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{s.berndt,thomas.eisenbarth,okan.seker,l.wilke}@uni-luebeck.de
3 Microsoft Research, USA

gregz@microsoft.com

June 8, 2021

Keywords: side-channel attacks · masking · MPC-in-the-head · Picnic signatures

Abstract. We study masking countermeasures for side-channel attacks against signature schemes
constructed from the MPC-in-the-head paradigm, specifically when the MPC protocol uses prepro-
cessing. This class of signature schemes includes Picnic, an alternate candidate in the third round
of the NIST post-quantum standardization project. The only previously known approach to masking
MPC-in-the-head signatures suffers from interoperability issues and increased signature sizes. Further,
we present a new attack to demonstrate that known countermeasures are not sufficient when the MPC
protocol uses a preprocessing phase, as in Picnic3.
We overcome these challenges by showing how to mask the underlying zero-knowledge proof system
due to Katz–Kolesnikov–Wang (CCS 2018) for any masking order, and by formally proving that our
approach meets the standard security notions of non-interference for masking countermeasures. As a
case study, we apply our masking technique to Picnic. We then implement different masked versions
of Picnic signing providing first order protection for the ARM Cortex M4 platform, and quantify the
overhead of these different masking approaches. We carefully analyze the side-channel risk of hashing
operations, and give optimizations that reduce the CPU cost of protecting hashing in Picnic by a factor
of five. The performance penalties of the masking countermeasures ranged from 1.8 to 5.5, depending
on the degree of masking applied to hash function invocations.
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1 Introduction

As the possible advent of a quantum computer threatens the security of widely deployed cryptographic
schemes, the design of new quantum-resilient alternatives is a pressing task. Motivated by this issue, the
US National Institute for Standards and Technology (NIST) is currently holding the Post-Quantum Cryp-
tography (PQC) Standardization Process, in which Round 3 “finalists” and “alternate candidates” have
been recently announced. Among them is Picnic, a signature scheme [ZCD+20], which follows Ishai et al.’s
MPC-in-the-head (or MPCitH, short for multi-party computation in-the-head) paradigm for constructing
zero-knowledge (ZK) proof systems [IKOS07]. One of the attractive features of MPCitH-style signatures is
that they require no number-theoretic hardness assumptions, since the typical construction of such schemes
only relies on symmetric key primitives. Concretely, following the standard Fiat–Shamir paradigm [FS87],
signatures in the MPCitH paradigm can be proven secure in the random oracle model, as long as the
underlying hash function and block cipher are secure. Quoting [Nat20], “NIST also sees Picnic’s reliance
on only assumptions about symmetric primitives as an advantage in case the need arises for an extremely
conservative signature standard in the future”.
MPC-in-the-head vs probing side-channel analysis. Yet, despite such advantages with regard to
the underlying assumptions, implementations of MPCitH-type signatures are not immune to side-channel
attacks that threaten unprotected software. Recently, Gellersen et al. [GSE20] and Seker et al. [SBWE20]
(which, to the best our knowledge, are the only previous works that considered side-channel security of
MPCitH) observed that a direct implementation of MPCitH signing is susceptible to a probing side-channel
attack, which is in practice realized by, e.g., differential power analysis (DPA). Their proposed attack is
devastating – it allows a side-channel attacker to successfully recover the secret signing key, after observing
no more than 30 signatures. To understand their attack, it is useful to review the underlying “commit-and-
open” approach typically used by MPCitH proofs. The attacks target the three-round ZK proof system
underlying some Picnic instances, known as ZKB++ [CDG+17] (an optimized variant of ZKBoo [GMO16]).

MPCitH proof systems like ZKB++ follow a typical commit, challenge, response structure (which, in fact,
can be seen as a Σ-protocol [Dam10]), and prove knowledge of a witness w that satisfies a statement for a
hard relation. For example, we can prove knowledge of a key (the witness) that relates a plaintext-ciphertext
pair (the statement) for a block cipher (the relation). The ZKB++ proof system is built on a three-party
MPC protocol Πf for a function f implementing this hard relation (the block cipher in our example). To
initialize the protocol, the prover P first additively secret-shares the witness such that w = w1 + w2 + w3,
and considers each share wi as a private input to party Pi. Then P runs Πf “in the head”, i.e., it simulates
a run of the protocol between the three parties, and produces for each Pi a commitment to its view, i.e., the
input wi, output, communication, and random tape. These three commitments are sent to the verifier V,
who replies with a challenge, for P to open two of them. Finally, V checks the openings for consistency and
for an accepting output. The (honest verifier) ZK property of the protocol is guaranteed by the 2-privacy
of Πf , i.e., it is possible to simulate up to 2 parties’ views given their inputs, and the output of the protocol
execution.

But once a side-channel adversary probes the unopened party’s view, in particular their share of the
witness, the adversary can recover the secret witness. To thwart this devastating probing attack, Seker
et al. [SBWE20] proposed the SNI-in-the-head (SNIitH) approach, which naturally retains the privacy of
MPC protocol, but also adds strong non-interference (SNI) [BBD+16] security, which is a strong provable
security notion for ISW-style masking countermeasures (as defined by Ishai-Sahai-Wagner [ISW03]). In the
SNIitH approach, the number of parties is generalized to N and the underlying MPC protocol is assumed
to have (N − 1)-privacy, so that the views of up to N − 1 parties may be safely revealed. However, instead
of opening N − 1 parties as a typical MPCitH prover would, an SNIitH prover only reveals N − t − 1
parties as a response, where the parameter t serves as the “buffer” for probing security. This way, the prover
makes sure that at least one party’s internal state remains completely hidden, even if the side-channel
adversary observes up to t variables during the execution of MPC protocol Πf . Relying on this idea, Seker
et al. generalized ZKB++, and gave a variant of Picnic that is provably secure against probing adversaries.
However, as we shall see below, there are still several practical challenges which seem hard to overcome
with SNIitH. In this paper, we push forward the study of side-channel resistant MPCitH signing, to tackle
these open questions.
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Maintaining the verification algorithm and signature size. When applied to Picnic, the SNIitH
approach changes the number parties and the number of opened views, and the result is essentially a
different parameter set. Accordingly, the verification algorithm has to be modified, and now depends on
the masking order. For example, the signer would have to simulate a five-party MPC to achieve first order
protection (i.e., N = 5, t = 1). Hence, the verifier needs to check the consistency of 3-out-of-5 views, instead
of 2-out-of-3 as in the original Picnic/ZKB++ scheme. This is a major drawback in practice, since the
introduction of side-channel protection would immediately break interoperability with existing verification
algorithms. In order to support signers with varying levels of side-channel protections, verifiers would have
to be prepared to accept multiple combinations of parameters (N, t). A more flexible design would allow
different signers to set their level of side-channel protection independent of the verification software and
costs. Moreover, the SNIitH approach inevitably sacrifices the soundness of underlying ZK proof system,
since a malicious prover has a higher cheating probability when the number of views the verifier checks
is smaller than N − 1. Therefore to maintain the same security level as in the original proof system, the
SNI-in-the-head approach must simulate more MPC instances, leading to larger signature sizes, and slower
signing and verification times. In this work we design countermeasures without these drawbacks (as has
been done for some other PQ signature schemes [BBE+18,MGTF19,BBE+19,GR19]).
Masking MPCitH with preprocessing. To the best of our knowledge, no previous work explored the
possibility of masking the newer MPC-in-the-head paradigm with preprocessing (MPCitH-PP) of Katz,
Kolesnikov, and Wang (KKW, [KKW18]), which produces much more compact proofs (and shorter sig-
natures in turn). KKW is used in the latest version of Picnic, Picnic3 [KZ20], and in a similar signature
scheme BBQ [dDOS19]. The preprocessing phase is independent of the witness, and is used by the parties
to establish correlated random values, such as multiplication triples, that they can use during the MPC
protocol to improve efficiency. Since it happens before the main, witness-dependent MPC protocol, the
preprocessing phase is also called an offline phase, and the main part is called the online phase. We first
observe that the preprocessing phase provides additional attack surface not present in MPCitH protocols
without preprocessing. In the KKW protocol, the prover first simulates many instances of the MPC protocol
consisting of offline and online phases, and commits to each party’s view in both phases. Then for each
instance of the MPC protocol, the prover opens either the offline phase or the online phase, depending on
the challenge sent from the verifier. To open the offline phase, the prover reveals the views of all N parties
(which is secure, since preprocessing views are independent of the witness). For the online phase, the prover
reveals the views of N−1 parties (which is secure by the N−1 privacy of the MPC protocol). In the former
scenario, since the offline phase contains the correlated random values used by all parties during the online
phase, a probing adversary can break the privacy of the underlying MPC protocol by probing values from
the corresponding online phase (which is computed by the prover but not revealed).

We note that the attack succeeds for any number of opened views, since MPCitH-PP inherently relies
on revealing all views for the offline phase. This indicates that the SNIitH approach cannot mitigate this
type of probing attack. Given all this, we are motivated to design an alternative countermeasure addressing
the following question:

Can we mask signature generation in signature schemes constructed with the MPC-in-the-head-with-
preprocessing paradigm in a provably secure manner, without modifying the verification algorithm?

1.1 Contributions

Side-channel attacks against Picnic3 and KKW. We confirm experimentally that our new probing attack
described above indeed applies to Picnic3, by measuring the leakage of the (unmasked) reference code on
the Cortex M4. In Section 3 we elaborate on the high-level attack strategy for MPCitH-PP and describe
how to mount a practical signing key recovery attack against Picnic3, as well as any three-round KKW-type
protocol. Fig. 1 shows this is not only a theoretical concern, but clearly visible in an experimental setup.
Masking MPC-in-the-head with preprocessing. In Section 4 we show how to mask the KKW proof
system for any masking order. Our first observation is that all building blocks in both the offline and online
computations can be masked with existing SNI-secure gadgets without changing the number of opened
parties. The main technical difficulty is that the prover opens a different subset of sensitive information,
depending on the challenge. Nevertheless, we are able to present a solution achieving strong non-interference
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of the basic building blocks of the KKW proof system. Then together with a known generic composition
result [BBD+16], we prove that our masked KKW prover algorithm for the commit and response phases
satisfies non-interference with public output (NIo) security [BBE+18] for all possible public outputs. The
CPU cost of masking follows the common pattern where nonlinear operations have cost O(T 2), and all
other operations are linear in T , where T denotes the masking order. In addition to giving formal proofs of
the (strong) non-interference of our solution, we also use the maskVerif tool [BBD+15a,BBD+16] to verify
our conclusions. We stress that our variant outputs a proof identical to that of the unprotected KKW, so it
is interoperable with existing verification operations.
Masked implementation of Picnic3. Following our generic masking technique from Section 4, we present
an NIo-secure masked implementation of Picnic3 for NIST security level L1 with first-order protection, and
we report concrete experimental results on the low-end ARM Cortex-M4 STM32F4 platform (see Section 6).
The complete specification of NIo-secure Picnic3 is presented in Appendix B.1. The figures were collected
from a port of the optimized version of the Picnic3 reference code, with the help of the pqm4 [KRSS] frame-
work. However, the overhead incurred by provably secure masking is expensive – signing time is increased
by 5.5x. Using this provably secure implementation as a baseline, we performed a number of optimizations
described in Section 5, especially to improve hashing performance. Since a large part of the signing time
in Picnic3 is spent hashing (e.g., 71% on the M4), we carefully analyzed which hashing operations must be
masked, and found that the majority may remain unmasked. We then show that since all calls have either
a non-sensitive input or output, a weaker form of masking is sufficient (under a mild assumption), further
reducing the cost. Taken together, these optimizations reduce the cost of protected hashing significantly,
and we observed overhead ranging from 1.8x to 2.8x (depending on the type of protections applied to hash
function invocations). Since our hash function optimizations do void the provable side-channel-security of
the signature scheme implementation as a whole, we experimentally verified the absence of leakage, to
support our arguments that security is maintained in practice.
Masked implementation of SHA-3. We also implemented a masked version of SHA-3, optimized with
M4 assembly, as none was freely available. As SHA-3 is common to many PQ schemes and the M4 is a com-
mon embedded target, we expect this will be of independent interest. The implementation supports a range
of options, from slower but provably SNI-secure, to our much faster optimized options. We experimentally
verified that there was an absence of leakage in the optimized version.

Our first order masked Picnic3/SHA-3 implementations as well as formal verification scripts are publicly
available under crypto_sign/picnic3l1/masked/ of the Picnic-M4 GitHub repository.

https://github.com/dkales/picnic_m4

1.2 Related work

Since the seminal work by Ishai et al. [IKOS07] the MPCitH paradigm has been actively studied over the
past decade. In particular, two closely related protocols ZKBoo [GMO16] and ZKB++ [CDG+17] brought
MPCitH closer to practice, leading to the submission of Picnic1 to Round 1 of the NIST PQC Standardization
Process. Katz, Kolesnikov, and Wang [KKW18] extended the paradigm to MPCitH-PP and corresponding
version, Picnic2, was added during Round 2. Kales and Zaverucha [KZ20] further optimized Picnic2 from
various implementation aspects and accordingly proposed Picnic3. Although our masked implementation
focuses on Picnic3, which is instantiated with KKW and the LowMC circuit [ARS+15], our generic approach
in Section 4 also applies to BBQ (KKW instantiated with the AES circuit) [dDOS19] and Baum and Nof’s
variant of KKW (instantiated over an arithmetic circuit for proving SIS instances) [BN20]. A similar offline–
online paradigm also appears as a notion called “sigma protocol with helper” [Beu20], used to construct
proof of knowledge for systems of quadratic equations, improving a protocol of Stern [Ste94].

The stateful hash-based signature schemes XMSS and LMS are known to be relatively resistant to side-
channel attacks, as they basically use pseudorandom keys for each signature. Hence, their resistance against
side-channel attacks rests on the resistance of the underlying pseudorandom number generator [EvMY14,
KGB+18].
Comparison with other NIST PQC candidates. To the best of our knowledge, most other PQ signa-
tures currently do not have publicly available masked implementations, except for lattice-based Fiat–Shamir
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with aborts [Lyu09] signatures: GLP [BBE+18], BLISS [BBE+19], Dilithium [MGTF19] (NIST PQC final-
ist) and qTESLA [GR19] (Round 2 candidate). While these masked signing operations do output a signa-
ture compliant with the existing verification algorithm, they rely on an additional non-standard hardness
assumption for provable side-channel-security (see [BBE+18,DOTT21] for details). The issue could be cir-
cumvented by modifying the “commit” message of the underlying Σ-protocol, but this in turn breaks the
interoperability of the output signature. By contrast, signatures directly derived from our generic approach
to masking KKW (Section 4) as well as NIo-secure Picnic3 implementation maintain interoperability, and
may optionally make additional assumptions for improved performance. Performance-wise, the benchmarks
on Cortex M4 given by Gérard and Rossi [GR19, Table 6] show much less overhead than ours: their first-
order protected qTESLA-I incurs only 2.1x overhead in signing clock cycles and requires 343 KB of fresh
randomness, while provably secure masked Picnic3 is 5.5x slower than unprotected and consumed 158 MB
of randomness. However, by trading provable security guarantee as we describe in Section 5, our empirically
validated countermeasures achieve a lower overhead overall of 1.8x, requiring 2 MB of randomness. Giv-
ing a meaningful performance comparison with masked Dilithium [MGTF19] is hard, as they only provide
benchmarks on Intel for the whole signing operation. Although their overhead for first-order protection is
about 5.6x, we expect that it can be made faster on the M4 by using the platform’s TRNG.

