CHLR18]).

Moreover, we show how to use our techniques to realize the first construction of a reusable LOT secure
against malicious senders and semi-honest receivers.

DV-NIZK range proofs for DJ ciphertexts. As a building block for our laconic PSI protocol, we
propose a DV-NIZK range proof scheme for Damg̊ard Jurik (DJ) ciphertexts, which may be of independent
interest. Our DV-NIZK has statistical simulation soundness and computational zero-knowledge given that
the subgroup decision (SD) assumption holds [BGN05, GOS06].

Such range proofs can also be constructed in the random oracle model (ROM) via the Fiat-Shamir
transform (e.g., [DJ01, BBC+18, BBB+18, TBM+20]), which might yield the best efficiency. As our LPSI
construction is modular, this can be done independently of the remaining results in the paper. The goal of
our DV-NIZK is to provide an efficient standard model construction which we see as a reasonable middle
ground between feasibility from the weakest assumption (at the cost of unrealistic efficiency) and practical
efficiency (at the cost of relying on strong heuristic assumptions such as the ROM).

1.2 Previous Work

Laconic PSI can be seen as a particular case of unbalanced PSI. Protocols for unbalanced PSI were presented
in [ADT11, RA18, CLR17, CHLR18]. The protocol of [RA18] achieves linear communication complexity on
the receiver’s set size in the pre-processing model. The protocols of [CLR17, CHLR18] rely on somewhat
homomorphic encryption (SWHE) and proceed in two rounds. However, the communication complexity
scales with the size of the receiver’s set (and logarithmic with the size of the sender’s set), in contrast with
our protocol whose communication complexity scales with the sender’s set size.

2We use the word reusability only in conjunction with malicious security, since in the semi-honest setting, reusability is
satisfied by default.
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Comparison with [ADT11]. Ateniese et al. in [ADT11] proposed a semi-honest size-hiding PSI protocol3

inspired by RSA accumulators that achieves communication complexity independent of the receiver’s set
size. However, we emphasize that their scheme does not fit the framework of laconic cryptography since it
requires the sender to know the factorization of a CRS modulus N. Thus, either it requires pre-processing
(giving a designated secret key to the sender), or it requires three rounds in the CRS model. In contrast,
laconic cryptography requires (a) two rounds and (b) no pre-processing (i.e., neither party receives a secret
key correlated with the CRS). Both (a) and (b) are crucially used in applications of laconic cryptography.
Specifically, these restrictions prevent use of [ADT11] in settings with multiple senders, an aspect that has
been critical for laconic cryptography applications. Finally, we remark that the security of [ADT11] relies
on random oracles, whereas we prove security in the standard model and achieve a substantially stronger
security notion without resorting to heavy generic tools.

All of above constructions are just secure against semi-honest adversaries, except for [CHLR18] which
achieves security against a malicious receiver.

1.3 Open Problems

The main open question is to realize laconic cryptography for functionalities richer than PSI. A second
question is to build laconic PSI in a black-box way from assumptions not involving φ-hiding (e.g., pairings
alone).

In this work, we build DV-NIZK for proving equality of plaintexts across different encryption schemes,
namely between the DJ [DJ01] and the BGN [BGN05, GOS06] encryption schemes. This scheme opens the
door to new applications since it allows us to extend the capabilities of GS/GOS proof systems [GOS06, GS08]
to non-pairing-based primitives with additional properties (in our case to the DJ cryptosystem). We believe
that these ideas will have applications beyond range proofs, e.g., one can think of further uses of structure
preserving cryptography, so we leave this as an open problem for future works.

2 Technical Overview

2.1 Semi-Honest PSI from CDH/LWE

Our protocol uses hash encryption and garbled circuits, building on [DG17b, BLSV18, GHMR18], while
introducing new techniques. A hash-encryption scheme allows one to encrypt a message m to the output
h of a hash function by specifying an index/bit (i, b) (denoted HEnc(h, (i, b),m)), so that knowledge of a
consistent pre-image value z allows for decryption (Hash(z) = h and zi = b) while having semantic security
against inconsistent pre-image values (i.e., against z where Hash(z) = h but zi = b̄).4

In all discussion below we assume the sender’s and receiver’s elements are in {0, 1}λ and that the output
of Hash also has λ bits.

Receiver’s set size is 2. We first assume the receiver has only two elements SR = {id1, id2} and the
sender has a single element id. The receiver sends hrroot := Hash(id1, id2). Consider a circuit F[id], with
id hardwired, which on input (id′, id′′) outputs id if id ∈ {id′, id′′}; else, ⊥. The sender garbles F[id] to get

(C̃0, {lbi,b}) and sends psi2 := (C̃0, {cti,b}), where cti,b := HEnc(hrroot, lbi,b, (i, b))). The receiver who has the
pre-image z := (id1, id2) can retrieve only the labels lbi,zi , and the rest will be hidden. Thus, by garbled
circuit security the receiver will only learn the output of F[id](id1, id2), as desired.

Moving beyond |SR| = 2. Suppose the receiver has four elements SR = {id1, id2, id3, id4} in ascending
order. The receiver Merkle-hashes all these values and sends hrroot, the root hash. Let h1 and h2 be the two
hash values at level one (i.e., h1 = Hash(id1, id2)). If the sender knows the value of, say, h1, he may hash-
encrypt {lbi,b} (defined in the previous paragraph) under h1, so that the receiver can only open the labels

3Such schemes were also studied in [IP07, LNO13, HW15].
4Enc also takes as input a public parameter pp, which we ignore here.
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that correspond to the bits of z = (id1, id2), revealing the value of F[id](id1, id2). However, h1 is statistically
hidden given hrroot. Thus, we use the idea of deferred evaluation [DG17b, CDG+17, DG17a, BLSV18],
delegating the task of hash-encrypting {lbi,b} to the receiver herself, via garbled circuits.

In essence, we want the receiver to be able to compute the hash encryption of {lbi,b} wrt either h1 or h2

(depending on whether id ≤ id2 or not), but not both; because obtaining both hash encryptions will allow
the receiver to open both labels lbi,0 and lbi,1 for some indices i (because (id1, id2) 6= (id3, id4)), destroying
garbled circuit security. Thus, the sender has to make sure that the receiver will be able to obtain only either
of the above hash encryptions, the one whose sub-tree sandwiches id. To enable this, we perform binary
search.

Performing binary search. We handle the above difficulty by performing binary search using ideas
developed in the context of registration-based encryption [GHMR18]. The hash of each node is now computed
as the hash of the concatenation of its left child’s hash, right child’s hash, and the largest identity under its
left child. For example, the hash root is hrroot = Hash(h1, h2, id2), where h1 and h2 are the hash values of
the two nodes in the first level, and in turn h1 = Hash(id1, id2, id1). Now let id be the sender’s element, and

change F[id] to be a circuit that on input (id′, id′′, ∗) outputs id if id ∈ {id′, id′′}, else ⊥. Letting (C̃0, {lbi,b})
be the garbling of F[id], consider a circuit G[id, {lbi,b}] which on input (h, h′, id′) outputs a hash-encryption

of lbi,b either under h or under h′, depending on whether id ≤ id′ or id > id′. Let (C̃′, {lb′}i,b) be the

garbling of G[id, {lbi,b}], let {cti,b} be hash encryption of {lb′i,b} wrt hrroot, and return psi2 := (C̃0, C̃′, {cti,b}).
Using the pre-image z := (h1, h2, id2) of hrroot, the receiver can retrieve the labels {lb′i,z[i]}, allowing to
compute G[id, {lbi,b}](h1, h2, id2), which will produce a hash encryption {ct′i,b} of {lbi,b} under either h1 or
h2, depending on whether id ≤ id2, or not. For concreteness, suppose id ≤ id2, meaning that {ct′i,b} are

formed under h1, and so the pre-image z′ = (id1, id2, id1) of h1 will lead to {lbi,z′i}, which along with C̃0 will
reveal the value of F[id](id1, id2, id1). Of course, the receiver in a priori does not know whether {ct′i,b} are
encryptions under h1 or h2, so the receiver should try decrypting wrt both, and see which one succeeds.

Are we done? Unfortunately, when arguing security, a subtle issue emerges. Suppose a hash-encryption
ciphertext reveals its hash value (e.g., the hash is appended to the ciphertext). Then, the ciphertexts {ct′i,b}
will reveal whether they were encrypted under h1 or h2; equivalently, whether id ≤ id2 or id > id2. We cannot
allow this information to be leaked if id /∈ SR. To fix this issue we assume the hash-encryption scheme is
anonymous, meaning that, roughly, a random ciphertext leaks no information about the underlying hash
value. This property was defined in [BLSV18] for achieving anonymous IBE. The use of anonymous hash
encryption does not resolve the issue completely yet. For concreteness, suppose id < id1. This means
that {ct′i,b} is encrypted under h1, and so by decrypting {ct′i,b} using z′ = (id1, id2, id1), the receiver will

obtain meaningful labels, evaluating the garbled circuit C̃0 to ⊥ (rightly so, because id /∈ SR). On the other
hand, if the receiver tries decrypting {ct′i,b} using z′′ = (id3, id4, id3) which is not a pre-image of h1, then

the resulting labels will be meaningless, evaluating C̃0 to junk. This leaks which path is the right binary
search path, giving information about id. To fix this issue, we change the circuit F so that if id /∈ SR, then
decryption along any path will result in a random value. Specifically, sample two random values r and r′,
let F[id, r, r′](id′, id′′, ∗) return r if id /∈ {id′, id′′} and r′ otherwise. We will also include r in the clear in psi2.
Now the receiver can check decryption along which path (if any) yields r; in which case, the receiver can
determine the intersection identity. To argue security, if we use anonymous garbled circuits [BLSV18], then
we can argue if id /∈ SR, then psi2 is pseudorandom to the receiver. Arguing this formally (especially for the
general case) is non-trivial, requiring a delicate formulation of hybrids.

Receiver’s security? The receiver’s hash hrroot is computed deterministically from SR, so it cannot be
secure. But this is easy to fix: On the leaf level we append the identities with random values, and only then
will perform the Merkel hash.
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2.2 Reusable Laconic PSI

We now outline our techniques for obtaining laconic PSI in a black-box way, for both semi-honest and
malicious cases.

A semi-honestly secure protocol Our starting point is a recent construction of a one-way function with
encryption from the φ-hiding assumption due to Goyal, Vusirikala and Waters [GVW20], and we remark that
similar accumulator-style ideas were used before to construct PSI [ADT11]. Since the protocol of [GVW20]
is “almost” a PSI protocol, we will directly describe the underlying semi-honestly secure PSI based. Assume
for a moment that both the receiver’s input SR and the sender’s input SS are subsets of a polynomially-sized
universe U = {1, . . . , `}. We will later remove this size-restriction on U . We have a common reference string
crs which is composed of an RSA modulus N = PQ, a uniformly random generator g ∈ Z∗N and pairwise
distinct primes p1, . . . , p`.

For the sake of simplicity, we will assume in this outline that the sender’s input set SS is a singleton set
{w} ⊆ U . The actual protocol will be obtained by running the protocol we will now sketch for every element
in the sender’s input set. The protocol commences as follows: The receiver first hashes its input set into

h = g
r
∏
i∈SR

pi ,

where r is chosen a uniformly chosen random from [N ] (and thus rmod φ(N) is statistically close to uniform).
The receiver then sends h to the sender.

The sender, whose input is SS = {w}, chooses a uniformly random value ρ←$ [N ] and a uniformly random
seed s for a suitable randomness extractor Ext, and computes the values f ← gρpw and R ← Ext(s, hρ). It
sends s, f and R to the receiver.

The receiver, upon receiving f and R, will check for all elements i ∈ SR whether it holds that Ri
?
= R, for

Ri ← Ext(s, f
r·
∏
j∈SR\{i}

pj ). If it finds such an i, it outputs {i} as the intersection of SR and SS. Correctness
of this protocol follows routinely5. by noting that if w ∈ SR then

f
r·
∏
j∈SR\{w}

pj = g
ρ·r·

∏
j∈SR

pj = hρ.

Also, note that this scheme is laconic, as the size of the messages exchanged by the parties is independent
of the size of the set SR.

Arguing security against a semi-honest sender is also routine, as h is in fact statistically close to a
uniformly random group element in Z∗N . Proving security against a semi-honest receiver is a bit more
involved and proceeds via the following hybrid modifications. Let SS = {w} be the sender’s input such that
w /∈ SR. In the first hybrid, we will choose the modulus N such that pw divides φ(N); under the φ-hiding
assumption this change will go unnoticed. Now, via a standard lossiness-argument, we have that f = gρpw

loses information about gρ, i.e., gρ has high min-entropy given f . This means that hρ = g
ρr·

∏
i∈SR

pi has also
high min-entropy as w /∈ SR and thus pw does not divide r ·

∏
i∈SR

pi (w.o.p). Consequently, as hρ has high
min-entropy conditioned on f , in the next hybrid change we can replace R = Ext(s, hρ) with a uniformly
random value, incurring only a negligible statistical distance via the extraction property of Ext. In the next
hybrid change, we can switch the modulus N back to normal mode, i.e., such that pw does not divide φ(N).
But now f = gρpw is statistically close to uniform in Z∗N . Thus, in the last hybrid change we can replace f
with a uniformly random value in Z∗N and get that the view of the receiver is independent of w, as required.

For the case that the sender’s input SS contains more than a single element, we mount a hybrid argument
repeating the above modifications for each element of SS not in the receiver’s set SR.

Large universes The above protocol has the drawback that the size of the common reference string crs
depends linearly on the size of the universe U , which is highly undesirable. There is a standard way of
overcoming this issue: Instead of explicitly listing all the primes pi in crs, we will describe them implicitly

5We will not further discuss the small correctness-error of this protocol as our final protocol will not suffer from this defect
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via a pseudorandom function (PRF).6 For this purpose, we need a PRF which maps into the set of primes of
a certain size. This can e.g. be achieved by using rejection sampling: we first sample y ← Fk(x|i) (starting
with i = 1) and check if y is a prime number. If it is, we output y; else, we increment i until a prime is
hit. Under standard number-theoretic assumptions, this process finds a prime after a logarithmic number
of steps. One small issue is that, in the above security proof, we need to replace one of the primes with a
prime provided by the φ-hiding experiment. We resolve this issue by making the PRF programmable in one
point, e.g., by setting Fk,k′(x|i) = F ′k(x|i)⊕ ki for a PRF F ′, k′ = (k1, . . . , kξ) and a suitable choice of ξ.

A first attempt at malicious sender security Our protocol thus far, however, offers no security against
a malicious sender. The main issue is that a corrupted sender may choose the values f and R arbitrarily,
and further, there is no mechanism for a simulator against a malicious to extract the senders input w. Of
course, this protocol can be made secure against malicious senders by letting the sender prove via a general
purpose NIZK proof that it follows the semi-honest protocol correctly. This however would necessitate to
make non-black-box use of our semi-honest laconic PSI protocol, contrary to our goal of achieving a fully
black-box protocol.

Re-inspecting the above protocol, we have not made full use of the fact that the extracted string R is
uniformly random. Our first idea to make the sender extractable is to make better use of R. Instead of
sending R in the plain, we will use R as random coins for a public key encryption (PKE) scheme to encrypt
the sender’s input w. More concretely, we will modify the above protocol as follows. We include a public key
pk of a PKE scheme in the common reference string crs and, instead of having the sender include R in the
plain in its message to the receiver, it will include a ciphertext ct ← Enc(pk, i;R). We also need to modify
the procedure of the receiver. The receiver will recover Ri as before, but will now use Ri to re-encrypt the
index i, that is, for each i ∈ SR it will compute cti ← Enc(pk, i;Ri).

