
A New Approach to Garbled Circuits

Abstract. A garbling scheme is a fundamental cryptographic building
block with a long list of applications. The study of different techniques
for garbling a function, towards optimizing computation and communi-
cation complexity, has been an area of active research. Most common
garbling techniques work by representing each gate in the circuit as a set
of ciphertexts that encrypt its truth table row-by-row.
In this work we present a new garbling scheme in the random oracle (RO)
model that garbles circuits in the gate-by-gate paradigm by capturing
the gate functionality (AND,XOR) as a whole rather than as a set of
ciphertexts. Unlike previous garbling techniques, our garbling algorithm
does not follow the encryption scheme abstraction and the resulting func-
tion garbling can be compressed in a lossless manner up to 2κ bits for
a garbled gate. The final gate garbling requires 4 RO calls for garbling
and 1 RO call for evaluation. We prove that the scheme satisfies pri-
vacy in the non-programmable random oracle model and against PPT
adversaries. We also show how this scheme can be extended to support
free-XOR and garble any gate functionality over binary inputs.

1 Introduction

The theory and practice of garbling circuits has been the focus of a long line
of research, starting from the seminal work of [Yao86], and further optimized
in the works of [LP09,PSSW09,BHR12,ZRE15,HK20,RR21], to name a few.
Garbled circuits are a fundamental building block that represents a function
and a secret input in such a way that evaluating the garbled circuit on the
input representation reveals nothing beyond the function output. GCs have
a long list of applications like constant round secure two-party computation
(2PC) [LP09], constant round multiparty computation [BMR90,BLO16], zero-
knowledge proofs [FNO15,GKPS18], bootstrapping obfuscators [App13], func-
tional encryption [GKP+13], and verifiable computation [GGP10].

Owing to its wide range of applications, Bellare et al. presented an abstrac-
tion for garbling in [BHR12], viewing it as a fundamental building-block for use
in cryptographic protocols. This abstraction is termed as a garbling scheme and
is a framework defining four algorithms. A garbling algorithm takes a function
representation, i.e. a circuit, and uses it to create a garbled circuit (GC). De-
pending on the scheme, the GC may have certain function hiding properties:
given a GC, the actual functionality garbled remains hidden. This also creates
an input encoding function. Next, an input encoding algorithm takes any valid
input to the circuit garbled and uses the input encoding function to give ‘input
labels’ that correspond to the GC. The input labels typically have the property
that, when looked at in isolation, it does not reveal the input that it represents.



An evaluation algorithm takes a GC for a circuit and a set of input labels for
a certain input, and derives a representation of the function output. Finally,
an output decoding algorithm derives the function output from its represen-
tation output by the evaluation algorithm. It is required that nothing beyond
the function output is revealed. [BHR12] also gives various definitions of desir-
able properties for garbling schemes like correctness, privacy, authenticity and
obliviousness.

A scheme for garbling circuits was first proposed in [Yao86] and its security
was formalied in [LP09]. The formalism of [BHR12] captures this construction
and many subsequent works in garbling that were published after [BHR12] have
followed the same line of thought as [LP09], also describing themselves in terms
of [BHR12]. [LP09] garbles a circuit in a gate-by-gate manner where each gate
is garbled by encoding its truth table row-by-row, creating a set of ciphertexts.
Subsequent optimizations reduce the size of these garbled gates by either reduc-
ing ciphertext sizes, allowing certain ciphertexts to not require communication
[PSSW09], or re-writing the gate functionality in a way that its truth table has
fewer rows [ZRE15].

1.1 Our Contributions

In this work we propose a novel scheme for garbling circuits in the gate-by-
gate paradigm that captures the gate’s truth table as a whole in one encoding,
rather than as a set of encrypted rows. We operate in the non-programmable
random oracle (RO) model wherein both the garbler and the evaluator are given
access to a common random oracle. Our garbling approach requires 4 RO queries
to garble any binary gate functionality and 1 RO query for evaluation. For a
computational security parameter κ, letting the length of each input label be κ,
the expected length of each garbled gate is 4κ bits and this can be compressed
in a lossless manner to up to 2κ bits, owing to the nature of the garbling. We
also describe how this scheme can be modified to support free-XOR at the cost
of increasing the size of other garbled binary gates.