2 Preliminaries

Notation. We denote the set {1, . . . , T} by [T ]. The number of multiplication gates in a circuit C is denoted
by |C|.
Security levels. The parameter sets for the algorithms submitted to the NIST competition must meet
one of five security levels. Picnic defines parameters for security levels L1, L3 and L5, corresponding to the
security of AES 128, 192 and 256, respectively. For instance, parameters at level L1 aim to provide 128-bit
security against classical attacks.
LowMC. The LowMC block cipher is described in detail in Appendix E, and here we briefly review the
notation. The block and key size are both n bits, the number of rounds is denoted r, and the number of
S-boxes is denoted s. In the Picnic3 parameters, n = 3s, since the three-bit S-box is applied to the full state.
There are also constants: Ki are matrices used to compute the round keys; Li are matrices used for the
linear layer, and Ri are vectors used as round constants.
Formal Verification. In order to check our formal security analysis, we use the tool maskVerif developed
by Barthe et al. [BBC+19]. The tool provides an automatic and formal security verification of higher-order
masking implementations based on the NI and SNI notions. Briefly speaking, it checks every possible attack
combination within the implementation and either provides a security proof for the specified order or gives a
list of potential attack targets in the implementation. The bottleneck of the tool is the order of the masking
and the complexity of the implementation. It has been used in the literature to provide assurance of masked
implementations [BBD+15a, GSDM+19, SEL21]. In this work, we use maskVerif to check SNI security of
the basic components (namely, multi-party computation of multiplication in both online and offline phases)
of the KKW proof system up to order 4. Although we further provide the verification scripts for the orders
5, 6 and 7, we did not run these, due to higher combinatorial complexity maskVerif. However, our manual
security analysis in Section 4 indeed guarantees SNI security of higher-order masking. Furthermore, NIo-
security of our fully masked Picnic3 (see Appendix B.1 for the specification) was verified with maskVerif
up to order 2.
Leakage analysis. In this work we follow the test vector leakage assessment (TVLA) method by Good-
will et al. [GJJR11], which is based on Welch’s t-test. TVLA implements a pass-fail test to decide if an
implementation has exploitable leakage. It detects leakage at a given order and has two different versions:
the non-specific and the specific method. The first version is defined as fixed-vs-random (FvR) and it aims
to detect all possible first-order leakages. During the trace collection phase, a set of side-channel traces is
collected by processing either a fixed input or a random input under the same conditions. If the t-test only
gives a very small value, this indicates that the run of the algorithm on a fixed input is indistinguishable
from a run of the algorithm on a random input. Hence, a small value in the fixed-vs-random scenario implies
the absence of sensitive leakage. The second test is defined as random-vs-random (RvR), and employs only
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traces with a random input using a function of inputs to sort the traces. The main advantage of the RvR
method is that it can identify specific exploitable leakages and thus shows the feasibility of an actual attack.

After collecting and sorting the traces, the means (µ0, µ1) and standard deviations (σ0, σ1) for the two
sets are calculated. Welch’s t-test is computed as t = [µf − µr]/[

√
(σ2
f/nf ) + (σ2

r/nr)], where nf and nr

denote the number of traces for the sets, respectively. The t-test indicates whether the two distributions
have the same mean, i.e., they are indistinguishable for a first-order side-channel analysis. We apply the
customary threshold values for long traces suggested by [DZD+18]. We use the value 5.7 for traces of length
more than 104, and the value 6.1 for traces of length more than 106. The threshold rejects the null-hypothesis
of non-leakage with > 99.99% probability.

2.1 MPC-in-the-head with preprocessing

MPC-in-the-head. We first describe the basic approach to construct a zero-knowledge proof of knowledge
(ZKPoK) system for an arbitrary nondeterministic polynomial-time (NP) language L, following Ishai et
al. [IKOS07] and its generalization due to Giacomelli et al. [GMO16]. Given L, we can define an NP
relation R(x,w) which returns 1 if its input consists of a valid pair of statement x ∈ L and corresponding
witness w, and outputs 0 otherwise. An MPCitH proof system (P,V) is built upon some N -party MPC
protocol that jointly computes a function f , where f takes x and w as public and private input, respectively,
and outputs fx(w) = R(x,w). For example, for a given encryption algorithm Enc of a block cipher like
LowMC [ARS+15], one can define fx(w) := Enc(sk, p) ?= c, where the statement x = (p, c) is a plaintext-
ciphertext pair, and witness w = sk is a private encryption key, respectively. In this case, the prover P
proves knowledge of a private key that produces a certain public ciphertext from the corresponding public
plaintext.

At a high level, an MPCitH prover P attempts to convince the verifier V that they hold a valid witness
w, by letting V check that the MPC protocol has been correctly carried out “in P’s head” on input w. We
now consider an MPC protocol ΠC for the corresponding arithmetic circuit C defined over a finite field F,
where the statement information x (e.g., the plaintext-ciphertext pair) is hard-coded such that C(·) = fx(·).
We assume that the witness is expressed by an n-dimensional vector and C takes a set of n input wires
denoted by IN. We write w = (w)w∈IN ∈ Fn for the complete input.4 To initialize the protocol, the prover P
first additively secret shares each input w wire such that w = w1 + . . .+wN in F, and considers each share
wi as a private input to a party Pi. Then P internally runs ΠC to obtain view1, . . . , viewN , where each viewi
consists of Pi’s private input wi, the random tape of Pi and all incoming messages that Pi observes during
the execution of ΠC . The proof system now proceeds by following the typical “commit–challenge–response”
flow. Using a secure commitment scheme, P sends Commit(viewi) for all i ∈ [N ] as the first message. Upon
receiving distinct challenges i1, . . . , it ∈ [N ] from the verifier V, the prover P sends back the corresponding
t views viewi1 , . . . , viewit as well as the commitment opening information as a response. Finally, the verifier
V accepts the proof iff the opened views are consistent with each other and they produce 1 as output of
the protocol ΠC . The (honest verifier) zero knowledge is guaranteed as long as the underlying MPC ΠC

has t-privacy in the semi-honest model (i.e., the distribution of any ≤ t views during an honest execution
of the protocol is polynomial-time simulatable, given the output from ΠC and corresponding ≤ t parties’
private input).
MPC in the preprocessing model. In work following [GMO16,CDG+17], Katz, Kolesnikov, and Wang [KKW18]
showed that a particular communication-efficient MPC protocol in the preprocessing model is well suited
to MPCitH proofs, and variants of their protocol appear in subsequent work [dDOS19, BN20, KZ20]. The
core idea of MPC in the preprocessing model is to split the protocol ΠC into an offline phase Πoff

C and an
online phase Πon

C . Importantly, the offline phase Πoff
C can be computed independently of the witness. By

precomputing correlated randomness in advance during Πoff
C , one can reduce communication in Πon

C drasti-
cally. In the traditional MPC setting, this was already used, e.g., in SPDZ [DPSZ12], MiniMAC [DZ13], and
TinyOT [NNOB12]. While the original KKW proof system is focused on the protocol for boolean circuits,

4 Note that we’re slightly abusing the notation here. Throughout, we use the same notations (typically w, x, y and
z) for both wires and wire values, but it should be clear from the context which they indicate.
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it also works with arithmetic circuits in a straightforward manner as observed in [dDOS19, BN20], so we
present the latter case here for the sake of generality.

(Offline Phase) The offline phase Πoff
C of KKW works as follows: for each input wire w ∈ IN to the

circuit C, and for each output wire z from all the multiplication gates, each party Pi locally generates
random shares λwi , λzi ∈ F using its own random tape. Then the parties compute random shares for all
internal wires, by running the circuit:
– for each addition gate that takes wires x and y as input, party Pi locally computes a new share
λzi = λxi + λyi for the output wire z;

– for each multiplication gate that takes wires x and y as input, party Pi obtains shares of the
multiplication triples (sometimes called Beaver triples [Bea92]) (λxi , λ

y
i , λ

xy
i ), such that λxy = λxλy.

(Multiplication Triples) To generate multiplication triples in the MPCitH setting, the parties choose λx
and λy implicitly by reading their shares from their random tapes. Then to obtain shares of λxy, the
first N − 1 parties read random shares from their random tapes. As the prover P knows all the shares,
P can simply solve for the N -th party’s share so that the shares reconstruct λxy, as required. We call
the sequence of values λxyN for all multiplication gates auxiliary information, denoted aux ∈ F|C|. Note
that the complete information needed for the first N − 1 parties can be derived from their respective
seeds seedi used to generate Pi’s tape. The information needed for party PN can be derived from seedN
and from aux. Hence, we define each party Pi’s state information as follows: for all i = 1, . . . N − 1, let
statei := seedi, and for PN we have stateN := seedN ||aux.
(Online Phase) Given the preprocessed state information, the online phase Πon

C proceeds by computing
the masked witness ŵ = w +

∑
i∈[N ] λ

w
i for each input wire. Now, each gate takes (masked) inputs

x̂ = x+
∑
i∈[N ] λ

x
i and ŷ = y +

∑
i∈[N ] λ

y
i and can be computed as follows, where all computations on

shares are carried out in F:
– Addition: each Pi locally computes x̂+ ŷ.
– Addition by constant c: each Pi locally computes x̂+ c.
– Multiplication by constant c: each Pi locally computes c · x̂.
– Multiplication: this computation consumes a single triple ((λxi )i∈[N ], (λyi )i∈[N ], (λxyi )i∈[N ]). Each

party Pi first locally computes si = λzi − x̂ · λ
y
i − ŷ · λxi − λ

xy
i and broadcasts si. Then the masked

output ẑ = xy +
∑
i∈[N ] λ

z
i can be obtained as ẑ =

∑
i∈[N ] si + x̂ŷ by each party.

Notice that Πon
C only broadcasts once for each multiplication gate, thanks to the correlated randomness

computed during the offline phase. All other operations are computed locally by the parties.

Protocol. Below we present a basic framework for three-round MPCitH-PP proof systems. Here we describe
the protocol for one MPC instance (with non-negligible soundness error) and in Fig. 6 we include a complete
description of the KKW proof system that uses many instances in parallel (to achieve negligible soundness
error). As the offline protocol proceeds independently of the secret witness, an MPCitH-PP prover can
safely open the states of all N parties for the verification of the preprocessing phase (i.e., triple generation).

(Commit) The prover P first samples a random seed for each Pi and executes Πoff
C to obtain the states

of all N parties after the offline phase. Then using these states and the masked witness (ŵ)w∈IN as
input, P executes Πon

C to obtain all broadcast messages observed during the online phase. Finally, P
sends commitments to the states and broadcast messages to the verifier V.
(Challenge) V asks P to open either the offline or the online phase. For the latter case, V also randomly
picks a party index i?, whose view is to remain hidden.
(Response) To open the offline phase, P sends all random seeds used during Πoff

C . To open the online
phase, P sends broadcast messages coming from the party Pi? during Πon

C , as well as all the state
information of the remaining N − 1 parties.
(Verification) To check the offline phase, V simply uses random seeds to execute Πoff

C as P would do,
to obtain the resulting states of all N parties. Then V checks that these states form a correct opening
to the commitment of the offline phase. To check the online phase, V simulates Πon

C with the broadcast
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messages from Pi? and the states of the remaining N − 1 parties as input, so as to obtain the broadcast
messages of the other N − 1 parties. Then, V checks that these broadcast messages form a correct
opening to the commitments of the online phase.

2.2 Picnic

The signature scheme Picnic is an instance of the MPCitH paradigm described above. The function f is
the LowMC block cipher, the signer’s secret key is the witness w, and the public key is (x, c). A signature
consists of a proof of knowledge of w such that fx(w) = c. In the block cipher notation, if the secret key
is denoted sk, then the public key is a plaintext-ciphertext pair (x,LowMCsk(x)) where x is a randomly
chosen plaintext block, and the signature proves knowledge of a key relating the plaintext x and the
ciphertext LowMCsk(x). The proof is made non-interactive by the Fiat-Shamir transform, and the message
to be signed is bound to the proof by hashing it into the challenge.

The Picnic specification [Pic20] and NIST submission includes parameter sets using both the ZKB++
proof system and the KKW system, as well as specific choices of parameters for LowMC. Since the KKW-
based parameters (referred to as Picnic3) are the most efficient in terms of signature size, we choose to focus
on those in this paper. In particular our masked implementation is limited to the parameter set Picnic3-L1.
Fig. 6 describes the KKW proof system at a high level, and Algorithm 14 describes Picnic3 signing in full
detail.

2.3 Side-Channel Attacks and Threat Model

Physical attacks are a threat for cryptographic implementations. Attacks such as side-channel analysis
(SCA) can be used to extract secret keys by observing physical properties of an implementation, such as
timing, power consumption or electromagnetic emanation [Koc96,KJJ99,QS11]. A popular countermeasure
to SCA is known as masking [CJRR99a, ISW03]. Masking can protect against a broad class of SCA and
probing attacks by splitting secrets into independent shares. A popular model for analyzing masking schemes
is the t-probing model, where the adversary can probe one (or more) shares of the masked variable [ISW03].
Briefly, a probing adversary may invoke a cryptographic implementation multiple times with chosen inputs.
Before each call, the adversary can choose a set of up to t wires of the circuit and observe the values on these
wires during the invocation. After c calls, an attacker can then combine the c× t observations in arbitrary
ways to extract information about sensitive variables. This model is closely related to concrete physical
attacks: For example, in [KGM+20], eight simultaneous probes are given as an upper limit achievable by
modern commercially-available probe stations, and we therefore assume that t is at most sixteen. While the
t-probing model is a clean theoretical model, Duc et al. [DDF19] showed that security in this model implies
security in the more practical SCA-inspired noisy leakage model [PR13]. To protect against multi-probe
attacks, generally higher-order masking is applied, where the number of independent shares is increased.
Higher-order SCA is expensive, as the number of measurements needed grows exponentially with the mask-
ing order, effectively limiting the attack order or the number of simultaneous probes an adversary may use
(which we assume is below sixteen). Kranchenfels et al. [KGM+20] describes a new attack technique, laser
logic state imaging, that can potentially have an unlimited number of probes, however this attack is quite
new and may not be widely applicable, but in any case must be mitigated with countermeasures below the
software level (at the package, device or circuit level). Besides probing and SCA, there are further physical
attacks like fault analysis [BDL97] that we do not address in this work.

In this work, we use the noisy leakage model introduced by Chari et al. [CJRR99b] and extended by
Prouff and Rivain [PR13]. The model enables an adversary to obtain each intermediate value perturbed
with a noisy leakage function. Furthermore, as stated above we use the connection between probing and
the noisy leakage model given by Duc et al. [DDF19]. Therefore in our threat model, a probing adversary
reflects the capabilities of a real world adversary such as DPA. We assume an adversary who can access
the physical device that can run the Picnic3 signature scheme. They can measure side-channel traces, such
as power or electromagnetic emanation, of the device while signing chosen messages. Moreover they obtain
the signatures as output, and can verify (and thus see the revealed values) or use them arbitrarily in an
attack. Observe that according to noisy leakage model the side-channel trace contains each intermediate
value perturbed with a noisy leakage function. Depending on the signature the revealed values vary and
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the adversary can employ these variables, to recover the secret. Remark that depending on the scenario the
secret is changing (the details is given in Section 3). Therefore our countermeasures introduced (given in
Section 4) to thwart these two scenarios.

