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Abstract We provide three first-order sharings of the AES each allow-
ing for a different trade-off between the number of shares and the number
of register stages. All sharings use a generalization of the changing of the
guards method by allowing randomness to be used in the shared S-box.
As a result, the sharings have minimal randomness requirements. The
sharings are written out in detail to ease implementation efforts.
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1 Introduction

The Advanced Encryption Standard (AES) [13] is one of the most used cryp-
tographic building blocks these days. The cipher has secured many applications
including the world wide web. However, for some applications, like in embed-
ded devices, naive implementations of the AES are vulnerable to side-channel
attacks such as Differential Power Analysis (DPA) due to Kocher et al. [12]. The
current agreed-upon method to protect implementations against DPA is sharing.
In sharing, each key-dependent variable is split into several random shares such
that an adversary needs to view the power consumption of each share to gain
information on the secret variable.

The past twenty years several sharings of the AES appeared in the literature.
Several significant steps were made to improve the efficiency and security of the
sharing. Threshold implementations by Nikova et al. [14] allowed for sharings
which protect against glitches in hardware. The uniformity aspect of threshold
implementations allows for the reduction of randomness in the sharing. The
changing of the guards technique by Daemen [5] showed how to easily make a
sharing uniform without significantly increasing costs. Canright [3] proposed an
efficient tower field decomposition of the AES S-box in order to improve hardware
costs. This decomposition was then used by De Cnudde et al. [7] to create efficient
threshold implementation sharings of the AES. However, the authors noted that
the randomness cost of their designs are high making it infeasible to generate
the randomness in a cryptographic secure way.

Contributions. We provide a generalization of the changing of the guards to
include sharings which use randomness. The technique allows the re-use of ran-
domness between all masked S-boxes and still retain first-order probing security.



As a result, the generalization tackles the open question by De Cnudde et al.
as we significantly reduce the randomness cost of their sharing at least for first-
order security. We then provide three variants of the sharing, each trading off the
number of register stages with the number of shares. The sharings are written
in such a way that it is easy to implement them reading the document. Software
implementations of the masked S-boxes can be found on GitLab.

Currently no implementation costs or practical leakage tests are included.
However, we welcome input from the community.

Outline. The paper starts introducing AES, the probing model, sharing, and
threshold implementations in Section 2. We then introduce a generalization of the
changing of the guards technique in Section 3. Since the three introduced shar-
ings have some similarities, we introduce those in Section 4. Section 5 provides
the AES sharing with minimal area requirements. Section 6 provides another
sharing with lower latency. Section 7 provides a further trade-off between area
and latency.

2 Preliminaries

In this section we go over the used notation, introduce the AES, the probing
side-channel security model, and threshold implementations.

2.1 Notation

We denote bits by subscript and shares by superscript. We denote the most sig-
nificant bit by a bigger subscript. For example, given (a1, ..., a8) then a8 denotes
the most significant bit and a1 the least significant.

2.2 Description of AES

We quickly introduce the AES cipher designed by Daemen and Rijmen [6] and
standardized by NIST [13]. There are three levels of security 128, 192, and 256.
AES consists of a 128-bit state and 128, 192, or 256-bit key, respectively, divided
into bytes. The cipher is composed of 10, 12, or 14 rounds, respectively, each
applying an addition of a subkey, a bricklayer of S-Boxes, a ShiftRows operation,
and a MixColumns operation. The AES S-Box consists of an inversion in the field
F28 and the application of an affine layer. This is visually represented in Figure 1.

The key schedule for AES-128, which operates on 4 columns of 32 bits each,
is depicted in Figure 2. For each round of the AES state function, there is a
parallel round of the key schedule. We provide a description for the AES-128
key schedule. Denote Vj , with j ∈ {1, ..., 4}, the jth word of the key state at
round i and Wj the jth word of the key state at round i + 1. Then a round of
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Figure 1: Representation of the AES.

the key schedule is defined as

W1 = V1 ⊕ RotWord(SubWord(V4)) + Ci+1 ,

W2 = V2 ⊕W1 ,

W3 = V3 ⊕W2 ,

W4 = V4 ⊕W3 .

With RotWord the left circular shift, SubWord the application of four AES S-
boxes, and Ci+1 the round constants for round i+ 1.

S

S

S

S
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Figure 2: The AES-128 key schedule. The ith round constants are denoted by
Ci ∈ F32

2 and S denotes the AES S-box.

2.3 The Threshold Glitch-Extended Probing Model

This section introduces the threshold probing model.

Threshold Probing. A dth-order threshold probing adversary A, as first proposed
by Ishai et al. [11], can view the values present on up to d gates or wires in
a circuit implementing a cipher during a single execution (cipher evaluation).
We note that by “probe” we do not mean a physical probe such as an EM
probe. Instead, the word probe is used as an abstract concept through which an
adversary can perfectly observe a part of the computation.

The adversary A is computationally unbounded, and must specify the loca-
tion of the probes before querying the circuit. However, the adversary can change
the location of the probes over multiple cipher queries. The adversary’s inter-
action with the circuit is mediated through encoder and decoder algorithms,
neither of which can be probed.
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Glitches. The above model is extended to capture the effect of glitches on hard-
ware. Whereas one of the adversary’s probes normally results in the value of
a single wire, a glitch-extended probe allows obtaining all the registered inputs
leading to the gate/wire which is probed. This extension of the probing model
has been discussed in the work of Reparaz et al. [15] and formalized by Faust
et al. [9]. The formulation of the latter work is as follows: “For any ε-input cir-
cuit gadget G, combinatorial recombinations (aka glitches) can be modeled with
specifically ε-extended probes so that probing any output of the function allows
the adversary to observe all its ε inputs.”