First notice that, as a side bonus, this modification makes our laconic PSI scheme perfectly correct, given
that the PKE scheme is perfectly correct, as now cti uniquely specifies the element i.

In terms of security, we first observe that this modification does not harm security against a semi-honest
receiver given that the PKE scheme is IND-CPA secure. In the above sketch of a security proof, we have
argued that, if w is not in the set SR, then R is uniformly random from the view of the receiver. This means
now that ct is a freshly encrypted ciphertext, using fresh random coins (independent of ρ). Moreover, we
can use IND-CPA security of the PKE to replace ct with an encryption of 0, and then continue as above to
argue security against a semi-honest receiver.

To establish security against a malicious sender, we would like to argue as follows. The simulator can
now generate the public key pk in crs together with a secret key sk. Given a message (s, f, ct) by a malicious
sender, the simulator can recover the set element w by decrypting the ciphertext ct using sk. At a first
glance this seems to provide us with security against malicious senders. And indeed, the simulator will
recover all elements for which the receiver would have declared to be in the intersection. There is a grave
issue however: The simulator has no means of detecting whether the honest receiver would actually have
succeeded in re-encrypting the index i. In other words, the malicious sender can make the simulator false
positives, such that the simulator declares an element i to be in the intersection, whereas an honest receiver
would not have.

Switch groups, extract everything! We need to enable the simulator against a corrupted sender to
check whether the honest receiver would have succeeded in re-encrypting w. Indeed, if the simulator had a
way of recovering ρ from the group element f = gρpw , it could just compute R← Ext(s, hρ) on its own and
check if the re-encryption test of the receiver succeeds. Our approach to enable this is to replace Z∗N by a
group in which we can efficiently recover ρpw from gρpw using a trapdoor.

We briefly recall some facts about the Damg̊ard-Jurik cryptosystem [DJ01]. The group Z∗Nξ+1 contains
a cyclic subgroup NRN of order φ(N). Now let g0 ∈ NRN be a generator of NRN . Then we can generate
the entire group Z∗Nξ+1 by g0 and 1 + N , i.e. we can write every h ∈ Z∗Nξ+1 as h = gt0 · (1 + N)m for some

6We remark that we use a PRF, not because we want uniform outputs, but to implicitly define the set of primes. A similar
trick was used in [BGI16].
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t ∈ Zφ(N) and m ∈ ZNξ . Furthermore, we can efficiently compute discrete logarithms relative to 1 + N ,
i.e. if h = (1 + N)m for an m ∈ ZNξ , then we can efficiently compute m from h. Finally, the decisional
composite residue (DCR) assumption in Z∗Nξ+1 states that a random element in NRN is indistinguishable

from a random element in Z∗Nξ+1 . It follows that g1 = gt10 and g2 = gt20 · (1 + N) (for uniformly random
t1, t2 ←$ Zφ(N)) are computationally indistinguishable. Moreover, if h = gt2 for a t < Nξ−1, we can efficiently
compute t from h using φ(N) as a trapdoor by first computing

hφ(N) = g
t·φ(N)
2 = g

tφ(N)
0︸ ︷︷ ︸
=1

·(1 +N)t·φ(N) = (1 +N)t·φ(N),

from which we can efficiently compute t · φ(N) (as t · φ(N) < Nξ) and thus t.
Given this, we will now make the following additional modification to our PSI protocol. Instead of

choosing the element g in the common reference string crs to be a random generator of Z∗N , we choose g
to be a random generator of NRN , where NRN is the subgroup of order φ(N) in Z∗Nξ+1 (for a sufficiently
large but constant ξ). Our first observation is that this does not affect the security proof in the case of
a semi-honest receiver, since NRN is still a cyclic group of order φ(N) and the above argument using the
φ-hiding assumption works analogously in this group.

Assume for a moment we had a mechanism which ensures that the group element f in the sender’s
message is of the form f = ga for an a < N ξ−1. We can then argue security against a malicious sender as
follows: First we make a hybrid change and choose the element g in the common reference string like g2

above, i.e. we choose g = gt0(1 + N); under the DCR assumption this change goes unnoticed. Now, given
that f = ga for an a < N ξ−1 and using φ(N) as a trapdoor, the simulator can efficiently compute a from f as
described above. Since it can also recover the index w from the ciphertext ct as described above, it can now
check if a is of the form a = ρ · pw. If so, it recovers ρ and performs the same re-encryption test for ct which
the real receiver would perform. This makes the simulation indistinguishable from the real experiment.

2.3 DV-NIZK Range Proofs for DJ Ciphertexts

The final component which is missing to make the above argument succeed is a mechanism which ensures
that the group element f is indeed of the form f = ga for a small a. For the sake of generality, we will
make the following discussion for general DJ-ciphertexts, that is, ciphertexts of the form c = ht · (1 + N)a

(where h = gz1 is the public key). If we can show that such a ciphertext encrypts a small value a, proving
that f = ga and c = ht · (1 +N)a for the same a can be efficiently proven via a standard hash-proof system
(HPS) [CS02].

First, we observe that, to show that c = ht · (1 + N)a encrypts a value a < 2k for some parameter k,
it suffices to prove that some ciphertexts c0, . . . , ck−1 encrypt bits b1, . . . , bk−1. Assume for now we had a
DV-NIZK protocol Π to prove that the ciphertexts c0, . . . , ck−1 all just encrypt bits. The prover can convince
the verifier as follows that c encrypts a value a < 2k. First the prover encrypts bit bi in a ciphertext ci and
sets c′ =

∏k−1
i=0 c

2i

i (it is not hard to see that c′ encrypts a). Now, the prover uses Π to to convince the
verifier that c0, . . . , ck−1 indeed encrypt bits. Furthermore, it can use a standard HPS to prove that c and c′

indeed encrypt the same value. Zero-knowledge follows routinely. To see that this protocol is sound, observe
that if the ci indeed encrypt bits, then c′ must encrypt a value bounded by 2k.

A DV-NIZK proof system for ciphertext equality across different encryption schemes Alas,
we do not know of a black-box DV-NIZK which proves that DJ ciphertexts encrypt bits. However, for the
pairing-based Boneh-Goh-Nissim (BGN) cryptosystem [BGN05], such a proof system was constructed by
Groth, Ostrovsky and Sahai [GOS06]. Consequently, if we could prove in a black box way that a BGN
ciphertext encrypts the same value as DJ ciphertext we would be done.

Recall that, in the BGN cryptosystem, public keys are of the form (G,H), where G and H a generators
of subgroups of a composite-order pairing group G. BGN ciphertexts are of the form C = GmHr, where m
is the encrypted message and r are random coins.
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Our final contribution is a DV-NIZK proof system which allows us to prove that a DJ ciphertext and a
BGN ciphertext encrypt the same value.

To simplify the description of our prove system, assume we have BGN public keys (G,H1), . . . , (G,H`),
i.e. each key sharing the same G but having fresh and random Hi, and an element H0. Furthermore, assume
that we have DJ public keys h1, . . . , h`, and an element h0. We will assume that both sequences of keys are
in a public setup, together with the elements H0, h0.

Suppose further that we have BGN ciphertexts C1, . . . , C`, where Ci = GmiHr
i , i.e., all ciphertexts use

the same random coins r but encrypt possibly different bits mi.
7 As mentioned above, using the NIZK

scheme from [GOS06], we can prove that the ciphertexts Ci = GmiHr
i are indeed well-formed and that

mi ∈ {0, 1}. Moreover, we have C0 = Hr
0 , which can be proven well-formed using a standard hash proof

system (HPS) [CS02].
Assume further that we are given DJ ciphertexts c1, . . . , c`, where ci = hti · (1 + N)m

′
i , i.e., again the

ciphertexts share the same random coins t.8 Moreover, assume that we have a value hr0 exactly as above.
We want to prove that it holds for all i ∈ [`] that mi = m′i. Our DV-NIZK proof system for equality of BGN
and DJ ciphertexts now proceeds roughly as follows:

• The verifier starts by sampling a uniformly random binary string σ←$ {0, 1}` and computes F =
HA

0

∏
Hσi
i ∈ G and f = hα0

∏
hσii ∈ Z∗Nξ+1 , for uniformly random values A,α. It sends crs = (F, f) to

the prover and keeps σ as the designated-verifier key.

• The prover is given ciphertexts C1, . . . , C` and c1, . . . , c` with Ci = Gm
i

Hr
i and ci = hti(1 +N)mi , and

the values C0 = Hr
0 and c0 = ht0. It computes K = F rGτ and k = f t(1 + N)τ where τ is sampled

according to a distribution which is wide enough to drown the mi, but short enough such that it is
bounded by N . The proof π is consists of (K, k).

• The verifier, given the proof π = (K, k), computes the discrete log y (in base (1+N)) of k−1cα0
∏`
i=1 c

σi
i

and checks if Gy = K−1CA0
∏`
i=1 C

σi
i .

For completeness, note that

k−1cα0
∏

cσii =
(
hα0
∏

hσii

)−t
(1 +N)−τ

(
ht0
)α∏(

hti(1 +N)mi
)σi

= (1 +N)
∑
σimi−τ ,

from which the verifier can recover y =
∑
σimi − τ . Moreover

L = K−1CA0
∏

Cσii =
(
HA

0

∏
Hσi
i

)−r
G−τ (Hr

0 )
A
∏

(Hr
i G

mi)σi = G
∑
σimi−τ

and thus Gy = L.
The zero-knowledge property can be established by noting that the term τ statistically drowns

∑
i σimi.

To prove reusable statistical soundness (or simulation soundness), we argue as follows. First note that σ
is statistically hidden, given F = HA

0

∏
Hσi
i and f = hα0

∏
hσii , by the uniform values A,α. We need to show

that if there is an index i for which mi 6=,m′i, then the verifier will reject with high probability, irrespective
of the (adversarial) choices of τ, τ ′ (which are not necessarily short)9. It follows from the above description
that the verifier accepts a proof if the condition∑

σi,jmi − τj mod n =
(∑

σi,jm
′
i − τ ′j mod Nξ

)
mod n

is satisfied, where n is the order of the subgroup of G generated by G. In the main body we will show that,
given that n > N ξ, this condition will be violated with probability ≈ 1/2 if the there exists an index i for
which mi 6= m′i. By repeating the protocol λ times, we achieve negligible soundness error.

7Via a standard rerandomization argument we can show that reusing the same random coins across different keys does not
harm CPA security.

8Same as above.
9We assume that the verifier rejects if it fails to compute the discrete logarithm of k−1

∏
d
σi
i .
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2.4 Labeled Laconic PSI and Laconic OT

Our laconic PSI construction can be easily extended into a labeled laconic PSI, in which the receiver also
learns labels associated with set elements in the intersection. To achieve this, we simply use an extractor
with an output size twice as large: the first half is used as above to perform the re-encryption step; the
other half is used as an one-time pad to encrypt the corresponding label. It is easy to see that the receiver
can only recover the labels for the elements within the intersection, since the security proof follows the same
blueprint as before.

We also build an LOT using the same ideas as above. The receiver commits to a database D ∈ {0, 1}Γ

by computing h = g
r
∏Γ
i=1 ei,Di

0 mod Nξ+1, where each prime ei,b is the output of a PRF (just as before).
The sender computes fj = g

ρjeL,j
0 , Fj = g

ρjeL,j
1 (1 +N)ρjeL,j for each j ∈ {0, 1}, together with a range proof.

Moreover, he encrypts each message as ctj = kj ⊕mj where kj ← Ext(sj , h
ρj ). Again, security follows the

same reasoning as above. Our LOT protocol is the first one to provide security against a malicious sender
while incurring in communication complexity independent of the size of D.

3 Preliminaries

The acronym PPT denotes “probabilistic polynomial time”. Throughout this work, λ denotes the security
parameter. By negl(λ), we denote a negligible function in λ, that is, a function that vanishes faster than
any inverse polynomial in λ.

Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. If A is an algorithm, we denote by y ← A(x) the
output y after running A on input x. If S is a (finite) set, we denote by x←$S the experiment of sampling
uniformly at random an element x from S. If D is a distribution over S, we denote by x←$D the element x
sampled from S according to D. We say that D is B-bounded if for every x←$D, we have |x| < B, except
with negligible probability. If D0, D1 are two distributions, we say that D0 is statistically indistinguishable
from D1, denoted by D0 ≈ε D1, if no unbounded adversary can distinguish both distributions except with
probability ε.

Throughout this work, φ will denote the Euler’s totient function.
Let ΦZ,β be the distribution that outputs a uniformly chosen value in Z from the interval [−β, β]. We

call shifted rectangle to this distribution [AIK11]. The following lemma states that we can drown (i.e.,
statistically hide) a value using a sample from a much wider ΦZ,β distribution.

Lemma 1 (Drowning [AIK11]). Let B0 ∈ N and β ∈ Z and let e0 ∈ [−B0, B0]. Let e1←$ ΦZ,β. If
B0/s = negl(λ) then e1 ≈negl(λ) e0 + e1.

3.1 Cryptographic Primitives

Here, we present the cryptographic primitives which are meaningful to this work, as well as their security
properties.

3.1.1 Strong Extractors

Extractor allow to extract randomness from sources with a certain min-entropy.

Definition 1 (Strong Extractor). A (k, ε)-strong extractor Ext : S × X → Y is a deterministic algorithm
with domain X , seed space S and range Y with the following property: For every distribution X with support
X and min-entropy at least k,

(s,Ext(s, x)) ≈ε (s, y)

where x←$X and y←$Y.

10



3.1.2 Public-Key Encryption

We recall the classical definition of public-key encryption (PKE).

Definition 2 (Public-Key Encryption). A Public-Key Encryption (PKE) scheme is defined by the following
algorithms:

• KeyGen(1λ) takes as input a security parameter. It outputs a public key pk and a secret key sk.

• Enc(pk,m) takes as input a public key pk and a message m ∈ {0, 1}∗. It outputs a ciphertext ct.

• Dec(sk, ct) takes as input a secret keys sk and a ciphertext ct. It outputs a a message m or bot ⊥.

We require the usual correctness and IND-CPA properties for a PKE.

• Correctness: We say that a PKE is correct if

Pr
[
m← Dec(sk,Enc(pk,m)) : (pk, sk)← KeyGen(1λ)

]
= 1.

• IND-CPA security: For any PPT adversary A, we require that

Pr

[
b← A(ct, st) :

(pk, sk)← KeyGen(1λ); (m0,m1, st)← A (pk)
b←$ {0, 1}; ct← Enc(pk,mb)

]
≤ negl(λ) .

3.1.3 Programmable Pseudorandom Function

Pseudorandom functions (PRF) are ubiquitous objects in cryptography. We present the definition of PRF
in the following.

Definition 3 (Pseudorandom Function). A Pseudorandom Function (PRF) is defined by a keyed function
PRF : K ×X → Y such that, for any PPT adversary A

|Pr [1← A(y, x) : y ← PRF(k, x)]− Pr [1← A(y, x) : y ← f(x)]| ≤ negl(λ)

for any x ∈ X , where f : X → Y is a uniformly chosen random function and the key k is sampled uniformly
at random from K.

A programmable PRF allows the simulator to program the output of a PRF on several inputs at key
generation time.

Definition 4 (Programmable PRF [KMP+17]). A programmable PRF (PPRF) is composed by the following
algorithms:

• k = (k′, hint) ← KeyGen(1λ, (x, y)) takes as input a security parameter and a pair of points (x, y) ∈
X × Y. It outputs a key k′ and a hint hint.

