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Abstract. The idea of hybrid homomorphic encryption (HHE) is to drastically reduce
bandwidth requirements when using homomorphic encryption (HE) at the cost of
more expensive computations in the encrypted domain. To this end, various dedicated
schemes for symmetric encryption have already been proposed. However it is still
unclear if those ideas are already practically useful, because (1) no cost-benefit analysis
was done for use cases and (2) very few implementations are publicly available.
We address this situation in several ways. After we formally define HHE in a broader
sense than before, we build an open-source benchmarking framework involving several
use cases covering three popular libraries.
Using this framework, we explore properties of the respective HHE proposals. It turns
out that even medium-sized use cases are infeasible, especially when involving integer
arithmetic.
Consequently, we propose Pasta, a cipher thoroughly optimized for integer HHE use
cases. Pasta is designed to minimize the multiplicative depth, while also leveraging
the structure of both state-of-the-art integer HE schemes (BFV and BGV) to minimize
the homomorphic evaluation latency. Using our new benchmarking environment, we
extensively evaluate Pasta in SEAL and HElib and compare its properties to 7 existing
ciphers in two use cases. Our evaluations show that Pasta outperforms its competitors
for HHE both in terms of homomorphic evaluation time and noise consumption,
showing its efficiency for applications in real-world HE use cases. Concretely, Pasta
outperforms Agrasta by a factor of up to 82 and Masta by a factor of up to 6 when
applied to the two use cases.
Keywords: homomorphic encryption · hybrid homomorphic encryption · Pasta ·
SEAL · HElib · TFHE

1 Introduction
In recent years, people have become increasingly concerned about the privacy of their data,
and new regulations like the General Data Protection Regulation (GDPR)1 forbid sharing
and processing sensitive data. However, many applications, such as machine learning and
statistics, require a vast amount of data to be as accurate as possible. With GDPR and
similar regulations it is therefore difficult or even impossible to gather enough data to create
useful and accurate models. One solution to this problem is employing privacy-preserving

1https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32016R0679

mailto:firstname.lastname@iaik.tugraz.at
mailto:lgrassi@science.ru.nl
mailto:christoph.dobraunig@lamarr.at
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32016R0679


2 Pasta: A Case for Hybrid Homomorphic Encryption

cryptographic protocols and primitives, such as secure multi-party computation (MPC)
or homomorphic encryption (HE). Homomorphic encryption schemes allow performing
computations on encrypted data without having access to the secret decryption key. Many
privacy-preserving applications which employ homomorphic encryption use the following
design principle: First, the data holder encrypts their dataset using a homomorphic
encryption scheme and sends the ciphertexts to a server. The server then performs the
computations on the ciphertexts and produces an encrypted result. Only the data holder
knows the secret decryption key, so the server has to send the encrypted result to the data
holder who can then decrypt it to get the final result of the computation.

While this approach protects both the privacy of the input data and the secrecy of
the applied computations, it comes with several drawbacks: First, applying homomorphic
encryption results in a drastic performance penalty. Secondly, HE schemes suffer from
ciphertext expansion. This means that the ciphertexts in HE schemes are several orders of
magnitude larger than the corresponding plaintexts. This expansion negatively impacts the
amount of data which has to be transferred from the data holder to the server. Especially on
embedded devices, with limited bandwidth, memory, and computing power, this expansion
can have a considerable impact on the overall performance of the application.

The academic literature proposes two orthogonal solutions to this ciphertext expansion:
Using symmetric ciphers in hybrid homomorphic encryption, or using LWE encryption
and efficient conversion algorithms [CDKS20].

1.1 Hybrid Homomorphic Encryption (HHE)
Hybrid homomorphic encryption was first mentioned in [NLV11]. The main idea behind
HHE is the following: Instead of encrypting the data with HE schemes, encrypt the data
with a symmetric cipher (expansion factor of 1) and send the symmetric ciphertexts to the
server. The server then first homomorphically performs the symmetric decryption circuit
to transform the symmetric ciphertext into a homomorphic ciphertext and then proceeds
with performing the actual computations. This procedure requires that the data holder
first sends the symmetric key encrypted under homomorphic encryption to the server.

At first, researchers tried to evaluate existing ciphers, like AES [DR00, DR02], with ho-
momorphic encryption [GHS12, CCK+13, CLT14]. However, despite their plain efficiency,
existing ciphers were not well-suited for HHE. Especially their large multiplicative depth
deemed to be incompatible with modern HE schemes. As a consequence, researchers came
up with symmetric cipher designs [ARS+15, CCF+16, DEG+18, MCJS19, HL20] with
different optimization criteria compared to, e.g., AES, mainly minimizing the multiplicative
depth to be efficiently computable under HE.

Today’s homomorphic encryption schemes naturally operate on plaintexts in Zq. In
most applications, it is desirable to either choose q = 2 or q to be a prime number, with
the majority of statistics and machine learning applications requiring the latter [BBH+20,
JVC18, BCD+20b]. Once chosen, however, it is not possible to convert a homomorphic
ciphertext encrypting plaintexts in Zq1 to a ciphertext encrypting plaintexts in Zq2 for
q1 6= q2. Most state-of-the-art symmetric ciphers for HHE are designed over Z2, which is
why one has to build binary circuits to realize integer HHE use cases. For this reason,
using HHE in use cases over Fp already implies a heavy performance loss compared to
just implementing the use case with homomorphic encryption. In this paper, we therefore
approach the following issues: Can we efficiently and securely realize hybrid homomorphic
encryption over Fp? What is the performance gain compared to state-of-the-art HHE over
Z2?
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1.2 Contribution

Our contribution is the following.

• Based on previous definitions in the literature, we are the first to formally define
hybrid homomorphic encryption for arbitrary use cases.

• To the best of our knowledge, we are the first to provide an extensive comparison
of different symmetric ciphers in the context of hybrid homomorphic encryption.
Notably, this increases the number of publicly implemented HHE schemes from only
one to a total of 16, aiding public verifiability.2 We come to the conclusion that most
existing designs are not well-suited for large classes of use cases.

• We propose a new symmetric cipher, dubbed Pasta, optimized for integer HHE
use cases. Pasta is defined to operate on plaintexts in Ftp, greatly increasing the
performance compared to most previously proposed symmetric ciphers which are
defined over Z2. Further, Pasta is designed to make use of the structure of both state-
of-the-art integer HE cryptosystems (BFV and BGV) to minimize HHE decompression
latency while still maintaining a small number of rounds and multiplicative depth.
Our extensive benchmarks confirm the advantage of Pasta compared to all other
symmetric ciphers for HHE. Concretely, Pasta outperforms Agrasta, the currently
fastest Z2 cipher for HHE, by a factor of 82 when applied to a small use case in
HElib, and it outperforms Masta, the single Ftp contender, by a factor of up to 6
when applied to a larger use case in SEAL.

1.3 Outline

In Section 2, we first recall homomorphic encryption, before we formally define hybrid
homomorphic encryption in Section 3. In Section 4, we evaluate the usability of existing
cipher designs for HHE. In Section 5, we then explore the design space for efficient ciphers
for HHE over Fp, before we give the full specification of our new cipher, dubbed Pasta, in
Section 6. In Section 7, we then analyze the security of Pasta, followed by benchmarks of
Pasta in comparison to existing ciphers for HHE in Section 8. Finally, we conclude the
paper in Section 9.

1.4 Notation

Let t ≥ 1. For each vector ~x ∈ F2t
p and ~y ∈ Ftp, we use the following notations.

1. ~x := ~xL‖~xR ∈ F2t
p , where ~xL, ~xR ∈ Ftp are respectively the left and the right t words.

2. ~x := x0‖x1‖ . . . ‖x2t−1 ∈ F2t
p , where xi ∈ Fp is the i-th word. The same holds for

~x ∈ Ftp.

3. We write roti(~y) to indicate a rotation of the vector ~y ∈ Ftp by i steps to the left.

4. We denote by ~y ◦ ~m the element-wise product (Hadamard product) between two
vectors ~y, ~m ∈ Ftp

2All our implementations are open source and available at https://github.com/IAIK/
hybrid-HE-framework.git.

https://github.com/IAIK/hybrid-HE-framework.git
https://github.com/IAIK/hybrid-HE-framework.git
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2 Homomorphic Encryption
Homomorphic encryption has often been labeled the holy grail of cryptography, since it
allows to perform any computation on encrypted data without knowledge of the secret
decryption key. The concept of HE was introduced by Rivest et al. [RAD78], but first
schemes were only capable of performing one specific operation on encrypted data (e.g.,
multiplication with RSA [RSA78], addition with Paillier [Pai99]). The breakthrough came
with Gentry’s work from 2009 [Gen09], showing the first fully homomorphic encryption
(FHE) scheme which in theory can perform any computation on encrypted data. Al-
though deemed impractical, this work led the way for many improvements and follow-up
publications [Bra12, FV12, BGV12, CGGI20, CKKS17].

Today’s HE schemes base their security on the learning with errors (LWE) hard-
ness assumption [Reg05], and its optimization over polynomial rings (Ring-LWE, or R-
LWE) [LPR10]. In these schemes, random Gaussian noise is added during the encryption
process. A homomorphic operation then increases this noise, negligible for homomorphic
addition, but significant for homomorphic multiplication. Once the noise exceeds a specific
threshold, the decryption will fail. The resulting schemes, therefore, allow the evaluation of
arbitrary circuits over encrypted data up to a specific multiplicative depth which depends
on the encryption parameters. Such a scheme is called a somewhat homomorphic encryption
(SHE) scheme. In general, increasing the parameters to support a bigger circuit depth
comes with a great performance penalty.

In [Gen09], Gentry introduced the bootstrapping technique, a method to reset the
noise in a homomorphic ciphertext. Bootstrapping allows to evaluate circuits of arbitrary
depth on encrypted data and turns a (bootstrappable) SHE scheme into an FHE scheme.
However, bootstrapping comes with a significant performance overhead, which is why it is
often faster to choose an SHE scheme with sufficiently large parameters.

2.1 Packing
Many modern HE schemes allow to encode a vector of n plaintexts into only one polynomial,
and therefore, encrypt a vector into only one ciphertext. Thereby, the size of the ciphertext
does not depend on the exact number of slots (≤ n) of the vector filled during encryption.
Homomorphic operations on the ciphertexts then correspond to element-wise operations
on the encrypted vector. This packing is similar to single-instruction-multiple-date (SIMD)
instructions on modern CPUs and can be used to massively increase the throughput
and decrease the ciphertext expansion of HE applications. Operations supported by this
packing include addition, subtraction, multiplication, and slot rotation. However, once
encrypted, one cannot directly access individual slots of the encrypted vector. The number
of slots3 n available depends on the parameters of the HE scheme and can range up to
several thousand slots.

Slot rotation is implemented by evaluating Galois automorphisms τi : a(X) 7→ a(Xi)
on encoded polynomials. Since Galois automorphisms are by definition homomorphic
to addition and multiplication, one can evaluate these automorphisms on homomorphic
ciphertexts c = (c0, c1) by evaluating these automorphisms on both polynomials c0, c1,
followed by a well-known key switching operation:

EvalAuto(c, i,Kτi(s)→s) = KeySwitchτi(s)→s((τi(c0), τi(c1));Kτi(s)→s). (1)

Equation (1), however, requires knowledge of the corresponding Galois key, i.e., the key
switching key from τi(s) → s. This key has to be generated by the party knowing the
secret key s for each required automorphism.

3n = φ(m)
d

, where φ is Euler’s totient function, m indicates the used m-th cyclotomic reduction
polynomial, and pd ≡ 1 mod m with p being the prime plaintext modulus.
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2.2 HE Schemes and Libraries
In this paper, we consider three HE schemes and their implementation in three libraries.
We will discuss these schemes and libraries in this section.

BFV [Bra12, FV12] in SEAL [SEA20]. In BFV in SEAL plaintexts are elements in Zq.
However, to support the packing described in the previous section, q has to be prime and
congruent to 1 mod 2N , where N is the degree of the cyclotomic reduction polynomial,
which has to be a power of two. This condition implies that Z2 plaintexts can never
have a packed implementation in SEAL. We use SEAL version 3.6.2 in the paper. The
runtime and added noise by homomorphic additions is negligible, which is why additions
are considered free in the BFV cryptosystem. Therefore, the most relevant performance
metric is the multiplicative depth of the evaluated circuit.