2.4 Boolean Sharing and Threshold Implementations

Boolean sharing was independently introduced by Goubin and Patarin [10] and
Chari et al. [4]. It serves as a sound and widely-deployed countermeasure against
side-channel attacks. The technique is based on splitting each secret variable
x ∈ F2 in the circuit into shares x̄ = (x1, x2, . . . , xsx) such that x =

∑sx
i=1 x

i

over F2. A random Boolean sharing of a fixed secret is uniform if all sharings of
that secret are equally likely.

There are several approaches to sharing a circuit. In this work, we make use
of threshold implementations, proposed by Nikova et al. [14]. In particular, we
focus on “first-order threshold implementations” as those which protect against
first-order side-channel attacks. The interested reader is referred to the works by
Bilgin et al. [2] and Beyne et al. [1] for more information on how to use threshold
implementations to secure against higher-order attacks.. In the following, the
main properties of threshold implementations as introduced by Nikova et al. are
reviewed.

A threshold implementation consists of several layers of Boolean functions,
as shown in Figure 3. As for any masked design, a black-box encoder function
generates a uniform random sharing of the input before it enters the shared
circuit and the output shares are recombined by a decoder function. At the end
of each layer, synchronization is ensured by means of registers which are assumed
to stop glitches.
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Figure 3: Schematic illustration of a threshold implementation assuming an equal
number of input and output shares.
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Let F̄ be a layer in the threshold implementation corresponding to a part of
the circuit F : Fn

2 → Fm
2 . For example, F might be the linear layer of a block

cipher. The function F̄ : Fnsx
2 → Fmsy

2 , where we assume sx shares per input bit
and sy shares per output bit, will be called a sharing of F . The ith share of the
function F̄ is denoted by F i : Fnsx

2 → Fm
2 , for i ∈ {1, .., sy}. Sharings can have a

number of properties that are relevant in the security argument for a threshold
implementation; these properties are summarized in Definition 1.

Definition 1 (Properties of threshold implementations [14]). Let F :
Fn
2 → Fm

2 be a function and F̄ : Fnsx
2 → Fmsy

2 be a sharing of F . The sharing F̄
is said to be

1. correct if
∑sy

i=1 F
i(x1, . . . , xsx) = F (x) for all x ∈ Fn

2 and for all shares
x1, . . . , xsx ∈ Fn

2 such that
∑sx

i=1 x
i = x,

2. non-complete if any function F i, measured between register stages, depends
on at most sx − 1 input shares,

3. uniform if F̄ maps a uniform random sharing of any x ∈ Fn
2 to a uniform

random sharing of F (x) ∈ Fm
2 .

Considering that, in a threshold implementation, all input/outputs of the
functions are stored in registers, placing a glitch-extended probe in a layer of a
threshold implementation returns all inputs of the probed shared Boolean func-
tion. If all layers of a threshold implementation are non-complete and uniform,
the resulting shared circuit can be proven secure in the first-order probing model
with glitches [8].

3 Changing of the Guards with Randomness

The changing of the guards method proposed by Daemen [5] is a technique that
transforms a non-complete sharing into a uniform and non-complete sharing.
The technique works by embedding the sharing into a Feistel-like structure. In
this paper, we slightly generalize the method by considering a first-order probing
secure sharing. Such a sharing potentially requires multiple register stages and
extra randomness to guarantee its security. The adapted changing of the guards
method still ensures uniformity and first-order probing security while allowing
the re-use of the randomness. An example of the method with two shares is
shown in Figure 4.

We give the changing of the guards method formally in Definition 2.

Definition 2. The changing of the guards method applied to a shared map S̄
given inputs (a1, ..., as), (b1, ..., bs−1), and randomness r̄ is calculated as follows

r̄′ = r̄ (1)

a′1 = S1(a1, ..., as, r̄)⊕ b1, . . . , a′s−1 = Ss−1(a1, ..., as, r̄)⊕ bs−1, (2)

a′s = Ss(a1, ..., as, r̄)⊕ b1 ⊕ . . .⊕ bs−1 (3)

b′1 = a1, . . . , b′s−1 = as−1 . (4)
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Figure 4: Changing of the guards method with two shares where the shared S-box
S̄ uses the randomness r̄.

In general we refer to the (b1, ..., bs−1) as the guards of the shared S-box S̄.
We show that the changing of the guards construction with randomness re-

tains the correctness and probing security properties from S̄, but makes the
sharing uniform.

Theorem 1. The method from Definition 2 is correct, first-order probing secure,
and uniform.

Proof. Correctness of the construction follows from the correctness of S̄ and the
fact that each share bi is added to two different output shares in Equations 2-3.

First-order probing security of the construction, assuming a joint uniform
input, follows from the first-order probing security of S̄ and the facts that the
share bs is not used in the construction and that each share b′i is calculated
using only one share ai using Equations 2-3.

For the proof of uniformity, we first take an arbitrary input secret a. We show
that the above construction is invertible. In other words, given the secret a and
the outputs (a′1, ..., a′s), (b′1, ..., b′s−1), r̄′, we show it is possible to construct the
inputs (a1, ..., as), (b1, ..., bs−1), r̄.