• y ← PPRF(k, x) takes as input a key k ∈ K and a value x ∈ X . It outputs y ∈ Y.

Correctness of the PPRF states that y ← PPRF(k, x) for the programmed point (x, y). Security roughly
states that it is hard for the adversary to guess the point x which was programmed even given the hint (see
[KMP+17]).
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An example. Let PRF : K × X → {0, 1}` and Primes(`) be the primes of length `. In this work, we use
a programmable PRF PPRF : K × (X × Z) → Primes(`) in which the key (and the hint) is of the form
K = (k, k′ = (k′1, . . . , k

′
ξ)) ∈ K×{0, 1}`ξ and where the output of an element x ∈ X is computed as: i) Start

by initializing i = 1. ii) Compute y = PPRF(k, (x, i)) ⊕ k′i. iii) Output y, if it is a prime number; else, set
i = i + 1 and return to step ii); repeat until i = ξ. It is easy to see that, under standard number-theoretic
assumptions, the process described above outputs a prime number after O(log 2`) steps (e.g., [FT14]). If
we set ξ ∈ O((log 2`)2), a direct calculation yields that the probability of not existing any i ∈ [ξ] such that
PPRF(k, (x, i))⊕ k′i is not a prime is negligible in `.

In order to program the output of PPRF at some input x, we first sample a prime number p and a index
i from a suitable distribution.10 Then, we set k′i = p ⊕ PPRF(k, (x, i)). Finally, we choose k′j , for all j < i,
uniformly at random such that PPRF(k, (x, j))⊕k′j is not a prime number. All other k′j , for j > i are chosen
uniformly at random. Such a procedure will succeed with non-negligible probability.

This is a special case of the PPRF designed in [KMP+17] and it is easy to see that, if the PPRF is
programmed on a pair of points (x, y) ∈ X × Primes(`) where y←$Primes(`), then it is hard for any PPT
adversary A to guess the programmed point x.

A remark. We slightly overload the notation and denote k as the PPRF key (which is composed by a PRF
key k′ and a hint hint as in Definition 4). We do this because, in our case, the hint (when it is a uniformly
random value) reveals nothing about the programmed value [KMP+17]. That is, we will use the notation
K ← KeyGen(1λ, (x, y)) where K = (k, k′ = hint).

3.1.4 Designated-Verifier Non-Interactive Zero-Knowledge

NIZK is a cryptographic primitive that allows a prover to prove that it holds a witness for a certain NP
statement to a verifier in just one message. In the designated-verifier setting, only a designated party can
verify the validity of proofs. This is in contrast with standard NIZK where the verification algorithm can be
run by any party.

Let Z be the set of statements and W be the set of witnesses. Let L be a NP language with relation R
such that z ∈ L if there is a w ∈ W such that R(z, w) = 1.

Definition 5 (DV-NIZK). Let L be a NP language. A Designated-Verifier Non-Interactive Zero-Knowledge
(DV-NIZK) for language L is composed by the following algorithms:

• GenCRSL(1λ) takes as input a security parameter. It outputs a common reference string crs together
with the corresponding trapdoor td.

• ProveL(crs, x, w) takes as input a common reference string crs, a statement x and a witness w. It
outputs a proof π.

• VerifyL(td, x, π) takes as input a common reference string crs, a trapdoor td, a statement x and a proof
π. It outputs a bit b ∈ {0, 1}.

A DV-NIZK should fulfill the following properties: completeness, soundness and honest-verifier zero-
knowledge.

• Completeness: A DV-NIZK is correct if for all pairs (x,w) such that R(x,w) = 1,

Pr

[
1← VerifyL(td, x, π) :

(crs, td)← GenCRSL(1λ)
π ← ProveL(crs, x, w)

]
= 1.

10The index i is sampled from the distribution of the number of uniform samples we need to perform in order to find a prime
number. Such a distribution can be easily simulated by just running a prime sampler with true randomness and output i (the
number of trials until success) instead of the prime.
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• Statistical Simulation Soundness:A DV-NIZK is statistical simulation sound if for all computa-
tionally unbounded adversaries A and all x /∈ L,

Pr

[
1← VerifyL(td, x, π) :

(crs, td)← GenCRSL(1λ)
π ← AVerifyL(td,·,·)(crs, x)

]
≤ negl(λ) .

Remark that, in the statistical setting, selective soundness is equivalent to adaptive soundness.

• Zero-knowledge: A DV-NIZK is said to be zero-knowledge if for all adversaries A there is an sim-
ulator Sim such that∣∣∣∣∣∣∣∣

Pr

[
1← A(crs, x, π) :

(crs, td)← GenCRSL(1λ)
π ← ProveL(crs, x, w)

]
−

Pr

[
1← A(crs, x, π) :

(crs, td)← GenCRSL(1λ)
π ← SimL(td, x)

]
∣∣∣∣∣∣∣∣ ≤ negl(λ) .

When A is computationally bounded, we say that zero-knowledge holds computationally. When A is
computationally unbounded, if its advantage is negligible in the security parameter, we say that zero-
knowledge holds statistically while if its advantage is zero, then zero-knowledge holds perfectly.

Range Proof Systems for DJ Ciphertexts. In this work, we construct a range proof system for DJ
ciphertexts. That is, we build a DV-NIZK scheme that allows the prover to prove that a given DJ ciphertext
ct encrypts a message m ∈ [−B,B] for some public B ∈ Z.

Such a scheme can be constructed in the random oracle model (ROM) using the Fiat-Shamir transform
(e.g., [DJ01, BBC+18, BBB+18, TBM+20] just to name a few). However, we focus on efficient range proofs
in the standard model in this work.

3.2 Hardness Assumptions

We start by introducing some notation. Let Primes(κ) denote the set of prime numbers of bit-length κ. Let

RSA(λ) = {N : N = PQ and P,Q ∈ Primes(λ/2) and gcd(P − 1, Q− 1) = 2}

and
RSAe(λ) = {N : e|φ(N)}

for any e ≤ 2λ.

Definition 6 (Phi-Hiding). The phi-hiding assumption, denoted as φ-hiding, states that for all ε > 0 and
3 < e < 2λ/4−ε and all PPT adversaries A, we have that

|Pr [1← A(N, e) : N ←$RSA(λ)]− Pr [1← A(N, e) : N ←$RSAe(λ)]| ≤ negl(λ) .

Let N = PQ for P,Q ∈ Primes and consider the multiplicative group Z∗Nξ+1 where ξ is a fixed non-
negative integer. Recall that Z∗Nξ+1 can be written as the product of two subgroups HN × NRN where

HN = {(1 +N)i : i ∈ [Nξ]} and NRN = {xNξ : x ∈ Z∗N} (the group of Nξ-residues) which has order φ(N).
Given (1 +N)mmod Nξ+1, there is a polynomial-time algorithm that allows to recover m [DJ01]

The following lemma is straightforwardly adapted from [GVW20].

Lemma 2 ([GVW20]). Assume that the φ-hiding assumption holds. Let Ext be a (κ − 1, negl(λ))-strong
extractor. For every admissible stateful PPT adversary A and for all λ, κ such that λ ≥ 5κ, we have that∣∣∣∣∣∣∣∣Pr

b← A(yb) :

N ←$RSA(λ); s←$ {0, 1}λ
e←$Primes(κ); g ← NRN

G← A(N, s, e, g); b←$ {0, 1}
y0 ← Ext(s, gGe

−1

mod Nξ+1); y1←$Y

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(λ)

where an admissible adversary is one that outputs G such that e does not divide G.
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In this work, we also make use of the DCR assumption which we define in the following. We present the
DCR assumption as a subgroup indistinguishability assumption [BG10].

Definition 7 (Decisional Composite Residuosity). Let N = RSA(λ) and let ξ ≥ 0 be a fixed integer. The
decisional composite residuosity (DCR) assumption states that for all PPT adversaries A,

|Pr [1← A(N, x) : x←$Z∗Nξ+1 ]− Pr [1← A(N, x) : x←$NRN ]| ≤ negl(λ) .

Corollary 1. Assume that the DCR assumption holds. Then for all PPT adversaries A,∣∣∣∣∣∣
Pr [1← A(N, x) : x←$NRN ]−

Pr

[
1← A(N, x) :

x′←$NRN
x = x′(1 +N)−1 mod Nξ+1

] ∣∣∣∣∣∣ ≤ negl(λ) .

sketch. It is natural to see that we can switch the group for x and x′ from NRN to Z∗Nξ+1 unnoticeable under
DCR assumptions, then x′ = y(1 + N)imod Nξ+1 for some y ∈ NRN and i ∈ ZNξ , thus x ← Z∗Nξ+1 and
x′(1 +N)−1 have the same distribution.

We also use Boneh-Goh-Nissim (BGN) cryptosystem [BGN05] in our range proofs. Thus, its underlying
subgroup decision assumption is rephrased as follows for completeness.

Let G be an algorithm that takes a security parameter as input and outputs val :=(p, q,G,G1, e) such
that p, q are primes, n = pq and G,G1 are descriptions of groups of order n and e : G×G→ G1 is a bilinear
map. Let qG be the subgroup of G of order q.

Definition 8 (Subgroup Decision [GOS06]). Let G be an algorithm that takes a security parameter as input
and outputs val :=(p, q,G,G1, e) such that p, q are primes, n = pq and G,G1 are descriptions of groups of
order n and e : G × G → G1 is a bilinear map. Let qG be the subgroup of G of order q. The subgroup
decision (SD) assumption holds for generator G states that for all PPT adversaries A,∣∣∣∣∣∣∣∣

Pr

[
1← A(n,G,G1, e,G,H) :

val← G(1k), n = pq
G,H ← Ggen

]
−

Pr

[
1← A(n,G,G1, e,G,H) :

val← G(1k), n = pq
G← Ggen, H ← qG \ {1}

]
∣∣∣∣∣∣∣∣ ≤ negl(λ) .

We also present the definitions of the computational Diffie-Hellman (CDH) and learning with errors
(LWE) assumptions.

Definition 9 (Computational Diffie-Hellman). Let G(λ) be an algorithm that outputs (G, p, g) where G be
a group of prime order p and g a generator of the group. The CDH assumption holds for generator G if for
all PPT adversaries A

Pr

[
ga1a2 ← A(G, p, g, ga1 , ga2) :

(G, p, g)← G(λ)
a1, a2←$Zp

]
≤ negl(λ) .

Definition 10 (Learning with Errors). Let q, k ∈ N where k ∈ poly(λ), A ∈ Zk×nq and β ∈ R. For any
n = poly(k log q), the LWE assumption holds if for every PPT algorithm A we have

|Pr [1← A(A, sA + e)]− Pr [1← A(A,y)]| ≤ negl(λ)

for s←$ {0, 1}k, e←$DZn,β and y←$ {0, 1}n, where DZn,β is some error distribution.

3.3 Laconic Private Set Intersection

Laconic Private Set Intersection. An `PSI is a two-round protocol that implements a PSI functionality and
has special compactness properties.
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Definition 11. A `PSI scheme LPSI = (GenCRS,R1,S,R2) is defined as follows:

• GenCRS(1λ): Takes as input a security parameter 1λ, and outputs a common reference string crs.

• R1(crs, SR): Takes as input a crs and a set SR. It outputs a first PSI message psi1 and a state st.

• S(crs, SS , psi1): Takes as input a crs, a set SS and a first PSI message psi1. It outputs a second PSI
message psi2.

• R2(crs, st, psi2): Takes as input a crs, a state st and a second message psi2. It outputs a set I.

We require the following properties.

• Correctness: The protocol satisfies PSI correctness in the standard sense.

• Efficiency Requirements. There exists a fixed polynomial poly such that the length of psi1 and the
running time of S are at most poly(λ, log |SR|).

For malicious security, we work in the standard UC-framework [Can01] that allows us to prove security
of protocols under arbitrary composition with other protocols. Let F be a functionality, π a protocol that
implements F and E be a environment, an entity that oversees the execution of the protocol in both the
real and the ideal worlds. Let IDEALF,Sim,E be a random variable that represents the output of E after the

execution of F with adversary Sim. Similarly, let REALGπ,A,E be a random variable that represents the output
of E after the execution of π with adversary A and with access to the functionality G.

Definition 12. A protocol π UC-realizes F in the G-hybrid model if for every PPT adversary A there is
a PPT simulator Sim such that for all PPT environments E, the distributions IDEALF,Sim,E and REALGπ,A,E
are computationally indistinguishable.

We present the (reusable) PSI ideal functionality.

Reusable PSI functionality. The functionality FrPSI is parametrized by a universe U and works as
follows:

• Setup phase. R sends (sid, SR) to FrPSI where SR ⊆ U . It ignores future messages from R with the
same sid.

• Send phase. S sends (sid, i, SS ⊆ U) to FrPSI. FrPSI sends (sid, i, SR ∩ SS) to R. It ignores future
messages from S with the same sid and i ∈ N.

4 Semi-Honest Laconic Private Set Intersection from CDH/LWE

In this section we show how to realize semi-honest `PSI from CDH/LWE. Our construction is non-black-box,
making use of garbled circuits. This leads to the first feasibility result based on CDH, and an alternative
LWE construction to that of [QWW18].

Our construction makes use of hash encryption schemes in conjunction with garbled circuits, which we
review below.

Definition 13 (Hash Encryption [DG17b, BLSV18]). A hash encryption scheme HE = (HGen,Hash,HEnc,HDec)
is defined as follows.

• HGen(1λ, n): Takes as input a security parameter 1λ and an input size n and outputs a hash key pp.

• Hash(pp, z): Takes as input a hash key pp and z ∈ {0, 1}n, and deterministically outputs h ∈ {0, 1}λ.

• HEnc(pp, h, {mi,b}i∈[n],b∈{0,1}; {ri,b}): Takes as input a hash key pp, a hash output h, messages {mi,b}
and randomness {ri,b}, and outputs {cthi,b}i∈[n],b∈{0,1}. We write it shortly as {cthi,b}. Overloading
notation, each ciphertext cthi,b is computed as cthi,b = HEnc(pp, h,mi,b, (i, b); ri,b).
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• HDec(z, {cthi,b}): Takes as input a hash input z and {cthi,b} and outputs n messages (m1, . . . ,mn).

We require correctness meaning that for the variables above, (m1, . . . ,mn) = (m1,z[1], . . . ,mn,z[n]). We define
two notions of security.

• Semantic Security: Given z ∈ {0, 1}n, no adversary can distinguish between encryptions of messages
made to indices (i, z̄i). For any PPT A, sampling pp←$ HGen(1λ, n), if (z, {mi,b}, {m′i,b})←$ A(pp)
and if mi,z[i] = m′i,z[i] for all i ∈ [n], then A cannot distinguish between HEnc(pp, h, {mi,b}) and

HEnc(pp, y, {m′i,b}), where h := Hash(pp, z).

• Anonymous Semantic Security: For a random {mi,b} with equal rows (i.e., mi,0 = mi,1), the
output of HEnc(pp, h, {mi,b}) is pseudorandom even in the presence of the hash input. Formally, for
any z ∈ {0, 1}n, sampling pp ←$ HGen(1λ, n), h := Hash(pp, z), and sampling {mi,b} uniformly at
random with the same rows, then v := (pp, z,HEnc(pp, h, {mi,b})) is indistinguishable from another
tuple in which we replace the hash-encryption component of v with a random string.

We have the following results from [BLSV18, GGH19].

Lemma 3. Assuming CDH/LWE there exists anonymous hash encryption schemes, where n = 3λ (i.e.,
Hash(pp, ·) : {0, 1}3λ 7→ {0, 1}λ).11 Moreover, the hash function Hash satisfies robustness in the following
sense: for any input distribution on z which samples at least 2λ bits of z uniformly at random, (pp,Hash(pp, z))
and (pp, u) are statistically close, where pp←$ HGen(1λ, 3λ) and u←$ {0, 1}λ.