2.4 Security Notions for Masking Countermeasures

For more comprehensive background we refer readers to Appendix F. In the following, we fix some finite
field (F, 0, 1,+,−, ·). As explained above, we are working in the t-probing model which allows an attacker
to obtain the value of t variables per run of the primitive. The most common technique to mitigate side-
channel attacks is by encoding sensitive variables via an additive (or polynomial-based) secret sharing into
T > t parts. We say that a vector (vj)j∈[T ] ∈ FT is a T -encoding of v :=

∑
j∈[T ] vj . For readability, we

often write 〈v〉 instead of (vj)j∈[T ]. For a subset I ⊆ [T ], let 〈x〉I = (xi)i∈I and furthermore I = [T ] \ I.
Variables are shared both to protect against side-channel attacks and as part of the MPC protocol. To
distinguish between these situations, we call a sharing between parties in the MPC protocol a sharing and
an encoding when the goal is to protect against side-channel attacks. In this work, we aim to prove that
our basic building blocks meet the following standard security notions [BBD+16].

Definition 1 (t-NI, t-SNI). Let G be a gadget with inputs in FT and t < T . Suppose that for any set of
t1 intermediate variables and any subset of O of output indices with t1 + |O| ≤ t, there exists a subset of
indices I such that the output distribution of the t1 intermediate variables and the output variables y|O is
perfectly simulatable from I. Then
(i) if |I| ≤ t1 + |O| we say G is t-non-interfering (t-NI), and

(ii) if |I| ≤ t1 we say G is t-strong-non-interfering (t-SNI).

The above definition of SNI as well as its composability result can be generalized for a gadget with
multiple input/output encodings [CS20]. We also say G is t-SNI with uniform output-distribution, if the
outputs ofG which are not affected by any probes are uniformly distributed (see Appendix F for a definition).

3 Probing Attacks on Picnic3

We describe two probing side-channel attacks against Picnic3 and experimentally confirm them against
our M4 port of the optimized Picnic3 implementation. Probing attacks usually exploit weak leakage of
intermediate variables, gathered from several measurements. As described in [SBWE20] and in [GSE20],
the values revealed by the prover allowing the verifier to check the consistency of the MPC protocol can be
employed by an adversary in a side-channel attack. We assume the same scenario. Furthermore, we assume a
leakage model where an implementation leaks weak and noisy information about each intermediate variable,
therefore measurements of the MPC-in-the-head simulation leak a weak and noisy dependence on secret
values due to the revealed values. As mentioned above, we make use of the RvR tests to show the clear
presence of leakage.

3.1 Probing the Masked Secret of Unopened Online Phase

This attack is novel, as it is specific to MPCitH with preprocessing, and only occurs when 5 protocol rounds
are compressed to 3. Hence the attack below works in principle for any direct implementation of signatures
derived from three-round KKW-based protocols. We also remark that this attack cannot be mitigated by the
SNIitH approach [SBWE20]; in particular, the attack below works independently of the number of unopened
parties’ views since it targets an input to the MPC (i.e., ŵ), not a share of the secret. We are thus motivated
to design an alternative solution to thwart this attack in the next section.

We first note the three-round KKW scheme executes both the offline and online phase of each MPC
instance, in contrast to the five-round case. We denote by C the executions chosen for the online phase, i. e.,
the executions where the offline phase is not public.

The attack exploits the following: if the k-th execution of the offline phase is selected to be part of
the signature (i.e., if k /∈ C), the preprocessed masks and state of all N parties is made public for the
verifier, therefore the corresponding online phase must remain hidden. Concretely, since the secret witness
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Fig. 1. A first-order RvR test on the unprotected Picnic3 implementation using revealed values from the offline
phase. The traces are classified based on the bit λw1 + · · · + λw16. Values above the 5.7 threshold (red line) indicate
there are strong leakages (left). Moreover, the maximum |t|-value increases with respect to number of traces and the
leakage becomes clear after 2,725 traces (right).

wire value w is masked by random bits in step 1c of the prover in Fig. 6, the attacker’s goal is to learn
the masked witness wire values ŵ(k) in execution k for the unopened online executions k /∈ C. Since
ŵ(k) = λ

w,(k)
1 + . . .+ λ

w,(k)
N +w and λw,(k)

i is made public (for all i), by probing ŵ(k) the attacker can solve
for the secret key bit w. Here, λw,(k)

i denotes the value of λwi in execution k.
In order to validate the attack we use our experimental setup (as described in Section 6) and the RvR

approach. The experiment shows that there is an exploitable leakage, i.e., an amount of leakage sufficient,
despite measurement noise, to allow recovery of intermediate values that depend on the secret key. For
this experiment, we reduce the Picnic3 parameters (as in Fig. 6) M and τ to 4 and 2 respectively, in
order to collect traces more quickly, however we keep the number of parties N as 16 and collected traces
corresponding to execution of the first MPC instance. During the collection phase, we run the Picnic3
signing function with random messages and a fixed secret key. More specifically, we measure the execution
of the first line of Algorithm 18, and collect 22,056 side-channel traces. Note that the root seed is also
random due to the choice of a random message to be signed. We first separate the traces belonging to
signatures that reveal the first preprocessing phase, since our measurement covers the first MPC instance.
The reduced number of MPC instances is only to reduce the number of possible challenges and to increase
the number of traces per challenge. Then we classify the remaining traces into two sets according to the
revealed values λw,(k)

1 + · · ·+λ
w,(k)
16 . The result of the analysis in Fig. 1 (left side) shows a clear dependence

between the unrevealed value ŵ(k) and the observable trace, as the |t|-value clearly exceeds 5.7 which shows
an exploitable leakage. As seen in the right hand side of the Fig. 1, the leakage becomes clear after 2,725
traces.

The code we measure (the first line of Algorithm 18) corresponds to the calculation of roundkey0 thus
the leakage corresponds to the bits of roundkey0 which is equal to matMul(ŝk,K0). Solving the equation for
the sk = ŝk − (λsk

1 + · · · + λsk
16)K0 where (λsk

i is known for all i and K0 is a constant) leads to the secret
value sk.

3.2 Probing the Unopened Party

The second attack uses the revealed values for the online phase i.e. ŵ(k) and λwi for i 6= ik. This attack is
a straightforward variant of the one by Gellersen et al. [GSE20] and Seker et al. [SBWE20], but adapted
to work with Picnic3. In contrast to the attack described above, we now target an MPC execution whose
online phase is selected to be part of the signature (i.e., if k ∈ C). In that case there is a single party Pik
whose internal state must remain hidden for the privacy of the MPC protocol to hold. By design, the values
ŵ(k) and λwi for i 6= ik are revealed during the verification. Thus the measurements have a weak and noisy
dependence to the value λwik which can be exploitable due to the revealed values.

We validate the attack using the same experimental setup and parameters as in Section 3.1. During the
collection phase, we again process the Picnic3 with random messages with a fix secret key and measure the
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Fig. 2. A first-order RvR test on the unprotected Picnic3 implementation using revealed values from the online
phase. The traces are classified based on a single bit of ŝkK0. Values above the 5.7 threshold (red line) indicate there
are strong leakages (left). Also, the maximum |t|-value increases with respect to number of traces and the leakage
becomes absolute after 6,000 traces (right).

execution of the preprocessing phase (Algorithm 15), where the following is computed:

roundkey0 = λik +
∑
i 6=ik

λi and λsk = matMul(roundkey0,K
−1
0 ). (1)

Since ŝk = sk + λsk , we have the following equation for λik ,

ŝk = sk + (λik +
∑
i 6=ik

λi)K−1
0 , and λik = (ŝk − sk)K0 −

∑
i 6=ik

λi. (2)

Finally, we substitute the secret value λik into Eq. (1),

roundkey0 = (ŝk − sk)K0 −
∑
i6=ik

λi +
∑
i 6=ik

λi = (sk + ŝk)K0 (3)

From Eq. (3) we observe that roundkey0 can be probed (over multiple traces) since sk is a constant value.
Then λik can be calculated as roundkey0 −

∑
i6=ik λi, and used to obtain the secret (as described above).

The result of the analysis in Fig. 2 shows a clear dependence between the unrevealed value roundkey0 and
the observable trace, as the |t|-value clearly exceeds 5.7 which shows an exploitable leakage.

4 Masking Three-Round KKW

In this section we present our masked proof system following the three-round KKW protocol. We first strive
for a provably NI-secure algorithm without specifying any particular circuit. In Section 5 we describe more
concrete operations tailored to the LowMC circuit of Picnic3, and optimize by partially unmasking several
hash computations (and discuss the security implications). The circuit in this presentation is a generic
circuit C such that C((w)w∈IN) = 1, where each w is seen as an input wire value to the circuit.

In the description below, we additively secret share some variables in two dimensions: a share held
by each party (indexed by i ∈ [N ]), further shared T times within each party (indexed by j ∈ [T ]). For
example, λxi denotes a share of of λx held by the i-th party such that λx =

∑
i∈[N ] λ

x
i ; the value λxi,j for

j ∈ [T ] denote shares such that λxi =
∑
j∈[T ] λ

x
i,j . The shares λxi are as in the KKW protocol, and the extra

T -wise encoding of this value is required for SNI security. Note that we only apply the notation 〈·〉 (see
Section 2.4) on the T -wise encoding required for the masking countermeasure and never for the sharing
of the KKW protocol. The functions requiring T -th order masked computation are marked in orange (e.g.,
〈y〉 ← H( 〈x〉 ) indicates that a hash function H is masked). Most of the randomness used in the protocol
is from the random tapes of the parties; this randomness is derived from a seed, so that part of it may be
efficiently communicated to the verifier (by sending the seed). Some of the masked operations will require
additional randomness (e.g., to refresh a secret encoding), and this is sampled from the platform random
number generator (RNG), since it is only required by the signer.
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Algorithm Masked KKW Prover

Inputs The prover holds a circuit C as a statement and an encoded witness 〈w〉 = {〈w〉}w∈IN such that C(w) = 1. Values M , N , τ
are parameters of the protocol.

Commit For each k ∈ [M ], the prover does:

1. Choose uniform 〈seed(k)〉 and use to generate values 〈seed(k)
1 〉, . . . , 〈seed(k)

N 〉. Also the prover computes 〈aux(k)〉 ∈ F|C| as in
Algorithm 1. For all i = 1, . . . N − 1, let 〈state(k)

i 〉 = 〈seed(k)
i 〉 and let 〈state(k)

N 〉 = 〈seed(k)
N 〉||〈aux(k)〉.

2. Commit to the offline phase:

〈com(k)
i 〉 = H( 〈state(k)

i 〉 ) and reconstruct com(k)
i for all i ∈ [N ]

com off(k) = H(com(k)
1 , . . . , com(k)

N ).

3. Compute encodings of masked witness 〈ŵ(k)〉 = 〈λw1 〉+ . . .+ 〈λwN 〉+ 〈w〉 for each w ∈ IN, where 〈λwi 〉 is the randomness used
to mask the witness and is read from the random tape defined by 〈state(k)

i 〉.

4. Simulate the online phase of the N -party protocol as in Algorithm 2 and produce 〈msgs(k)
1 〉, . . . , 〈msgs(k)

N 〉.
5. Commit to the online phase:

〈com on(k)〉 = H( {〈ŵ(k)〉}w∈IN, 〈msgs(k)
1 〉, . . . , 〈msgs(k)

N 〉 )

and reconstruct com on(k).
6. The prover refreshes the encoding of witness 〈w〉 = RefreshM( 〈w〉 ) for each w ∈ IN.

Compute hoff = H(com off(1), . . . , com off(M)) and hon = H(com on(1), . . . , com on(M)) and send h∗ = H(hoff , hon) to the verifier.
Challenge The prover receives the following challenges from the verifier: a uniform τ -sized set C ⊂ [M ] and P = {ik}k∈C where each

ik ∈ [N ] is uniform.
Response For each k ∈ [M ] \ C, the prover sends reconstructed seed(k) and com on(k) for all to the verifier. For each k ∈ C, the

prover sends reconstructed values com(k)
ik

, {state(k)
i }i6=ik , {ŵ(k)}w∈IN and msgs(k)

ik
to the verifier.

Algorithm 1 masked offline
Input: (〈seedi〉)i∈[N ].
Output: 〈aux〉.
1: for each input wire w of the circuit
2: read λwi,j from seedi,j
3: for each gate in C with input wires x and y, and output wire z:
4: if ADD then
5: compute 〈λzi 〉 ← 〈λxi 〉+ 〈λyi 〉
6: if MUL then
7: compute 〈λx〉 ←

∑
i∈[N ]〈λ

x
i 〉

8: compute 〈λy〉 ←
∑

i∈[N ]〈λ
y
i 〉

9: compute 〈λxy〉 ← SMul( 〈λx〉, 〈λy〉 )
10: for each i ∈ [N − 1] and j ∈ [T ]
11: read λxyi,j from seedi,j
12: compute 〈λxyN 〉 ← 〈λ

xy〉 −
∑

i∈[N−1]〈λ
xy
i 〉

13: for j ∈ [T ]
14: update auxj with λxyN,j

15: return 〈aux〉.

Algorithm 2 masked online
Input: Circuit C, 〈ŵ〉 for each input wire w of the circuit and

(〈statei〉)i∈[N ].
Output: (〈msgsi〉)i∈[N ]
1: for each gate in C with input wires x and y, and output wire z:
2: if ADD then
3: compute 〈ẑ〉 ← 〈x̂〉+ 〈ŷ〉
4: if MUL then
5: for each i ∈ [N ]
6: read λxi,j , λ

y
i,j , λ

z
i,j , λ

xy
i,j from statei,j

7: compute 〈ai〉 ← SMul( 〈x̂〉, 〈λyi 〉 )
8: compute 〈bi〉 ← SMul( 〈ŷ〉, 〈λxi 〉 )
9: compute 〈si〉 ← 〈λzi 〉 − 〈λxyi 〉 − 〈ai〉 − 〈bi〉

10: update msgsi,j with si,j

11: compute 〈c〉 ← SMul( 〈x̂〉, 〈ŷ〉 )
12: compute 〈s〉 ←

∑
i∈[N ]〈si〉

13: compute 〈ẑ〉 ← 〈c〉+ 〈s〉
14: for each output wire z of the circuit :
15: update msgsi,j with λzi,j

16: return (〈msgsi〉)i∈[N ].

Fig. 3. Our masked version of 3-round KKW prover.
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4.1 Masked Operations

We present our masked version of the KKW prover in Fig. 3. The function masked offline in Algorithm 1
computes the offline phase Πoff

C from Section 2.1 in a straightforward way. The function masked online
in Algorithm 2 corresponds to a masked version of Πon

C . The SNI-secure multiplier SMul( ) is defined in
Algorithm 11. Note that SMul( ) is t-SNI with uniform output-distribution, as evident from the proof that
it is t-SNI [BBD+16, Proposition 2]. For ADD gates, the only change is to work on T -encodings 〈x̂〉, 〈ŷ〉,
rather than on x̂, ŷ directly. Interestingly, the MUL gates can also be computed with a straight-forward
adaptation by also encoding the masks λx, λy, λz, and λxy. Recall that x̂ = x+λx, and λx is shared among
the parties, where party i has share λxi (resp. λyi , λzi , and λxyi ). Each party thus stores their share λxi as a
T -encoding 〈λxi 〉 (resp. 〈λyi 〉, 〈λzi 〉, and 〈λxyi 〉). Each party’s broadcast value si will now also consist of the
T -encoding 〈si〉 as follows:

〈si〉 = 〈λzi 〉 − 〈λ
xy
i 〉 − SMul( 〈x̂〉, 〈λyi 〉 )− SMul( 〈ŷ〉, 〈λxi 〉 ).