Since the input secret a is given, we can construct the inputs (a1, ..., as)
from (b′1, ..., b′s−1) using Equation 4. From r̄′ we can evidently construct r̄ since
the two are equal (see Equation 1). By running (a1, ..., as) and r̄ through S̄
and XORing the output (a′1, ..., a′s) =, we can also construct (b1, ..., bs) (see
Equations 2-3) which concludes the proof.

Thus, the changing of the guards method allows for the transformation of
any first-order probing secure sharing into a uniform one which allows the re-use
of the randomness used in the S-box.

4 Overarching Structure of the AES Sharings

In this section we provide the common parts of all first-order designs. Only the
sharing of the S-box differs for each design. These are detailed in Sections 5, 6,
and 7.
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4.1 Multipliers

In the computation of the sharing of the S-box, we make use of multipliers over
F22 and F24 . We note that these equations only hold for the multipliers in the
shared S-box and not for any other operation in the AES like the MixColumns.
We recall the equations for the multiplication over F22 . These map the two 2-bit
inputs (a1, a2), (b1, b2) to the 2-bit output (c1, c2) as follows:

c1 = (a2 ⊕ a1)⊗ (b2 ⊕ b1)⊕ (a1 ⊗ b1) c2 = (a2 ⊕ a1)⊗ (b2 ⊕ b1)⊕ (a2 ⊗ b2)

We then recall the equations for the multiplication over F24 . This maps the
two 4-bit inputs (a1, a2, a3, a4), (b1, b2, b3, b4) to the 4-bit output (c1, c2, c3, c4)
as follows:

c1 =(a4 ⊗ b4)⊕ (a2 ⊗ b4)⊕ (a3 ⊗ b3)⊕ (a1 ⊗ b3)⊕ (a4 ⊗ b2)⊕ (a1 ⊗ b2)

⊕ (a3 ⊗ b1)⊕ (a2 ⊗ b1)⊕ (a1 ⊗ b1)

c2 =(a4 ⊗ b4)⊕ (a3 ⊗ b4)⊕ (a2 ⊗ b4)⊕ (a1 ⊗ b4)⊕ (a4 ⊗ b3)⊕ (a2 ⊗ b3)

⊕ (a4 ⊗ b2)⊕ (a3 ⊗ b2)⊕ (a2 ⊗ b2)⊕ (a4 ⊗ b1)⊕ (a1 ⊗ b1)

c3 =(a3 ⊗ b4)⊕ (a2 ⊗ b4)⊕ (a4 ⊗ b3)⊕ (a3 ⊗ b3)⊕ (a1 ⊗ b3)⊕ (a4 ⊗ b2)

⊕ (a2 ⊗ b2)⊕ (a3 ⊗ b1)⊕ (a1 ⊗ b1)

c4 =(a4 ⊗ b4)⊕ (a2 ⊗ b4)⊕ (a1 ⊗ b4)⊕ (a3 ⊗ b3)⊕ (a2 ⊗ b3)⊕ (a4 ⊗ b2)

⊕ (a3 ⊗ b2)⊕ (a2 ⊗ b2)⊕ (a1 ⊗ b2)⊕ (a4 ⊗ b1)⊕ (a2 ⊗ b1)

4.2 Sharing the State and Key

For the sharing of the AES state and key, we use classical Boolean sharing. The
key and state are each extended by 8 · (s − 1) random bits, with s the number
of shares, for the changing of the guards technique as introduced in Section 3.

For two-share designs, each byte of the state or key x is shared using a random
byte r as follows:

x1 = x⊕ r x2 = r

For three-share designs, each byte of the state or key x is shared using random
bytes (r1, r2) as follows:

x1 = x⊕ r1 ⊕ r2 x2 = r1 x3 = r2

4.3 Sharing the Affine Transformations

The sharing of the linear transformations (like MixColumns, ShiftRows, or the
affine layer in the S-box) is simply done share-wise. Constants are added to the
first share of the relevant variable.
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4.4 Changing of the Guards Implemented

In this section we explain how to implement the changing of the guards method.
We instantiate an extra random sharing of zero at the start of execution. The
output of each shared S-box is remasked using the current guards. The guards
are then replaced by the input of that shared S-box.

For two-share designs, given a byte g (the guard), a shared S-box with input
bytes (a1, a2) and the changing of the guards is calculated as follows:

a′1 = S1(a1, a2)⊕ g a′2 = S2(a1, a2)⊕ g,

the guard is then replaced as follows

g′ = a1.

For three-share designs, given guards g1, g2, a shared S-box with input bytes
(a1, a2, a3) and the changing of the guards is calculated as follows:

a′1 = S1(a1, a2, a3)⊕ g1 a′2 = S2(a1, a2, a3)⊕ g2

a′3 = S3(a1, a2, a3)⊕ g1 ⊕ g2,

the guards are then replaced as follows

g′1 = a1 g′2 = a2.

The designer is free to choose which guards are used to refresh an S-box. For
example, the designer can choose to calculate the S-boxes row by row or column
by column, it does not affect the first-order probing security of the design.