BGV [BGV12] in HElib [HS20]. The BGV scheme, and its implementation in HElib,
allows plaintexts in Zpr and offers more flexibility for choosing HE parameters than SEAL.
It allows arbitrary cyclotomic reduction polynomials and it is possible to find parameters
which allow packing for Z2 plaintexts. However, this flexibility comes with the drawback
that parameterizing for HElib is more difficult than finding parameters in SEAL, and the
limited parameter sets in SEAL allow for more optimized implementations. In this paper
we use the HElib version 2.1.0. Similar to BFV in SEAL, additions are considered free in
BGV, and the multiplicative depth of the circuit is the most relevant performance metric.

TFHE [CGGI20] in TFHE [CGGI16]. The TFHE library is vastly different from SEAL
and HElib. It only allows the encryption of boolean values (i.e., plaintexts are in Z2), but
it is optimized for fast gate bootstrapping. This basically means that after the evaluation
of a homomorphic gate the noise in the ciphertext is reset. As a consequence, contrary
to most other modern homomorphic encryption schemes, the multiplicative depth of a
circuit is no relevant metric in TFHE. However, each homomorphically evaluated gate
requires the same computational effort, thus additions are not considered to be free as in
the BFV or BGV cryptosystems. The most relevant metric for TFHE is, therefore, the
total number of gates. Furthermore, packing is not supported in TFHE. Since TFHE only
allows to encrypt boolean values, we do not implement and consider Fp ciphers for TFHE.
Remark 1. Another HE scheme, the CKKS [CKKS17] cryptosystem (and its implementation
in SEAL and HElib), is relevant for private statistics and machine learning. However, the
scheme includes approximation errors, which makes it incompatible with homomorphically
evaluating symmetric ciphers. Therefore, we do not consider it in this paper.

3 Hybrid Homomorphic Encryption Formally Defined
In the literature, HHE has not yet been formally defined for a generic use case, which is
why we aim to do this here. We start by reviewing the previous work done in the light of
defining HHE. In 2014, [BV14] generalized a construction for efficient private information
retrieval (PIR) [CGKS95] used in an earlier version of the paper [BV11]. This can be seen
as the first attempt to formalize what they dubbed HHE. Their definition is quite rigorous
but has some minor technical issues, such as that the decryption circuit being built into
the evaluation algorithm. Therefore it can only be called symmetric ciphertext. Shortly
thereafter, [GGI+15] came up with their own HHE construction, which suffers from the
same issue. In contrast to the last two approaches, the definition in the first work solely
dedicated to HHE [CCF+16] does not have this issue, but it is restricted to additive stream
ciphers. [MJSC16] is able to extend the definition to generic symmetric ciphers.
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Although it is rather close to our own definition, it has two drawbacks. First, they
include evaluating a function and sending the ciphertext back – which is done after a
ciphertext reduction – into their definition of HHE. We strongly argue that these phases
should not be within the definition of HHE. For instance, such a reduction only depends
on the underlying HE scheme’s properties but has no connection to the hybrid property,
thereby unnecessarily complicating the definition. Secondly, their definition is a precise
description but lacks the rigor to be considered a formal definition.

3.1 Definition
We now aim to come up with a generally valid definition of HHE. The definition will be
highly influenced by the literature and based on the conclusions drawn from the different
approaches. Before we can define HHE, we want to recall the definition of HE. There are
numerous definitions of HE. We choose to follow the definition of [BV14], only adapting it
for arbitrary messages. A homomorphic public key encryption scheme is a quadruple of
probabilistic polynomial-time algorithms (KGen,Enc,Dec,Eval):

• (pk, sk, evk)← KGen(1n),

• c← Enc(pk,m),

• m← Dec(sk, c), and

• cf ← Eval(pk, f, (c1, . . . , cn)).

The correctness of a homomorphic encryption scheme is in a way incorporated into the
ability to perform homomorphic computations. More concretely, let HE.Encpk(m) = c,
then we say a homomorphic encryption scheme HE is correct if

Pr[HE.Decsk(HE.Evalevk(f, c)) 6= f(m)] (2)

is negligible.

Definition 1 (Public-Key Hybrid Homomorphic Encryption (HHE)). Let HE be a public-
key homomorphic encryption scheme and SYM a secret-key encryption scheme. Further,
letM be the plaintext message space, m ∈M, and κ the security parameter. Construct a
public-key homomorphic encryption scheme HHE = (HHE.KGen,HHE.Enc,HHE.Dec,HHE.Eval)
as follows:

HHE.KGen(1κ)

(sk, evk, pk)← HE.KGen(1κ)
return (sk, evk, pk)

HHE.Enc(1κ, pk,m)

k ← SYM.KGen(1κ)
k̂ ← HE.Encpk(k)
c← SYM.Enck(m)
return (k̂, c)

HHE.Dec(sk, c)

return HE.Dec(sk, c)

HHE.Eval(f, evk, c1, . . . , cn)

return HE.Eval(f, evk, c1, . . . , cn)

HHE.Decomp(c, k̂, evk)

ĉ← HE.Evalevk(SYM.Dec, k̂, c)
return ĉ

Scheme 1: Hybrid Homomorphic Encryption
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We call HHE a public-key hybrid homomorphic encryption scheme. HHE is correct if
it is correct in the sense of homomorphic encryption. Note that the relation between
ciphertext and message in Equation (2) changes to ĉ = HHE.Decompevk(HHE.Encpk(m)).
In Appendix A, we show that every HHE scheme is indeed an HE scheme.

3.2 Security
The high-level idea of HHE is related to the KEM-DEM4 [KL14] paradigm, as pointed
out by [CCF+16]. However, they only discussed this aspect informally, and [Méa17] later
pointed out that there has been no particular investigation in the security of HHE when
seen in the light of the KEM-DEM paradigm. Therefore, we decided to perform an analysis
of the connection between HHE and KEM-DEM and possible implications for HHE schemes’
security.

To see if there is a direct formal relation between HHE and KEM-DEM, we instantiate
the KEM-DEM paradigm with a public-key HE scheme. This is well-defined because
every public-key encryption scheme is sufficient for a KEM. If we compare the resulting
construction to Definition 1, we immediately see that the encryption algorithm is identical.
In contrast, the decryption algorithm is neither identical to the decryption algorithm nor
the decompression algorithm of the HHE scheme. Even more problematic, the central idea
of HHE – the homomorphic decryption of symmetric ciphertexts with a public evaluation
key – is not captured by the KEM-DEM paradigm at all. Therefore, we argue that
HHE is not a mere instantiation of the KEM-DEM paradigm, although both have similar
objectives.

Does this mean that we have to do the security analysis of HHE from scratch? First,
recall that a public-key HE scheme is semantically secure if it is secure as a public-key
encryption scheme [BV14]. Secondly, the proofs of the KEM-DEM construction’s semantic
security only depend on the encryption algorithms. Therefore, we can apply the KEM-DEM
construction statements, albeit our decryption deviates from the KEM-DEM paradigm.
We restate the semantic security theorem of the KEM-DEM paradigm for HHE. A proof
can be found in [KL14].

Theorem 1. Let HE be an IND-CPA-secure public-key homomorphic encryption scheme
and SYM an IND-CPA-secure secret-key encryption scheme. Then HHE is an IND-CPA-
secure public-key HE scheme.

3.3 Comparison with LWE-Native Symmetric Encryption
In [CDKS20], the authors describe efficient algorithms to convert many LWE ciphertexts
into a packed (see Section 2.1) R-LWE one. These algorithms can also be used to
reduce ciphertext expansion of homomorphic encryption. Their approach works as follows:
First, they encrypt each plaintext mi ∈ Fp under a secret key ~s ∈ ZN using basic LWE
encryption by sampling a random vector ~ai ← U(ZNq ) and calculating bi = −〈~ai, ~s〉+ µi,
where µi ∈ Zq is a randomized encoding of mi (with Gaussian noise). The LWE ciphertext
then is (bi,~ai) ∈ ZN+1

q . To further reduce the size of the ciphertexts, one can use a random
seed se and generate ~ai using a pseudo-random number generator (PRNG). The seed can
be reused to generate the random part of each ciphertext as ~ai = f(se; i). The resulting
ciphertexts are semantically secure in the random oracle model. The client then transmits
all bi alongside the seed se to the server, which then transforms all LWE ciphertexts into
a packed HE one using the algorithms described in [CDKS20]. The total communication
cost for this approach is one Zq element for each plaintext mi ∈ Fp, plus one seed se to
generate the random part of the ciphertexts.

4Key-Encapsulation Mechanism-Data-Encapsulation Mechanism
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According to the benchmarks in [CDKS20]5 the LWE encryption approach seems to
be computationally more efficient than HHE. However, their algorithms do not achieve a
ciphertext expansion factor of 1, but a factor of logq

logp +O(1). For many HE applications,
the size of q can easily exceed 800 bits, resulting in big expansion factors. Furthermore, as
we show with our benchmarks in this paper, it is not enough to compare the performance
of just transforming ciphertexts into HE ciphertexts, but one also has to consider the use
case afterwards (with increased HE parameters) to get a good picture of the computational
overhead of the ciphertext expansion prevention. Not only are the benchmarks in [CDKS20]
not extensive, they are also missing the final transformation to get a packed HE ciphertext
and give no performance numbers for HE parameters required for larger use cases.

3.4 Hybrid Homomorphic Encryption in Practice
Contrary to KEM-DEM, the performance, advantages, and disadvantages of HHE are not
so well understood so far. Therefore, we start with an investigation of applying HHE
to a real use case and report the results of using the SEAL library in Table 1. Matrix
multiplications over integers are a basic building block in many applications involving
statistics or machine learning. Our use case, therefore, is an application with three affine
transformation ~x′i = Mi · ~xi +~bi, where ~xi, ~x′i,~bi ∈ F200

p , Mi ∈ F200×200
p , and p is a 60-bit

prime. To make the use case more generic, we square the output vector after the first two
affine transformation, resulting in a multiplicative depth of 3 plaintext-ciphertext and 2
ciphertext-ciphertext multiplications. We benchmark this use case after the initial setup
phase, i.e., the server knows an HE encryption of the symmetric key and all HE evaluation
keys. Further, we repeat this 1000 times, and the server aggregates the final results before
sending them back to the client. In a real-world scenario, this would be equivalent to,
e.g., a sensor device sending statistics in fixed intervals to a server. In Table 1, we give
results for HHE using 3 different ciphers (Pasta-3 as defined in Section 6, Agrasta, and
AES) and compare it to just using homomorphic encryption and also to an estimation of
using LWE-native encryption [CDKS20]. As Table 1 shows, using HHE reduces the total
client-to-server communication from 7.4GB to 1.5MB, the exact size of sending the input
vector consisting of 200 60-bit field elements 1000 times. Furthermore, data encryption is
also faster and requires less RAM. However, to support the homomorphic evaluation of
the HHE decompression circuit, the server-side requires larger HE parameters with higher
noise budget, increasing the server-side runtime and RAM requirements. For HHE using
Pasta-3, the server-side runtime increases by a factor of 10. However, using HHE with
Z2 ciphers (Agrasta or AES) requires to implement binary circuits for the use case,
resulting in a significant multiplicative depth requiring large HE parameters, and thus in
infeasibly long server runtimes.
Remark 2. As discussed in Section 2, one can use bootstrapping to reset the noise in a
homomorphic ciphertext to allow the evaluation of circuits with arbitrary multiplicative
depth. However, SEAL does not support bootstrapping, which is why we do not consider
it in this example. Furthermore, bootstrapping is still very inefficient in HElib and does
not result in faster runtimes for the Z2 ciphers compared to Pasta in HHE. Therefore,
we do not give explicit bootstrapping benchmarks for HElib in this paper. In TFHE,
bootstrapping is already applied after each gate, which is why TFHE allows to evaluate
circuits with arbitrary depth.

As discussed in Section 3.3, LWE-native encryption [CDKS20] has larger ciphertext
expansion then HHE. We estimate that the overhead of the server-side computations does
not require larger HE parameters as just using homomorphic encryption, which is why the
expansion factor is 881

60 = 14.68 for the used parameter set.

5Their source code is not public at the time of writing.
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Figure 1: Encryption + upload time of HE, HHE with Pasta, and LWE-native encryp-
tion [CDKS20] (three different encryption timings, since no explicit benchmarks are known)
depending on network speed.