We also review the notion of garbled circuits and the anonymous property, as defined in [BLSV18].

Definition 14 (Garbled Circuits). A garbling scheme for a class of circuits {C : {0, 1}n 7→ {0, 1}m} consists
of (Garb,Eval,Sim) satisfying the following.

• Correctness: for all C ∈ C, m ∈ {0, 1}n, Pr[Eval(C̃, {lbi,m[i]}) = C(m)] = 1, where (C̃, {lbi,b}) ←$

Garb(1λ,C).

• Simulation Security: For any C ∈ C and m ∈ {0, 1}n: (C̃, {lbi,m[i]})
c≡ Sim(1λ,C(m)), where

(C̃, {lbi,b})←$ Garb(1λ,C).

• Anonymous Security [BLSV18]: For any C ∈ C, choosing y ←$ {0, 1}m, the output of Sim(1λ, y) is
pseudorandom.

Lemma 4 ([BLSV18]). Anonymous garbled circuits can be built from one-way functions (OWFs).

Notation on Hash Encryption. Throughout this section we assume Hash(pp, ·) : {0, 1}n 7→ {0, 1}λ,
where n = 3λ. We use {lbi,b} to define a sequence of pairs of labels, where (throughout this section)
i ∈ [n] and b ∈ {0, 1}. For r := {ri,b} we let HEnc(pp, h, {lbi,b}; r) denote the ciphertexts {cthi,b}, where
cthi,b = HEnc(pp, h, lbi,b, (i, b); ri,b). We further overload the notation as follows. We use {lbi} to denote a
sequence of 3λ elements. For r := {ri,b} we let HEnc(pp, h, {lbi}; r) denote a hash encryption where both
plaintext rows are {lbi}; namely, the ciphertexts {cthi,b}, where cthi,b = HEnc(pp, h, {mi,b}; ri,b), where
mi,0 = mi,1 = lbi, for all i.

Tree Terminology. Throughout this section we work with full binary trees. The depth of a tree is the
length of a root-leaf path. We call the leaf level level 0, the level above it level one, and so on. We order
the root-leaf paths from left to right; namely, the path from the root to the leftmost leaf node is the first
root-leaf path, and the path from the root to the rightmost leaf node is the 2dth root-leaf path, where d is
the depth. Each node has an associated hash value, computed based on values associated to its children.
Thus, when representing a root-leaf path, we include both children of each branching intermediate node.

11We note that the CDH construction of [BLSV18] satisfies a weaker notion of anonymity, in which only some part of the
ciphertext is pseudorandom. But for ease of presentation we keep the notion as is, and remark that our `PSI construction works
also with respect to that weaker notion.
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Circuit F[id, r, r′](id′, x, x′):

• Hardwired: target identity id and randomness
values r and r′.

• Operation: Return

y :=

{
r id = id′

r′ else

Circuit V[pp, id, {lbi,b}, r](h1, h2, id
′):

• Hardwired: Hash public parameter pp, target
identity id, labels {lbi,b}, randomness r.

• Operation: Return

ct :=

{
HEnc(pp, h1, {lbi,b}; r) id ≤ id′

HEnc(pp, h2, {lbi,b}; r) else

Procedure DecPath(pth, psi2):

• Input: A leaf-root Path pth and ciphertext psi2 := (C̃0, . . . , C̃d, {cth(d)
i,b }).

• Operation: Parse pth := ((id, x, x′︸ ︷︷ ︸
z0

), (h0, h
′
0, id0︸ ︷︷ ︸
z1

), . . . , (hd−1, h
′
d−1, idd−1︸ ︷︷ ︸
zd

), hrroot). For w ∈ {d, . . . , 1}:

1. Let {lb(w)
i } := HDec(zw, {cth(w)

i,b }).

2. Set {cth(w−1)
i,b } := Eval(C̃w, {lb(w)

i }).

Let {lb(0)
i } := HDec(z0, {cth(0)

i,b }). Return Eval(C̃0, {lb(0)
i }).

Table 1: Circuits F,V and procedure DecPath

Sender’s Set Size is One. We assume without loss of generality that the sender holds a single element.
For the general case where the sender may have multiple elements, we reuse the first message of the receiver
for each element in the sender’s set. The overall running time of the sender will only scale with its own set
size, and not with the receiver’s set size.

Construction 1 (`PSI Construction). We require the following ingredients in our `PSI Construction.

1. A hash encryption scheme HE = (HGen,Hash,HEnc,HDec), where Hash(pp, ·) : {0, 1}3λ 7→ {0, 1}λ.

2. A garbling scheme GS = (Garb,Eval,Sim).

3. Circuits F and V, as well as procedure DecPath, defined in Table 1.

We assume the elements of the receiver and the sender are strings in {0, 1}λ. We refer to each element as
an identity. Build (GenCRS,R1,S,R2) as follows.

GenCRS(1λ): Return crs←$ HGen(1λ, 3λ).

R1(crs, SR): Assume |SR| = 2d. (With small tweaks the same construction works if SR is not a power of
two.)

• Parse crs := pp. Let n := 2d, and sort SR := {id1, . . . , idn}, where idi < idi+1 for all i. Populate the leaf

node values as follows. For each idi ∈ SR, sample xi, x
′
i ←$ {0, 1}λ, and let h

(0)
i := Hash(pp, idi, xi, x

′
i).

Set H[v
(0)
i ] := h

(0)
i and ID[v

(0)
i ] := idi.

1. For w ∈ [d], populate the values for the nodes at level w as follows. Informally, the hash value
for each node is the hash of the concatenation of its left child, right child, and the largest identity
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value under its left child. Formally, noting we have 2d−w nodes on level w, for j ∈ [2d−w], set

h
(w)
j := Hash(pp, (h

(w−1)
2j−1 , h

(w−1)
2j , id[j,w])), where id[j,w] denotes the larges leaf identity under the

left child of the current node (i.e., id[j,w] = idf , where f := (2j− 1)2w−1.) Set H[v
(w)
j ] = h

(w)
j and

ID[v
(w)
j ] = id[j,w].

2. Set psi1 := (d, hrroot), where hrroot := h
(d)
1 (i.e., the root hash value). Set st := (SR, {xi}, {x′i}, {v

(w)
j })

for all values of i ∈ [n], w ∈ {0, . . . , d} and j ∈ [2d−w].

S(crs, id, psi1):

• Parse psi1 := (d, hrroot) and crs := pp. Sample r, r′ ←$ {0, 1}λ and let C0 := F[id, r, r′] (Table 1).

Garble (C̃0, {lb(0)
i,b })←$ Garb(C0). For 1 ≤ w ≤ d

1. Sample rw at random, and let Cw := V[pp, id, {lb(w−1)
i,b }, rw].

2. Garble (C̃w, {lb(w)
i,b })←$ Garb(Cw).

• Let {cthi,b} ←$ HEnc(pp, hrroot, {lb(d)
i,b }). Return psi2 := (C̃0, . . . , C̃d, {cthi,b}, r).

R2(crs, st, psi2):

• Parse st := (SR, {xi}, {x′i}, {v
(w)
j }), psi2 := (C̃0, . . . , C̃d, {cthi,b}, r) and SR := {id1, . . . , idn}. For i ∈ [n]

let pthi := ((idi, xi, x
′
i), . . . , hrroot) be the i’th leaf-root path in the tree, and let

ri := DecPath(pthi, C̃0, . . . , C̃d, {cthi,b}).

If for a unique index i ∈ [n], ri = r, then output idi. Otherwise, output ⊥.

Theorem 1. Assuming the hash encryption HE is anonymous and robust (robustness defined in Lemma 3),
and that the garbling scheme GS is anonymous, the `PSI protocol of Construction 1 provides statistical
security for the receiver and semi-honest security for the sender. As a result, such `PSI protocols can be
realized from CDH/LWE.

Roadmap for the Proof of Theorem 1. The fact that the protocol provides statistical security for the

receiver follows from the robustness of HE. In particular, robustness implies that h
(0)
i values statistically

hide SR. We can continue this to argue that all the first-level hash values (i.e., h
(1)
i ) also hide SR, and hence,

continuing like this, the root hash value hrroot statistically hides SR.
We now prove that the protocol provides sender security against semi-honest receivers. Let id be the

sender’s input message, and SR := {id1, . . . , idn} be the receiver’s set, where idi < idi+1. Assuming id /∈ SR we
will show that the sender’s protocol message is pseudorandom in the receiver’s point of view. For simplicity
suppose id < id1; the general case follows via simple changes, which we will illustrate in Remark 1. Let

pth := ((id1, x1, x
′
1︸ ︷︷ ︸

z0

), (h0, h
′
0, id0︸ ︷︷ ︸
z1

), . . . , (hd−1, h
′
d−1, idd−1︸ ︷︷ ︸
zd

), hrroot) (1)

be the leaf-root path from leaf id1 to the root. Note that hrroot = Hash(pp, zd), and hi = Hash(pp, zi) for
all i ∈ {0, . . . , d− 1}. Noting that hrroot is the receiver’s first-round message, we define the following hybrids
for the sender’s response message.

Hyb0: The sender’s response message psi2 is formed as in the protocol.
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Hyb1: Sample r, r′ ←$ {0, 1}λ. Let (C̃0, {lb(0)
i } ←$ Sim(F, r′). For 1 ≤ w ≤ d

1. Sample {cth(w−1)
i,b } ←$ HEnc(pp, hw−1, {lb(w−1)

i }).

2. Let (C̃w, {lb(w)
i })←$ Sim(V, {cth(w−1)

i,b }).

Let {cthi,b} ←$ HEnc(pp, hrroot, {lb(d)
i }). Return psi2 := (C̃0, . . . , C̃d, {cthi,b}, r).

Lemma 5. Hybrids Hyb0 and Hyb1 are indistinguishable.

Hyb2: Sample psi2 at random.

Lemma 6. Hybrids Hyb1 and Hyb2 are indistinguishable.

The above two lemmas establish sender’s security; namely — if id /∈ SR, then the sender’s message psi2
is pseudorandom for the receiver. We prove Lemma 5 in Section 4.1 and Lemma 6 in Section 4.2.

4.1 Proof of Lemma 5

In the following, given two hybrids Hyb and Hyb′, we use the notation Hyb
c≡ Hyb′ to express that the

hybrids are computationally indistinguishable.
We define d+ 1 hybrids between Hyb0 and Hyb1, and prove their indistinguishability.
For p ∈ {0, . . . , d} we define Hyb′p as follows. Under Hyb′p, we form the first p + 1 garbled circuits

C̃0, . . . , C̃p and their corresponding labels honestly as in the real game, and we simulate the rest.

Hyb′p: Let pth be as in Equation 1, and recall that we are assuming id < id1. Sample r, r′ ←$ {0, 1}λ and

let C0 := F[id, r, r′]. Garble (C̃0, {lb(0)
i,b })←$ Garb(C0). Let {lb(0)

i } := {lbi,z0[i]}. Do the following:

• For 1 ≤ w ≤ p

1. Sample rw at random, and let Cw := V[pp, id, {lb(w−1)
i,b }, rw].

2. Garble (C̃w, {lb(w)
i,b })←$ Garb(Cw).

3. If w = p (i.e., last step), let {lb(w)
i } := {lb(w)

i,zw[i]}.

• For p+ 1 ≤ w ≤ d

1. Sample {cth(w−1)
i,b } ←$ HEnc(pp, hw−1, {lb(w−1)

i }).

2. Let (C̃w, {lb(w)
i })←$ Sim(V, {cth(w−1)

i,b }).

Let {cthi,b} ←$ HEnc(pp, hrroot, {lb(d)
i }). Return psi2 := (C̃0, . . . , C̃d, {cthi,b}, r).

Lemma 7. Hyb0

c≡ Hyb′d and Hyb1

c≡ Hyb′0.

Proof. We first show Hyb1

c≡ Hyb′0. Notice that either hybrid may be simulated just by knowing the value

of r and the pair (C̃0, {lb(0)
i }). We let (C̃, {lbi}) and (C̃′, {lb′i}) denote the distribution of this pair in Hyb1

and Hyb′0, respectively. We have (C̃, {lbi})←$ Sim(F, r′). As for the other pair, letting C0 := F[id, r, r′] for
random r, r′

(C̃′, {lbi,b})←$ Garb(C0) (2)

{lb′i} = {lbi,z0[i]}, (3)
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where z0 = (id1, x1, x
′
1). By simulation security of garbled circuits

(C̃′, {lb′i})
c≡ Sim(F,C0(z0)) (4)
c≡ Sim(F, r′). (5)

Thus, (r, C̃, {lbi})com(r, C̃′, {lb′i}), proving Hyb1

c≡ Hyb′0.

To prove Hyb0

c≡ Hyb′d, their only difference lies in how {cthi,b} is sampled: under Hyb0: {cthi,b} ←$

HEnc(pp, hrroot, {lb(d)
i,b }), while under Hyb′d: {cthi,b} ←$ HEnc(pp, hrroot, {lb(d)

i }), where recall that {lb(d)
i } :=

{lb(d)
i,zd[i]}. Since hrroot = Hash(pp, zd), by security of the hash encryption HEnc(pp, hrroot, {lb(d)

i })
c≡ HEnc(pp, hrroot, {lb(d)

i,b })
and the proof is now complete.

Lemma 8. For all p ∈ {0, . . . , d− 1}, Hyb′p
c≡ Hyb′p+1.

Proof. We will show that the distribution of (C̃0, . . . , C̃p+1, {lb(p+1)
i }) is computationally indistinguishable

in the two worlds. This will imply the result because the rest of either hybrid may be formed based solely
on the above tuple. To argue the above tuple is indistinguishable across the two hybrids, first notice that
the distribution of

(C̃0, {lb(0)
i,b }, . . . , C̃p, {lb

(p)
i,b })

is formed exactly the same in Hyb′p and Hyb′p+1. The only difference between these two hybrids lies in the

way in which the pair (C̃p+1, {lb(p+1)
i }) is sampled. To ease notation, we let (C̃, {lbi}) and (C̃′, {lb′i}) denote

the distribution of this pair in Hyb′p and Hyb′p+1, respectively. Formally

1. Under Hyb′p: We form

{cth} ←$ HEnc(pp, hp, {lb(p)
i }) (6)

(C̃, {lbi})←$ Sim(V, {cth}). (7)

2. Under Hyb′p+1: We form

(C̃′, {lbi,b})←$ Garb(Cp+1)

{lb′i} := {lbi,zp+1[i]},

where Cp+1 := V[pp, id, {lb(p)
i,b }, rp+1] and zp+1 = (hp, h

′
p, idp).

By simulation security of garbled circuits

(C̃′, {lb′i})
c≡ Sim(V,Cp+1(zp+1)) (8)
c≡ Sim(V,HEnc(pp, hp, {lb(p)

i,b }; rp+1)). (9)

Notice that in Equation 9 we use the fact id < idp, and so by definition of Cp+1, its hardwired labels

{lb(p)
i,b } will be encrypted under hp.

12 Now, Equation 9 is identical to the right-hand side of Equation 7, and

thus (C̃, {lbi})
c≡ (C̃′, {lb′i}). The proof is now complete.