4.5 Key Schedule

The AES S-boxes in the key schedule are shared in the same way as the one
from the state function, this is detailed in Sections 5, 6, and 7. The shared linear
layers work share-wise. Finally, a changing of the guards structure is applied
over the S-boxes in SubWord, this changing of the guards method follows the
explanation above. The guards used in the state function can also be used in the
key schedule. Meaning that the changing of the guards technique can be used
across both the state function as the key schedule.

In case the shared key schedule is run to refresh the shared secret key, one
first refreshes the shared master key after which, the shared key schedule is run
to produce the refreshed round keys.

Thus, for two-share designs the key (k1, k2) is refreshed using 128 fresh ran-
dom bits r, as follows:

k′1 = k1 ⊕ r k′2 = k2 ⊕ r

For three-share designs the key (k1, k2, k3) is refreshed using 256 fresh ran-
dom bits (r1, r2), as follows:

k′1 = k1 ⊕ r1 ⊕ r2 k′2 = k2 ⊕ r1 k′3 = k3 ⊕ r2
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5 Design I: First-Order Two-Share AES

This section describes the first S-box design of a two-share first-order AES.
Compared to the three-share AES in Sections 6 and 7, this sharing is lower in
in the number of logic gates and higher in the number of register stages.

5.1 S-Box Sharing

The method is shown in Figure 5 and is divided into six stages and uses 54
random bits in total. These random bits can be re-used over all shared S-boxes
in both the AES state function as the key schedule.
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Figure 5: Representation of the S-box of design I. Register stages are denoted by
dashed vertical lines.

First Stage. The first operation occurring in the decomposed S-box performs
a change of basis through a linear map. Its sharing requires instantiating this
linear map once for each share. This mapping is implemented in combinational
logic and it maps the 8-bit input (ai1, ..., a

i
8) to the 8-bit output (yi1, ..., y

i
8) for

each share i ∈ {1, 2} as follows:

yi8 = ai8 ⊕ ai7 ⊕ ai6 ⊕ ai3 ⊕ ai2 ⊕ ai1 yi4 = ai8 ⊕ ai5 ⊕ ai4 ⊕ ai2 ⊕ ai1
yi7 = ai7 ⊕ ai6 ⊕ ai5 ⊕ ai1 yi3 = ai1

yi6 = ai7 ⊕ ai6 ⊕ ai2 ⊕ ai1 yi2 = ai7 ⊕ ai6 ⊕ ai1
yi5 = ai8 ⊕ ai7 ⊕ ai6 ⊕ ai1 yi1 = ai7 ⊕ ai4 ⊕ ai3 ⊕ ai2 ⊕ ai1

9



Second Stage. We consider the parallel application of nonlinear multiplication
and affine Square Scaling (Sq. Sc.) as one single function d = b⊗c⊕SqSc(b⊕c).
The affine square scaling SqSc maps the 4-bit input (x1, ..., x4) to the 4-bit
output (y1, ..., y4) as follows:

y1 = x1 y3 = x2 ⊕ x4
y2 = x1 ⊕ x2 y4 = x1 ⊕ x3

For the parallel multiplier and square scaling with random nibbles (r1, ..., r4),
the resulting equations (over nibbles) are given by:

d1 = b1 ⊗ c1 ⊕ SqSc(b1 ⊕ c1)⊕ r1 d3 = b2 ⊗ c1 ⊕ r3
d2 = b1 ⊗ c2 ⊕ r2 d4 = b2 ⊗ c2 ⊕ SqSc(b2 ⊕ c2)⊕ r4

where r4 = r1 ⊕ r2 ⊕ r3.

Third Stage. This stage is similar to the second stage. First, the four output
shares (d1, ..., d4) from the previous stage are compressed to reduce the number
of output shares back to two. More specifically, the shares (d1, ..., d4) are mapped
to (e1, e2) as follows:

e1 = d1 ⊕ d2 e2 = d3 ⊕ d4

These nibbles are then split in 2-bit couples for further operation. The Scaling
operation (Sc) replaces the similar affine Square Scaling and is executed along-
side the multiplication in F22 as one function h = f ⊗ g⊕Sc(f ⊕ g). The scaling
operation maps a 2-bit input (x1, x2) to the 2-bit output (y1, y2) as follows:

y1 = x1 ⊕ x2 y2 = x2

For the parallel multiplier and scaling with random two-bits (r5, ..., r8), the res-
ulting equations are given by:

h1 = f1 ⊗ g1 ⊕ Sc(f1 ⊕ g1)⊕ r5 h3 = f2 ⊗ g1 ⊕ r7
h2 = f1 ⊗ g2 ⊕ r6 h4 = f2 ⊗ g2 ⊕ Sc(f2 ⊕ g2)⊕ r8

where r8 = r5 ⊕ r6 ⊕ r7.