Table 1 clearly shows that just using homomorphic encryption would result in unneces-
sarily large client-to-server communication. To further demonstrate the performance loss,
we show the combined client timings (for encryption and client-to-server communication)
for different network speeds in Figure 1. We depict timings for using only HE, HHE using
Pasta-3, and our estimates for the LWE-native approach. We omit HHE using Z2 ciphers,
since they result in infeasible server runtimes. Since we do not have accurate performance
numbers for the LWE-native client-side encryption, we show three different encryption
numbers: (1) a bad case, where the total encryption time is 1000 s, (2) timings for an
equal encryption time to just using HE, and (3) the best case with a 0 s encryption time.
Figure 1 shows that using HHE always results in the fastest client-side latencies, especially
for network speeds below 10Mbps (the average LTE upload speed in the USA is 5Mbps6)
where runtime is fully dominated by the data transmission. The advantages compared to
just using HE, however, also range up to speeds of 1Gbps.

Both using homomorphic encryption and using LWE-native encryption require sampling
Gaussian noise during encryption. Constrained devices, however, often do not have access
to a reliable source of randomness. Therefore, we also list the number of random Gaussian
words required on the client side to perform the encryption in Table 1. HHE does not require
sampling random values during encryption, which is why using HHE is the preferable
choice on constrained devices without a reliable source of randomness.

To summarize, if the encryption time on a client is the bottleneck, then using HHE
with Pasta-3 is the preferred choice. Only HHE using AES is faster, but using AES
results in infeasibly long server-side computations. On the other hand, if the client
bandwidth is the bottleneck, then HHE (using Pasta-3) has a considerable advantage.
The concrete communication advantage depends on the HE parameters. In our concrete
example (N = 32768 for both, HE and using LWE-native conversions), HE requires a factor
of 4936× more communication than HHE, the LWE-native approach a factor of 14.86×.
Since HHE has the largest server-side runtime overhead, using HHE has the best effect on
constrained clients or in slow network settings. The choice of the symmetric cipher used in
HHE has similar effects on the client side (all have ciphertext expansion of 1), but severly
effects the server-side runtime, which is why we investigate server-side computation in the
remainder of the paper.

6https://www.verizon.com/articles/4g-lte-speeds-vs-your-home-network/

https://www.verizon.com/articles/4g-lte-speeds-vs-your-home-network/
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Table 1: Comparison of a use case with HHE to only using HE in SEAL.
Client Server

Random Enc. RAM Comm. Runtime RAM Comm.
Words s GB kB s GB kB

HE 65 536 000 59 0.550 7 404 700 61 900 2.24 987.3
HHE (Pasta-3) 0 16 0.005 1 500 669 400 23.0 2 097.3
HHE (Agrasta) 0 2 200 0.004 1 500 ?a ?a > 12 000 000b

HHE (AES) 0 0.040 0.003 1 500 ?a ?a > 12 000 000b

LWE [CDKS20] 200 000 ? 0.550c 22 025 120 000c 2.24c 987.3c

a Multiplicative depth of binary circuit (> 400) far too large for feasible HE parameters.
b No packing in SEAL for Z2 plaintexts, i.e., one HE ciphertext per bit.
c Estimates based on HE benchmarks and [CDKS20].

4 Usability of Existing Symmetric Ciphers
In this section, we evaluate the usability of proposed symmetric ciphers for the HHE use
case. Most existing designs are ciphers over Z2. In the following section we benchmark
instances of these ciphers which provide 128 bits of security with a simple HHE use case,
which already highlights the requirement of ciphers over Fp. Furthermore, we discuss
existing Fp designs in this section.

4.1 Ciphers over Z2

As outlined above, the majority of ciphers designed for HHE are defined over Z2. The main
design criteria of all these ciphers is to reduce the AND depth of the decryption circuit.
In the following we will shortly discuss each of the ciphers, in Table 2 we summarize the
parameters of the ciphers in their respective modes of operation.

LowMC [ARS+15]. LowMC is a very parameterizable blockcipher, designed to minimize
the number of AND gates required for secure encryption. In this work, we benchmark
LowMC (n = 256, k = 128, m = 63, r = 14, d = 128), the LowMC instance proposed for
HHE in the original publication. To encrypt plaintext of arbitrary length, we use LowMC
in the Counter (CTR) mode of operation.

Rasta [DEG+18]. Rasta is a family of stream ciphers, in which a permutation is applied
to the secret key to produce the keystream. The permutation consists of several rounds
of affine layers and an S-box instantiated with the χ-transformation [Dae95]. The affine
layers are randomly generated for each new block from an extendable-output function
(XOF) [NIS15] seeded with a nonce N and the block counter i. We depict the Rasta
permutation in Figure 2. In this work, we benchmark Rasta (n = 525, r = 5) and Rasta
(n = 351, r = 6). Since Rasta is a stream cipher similar to the CTR mode of operation,
no further modifications are required to support encrypting plaintexts of arbitrary length.

Agrasta [DEG+18]. Agrasta is an aggressive instantiation of the Rasta stream cipher
with significantly smaller security margin. The smaller security margin allows to further
reduce the permutation width compared to more conservative parameter sets. In this work
we benchmark Agrasta (n = 129, r = 4).

Dasta [HL20]. Dasta is another family of stream ciphers, similar to the Rasta family.
It keeps Rasta’s basic design, but substitutes the random affine layer with a permutation
layer followed by a constant matrix multiplication. With that, Dasta achieves faster
encryption in plain (i.e., without HE), but keeping roughly the same performance for the
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· · ·

K A0,N,i A1,N,i Ar,N,iS S S· · · ⊕ KN,i

Figure 2: The r-round Rasta construction to generate the keystream KN,i for block i
under nonce N with affine layers Aj,N,i. The picture is taken from [DEG+18].

homomorphic evaluation. In this paper, we benchmark Dasta (n = 525, r = 5) and
Dasta (n = 351, r = 6).

Kreyvium [CCF+16]. Kreyvium is a 128bit security variant of the low-depth stream
cipher Trivium [Can06]. In Kreyvium, the AND-depth of the cipher grows with the
number of required keystream bits, which is undesired in most homomorphic encryption
libraries. To keep the AND-depth constant, even for larger plaintexts, we use Kreyvium
as a block cipher in the Counter (CTR) mode of operations, with the block size being the
maximum amount of keystream bits for a given AND-depth (including plaintext-ciphertext
AND gates). In this work, we benchmark Kreyvium as stream cipher alongside the two
depth-bounded modes Kreyvium-12 and Kreyvium-13.

FiLIP [MCJS19]. FiLIP is another family of stream ciphers designed to minimize the
number of AND gates required for secure encryption. In contrary to Kreyvium, FiLIP’s
AND depth does not increase the more bits are encrypted, so no further modifications are
required for efficient homomorphic decryption. In this work, we benchmark FiLIP-1216
and FiLIP-1280.

Table 2: Parameters of the benchmarked Z2 ciphers in their respective modes of operations
in bits.

Cipher Blocksize Keysize Rounds AND-depth
LowMC 256 128 14 14
Rasta-5 525 525 5 5
Rasta-6 351 351 6 6
Dasta-5 525 525 5 5
Dasta-6 351 351 6 6
Agrasta 129 129 4 4
Kreyvium - 128 - -
Kreyvium-12 46 128 - 12
Kreyvium-13 125 128 - 13
FiLIP-1216 - 16384 - 3
FiLIP-1280 - 4096 - 4

Remark 3. Kreyvium, FiLIP-1216, and FiLIP-1280 are stream ciphers without defined
block size. In our benchmarks, we therefore define one block to be 46 bits for Kreyvium
and 64 bits for both FiLIP instances.
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4.1.1 Benchmarked Application

Hybrid homomorphic encryption aims to reduce the communication overhead for outsourc-
ing computations to a cloud. Therefore, in our benchmarks, we do not only measure and
compare the performance of the decryption circuit of each cipher under homomorphic
encryption, but also the performance of the cipher in a complete HHE use case. The use
case we benchmark is a server which computes ~r = M · ~v +~b, where ~r,~v,~b ∈ Z5

216 and
M ∈ Z5×5

216 , i.e., a 5× 5 matrix-vector multiplication of 16-bit integers. The matrix M and
the vector ~b are private and owned by the server, whereas ~v is a private vector owned by
the client. The client uses HHE to send ~v in encrypted form to the server, and will get ~r
in encrypted form as a result.

As described above, the choice of a cipher over Z2 also requires that we compute the
integer matrix multiplication over Z2. This requires the implementation of binary circuits
for addition7 and multiplication, which have a much higher AND depth than performing the
same operations over Fp. Despite being only a very small matrix multiplication (5× 5 with
16-bit integers), our benchmarks show that the evaluation is already very slow, making it
infeasible for Z2 ciphers to be applied to real-world statistics or machine learning use cases
with multiple chained matrix multiplications of larger integers with matrices consisting of
hundreds of entries.

4.1.2 Benchmark Platform

We run all benchmarks on a Linux server with an Intel Xeon E5-2699 v4 CPU (2.2GHz,
turboboost up to 3.6GHz) and 512GB RAM. Each of the individual benchmarks has only
access to one thread.

4.1.3 SEAL Benchmarks

In SEAL, the available noise budget (i.e., how much further noise can be introduced until
decryption will fail) depends on the ciphertext modulus q. However, big moduli q require
a big degree N of the cyclotomic reduction polynomial for security. N , which is always a
power of two, has a severe impact on the performance of the HE scheme. While a larger N
allows for larger q to increase the noise budget, it exponentially increases the runtime of
homomorphic operations.

In Table 3 we present the benchmarks for the SEAL library, for homomorphically
decrypting only one block, and for the small HHE use case. For both benchmark we
give timings for homomorphically encrypting the symmetric key and homomorphically
decrypting the symmetric ciphertexts (i.e., decompressing the HHE ciphertext) for the
smallest N allowing enough noise budget for correct evaluation. We parameterize q such
that the HE scheme has a security of 128 bits. For the HHE use case we additionally give the
runtime for the matrix multiplication. In Table 4 we additionally give the remaining noise
budget after encrypting the symmetric key, homomorphically decrypting the symmetric
ciphertexts, and performing the matrix multiplication. Since SEAL does not allow to use
packing with plaintexts in Z2, all implementations are bitsliced (i.e., one HE ciphertext
per bit).

4.1.4 HElib Benchmarks

In HElib, the security and available noise budget mainly depend on the choice of the
cyclotomic reduction polynomial, as well as the size of the ciphertext modulus. A bigger
modulus provides a bigger noise budget at the cost of less security. A bigger cyclotomic

7We implemented depth-optimized carry-lookahead adders (CLA) in HElib and SEAL, and standard
ripple carry adders (RCA) in TFHE.
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Table 3: Benchmarks of the Z2 ciphers in the SEAL library.
1 Block Small HHE use case

Cipher N Enc. Key Decomp. N Enc. Key Decomp. Use Case
s s s s s

LowMC 16384 1.75 613.9 32768 6.12 2 702.7 1 202.1
Rasta-5 8192 2.12 135.9 32768 25.4 2 618.5 1 201.8
Rasta-6 8192 1.42 88.5 32768 17.1 1 802.0 1 199.6
Dasta-5 8192 2.20 134.1 32768 25.4 2 594.0 1 209.2
Dasta-6 8192 1.49 88.7 32768 17.2 1 811.8 1 209.8
Agrasta 8192 0.534 16.3 16384 1.76 76.2 241.0
Kreyvium 16384 1.84 412.8 32768 6.17 2 028.5 1 210.7
Kreyvium-12 16384 1.75 414.8 32768 6.30 3 925.8 1 217.9
Kreyvium-13 16384 1.83 442.1 32768 6.18 1 999.0 1 199.3
FiLIP-1216 8192 66.1 1 064.7 16384 223.9 6 619.0 244.5
FiLIP-1280 8192 16.7 1 251.6 16384 56.0 7 783.2 242.0

Table 4: Noise budget after each operation for Z2 ciphers in the SEAL library.
1 Block Small HHE use case

Cipher N Enc. Key Decomp. N Enc. Key Decomp. Use Case
bit bit bit bit bit

LowMC 16384 379 68 32768 815 491 190
Rasta-5 8192 165 46 32768 814 686 384
Rasta-6 8192 165 31 32768 815 670 361
Dasta-5 8192 165 46 32768 815 686 380
Dasta-6 8192 165 32 32768 815 670 365
Agrasta 8192 165 82 16384 379 292 10
Kreyvium 16384 379 200 32768 815 611 312
Kreyvium-12 16384 379 201 32768 815 624 323
Kreyvium-13 16384 379 188 32768 815 612 314
FiLIP-1216 8192 165 122 16384 379 334 51
FiLIP-1280 8192 164 109 16384 379 319 37

polynomial provides more security, but is bad for performance. In our benchmarks we try
to find parameters which provide roughly 128 bits of security.