4.2 Security Analysis

We employ the definition of non-interference by [BBD+16] which guarantees security against t probes for
t < T as proposed by Ishai et al. [ISW03]. Recall that a probing adversary may invoke a cryptographic
implementation multiple times with chosen inputs and before each call, can fix an arbitrary set of up to t
wires of the circuit and observe the values during the invocation. We use a more polished security notion
known as t-non-interference (t-NI) and t-strong non-interference (t-SNI) defined in Appendix F.

In the security analysis we focus on a single MUL operation as extracted from Algorithms 1 and 2,
denoted KKW MUL, presented as Algorithm 22 and 23, as the ADD operation is linear and thus trivially
NI. See Appendix G for the proofs of the lemmas.

Lemma 1 (). Let G be the KKW MUL gadget as described in Algorithm 22. Then, G is t-SNI for all
t < T , if SMul( ) is t-SNI with uniform output-distribution.

Lemma 2 (). Let G be the KKW MUL gadget as described in Algorithm 23. Then, G is t-SNI for all
t < T , if SMul( ) is t-SNI with uniform output-distribution.

To further support our security analysis, we utilized maskVerif [BBC+19] to confirm that both KKW MUL
offline and online gadgets are SNI-secure.

As we have shown that all components of Algorithm 1 and Algorithm 2 are SNI, the composability
guaranteed by Lemma 3 as well as its generalization to multi-input/output SNI gadgets [CS20] implies the
following theorem by adding suitable refresh gadgets (depending on the topology of circuit C that KKW is
instantiated with). Note that SNI security of the refresh gadget (recalled in Algorithm 12) is already proved
by Barthe et al. [BBD+16]

Theorem 1. Suppose H( ) and RefreshM( ) are t-SNI secure gadgets for all t < T . The masked version of
KKW presented in Fig. 3 is t-NIo for all t < T and for public outputs {com(k)

i 6=ik}k∈C, {com(k)
i }k∈[M ]\C,i∈[N ],

{com off(k)}k∈[M ] and {com on(k)}k∈C.

The public outputs stated above are not part of unprotected KKW proof elements. We thus have to validate
the security of proof system in case these values are made public, which, however, is straightforward since
they are indeed non-sensitive information that can be computed from response outputs (see the verification
step of Fig. 6). Furthermore, note that masking the hash function H( ) is important. There are scenarios
where the inputs to H( ) are sensitive, but the outputs are not (such as step 5 in Fig. 3). The computation
of an unmasked hash functions might thus leak information about these sensitive inputs.

5 Masking Picnic

We start by analyzing the hashing operations in signature generation to determine which ones must be
masked, then discuss the options for masking SHA3/SHAKE, and introduce the half-masking technique,
then estimate the overhead of masking the hash invocations. Our masked implementation of the Picnic3
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signature generation function is a rather direct adaptation of the masked KKW proof protocol from Section 4.
When compared to Section 4, the circuit is LowMC, and operations are done on N -bit words packed with
a secret share from each of the N parties. Fig. 7 (in Appendix B) gives an overview of the protections for
each hashing operation in signature generation. A complete specification of our protected implementation,
mirroring the official Picnic specification [Pic20], is given in Appendix B.

5.1 Implementation Security

We implemented several versions of masked Picnic3, of which we highlight two: (1) a provably NIo-secure
implementation (as a direct consequence of Theorem 1) and (2) a performance-oriented implementation
with partially unmasked non-sensitive intermediate values. For the former, we inserted the share refresh
gadget (RefreshM) according to the generic composition rule stated in Lemma 3, and we verified with
maskVerif that our complete specification of fully masked Picnic3 (see Appendix B.1) is indeed NIo-secure.
On the other hand, we do not claim that our second implementation is NIo-secure, as there are some gaps
between the analysis of Section 4 and this implementation, that we consciously allowed, in order to improve
performance. We now explain these gaps and argue that they do not impact practical security, and in
Section 6 we confirm the absence of leakage experimentally.

First, according to Algorithm 4, all intermediate seeds must be T -encoded until they are reconstructed
at lines 29 and 32 and, as we argue in Section 5.2, reading t bits of a seed reduces security by at most t
bits. As we assume t to be small, we accepted this risk to reduce the cost of masking SHAKE and memory
required to store seeds.

By selectively masking the hash function calls (as described in Section 5.2) as opposed to masking all
hash function calls, up to t bits of a single-use seed may leak to a side-channel attacker capable of accurately
reading t bits from a single trace. (Since the seed is only ever used once, and the signature is randomized,
subsequent traces have a fresh seed.) Against such an attack, the security of our L1 implementation decreases
from 128 to 112 bits. As shown in Sections 5.4 and 6 this optimization gives significant performance gains,
so we see this as a reasonable trade-off. Recent work by Kannwischer et al. [KPP20] describes single-trace
attacks on the unprotected XKCP Keccak implementation. These attacks use a single trace recorded during
the computation of y = SHAKE(sk||x) and aim to recover all of a secret key sk, or part of y. While single-
trace attacks could threaten some of the unprotected hash calls in our optimized implementation (e.g., when
deriving the per-party or per-MPC instance seeds), the results of [KPP20] do not extend to the M4, and
the length constraints on sk, x, and y in our application. Future work may improve single-trace attacks, and
in that case the conclusion of [KPP20] is that lightweight countermeasures will provide effective mitigation.

Half-masking (discussed in Section 5.3) also introduces the assumption that KangarooTwelve [VWA+21]
is a secure hash function. This assumption is only for security against the type of t-probing side-channel
attack we consider; and half-masking can be used by individual implementations without changes to the
Picnic specification. We provide benchmarks in Section 6 showing the performance advantage of half-
masking: based on this and the fact that KangarooTwelve appears to be a relatively mild assumption, we
enable half-masking by default in our implementation.

Finally, our provable security analysis assumed an SNI-secure hash implementation. Although one
could use the fully SNI-secure masked Keccak as suggested by Barthe et al. [BBD+16], other previous
works [BDPA10, Dae17, GSM17] achieved more efficient implementations with smaller amounts of random
bits, albeit without a provable security guarantee. We implement three instances of masked Keccak (named
IND, DOM, and SNI) with different security levels, which we explain in detail in Section 5.3. In Section 6,
we compare the concrete performance and perform practical leakage analysis. From these experiments, we
conclude that our implementation of IND – the fastest instance among three – does not leak information,
which provides some assurance.

5.2 Side-Channel Protections for Hashing in Picnic

In this section and Algorithm 3 we give a more detailed description of the parts relevant to this paper.
Parameters. M is the number of MPC instances, N is the number of parties, τ is the number of revealed
online executions and κ is the security parameter (e.g., κ = 128 for security level L1). The circuit C, defined
over the binary field F = {0, 1}, is also part of public parameters. Concretely, the circuit is Enc(w, p) ?= c,
where Enc is the LowMC block cipher with κ-bit key and block size, w is an κ-bit input witness (a LowMC
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secret key), p and c are the plaintext and ciphertext, both κ bits long. If the input to C is a block cipher
key that maps p to c, the circuit outputs 1.
Key Generation. In the presentation below, the key pair is (pk, sk) = ((c, p),w), where both p and w are
random κ-bit strings, and then c is computed as c = Enc(w, p).

Hashing Operations for Signing The concrete sign operations are described in Algorithm 3, following
the Picnic specification [Pic20, Section 7.1]. When compared to the stylized description of KKW in Fig. 6,
here we include more details and list all hashing operations, since we will analyze them with respect to the
probing attacks below. Some of the functions related to expanding seeds using a tree construction or creating
a Merkle tree of commitments (gen seed, get leaves, build tree, and open tree) are left to the specification
for simplicity.

The hash function calls are denoted by H and we omit the byte used for domain separation present in
the specification. The KDF expands an arbitrary length input to an arbitrary length output. Both H and
KDF are instantiated with the SHAKE XOF.

Algorithm 3 Description of Picnic signing highlighting hashing operations.
Input: signer’s key pair sk = w = (w)w∈IN, pk, message to be signed Msg.
1: // Derive root seed:

Sample random R ∈ {0, 1}2κ, (seed∗, salt)← KDF(sk||Msg||pk||κ||R)
2: iSeed tree← gen seed(seed∗, salt,M, 0) // Tree of initial seeds
3: // Initial seed for each MPC instance:

(iSeed(1), . . . , iSeed(M))← get leaves(iSeed tree)
4: for each k ∈ [M ]
5: seed tree(k) ← gen seed(iSeed(k), salt, N, j) // Seeds for MPC instance k
6: (seed1, . . . , seedN )← get leaves(seed tree(k)) // N per-party seeds
7: For each i ∈ [N ]: tapes(k)

i ← KDF(seedi, salt, k, i)
8: (aux(k), tapes(k)

N )← offline(tapes(k)
1 , . . . , tapes(k)

N )
9: For each i ∈ [N − 1]: comi ← H(seedi, salt, k, i)

10: comN ← H(seedN , aux(k), salt, k,N)
11: com off(k) ← H(com(k)

1 , . . . , com(k)
N )

12: For each input wire w: ŵ(k) ← w ⊕
∑

i∈[N ] λ
w
i

13: (msgs(k)
1 , . . . ,msgs(k)

N )← online((ŵ(k))w∈IN, tapes(k)
1 , . . . , tapes(k)

N , pk)
14: com on(k) ← H((ŵ(k))w∈IN, (msgs(k)

1 , . . . ,msgs(k)
N ))

15: com on tree← build tree(com on(1), . . . , com on(M))
16: h← H(com off(1), . . . , com off(M), com on tree.root, salt, pk,Msg)
17: Parse h as (C,P) where C ⊂ [M ] and P = {ik }k∈C , ik ∈ [N ]
18: com on info← open tree(com on tree,M, C)
19: iSeed info← reveal seed(iSeed tree,M, C)
20: For each k ∈ C: seed info(k) ← reveal seed(seed tree(k), N, ik)
21: Z ← (com on info, iSeed info, (seed info(k), aux(k), (ŵ(k))w∈IN, com(k)

ik
,msgs(k)

ik
)k∈C).

Output: (h, salt, Z) as a signature

We now consider which hashing operations must be protected against side-channel attacks, and to what
degree. The Picnic specification supports randomized signatures (and recommends this option, following
[AOTZ20]) by appending a random value to the KDF input when deriving the root seed. We assume this
option is used throughout, as otherwise the cost of side-channel protections would be significantly higher,
since all hash function calls would require masking (as opposed to only 35% shown below), and all random
seeds would need to be T -encoded. First, we note that all inputs to the challenge computation are public,
so this hash does not need to be masked. We now analyze the other hash function calls in order. Fig. 7 (in
Appendix B) gives an overview of the operations.
Deriving the root seed. For step 1, the SHAKE XOF is used as a KDF to derive a root seed for signature
generation. The input sk must be protected from side-channel attacks. As a first option, one could choose
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the root seed at random, and avoid the KDF altogether. However, deriving the root seed from the secret
key and random data hedges against failures in the RNG, see the analysis for Picnic in [AOTZ20]. If sk
is stored T -encoded, then we can hash all of the shares in place of sk, and append a random value. Our
implementation masks this hash function call since it is relatively cheap in the context of a signature, and
it makes testing easier because our implementation can produce signatures that match known test vectors.
Deriving other seeds. When generating the seeds in steps 2, 3, 5, and 6, protecting against the limited
type of leakage we consider in this work is not necessary, since seeds are unique per-signature and are always
hashed before use. Suppose an attacker A can read t bits of a leaf or intermediate seed s. With overwhelming
probability each seed is only ever used in one signature, so traces from multiple signing operations will not
give more information about s.

There are three possible uses of s to consider. When s is a seed from a leaf of the tree, case 1 is that s
is hidden and the attacker has a commitment to it (computed in steps 9 and 10), and case 2 is when s is
used to seed KDF (in step 7), and A has some of the output bits. In case 3, s is a hidden intermediate seed,
the attacker has one of the two child seeds, derived by hashing s.

We can model all three cases as the attacker having C = H(s) along with t bits of s, where H is a secure
hash function. In practice H is the SHAKE XOF, which the existing analysis of Picnic already assumes is
a random oracle. Then if A makes q queries to H, they recover the missing κ− t bits of s with probability
not more than q/2κ−t. This considers only a single seed and digest, which we can do since each input to H
is unique, by construction (the Picnic spec uses a domain separation value, random salt, and counters to
prevent multi-target attacks [DN19]). In practice κ ≥ 128 and t will be 16 or less (see Section 2.3), therefore
the security of our implementation is still at least 112 bits.
Computing random tapes. In step 7 we expand the per-party seeds to random tapes. The inputs do not
need to be protected (as discussed in the previous paragraph), but all output bits must be protected, since
some of the random tape bits will correspond to shares of the unopened party and must be kept secret as
shown in in Section 3. We mask these calls, so the output is T -encoded (which increases the amount of
memory required to store the tapes by a factor of T ).
Computing commitments. In step 9, a commitment of the form H(seed‖salt) is computed. Here the
private input is a seed, which is not sensitive to leakage of up to t bits, as discussed above, and the output
is public. Therefore, step 9 does not require masking.

In step 10, the last party’s commitment has the additional input aux, which is sensitive to leaking of
individual bits. We must mask this call, but since the output is public, we can use the half-masking technique
of Section 5.3.

In step 11, we hash only public values, and no masking is required. In step 14, all inputs are sensitive to
leaking individual bits (e.g., ŵ is sensitive due to the attack described in Section 3.1). Because the output
is public, the half-masking technique is applicable.

5.3 Masking SHAKE

We implement multiple methods to protect the SHA3 family of function against DPA attacks. In all of
them, the Keccak-f state array A is secret shared into two arrays a, b, such that A = a + b. In the
basic method proposed in [BDPA10], the linear operations are performed on the individual state arrays,
then for the non-linear step (denoted χ) Ai ← Ai + (Ai+1 + 1)Ai+2 the shares (a, b) are updated as
ai ← ai + (ai+1 + 1)ai+2 + ai+1bi+2 and bi ← bi + (bi+1 + 1)bi+2 + bi+1ai+2, evaluated left-to-right. The
cost of the linear operations are doubled, addition of constants have the same cost, and the cost of χ is
doubled, plus two additional AND and XOR operations, so the computational cost of the masked round
function is roughly doubled. One must also consider the cost of generating random values to create the
secret shares. This method (herein called IND) only achieves independence from the native variables, and
the same approach can be generalized to three or more shares. In Domain-Oriented Masking (DOM) [GSM17],
the AND operations between shares a and b are further protected to satisfy SNI-security with a random
mask Z as (ai+1bi+2 +Z) and (bi+1ai+2 +Z), respectively. However, this is still not sufficient for the masked
Keccak as a whole to be SNI secure: due to the θ-layer, which applies a linear transform to the state array
A, both inputs to the AND gadget in χ depend on the same previous state bit. This is a typical pattern of
insecure composition observed in [BBD+15b, §2.3]. Therefore, the third method (denoted by SNI) achieves
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SNI-security by additionally refreshing shares of the state array A for every invocation of χ, as already
suggested by Barthe et al. [BBD+16, §8.2].
Half-Masked SHAKE. When expanding a seed to a random tape, we have shown that security is main-
tained when leaking a small part of the seed (t bits of fewer), so the input is not sensitive to this bounded
leakage, but the output is sensitive. Conversely, when creating a commitment, the individual input bits may
be sensitive but the output is public. An established assumption (for SHAKE128) is that security is preserved
using only half the number of rounds, and there is a proposal called KangarooTwelve (K12) [VWA+21],
that uses 12 instead of 24 rounds. Therefore, for short inputs and outputs, one can view SHAKE as two
calls to K12, and mask only one of the calls. In the case of sensitive inputs, we mask the first 12 rounds:
an attacker who learns the state at the 13th round is effectively given a K12 digest of the input, which
sufficiently hides the input under the assumption that K12 is a secure hash function. Similarly, when only
the output bits are sensitive, we mask the last 12 rounds, any state bits observed by the adversary in round
11 does not leak useful information about the output assuming that K12 is secure.