Fourth Stage. First, the four output shares (h1, ..., h4) from the previous stage
are compressed to reduce the number of output shares back to two. More spe-
cifically, the shares (h1, ..., h4) are mapped to (k1, k2) as follows:

k1 = h1 ⊕ h2 k2 = h3 ⊕ h4

The rest of the fourth stage is composed of an inversion and two parallel mul-
tiplications in F22 . The inversion Inv in F22 is linear and is implemented by
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swapping the bits. The inversion operation maps a 2-bit input (x1, x2) to the
2-bit output (y1, y2) as follows:

y1 = x2 y2 = x1

The outputs of the multiplications are concatenated, denoted by ‖ in Figure 5,
to form 4-bit values in F24 . For the inversion and the parallel multipliers l =
f ⊗ Inv(k) and m = Inv(k)⊗ g the resulting equations are given by:

l1 = f1 ⊗ Inv(k1) l3 = f2 ⊗ Inv(k1)

l2 = f1 ⊗ Inv(k2) l4 = f2 ⊗ Inv(k2)

m1 = Inv(k1)⊗ g1 m3 = Inv(k2)⊗ g1

m2 = Inv(k1)⊗ g2 m4 = Inv(k2)⊗ g2

The two outputs of the parallel multipliers are then concatenated l being the
most significant bits and m the least significant. The concatenated bits are re-
freshed with the random nibbles (r9, ..., r12), as follows:

n1 = (l1 ‖ m1)⊕ r9 n3 = (l3 ‖ m3)⊕ r11
n2 = (l2 ‖ m2)⊕ r10 n4 = (l4 ‖ m4)⊕ r12

where r12 = r9 ⊕ r10 ⊕ r11.

Fifth Stage. Stage 5 is similar to stage 4. The difference of the two stages lies in
the absence of the inversion operation and the multiplications being performed
in F24 instead of F22 . First, the four output shares (n1, ..., n4) from the previous
stage are compressed to reduce the number of output shares back to two. More
specifically, the shares (n1, ..., n4) are mapped to (o1, o2) as follows:

o1 = n1 ⊕ n2 o2 = n3 ⊕ n4

For the parallel multipliers p = b ⊗ o and q = o ⊗ c the resulting equations are
given by:

p1 = b1 ⊗ o1 p3 = b2 ⊗ o1

p2 = b1 ⊗ o2 p4 = b2 ⊗ o2

q1 = o1 ⊗ c1 q3 = o2 ⊗ c1

q2 = o1 ⊗ c2 q4 = o2 ⊗ c2

The two outputs of the parallel multipliers are then concatenated p being the
most significant bits and q the least significant. The concatenated bits are re-
freshed with the random bytes (r13, ..., r16), as follows:

s1 = (p1 ‖ q1)⊕ r13 s3 = (p3 ‖ q3)⊕ r15
s2 = (p2 ‖ q2)⊕ r14 s4 = (p4 ‖ q4)⊕ r16
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where r16 = r13 ⊕ r14 ⊕ r15.
The value from the changing of the guards method, described in Section 4.4,

can already by added at this stage. Denoting this values by t1, then this addition
is performed as follows:

s′1 = s1 ⊕ t1 s′3 = s3

s′2 = s2 s′4 = s4 ⊕ t1

Sixth Stage. First, the four output shares (s1, ..., s4) from the previous stage are
compressed to reduce the number of output shares back to two. More specifically,
the shares (s1, ..., s4) are mapped to (u1, u2) as follows:

u1 = s1 ⊕ s2 u2 = s3 ⊕ s4

Then, the inverse linear map (including the AES affine transformation) is per-
formed. This linear function maps the 8-bit input (ui1, ..., u

i
8) to the 8-bit output

(yi1, ..., y
i
8) for each share i as follows:

yi8 = ui6 ⊕ ui4 yi4 = ui8 ⊕ ui7 ⊕ ui6 ⊕ ui5 ⊕ ui4
yi7 = ui8 ⊕ ui4 yi3 = ui7 ⊕ ui6 ⊕ ui4 ⊕ ui3 ⊕ ui1
yi6 = ui7 ⊕ ui1 yi2 = ui6 ⊕ ui5 ⊕ ui2
yi5 = ui8 ⊕ ui6 ⊕ ui4 yi1 = ui7 ⊕ ui5 ⊕ ui2

The constant 0x63 is then added to the first share.

6 Design II: First-Order Three-Share AES

This section describes the second S-box design of a three-share first-order AES.
Compared to the two-share AES in Section 5, this sharing is higher in the number
of logic gates and lower in the number of register stages.

6.1 S-Box Sharing

The method is shown in Figure 6 and is divided into five stages and uses 36
random bits in total. These random bits can be re-used over all shared S-boxes
in both the AES state function as the key schedule.

First Stage. The first operation occurring in the decomposed S-box performs
a change of basis through a linear map. Its sharing requires instantiating this
linear map once for each share. This mapping is implemented in combinational
logic and it maps the 8-bit input (ai1, ..., a

i
8) to the 8-bit output (yi1, ..., y

i
8) for

each share i ∈ {1, 2, 3} as follows:

12
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Figure 6: Representation of the S-box of design II. Register stages are denoted
by dashed vertical lines.

yi8 = ai8 ⊕ ai7 ⊕ ai6 ⊕ ai3 ⊕ ai2 ⊕ ai1 yi4 = ai8 ⊕ ai5 ⊕ ai4 ⊕ ai2 ⊕ ai1
yi7 = ai7 ⊕ ai6 ⊕ ai5 ⊕ ai1 yi3 = ai1

yi6 = ai7 ⊕ ai6 ⊕ ai2 ⊕ ai1 yi2 = ai7 ⊕ ai6 ⊕ ai1
yi5 = ai8 ⊕ ai7 ⊕ ai6 ⊕ ai1 yi1 = ai7 ⊕ ai4 ⊕ ai3 ⊕ ai2 ⊕ ai1