In Table 5 we present the benchmarks for the HElib library, for homomorphically
decrypting only one block, and for the small HHE use case. For both benchmarks we
give timings alongside the choice of the m-th cyclotomic reduction polynomial and the
estimated security λ′. For the HHE use case we additionally give the runtime for the
matrix multiplication. In Table 6 we additionally give the remaining noise budget after
encrypting the symmetric key, homomorphically decrypting the symmetric ciphertexts,
and performing the matrix multiplication. To compare the benchmarks to SEAL and
TFHE, all implementations are bitsliced (i.e., one HE ciphertext per bit).

Remark 4. HElib supports packing for Z2 plaintexts. Even though a packed implementa-
tion of the symmetric ciphers will increase their overall performance, it complicates the
evaluation of an integer matrix-vector multiplication based on binary circuits. Therefore,
packed implementations do not fix the main issue of Z2 ciphers for HHE, which is sup-
porting integer arithmetic over Fp. For this reason, we do not provide explicit packed
benchmarks for the ciphers in the paper.
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Table 5: Benchmarks of the Z2 ciphers in the HElib library.
1 Block Small HHE use case

Cipher m λ′ Enc. Key Decomp. m λ′ Enc. Key Decomp. Use Case
bit s s bit s s s

LowMC 23377 110 9.22 1 132.4 43691 108 27.5 3 708.8 1 618.8
Rasta-5 11441 111 11.7 284.2 31609 118 57.7 1 666.9 922.4
Rasta-6 11441 111 7.79 207.7 31609 108 41.8 1 401.0 1 037.2
Dasta-5 11441 111 11.8 276.7 31609 118 57.9 1 608.4 922.0
Dasta-6 11441 111 7.87 201.7 31609 108 41.6 1 357.3 1 042.6
Agrasta 10261 117 2.38 38.3 32767 108 13.7 276.9 853.6
Kreyvium 14351 108 3.97 497.0 43691 144 22.0 3 392.6 1 431.9
Kreyvium-12 14351 108 4.06 498.3 43691 147 22.0 6 657.1 1 392.6
Kreyvium-13 15709 113 4.38 577.1 43691 144 21.7 3 407.3 1 420.9
FiLIP-1216 5461 113 131.4 1 357.5 23311 108 1 010.0 17 919.7 566.6
FiLIP-1280 8435 119 47.3 2 197.4 24929 105 337.2 27 613.9 745.2

Table 6: Noise budget after each operation for Z2 ciphers in the HElib library.
1 Block Small HHE use case

Cipher m λ′ Enc. Key Decomp. m λ′ Enc. Key Decomp. Use Case
bit bit bit bit bit bit bit

LowMC 23377 110 427 13 43691 108 823 396 21
Rasta-5 11441 111 188 27 31609 118 549 378 23
Rasta-6 11441 111 188 5 31609 108 574 381 20
Dasta-5 11441 111 188 27 31609 118 549 378 23
Dasta-6 11441 111 188 5 31609 108 574 381 20
Agrasta 10261 117 144 17 32767 108 492 372 24
Kreyvium 14351 108 242 18 43691 144 652 394 21
Kreyvium-12 14351 108 242 18 43691 147 640 397 20
Kreyvium-13 15709 113 247 2 43691 144 652 393 21
FiLIP-1216 5461 113 83 19 23311 108 442 380 25
FiLIP-1280 8435 119 86 2 24929 105 456 375 20

4.1.5 TFHE Benchmarks

Since in TFHE the noise in the ciphertexts is reset after every homomorphic operation,
we do not have to choose any parameters for the benchmarks (except the security level,
which we set to 128 bits). In Table 7 we present the benchmarks for the TFHE library
for homomorphically decrypting only one block, and for the small HHE use case. We give
timings for homomorphically encrypting the symmetric key, homomorphically decrypting
one block, and for the small HHE use case. Since TFHE does not support packing all
implementations are bitsliced (i.e., one HE ciphertext per bit).

4.1.6 Discussion

Our benchmarks show that the runtime of the whole HHE use case (including cipher
evaluation) using the Z2 ciphers is high, despite the tested use case being small. This
emphasizes the requirement of Fp ciphers for HHE with integer use cases. In SEAL and
HElib, the fastest ciphers are the ciphers based on the Rasta design strategy (Rasta,
Dasta, Agrasta), with Agrasta being the fastest due to its small multiplicative depth.
Only FiLIP has better noise propagation. However, due to its large symmetric key and
long evaluation time, it is not competitive. For figures comparing the runtime of HHE in
SEAL and HElib and a comparison to Fp ciphers, we refer to Section 8.1.

In Figure 3 we compare the runtime of homomorphically decrypting one block and the
whole HHE use case (including homomorphic decryption) of the Z2 ciphers in TFHE. In
TFHE the main performance metric is the total gate count, which is why Kreyvium is the
fastest choice. Since the TFHE library only allows plaintexts in Z2 we do not implement
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Table 7: Benchmarks for the TFHE library.
1 Block Small HHE use case

Cipher Enc. Key Decomp. Decomp. Use Case
s s s s

LowMC 0.003 6 120.5 6 310.6 175.6
Rasta-5 0.013 5 728.8 5 807.8 164.0
Rasta-6 0.009 3 275.0 3 293.6 162.2
Dasta-5 0.013 5 642.6 5 664.7 165.2
Dasta-6 0.009 3 272.7 3 293.0 162.0
Agrasta 0.003 407.1 408.4 164.4
Kreyvium 0.003 284.1 290.4 162.6
Kreyvium-12 0.003 284.1 559.7 162.6
Kreyvium-13 0.003 310.1 290.4 162.6
FiLIP-1216 0.442 1 504.6 1 886.9 164.3
FiLIP-1280 0.107 1 594.5 1 981.8 162.8

and compare Fp ciphers in TFHE.
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Figure 3: Runtime comparison of homomorphically decrypting one block, and the small
HHE use case (including HHE decompression) of Z2 ciphers in TFHE.

4.2 Masta– A Cipher over Ftp
In independent and concurrent work the only other symmetric cipher over Ftp proposed
for HHE use cases we are aware of is Masta [HKC+20]. Similar to our work, the need
for efficient ciphers over Ftp for HHE is identified there. However, [HKC+20] is missing
an extensive treatment of the HHE topic. On one hand, they do not provide any kind of
design space exploration to find a well-optimized cipher for HHE, on the other hand they
are also missing extensive benchmarks comparing their design to the state-of-the-art and



16 Pasta: A Case for Hybrid Homomorphic Encryption

do not provide benchmarks for any HHE use cases.8
Masta can be seen as a direct translation of Rasta (Figure 2) to Ftp, with the exception

of a different strategy in sampling random invertible matrices. Their approach involves
sampling a random polynomial m ∈ Zp[X]/(Xt − α) and translating m into a matrix M .
This matrix is then invertible by design and they only have to sample s field elements
∈ Fp. Even though the S-box used in Rasta is in general no permutation over Ftp, and
therefore limits the possible outputs of the S-box layer in Masta, the designers did not
consider any additional changes to the baseline design and do not leverage any advantages
of HE over fields Fp.

In this paper we consider the two 128-bit security instances of Masta with the lowest
depth and use Shake128 to pseudorandomly generate all affine layers. We summarize
these instances in Table 8. In Section 8 we benchmark and compare Masta to our Pasta
design.

Table 8: Considered Masta instances (128-bit security).
Instance Rounds # Key Words # Plain Words # Cipher Words XOF
Masta-4 4 128 128 128 Shake128
Masta-5 5 64 64 64 Shake128

5 Designing an Efficient Cipher for HHE over Ftp
The goal is to design an efficient cipher for HHE over Ftp with 216 < p < 260.9 Since in
both BGV and BFV (and their respective implementations in SEAL and HElib) the most
significant performance metric is the multiplicative depth, our main goal is to reduce this
metric. Since every round contributes to the multiplicative depth, and therefore to the
overall noise consumption during a homomorphic evaluation of the cipher, we aim to design
a secure cipher with a minimal number of rounds. Further, high-degree polynomials have
a large multiplicative depth, and hence we consider low-degree S-boxes. Meeting both of
these requirements usually results in a large state size for security. However, large state
sizes lead to a high runtime of the cipher evaluation. Therefore, our design will have to
balance noise consumption and runtime to be efficiently usable in HHE.

Furthermore, most HE applications leverage packing (Section 2.1) to increase perfor-
mance, which is why we also aim to design a packing-friendly cipher which produces packed
homomorphically encrypted ciphertexts.

Cost of HE Operations. In Table 9 we summarize the cost of each HE operation in
SEAL and HElib. Note that the key switching operation is free in terms of noise in
SEAL, whereas it adds noise to the ciphertext in HElib. Key switching is required after
a ciphertext-ciphertext multiplication and after an homomorphic Galois automorphism
(required for rotation), which is why these operations require more noise in HElib. For both
libraries the noise consumption depends on the size of the prime p, with larger p implying
higher noise consumption, especially in (pt-ct and ct-ct) multiplications. Therefore, one
cannot consider plaintext-ciphertext multiplications as negligible when working over Fp
and we also have to consider the plaintext-ciphertext multiplicative depth when designing
an efficient cipher over Fp.

8We suspect that in [HKC+20] the authors only benchmark a word-sliced HE implementation of Masta,
which is why our packed implementation of Masta is significantly faster.

9SEAL does not allow larger field sizes.
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Table 9: Cost of HE operations in SEAL and HElib.
SEAL HElib

Operation Noise Runtime Noise Runtime
pt-ct Add negligible cheap negligible cheap
ct-ct Add negligible cheap negligible cheap
pt-ct Mul moderate cheap moderate cheap
ct-ct Mul expensive expensive expensive expensive

Automorphism negligible expensive moderate expensive

5.1 Design Basis
Since our Z2 benchmarks indicate that designs based on Rasta are the preferred choice,
we first consider an Ftp version of Rasta with equal text/key size, and then modify it
for security and efficiency. In the following, we analyze several candidates for each of
the operations defining the cipher, and we also determine their implementation efficiency.
Based on these results, we then design Pasta in Section 6.

5.2 S-Box
The original Rasta design uses the χ-transformation [Dae95] over Zt2 as a single nonlinear
layer. However, the χ-function is in general no permutation when working over Ftp, which
is why we consider some alternatives. In this section we compare several S-boxes and
describe how they can be efficiently implemented in a packed homomorphic evaluation.
Despite not being a permutation, Masta still uses the χ-function naturally defined over
Ftp, which is why we include it in our comparison.

χ-S-box. The χ-S-box is defined as

χ(~x)i = xi + xi+2 + xi+1 · xi+2 = xi + xi+2 · (1 + xi+1).

The indices in the χ-S-box are taken modulo t, which is why χ can be efficiently evaluated
using rotations, i.e.,

χ(~x) = ~x+ rot2(~x) ◦ (~1 + rot1(~x)).

This works if the rotation is cyclic for the vector of size t. However, once encrypted,
homomorphic rotations are cyclic over a larger vector of size n. Hence, we need to simulate
cyclic rotation by preprocessing the state first. However, the resulting vector has more
than t elements, which can influence further homomorphic operations. Thus, one has to
apply a masking multiplication afterwards with a mask ~m = ~1 ∈ Ftp:

~x′ = ~x+ rot(−t)(~x)
⇒ χ(~x) =

(
~x′ + rot2(~x′) ◦ (~1 + rot1(~x′))

)
◦ ~m.

Cube S-box. Given a prime p, gcd(p− 1, 3) = 1, let

[S(~x)]i = (xi)3.

We recall that the cube S-box is the invertible power map with the smallest degree, and it
can be efficiently evaluated by simply applying two homomorphic multiplications which
affect the state elementwise, i.e., S(~x) = ~x ◦ ~x ◦ ~x.
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Feistel-Like S-Box (via a Quadratic Function).

S′(x0‖x1‖ · · · ‖xs−1) = x0‖(x0)2 + x1‖(x1)2 + x2‖ · · · ‖(xs−2)2 + xt−1.

The Feistel-like S-box can also efficiently be implemented using rotations, i.e.,

S′(~x) = ~x+
(
rot(−1) (~x) ◦ ~m

)2
,

where ~m ∈ Ftp is a masking vector ~m = [0, 1, . . . , 1]T .