Although this scheme does not improve upon the current state-of-the-art in
garbling size, it produces a garbling with size that is comparable. It also has cer-
tain advantages over schemes that produce garblings of similar communication
complexity. For instance, the garbling scheme in [ZRE15] produces gate garblings
of size 2κ while providing free-XOR compatibility. However, evaluating their GC
requires 2 calls to their underlying cryptographic primitive for a gate, while our
scheme requires only 1 RO call. The garbling scheme in [PSSW09] also produces
gate garblings of size 2κ while making 4 calls to the underlying cryptographic
primitive for garbling and 1 call for evaluation. However, it does not support
free-XOR and nor can it be extended to support it like our scheme allows. We
also have an advantage in computation complexity over [RR21] that produces a
gate garbling of size 1.5κ at the cost of up to 6 primitive calls for garbling and 3
for evaluation. Further novelty of our scheme lies in the new approach employed
for garbling that opens up a variety of avenues for future work.
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Our scheme satisfies correctness and privacy [BHR12] against a PPT adver-
sary with access to t(κ) queries to the random oracle, where t(·) is a polyno-
mial. Informally, the privacy-by-indistinguishability property requires that for
two functions/circuits C0 and C1 that have the same topology, and for two in-
puts x0 and x1 such that C0(x0) = C1(x1), a garbling of C0 along with input
labels corresponding to x0 should be indistinguishable from a garbling of C1

with input labels for x1.
[BHR12] also contains a result stating that if the leakage function for a gar-

bling scheme is invertable, the definitions of privacy-by-indistinguishability and
privacy-by-simulation are equivalent. For our garbling scheme, the leakage func-
tion – information about the function revealed by the garbling – is the topology
of the circuit garbled. This is indeed an invertable leakage – given a circuit topol-
ogy, one can construct a circuit that has that topology. Therefore, it holds that
our garbling scheme also satisfies privacy-by-simulation.

1.2 Related Work

Secure garbling of circuits and corresponding ways of succinctly representing the
garbling has been the aim of a long line of research [BMR90,NPS99,KS08,LP09].
The most common paradigm for garbling a circuit operates at the gate level
where for each gate in the circuit, each line in the truth table of the gate
functionality is encrypted separately (this is also known as the ‘gate-by-gate
paradigm’). The underlying primitive for encryption is a symmetric-key algo-
rithm (e.g., a pseudorandom function (PRF), a circular-correlation robust hash
function (CCR), a CPA-secure dual-key cipher (DKC)) which yields extremely
fast algorithms. This paradigm led to a long sequence of successful optimiza-
tions in computation and communication, that established garbled circuits as a
practical tool for achieving 2PC [PSSW09,KMR14,ZRE15].

Minimizing the size of garbled circuit representation so as to reduce the com-
munication complexity is a widely studied research area. To this effect, [KS08]
proposes a garbling technique that allows for ‘free-XOR’ – an XOR gate need
not be represented in the garbling at all. Following [LP09], [PSSW09] proposes
schemes that garble each gate in a circuit by garbling its truth-table row wise,
but in a way that certain garbled rows need not be communicated. For a compu-
tational security parameter κ, one such scheme (GRR3) produces a gate garbling
of size of 3κ, while still remaining compatible with free-XOR. Another scheme
(GRR2) garbles each gate with 2κ-bits, at the cost of forfeiting free-XOR com-
patibility. Both of these are improvements over the 4κ-bits required in [LP09].
Another work, [ZRE15] takes this further by proposing a garbling technique
that garbles each gate using 2κ-bits, while remaining compatible with free-XOR.
[KKS16] shows a scheme in which 2κ bits can be used to garble internal gates
of a circuit, while gates with circuit input wires as input can be garbled using
κ bits. For certain classes of circuits, formulas in particular, their construction
requires between κ and 1.5κ bits per garbled gates on average. The state-of-
the-art in garbled gate size optimization today is [RR21] where the size of each
garbled gate is compressed to 1.5κ bits. Pursuing a different line of garbling size
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optimization, [HK20] proposes a scheme that reduces the size of the circuit as a
whole to the size of the longest branch of computation.