12This is the place where we use the fact that id is less than all values in SR. In the general case we should change the above
distributions accordingly.
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4.2 Proof of Lemma 6

We need to show that psi2 := (C̃0, . . . , C̃d, {cth(d)
i,b }, r) is pseudorandom, where everything is sampled as

in Hyb1. Since (C̃0, {lb(0)
i }) ←$ Sim(F, r′) by simulation security of the garbled circuit and Lemma 4

the distribution of (C̃0, {lb(0)
i }) is pseudorandom. Recall that for 1 ≤ w ≤ d we have {cth(w−1)

i,b } ←$

HEnc(pp, hw, {lb(w−1)
i }) and (C̃w, {lb(w)

i })←$ Sim(V, {cth(w−1)
i,b }). By Lemma 3 {cth(w−1)

i,b } is pseudorandom,

and thus by Lemma 4 (C̃w, {lb(w)
i } is also pseudorandom, for all 0 ≤ w ≤ d − 1. Finally, since we have

{cth(d)
i,b } ←$ HEnc(pp, hrroot, {lb(d)

i }), by Lemma 3, {cth(d)
i,b } is pseudorandom. The proof is now complete.

Remark 1. In the proof of security, we assumed id < id1. For the general case, we just need to change the
active path from that in Equation 1 ending in id1 to the path that will end in idj, where j is the largest index
such that id lies between idj and idj+1. In case id > idn, then j = n.

5 Reusable DV-NIZK Range Proofs for DJ Ciphertexts

In this section, we construct a DV-NIZK scheme for ranges of DJ ciphertexts. The main idea of our
construction is the following: the prover proves that a BGN ciphertext [BGN05] is within a certain range
(this can be done via the protocol of [GOS06]). Then it proves that the DJ and BGN ciphertexts encrypt
the same value.

We first recall the required cryptosystems used in this section.

BGN cryptosystem. Recall that the BGN cryptosystem [BGN05] is defined over a group G of order
n = pq for primes p, q. The public key is composed by (G, n,G,H) where G is a generator of G and H is an
element of order p (let pG be the subgroup of order p). The public key is composed by (G, n,G,H) and a
ciphertext for a message m ∈ {0, 1} is of the form C = GmHt for t←$Zn.

Damg̊ard-Jurik cryptosystem. The Damg̊ard-Jurik (DJ) cryptosystem [DJ01] is defined over ZNξ+1

where N ←$RSA(λ). The public key is formed by (N, ξ, g, h) where g, h←$NRN and h = gx for x←$Z∗N .
A ciphertext has the form (c1, c2) where c1 = gtmod Nξ+1 and c2 = ht(1 +N)mmod Nξ+1 for t←$ZN and
m ∈ ZN .

5.1 DV-NIZK Schemes for Linear Languages and for BGN Ciphertexts

Let F be any group and M = (mi,j)i∈[n],j∈[m] be a matrix. For g ∈ F, we define gM = (gmi,j )i∈[n],j∈[m] A
linear language is of the form

L = {gy ∈ Fm : ∃x ∈ Fn,y = xM} .

The framework of [CS02] (and subseequent works [KW15]) can be instantiated to build a black-box DV-
NIZK for any language of this form. The resulting scheme achieves statistical simulation soundness and
perfect zero-knowledge.

We now review some specific languages which are of the form described above and for which we can
obtain efficient black-box DV-NIZK schemes.

In the following, let N,n←$RSA(λ), ξ ∈ N and G be a group of order n (that is, a BGN group).

DV-NIZK for discrete log. First, consider the following language for discrete logs, which is parametrized
by (G, n,H,N, ξ, h)

DL∆ =

{
(H ′, h) ∈ G× ZNξ+1 : ∃(X,x) ∈ Zn × ZN s.t.

H ′ = HX

h′ = hx mod Nξ+1

}

21



where ∆ = (G, n,H,N, ξ, h), H ∈ G and h ∈ ZNξ+1 . The language allows to prove that H ′ is in the
subgroup generated by H and h′ is in the same subgroup as h in their respective groups. In [CS02], a
reusable DV-NIZK for discrete log languages with statistical soundness is presented.

Lemma 9 ([CS02] ). There exists a reusable DV-NIZK

NIZKDL∆ = (NIZK.GenCRSDL∆ ,NIZK.ProveDL∆ ,NIZK.VerifyDL∆
)

for language DL∆ where ∆ = (G, n,H,N, ξ, h). The scheme fulfills statistical simulation soundness and
perfect zero-knowledge.

DV-NIZK for DJ ciphertexts. First, consider the following language for DJ ciphertexts, which is
parametrized by ({gi, hi}i, N, ξ)

DJ∆ =

{
{c1,i, c2,i}i ∈ Z2`

Nξ+1 : ∃(t, {mi}i) ∈ Z`+1
Nξ

s.t.
c1,i = gti mod Nξ+1

c2,i = hti(1 +N)mi mod Nξ+1

}
for i ∈ [`] where ∆ = ({gi, hi}i, N, ξ) and gi, hi ∈ ZNξ+1 . The language allows to prove that h is in the
same subgroup as g. In [CS02], a reusable DV-NIZK for discrete log languages with statistical simulation
soundness is presented.

Lemma 10 ([CS02] ). There exists a reusable DV-NIZK

NIZKDJ∆
= (NIZK.GenCRSDJ∆

,NIZK.ProveDJ∆
,NIZK.VerifyDJ∆

)

for language DJ∆ where ∆ = ({gi, hi}i, N, ξ). The scheme fulfills statistical simulation soundness and
perfect zero-knowledge.

DV-NIZK for equality of discrete log. Consider also the following language for the equality of discrete
logs.

EDL∆ =

{
(h0, h1) ∈ ZNξ+1 : ∃t ∈ ZNξ s.t.

gt0 = h0 mod Nξ+1

gt1 = h1 mod Nξ+1

}
parametrized by ∆ = (g0, g1, N, ξ) where g0, g1 ∈ ZNξ+1 . for the equality of discrete logs. Again, the
framework of [CS02] can be adapted to obtain an efficient reusable DV-NIZK for this language with statistical
simulation soundness.

Lemma 11 ([CS02] ). There exists a reusable DV-NIZK

NIZKEDL∆
= (NIZK.GenCRSEDL∆

,NIZK.ProveEDL∆
,NIZK.VerifyEDL∆

)

where ∆ = (g0, g1, N, ξ). The scheme fulfills statistical simulation soundness and perfect zero-knowledge.

DV-NIZK for equality of plaintexts. Consider the language for the equality of plaintexts in two
different DJ ciphertexts

EPDJ∆ =

{ci, di}i ∈ Z4
Nξ+1 : ∃({ti}i,m) ∈ Z3

Nξ s.t.

c1 = gt11 mod Nξ+1

c2 = ht11 (1 +N)m mod Nξ+1

d1 = gt22 mod Nξ+1

d2 = ht22 (1 +N)m mod Nξ+1


for i = 1, 2, parametrized by ∆ = ((g1, h1), (g2, h2), N, ξ) where (g1, h1), (g2, h2) ∈ ZNξ+1 for the equality of
plaintexts.

Lemma 12 ([CS02] ). There exists a reusable DV-NIZK

NIZKEPDJ∆
= (NIZK.GenCRSEPDJ∆

,NIZK.ProveEPDJ∆
,NIZK.VerifyEPDJ∆

)

where ∆ = (g, h,N, ξ). The scheme fulfills statistical simulation soundness and perfect zero-knowledge.
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Range Proofs for BGN Finally, we consider the language of well-formed BGN ciphertexts encrypting a
bit.

BGN∆ =

{
{Ci}i ∈ G` : ∃(t, {mi}) ∈ Z`+1

n s.t.
mi ∈ {0, 1}
Ci = GmiHt

i

}
for i ∈ [`], where ∆ = (G, n,G, {Hi}i∈[`]) and G, {Hi}i∈[`] ∈ G.

This is not a linear language and, thus, it cannot be instantiated using the framework of [CS02]. Luckily,
the work of [GOS06] presents an efficient scheme for this language.

Lemma 13 ([GOS06]). There exists a reusable DV-NIZK scheme13

NIZKBGN∆
= (NIZK.GenCRSBGN∆

,NIZK.ProveBGN∆
,NIZK.VerifyBGN∆

)

for the language BGN . The protocol has perfect simulation soundness and computational zero-knowledge
under the SD assumption.

5.2 Equality of Plaintexts in DJ and BGN ciphertexts.

We now show how to prove that a BGN and a DJ ciphertexts encrypt the same value. Consider the following
language

EQ∆ =


D0, h0, {Di, c1,i, c2,i}i∈[`] : ∃(r, t, {mi}) s.t.

mi ∈ {0, 1}
D0 = Hr

0 ∈ G
Di = GmHr

i ∈ G
c0 = ht0 ∈ ZNξ+1

c1 = gt ∈ ZNξ+1

c2,i = hti(1 +N)mi ∈ ZNξ+1


where ∆ = (G, n,G,H0, {Hi}i∈[`], N, ξ, g, h0, {hi}i∈[`]), G,H0, {Hi}i∈[`] ∈ G and g, h0, {hi}i∈[`] ∈ ZNξ+1 .

Construction 2. Let ` ∈ Z. Let ∆ = (G, n,G,H0, {Hi}i∈[`], N, ξ, g, h0, {hi}i∈[`]) be as above, such that

n > Nξ+1. Let β ∈ N such that λ/β = negl(λ), and Nξ/2 > `β. We require the following ingredients:

1. The scheme of Lemma 13, NIZKBGN∆1
= (NIZK.GenCRSBGN∆1

,NIZK.ProveBGN∆1
,NIZK.VerifyBGN∆1

)

for some ∆1 = (G, n,G, {Hi}i∈[`]).

2. The scheme of Lemma 10, NIZKDJ∆2
= (NIZK.GenCRSDJ∆2

,NIZK.ProveDJ∆2
,NIZK.VerifyDJ∆2

) for

some ∆2 = ({g, hi}i, N, ξ).

3. The scheme of Lemma 10, NIZKDL∆3
= (NIZK.GenCRSDL∆3

,NIZK.ProveDL∆3
,NIZK.VerifyDL∆3

) for

some ∆3 = (G, n,H,N, ξ, h).

We present the scheme in full detail.

GenCRSEQ∆
(1λ) :

• Compute (crs1, td1)← NIZK.GenCRSBGN∆1
(1λ) where ∆1 = (G, {G,Hi}i∈[`]).

• Compute (crs2, td2)← NIZK.GenCRSDJ∆2
(1λ) where ∆2 = ({g, hi}i∈[`], N, ξ).

• Compute (crs3, td3)← NIZK.GenCRSDL∆3
(1λ) where ∆3 = (G, n,H0, N, ξ, h0).

• For all j ∈ [λ], do the following:

– Sample αj ←$ZN and Aj ←$Zn. For all i ∈ [`], sample σi,j ←$ {0, 1}. Compute fj = h
αj
0

∏`
i=1 h

σi,j
i

mod Nξ+1 and Fj = H
Aj
0

∏`
i=1H

σi,j
i

• Output crs =
(
{Fj , fj}j∈[λ], crs1, crs2, crs3

)
and td =

(
{αj , Aj , {σi,j}i∈[`]}j∈[λ], td1, td2, td3

)
13The scheme presented in [GOS06] is a NIZK scheme and not a DV-NIZK. However, we can view a NIZK as a DV-NIZK

where td =⊥.
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ProveEQ∆
(crs, x = (D0, h0{Di, c1,i, c2,i}i∈[`]), w = (r, t, {mi∈[`]})) :

• Parse crs as
(
{Fj , fj}j∈[λ], crs1, crs2, crs3

)
.

• Compute π1 ← NIZK.ProveBGN∆1
(crs1, x1, w1) where x1 = {Di}i∈[`] and w1 = (r, {mi}i∈[`]).

• Compute π2 ← NIZK.ProveDJ∆2
(crs2, x2, w2) where x2 = {c1,i, c2,i}i∈[`] and w2 = (t, {mi}i∈[`]).

• Compute π3 ← NIZK.ProveDL∆3
(crs3, x3, w3) where x3 = (D0, c0) and w3 = (r, t).

• For all j ∈ [λ], do the following: Sample τj ←$ ΦZ,β and compute aj = fj
t(1+N)τjmod Nξ+1. Compute

Kj = GτjF rj .

• Output π =
(
{aj ,Kj}j∈[λ], π1, π2, π3

)
.

VerifyEQ∆
(td, x, π) :

• Parse π as
(
{aj ,Kj}j∈[λ], π1, π2, π3

)
and td as

(
{αj , Aj , {σi,j}i∈[`]}j∈[λ], td1, td2, td3

)
• If 0← NIZK.VerifyBGN∆1

(td1, x1, π1) where x1 = {Di}i∈[`], output 0.

• If 0← NIZK.VerifyDJ∆2
(td2, x2, π2) where x2 = {c1,i, c2.i}i∈[`], output 0.

• If 0← NIZK.VerifyDL∆3
(td3, x3, π3) where x3 = (D0, c0), output 0.

• For all j ∈ [λ], do the following:

– For all i ∈ [`], compute zj = a−1
j c

αj
0

∏`
i=1 c

σi,j
2,i mod Nξ+1. If there is a zj which is not of the form

(1 +N)yj , output 0. Else, recover yj.

– Compute Lj = K−1
j D

Aj
0

∏
iD

σi,j
i in G.

• If there is a j ∈ [λ] such that Gyj 6= Lj in G, output 0. Else, output 1.

Lemma 14. The scheme presented in Construction 2 is complete.

Proof. Assume x ∈ EQ∆. Fix a j ∈ [λ]. Then,

zj = a−1
j c

αj
0

∏̀
i=1

c
σj
2,i mod Nξ+1

=

(
h
αj
0

∏̀
i=1

h
σi,j
i

)−t
(1 +N)−τjh

tαj
0

∏̀
i=1

h
tσi,j
i (1 +N)miσi,j mod Nξ+1

= (1 +N)
∑`
i=1 miσi,j−τj mod Nξ+1

from which the verifier can recover yj =
∑`
i=1miσi,j − τj . Moreover, |yj | < `β < Nξ/2 < n/2. That is, yj

does not wrap around modulo Nξ nor modulo n.
In addition, we have

Lj = K−1
j D

Aj
0

∏̀
i=1

D
σi,j
i

=
(
H
Aj
0

∏
H
σi,i
i

)−r
G−τHrA0

0

∏̀
i=1

(Hr
i G

mi)σi,j

= G
∑`
i=1 miσi,j−τj = Gyj

in G. Thus, the proof is accepted as valid because yj mod Nξ = yj mod n.
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Lemma 15. The scheme presented in Construction 2 has zero-knowledge under the SD assumption.

Proof. To prove zero-knowledge, we construct a simulator SimZK that creates transcripts which are indistin-
guishable from the ones outputted by the protocol.

Let Sim1, Sim2 and Sim3 be the zero-knowledge simulators of the schemes NIZKBGN∆1
, NIZKDJ∆2

and
NIZKDL∆3

,respectively (which exist by Lemma 13, Lemma 10 and Lemma 9) The simulator SimZK works as
follows:

• CRS generation. It creates a crs exactly as in the real protocol and keeps td =
(
{σi,j}i∈[`],j∈[λ], td1, td2, td3

)
to itself.

• Upon receiving an instance (D0, h0{Di, c1,i, c2,i}i∈[`]), SimZK first simulates π1 ← Sim1(td1, x1), π2 ←
Sim2(td2, x2) and π3 ← Sim3(td3, x3). Then, it repeats the following for every j ∈ [λ]: It samples

τj ←$ ΦZ,β and computes aj = (1 +N)τjc
αj
0

∏
c
σi,j
2,i mod Nξ+1 and Kj = GτjH

Aj
0

∏
D
σi,j
i .

• It outputs π = ({aj ,Kj}j∈[λ], π1, π2, π3).