Alternative Feistel-Like S-Box (via the χ-Function).

S′′(x0‖x1‖ · · · ‖xt−1) = x0‖x1‖x0 · x1 + x2‖x1 · x2 + x3‖ · · · ‖xt−3 · xt−2 + xt−1.

The alternative Feistel-like S-box can also efficiently be implemented using rotations, i.e.,

S′′(~x) = rot(−1)(~x) ◦ rot(−2)(~x) ◦ ~m+ ~x,

where ~m ∈ Fsp is a masking vector ~m = [0, 0, 1, . . . , 1]T .

5.2.1 S-Box Cost Comparison

All S-box designs can efficiently be implemented on packed HE ciphertexts and require only
a constant number of homomorphic operations independent of the state size. A summary
of required homomorphic operations as well as the multiplicative depths of the different
S-boxes is given in Table 10.

Table 10: Homomorphic operations and multiplicative depth of different S-boxes.
S-box pt-ct Add ct-ct Add pt-ct Mul ct-ct Mul Rot pt-ct Depth ct-ct Depth
χ 1 2 1 1 3 1 1
S - - - 2 - - 2
S′ - 1 1 1 1 1 1
S′′ - 1 1 1 2 1 1

Based on Table 10, we decide to choose the Feistel S-box S′ as the main S-box for
our nonlinear layers, and to use the cube S-box S to increase the degree of our cipher to
combat linearization attacks and reduce the state size of the cipher.

5.3 Linear Layer
In Rasta, the homomorphic runtime is dominated by the linear layer. In this section we
discuss how to efficiently implement matrix-vector multiplications on packed homomorphic
ciphertexts and introduce optimizations to reduce the homomorphic evaluation time.

5.3.1 Choice of Random Matrices

In the original Rasta design, each random t× t matrix is directly sampled and checked
for invertibility. However, doing the invertibility check is expensive in Fp in terms of
computational complexity. Therefore, in Pasta we choose a different approach and generate
each matrix as a sequential matrix [GPP11, GPPR11] (Section 6). These matrices are
invertible by design and only require to sample t field elements and performing t · (t− 1)
field multiplications and (t− 1) · (t− 1) field additions. Compared to sampling polynomials
mi ∈ Zp[X]/(Xt − α) and translating them to matrices Mi (like in Masta), sequential
matrices require to sample equally many field elements, but need more field additions
and multiplications. Sampling sequential matrices is thus slower than the method used in
Masta, but it comes with the cryptographic advantage of having less structure.
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5.3.2 Babystep-Giantstep Matrix-Vector Multiplication

The most efficient way of evaluating the product between a plain matrix and an encrypted
packed vector in HE is using the babystep-giantstep optimized diagonal method [HS14,
HS15, HS18]. A matrix-vector multiplication of a matrix M ∈ Zt×t and a vector ~x ∈ Zt
can be expressed by t elementwise vector-vector multiplications, t− 1 rotations, and t− 1
additions, operations that can easily be evaluated on packed ciphertexts:

M · ~x =
m−1∑
i=0

diagi(M) ◦ roti(~x) (3)

diagi(M) in Eq. (3) expresses the i-th diagonal of matrix M in a vector of size t, with
i = 0 being the main diagonal.

Rotations have a large evaluation time in modern HE schemes, which is why we reduce
them using the babystep-giantstep optimization:

M~x =
t2−1∑
k=0

rot(kt1)

t1−1∑
j=0

diag′(kt1+j)(M) ◦ rotj(~x)

 , (4)

where t = t1 · t2, diag′i(M) = rot(−bi/t1c·t1) (diagi(M)).10 Note that rotj(~x) only has to
be computed once for each j < t1. Therefore, a matrix multiplication requires t1 + t2 − 2
rotations, t plaintext-ciphertext multiplications, and t− 1 additions, and the total depth
is 1 plaintext-ciphertext multiplication. For efficiency, we add words to the final state
size of our design if t does not nicely split into t = t1 · t2. Compared to the number of
homomorphic operations required to evaluate the S-boxes (Table 10), it is clear that the
runtime of the homomorphic evaluation of our cipher is dominated by the linear layer.
Remark 5. Similar to the implementation of the χ-S-box layer, we need to simulate a
cyclic rotation over the vector of size t. This can be achieved by preprocessing the state
with ~x′ = ~x+ rot(−t)(~x), which requires an additional rotation and ciphertext-ciphertext
addition. However, contrary to the χ-S-box, we can encode the masking multiplication
together with the diagonals of Equation (4), which is why no additional plaintext-ciphertext
multiplication is required.

5.3.3 Splitting the State

The babystep-giantstep algorithm dominates the runtime of the homomorphic Pasta
evaluation and scales with the state size. Therefore, we propose to evaluate two individual
instances of our cipher with state size t in parallel, with an efficient mixing step after each
affine layer, allowing for an overall smaller state size. The final output of the design is
then the output of the first half, and the second half is discarded. The result is a cipher
with the following properties:

• The state size s = 2 · t is an even number and we truncate t words at the end.

• Instead of evaluating one large s× s matrix multiplication we perform two smaller
t× t matrix multiplications.

• The S-box is applied on both branches individually.

• The key has now double the size of the keystream.

10In Eq. (4), bi/t1c is equal to k.
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On first inspection, this split does not impact the runtime, we still require s = 2 · t
ciphertext-ciphertext additions and plaintext-ciphertext multiplications, and the number of
required rotations either stays the same, or can potentially even become worse, depending
on how good t can be split into t1 · t2 compared to s = s1 · s2. Furthermore, we now
have double the key size compared to the keystream. However, the latter has no effect
on the HHE use case, since in our packed homomorphic design we still require only one
homomorphic ciphertext, which has the same size independent of the number of encoded
words (as long as they are ≤ n, where n is the number of available slots). Additionally,
we can use the inner structure of homomorphic ciphertexts to parallelize both cipher
evaluations, cutting the runtime down to an evaluation of one cipher instance of state size
t.

Inner Structure of HE ciphertexts. In R-LWE based homomorphic encryption schemes
(like BFV and BGV) the plaintexts are polynomials ∈ Rp = Fp[X]/Φm(X), with Φm(X)
being the m-th cyclotomic polynomial. Homomorphic additions and multiplications then
correspond to polynomial addition and multiplication in plain. To get homomorphic integer
operations one needs to encode integers efficiently into such polynomials. Using packing
(Section 2.1) one can encode a vector of integers into one polynomial, and homomorphic
additions and multiplications then affect these vectors element-wise. Further, one can use
Galois automorphisms to permute the encoded vector. Thus, the encoded vector can be
seen as a hypercube [HS14] and an automorphism rotates the data along one dimension.
The precise structure of this hypercube depends on the choice of Φm(X). In general, it is
possible to use these automorphisms to create linear rotations over the encrypted vector,
but this requires masking multiplications [HS14], which when evaluated homomorphically
require noise budget.

In terms of implementation efficiency, Φ2n(X) = Xn + 1, for n being a power of two, is
a good choice. This polynomial is negacyclic and allows efficient polynomial multiplications
via a negacyclic number theoretic transformation (NTT). Furthermore, decoding/encoding
integer vectors then correspond to evaluating a NTT (on a permutation of the input vector)
and its inverse respectively. For this reason, the homomorphic encryption standardization
project11 recommends using these power-of-two cyclotomic rings. Consequently, SEAL only
implements HE with those rings and Masta is defined to use these rings as well [HKC+20].
The hypercube generated by such rings also has a nice structure: It corresponds to a
matrix of two rows, each of size #slots

2 . Galois automorphisms can then directly be used to
either linearly rotate both rows at once or rotate all columns simultaneously, i.e.,

[
~xL
~xR

]
encode→ x ∈ Rp : τ3i(x) decode→

[
roti(~xL)
roti(~xR)

]
, τn−1(x) decode→

[
~xR
~xL

]
,

for the Galois automorphism τi : a(X) 7→ a(Xi).

Parallelizing Two Cipher Evaluations. In both state-of-the-art integer HE cryptosystems
(BFV and BGV) we can use this inner structure of power-of-two homomorphic ciphertexts
to parallelize both branches of our cipher. When encrypting the secret key and encoding
vectors in the affine layer, one has to encode the vectors affecting the first branch of the
cipher into the first row of the homomorphic ciphertext, and vectors affecting the second
branch into the second row. As a result, all homomorphic operations are applied in parallel
to both branches.

11https://homomorphicencryption.org/

https://homomorphicencryption.org/
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Efficient Linear Layer. For security, we have to mix both branches of our cipher after each
affine transformation. An efficiently implementable linear layer, which is also invertible, is
the following matrix multiplication:[

~yL
~yR

]
=
[
2 · I I
I 2 · I

]
·
[
~xL
~xR

]
=
[
~xL
~xR

]
+
[
~xL
~xR

]
+
[
~xR
~xL

]
,

where I is the t × t identity matrix. This can be implemented by two homomorphic
additions and a homomorphic rotation.

Cost Comparison. In Table 11 we compare the cost of the new linear layer (two parallel
instances of state size t) to the cost of one larger linear layer of size s = 2 · t. The new
linear layer effectively requires half the homomorphic additions and multiplications, and
choosing t such that it splits nicely into t = t1 · t2 the number of rotations is also halved.

Table 11: Homomorphic operations and multiplicative depth of the linear layers, with
t = t1 · t2 and 2 · t = s1 · s2.
Linear Layer pt-ct Add ct-ct Add pt-ct Mul ct-ct Mul Rot pt-ct Depth ct-ct Depth
Split and Mix 1 t+ 2 t - t1 + t2 1 -
No Splitting 1 2 · t 2 · t - s1 + s2 − 1 1 -

5.4 Total Homomorphic Operations and Multiplicative Depth
In Table 12 we summarize the number of homomorphic operations and the multiplicative
depth of each individual part of our resulting new cipher, dubbed Pasta, as well as the
total count for Pasta-3 (3 rounds) and Pasta-4 (4 rounds). The table also highlights
that the multiplicative depth of Pasta, and therefore its noise consumption, only depends
on the number of rounds. Further, the runtime of homomorphically evaluating Pasta is
dominated by the affine layer and scales with the state size and the number of rounds.

Table 12: Homomorphic operations and multiplicative depth of Pasta, with t = t1 · t2.
pt-ct Add ct-ct Add pt-ct Mul ct-ct Mul Rot pt-ct Depth ct-ct Depth

Affine 1 t t - t1 + t2 − 1 1 -
Mix - 2 - - 1 - -
S′ - 1 1 1 1 1 1
S - - - 2 - - 2
Round 1 t+ 3 t+ 1 1 t1 + t2 + 1 2 1
Last Round 1 t+ 2 t 2 t1 + t2 1 2
Pasta-3 4 4t+ 10 4t+ 2 4 4(t1 + t2) + 2 6 4
Pasta-4 5 5t+ 13 5t+ 3 5 5(t1 + t2) + 3 8 5

5.5 Packed vs. Word-sliced Implementation
In the previous sections, we describe efficient SIMD algorithms to evaluate Pasta on
a packed HE ciphertext. In this section, we want to compare them to a word-sliced
implementation where one would encrypt only one field element ∈ Fp into one HE ciphertext.

A word-sliced implementation has several disadvantages. First, the homomorphic eval-
uation time of Pasta would be much slower. In a packed implementation, the S-boxes can
be evaluated with O(1) homomorphic operations, and with O(t) HE operations in a word-
sliced implementation. The word-sliced affine layer requires O(t2) HE operations compared
to O(t) operations when using packing. Secondly, the initial setup in the HHE use case
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requires the transmission of the HE encrypted symmetric key. In a packed implementation,
this is always only one HE ciphertext. However, in a word-sliced implementation, on has
to transmit 2 · t HE ciphertexts, drastically increasing the communication cost of this setup
phase. Finally, if the HHE use case leverages packing, one has to reconstruct a packed
ciphertext from its word-sliced state using many rotations on the server.

However, word-sliced implementations have an advantage as well. They do not require
homomorphic rotations (and, therefore, no Galois keys) and one can access each word
of the state individually. This is why one can implement the S-boxes from Section 5.2
without requiring masking multiplications. As a consequence, word-sliced implementations
have less noise consumption. Splitting the state in our Pasta design is also beneficial for
word-sliced implementations, since it reduces the number of homomorphic multiplications
from (2 · t)2 to 2 · t2 per affine layer, reducing the runtime.