An extended line of works the generalizes garbled circuits is the study of
randomized encodings [IK00,Ish13,App17]. Given a function f and an input x,

a randomized encoding is a representation f̂(x, r) generated using randomness
r such that no information beyond f(x) can be derived from it. A garbling can
be viewed as a special case of a randomized encoding. Specifically, a projective
garbling such as ours is a case of a decomposable randomized encoding, where
given the garbling and the active input labels only, nothing beyond the function
output is revealed.

1.3 Vision for Future Research

Our garbling scheme garbles binary gates as a whole in an efficient non-linear
manner, as opposed to encrypting the truth-table of the gate row-by-row. This
opens up avenues in multiple new directions. One future direction would be to try
and extend this scheme to support computationally unbounded adversaries. The
security proof for our scheme does not make any assumptions on the strategy
of the adversary (or its running time) except that the number of RO queries it
is limited to making is polynomial in κ - the security parameter. It remains to
consider if the scheme remains secure when the number of queries permitted is
relaxed to be sub-exponential in κ, or even a small exponent in κ. It also remains
to consider if slight modifications to the scheme would provide statistical security
or even information-theoretic security.

For simplicity of explanation and proof, we make use of a random oracle
(RO) while describing our scheme. However, the security proof does not rely
on properties like programmability or extractability of the RO. Therefore, we
conjecture that random oracles may not be necessary for the security of the
scheme and that it remains secure also in the standard model. Looking ahead,
we would like to point out that the extension of our scheme to obtain free-XOR
does not depend on the properties of the RO. So, owing to our garbling technique,
we also conjecture that the RO can be replaced with a simpler primitive that
need not satisfy circular security. This would imply that the resulting scheme
achieves free-XOR without the circular security assumption that is inherent in
all prior works achieving free-XOR. This effort of finding suitable primitives to
replace a random oracle is also a direction that we leave for future work.

Our garbling technique can garble a gate as a whole into one encoding, and
the resulting encoding can be compressed in a lossless manner – owing to the fact
that the resulting encoding does not have full entropy. Therefore, an interesting
direction to explore would be if two or more gate functionalities can be condensed
into one encoding whose compressed representation is smaller than the size of
individually garbling the gates. Coupled with free-XOR, this would drastically
reduce the size of the resulting garbled circuit. We leave studying the trade-off
between the number of gates garbled into one encoding and the compression rate
to future work.
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Finally, we also conjecture that this scheme can be shown as secure in the
adaptive garbling setting – where the adversary can chose inputs after it re-
ceives the garbled circuit from the challenger. Proving that a garbling scheme
is adaptive secure has remained an open question for Yao’s garbled circuits,
while subsequent works prove that certain modifications to it is adaptive secure
[KKPW21]. These either incur a security loss or use expensive cryptographic
primitives. We conjecture that our scheme can be shown as adaptive secure
as-it-is using slight modification to our existing proof technique. On replacing
the RO with a cheaper primitive or operation in the standard model, we would
have an adaptive garbling scheme that is much more efficient than the current
state-of-the-art.

2 Technical Overview

Our garbling scheme operates in the random oracle model where both the garbler
and evaluator get access to a random oracle (RO). Below we discuss the key
design aspects of the core scheme. Discussion about the free-XOR extension is
deferred to Section 5.

The Garbling Algorithm. Conforming to the [BHR12] formalism, the input to
the garbling algorithm is a circuit C; and it outputs a garbled circuit F , an
input encoding set e, and an output decoding set d. The algorithm itself can
be separated into the following subroutines that are executed sequentially: (1)
Init(C)→ e; (2) Circuit(C, e) = (F,D); (3) DecodingInfo(D)→ d.