5.4 Estimated Overhead of Hash Function Masking in Picnic

Here we provide a rough estimate of the overhead introduced by masking the SHAKE calls in Picnic3, which
will have a high impact on the cost of signing since hashing is a large portion of the signing time (e.g., at L1
it is about 57% of the signing time on x64 [KZ20], and for our ARM M4 implementation it is about 71%).
– For seed tree hashing, we have aboutM+log2 M hashes to compute the round seeds, andMN+M log2 N

hashes for the per-party seeds. None of these must be masked.
– For random tape expansion, we have MN hashes, all of which must be masked.
– For commitments, we have NM + 2M + log2 M hashes and must mask 2M of these.

The total number of hashes is thus 3MN+3M+2 log2 M+log2 N and MN+2M of these must be masked.
At L1, all hash operations involve one call to Keccak-f , so all calls have approximately the same cost. Again
at L1, M = 250, N = 16 so we find that about 35% of hashing must be masked. Since all masked hash
operations have either non-sensitive input or output they need only be half-masked (as explained below).

Now suppose we focus on first order protection (the case T = 2), and assume that masked SHA-3 is
about 2.73 times slower than unmasked SHA-3, and that a half-masked SHA-3 is about 1.95 times slower
(these are the ratios from our implementation described in Section 6). Then we expect a 1.61x increase in
time spent hashing in masked Picnic3, and 1.35x increase when half-masking is used.

6 Implementation and Experimental Evaluation

In this section we benchmark our implementation and discuss performance, then describe our experiments
to ensure that our implementation is side-channel resistant in practice.

6.1 Implementation and Benchmarks

We implemented our masked version of Picnic signing and benchmarked it on the ARM Cortex M4, using
the pqm4 [KRSS] suite and the STMicro developer board STM32F407G-DISC1. This board has one MB of
flash memory and 192KB of RAM and comes equipped with a true random number generator implemented
as a hardware peripheral. The microcontroller clock frequency ranges from 24 to 168MHz, so following
standard practice our benchmarks were executed at the lowest frequency to avoid the impact of memory
wait states [FA17,HL19].

Our implementation is derived from the Picnic optimized implementation, which is primarily optimized
for x64 platforms, and is not well-optimized for the M4. As such, our implementation results aim to bound
the overhead of masking countermeasures. We also focus only on first order protection, i.e., the case T = 2,
and implement only the L1 parameter set picnic3-L1. As most of our countermeasures are general, we
expect them to apply equally to more optimized M4 implementations of Picnic, and (with some effort) to
implementations of other MPCitH-based proof systems.

Since our masked implementation produces picnic3-L1 signatures compatible with the specified ver-
sion [Pic20], we do not repeat signature or key sizes in our benchmarks: public keys are 34 bytes, secret keys
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Picnic
Masking

SHAKE
Masking

Signing
cycles

Hashing Masking
Overhead

Stack Code Random
bytes (KB)

No None 304 71% 1.00 32,460 121,349 0

Yes None 460 50% 1.51 32,500 131,326 2,025
Yes All-SNI 1663 86% 5.47 32,724 166,216 158,172
Yes All-DOM 1289 81% 4.24 32,724 158,776 80,378
Yes All-IND 856 72% 2.82 32,724 148.712 2,585
Yes Selective 613 62% 2.01 32,460 148,712 2,025
Yes Sel. Half 546 57% 1.80 32,460 148,712 2,025

Table 1. Benchmarks in millions of Cortex-M4 cycles showing the masking overhead for types of side-channel
protections. The options for Picnic are “No” masking and T = 2 masking, as described in Section 5. For SHAKE,
the “None” option indicates no masking is used for hash computations, “All-” prefix means every call is masked in
one of three possible ways: SNI-secure [BBD+16], Domain-Oriented Masking (DOM) [GSM17] or using independent
values (IND) [BDPA10]. “Selective” means that only sensitive calls are masked with independent values (as described
in Section 5.2), and “Selective Half” means that in addition to Selectively masking and IND, we use half-masked
SHAKE. The Hashing column provides the fraction of the signing time spent computing SHAKE.

are 17 bytes, signatures are 12.4KB. All other parameters such as number of MPC parties, MPC instances,
digest lengths, etc. are as specified in [Pic20]. For reference, the verification time in our implementation is
204M cycles.

In order to experimentally verify the absence of leakage, we make use of the FvR tests.
Masked Keccak. We implemented three different flavors of masked Keccak described in the last section:
IND, DOM, and SNI. The implementation was built on top of the in-place 32-bit ARMv7-M assembly code
found in the official Keccak code package 5 (XKCP) to operate over a double-sized state storing the two
shares. We implement the same Keccak API used in Picnic by replicating functions over each share of
the state, and modifying the round function to implement the non-linear operations. Because of the larger
state, additional pressure was put on the registers and several intermediate variables had to be spilled onto
the stack. This caused some additional performance overhead beyond the raw cost of masking. In order to
prevent leakage, we took additional care to rotate registers between rounds to prevent them from loading
shares of the same variable [BDPA10].
Benchmarks. In Table 1 we give cycle counts for our masked implementation with various options for
how the hash function calls are masked. The masking cost for the non-hashing operations is 156M cycles,
which represents an overhead of 1.5x over baseline. Since this is effectively doing the MPC simulation with
2-encoded values, we might expect a factor two slowdown rather than 1.5, however, this is explained by the
fact that many of the operations to implement LowMC are ANDs and XORs with public constants, which
are more efficient than operations on 2-encoded values. Then the cost when masking the hashing naively
(by masking all operations), is given for the three Keccak masking options (SNI, DOM and IND) and we see
that the overhead is 1203M, 829M and 396M cycles respectively. By using our analysis of Section 5.2, and
selectively masking only sensitive hash function calls, the overhead for IND drops to 153M cycles, and all the
way down to 86M cycles when we additionally use the half-masking optimization. In this most performant
case, we have roughly 2/3 of the overhead accruing to the Picnic and MPC operations, and 1/3 to the
hashing.

Stack usage was essentially constant for all configurations we benchmarked, since the total amount
of memory required is dominated by storing the signature, the commitment and seed trees and not by
the storage space for intermediate values that we must t-encode. Code size increases by 1.2x in the most
performant masked implementation (selective half-masked), and by 1.4x in the fully SNI-secure version.
Finally, the randomness requirements range from the baseline of ≈ 2MB when Keccak is masked with the
IND method, to the much higher 80MB for the DOM method and 158MB for the SNI method, as these methods
require additional refreshing of nonlinear operations within Keccak. Using the selective half-masking option
reduces the randomness requirements of the DOM and SNI options significantly, since the number of hash
function calls is decreased and some calls are only half-masked. By our estimate in Section 5.4 this would
5 https://github.com/gvanas/KeccakCodePackage
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Fig. 4. A first-order leakage detection test based on 2,000 traces on the protected Keccak implementation with fixed
masking (left) and on 1,000,000 traces on the protected Keccak implementation (right). The threshold of |t| ≥ 5.7 (as
suggested by [DZD+18]) is violated throughout the implementation with fixed masking, indicating strong leakage.
For the correctly masked implementation, the |t|-value remains below 5.7, even with 1,000,000 traces, indicating the
absence of exploitable first-order leakages.

0 2 4 6 8

10
6

0

2

4

6

0 25000 50000 75000 100000
0

2

4

6

Fig. 5. A first-order leakage detection test based on 100,000 traces on the Picnic3. The |t|-value remains below 6.1
(as suggested by [DZD+18]), indicating the absence of exploitable first-order leakages for the 100,000 traces. Also,
the maximum |t|-value is bounded and becomes stable with the increased number of traces (right).

reduce randomness usage by about 65% for the DOM and SNI options. In terms of the ≈ 2MB of randomness
used for the non-hashing operations, these are partly due to the refresh operations within the LowMC
implementation (Line 11), they are required for SNI security and since they did not have a significant
impact on run time, we did not investigate the option of removing them. The other significant randomness
consumer in the masked LowMC implementation is the masked AND operation (Algorithm 11). Here, future
work could experiment with an implementation that masks ANDs as in the IND method for Keccak, with
the aim of reducing randomness and improving run time.

6.2 Experimental Leakage Analysis

To ensure our masked implementations of Keccak and Picnic are practically side-channel resistant, we
performed measurements of the implementation to confirm the absence of leakage. Our measurement setup
comprises the STMicro developer board STM32F407G-DISC1 also used for the performance benchmarks,
operated at 168MHz. We measure EM emanations using a Langer LF-U 2.5 near field probe connected to
a Langer PA 303 preamplifier [EmP]. The EM probe is placed over the C29 blocking cap at a distance
of approx. 1 mm. Measurements are recorded using a Tektronix MSO 6. For the Keccak implementation,
we sampled at 3.125 GS/s with a 12 bit resolution and 200Mhz bandwidth. For the Picnic measurements,
which are 2 orders of magnitude longer, we reduced the sampling rate to 625 MS/s in order to obtain feasible
measurement time and storage sizes. Note that this still over-samples the board (168MHz) by a rate of 3.7
which is well above the minimal oversampling threshold of 2 from he Nyquist–Shannon sampling theorem.
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Masked Keccak Leakage Evaluation. For Keccak we evaluate the IND method and follow the FvR
approach to detect all possible first-order leakages. During the trace collection phase, a set of side-channel
traces is collected by processing either a fixed input or a random input under the same conditions. The
fixed or random choice for the input is made at random.After that, we calculate the means and standard
deviations of the two side-channel trace sets separately. The t-test indicates whether the two distributions
have the same mean, i.e., they are indistinguishable for a first-order SCA. We apply the customary threshold
values for long traces 5.7 as suggested by [DZD+18].

To show the sensitivity of the measurement setup for first-order leakages, we apply the test once to
the correctly masked implementation and once to the same implementation with fixed masks. When masks
are not chosen at random, the test must detect the resulting first-order leakage. The left hand side of the
Fig. 4 shows the evaluation results of the masked Keccak implementation with fixed masks based on 2,000
measurement traces. As expected, the leakage test indicates strong leakage, with |t| clearly above 5.7. When
masks are chosen uniformly at random, the t-value remains below 5.7 as shown in the right hand side of
the Fig. 4, even if the number of measurement traces is increased to 1,000,000. We thus conclude that the
masked Keccak implementation is secure and provides the expected resistance to first-order attacks.
Masked Picnic Leakage Evaluation. In order to analyze the leakage for the whole first order masked
Picnic3 implementation, we follow a similar methodology as for Keccak and employ the FvR approach.
We collect the traces starting at the beginning of signature generation until the end of the first MPC
instance, i.e., including a single preprocessing phase and simulation of an online phase(Line 1 to Line 22 in
Algorithm 4). Note that after this point, everything is public, and any leakage gives no additional information
beyond what is made public in the signature. To analyze our signature implementation, we choose the
FvR key scenario, under randomized messages, as proposed in [TG16] for asymmetric cryptosystems. 6 In
addition we needed to add artificial wait cycles before accessing the board’s hardware TRNG to ensure that
we will never need to varying amounts of time for it to become ready,as this would destroy the constant
time property required for the TVLA. Note that this change is only necessary for the test setup and not
required in the production code.

The sets of side-channel traces are collected by signing a random message using either a fixed key or
a random key. As shown in Fig. 5, the t-value remains below 6.1 using 100,000 traces which indicates the
absence of leakage. Moreover maximum |t|-value is indeed bounded and have a stable pattern. Remark
that an exploitable leakage as shown in Fig. 1 or Fig. 2 exceeds the threshold value within as small as
2,725 traces and has a clear increasing pattern. Thus we can conclude that the first-order masked Picnic3
implementation provides the expected SCA resistance.
Scaling to higher security levels and masking orders. Our implementation and experimental evalu-
ation is limited to security level L1 and masking order T = 2. Since we expect the proportion of time spent
on hashing vs. MPC simulation to be similar at levels L1 and L5 (as was the case for x64, see [KZ20, Table
7]), we expect the overhead of our masking techniques to be similar at L5 as well. When T increases, we
can only make rough predictions. We expect running time overhead to increase quadratically and memory
overhead to increase linearly, due to the asymptotic behavior of masking nonlinear operations, and the
additional storage required for T -encoded values.

7 Conclusion and Future Work

In this paper we study the side-channel security of MPCitH proof protocols and related signature schemes.
We found and demonstrated a new probing attack on the KKW proof protocol (as implemented by Picnic).
We then show that masking the signing operations is a practical countermeasure for side-channel attacks,
6 The FvR-message scenario with a fixed key is not a good fit for randomized signature schemes like Picnic3

where the entire internal state is randomized even for fixed messages. If the randomness is fixed (by fixing R in
Line 1 of Algorithm 4), the signature scheme becomes artificially deterministic. Then several public parts of the
signature generation process, including the signature itself, will be picked up by the TVLA test. Similarly, in the
deterministic case the root seed is fixed for fixed messages (and random for random ones), also creating a leakage
which does not exist for randomized signatures. We still performed the analysis and verified that leakage only
occurs in such expected places.
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and prove our masked KKW and Picnic3 meet the standard security notion (NIo), with a mix of both manual
proofs and formal verification with the maskVerif tool.

We implemented a masked version of the Picnic3 signature scheme for the ARM Cortex M4 as a case
study, and found that the cost of masking (in terms of runtime) is high when we simply apply SNI-secure
masking to all hashing operations. After careful analysis of the hashing operations, we found that the
masking overhead can be quite reasonable (as low as 1.8x) under modest assumptions that we verified
with practical leakage analysis of our implementation. With hardware support for side-channel protected
hashing, our work shows that the overhead of masking the non-hashing parts of Picnic signing is about
1.5x, and our SNI analysis applies here.

Our flexible masked SHA-3 implementation is the first publicly available one, and will be useful to other
projects as SHA-3 becomes more common. We also expect our half-masking optimization to find application
in other implementations, as most hash operations have a non-sensitive input or output.

Performance improvements (while maintaining resistance to side-channel attacks) are an obvious direc-
tion for future work, both on the M4 and other embedded platforms. Reducing the amount of randomness
consumed by our mitigations is also an interesting way to improve performance, together with generalizing
to higher order protection efficiently.