We now argue that the distributions of the proofs outputted by ProveEQ∆
and SimZK are indistinguishable.

By the zero-knowledge property of NIZKBGN∆1
, NIZKDJ∆2

and NIZKDL∆3
the proofs π1, π2 and π3 are

indistinguishable from the real ones (π1 is computationally indistinguishable given that the SD assumption
holds). So, we just need to analyze the distributions of aj and Kj .

We start by analyzing the distribution of aj . First note that,

a−1
j c

αj
0

∏̀
i=1

c
σi,j
2,i = c

−αj
0

∏̀
i=1

c
−σi,j
2,i (1 +N)−τjc

αj
0

∏̀
i=1

c
σi,j
2,i mod Nξ+1

= (1 +N)−τj mod Nξ+1

To see that aj is indistinguishable from one created in the real-world, note that by Lemma 1, we have

that
∑`
i=1miσi,j − τj ≈negl(λ) τj , for τj ←$ ΦZ,β and mi, σi,j ∈ {0, 1}, since λ/β = negl(λ). Hence,

(1 +N)
∑`
i=1 miσi,j−τj ≈negl(λ) (1 +N)τj

and therefore

c
αj
0

∏̀
i=1

c
σi,j
2,i (1 +N)τj ≈negl(λ) f

t
j (1 +N)

∑`
i=1 miσi,j−τj .

An identical argument can be used to show that Kj is indistinguishable from the one created in the real
protocol.

Lemma 16. The scheme presented in Construction 2 has statistical simulation soundness.

Proof. We first show how the simulator SimSnd simulates the VerifyEQ∆
(td, ·, ·) oracle to the adversary. Since

we are proving statistical simulation soundness, our simulator is allowed to run in exponential time.
SimSnd works as follows:

• CRS generation. It generates crs by sampling fj ←$NRN and Fj ←$ pG.

• Upon receiving a query to the oracle Verify consisting of a statement x = (D0, h0, {Di, c1,i, c2,i}i∈[`])
together with a proof π from the adversary, it does the following:

1. It brute-forces the statement (D0, {Di}i∈[`]) to recover the witness (r, {mi}i∈[`]), and (c0, {c1,i, c2,i}i∈[`])
to recover (t, {m′i}i∈[`]).

2. It parses π as ({aj ,Kj}j∈[λ], π1, π2, π3). It brute-forces aj to recover {t̄j , τ ′j}, and Kj to recover
(r̄j , τj).
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3. If there is an index i such that (c1,i, c2,i) are not of the form c1,i = gtimod Nξ+1 and c2,i =

hti(1 +N)m
′
imod Nξ+1 or Di is not of the form Di = GmiHr

i in G where mi ∈ {0, 1}, it outputs
0.

4. If there is an index i such that ai is not of the form f ti (1 +N))τ
′
imod Nξ+1 (meaning that t̄i 6= t),

it outputs 0. Moreover, if K is not of the form GτjF rj in G (meaning that r̄j 6= r), output 0.

5. If c0 is not of the form htmod Nξ+1 or if D0 is not of the form Hr
0 , it outputs 0.

6. If there is i ∈ [`] or j ∈ [λ] such that mi 6= m′i or τ ′j 6= τj , it outputs 0. Else, it outputs 1

• Upon receiving the challenge proof (x∗, π∗), it performs the same checks as in steps 3, 4 and 5. If the
tests pass, it samples σi,j ←$ {0, 1} and checks if

G
∑`
i=1 σi,jm

′
i−τ

′
j mod Nξ+1

= G
∑`
i=1 σi,jmi−τj

for every j ∈ [λ]. It outputs 0 if the test fails, 1 otherwise.

Hyb0: This is the real simulation soundness game.

Hyb1: This game is identical to the previous one except that SimSnd brute-forces the pairs statement/proof
(x, π), to recover the witness (r, {mi}i∈[`]), (t, {m′i}i∈[`]), and the values (τj , r̄j) and {t̄j , τ ′j} from the proof.
Finally, it performs the checks in steps 3 and 4.

Claim 1. Hybrids Hyb0 and Hyb1 are indistinguishable.

The statistical simulation soundness of the schemes NIZKBGN∆1
, NIZKDJ∆2

and NIZKDL∆3
guarantees

that D0, c0, Di and (c1,i, c2,i) are of the prescribed form, except with negligible probability.

Now fix j ∈ [λ] and assume that aj = f
t̄j
j (1 + N)τj . Then, since a−1

j

∏`
i=1 c

σi,j
2,i must be of the form

(1 +N)yj , we must have

−t̄j

(
αj +

∑̀
i=1

wiσi,j

)
+ t

(
αj +

∑̀
i=1

wiσi,j

)
= 0 mod φ(N)

where h0 = hwii . Thus t̄j = t.
An identical reasoning can be applied to argue that Kj must be of the form GτjF rj .

Hyb2. This hybrid is identical to the previous one, except that SimSnd performs the checks in step 6.

Claim 2. Hybrids Hyb1 and Hyb2 are indistinguishable.

The adversary A is able to distinguish both hybrids if there is a proof which is accepted in hybrid Hyb1

but rejected Hyb2 (or vice-versa). That is, suppose that A outputs ({mi,m
′
i}, {τj , τ ′j}). Fix j. Then the

proof is accepted in Hyb1 if

∑̀
i=1

σi,jmi − τj mod n =

(∑̀
i=1

σi,jm
′
i − τ ′j mod Nξ+1

)
mod n. (10)

Let ej =
∑`
i=1 σi,jmi and dj =

∑`
i=1 σi,j(m

′
i −mi). Then, equation 10 can be rewritten as

ej mod n = (ej + dj − τ ′j mod Nξ+1)− τj mod n.
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Consider the function Γj(z) defined as Γj(z) = (z − τ ′jmod Nξ+1)− τjmod n. it is easy to see that Γj(z) is
injective in ZNξ+1 . Let z1, z2 be such that

Γj(z1) = Γj(z2)

(z1 − τ ′j mod Nξ+1)− τj mod n = (z2 − τ ′j mod Nξ+1)− τj mod n

(z1 − τ ′j mod Nξ+1) = (z2 − τ ′j mod Nξ+1)

z1 mod Nξ+1 = z2 − τ ′ mod Nξ+1

where the second equivalence holds because n > Nξ+1.
Since Γj is injective, then we must have

ej mod Nξ+1 = ej + dj mod Nξ+1

∑̀
i=1

σi,jmi mod Nξ+1 =
∑̀
i=1

σi,jmi + σi,j(m
′
i −mi) mod Nξ+1

∑̀
i=1

σi,jmi mod Nξ+1 =
∑̀
i=1

σi,jm
′
i mod Nξ+1

Assume that there is a index i such that mi 6= m′i. Then the test will fail with at most 1/2 probability, for
a fixed j. Repeating the process for j ∈ [λ], we get that mi = m′i, except with negligible probability. Thus
τ ′j = τj .

Hybrid Hyb3. This hybrid is identical to the previous one, except that fi is chosen uniformly from NRN
and H is chosen uniformly from pG.

Claim 3. Hybrids Hyb2 and Hyb3 are indistinguishable.

Since αj ←$ZN , we can build an hybrid where αj is sampled from Z∗N , incurring only in statistical

distance. Moreover, since H0 is a generator of pG, H
Aj
0 is uniform in pG. The claim follows.

Claim 4. Let A be any adversary. For hybrid Hyb3, A has a negligible advantage.

Assume that A outputs (x∗, π∗) where x∗ /∈ EQ∆. Since σi,j ←$ {0, 1}, then the proof gets accepted if
equation 10 is fulfilled. As we have seen before, this happens only with negligible probability.

5.3 DV-NIZK for Range Proofs of DJ Ciphertexts with Equal Discrete Log

LetN ← RSA(λ) and ξ ≥ 0 be a fixed integer. In the following, t ∈ ZNξ are represented in {d−Nξ/2, . . . , N ξ/2e}.
Consider the following language of ranges:

REDJ∆ =

(c1, c2) ∈ Z2
Nξ+1 : ∃t ∈ ZNξ s.t.

t ∈ [−B,B]
c1 = gt mod Nξ+1

c2 = ht(1 +N)t mod Nξ+1


which is parametrized by ∆ = ((g, h), B,N, ξ) where (g, h) ∈ Z∗N , B ∈ Z, N and ξ.

In the following, we present a DV-NIZK scheme for the language above. The main idea is quite simple:
The prover outputs BGN ciphertexts Di encrypting bits mi and DJ ciphertexts (c1,i, c2,i that encrypt the
same values as Di (we can prove this using the scheme from the previous section). Then, the prover proves

that (c1, c2) encrypts the same value as
(∏`

i=0 c
2i

1,i,
∏`
i=0 c

2i

2,i

)
. Since DJ is linearly-homomorphic, we conclude

that (c1, c2) encrypts m =
∑`
i=0 2imi ≤ 2`−1.
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Construction 3. Let ` ∈ N and B = 2`−1 Let

• NIZKEQ∆1
= (NIZK.GenCRSEQ∆1

,NIZK.ProveEQ∆1
,NIZK.VerifyEQ∆1

) be the scheme in Construction 2,

for some ∆1 = (G, n,G,H0, {Hi}i∈[`], N, ξ, g, h0, {hi}i);

• NIZKEPDJ∆2
= (NIZK.GenCRSEPDJ∆2

,NIZK.ProveEPDJ∆2
,NIZK.VerifyEPDJ∆2

) be the scheme of Lemma

12, for some ∆2 = (g, h,N, ξ);

• NIZKEDL∆3
= (NIZK.GenCRSEDL∆3

,NIZK.ProveEDL∆3
,NIZK.VerifyEDL∆3

) be the scheme of Lemma 11,

for some ∆3 = (g, h,N, ξ).

We now present the scheme in full detail.

GenCRSREDJ∆
(1λ) :

• Compute (crs1, td1)← NIZK.GenCRSEQ∆1
(1λ) where ∆1 = (G, n,G,H0, {Hi}i∈[`], N, ξ, g, h0, {hi}i∈[`]).

• Compute (crs2,i, td2,i)← NIZK.GenCRSEPDJ∆2
(1λ) where ∆2,i = ((g, h), (g, hi), N, ξ) for all i ∈ [`].

• Compute (crs2,0, td2,0)← NIZK.GenCRSEPDJ∆2
(1λ) where ∆2,0 = ((g, h), (g, h), N, ξ).

• Compute (crs3, td3)← NIZK.GenCRSEDL∆3
(1λ) where ∆3 = (g, h(1 +N), N, ξ).

• Output crs = (crs1, crs2,0, crs3, {crs2,i}i∈[`]) and td = (td1, td2,0, td3, {td2,i}i∈[`]).

ProveREDJ∆
(crs, x = (c1, c2), w = t) :

• Parse crs as (crs1, crs2,0, crs3, {crs2,i}i∈[`]).

• Let (t1, . . . , t`) be the bit decomposition of t + B/2 ∈ [0, B]. Sample r←$Zn and s←$ZN . Compute
the ciphertexts Di = GtiHr

i , D0 = Hr
0 , d0 = hs0mod Nξ+1 and (d1,i, d2,i) where d1,i = gsmod Nξ+1

and d2,i = hsi (1 + N)timod Nξ+1. Compute the proof π1 ← NIZK.ProveEQ∆1
(crs1, x1, w1) where x1 =

(D0, d0, {Di, d1,i, d2,i}i∈[`]) and w1 = (r, s, {ti}i∈[`]).

• For i ∈ [`], sample si←$ZN . Compute the ciphertexts (c1,i, c2,i) where c1,i = gsimod Nξ+1 and
c2,i = hsi(1 + N)timod Nξ+1. Compute the proofs π2,i ← ProveEPDJ∆2,i

(crs2,i, x2,i, w2,i) for i ∈ [`]

where x2,i = (c1,i, c2,i, d1,i, d2,i) and w2,i = (si, r, ti).

• Compute new ciphertexts (c̄1, c̄2) and (c1, c
′
2) where c̄1 =

∏`
i=1(c1,i)

2i−1

, c̄2 =
∏`
i=1(c2,i)

2i−1

and
c′2 = c2(1 + N)B/2. Compute the proof π2,0 ← NIZK.ProveEPDJ∆2,0

(crs2,0, x2,0, w2,0) where x2,0 =

((c1, c
′
2), (c̄1, c̄2)) and w2,0 = (t, s̄, t+B/2) with s̄ =

∑`
j=1 sj2

j−1.

• Compute the proof π3 ← NIZK.ProveEDL∆3
(crs3, x3, w3) where x3 = (c1, c2) and w3 = t.

• Output π = (D0, d0, {Di, d1,i, d2,i, c1,i, c2,i, π2,i}i∈[`], π1, π2,0, π3).

VerifyREDJ∆
(td, x, π) :

• Parse π as (D0, d0, {Di, d1,i, d2,i, c1,i, c2,i, π2,i}i∈[`], π1, π2,0, π3) and td as (td1, td2,0, td3, {td2,i}i∈[`])

• Compute c̄1 =
∏`
i=1(c1,i)

2i−1

, c̄2 =
∏`
i=1(c2,i)

2i−1

and c′2 = c2(1 +N)B/2.

• If 0← NIZK.VerifyEQ∆1
(td1, x1, π1) where x1 = (D0, d0, {Di, c1,i, c2,i}i∈[`]), output 0.

• If 0← NIZK.VerifyEPDJ∆2,i
(td2,i, x2,i, π2,i), for all i ∈ {0, . . . , `}, output 0.
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• If 0← NIZK.VerifyEDL∆1
(td3, x3, π3) where x3 = (c1, c2), output 0. Else, output 1.

Lemma 17. The scheme presented in Construction 3 is complete.

Proof. Let (c1, c2) ∈ REDJ∆. Then, by the completeness of NIZKEDL∆3
, the proof π3 is accepted. Now,

the ciphertexts (c1,i, c2,i) encrypt bits ti by the completeness of NIZKEQ∆1
. This means that the ciphertext

(c̄1, c̄2) encrypts t̄ =
∑`
i=1 2i−1ti. Hence, t̄ ∈ [0, B]. By the completeness of NIZKEPDJ∆2

, (c1, c
′
2) encrypts

t̄ ∈ [0, B] and, thus, (c1, c2 = c′2(1 + N)−B/2) encrypts t ∈ [−B/2, B/2]. We conclude that the proof is
accepted as valid.

Lemma 18. The scheme presented in Construction 3 has zero-knowledge under the SD assumption.

Proof. The proof follows from the fact that the schemes NIZKEQ∆1
, NIZKEPDJ∆2

and NIZKEDL∆3
are zero-

knowledge (here NIZKEQ∆1
has computational zero-knowledge under the SD assumption).

Lemma 19. The scheme presented in Construction 3 is statistically simulation sound.

Proof. The proof follows readily from the fact that the schemes NIZKEQ∆1
, NIZKEPDJ∆2

and NIZKEDL∆3

are statistically simulation sound and that the DJ scheme is linear homomorphic. That is, if (c1,i, c2,i) all

encrypt bits, then (c̄1, c̄2) where c̄1 =
∏`
i=1(c1,i)

2i−1

and c̄2 =
∏`
i=1(c2,i)

2i−1

is an encryption of a value
smaller than 2`−1.

6 Reusable Laconic Private Set Intersection

In this section, we present a protocol that implements `PSI in a black-box fashion. We then prove that the
protocol guarantees security against a semi-honest receiver and against a malicious sender. The input sets
are subsets of a universe U of exponential size.

Protocol. We now present the construction for reusable PSI.