5.6 Truncation vs. Feed-Forward
The original Rasta design uses a feed-forward addition of the secret key to prevent
meet-in-the-middle (MITM) attacks. Alternatively, one can truncate parts of the state
to prevent these attacks (Section 7.1). Since our design already truncates t words of the
state, we do not require an additional feed-forward operation.

6 Pasta Specification
Here we provide the complete Pasta specification. Pasta is a family of stream ciphers
which applies a permutation to the secret key, followed by a truncation to produce the
final keystream. The design of Pasta is shown in Figure 4.

XOFN, i

public

KL A0,L

K = KL||KR

KR A0,R

[
2I I
I 2I

]
S ′

S ′

A1,L

A1,R

[
2I I
I 2I

]
S ′

S ′

. . .

. . .

S

S

...

S

S

Ar,L

Ar,R

[
2I I
I 2I

]
KN,i

key dependent

. . .

. . .

Figure 4: The r-round Pasta construction to generate the keystream KN,i for block i
under nonce N with affine layers Aj .

For a prime p s.t. gcd(p− 1, 3) = 1, Pasta is defined as

~x 7→ leftt(Π(~x)),

where ~x ∈ F2t
p , leftt(·) returns the first t words, and Π is defined over F2t

p as

Π(·) = Ar ◦ Scube ◦Ar−1 ◦ Sfeistel ◦Ar−2 . . . ◦A1 ◦ Sfeistel ◦A0(·),

where r ≥ 1 is the number of rounds and where
• Sfeistel is an S-box layer defined as

Sfeistel(~x) = S′(~xL)‖S′(~xR),

where S′ over Ftp is a Feistel structure defined as

[S′(~y)]i =
{
y0 if i = 0,
yi + (yi−1)2 otherwise,

where ~y = y0‖y1‖ · · · ‖yt−1 ∈ Ftp,
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• Scube is an S-box defined as

Scube(~x) = S(x0)‖S(x1)‖ · · · ‖S(xs−1),

where ~x = x0‖x1‖ · · · ‖xs−1 ∈ F2t
p and where S over Fp is the cube12 S-box S(y) = y3,

and

• for each i ∈ {0, . . . , r}, Ai is an affine layer defined as

Ai(~x) =
[
2 · I I
I 2 · I

]
×
[
Ai,L(~xL)
Ai,R(~xR)

]
,

where I ∈ Ft×tp is the identiy matrix and where

Ai,j(~y) = Mi,j × ~y + ~ci,j

for j ∈ {L,R} and for each ~y ∈ Ftp, where

– Mi,L,Mi,R ∈ Ft×tp are invertible matrices defined in the following, and

– ~ci,L,~ci,R ∈ Ftp are random vectors.

Mi,L,Mi,R ∈ Ft×tp and ~ci,L,~ci,R ∈ Ftp are generated for each round from an XOF
seeded with a nonce N and a counter i.

To efficiently sample each matrix Mi,j ∈ Ft×tp , we sample sequential matrices follow-
ing [GPP11, GPPR11]. For each j ∈ {L,R}, we define Mi,j :=

(
M̃i,j

)t, where M̃i,j ∈ Ft×tp

is defined as

M̃i,j =


0 1 0 · · · 0
0 0 1 · · · 0
... . . . ...
0 0 0 · · · 1
α1 α2 α3 · · · αt


for α1, . . . , αt ∈ Fp \ {0}. Mi,j is an invertible matrix which can be built by sampling t
random elements and performing t · (t− 1) multiplications and (t− 1) · (t− 1) additions.

6.1 Concrete Instances
We propose a 3-round instance Pasta-3 as well as a 4-round instance Pasta-4 using
Shake128 [NIS15] as XOF. These instances provide at least 128 bits of security for the
prime fields Fp with log2(p) > 16 and gcd(p− 1, 3) = 1. The block and key sizes are shown
in Table 13.

Table 13: Concrete 128 bit security instances of Pasta.
Instance Rounds # Key Words # Plain Words # Cipher Words XOF
Pasta-3 3 256 128 128 Shake128
Pasta-4 4 64 32 32 Shake128

12We recall that the S-box S(x) = xd for d ≥ 2 is invertible over Fp if and only if gcd(p− 1, d) = 1.
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6.2 From Rasta to Pasta
In summary, Pasta is inspired by a port of Rasta to Ftp, where the following modifications
have been made:

1. The feed-forward operation has been replaced by a truncation operation. This allows
to prevent MITM attack in a more efficient way, at the cost of using a larger state.
In the packed HE evaluation the truncated words, however, do not influence the
runtime since they can be evaluated simultaneously to the non-truncated part of the
state.

2. Pasta uses two different kind of S-Box layers. This is motivated by the desire of
reducing the number of rounds while maintaining a reasonable state size. Having
r − 1 Feistel S-boxes (inspired by the chi function) and a final cube S-box with
higher degree and depth allows us to build Pasta instances with comparable number
of plain/cipher words as Masta with one round less. This implies both, a faster
homomorphic evaluation time, as well as less noise consumption compared to Masta.
We further explore the choice of two different S-boxes in Appendix C.

3. The Linear Layer is much cheaper than the one used in Rasta. Indeed, instead
of generating a 2t × 2t random invertible matrix directly, we pick up 2t random
elements and construct two sequential matrices Mi ∈ Ft×tp as given in [GPP11,
GPPR11]. These two matrices are then combined into one 2t× 2t matrix via a cheap
mixing operation. Having two split matrices allows an efficient packed homomorphic
evaluation of Pasta.

We point out that these changes are a trade-off between the security and the efficiency
reasons, as shown in the previous section.

7 Pasta Security Analysis
Given a certain number of rounds (fixed in advance), our goal is to find the minimum
number of key words s = 2t for which we can guarantee security of at least κ bits. If not
specified otherwise, κ ≈ log2(ps). This is slightly different from what is usually done in
traditional symmetric cryptanalysis. Indeed, in general, given a state Fsp and a security
level κ, one looks for the minimum number of rounds which provide a security level of at
least κ bits. Here we modify the approach since one of our main goals is to keep the depth
as low as possible, focusing on 3 and 4 rounds.

7.1 Truncation vs. Feed-Forward
Consider a permutation F : Fsp → Fsp, and assume it can be split as F (·) = F2 ◦ F1(·).
The advantage of a truncation w.r.t. a feed-forward operation is that it prevents attacks
using the backward direction without requiring a high degree of the inverse round function.
Indeed, in the feed-forward case, given y = F (x) + x, one can set up a system of equations
of the form

F1(x) = F−1
2 (y − x).

In order to prevent the possibility to solve it using algebraic techniques (e.g., Gröbner
bases), we need that both F1 and F−1

2 have a high degree.
In the case of truncation, given y = leftt(F (x)), the system of equations becomes

F1(x) = F−1
2 (y || y′)

for a certain unknown y′ ∈ Ftp. If t is large enough, the cost of solving it exceeds the
security level. At the same time, the overall size of the state must be larger than in the
feed-forward case due to losing part of the state.
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7.2 Security of the Linear Layer
As the smaller linear layers, we use random invertible matrices over Ftp. To achieve
security, the linear branch number of these matrices has to be sufficiently high. We analyze
this property by bounding the probability that a randomly picked matrix M allows for
transitions on the t-element mask vectors α to β, α = MTβ, where α and β have many
zeros. An overview of correlation analysis in Fp can be found in [DGGK21].

In Appendix B, we prove the following result.

Proposition 1. Let M ∈ Ft×tp be an invertible matrix. Its branch number satisfies

Pr[branch number ≥ t/2] ≥ 1− 2
pt/2−2 ,

for p > t ≥ 6.

Note that Pr[branch number ≥ t/2] ≈ 1 for p� t ≥ 6.
However, in our case, the total number of sequential matrices that we can generate is

limited by the t elements αi we can choose. Hence, in total we can generate κ̂ = (p− 1)t
invertible matrices. Considering this special case, we get that

Pr[branch number ≥ z ] ≥ 1− 2zpz · tt
(p− 1)t ,

that is,

Pr[branch number ≥ t/2] ≥ 1−
(

2t2
p− 1

)t/2

,

using 2(p− 1) ≤ p. Hence, Pr[branch number ≥ t/2] ≈ 1 for p� 2t2, as in our case.

7.3 Algebraic Attacks
To describe our analysis, we focus on Pasta-3. Our input x consists of s = 2t unknown
key elements and the output y consists of t elements (after truncation). Hence, we have

x = k1 || k2 || · · · || ks,
y = Pasta(x) = o1 || o2 || · · · || ot.

7.3.1 Linearization

In a linearization approach, the attacker replaces all monomials of degrees greater than 1 by
new variables, and finally tries to solve the resulting system of linear equations. Assuming
nv variables and a maximum degree of d, the number of possible monomials is

N =
d∑
i=1

(
nv + i− 1

i

)
. (5)

For Pasta-3 we have d = 12, and hence s variables in degree 12 after one function call.
Further, we obtain t equations with each call. In order to get as many equations ne as
variables nv, we can simply request more data, which eventually results in ne = nv after
s/t = 2 blocks (this has no effect on the efficiency of the linearization).

Due to the complexity of solving a linear system of equations in N variables, we target
log2(N) > 64. Hence, s ≥ 207 for a security of 128 bits. Following the same analysis, we
need s ≥ 51 for Pasta-4 and s ≥ 101 for a Masta-like 4-round instance which uses only
degree-2 Feistel-like S-boxes.
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In this analysis, we assume that almost all monomials appear in the final representations,
since our design provides strong diffusion in half of the state by using dense invertible
matrices, and full diffusion after two full linear layers.I n order to get more confidence in
our design, we also did some practical tests abd show the results in Figure 5. To avoid the
effect of cancellations, we used prime numbers of sizes larger than 216. We observe that
for the state sizes we tested, the actual number of monomials in the output word with the
smallest number of monomials is always very close to the upper bound for the number of
monomials given in Eq. (5).
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Figure 5: Comparison of the estimated number of monomials in each of the output words
according to Eq. (5) and the lowest number of monomials found in a practical evaluation.

7.3.2 Gröbner Basis Attacks

Here we determine how large our key s has to be in order to provide security w.r.t. Gröbner
basis attacks up to a complexity of 2128 function calls. As was the case above, we can
simply generate sufficiently many equations by requesting at least s/t = 2 blocks. Hence,
nv = ne, and we can estimate the complexity of solving such a system of equations by
using theoretical bounds. However, these bounds assume a regular system of equations,
and in practical tests we quickly observed that this is not the case for Pasta. Indeed,
when building more full-round equations and hence an overdetermined system, we can
force the degree of regularity to reach a minimum of 12. By reusing the estimate for the
complexity of computing a Gröbner basis we need s ≥ 207. Similar results can be obtained
by assuming d = 24 for Pasta-4.

There is also a different way to argue the number of words to use. From the linearization
analysis we know that there will be roughly 264 different monomials in each of the resulting
equations. Due to the internals of Gröbner basis algorithms, this results in around

(
264)ω

operations being necessary to compute a basis.13 We pessimistically (from a designer’s
point of view) set ω = 2 and thus have

(
264)ω = 2128.

Additional Strategies. The strategy presented above is only one way to attack the
system using Gröbner bases. It is common to also consider approaches which introduce
new variables in each state. The main idea of this technique is to reduce the degrees of
the equations at the expense of more variables, which is particularly useful when trying to
represent high-degree equations in a more efficient way.

13For example, the F5 algorithm [Fau99] uses Gaussian elimination on a Macaulay matrix, whose rows
indicate the equations in the system and whose columns are indexed by the monomials in these equations.
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In more detail, we may introduce a new variable after each nonlinear operation.
Considering a total state size of s = 2t words, we need to introduce 2s(r− 1) new variables
for an r-round construction (note that no new variables are needed after the final round,
since the stream output added to a plaintext is a degree-3 combination of the previous
variables). Using this many variables and equations of a degree larger than or equal to
2 results in a high solving complexity when assuming nontrivial (i.e., dense) equations
(we refer to [JV17, NNY18], in which degree-2 equation systems over Z2 are considered).
We therefore conjecture that introducing intermediate variables will only increase the
complexity needed to solve the final system when compared to using full-round equations.

7.4 Other Attacks
Many other known attacks are largely prevented by our random linear layers which are
different in each Pasta evaluation, which is the same strategy used by e.g. Rasta and
Masta.