Finally, an implementation that combines SCA resistance and resistance to fault attacks (perhaps lever-
aging the fault-resistance results for Picnic in [AOTZ20]) would also make a good follow-up work.
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A Complete Description of the KKW Proof System

In Fig. 6 we present a three-round KKW proof system. We remark that commitments (i.e., generation of
com(k)

i and com on(k)) are de-randomized and replaced by a hash function as suggested in [KKW18, §3]
(which loses HVZK but is still sufficient for provable security of signature), and the protocol is mildly
generalized to work with arithmetic circuits according to [dDOS19,BN20].

B Our Protected Picnic3 Implementation

In this section we give a detailed description of our masked Picnic3 implementation. Algorithm 4 has the top-
level signature generation function, that calls the other algorithms in this section. Fig. 7 gives an overview
of the optimized hashing operations mentioned in Section 5.2, indicating which optimizations are applied
to each one.
Notation. T is the number of shares used by our implementation, and masked values will be T -encoded.
For LowMC, n is the blocksize, and the precomputed constants Ki, Li and Ri are as defined in Appendix E.
The parameter N is the number of MPC parties, and M is the number of MPC instances.
Data Types and Helper functions.
– T -encoding: an additive secret sharing in GF (2). For a bit b, the T -encoding is a vector of T values
b1, . . . , bT such that b =

∑T
i=1 bi. For a bitstring s, the T -encoding is T bitstrings over GF (2)|s| that

XOR to s. As in other parts of the paper we use 〈b〉 to indicate that b is T -encoded.
• ⊕T : XOR operation of T -encoded values. For two T -encoded inputs 〈a〉 and 〈b〉, we define 〈c〉 =
〈a〉⊕T 〈b〉 as ci = ai⊕bi for i = 1, . . . , T ; for one T -encoded input XOR’d by a non-encoded constant
b, we define 〈c〉 = 〈a〉 ⊕T b as c1 = a1 ⊕ b and ci = ai for i = 2, . . . , T .

• SMul: AND operation of two T -encoded values. We use Algorithm 11. For example, with 2-encoded
inputs 〈a〉 and 〈b〉, this algorithm outputs 〈c〉 = SMul(〈a〉, 〈b〉) as

c1 = a1b1 + r

c2 = a2b2 + a1b2 + r + a2b1

where r is a fresh random bit. Note that c = c1 + c2 = (a1 + a0)(b1 + b0) = ab.
• Additional functions: Two additional helper functions from the literature are described in Ap-

pendix C. These are for refreshing the randomness of a T -encoded value and decoding (or unmask-
ing) a T -encoded value.

– matMulT : This is a generalization of the matMul matrix multiplication function in [Pic20, §6.4.4], mod-
ified to work on T -encoded input vectors. The matrix remains unshared. The input is a T -encoded
vector v of length n, a n × n matrix M , and the output is the length-n vector vM . If T = 2, we have
v = (v1, v2), the output is (v1M,v2M) = (matMul(v1,M),matMul(v2,M))

– tapes: an object representing the N random tapes, one per party. In case we need to be explicit about
individual per-party tapes, it is parsed as tapes = tape1|| . . . , ||tapeN . Each tape is expanded from a
seed masked version of SHAKE that produces T -encoded outputs, and we store the T -encoded outputs.
We also store a T -encoded representation of the the aux tape, the N -th party’s share.

– tapes to word(tapes, offset): Read one bit from each of the N tapes at the index offset, and output an
N -bit word. When the tapes are T -encoded, the output word is also T -encoded.

– tapes to parityT (n, tapes, offset): Reads n bits from each tape at the index offset, the strings s1, . . . , sN ,
returns a T -encoding of of

⊕N
i=1 si. Our implementation computes and stores a T -encoding of the parity

tape (i.e., the XOR of all N tapes) and uses this to implement the tapes to parity function.

B.1 Specification of Fully Masked Picnic3

Algorithm 4 specifies the masked Picnic3 signing operations without the half-masked hashing optimizations
that we described in Section 5.2. The notation is as defined elsewhere in the paper, and in the appendix on
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Protocol KKW

Inputs Both prover and verifier receive circuit C as a statement. The prover also holds a witness w = (w)w∈IN such that C(w) = 1.
Values M , N , τ are parameters of the protocol.

Commit 1. For each k ∈ [M ], the prover:

(a) Choose a uniform seed(k) and use to generate values {seed(k)
i }i∈[N ]. Also the prover computes aux(k) ∈ F|C| by running

the offline phase of MPC Πoff
C on input {seed(k)

i }i∈[N ]. For all i = 1, . . . N − 1, let state(k)
i = seed(k)

i and let state(k)
N =

seed(k)
N ||aux(k).

(b) Commit to the offline phase:

com(k)
i = H(state(k)

i ) for all i ∈ [N ]

com off(k) = H(com(k)
1 , . . . , com(k)

N ).

(c) Compute the masked witness ŵ(k) = λw1 + . . .+λwN +w for each w ∈ IN, where each λwi corresponds to party Pi’s random
share to mask the witness, and is read out from state(k)

i .
(d) Simulate the online phase of the N -party protocol by running the offline phase of MPC Πon

C on input (ŵ(k))w∈IN and
{state(k)

i }i∈[N ], to produce {msgs(k)
i }i∈[N ].

(e) Commit to the online phase:
com on(k) = H({ŵ(k)}w∈IN,msgs(k)

1 , . . . ,msgs(k)
N ).

2. Compute hoff = H(com off(1), . . . , com off(M)) and hon = H(com on(1), . . . , com on(M)) and send h∗ = H(hoff , hon) to the
verifier.

Challenge The prover receives the following challenges from the verifier: a uniform τ -sized set C ⊂ [M ] and P = {ik}k∈C where each
ik ∈ [N ] is uniform.

Response For each k ∈ [M ]\C, the prover sends seed(k) and com on(k) for all to the verifier. For each k ∈ C, the prover sends com(k)
ik

,
{state(k)

i }i 6=ik , {ŵ(k)}w∈IN and msgs(k)
ik

to the verifier.
Verification The verifier accepts if and only if all the following checks succeed:

1. Check the offline phase:
(a) For every k ∈ C and i 6= ik, the verifier uses state(k)

i to compute com(k)
i as the prover would. Then produce com off(k) =

H(com(k)
1 , . . . , com(k)

N ) using the received value com(k)
ik

.

(b) For every k ∈ [M ] \ C the verifier uses seed(k) to compute com off(k) as the prover would.
(c) Finally, the verifier computes hoff = H(com off(1), . . . , com off(M))

2. Check the online phase:
(a) For k ∈ C the verifier simulates the online phase using {state(k)

i }i 6=ik , masked witness (ŵ(k))w∈IN and msgs(k)
ik

to compute
{msgsi}i 6=ik . Then compute com on(k) as if the prover would do.

(b) The verifier computes hon = H(com on(1), . . . , com on(M)) using the received com on(k) for k ∈ [M ] \ C.

3. The verifier checks that H(hoff , hon) ?= h∗.

Fig. 6. 3-round KKW proof system for an arithmetic circuit C defined over F.
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Msg sk

KDF

gen seed

seed∗

gen seed

iSeed(1) iSeed(2) . . . iSeed(M) RefreshM

KDF KDF . . . KDF

seed1 seed2 seedN

masked offline

tapes1 tapes2 tapesN

⊕λsk sk

masked online
ŝk

tapes1 tapes2 tapesN

HH H

msgs1 msgs2 . . . msgsN

com oncom1 comN

aux

Fig. 7. Summary of our masking protections and hashing optimizations from Section 5.2. The figure is fully expanded
for one of the M MPC instances, and shows the signer’s operations for the commit phase of the protocol (i.e., before
the challenge is computed). Hash functions in green are half-masked hash with sensitive inputs, hash functions
in purple are half-masked with sensitive outputs, functions in orange are NI/SNI-secure gadgets, and the white
functions are unprotected. The secret key (witness) is denoted sk and Msg is the message to be signed. In the figure,
we omit hashing of (com1, . . . , comN ) into com off, since the inputs are public values that can be reconstructed from
the signature, and therefore the hash computation is unmasked regardless of our optimization.
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LowMC (Appendix E). All functions marked in orange modify T -encoded values during the computation.
The Unmask function takes a T -encoded value and returns the non-encoded value, by summing the shares
after refresh (see Algorithm 13). We verified that Algorithm 4 is indeed NI secure with maskVerif for up
to second order (implying it is also NIo for any public outputs).

B.2 Simulation of the Offline Phase

Algorithms 5 to 7 describe the protected preprocessing phase. The description is very similar to the pre-
processing phase in the specification [Pic20, Section 7.4], however, the data types and helper functions are
different. Primarily, all variables are T -encoded. Algorithm 6 describes our masked version of the LowMC
S-box used for preprocessing (called by Algorithm 5), which in turn calls Algorithm 7 the AND operation for
the preprocessing phase. Also, our presentation assumes that Algorithm 5 is used for signature generation
only, since verification can use an unprotected implementation.

B.3 Simulation of the Online Phase

We now describe how the online phase of the MPC simulation is masked. Algorithm 8 is the MPC simulation
for the online phase, implementing the LowMC circuit. For each AND gate, each party i broadcasts a bit and
these are output to msgsi, these are also T -encoded. In Algorithm 9 we describe the S-box implementation
used in Algorithm 8. Finally we have Algorithm 10 that describes the online simulation of an individual
AND gate. The broadcast values (written to msgsi) and output bit are also T -encoded. Recall that SMul is
implemented with the ISW multiplier (Algorithm 11).

Note that we need to refresh T -encoded st before each invocation of masked sboxonline (line 6 of Algo-
rithm 8). On one hand, since every round of LowMC involves a linear transformation of st (line 1 and 7),
every bit of st depends on all n bits of the previous st, which corresponds to a problematic composition pat-
tern mentioned in [BBD+15b, Diagram 1]. On the other hand, all the other gadgets are in fact characterized
as an affine gadget, which can be security composed in an arbitrary fashion. Hence, inserting RefreshM as
we do is necessary and sufficient for the entire construction to be provably NIo secure.

Storage of secret keys. We assume that the Picnic secret key (a bitstring of length n), is stored in
a T -encoded representation. Picnic key pair generation may be modified to generate T -encoded secret
keys, or an implementation may use regular key generation in a trusted environment (e.g., during device
manufacture), and then encode the secret key. As this is not important for performance, our implementation
takes the regular key and T -encodes it at the beginning of signing. Then the input to MPC simulation is the
T -encoded value 〈ŝk〉 = 〈λsk〉⊕T 〈sk〉, where 〈λsk〉 is the T -encoded random masks output by preprocessing.
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Algorithm 4 masked Sign
Input: Msg, pk and 〈sk〉 for each input wire w to the circuit.
Output: (h, salt, Z)
1: Sample random R ∈ {0, 1}2κ

2: (〈seed∗〉, 〈salt〉)← KDF( 〈sk〉,Msg, pk, λ, R ) and salt ← Unmask(〈salt〉)
3: 〈iSeed tree〉 ← gen seed( 〈seed∗〉, salt,M, 0 )
4: (〈iSeed(1)〉, . . . , 〈iSeed(M)〉)← get leaves(〈iSeed tree〉)
5: for each k ∈ [M ]:
6: 〈seed tree(k)〉 ← gen seed( 〈iSeed(k)〉, salt, N, k )
7: (〈seed(k)

1 〉, . . . , 〈seed(k)
N 〉)← get leaves(〈seed tree(k)〉)

8: for each i ∈ [N ]:
9: 〈tape(k)

i 〉 ← KDF( 〈seed(k)
i 〉, salt, k, i )

10: 〈λsk〉 ← masked offline( 〈tape(k)
1 〉|| . . . ||〈tape(k)

N 〉, pk ) (see Algorithm 5)
11: 〈aux(k)〉 ← get aux(〈tape(k)

N 〉)
12: for each i ∈ [N ]:
13: if i 6= N then
14: 〈com(k)

i 〉 ← H( 〈seed(k)
i 〉, salt, k, i )

15: else
16: 〈com(k)

i 〉 ← H( 〈seed(k)
i 〉, 〈aux(k)〉, salt, k, i )

17: com(k)
i ← Unmask(〈com(k)

i 〉)
18: com off(k) ← H(com(k)

1 , . . . , com(k)
N )

19: 〈sk〉 ← RefreshM( 〈sk〉 )
20: 〈ŝk(k)〉 ← 〈sk〉 ⊕T 〈λsk〉
21: (〈msgs(k)

1 〉, . . . , 〈msgs(k)
N 〉)← masked online( 〈ŝk(k)〉, 〈tape(k)

1 〉|| . . . ||〈tape(k)
N,j〉, pk ) (see Algorithm 8)

22: 〈com on(k)〉 ← H( 〈ŝk(k)〉, 〈msgs(k)
1 〉, . . . , 〈msgs(k)

N 〉 )
23: com on(k) ← Unmask(〈com on(k)〉)
24: com on tree← build tree(com on(1), . . . , com on(M))
25: h← H(com off(1), . . . , com off(M), com on tree.root, salt, pk,Msg)
26: Parse h as (C,P) where C ⊂ [M ] and P = {ik }k∈C , ik ∈ [N ]
27: com on info← open tree(com on tree,M, C)
28: 〈iSeed info〉 ← reveal seed(〈iSeed tree〉,M, C)
29: iSeed info← Unmask(〈iSeed info〉)
30: for each k ∈ C :
31: 〈seed info(k)〉 ← reveal seed(〈seed tree(k)〉, N, ik)
32: seed info(k) ← Unmask(〈seed info(k)〉); ŝk(k) ← Unmask(〈ŝk(k)〉); msgs(k)

ik
← Unmask(〈msgs(k)

ik
〉)

33: if ik = N then aux(k) ← ⊥; otherwise aux(k) ← Unmask(〈aux(k)〉)
34: let Z = (com on info, iSeed info, (seed info(k), aux(k), ŝk(k)

, com(k)
ik
,msgs(k)

ik
)k∈C).