Construction 4. Let U be a universe which contain the input sets of the parties. Let κ ∈ Z such that
5κ ≤ λ and ξ ∈ N. We require the following ingredients in this construction:

1. A PPRF PPRF : K × U → Primes(κ) which outputs prime numbers.14

2. A DV-NIZK NIZKREDJ∆
= (NIZK.GenCRSREDJ∆

, NIZK.ProveREDJ∆
, NIZKVerifyREDJ∆

) for the
language REDJ∆ which is defined in Section 5, for some ∆ = ((g0, g1), B,N, ξ).

3. An IND-CPA PKE scheme PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec)

4. A (κ− 1, negl(λ))-strong extractorExt : S × ZNξ+1 → {0, 1}λ.

We assume that the receiver’s set is of size M and the sender’s set is of size m, where M > m. The
protocol is composed by the following algorithms:

GenCRS(1λ) :

• Sample N ←$RSA(λ), that is, N = PQ where P,Q are prime numbers. Choose B such that Nξ−1/2 ≥
B > N2κ.

• Sample a pair of public and secret keys (pk, sk)← PKE.KeyGen(1λ). Additionally, sample a PPRF key
k←$K. Set ∆ = ((g0, g1), B,N, ξ) where (g0, g1)←$NRN .

• Output crs = (N, pk, (g0, g1), B, k,∆).

14We remark that we use a PPRF, not because we want uniform outputs, but to implicitly define the set of primes. A similar
trick was used in [BGI16].
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R1(crs, SR) :

• Parse crs := (N, pk, (g0, g1), B, k,∆), and SR := {idi}i∈[M ] ⊆ U

• Compute the prime numbers pi ← PPRF(k, idi), for all i ∈ [M ].

• Sample r←$ZN \ {0} and compute h = g
r
∏
i∈[M] pi

0 mod Nξ+1.

• Run (crs1, td1)← NIZK.GenCRSREDJ∆
(1λ).

• Output st = (r, td1) and psi1 = (h, crs1).

S(crs, SS, psi1) :

• Parse crs := (N, pk, (g0, g1), B, k,∆), psi1 := (h, crs1) and SS := {id′i}i∈[m] ⊆ U .

• For i ∈ [m] do the following:

– Sample ρi←$ZN . Compute the prime numbers pi ← PPRF(k, id′i).

– Sample an extractor seed si←$S and compute Ri ← Ext(si, h
ρimod Nξ+1)

– Compute fi = gρipi0 mod Nξ+1, Fi = gρipi1 (1 +N)ρipimod Nξ+1 and cti ← PKE.Enc(pk, id′i;Ri).

– Compute πi ← NIZK.ProveREDJ∆
(crs1, xi, wi) where xi = (fi, Fi) and wi = ρipi.

• Output psi2 = {(fi, Fi), cti, si, πi}i∈[m].

R2(crs, st, psi2) :

• Parse st := (r, td1) and psi2 := {(fi, Fi), cti, si, πi}i∈[m]. Set I = ∅

• For all j ∈ [m] do the following:

– If 0← NIZK.VerifyREDJ∆
(td1, xj , πj) where xj = (fj , Fj), abort the protocol.

– If there is a i ∈ [M ] such that
ctj = PKE.Enc(pk, idi;R

′
i)

where R′i ← Ext(sj , f
ri
j mod Nξ+1) and ri = r

M∏
`=1, 6̀=i

p`, then add the element idi to I.

• Output I.

Communication cost. Here, we analyze the communication cost of the protocol as a function of the input
set sizes |SS| = m and |SR| = M and we omit polynomial factors in the security parameter λ. The first
message outputted by R1 has size O(1). The second message outputted by S has size O(m). The overall
communication cost is O(m), that is, it is independent of M .

Analysis. We now analyze the correctness and security of the protocol.

Theorem 2. The protocol presented in Construction 4 is correct.

Proof. Let (h, crs1) be the message sent by R1 created using the set SR as input.
Fix an index j such that bj ∈ SS ∩ SR. Upon receiving ((fj , Fj), ctj , sj , π

REDJ
j ) from SS (i.e., the part of

psi2 with respect to bj).
Since |ρjpj | < 2κN < B, then 1 ← NIZK.VerifyREDJ∆

(td1, xj , πj) where xj = (fj , Fj) except with
negligible probability by the completeness of NIZKREDJ∆

.
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Additionally, let r̃ = r
∏
i:qi 6=pj qi where qi ← PPRF(k, idi) for idi ∈ SR and pj ← PPRF(k, bj). Then

f r̃j mod Nξ+1 = g
ρjpjr

∏
i:qi 6=pj

qi

0 mod Nξ+1

= g
ρjr

∏
i qi

0 mod Nξ+1

= hρj mod Nξ+1.

Hence, R′j = Rj and thus, ctj = PKE.Enc(pk, bj ;R
′
j). Therefore, bj is added to I.

Theorem 3. The protocol presented in Construction 4 securely UC-realizes functionality FrPSI in the GCRS-
hybrid model against:

• a semi-honest receiver given that the φ-hiding and the DCR assumptions hold;

• a malicious sender, where security holds statistically.

Proof. We start by proving that the protocol is secure against semi-honest adversaries corrupting the receiver.

Lemma 20. The protocol is secure against a semi-honest receiver.

We first show how the simulator SimR works. In the following, let SimNIZK be the zero-knowledge simulator
from Lemma 18 for the NIZKREDJ∆

scheme.

1. SimR takes the input SR of R and sends it to the ideal functionality FrPSI.

2. CRS generation. To generate the CRS, Sim behaves as the honest algorithm would do, except that
it sets g1 = g′1(1 +N)−1mod Nξ+1 where g′1←$NRN .

3. The simulator creates the semi-honest receiver’s view exactly as in the real protocol and keeps st =
(r, td1) to itself.

4. Upon receiving a message psi1 = (h, crs1) from R and a message I (of size m′, that is, |I| = m′) from
the ideal functionality FrPSI, the simulator does the following:

• Sample a subset X of size m−m′ from the universe U and sets SS = I ∪ X .

• For all i ∈ I, SimR computes ((fi, Fi), cti, si, πi) as in the real protocol.

• For all i ∈ SS\I, SimR simulates proofs πi ← SimNIZK(td1, x) for x = (fi, Fi) where fi, Fi←$NRN .
Then, it encrypts cti ← PKE.Enc(pk, 0;Ri) where Ri ← {0, 1}λ.

To prove indistinguishability between the real protocol and the simulated one, we consider the following
sequence of hybrids:

Hyb0: The is the real protocol.

Hyb1: This hybrid is identical to the previous one, except that, for i ∈ SS \ I, SimR simulates the proofs
πi ← SimNIZK(td1, x) for xi = (fi, Fi).

Claim 5. Hybrids Hyb0 and Hyb1 are statistically indistinguishable.

The claim above follows directly from the statistical zero-knowledge of the scheme NIZKREDJ∆
.

Hyb2: This hybrid is identical to the previous one, except that the simulator replaces g1←$NRN by
g1 = g′1(1 +N)−1mod Nξ+1 where g′1←$NRN .

Claim 6. Assume that the DCR assumption holds. Then hybrids Hyb1 and Hyb2 are indistinguishable.

The claim above follows directly from Lemma 1 which states that it is hard to distinguish g1←$NRN
from g1 = g′1(1 +N)−1mod Nξ+1 where g′1←$NRN , given that the DCR assumption holds.
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Hyb3,`: This hybrid is identical to the previous one, except that the simulator samples fu` , Fu` ←$NRN
and computes

Ru` ← Ext

(
s, f

rq−1
u`

∏M
j pj

u` mod Nξ+1

)
where qu` ← PPRF(k, xu`) for all u` ∈ {i : xi ∈ SS \ I} and pj ← PPRF(k, yj) for all yj ∈ SR. The hybrid is
defined for ` = 1, . . . ,m−m′.

Claim 7. Hybrids Hyb2 and Hyb3,m−m′ are indistinguishable.

We prove that hybrids Hyb3,`−1 and Hyb3,` are indistinguishable for ` = 1, . . . ,m − m′ and where
Hyb3,0 = Hyb2.

First, remark that the distribution of ρu` is the uniform distribution over ZN . Hence, we can build
a statistically indistinguishable sequence of hybrids Hyb′2 where we sample ρu` ←$Z∗N incurring only in
statistical distance.

Now, since g0 and g
pu`
0 are generators of NRN , then the distribution of g

ρu`pu`
0 is identical to f̃i←$NRN ,

for ρu` ←$Z∗N .
For pi sampled using PPRF (for a uniform input xu` ←$U), we know that pu` does not divide φ(N) and

ρu` ∈ Z∗N if ρu` ←$ZN , except with negligible probability. We conclude that

f̃u` mod Nξ+1 ≈negl(λ) g
ρu`pu`
0 mod Nξ+1

where f̃u` ←$NRN , g0←$NRN , ρu` ←$Z∗N and pu` ←$Primes(κ).
Using a similar argument, we have that

Fu` mod Nξ+1 ≈negl(λ) (g1(1 +N))ρu`pu` mod Nξ+1

and that for any G(
fu` mod Nξ+1, fu`

Gp−1
u` mod Nξ+1

)
≈negl(λ)

(
g
ρu`pu`
0 mod Nξ+1, g0

ρu`G mod Nξ+1
)
.

Hyb4,`: This hybrid is identical to the previous one except that SimR computes Ru` ←$ {0, 1}λ for all
u` ∈ {i : xi ∈ SS \ I}. The hybrid is defined for ` = 1, . . . ,m−m′.

Claim 8. Assume that Ext is a (κ − 1, negl(λ))-strong extractor and that the φ-hiding assumption holds.
Then hybrids Hyb3 and Hyb4,m−m′ are indistinguishable.

We prove that hybrids Hyb4,`−1 and Hyb4,` are indistinguishable by constructing a reduction that
contradicts Lemma 2, for ` = 1, . . . ,m−m′ and where Hyb3 = Hyb4,0.

Suppose that there is an adversary A that distinguishes hybrids Hyb4,`−1 and Hyb4,`. We build an
adversary B that breaks Lemma 2.
B receives as input (N, s, q, g). It behaves as the simulator in Hybrid Hyb4,`−1 except that it sets the

modulus in the crs to be N . Additionally, it programs the PPRF such that q ← PPRF(k, xu`) (this step is
done while creating the PPRF key). Upon receiving a message from A (together with its view), it computes

G = r
∏M
i pi where pi ← PPRF(k, xi) for xi ∈ SR. It sends G to the challenger and receives z̃. This value

z̃ is either equal to Ext(s, g̃G/qmod Nξ+1), if γ = 0, or it is uniformly chosen, if γ = 1, where γ is the
challenge bit. Now B sets fu` = g̃, ct ← Enc(pk, xu`;Ru`) and sends psi2 = where the u`-th coordinate is
(fu`, Fu`, ctu`, su`, πu`). The adversary outputs a bit b and B sets b as its guess. It is easy to see that if
γ = 0, then B’s message is indistinguishable from the message of hybrid Hyb4,`−1 and if γ = 1, the it is
indistinguishable from the message sent in hybrid Hyb4,`.
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Hyb5,`: This hybrid is identical to the previous one except that SimR encrypts ctu` ← PKE.Enc(pk, 0;Ru`)
for all for all u` ∈ {i : xi ∈ SS \ I}. The hybrid is defined for ` = 1, . . . ,m − m′. Hybrid Hyb5,m−m′ is
identical to the simulation.

Claim 9. Assume that PKE is an IND-CPA PKE. Then hybrids Hyb4 and Hyb5,m−m′ are indistinguishable.

The claim follows directly from the IND-CPA property of the underlying PKE. That is, given an adversary
A that distinguishes both hybrids, we can easily build an adversary B against the IND-CPA property of
PKE. This adversary B simply chooses as messages m0 = xu` (where xu` ∈ SS \ I) and m1 = 0. It outputs
whatever A outputs.

Lemma 21. The protocol is secure against malicious senders.

We first show how the simulator SimS extracts the sender’s input:

1. CRS generation. SimS generates the crs following the algorithm GenCRS. It keeps φ(N) to itself
(which can be computed using the prime numbers p, q) and the secret key sk corresponding to pk. It
outputs crs = (pk, (g0, g1), B, k,∆)

2. SimS samples h←$NRN and computes (crs1, td1)← NIZK.GenCRSREDJ∆
(1λ). It sends psi1 = (h, crs1)

to the malicious sender.

3. Whenever SimS receives a message psi2 = {(fi, Fi), ct, si, πi}i∈[m] from the sender, the simulator initially

sets SS and does the following for all i ∈ [m]:

• It checks if 1← NIZK.VerifyREDJ∆
(td1, xj , πj) where xj = (fj , Fj), and aborts otherwise.

• It computes id′i ← PKE.Dec(sk, cti) and pi ← PPRF(k, id′i). Additionally, it extracts ζi by recov-

ering ζ ′i from (1 +N)ζ
′
i = F

φ(N)
i and computing ζ = ζ ′/φ(N) over the Nζ . It computes ρ′i = ζi/pi

over the integers. If cti = PKE.Enc(pk, id′i;Ri) where Ri = Ext(si, h
ρ′imod Nξ+1), then it adds id′i

to SS.

4. It sends SS to FPSI and halts.

We now show that the simulation is indistinguishable from the real protocol via the following sequence
of hybrids.

Hyb0: This hybrid is the real protocol.

Hyb1: This hybrid is identical to the previous one, except that SimS keeps (φ(N), sk) while creating crs.
Note that crs is perfectly indistinguishable from a honestly created one.

Hyb2: This hybrid is identical to the previous one except that the simulator computes the first message
(sent by the receiver) as h← Zφ(N).

Claim 10. Hybrids Hyb1 and Hyb2 are statistically indistinguishable.

Since g0 is a generator of NRN , the distributions of gx and h←$NRN are identical. It follows that the
hybrids are indistinguishable.
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Hyb3: This hybrid is identical to the previous one except that the simulator, instead of checking if there
is an index i for which

ctj = PKE.Enc(pk, idi;R
′
i)

where R′i = Ext(sj , f
ri
j ) and ri = r

M∏
`=1, 6̀=i

p` (as in the real protocol), it does the checks as in the simulation.

That is, it computes id′i ← PKE.Dec(sk, cti) and pi ← PPRF(k, id′i). Additionally, it extracts ζi by recovering

ζ ′i from (1 +N)ζ
′
i = F

φ(N)
i and computing ζ = ζ ′/φ(N). It computes ρ′i = ζi/pi over the integers. Then, it

checks if cti = PKE.Enc(pk, id′i;Ri) where Ri = Ext(si, h
ρ′i).

Claim 11. Hybrids Hyb2 and Hyb3 are indistinguishable given that PKE is correct and NIZKREDJ∆
is

simulation sound.

By the simulation soundness of NIZKREDJ∆
, ζi < Nξ−1/2. Hence, ζ ′i < Nξ/2 and thus ζ ′imod Nξ is

equal to ζ ′i as an integer. Computing ζ = ζ ′i/φ(N) yields ρipi over Z. Thus ρi = ζi/pi over Z.
Thus, performing the checks in this hybrid has the same outcome as in the real protocol.

Setting the parameters. The value B is such that Nξ−1/2 ≥ B > N2κ for 5κ ≤ λ. Then, it is enough
to set ξ = 3, so that we can find a B that fulfills the condition.

7 Labeled Laconic PSI and Laconic OT

In this section, we show how we can extend the techniques developed in Section 6 to construct LPSI to obtain
new constructions of labeled LPSI and LOT. Both constructions are reusable and secure against malicious
senders.