Higher-Order Differential Attacks. Higher-order differential attacks [Lai94, Knu94] are
essentially prevented by the fact that the attacker is only allowed to evaluate a single
instance once due to the different linear layers. Moreover, the only subspaces of a finite field
Fp with prime characteristic are {0} and Fp itself, which makes higher-order differential
attacks even harder (however, there have been variations of this attack vector which also
work over Fp [BCD+20a]).

Differential Attacks. Inherently, classical differential attacks [BS90] are built upon a
suitable differential characteristic. In Pasta, this is also prevented by the use of different
linear layers for each instance. Indeed, every permutation can only by evaluated once,
making this attack vector infeasible just as in the original Rasta.

7.5 Security Margin
Besides the attack strategies just discussed, we add a security margin to our construction.
Concretely, we take the largest number of words s needed for security, we multiply this
number by 1.2 for a 20% security margin, and we then take the smallest even integer larger
than or equal to that.

8 Pasta Benchmarks
In this section, we benchmark a packed implementation of our Pasta design in both SEAL
and HElib. We also reimplemented a packed version of Masta, using the same algorithms
to generate random field elements and homomorphic matrix multiplications as in Pasta
to compare both ciphers in a fair setting. Similar as in Section 4.1.1, we also benchmark
both ciphers in a real HHE use case.

8.1 Comparing Pasta to Z2 Ciphers
We first compare Pasta and Masta to the Z2 benchmarks from Section 4. Therefore,
we instantiate both ciphers with a 17-bit prime and benchmark their performance for the
small use case from Section 4.1.1. The resulting benchmarks can be seen in Table 14 and
Table 15 where we depict both runtime and remaining noise budget after each step of the
HHE use case for SEAL and HElib respectively.
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Table 14: Runtime and noise budget of the small HHE use case in the SEAL library.
Cipher N Enc. Key Decomp. Small Use Case

runtime noise runtime noise runtime noise
s bit s bit s bit

p = 65537 (17 bit):
Pasta-3 16384 0.017 364 9.28 95 0.197 51
Pasta-4 32768 0.059 800 21.0 451 1.11 406
Masta-4 32768 0.058 800 54.2 460 1.11 415
Masta-5 32768 0.057 800 39.2 386 1.13 341

Table 15: Runtime and noise budget of the small HHE use case in the HElib library.
Cipher m λ′ Enc. Key Decomp. Small Use Case

runtime noise runtime noise runtime noise
bit s bit s bit s bit

p = 65537 (17 bit):
Pasta-3 65536 173 0.054 410 26.0 74 0.754 23
Pasta-4 65536 142 0.054 475 13.0 56 0.737 6
Masta-4 65536 133 0.054 502 36.7 86 0.740 36
Masta-5 131072 254 0.116 566 55.4 56 1.71 5

8.1.1 Discussion

In the following, we compare the runtime and noise consumption of all Z2 and Fp ciphers,
with p = 65537, namely

• in Figure 6 for homomorphically decrypting one block in SEAL (Fp values from
Section 8.2),

• in Figure 7 for the HHE use case (including HHE decompression) in SEAL,

• in Figure 8 for homomorphically decrypting one block in HElib (Fp values from
Section 8.2), and

• in Figure 9 for the HHE use case (including HHE decompression) in HElib.

Our figures indicate that Pasta is always the fastest cipher – mainly Pasta-4 due
to the small number of encrypted words. However, Pasta-3 is faster when evaluating
the whole HHE use case in SEAL due to the small multiplicative depth requiring smaller
HE parameters for security. Comparing Pasta to the Z2 ciphers, one can observe that
homomorphically decrypting one block requires less noise budget for the Z2 ciphers.
However, Pasta has (besides the runtime advantage) a noise advantage over the Z2 ciphers
when considering the HHE use case due to the significantly larger multiplicative depth
of the binary circuits for integer arithmetic. Concretely, decompression and use case
evaluation is 33× faster in SEAL using Pasta-3 and 82× faster in HElib using Pasta-4
compared to Agrasta. Using TFHE for Z2 ciphers instead of e.g. SEAL does not help the
Z2 ciphers either, since Pasta-3 in SEAL is 47× faster than using Kreyvium in TFHE
for the small HHE use case.

Increasing the bitsize of the encrypted integers or chaining multiple matrix multipli-
cations would further demonstrate the advantage of Pasta over Z2 ciphers, since the
drastic increase in the multiplicative depth of the use case would make using the Z2 ciphers
infeasible.
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Figure 6: Runtime and noise comparison of Z2 ciphers for homomorphically decrypting 1
Block in SEAL.
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Figure 7: Runtime and noise comparison for the small HHE use case in SEAL.

8.2 Pasta vs. Masta
Since both Pasta and Masta outperform the Z2 ciphers for HHE, we continue with
comparing these ciphers over Fp. Similar to the Z2 benchmarks, we also compare Pasta
and Masta in a real HHE use case. However, to further demonstrate the advantage
of the Fp ciphers in HHE, we benchmark a more extensive use case with a significantly
higher multiplicative depth. The use case this time is an application with three affine
transformation ~x′i = Mi · ~xi +~bi, where ~xi, ~x′i,~bi ∈ F200

p and Mi ∈ F200×200
p , with three

different primes p. To make the use case more generic, we square the output vector after the
first two affine transformation, resulting in a multiplicative depth of 3 plaintext-ciphertext
and 2 ciphertext-ciphertext multiplications.

8.2.1 Plain Benchmarks

In Table 16 we compare the number of CPU cycles of the encryption curcuit of Pasta to
the encryption circuit of Masta. Since both ciphers generate random matrices and round
constants independent of the secret key which can be precomputed before encryption, we
additionally give CPU cycles for generating these affine layers and the encryption circuit
with precomputed randomness. Table 16 shows that Pasta-4, due to its small state size,
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Figure 8: Runtime and noise comparison of Z2 ciphers for homomorphically decrypting 1
Block in HElib.
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Figure 9: Runtime and noise comparison for the small HHE use case in HElib.

requires the smallest number of cycles to encrypt one block. Pasta-3, on the other hand,
due to sampling sequential matrices instead of polynomials m ∈ Zp[X]/(Xt − α) (as in
Masta) and requiring twice as many matrices per round, is the slowest cipher to encrypt
one block in plain. However, the difference to Masta-4 is only a factor of 3, which in
practice corresponds to latencies in the order of milliseconds.

8.2.2 SEAL Benchmarks

In Table 17 we present the benchmarks for the packed implementation of Pasta and
Masta in the SEAL library. We give timings for homomorphically decrypting one block
and additionally timings for the bigger HHE use case. We parameterize SEAL to provide
128 bits of security and use the smallest N allowing enough noise budget for correct
evaluation. In Table 18 we additionally give the remaining noise budget after encrypting
the symmetric key, homomorphically decrypting the symmetric ciphertexts, and performing
the HHE use case.
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Table 16: Cycles for encrypting one block in plain, averaged over 1000 executions.
Cipher Total Affine Generation Encrypting
p = 65537 (17 bit):
Pasta-3 17 041 380 9 196 314 7 845 066
Pasta-4 1 363 339 825 067 538 272
Masta-4 6 535 937 2 164 002 4 371 935
Masta-5 2 105 628 752 374 1 353 254
p = 8088322049 (33 bit):
Pasta-3 22 429 444 11 637 800 10 791 644
Pasta-4 1 750 420 973 205 777 215
Masta-4 8 427 384 1 975 522 6 451 862
Masta-5 2 690 636 674 201 2 016 435
p = 1096486890805657601 (60 bit):
Pasta-3 31 053 515 16 067 138 14 986 377
Pasta-4 2 458 680 1 315 770 1 142 910
Masta-4 11 405 862 1 968 100 9 437 762
Masta-5 3 542 410 669 220 2 873 190

8.2.3 HElib Benchmarks

In Table 19 we present the benchmarks for the packed implementation of Pasta and
Masta in the HElib library. We give timings for homomorphically decrypting one block
and additionally timings for the bigger HHE use case. We parameterize q to provide
enough noise budget to evaluate the benchmark, and choose the m-th cyclotomic reduction
polynomial, with m being a power of two, such that the HE scheme provides ≥ 128 bits
security. In Table 20 we additionally give the remaining noise budget after encrypting the
symmetric key, homomorphically decrypting the symmetric ciphertexts, and performing
the HHE use case.

8.2.4 Discussion

In the following figures we compare the runtime and noise consumption of Pasta and
Masta for 3 different prime fields Fp, namely

• in Figure 10 for homomorphically decrypting one block in SEAL,

• in Figure 11 for the HHE use case (including HHE decompression) in SEAL,

• in Figure 12 for homomorphically decrypting one block in HElib, and

• in Figure 13 for the HHE use case (including HHE decompression) in HElib.

The figures show the advantage of Pasta compared to Masta. In all figures, Pasta-3
has a smaller runtime and noise consumption then Masta, especially when the smaller
multiplicative depth allows for smaller HE parameters (compare, e.g., 33-bit prime fields
in Figure 11, where Pasta-3 is 6× faster than Masta-4). Pasta-3 is only outperformed
by Pasta-4 for a small number of encrypted words (e.g., only encrypting one block, or
the small HHE use case from Section 8.1 in HElib where Pasta-4 is 2.7× faster then
Masta-4) if the overall multiplicative depth allows Pasta-4 to use the same HE parameters
as Pasta-3. Hence, we propose using Pasta-4 for HHE use cases with a small number
of encrypted words, and Pasta-3 everywhere else. Since Masta uses different security
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Table 17: Fp benchmarks for the SEAL library.
1 Block Bigger HHE use case

Cipher N Enc. Key Decomp. N Enc. Key Decomp. Use Case
s s s s s

p = 65537 (17 bit):
Pasta-3 16384 0.016 9.22 32768 0.056 86.2 43.9
Pasta-4 16384 0.016 4.19 32768 0.057 147.8 43.8
Masta-4 16384 0.016 11.6 32768 0.058 108.7 43.9
Masta-5 32768 0.062 39.6 32768 0.056 157.0 43.9
p = 8088322049 (33 bit):
Pasta-3 32768 0.057 43.1 32768 0.055 86.3 43.9
Pasta-4 32768 0.057 21.2 65536 0.216 833.4 220.8
Masta-4 32768 0.058 54.4 65536 0.215 568.5 221.3
Masta-5 32768 0.055 39.3 65536 0.215 852.6 220.7
p = 1096486890805657601 (60 bit):
Pasta-3 32768 0.055 58.3 65536 0.212 448.6 220.8
Pasta-4 65536 0.220 119.2 65536 0.212 833.6 221.0
Masta-4 65536 0.220 284.3 65536 0.212 571.9 223.1
Masta-5 65536 0.219 213.3 65536 0.212 853.3 220.9

margins than Pasta, we discuss the impact of the security margin in Appendix D, which
further demonstrates the advantage of the Pasta construction over Masta.
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Figure 10: Runtime and noise comparison of Fp ciphers for homomorphically decrypting 1
Block in SEAL.