Input Label Sampling. The first subroutine in the garbling algorithm takes the
circuit C and creates the input encoding set e. This subroutine Init(·) is a ran-
domized algorithm. From within C, this algorithm only uses n, the number of
input wires. This allows the generation of e potentially ahead of knowing the
function f . Similar to other traditional garbling schemes, the scheme we design
is also a projective garbling scheme. So e contains a set of input wire labels. In
our construction, for each of the n input wires, for an ‘external length parameter’
ℓ, an ℓ-length label is sampled uniformly at random to represent the 0 and 1 bit,
under the constraint that both labels for the same wire cannot be the same.

Gate-by-Gate Garbling. The next subroutine Circuit(·) is a deterministic func-
tion. It takes the input encoding set e with all the randomness it entails, and
extends it to create the complete garbled circuit F and output wire labels D. In
order to extend the existing randomness in a way that lets the garbling preserve
its privacy, Circuit(·) makes black box calls to a random oracle RO.

Each gate in the circuit is garbled separately and in a topological order. To
this effect, for the q total gates in the circuit C, each gate is assigned an index g
in this ordering. The random oracle RO employed throughout the gate-by-gate
garbling process is tweakable: it takes as an additional input the gate index g so
that it behaves independently for each gate.
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Garbling a Gate. For a gate g, let A and B be its input wires, g be its output
wire index, and fg be its functionality (e.g., AND, XOR). When garbling a gate,
our methods deviate significantly from traditional garbling techniques. At its
core, we make the following observation: each gate is a binary gate so there are 4
combinations of input values, but only two possible output values corresponding
to one output wire.

Therefore, at its core, a gate garbling is a means to convert a pair of input
labels into an output label. For a wire A, LA0 and LA1 are its labels (similarly
LB1 , L

B
0 for B, and Lg1, L

g
0 for output wire g). We require that for the gate g, the

input label combinations be mapped to (Lg0, L
g
1) in such a way that the gate

functionality fg is preserved. For instance, if the gate is an AND gate, {(LA0 , LB0 ),
(LA0 , L

B
1 ), (L

A
1 , L

B
0 )} should be mapped to Lg0, and (LA1 , L

B
1 ) to Lg1.

We encode all four input label pairs into one encoding ∇g such that, given
one label from each input wire, ∇g can be used to convert these into the correct
output label. The details on how ∇g is generated can be found in Section 4.2
where Table 2 indicates how the garbling for the AND functionality is generated
and Table 3 indicates the same for the XOR functionality. These tables are part
of the description of the garbling scheme: that is, they are predetermined and
remain the same regardless of the circuit garbled or the randomness used.

The entire gate garbling process is a result of deterministic steps starting
from the input label values. For gate g with input labels LA1 , L

A
0 and LB1 , L

B
0 ,

first, in order to eliminate redundancy, for each pair of input bits (a, b) ∈ {0, 1}2
the input labels is input to a random oracle: ROg(LAa , L

B
b ) → Xg

ab. The random
oracle RO takes as input the tweak g and two labels with total length 2ℓ, and
outputs an ℓ′-length string. Note that, on account of using a random oracle, the
output length ℓ′ can be a string of much larger length than the input and this
is sampled uniformly at random and independently of the responses of other
queries to ROg.

Next, the random oracle outputs (Xg
00, X

g
01, X

g
10, X

g
11) are used to derive a

single ℓg-bit string ∇g (that is padded by 0s to make its length equal to ℓ′)
that encodes the gate functionality. ∇g has the properties that given any one
Xg

ab, it maps it to an ℓ-bit uniformly random binary string Lgfg(a,b). The gate

garbling ∇g has Hamming weight ℓ and the positions in this string that contain
‘1’ are termed as ‘effective key positions’. The mapping of Xg

ab to an output
label is done by projecting the bits in Xg

ab over the effective key positions in ∇g.
The resulting output label is of length ℓ and is independently and identically
distributed (i.i.d.) over all bit positions. Each bit in ∇g is set independently
until its hamming weight becomes ℓ. We denote the length of the garbling up to
this point as ℓg bits. It follows that ℓg varies for each gate g, but it still holds that
ℓg = O(κ). An additional property of ∇g is that the pair ∇g and Xg

ab derived
from active input labels do not reveal any information about the inactive output
label or the other random oracle outputs.