Second Stage. We consider the parallel application of nonlinear multiplication
and affine Square Scaling (Sq. Sc.) as one single function d = b⊗c⊕SqSc(b⊕c).
The affine square scaling SqSc maps the 4-bit input (x1, ..., x4) to the 4-bit
output (y1, ..., y4) as follows:

y1 = x1 y3 = x2 ⊕ x4
y2 = x1 ⊕ x2 y4 = x1 ⊕ x3

For the parallel multiplier and square scaling with random nibbles (r1, r2, r3),
the resulting equations are given by:

d1 = b1 ⊗ c1 ⊕ b1 ⊗ c2 ⊕ b2 ⊗ c1 ⊕ SqSc(b1 ⊕ c1)⊕ r1
d2 = b2 ⊗ c2 ⊕ b2 ⊗ c3 ⊕ b3 ⊗ c2 ⊕ SqSc(b2 ⊕ c2)⊕ r2
d3 = b3 ⊗ c3 ⊕ b3 ⊗ c1 ⊕ b1 ⊗ c3 ⊕ SqSc(b3 ⊕ c3)⊕ r3

where r3 = r1 ⊕ r2.

Third Stage. This stage is similar to the second stage. The nibbles are split
in 2-bit couples for further operation. The Scaling operation (Sc) replaces the

13



similar affine Square Scaling and is executed alongside the multiplication in F22

as one function h = f ⊗ g⊕Sc(f ⊕ g). The scaling operation maps a 2-bit input
(x1, x2) to the 2-bit output (y1, y2) as follows:

y1 = x1 ⊕ x2 y2 = x2

For the parallel multiplier and scaling with random two-bits (r4, r5, r6), the
resulting equations are given by:

h1 = f1 ⊗ g1 ⊕ f1 ⊗ g2 ⊕ f2 ⊗ g1 ⊕ Sc(f1 ⊕ g1)⊕ r4
h2 = f2 ⊗ g2 ⊕ f2 ⊗ g3 ⊕ f3 ⊗ g2 ⊕ Sc(f2 ⊕ g2)⊕ r5
h3 = f3 ⊗ g3 ⊕ f3 ⊗ g1 ⊕ f1 ⊗ g3 ⊕ Sc(f3 ⊕ g3)⊕ r6

where r6 = r4 ⊕ r5.

Fourth Stage. The fourth stage is composed of an inversion and two parallel
multiplications in F22 . The inversion Inv in F22 is linear and is implemented
by swapping the bits using wires. The inversion operation maps a 2-bit input
(x1, x2) to the 2-bit output (y1, y2) as follows:

y1 = x2 y2 = x1

The outputs of the multiplications are concatenated, denoted by ‖ in Figure 6,
to form 4-bit values in F24 . For the inversion and the parallel multipliers l =
f ⊗ Inv(h) and m = Inv(h)⊗ g the resulting equations are given by:

l1 = f1 ⊗ Inv(h1)⊕ f1 ⊗ Inv(h2)⊕ f2 ⊗ Inv(h1)

l2 = f2 ⊗ Inv(h2)⊕ f2 ⊗ Inv(h3)⊕ f3 ⊗ Inv(h2)

l3 = f3 ⊗ Inv(h3)⊕ f3 ⊗ Inv(h1)⊕ f1 ⊗ Inv(h3)

m1 = Inv(h1)⊗ g1 ⊕ Inv(h1)⊗ g2 ⊕ Inv(h2)⊗ g1

m2 = Inv(h2)⊗ g2 ⊕ Inv(h2)⊗ g3 ⊕ Inv(h3)⊗ g2

m3 = Inv(h3)⊗ g3 ⊕ Inv(h3)⊗ g1 ⊕ Inv(h1)⊗ g3

The two outputs of the parallel multipliers are then concatenated l being the
most significant bits and m the least significant. The concatenated bits are re-
freshed with the random nibbles (r7, r8, r9), as follows:

n1 = (l1 ‖ m1)⊕ r7
n2 = (l2 ‖ m2)⊕ r8
n3 = (l3 ‖ m3)⊕ r9

where r9 = r7 ⊕ r8.
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Fifth Stage. Stage 5 is similar to stage 4. The difference of the two stages lies in
the absence of the inversion operation and the multiplications being performed
in F24 instead of F22 . For the parallel multipliers p = b ⊗ n and q = n ⊗ c the
resulting equations are given by:

p1 = b1 ⊗ n1 ⊕ b1 ⊗ n2 ⊕ b2 ⊗ n1

p2 = b2 ⊗ n2 ⊕ b2 ⊗ n3 ⊕ b3 ⊗ n2

p3 = b3 ⊗ n3 ⊕ b3 ⊗ n1 ⊕ b1 ⊗ n3

q1 = n1 ⊗ c1 ⊕ n1 ⊗ c2 ⊕ n2 ⊗ c1

q2 = n2 ⊗ c2 ⊕ n2 ⊗ c3 ⊕ n3 ⊗ c2

q3 = n3 ⊗ c3 ⊕ n3 ⊗ c1 ⊕ n1 ⊗ c3

The two outputs of the parallel multipliers are then concatenated p being the
most significant bits and q the least significant. The concatenated bits are re-
freshed with the random bytes (r10, r11, r12), as follows:

s1 = (p1 ‖ q1)⊕ r10
s2 = (p2 ‖ q2)⊕ r11
s3 = (p3 ‖ q3)⊕ r12

where r10 = r11 ⊕ r12.
Finally, the inverse linear map (including the AES affine transformation)

is performed. This linear function maps the 8-bit input (si1, ..., s
i
8) to the 8-bit

output (yi1, ..., y
i
8) for each share i as follows:

yi8 = si6 ⊕ si4 yi4 = si8 ⊕ si7 ⊕ si6 ⊕ si5 ⊕ si4
yi7 = si8 ⊕ si4 yi3 = si7 ⊕ si6 ⊕ si4 ⊕ si3 ⊕ si1
yi6 = si7 ⊕ si1 yi2 = si6 ⊕ si5 ⊕ si2
yi5 = si8 ⊕ si6 ⊕ si4 yi1 = si7 ⊕ si5 ⊕ si2

The constant 0x63 is then added to the first share.