9 Conclusion
In this paper, we formally defined hybrid homomorphic encryption and evaluated existing
ciphers for HHE. Since none of the existing designs is well-suited for HHE for integer
arithmetic, we proposed Pasta, a low-depth cipher optimized for HHE. We evaluated the
usability of Pasta against 7 ciphers for HHE in two state-of-the-art HE libraries, SEAL
and HElib, and show, thate Pasta outperforms all previous designs in both homomorphic
evaluation time and noise consumption.
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Table 18: Noise budget after each operation for Fp ciphers in the SEAL library.
1 Block Bigger HHE use case

Cipher N Enc. Key Decomp. N Enc. Key Decomp. Use Case
bit bit bit bit bit

p = 65537 (17 bit):
Pasta-3 16384 365 96 32768 800 524 365
Pasta-4 16384 365 25 32768 800 451 292
Masta-4 16384 365 33 32768 800 459 300
Masta-5 32768 800 386 32768 800 386 226
p = 8088322049 (33 bit):
Pasta-3 32768 783 339 32768 783 339 78
Pasta-4 32768 783 215 65536 1637 1058 793
Masta-4 32768 783 223 65536 1637 1068 802
Masta-5 32768 783 97 65536 1638 941 677
p = 1096486890805657601 (60 bit):
Pasta-3 32768 756 42 65536 1611 888 461
Pasta-4 65536 1611 680 65536 1610 681 254
Masta-4 65536 1611 690 65536 1611 689 262
Masta-5 65536 1611 481 65536 1610 482 55
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Table 19: Fp benchmarks for the HElib library.
1 Block Bigger HHE use case

Cipher m λ′ Enc. Key Decomp. m λ′ Enc. Key Decomp. Use Case
bit s s bit s s s

p = 65537 (17 bit):
Pasta-3 65536 184 0.052 24.7 65536 128 0.064 57.6 19.9
Pasta-4 65536 163 0.052 11.7 131072 229 0.124 210.8 38.6
Masta-4 65536 163 0.062 33.1 131072 229 0.131 157.3 45.4
Masta-5 65536 133 0.064 27.1 131072 199 0.135 252.8 48.4
p = 8088322049 (33 bit):
Pasta-3 65536 128 0.057 28.7 131072 162 0.166 187.7 60.5
Pasta-4 131072 204 0.166 35.3 131072 144 0.190 320.5 57.8
Masta-4 131072 196 0.165 101.3 131072 144 0.166 256.2 69.5
Masta-5 131072 166 0.168 82.4 131072a 117 0.242 427.8 80.0
p = 1096486890805657601 (60 bit):
Pasta-3 131072 162 0.185 94.1 131072a 97 0.285 268.8 84.4
Pasta-4 131072 129 0.183 50.5 131072a 83 0.310 486.7 84.2
Masta-4 131072 129 0.208 144.7 131072a 83 0.289 387.4 101.6
Masta-5 131072a 99 0.233 122.1 131072a 70 0.300 635.5 111.9
a Further increasing m for security resulted in infeasibly long runtimes.
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Figure 11: Runtime and noise comparison for the bigger HHE use case in SEAL.
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Figure 12: Runtime and noise comparison of Fp ciphers for homomorphically decrypting 1
Block in HElib. Ciphers marked with a * were evaluated with less than 128 bit HE security.
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Table 20: Noise budget after each operation for Fp ciphers in the HElib library.
1 Block Bigger HHE use case

Cipher m λ′ Enc. Key Decomp. m λ′ Enc. Key Decomp. Use Case
bit bit bit bit bit bit bit

p = 65537 (17 bit):
Pasta-3 65536 184 368 32 65536 128 542 196 8
Pasta-4 65536 163 434 15 131072 229 645 205 14
Masta-4 65536 163 434 18 131072 229 645 215 24
Masta-5 65536 133 522 11 131072 199 715 205 15
p = 8088322049 (33 bit):
Pasta-3 65536 128 535 2 131072 162 887 327 33
Pasta-4 131072 204 698 25 131072 144 987 314 20
Masta-4 131072 196 724 45 131072 144 987 309 16
Masta-5 131072 166 843 14 131072a 117 1161 347 53
p = 1096486890805657601 (60 bit):
Pasta-3 131072 162 876 20 131072a 97 1366 505 49
Pasta-4 131072 129 1076 17 131072a 83 1567 496 40
Masta-4 131072 129 1076 14 131072a 83 1567 496 39
Masta-5 131072a 99 1356 50 131072a 70 1803 497 42
a Further increasing m for security resulted in infeasibly long runtimes.

600 800 1,000 1,200 1,400 1,600 1,800

102

102.5

Noise [bit]

Ru
nt
im

e
(lo

g)
[s]

Pasta-3_17
Pasta-3_33
Pasta-3_60*
Pasta-4_17
Pasta-4_33
Pasta-4_60*
Masta-4_17
Masta-4_33
Masta-4_60*
Masta-5_17
Masta-5_33*
Masta-5_60*

Figure 13: Runtime and noise comparison for the bigger HHE use case in HElib. Ciphers
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A Proof HHE schemes are HE schmes
Lemma 1. Let HE be a correct public-key homomorphic encryption scheme and SYM a
correct secret-key encryption scheme. Then the resulting HHE scheme HHE = (HHE.KGen,
HHE.Enc,HHE.Dec,HHE.Eval) is as well.

Proof. The proof follows along the lines of [BV14]. Let m be an arbitrary message and let
ĉ be a ciphertext such that

ĉ = HHE.Decompevk(HHE.Encpk(m)).

To show correctness, we want to bound the following probability - for any function f - by
a negligible function in the security parameter:

Pr[HHE.Decsk (HHE.Evalevk (f, ĉ)) 6= f(m)] .

By definition, we have HHE.Eval = HE.Eval. If in addition we rewrite ĉ, we get

Pr[HHE.Decsk (HE.Evalevk (f,HHE.Decompevk(HHE.Encpk(m)))) 6= f(m)] .

https://github.com/Microsoft/SEAL
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Looking into the internals of the encryption algorithm and decompression algorithm we
first get

Pr[HHE.Decsk (HE.Evalevk (f, HHE.Decompevk(HE.Encpk(k), SYM.Enck(m)))) 6= f(m)] ,

and finally arrive at

Pr[HHE.Decsk (HE.Evalevk (f, HE.Evalevk(SYM.Dec, HE.Encpk(k), SYM.Enck(m)))) 6= f(m)] .

Now, we can bound this probability by the union bound

Pr[HHE.Decsk (HE.Evalevk (f, HE.Encpk(m))) 6= f(m)]
+ Pr[SYM.Deck (SYM.Enck(m)) 6= m] .

Both terms are negligible by assumption. The first one by the correctness of HE and the second
one by the correctness of SYM.

B About the Branch Number of a Bijective Matrix
Here we prove the following result.

Proposition 2. Let M ∈ Fs×sp be an invertible matrix. Its branch number satisfies

Pr(branch number ≥ s/2) ≥ 1− 2
ps/2−2 ,

for p > s ≥ 6.

Proof. First of all, we are interested in the number κ̂ of all possible bijective matrices M .
A matrix M is bijective, if all its row vectors are linearly independent and different from
the all 0 vector. So, for the first row, we have ps − 1 possibilities to choose a row vector.
For the second row, we have ps possibilities to choose the coefficients minus p choices
that is just are linear combination of the first row. In the third row, we now have ps − p2

choices etc. So we finally end up with

κ̂ =
s−1∏
i=0

(
ps − pi

)
.

Now, we consider the number of matrices M , that allow a transition α = MTβ for
fixed non-zero α and β. Considering the first row of MT , we have ps−1 choices of the
coefficients of the first row, so that β maps to the first coordinate of β. Since we require M
to be bijective, the choice of the second row a limited to ps−1− p. Following this reasoning,
we get the number of matrices M that map α to β, i.e.,

κ = ps−1
s−2∏
i=1

(
ps−1 − pi

)
= p

s−1∏
i=2

(
ps − pi

)
.

Next, we have a look at how many different masks α and β exist, which have together
z non-zero entries. This number is (p− 1)z

(2s
z

)
. Now we have all ingredients we need to

bound the probability that a randomly selected matrix M has a branch number smaller
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than z

Pr(branch number ≤ z) ≤

≤
p
∏s−1
i=2

(
ps − pi

)∑z
i=1
(
(p− 1)i

(2s
i

))∏s−1
i=0 (ps − pi)

≤
∑z
i=1
(
(p− 1)i

(2s
i

))
(ps − 1) (ps−1 − 1)

≤
z(p− 1)z

(2s
s

)
(ps − 1) (ps−1 − 1)

≤ 2zpz · ss
(ps − 1) (ps−1 − 1) .

where
(2s
s

)
= 2s·(2s−1)·····(s+1)

s! ≤ (2s)s

2s−1 = 2 · ss since s! ≥ 2s−1. We now set z = s/2 and
assume that p > s ≥ 6, we get

Pr(branch number ≤ s/2) ≤ pps/2ps

(ps − 1) (ps−1 − 1)

≤ 16 · p3s/2+1

9 · p2s−1 ≤ 2p2

ps/2 ≤ 1/2,

where (xs − 1) ≥ 3/4 · xs for x ≥ 3 and s ≥ 2, which means that

Pr(branch number ≥ s/2) ≥ 1− 2
ps/2−2

for p� s ≥ 6.

C On Using Two Different S-Boxes
To be optimized for HHE, we designed Pasta to have a small number of rounds (implying
less noise consumption) and a small state size (implying fast homomorphic evaluation
time). Therefore, we make use of a Feistel S-box of degree 2 and a cube S-box of degree 3.
Using only Feistel S-boxes would result in a design with worse performance: A 3-round
design using only Feistel S-boxes would require t ≈ 500 plain/cipher words (based on the
security analysis in Section 7), which results in significantly longer homomorphic evaluation
times. A 4-round design would have the same multiplicative depth as Masta-4, leading
to the same HE parameters and noise consumption as Masta-4. Therefore, this design
would be faster then Masta due to the smaller size t (t = 55 as shown in Section 7) in
one evaluation branch. However, it would not have a noise advantage. Pasta-3, on the
other hand, has both a runtime and a noise advantage due to requiring fewer rounds by
having a slightly smaller size t than Masta-4.

The diffusion of a 2-round cipher based only cube S-boxes would largely rely only on
the single layer between the matrix multiplication. Thus the resulting diffusion is likely bad
potentially allowing to separate the cipher [CDK+18]. Therefore, we chose to instantiate
Pasta-3 by using the smallest depth which allows a 3-round cipher with approximately
the same number of plain/cipher words t as Masta-4, which is using two Feistel S-boxes
and one cube S-box.

D Pasta vs. Masta with matching Security Margins
Since Masta has a different security margin than Pasta, we want to argue, that the
runtime/noise advantage of Pasta is due to its construction and not due to different
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margins. A Pasta-3 instance (dubbed Pasta-3-sm) with the same margin as Masta-4
would require a state size of 140 plain/cipher words, a Pasta-4 instance matching the
margin of Masta-5 would requre 30 words. Therefore, our Pasta-4 instance already has
a higher margin then Masta-5, which is why we focus on Pasta-3-sm in this section.
We ran our benchmarks also for Pasta-3-sm with 140 plain/cipher words and report
the runtime in Table 21 and Table 22. Our benchmarks confirm, that for both libraries
(SEAL and HElib) Pasta-3-sm has the same noise consumption as Pasta-3 which is why
we refrain from reporting the noise consumption in extra tables. Table 21 and Table 22
confirm, that Pasta-3-sm still outperforms Masta-4 in every metric further proofing the
advantage of the Pasta design strategy.

Table 21: Additional benchmarks for the SEAL library.
1 Block Bigger HHE use case

Cipher N Enc. Key Decomp. N Enc. Key Decomp. Use Case
s s s s s

p = 65537 (17 bit):
Pasta-3 16384 0.016 9.22 32768 0.056 86.2 43.9
Pasta-3-sm 16384 0.016 9.79 32768 0.056 91.2 44.5
Masta-4 16384 0.016 11.6 32768 0.058 108.7 43.9
p = 8088322049 (33 bit):
Pasta-3 32768 0.057 43.1 32768 0.055 86.3 43.9
Pasta-3-sm 32768 0.058 45.5 32768 0.056 90.9 44.1
Masta-4 32768 0.058 54.4 65536 0.215 568.5 221.3
p = 1096486890805657601 (60 bit):
Pasta-3 32768 0.055 58.3 65536 0.220 448.6 220.8
Pasta-3-sm 32768 0.056 62.2 65536 0.224 470.0 222.5
Masta-4 65536 0.220 284.3 65536 0.212 571.9 223.1

Table 22: Additional benchmarks for the HElib library.
1 Block Bigger HHE use case

Cipher m λ′ Enc. Key Decomp. m λ′ Enc. Key Decomp. Use Case
bit s s bit s s s

p = 65537 (17 bit):
Pasta-3 65536 184 0.052 24.7 65536 128 0.064 57.6 19.9
Pasta-3-sm 65536 184 0.059 26.7 65536 128 0.064 61.4 20.1
Masta-4 65536 163 0.062 33.1 131072 229 0.131 157.3 45.4
p = 8088322049 (33 bit):
Pasta-3 65536 128 0.057 28.7 131072 162 0.177 187.7 60.5
Pasta-3-sm 65536 128 0.056 31.7 131072 162 0.174 200.4 61.1
Masta-4 131072 196 0.165 101.3 131072 144 0.166 256.2 69.5
p = 1096486890805657601 (60 bit):
Pasta-3 131072 162 0.181 94.1 131072a 97 0.285 268.8 84.4
Pasta-3-sm 131072 162 0.199 99.1 131072a 97 0.264 281.7 85.4
Masta-4 131072 129 0.208 144.7 131072a 83 0.279 387.4 101.6
a Further increasing m for security resulted in infeasibly long runtimes.
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