35: output (h, salt, Z) as a signature
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Algorithm 5 masked offline (corresponds to compute_aux in Section 7.4 of [Pic20])
Input: The tapes 〈tapes〉. The signer’s public key pk = (c, p).
Output: The n-bit key mask 〈λsk〉. The 〈tapes〉 is updated inside masked sboxaux.
1: 〈roundkey0〉 ← tapes to parityT (n, 〈tapes〉, 0)
2: 〈λsk〉 ← matMulT (〈roundkey0〉,K

−1
0 )

3: 〈st in〉 ← 〈0n〉
4: for each LowMC round i from r down to 1
5: 〈roundkeyi〉 ← matMulT (〈λsk〉,Ki)
6: 〈st out〉 ← 〈st in〉 ⊕T 〈roundkeyi〉
7: 〈st out〉 ← matMulT (〈st out〉, L−1

i )
8: if i = 1 then
9: 〈st in〉 ← 〈roundkey0〉

10: else
11: 〈st in〉 ← tapes to parityT (n, 〈tapes〉, 2n(i− 1))
12: offset← 2n(i− 1) + n

13: masked sboxaux(〈st in〉, 〈st out〉, 〈tapes〉, offset) (see Algorithm 6)
14: return 〈λsk〉

Algorithm 6 masked sboxaux (corresponds to aux_sbox in Section 7.4.1 of [Pic20])
Input: The input and output states 〈st in〉 and 〈st out〉. The tapes 〈tapes〉. The tape offset offset.
Output: tapes is updated with the auxiliary bits..
1: for each i from 0 to 3s, in steps of 3
2: 〈λa〉 ← 〈st in[i+ 2]〉 // T bits of st in at position i+ 2, i.e., 〈λa〉 = (st in1[i+ 2], . . . , st inT [i+ 2])
3: 〈λb〉 ← 〈st in[i+ 1]〉
4: 〈λc〉 ← 〈st in[i]〉
5: 〈λd〉 ← 〈st out[i+ 2]〉
6: 〈λe〉 ← 〈st out[i+ 1]〉
7: 〈λf 〉 ← 〈st out[i]〉
8: 〈λzbc〉 ← 〈λd〉 ⊕T 〈λa〉
9: 〈λzca〉 ← 〈λe〉 ⊕T 〈λa〉 ⊕T 〈λb〉

10: 〈λzab〉 ← 〈λf 〉 ⊕T 〈λa〉 ⊕T 〈λb〉 ⊕T 〈λc〉
11: masked ANDaux(〈λb〉, 〈λc〉, 〈λzbc〉, 〈tapes〉, offset + i+ 2)
12: masked ANDaux(〈λc〉, 〈λa〉, 〈λzca〉, 〈tapes〉, offset + i+ 1)
13: masked ANDaux(〈λa〉, 〈λb〉, 〈λzab〉, 〈tapes〉, offset + i) (see Algorithm 7)

Algorithm 7 masked ANDaux (corresponds to aux_AND in [Pic20, §7.4.2])
Input: The input mask bits 〈λx〉 and 〈λy〉. The fresh output mask bit 〈λz〉. The tapes 〈tapes〉. The tape offset offset.
Output: The function updates 〈tapeN 〉.
1: 〈and helper′〉 ← tapes to parityT (1, 〈tape1〉|| . . . ||〈tapeN−1〉, offset)
2: 〈λxy〉 ← SMul(〈λx〉, 〈λy〉)
3: 〈aux bit〉 ← 〈λxy〉 ⊕T 〈and helper′〉 ⊕T 〈λz〉
4: 〈tapeN [offset]〉 ← 〈aux bit〉 // Ensuring λxy ⊕T λz = tape1[offset]⊕T . . .⊕T tapeN [offset]
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Algorithm 8 masked online (corresponds to mpc_simulate in Section 7.5 of [Pic20])
Input: The masked input 〈ŝk〉. The tapes 〈tapes〉. The signer’s public key pk = (c, p).
Output: The broadcast messages 〈msgs1〉, . . . , 〈msgsN 〉
1: 〈roundkey0〉 ← matMulT (〈ŝk〉,K0)
2: 〈st〉 ← 〈roundkey0〉 ⊕T p
3: 〈st〉 ← RefreshM(〈st〉)
4: Initialize empty arrays 〈msgs1〉, . . . , 〈msgsN 〉
5: for each LowMC round i from 1 to r
6: masked sboxonline(〈st〉, 〈tapes〉, 〈msgs1〉, . . . , 〈msgsN 〉, 2n(i− 1)) (see Algorithm 9)
7: 〈st〉 ← matMulT (〈st〉, Li)
8: 〈st〉 ← 〈st〉 ⊕T Ri
9: 〈roundkeyi〉 ← matMulT (〈ŝk〉,Ki)

10: 〈st〉 ← 〈st〉 ⊕T 〈roundkeyi〉
11: 〈st〉 ← RefreshM(〈st〉)
12: Compare st = Unmask(〈st〉) and c component of pk. If they differ, fail.
13: return (〈msgs1〉, . . . , 〈msgsN 〉)

Algorithm 9 masked sboxonline (corresponds to mpc_sbox3 in Section 7.5.1 of [Pic20])
Input: A T -encoding of n-bit LowMC state 〈st〉. The tapes 〈tapes〉. The broadcast message holder 〈msgs1〉, . . . , 〈msgsN 〉. The tape offset offset.
Output: 〈msgsi〉 is updated with the broadcast messages of party i
1: for each i from 0 to 3s, in steps of 3
2: 〈â〉 ← 〈st[i+ 2]〉
3: 〈b̂〉 ← 〈st[i+ 1]〉
4: 〈ĉ〉 ← 〈st[i]〉
5: (〈λa1〉, . . . , 〈λaN 〉)← tapes to word(〈tapes〉, offset + i+ 2)
6: (〈λb1〉, . . . , 〈λbN 〉)← tapes to word(〈tapes〉, offset + i+ 1)
7: (〈λc1〉, . . . , 〈λcN 〉)← tapes to word(〈tapes〉, offset + i)
8: 〈b̂c〉 ← masked ANDonline(〈b̂〉, 〈ĉ〉, (〈λbi 〉, 〈λci 〉, 〈tapei〉, 〈msgsi〉)i∈[N ], offset + n+ i+ 2)
9: 〈ĉa〉 ← masked ANDonline(〈ĉ〉, 〈â〉, (〈λci 〉, 〈λai 〉, 〈tapei〉, 〈msgsi〉)i∈[N ], offset + n+ i+ 1)

10: 〈âb〉 ← masked ANDonline(〈â〉, 〈b̂〉, (〈λai 〉, 〈λbi 〉, 〈tapei〉, 〈msgsi〉)i∈[N ], offset + n+ i)
11: 〈st[i+ 2]〉 ← 〈â〉 ⊕T 〈b̂c〉
12: 〈st[i+ 1]〉 ← 〈â〉 ⊕T 〈b̂〉 ⊕T 〈ĉa〉
13: 〈st[i]〉 ← 〈â〉 ⊕T 〈b̂〉 ⊕T 〈ĉ〉 ⊕T 〈âb〉

Algorithm 10 masked ANDonline (corresponds to mpc_and3 in Section 7.5.2 of [Pic20])
Input: A T -encoding of two masked input bits 〈x̂〉 and 〈ŷ〉. The masking bits words (〈λx1〉, . . . , 〈λxN 〉) and (〈λy1〉, . . . , 〈λ

y
N 〉). The tapes 〈tapes〉.

The message holder 〈msgs1〉, . . . , 〈msgsN 〉. The tape offset offset.
Output: Masked AND output 〈x̂y〉 . The function updates msgs.

// and helperi contains party i’s share of λxy ⊕T λz
1: (〈and helper1〉, . . . , 〈and helperN 〉)← tapes to word(〈tapes〉, offset)
2: for each i ∈ [N ]
3: 〈ai〉 ← SMul(〈x̂〉, 〈λyi 〉)
4: 〈bi〉 ← SMul(〈ŷ〉, 〈λxi 〉)
5: 〈si〉 ← 〈ai〉 ⊕T 〈bi〉 ⊕T 〈and helperi〉
6: Append 〈si〉 to 〈msgsi〉
7: 〈c〉 ← SMul(〈x̂〉, 〈ŷ〉)
8: 〈s〉 ←

∑
i∈[N ]〈si〉

9: 〈x̂y〉 ← 〈c〉 ⊕T 〈s〉
10: return 〈x̂y〉
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C Additional Gadgets

Algorithm 11 SMul [ISW03, Theorem 1]
Require: The encodings (x1, . . . , xT ) and (y1, . . . , yT ).
Output: The encoding of xy as (z1, . . . , zT ).
1: for 1 ≤ i ≤ T
2: zi ← xiyi

3: for 1 ≤ i ≤ T
4: for i < j ≤ T
5: ri,j ← rand() // Not from the random tapes
6: zi ← zi + ri,j // Denoted by zi,j
7: rj,i ← (xiyj − ri,j) + xjyi
8: zj ← zj + rj,i // Denoted by zj,i
9: return (z1, . . . , zT )

Algorithm 12 RefreshM [BBD+16]
Require: The encoding (x1, . . . , xT ).
Output: The encoding (y1, . . . , yT ) such that y1 + . . .+ yT = x1 + . . .+ xT
1: for 1 ≤ i ≤ T
2: yi ← xi

3: for 1 ≤ i ≤ T
4: for i < j ≤ T
5: ri,j ← rand() // Not from the random tapes
6: yi ← yi + ri,j
7: yj ← yj − ri,j
8: return (y1, . . . , yT )

Algorithm 13 Unmask [BBE+19]
Require: The encoding (x1, . . . , xT ).
Output: The shared value x such that x = x1 + . . .+ xT
1: (x′1, . . . , x′T )← RefreshM(x1, . . . , xT )
2: x← x′1
3: for 2 ≤ i ≤ T
4: x← x+ xi
5: return x
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D Specification of Unprotected Picnic3

For completeness, we include the full specifications of Picnic3 signing adapted from [Pic20]. The notation is
as defined elsewhere in the paper, and in the appendix on LowMC (Appendix E).

Algorithm 14 Sign
Input: Msg, pk and sk for each input wire w to the circuit.
Output: (h, salt, Z)
1: Sample random R ∈ {0, 1}2κ // derive root and initial seeds
2: (seed∗, salt)← KDF(sk,Msg, pk, λ, R)
3: iSeed tree← gen seed(seed∗, salt,M, 0)
4: (iSeed(1), . . . , iSeed(M))← get leaves(iSeed tree)
5: for each k ∈ [M ]:
6: seed tree(k) ← gen seed(iSeed(k), salt, N, k) // Derive random tapes from the initial seed
7: (seed(k)

1 , . . . , seed(k)
N )← get leaves(seed tree(k))

8: for each i ∈ [N ]:
9: tape(k)

i ← KDF(seed(k)
i , salt, k, i)

10: λsk ← offline(tape(k)
1 || . . . ||tape(k)

N , pk) (see Algorithm 15)
11: aux(k) ← get aux(tape(k)

N )
12: for each i ∈ [N ]:
13: if i 6= N then
14: com(k)

i ← H(seed(k)
i , salt, k, i)

15: else
16: com(k)

i ← H(seed(k)
i , aux(k), salt, k, i)

17: com off(k) ← H(com(k)
1 , . . . , com(k)

N ) // Commit to preprocessing phase
18: ŝk(k) ← sk ⊕ λsk// Mask input bits
19: msgs(k)

1 , . . . ,msgs(k)
N ← online(ŝk(k)

, tape(k)
1 || . . . ||tape(k)

N , pk) (see Algorithm 18)
20: com on(k) ← H(ŝk(k)

,msgs(k)
1 , . . . ,msgs(k)

N ) // Commit to MPC online phase
21: com on tree← build tree(com on(1), . . . , com on(M))
22: h← H(com off(1), . . . , com off(M), com on tree.root, salt, pk,Msg)
23: Parse h as (C,P) where C ⊂ [M ] and P = {ik }k∈C , ik ∈ [N ]
24: com on info← open tree(com on tree,M, C) // Include only com on(k) for k /∈ C
25: iSeed info← reveal seed(iSeed tree,M, C) // Include only iSeed(k) for k /∈ C
26: for each k ∈ C : // Reveal online phases selected by challenge
27: seed info(k) ← reveal seed(seed tree(k), N, ik) // Include only seed(k)

i for i 6= ik
28: if ik = N then aux(k) ← ⊥
29: let Z = (com on info, iSeed info, (seed info(k), aux(k), ŝk(k)

, com(k)
ik
,msgs(k)

ik
)k∈C).

30: output (h, salt, Z) as a signature
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Algorithm 15 offline
Input: The tapes (tapes). The signer’s public key pk = (c, p).
Output: The n-bit key mask λsk . The tapes is updated inside sboxaux.
1: roundkey0 ← tapes to parity(n, tapes, 0)
2: λsk ← matMul(roundkey0,K

−1
0 )

3: st in← 0n
4: for each LowMC round i from r down to 1
5: roundkeyi ← matMul(λsk ,Ki)
6: st out← st in⊕ roundkeyi
7: st out← matMul(st out, L−1

i )
8: if i = 1 then
9: st in← roundkey0

10: else
11: st in← tapes to parity(n, tapes, 2n(i− 1))
12: offset← 2n(i− 1) + n

13: sboxaux(st in, st out, tapes, offset) (see Algorithm 16)
14: return λsk

Algorithm 16 sboxaux
Input: The input and output states st in and st out. The tapes tapes. The tape offset offset.
Output: tapes is updated with the auxiliary bits.
1: for each i from 0 to 3s, in steps of 3
2: λa ← st in[i+ 2]
3: λb ← st in[i+ 1]
4: λc ← st in[i]
5: λd ← st out[i+ 2]
6: λe ← st out[i+ 1]
7: λf ← st out[i]
8: λzbc ← λd ⊕ λa
9: λzca ← λe ⊕ λa ⊕ λb

10: λzab ← λf ⊕ λa ⊕ λb ⊕ λc
11: ANDaux(λb, λc, λzbc , tape1, . . . , tapeN , offset + i+ 2)
12: ANDaux(λc, λa, λzca , tape1, . . . , tapeN , offset + i+ 1)
13: ANDaux(λa, λb, λzab , tape1, . . . , tapeN , offset + i) (see Algorithm 17)

Algorithm 17 ANDaux
Input: The input mask bits λx and λy. The fresh output mask bit λz. The tapes tapes. The tape offset offset.
Output: The function updates tapeN .
1: and helper′ ← tapes to parity(1, tape1|| . . . ||tapeN−1, offset)
2: λxy ← λx ∧ λy
3: aux bit← λxy ⊕ and helper′ ⊕ λz
4: tapeN [offset]← aux bit // Ensuring λxy ⊕ λz = tape1[offset]⊕ . . .⊕ tapeN [offset]
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Algorithm 18 online
Input: The masked input ŝk. The tapes tapes. The signer’s public key pk = (c, p).
Output: The broadcast messages msgs1, . . . ,msgsN
1: roundkey0 ← matMul(ŝk,K0)
2: st← roundkey0 ⊕ p
3: Initialize empty arrays msgs1, . . . ,msgsN
4: for each LowMC round i from 1 to r
5: sboxonline(st, tapes,msgs1, . . . ,msgsN , 2n(i− 1)) (see Algorithm 19)
6: st← matMul(st, Li)
7: st← st⊕Ri
8: roundkeyi ← matMul(ŝk,Ki)
9: st← st⊕ roundkeyi

10: Compare st and c component of pk. If they differ, fail.
11: return msgs1, . . . ,msgsN

Algorithm 19 sboxonline
Input: The masked state st. The tapes tapes. The message holder msgs1, . . . ,msgsN . The tape offset offset.
Output: The function updates msgs.
1: for each i from 0 to 3s, in steps of 3
2: â← st[i+ 2]
3: b̂← st[i+ 1]
4: ĉ← st[i]
5: (λa1 , . . . , λaN )← tapes to word(tapes, offset + i+ 2)
6: (λb1, . . . , λbN )← tapes to word(tapes, offset + i+ 1)
7: (λc1, . . . , λcN )← tapes to word(tapes, offset + i)
8: b̂c← ANDonline(b̂, ĉ, (λbi , λci , tapei,msgsi)i∈[N ], offset + n+ i+ 2)
9: ĉa← ANDonline(ĉ, â, (λci , λai , tapei,msgsi)i∈[N ], offset + n+ i+ 1)

10: âb← ANDonline(â, b̂, (λai , λbi , tapei,msgsi)i∈[N ], offset + n+ i)
11: st[i+ 2]← â⊕ b̂c
12: st[i+ 1]← â⊕ b̂⊕ ĉa
13: st[i]← â⊕ b̂⊕ ĉ⊕ âb

Algorithm 20 ANDonline
Input: The masked input bits x̂ and ŷ. The masking bits words (λx1 , . . . , λxN ) and (λy1 , . . . , λ

y
N ). The tapes tapes. The message holder

msgs1, . . . ,msgsN . The tape offset offset.
Output: Masked AND output x̂y . The function updates msgs.