7 Design III: First-Order Three-Share AES

This section describes the third S-box design of a three-share first-order AES.
Compared to the three-share AES in Section 6, this sharing is even higher in the
number of logic gates and lower in the number of register stages.

7.1 S-Box Sharing

The method is shown in Figure 7 and is divided into four stages and uses 40
random bits in total. These random bits can be re-used over all shared S-boxes
in both the AES state function as the key schedule.
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Figure 7: Representation of the S-box of design III. Register stages are denoted
by dashed vertical lines.

First Stage. The first operation occurring in the decomposed S-box performs
a change of basis through a linear map. Its sharing requires instantiating this
linear map once for each share. This mapping is implemented in combinational
logic and it maps the 8-bit input (ai1, ..., a

i
8) to the 8-bit output (yi1, ..., y

i
8) for

each share i ∈ {1, 2, 3} as follows:

yi8 = ai8 ⊕ ai7 ⊕ ai6 ⊕ ai3 ⊕ ai2 ⊕ ai1 yi4 = ai8 ⊕ ai5 ⊕ ai4 ⊕ ai2 ⊕ ai1
yi7 = ai7 ⊕ ai6 ⊕ ai5 ⊕ ai1 yi3 = ai1

yi6 = ai7 ⊕ ai6 ⊕ ai2 ⊕ ai1 yi2 = ai7 ⊕ ai6 ⊕ ai1
yi5 = ai8 ⊕ ai7 ⊕ ai6 ⊕ ai1 yi1 = ai7 ⊕ ai4 ⊕ ai3 ⊕ ai2 ⊕ ai1

Second Stage. We consider the parallel application of nonlinear multiplication
and affine Square Scaling (Sq. Sc.) as one single function d = b⊗c⊕SqSc(b⊕c).
The affine square scaling SqSc maps the 4-bit input (x1, ..., x4) to the 4-bit
output (y1, ..., y4) as follows:

y1 = x1 y3 = x2 ⊕ x4
y2 = x1 ⊕ x2 y4 = x1 ⊕ x3

For the parallel multiplier and square scaling with random nibbles (r1, r2, r3, r4),
the resulting equations are given by:

d1 = b1 ⊗ c1 ⊕ b1 ⊗ c2 ⊕ b2 ⊗ c1 ⊕ SqSc(b1 ⊕ c1)⊕ r1
d2 = b2 ⊗ c2 ⊕ b2 ⊗ c3 ⊕ b3 ⊗ c2 ⊕ SqSc(b2 ⊕ c2)⊕ r2
d3 = b3 ⊗ c3 ⊕ b3 ⊗ c1 ⊕ b1 ⊗ c3 ⊕ SqSc(b3 ⊕ c3)⊕ r3
d4 = r4
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where r4 = r1 ⊕ r2 ⊕ r3. Extra randomness is used to temporarily increase the
number of shares in order to improve latency.

Third Stage. The third stage is composed of an inversion in F24 . For the
inversion Inv in F24 , the resulting equations are given by:

y1 = x1 ⊗ x3 ⊕ x1 ⊗ x4 ⊕ x2 ⊗ x3 ⊗ x4 ⊕ x2 ⊗ x4 ⊕ x3
y2 = x1 ⊗ x3 ⊗ x4 ⊕ x1 ⊗ x4 ⊕ x2 ⊗ x4 ⊕ x3 ⊕ x4
y3 = x1 ⊗ x2 ⊗ x4 ⊕ x1 ⊗ x3 ⊕ x1 ⊕ x2 ⊗ x3 ⊕ x2 ⊗ x4
y4 = x1 ⊗ x2 ⊗ x3 ⊕ x1 ⊕ x2 ⊗ x3 ⊕ x2 ⊗ x4 ⊕ x2

As the equations for the sharing are too large, we simply explain how to share a
cubic and quadratic term. Consider the cubic term xyz, the ith share is calculated
as follows, where the convention is used that the superscripts wrap around at
four.

xyzi = xiyizi ⊕ xiyi+1zi ⊕ xiyizi+1 ⊕ xiyi+1zi+1 ⊕ xiyi+1zi+2 ⊕ xiyi+2zi+1

⊕ xiyizi+2 ⊕ xiyi+2zi ⊕ xiyi+2zi+2 ⊕ xi+2yi+1zi ⊕ xi+1yi+2zi

⊕ xi+2yizi+1 ⊕ xi+1yizi+2 ⊕ xi+2yi+1zi+1 ⊕ xi+2yi+2zi+1

⊕ xi+2yi+1zi+2

The ith share of a quadratic term xy is calculated as follows:

xyi = xiyi ⊕ xiyi+1 ⊕ xiyi+2 ⊕ xi+2yi+1

The linear terms are added share-wise.