7.1 Reusable Labeled Laconic PSI Secure Against a Malicious Sender

Reusable Labeled PSI functionality. The functionality FrLPSI is parametrized by a universe U and by
a universe of labels L and works as follows:

• Setup phase. R sends (sid, SR) to FrLPSI where SR ⊆ U . It ignores future messages from R with the
same sid.

• Send phase. S sends (sid, i, SS,lab ⊆ U × L) from S to FrLPSI. FrLPSI sends (sid, i, SR∩SS,lab) to R, where
SR∩SS,lab = {(y, `) ∈ SS,lab : y ∈ SR}. It ignores future messages from S with the same sid and i ∈ N.

Protocol. We now present the construction for labeled reusable PSI.

Construction 5. Let U be a universe which contain the input sets of the parties. Let κ ∈ Z such that
5κ ≤ λ. Let

• PRF : K × U → Primes(κ) be a PRF which outputs prime numbers

• REDJ∆ be the language defined in Section 5 and NIZKREDJ∆
=

(NIZK.GenCRSREDJ∆
,NIZK.ProveREDJ∆

, NIZKVerifyREDJ∆
) be a DV-NIZK for the language REDJ∆,

for some ∆ = ((g0, g1), B,N, ξ).

• PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec) be an IND-CPA PKE scheme

• Ext : S × ZNξ+1 → {0, 1}2λ be a (κ− 1, negl(λ))-strong extractor.

We assume that the receiver’s set is of size M and the sender’s set is of size m, where M > m. The protocol
is composed by the following algorithms:
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GenCRS : This algorithm is identical to the one described in Construction 4.

R1(crs, SR) : This algorithm is identical to the one described in Construction 4.

S(crs, SS, psi1) : This algorithm is identical to the one described in Construction 4, except that (Ri||Ti) ←
Ext(s, hρimod Nξ+1). The string Ri is used to encrypt the set element (as in Construction 4) Additionally,
compute c̄ti = Ti ⊕ labi, where labi is the corresponding label.

R2(crs, st, psi2) : This algorithm is identical to the one described in Construction 4, except that whenever
ai ∈ I, compute labi = Ti ⊕ c̄ti. Output (I, {labi}i∈I).

Analysis. We state the theorems that guarantee the required properties for our scheme. We omit the
proofs since they are identical to the proofs of Theorems 2 and 3

Theorem 4. The protocol presented in Construction 5 is correct.

Theorem 5. The protocol presented in Construction 5 securely UC-realizes functionality FrLPSI in the GCRS-
hybrid model against:

• a semi-honest receiver given that the φ-hiding and the DCR assumptions hold;

• a malicious sender, where security holds statistically.

7.2 Laconic Oblivious Transfer with Malicious Sender Security

In this section, we present a new laconic oblivious transfer (LOT) scheme which is secure against malicious
sender. Besides, it only needs a small CRS and succinct messages for both rounds (as in [GVW20]).

Laconic oblivious transfer ideal functionality. Let Γ = Γ(λ) ∈ N. The functionality F`OT works as
follows: It receives a database D ∈ {0, 1}Γ from R. Upon receiving a message (i ∈ N,m0,m1, L ∈ [Γ]) from
the sender S, F`OT sends (i,mDL) to R and ignores future messages with the same i from S.

Protocol. We now present the construction for sender-malicious LOT.

Construction 6. Let Γ = Γ(λ) be a polynomial in λ. Let Let κ ∈ Z such that 5κ ≤ λ. Let

• PRF : K × U → Primes(κ) be a PRF which outputs prime numbers

• REDJ∆ be the language defined in Section 5 and NIZKREDJ∆
=

(NIZK.GenCRSREDJ∆
, NIZK.ProveREDJ∆

,NIZKVerifyREDJ∆
) be a DV-NIZK for the language REDJ∆,

for some ∆ = ((g0, g1), B,N, ξ).

• Ext : S × ZNξ+1 → {0, 1}2λ be a (κ− 1, negl(λ))-strong extractor.

GenCRS(1λ) : This algorithm is identical to the one described in Construction 4, except that it does not
create a public key pk. It outputs crs = (N, (g0, g1), B, k,∆) where ∆ = ((g0, g1), B,N, ξ).

Hash(crs, D ∈ {0, 1}Γ) : It computes h = g
r
∏Γ
i=1 ei,Di

0 mod Nξ+1, where r←$ZN and ei,b ← PPRF(k, 2i+b)
for i ∈ [Γ] and b ∈ {0, 1}, and computes (crs1, td1)← NIZK.GenCRSERDJ∆

(1λ). It outputs lot1 = (h, crs1).

Send(crs, lot1,m0,m1, L) : It computes fj = g
ρjeL,j
0 , Fj = g

ρjeL,j
1 (1 + N))ρjeL,j for j ∈ {0, 1} where

ρj ←$Dβ and eL,j ← PPRF(k, 2L + j), computes ctj = kj ⊕mj, where kj ← Ext(sj , h
ρj ), computes πj ←

NIZK.ProveERDJ∆
(crs, xj , wj) where xj = (fj , Fj) and wj = (ρjeL,j) It outputs lot2 = ({fj , Fj , ctj , πj , sj}j∈{0,1}, L).

35



Receive(crs, lot2, st) : It aborts if 0← NIZK.VerifyERDJ∆
(td, xj , πj) where xj = (fj , Fj). It computes kDL ←

Ext(sDL , f
r
∏
i6=L ei,Di

DL
mod Nξ+1) , and outputs mDL = ctDL ⊕ kDL .

Analysis. We state the theorems that guarantee the required properties for our scheme.

Theorem 6. The protocol presented in Construction 6 is correct.

The proof of correctness essentially follows the same lines as the proof of Theorem 2.

Theorem 7. The protocol presented in Construction 6 securely UC-realizes functionality F`OT in the GCRS-
hybrid model against:

• a semi-honest receiver given that the φ-hiding and the DCR assumptions hold;

• a malicious sender, where security holds statistically.

Proof. The proof of security against a semi-honest receiver is identical to the proof of Lemma 20.
We now sketch how to prove security against a malicious sender. The simulator works analogously to

the simulator of Lemma 21, except that, in this case, the simulator knows the prime eL,i for both i ∈ {0, 1}.
Thus, the re-encryption step is not needed anymore since the simulator can easily extract ρi, for i ∈ {0, 1}
by decrypting (fi, Fi) using φ(N) (which is well-formed and encrypting a value smaller than N2 by the
soundness of NIZKERDJ∆

) to recover a value ζ ′i. From this value, it can compute ρi = ζ ′i/(eL,iφ(N)). After
recoreving ρi, it can compute the keys ki and extract the messages mi.

Indistinguishability between the simulated version and the real protocol follows the same blueprint as
the proof of Lemma 21.

8 Self-Detecting Encryption

In this section we define self-detecting encryption, and show how to build it from laconic PSI. We first give
a semi-honest definition, and will present the malicious definition in Section 8.1.

Definition 15. A Self-Detecting Encryption (SDE) scheme is tuple of (randomized) algorithms SDE =
(Prm,Gen,Hash,Enc,Dec,Detect) such that:

• Prm(1λ): Takes as input a security parameter 1λ, and outputs a public parameter pp.

• Gen(pp): Takes as input a public parameter pp, and outputs a pair of keys (pk, sk).

• Hash(pp,DB): Takes as input a public parameter pp and a database DB, and outputs a hash value h
and a private state st. We require |h| ≤ poly(λ), for a fixed polynomial poly.

• Enc(pk, h,m): Takes as input a public key pk, a hash value h, and a message m, and outputs a ciphertext
ct.

• Dec(sk, ct): Takes as input a secret key sk and a ciphertext ct, and outputs a message m or ⊥.

• Detect(st, ct): Takes as input a private state st and a ciphertext ct, and outputs a message m or ⊥.

We require the following properties:

• Correctness. For any message m, letting pp←$ Prm(1λ) and (pk, sk)←$ Gen(pp): Pr[Dec(sk,Enc(pk,m)) 6=
m] ≤ negl(λ).

• Detection. For any pp ∈ Prm, any (pk, sk) ∈ Gen(1λ), any database of strings DB, and any message
m, letting (h, st)←$ Hash(pp,DB) and ct←$ Enc(pk, h,m), if m ∈ DB then Detect(st, ct) = m.
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• Efficiency. The size of h and running time of Enc are independent of the database size. There exists
a polynomial poly s.t. for all n := n(λ), any DB ∈ {0, 1}n, letting h←$ Hash(pp,DB) and pp, pk be as
above, then |h| ≤ poly(λ) and also the running time of Enc(pk, h,m) is upper bounded by poly(|m|, λ).

• Database Hiding. For any two databases (DB0,DB1) of equal size, if (h0, ∗) ←$ Hash(pp,DB0) and
(h1, ∗)←$ Hash(pp,DB1) then h0 and h1 are indistinguishable where pp←$ Gen(1λ).

• Semantic Security. For any database of strings DB and any two messages (m0,m1): (pk, h,Enc(pk, h,m0))
c≡

(pk, h,Enc(pk, h,m1)), where all the variables are sampled as above.

• Security Against the Authority. For any two messages (m0,m1), if m0 /∈ DB and m1 /∈ DB then(
pk, (h, st),Enc(pk, h,m0))

c≡ (pk, (h, st),Enc(pk, h,m1)
)
,

where pp←$ Prm(1λ), (pk, sk)←$ Gen(pp), and (h, st)←$ Hash(pp,DB).

We now show how to realize self-detecting encryption from semi-honest laconic PSI. Informally, the SDE
hash is the receiver’s first-round laconic PSI message, and the encryption of a message m consists of a PKE
encryption of m as well as a second-round PSI message based on m.

Construction 7. Let PKE = (KeyGen′,Enc′,Dec′) be a CPA-secure PKE scheme15 and LPSI = (GenCRS,R1,S,R2)
a laconic PSI.

• Prm(1λ): Sample crs←$ LPSI.GenCRS(1λ), and let pp := crs.

• Gen(pp): Run PKE.Gen′(1λ) to generate a pair of keys (pk, sk).

• Hash(pp,DB): Let h be the output of the receiver on DB and pp, i.e., h ←$ LPSI.R1(pp,DB). In
addition, let st be the private state of the receiver.

• Enc(pk, h,m): Output (ct1, ct2), where ct1 ←$ PKE.Enc′(pk,m) and ct2 ←$ LPSI.S(pp, {m}, h).

• Dec(sk, ct = (ct1, ct2)): Output PKE.Dec′(sk, ct1).

• Detect(st, ct = (ct1, ct2)): Output R2(st, ct2).

Correctness and efficiency follow immediately.

• Statistical database hiding follows from PSI-receiver statistical security.

• Semantic security and security against the authority property of the scheme follows from the CPA
security of PKE scheme Π and the sender’s security. Observe that if m /∈ DB then both ct1 and ct2
computationally hide the message even in the presence of the private state st of PSI. Specifically, one
can argue that ct1 computationally hides m because of the CPA security of PKE scheme Π, and ct2
computationally hides m because of the sender’s security of laconic PSI. The arguments above can be
made formal via a routine hybrid argument, and we omit the details.

8.1 Maliciously Secure Self-Detecting Encryption

Next, we provide a definition of self-detecting encryption in the malicious setting. In this setting, the
algorithm Prm provides a trapdoor which allows a server to ensure that the ciphertexts sent on the channel
can be verified while ensuring privacy of users. We remark that the trapdoor is only known for the server
(and is not included in users secret key).16 Clearly, as in the semi-honest setting, the authority would only

15We proceed with an independent PKE scheme for the sake of simplicity.
16Notice that in the malicious setting, there are three entities (user, server, and the authority) with their own secret key/state.
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be able to detect illegal content by looking at the ciphertexts communicated through the channel, and no
information will be leaked about normal/legal messages.

Specifically, a maliciously secure self-detecting encryption is a tuple of seven (randomized) algorithms
SDE = (Prm,Gen,Hash,Enc,Dec,Detect,Verify) such that Prm outputs a trapdoor td (along with pp) such
that the verification algorithm Verify checks well-formedness of a ciphertext using td as follows:

• Verify(td, ct): Takes a trapdoor td and a ciphertext ct and it outputs 1 or 0.

The other five algorithms, namely (Gen,Hash,Enc,Dec,Detect), have the same functionality as in the
semi-honest setting. We require that SDE should satisfy all the properties of a semi-honest encryption
scheme (correctness, efficiency, database hiding, semantic security, and security against the authority), along
with the following well-formedness property: for any PPT adversary A and database DB, if (pp, td) ←$

Prm(1λ), (pk, ∗)←$ Gen(pp), (h, ∗)←$ Hash(pp,DB) then the following holds for any adverserially generated
ciphertext ct ←$ AVerify(td,.)(pp, pk, h) with overwhelming probability (where A has oracle access to the
verification algorithm):

• If Verify(td, ct) = 1 and Dec(sk, ct) ∈ DB then Dec(sk, ct) = Detect(st, ct).

• If Verify(td, ct) = 1 and Dec(sk, ct) /∈ DB then Detect(st, ct) = ⊥.

Given a maliciously secure laconic PSI and a DV-NIZK for a specific language, one can construct a
maliciously secure SDE following the same blueprint that we provided in the semi-honest setting.

Construction 8. Let PKE = (Gen′,Enc′,Dec′) be a CPA-secure public-key encryption scheme, and let
NIZK = (NIZK.GenCRS,NIZK.Prove,NIZK.Verify) be a DV-NIZK for “message-equality” language (described
below).

• Prm(1λ): Sample (crsN , td) ←$ NIZK.GenCRS(1λ) and crsL ←$ LPSI.GenCRS(1λ), and let pp =
(crsN , crsL).

• Gen(pp): Sample a pair of keys (pk′, sk′)←$ PKE.Gen′(1λ). Set pk = (pk′, crsN , crsL) and sk = sk′.

• Hash(pp,DB): Parse pp = (crsN , crsL). Output (h, st)←$ LPSI.R1(crsL,DB).

• Enc(pk, h,m): Parse pk = (pk′, crsL, crs). Let ct1 ←$ PKE.Enc′(pk′,m) and ct2 ←$ LPSI.S(crsL, {m}, h).
Compute a proof for the statement that the messages underlying ct1 and ct2 are equal. Specifically,
consider the following language L (parameterized by ∆):

L∆ = {(ct1, ct2) : ∃(m, r, r′) s.t. ct1 = PKE.Enc′(pk′,m; r′) ∧ ct2 = LPSI.S(crsL, {m}, h; r)},

where ∆ = (pk′, crsL, h). In addition, r and r′ are the random coins used by PKE.Enc′ and LPSI.S,
respectively. Generate a proof π ←$ NIZK.Verify(crsN , ct1, ct2), and set ct3 := π. Finally, publish
ct = (ct1, ct2, ct3) as the ciphertext.

• Verify(td, ct) : Run NIZK.Verify on td and ct, and output the resulting bit.

• Dec(sk, ct = (ct1, ct2, ct3)): Output PKE.Dec′(sk′, ct1).

• Detect(st, ct = (ct1, ct2, ct3)): Output LPSI.R2(st, ct2).

Correctness, efficiency, database hiding, semantic security, and security against the authority of the
scheme can be argued in a similar fashion to the semi-honest setting. The additional requirement, namely
well-formedness property of the scheme essentially follows from the security of DV-NIZK. Observe that for
a maliciously generated ciphertext ct = (ct1, ct2, ct3), the messages hidden by ct1 and ct2 are not equal, and
hence the ciphertext ct will be rejected by the verification algorithm of DV-NIZK. We leave a black-box con-
struction of DV-NIZK (for the message-equality language above) from concrete cryptographic assumptions
to future work.
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