// and helperi contains party i’s share of λxy ⊕ λz
1: (and helper1, . . . , and helperN )← tapes to word(tapes, offset)
2: for each i ∈ [N ]
3: si ← (x̂ ∧ λyi )⊕ (ŷ ∧ λxi )⊕ and helperi
4: Append si to msgsi.
5: x̂y ← parity(s1, . . . , sN )⊕ (x̂ ∧ ŷ)
6: return x̂y

E LowMC

LowMC [ARS+15] is a parameterizable block cipher designed to have a small number of AND gates (low
multiplicative complexity). In this work we assume the LowMC instances are those from the Picnic3 design;
however, our analysis and countermeasures generalize easily to other choices of LowMC paramters.

Let n be the block size and key size, s be the number of S-boxes, and r the number of rounds. For each
LowMC instance, the spec defines random and independent
– round constants Ri ∈ Fn2 ,
– linear layer matrices Li ∈ Fn×n2 (of full rank), and
– key matrices Ki ∈ Fn×n2 for the computation of round keys.
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There are r round and linear layer constants Ri, Li, and r+ 1 key matrices Ki. The matrices are invertible,
and the Picnic3 implementation uses the inverses K0

−1 and Li
−1. LowMC keys are sampled uniformly at

random from Fn2 .
LowMC encryption starts by adding the first round key to the plaintext, which is followed by r rounds.

Each round key is generated by multiplying the key with the key matrix Ki. A single round of LowMC is
composed of an S-box layer, a linear layer, addition with constants, and addition of the round key as shown
in Algorithm 21. The S-box layer applies the same 3-bit S-box on the first 3 · s bits of the state. The S-box
is defined as S(a, b, c) = (a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab). The other layers only consist of F2-vector space
arithmetic, all local operations in our MPC setting.

Algorithm 21 LowMC encryption. Parameters Ki, Li and Ri are as described in the text.
Require: plaintext p ∈ Fn2 and key k ∈ Fn2

st← K0 · k ⊕ p
for i ∈ [1, r]

st← SboxLayer(st)
st← Li · st // LinearLayer
st← Ri ⊕ st // ConstantAddition
st← Ki · k ⊕ st // KeyAddition

return st

F Additional Preliminaries on Security Notions for Masking Countermeasures

In the following, we fix some finite field (F, 0, 1,+,−, ·).7 As explained above, we are working in the t-
probing model which allows an attacker to obtain the value of t variables per run of the primitive. The most
common technique to mitigate side-channel attacks is by encoding sensitive variables via an additive (or
polynomial-based) secret sharing into T > t parts. We say that a vector (vj)j∈[T ] ∈ FT is a T -encoding of
v :=

∑
j∈[T ] vj . For readability, we often write 〈v〉 instead of (vj)j∈[T ]. For a subset I ⊆ [T ], let 〈x〉I = (xi)i∈I

and furthermore I = [T ]\I. Variables are shared both to protect against side-channel attacks and as part of
the MPC protocol. To distinguish between these situations, we call a sharing between parties in the MPC
protocol a sharing and an encoding when the goal is to protect against side-channel attacks.

Without loss of generality, we only give the security definitions for circuits that receive a single encoded
input 〈x〉 and produce a single encoded output 〈y〉. In the following, we use the terms circuit and gadget
interchangeably. Consider a (possibly randomized) gadget G, which on input x produces a value y according
to some probability distribution Gx. To ensure that the computation of G does not leak any information,
we modify it into a gadget G′ that takes 〈x〉 as input and outputs 〈y〉 with Pr[G′〈x〉 = 〈y〉] = Pr[Gx = y].
Informally, we want to argue that the t probes made by an attacker do not reveal any information about the
sensitive input x. Assume that the attacker probes the values 〈v(1)〉I1 , 〈v(2)〉I2 , . . . 〈v(k)〉Ik

with
∑k
j=1 |Ij | ≤ t.

If 〈x〉 is a sufficiently random encoding (e. g. uniformly sampled) of x, then 〈x〉I does not reveal any
information about x for all I ( [T ]. Now, if there exists a set I ( [T ] such that all 〈v(j)〉Ij can be simulated
from 〈x〉I , this implies that the 〈v(j)

Ij
〉 do not contain any information about x.

To formalize this intuition, we consider a distribution ensemble {D〈x〉}〈x〉∈FT . This ensemble is a prob-
ability distribution on v ∈ Ft, capturing the probed variables of the attacker. We say that {D〈x〉}〈x〉 is
perfectly simulatable from the indices I ⊆ [T ], if there is a probabilistic algorithm S that, on input 〈x〉I ,
has output distribution exactly D〈x〉, i.e., Pr[S(〈x〉I) = v] = Pr[D〈x〉 = v] for every 〈x〉.

Example 1. The simplest example for this notion of simulatability concerns projections. For example, if
the ensemble {D〈x〉}〈x〉∈F2 is defined on the value y = x1, it can easily be simulated from I = {1}, as the
knowledge of x1 is sufficient to simulate y.
7 While ISW-style masking countermeasures are known to work in a ring setting, we focus on a field case since

previous KKW-style protocols [KKW18,dDOS19,BN20,KZ20] are defined for circuits over a field.
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Example 2. Consider the following distribution {D〈x〉}〈x〉∈F2 on the triple of values (y1, y2, t) with t = x1+r,
y1 = t · x2 = (x1 + r) · x2, and y2 = x2. Here, r is uniformly sampled from F, independent from 〈x〉. This
distribution ensemble is perfectly simulatable from I = {2}: The value of t can simply be simulated by
sampling a random element from F without any knowledge on x1. Now, both y2 and y1 can be simulated
by using the knowledge about x2 and the already simulated value t.

F.1 Non-interference, Strong Non-interference, and Public Outputs

The most basic security notion for a masking countermeasure is the t-privacy of a gadget G [ISW03].
Informally, this means that the information provided by t probes of outputs or intermediate variables can
also be obtained by probing t input variables, as long as the inputs are an encoding of x. While the idea
behind the notion is relatively simple, it is unfortunately not composable as the output of a t-private gadget
is not necessarily a truly uniform encoding. The composition of two t-private gadgets is thus not necessarily
t-private. In order to remove the requirement that the inputs have a certain distribution, the notion of
non-interference was introduced [BBD+15a].

Non-interference gets rid of the dependency of the uniformly encoded inputs, but a more subtle issue
still prevents a composability result. To give an intuitive overview of this problem, consider a gadget G
with two sensitive inputs 〈x〉 and 〈x′〉 and sensitive output 〈y〉. Non-interference now implies that for any
Iy ( [T ], the values 〈y〉Iy

can be simulated from 〈x〉Ix
and from 〈x′〉Ix′ for two sets Ix, Ix′ of cardinality

at most |Iy|. Now, if G is used in another circuit, it might be the case that x and x′ are correlated (or
even identical). Then 〈x〉Ix∪Ix′ might reveal information about x. See e.g., [BBD+16] for a more detailed
explanation. Hence, an even stronger notion, called strong non-interference was introduced [BBD+16], that
guarantees a clear separation between input variables and output variables.
Definition 2 (t-NI, t-SNI). Let G be a gadget with inputs in FT and t < T . Suppose that for any set of
t1 intermediate variables and any subset of O of output indices with t1 + |O| ≤ t, there exists a subset of
indices I such that the output distribution of the t1 intermediate variables and the output variables y|O is
perfectly simulatable from I. Then
(i) if |I| ≤ t1 + |O| we say G is t-non-interfering (t-NI), and

(ii) if |I| ≤ t1 we say G is t-strong-non-interfering (t-SNI).

Note that linear operations which can be performed share-wise (such as addition or multiplication by a
constant) are trivially t-NI, as each computation on share i can be simulated from the input share xi.

Note that in SNI the size of the input set I depends only on the intermediate variables. For a given
set Int of t1 intermediate variables and a subset O of output indices with t1 + |O| ≤ t, we say that the
output variables O′ ⊆ O that are simulatable without any knowledge about I are (Int, O, t)-input-ignorant.
Hence, if no intermediate variable was probed, the output of the circuit is independent of its input (from
observing at at most t positions) and thus all subsets of at most t outputs are input-ignorant. We will
occasionally talk about the concrete distribution of these input-ignorant variables. If all (Int, O, t)-input-
ignorant output variables of a t-SNI gadget G are distributed according to a distribution D, we say that G
is t-strong-non-interfering (t-SNI) with output-distribution D.

Finally, the SNI notion guarantees that the composition of two t-SNI gadgets is t-SNI again. In Ap-
pendix C we recall two t-SNI-secure gadgets SMul and RefreshM that we use as building blocks of our masked
KKW proof system. For the sake of completeness, we repeat the corresponding proposition from [BBD+16].
Lemma 3 (Proposition 4 [BBD+16]). Let C be a circuit built from gadgets G1, . . . , Gr such that all
Gi are t-NI, all encodings are used at most once as input of a gadget call other than RefreshM. Then C is
t-NI. Moreover, C is t-SNI if it is t-NI and all encodings corresponding to the outputs of C are refreshed
through RefreshM before output.

The commonly used term probing-security can either mean privacy [BBC+19] or non-interference [CGPZ16].
Classically, the non-interference notions only deal with gadgets where all of the inputs and outputs are sen-
sitive. To also handle public, non-sensitive values, the notion of NI with public output (t-NIo) was proposed
in [BBE+18]. As mentioned in [BBE+18, Lemma 1], if a gadget G is t-NI secure it is also t-NIo secure for
any public outputs. Clearly, the same claim also holds for t-SNI and t-SNIo. While the KKW-protocol also
contains public variables, we are able to show the stronger guarantee of t-(S)NI.
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G Omitted Proofs

In this section we give formal security proofs for the SNI security of Algorithm 22 and 23.

Algorithm 22 Masked KKW MUL (offline)
Input: The masks of x: 〈λxi 〉 for i ∈ [N ],

The masks of y: 〈λyi 〉 for i ∈ [N ],
The auxiliary shares of xy: 〈λxyi 〉 for i ∈ [N − 1],

Output: The final auxiliary share of xy: 〈λxyN 〉
1: compute 〈λx〉 ←

∑
i∈[N ]〈λ

x
i 〉

2: compute 〈λy〉 ←
∑

i∈[N ]〈λ
y
i 〉

3: compute 〈λxy〉 ← SMul( 〈λx〉, 〈λy〉 )
4: compute 〈λxyN 〉 ← 〈λ

xy〉 −
∑

i∈[N−1]〈λ
xy
i 〉

5: return 〈λxyN 〉.

Algorithm 23 Masked KKW MUL (online)
Input: The input shares of x̂: 〈x̂〉

The masks of x: 〈λxi 〉 for i ∈ [N ],
The input shares of ŷ: 〈ŷ〉,
The masks of y: 〈λyi 〉 for i ∈ [N ],
The auxiliary shares of xy: 〈λxyi 〉 for i ∈ [N ],
The output masks of z: 〈λzi 〉 for i ∈ [N ],

Output: The output shares of ẑ: 〈ẑ〉
The output shares of si: 〈si〉 for i ∈ [N ]

1: for i ∈ [N ] // Players
2: 〈ai〉 ← SMul( 〈x̂〉, 〈λyi 〉 )
3: 〈bi〉 ← SMul( 〈ŷ〉, 〈λxi 〉 )
4: 〈si〉 ← 〈λzi 〉 − 〈λxyi 〉 − 〈ai〉 − 〈bi〉
5: 〈c〉 ← SMul( 〈x̂〉, 〈ŷ〉 )
6: 〈s〉 ←

∑
i∈[N ]〈si〉

7: 〈ẑ〉 ← 〈c〉+ 〈s〉
8: return 〈ẑ〉 and (〈si〉)i∈[N ]

G.1 Proof of Lemma 1

Proof. We thus need to show that for any set of t < T intermediate variables and any subset O ⊂ [ẑ1, . . . , ẑT ]
of output shares such that t+ |O| < T , for each input variable v, there is an input set Iv with |Iv| ≤ t such
that the t intermediate variables and the output variables 〈λxyN 〉O can be perfectly simulated from these
input sets.

Both the computation of 〈λx〉 and 〈λy〉 are straightforward and can be simply simulated, as they are
linear operations. Whenever one of the terms involved in the computation of 〈λxy〉 ← SMul( 〈λx〉, 〈λy〉 )
is probed, we add the corresponding values from the proof of the SNI-security (found e. g. in [BBD+16,
Proposition 2]) of SMul( ) to the input sets Iv. The result 〈λxy〉 can be simulated without any input as
SMul( ) is SNI. To simulate the output later on, we add all λxyi,j to the inputs Iv.

Finally, the computation of 〈λxyN 〉 is again linear.
For the output, suppose that λxyN,j was probed. There are two cases to consider: If λxyj was probed, the

inputs Iv already contains all λxyi,j and we can thus simulate λxyN,j perfectly. If λxyj was not probed, λxyj looks
like a uniformly random element from F that is not used anywhere else, as it is produced by a t-SNI gadget
with uniform output-distribution. We can thus uniformly sample a random element r ∈ F and replace λxyN,j
by r. This implies strong non-interference.

G.2 Proof of Lemma 2

Proof. We thus need to show that for any set of t < T intermediate variables and any subset O of output
shares such that t+ |O| < T , for each input variable v, there is an input set Iv with |Iv| ≤ t such that the t
intermediate variables and the output variables indexed by O can be perfectly simulated from these input
sets. To show this, we go through all variables of the algorithm and explain for all input variables v which
indices are added to Iv.

Whenever one of the terms involved in the SMul( )-computation for a term ai,j , bi,j , or cj is probed, we
add the corresponding values from the proof of the strong non-interference of SMul( ) to the input sets Iv.
Note that no inputs need to be added to Iv if ai,j , bi,j , or cj were probed, as they are the result of a t-SNI
gadget.

Whenever si,j or a sub-term of si,j is probed, we add the variables corresponding to ai,j , bi,j , λzi,j , and
λxyi,j to the input sets Iv. This clearly allows us to simulate all si?,j and all sub-terms perfectly.

Whenever a sum
∑i′

i=1 si,j (including sj itself) is probed, we distinguish two cases. If s1,j , s2,j , . . . , si′,j
were all probed, we can simply simulate the complete sum. Otherwise, there is a term si?,j with i? ∈
{1, . . . , i′} such that si?,j was not probed. As si?,j is the only place where ai,j is used, we make use of
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the fact that ai,j is constructed by an t-SNI gadget with uniform output-distribution. In other words, this
means that ai,j looks like a uniformly random element from F that is not used anywhere else. We can thus
uniformly sample a random element r ∈ F and replace the complete sum

∑i′

i=1 si,j by r. Note that in the
previous argument, we did not add anything to Iv.

Finally, whenever ẑj is probed, we simply simulate sj and cj . As cj is the result of a t-SNI gadget, we can
simulate it without needing to add anything to the input sets Iv. As shown in the discussion about sj , we can
also simulate it without needing to add anything to the input sets Iv. This implies strong non-interference.
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