The output of the inversion (e1, ..., e4) is then refreshed with the random
nibbles (r5, r6, r7, r8), as follows:

f1 = e1 ⊕ r5
f2 = e2 ⊕ r6
f3 = e3 ⊕ r7
f4 = e4 ⊕ r8

where r8 = r5 ⊕ r6 ⊕ r7.

Fourth Stage. In the fourth stage we have two parallel multipliers over F24 .
For the parallel multipliers g = b⊗ f and h = f ⊗ c the resulting equations are
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given by:

g1 = b1 ⊗ f1 ⊕ b1 ⊗ f2 ⊕ b1 ⊗ f3 ⊕ b2 ⊗ f1

g2 = b2 ⊗ f2 ⊕ b2 ⊗ f3 ⊕ b2 ⊗ f4 ⊕ b3 ⊗ f2

g3 = b3 ⊗ f3 ⊕ b3 ⊗ f4 ⊕ b3 ⊗ f1 ⊕ b1 ⊗ f4

h1 = c1 ⊗ f1 ⊕ c1 ⊗ f2 ⊕ c1 ⊗ f3 ⊕ c2 ⊗ f1

h2 = c2 ⊗ f2 ⊕ c2 ⊗ f3 ⊕ c2 ⊗ f4 ⊕ c3 ⊗ f2

h3 = c3 ⊗ f3 ⊕ c3 ⊗ f4 ⊕ c3 ⊗ f1 ⊕ c1 ⊗ f4

The two outputs of the parallel multipliers are then concatenated g being the
most significant bits and h the least significant. The concatenated bits are re-
freshed with the random bytes (r9, r10, r11), as follows:

k1 = (g1 ‖ h1)⊕ r9
k2 = (g2 ‖ h2)⊕ r10
k3 = (g3 ‖ h3)⊕ r11

where r11 = r10 ⊕ r9.
Finally, the inverse linear map (including the AES affine transformation) is

performed. This linear function maps the 8-bit input (ki1, ..., k
i
8) to the 8-bit

output (yi1, ..., y
i
8) for each share i as follows:

yi8 = ki6 ⊕ ki4 yi4 = ki8 ⊕ ki7 ⊕ ki6 ⊕ ki5 ⊕ ki4
yi7 = ki8 ⊕ ki4 yi3 = ki7 ⊕ ki6 ⊕ ki4 ⊕ ki3 ⊕ ki1
yi6 = ki7 ⊕ ki1 yi2 = ki6 ⊕ ki5 ⊕ ki2
yi5 = ki8 ⊕ ki6 ⊕ ki4 yi1 = ki7 ⊕ ki5 ⊕ ki2

The constant 0x63 is then added to the first share.

8 Security

In this section we argue the first-order probing security of the three designs.
We show this by arguing that the designs are threshold implementations, see
Definition 1. We refer to Dhooghe et al. [8] for the proof that a threshold imple-
mentation is first-order robust probing secure.

The shared S-boxes are first-order probing secure due to the extra random-
ness added to each register stage. This refreshing works as follows. Given an input
(a1, ..., as), an arbitrary shared map F̄ , and randomness r1, ..., rs−1, refreshing
is done as follows, for i ∈ {1, ..., s− 1}

a′i = F i(a1, ..., as)⊕ ri, a′s = F s(a1, ..., as)⊕ r1 ⊕ ...⊕ rs−1 . (5)

Lemma 1. The refreshing following Equation (5) gives a uniform output.
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Proof. We show that the function, taking (a1, ..., as) and (r1, ..., rs−1) as input
and (a1, ..., as), F i(a1, ..., as)⊕ ri for i ∈ {1, ..., s− 1}, and F s(a1, ..., as)⊕ r1 ⊕
...⊕rs−1 as output, is invertible. Removing the (a1, ..., as) then gives a balanced
(or uniform) output of the refreshing detailed in Equation 5.

The derivation is straightforward. Since (a1, ..., as) is given in the output, one
can calculate F i(a1, ..., as) for i ∈ {1, ..., s}. Subtracting this from the output
(a1, ..., as−1) then gives (r1, ..., rs−1) showing the map is invertible.

Theorem 2. Designs I, II, and III from Sections 5,6, and 7 are threshold im-
plementations as given by Definition 1.

Proof. First, each design uses a changing of the guards method. We refer to
Theorem 1 for the proof that the shared input and output of each shared S-box
is uniform.

Since the linear layers of the construction are evidently non-complete, since
they work share-wise, and uniform, since the unshared linear functions are per-
mutations, these comply to the properties from Definition 1.

We then show that the shared S-box from designs I, II, and III are first-order
probing secure. Since a probe in the designs can only view one shared S-box, it
suffices to show that each stage in the shared S-box complies to the threshold
implementation properties.

Each stage in the shared S-box either maps a part of the input to the output
(such as in the outer wires of Figure 5) or the output is masked using the
randomness r̄. Due to the changing of the guards structure this randomness r̄ is
joint uniform with the input of the shared S-box. From Lemma 1, we find that
each stage of the shared S-box of design I, II, or III is uniform.

The non-completeness is verified on sight from the equations given in Sec-
tions 5,6, 7. More specifically, it can be seen that each multiplication or inversion
in the designs is shared in a non-complete way.

As a result, the shared S-boxes from designs I, II, and III are itself threshold
implementations and thus first-order robust probing secure.
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