Decoding Information. Once all the garbled gates and output wire labels are
derived in F , it remains to generate the output decoding information d. Following
the same principle as we used for garbling gates, we want to avoid, to the extent
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possible, an adversary distinguishing between a valid decoding and an invalid
decoding. Therefore, we need to be able to decode in such a way that for all label
values, valid or invalid, it yields some plausible decoding, but with the constraint
that for valid output labels - labels used within the garbling - the decoding is
additionally also correct.

In our construction, we employ another random oracle RO′ for this. In the
subroutine that creates the decoding information, for every output wire j, we
sample an ℓ-bit string dj . This string has the property that, given output wire
labels (Lj0, L

j
1), it holds that RO

′(Lj0, d
j) = 0 and RO′(Lj1, d

j) = 1. Note that such
a decoding will always yield some output even for arbitrary ℓ-bit strings that are
not output labels. The subroutine DecodingInfo(D)→ d generates this decoding
information given the output wire labels set.

Evaluating the Garbled Circuit. An evaluator, given the garbled circuit F , a set
of input wire labels X, and the decoding information d, works gate-by-gate. It
has access to the random oracles RO and RO′ and knows the indices of each gate
in the circuit. Starting with the input labels L ∈ X we describe each value in its
view during an honest evaluation as active. For each gate g, with active input
labels LAa , L

B
b , the evaluator works by first deriving ROg(LAa , L

B
b ) = Xg

ab. Then
using Xg

ab and ∇g ∈ F , it computes Lgfg(a,b) = Xg
ab ◦∇g where ◦ is the operation

selecting the bits in Xg
ab over the effective key positions in ∇g. Finally, during

decoding, for an output wire label Ljb, using dj ∈ d, it computes RO′(Ljb, d
j) = b

as the function output.

Security Intuition. Our scheme satisfies privacy against a PPT adversary. This
notion is modeled as a game between the adversary and a challenger where the
adversary first picks two circuits C0 and C1 of its choice such that they have
the same topology. That is, letting Φ denote the leakage function revealing the
topology of a circuit, it needs to hold that Φ(C0) = Φ(C1). The adversary also
chooses two inputs x0 and x1 such that C0(x

0) = C1(x
1). The challenger picks a

bit b ∈ {0, 1}, garblesCb and encodes the input xb. It sends the resulting (F,X, d)
to the adversary and then the adversary, making up to a polynomial number of
queries to the random oracles, needs to output which bit b the challenger chose.

In order understand why our scheme satisfies this notion of privacy, first
note that the garbling (F, d) in the challenge, in isolation does not reveal any
information about the circuitsC0 orC1, beyond Φ, the topology that is identical.
This is because the garbling is supposed to hide the gate functionality for all
gates and the gate garbling for each gate originates from the same distribution
regardless of the gate functionality.

Given the complete challenge (F,X, d), an honest evaluation already reveals
the complete ‘active path’ in the garbling. Our proof follows by proving that
the knowledge of the active path gives the adversary no advantage at all in
distinguishing. That is, given the complete challenge (F,X, d) and all honest
queries, they are distributed independently of the bit b. Hence, we identify that
learning elements in the ‘inactive paths’ is a prerequisite to privacy violation.
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We formalize the notion of “learning a label” as making a random oracle
query leading eventually to an inactive label. We continue to identify what kind
of queries lead to this and term them as bad events1. There are three bad events:
‘Bad Events 1–3’ that are triggered by a query to RO. In ‘Bad Event 1’, the
adversary “guesses” a candidate input label to the gate input wire A and queries
it to RO together with the active input label of wire B. ‘Bad Event 2’ is defined
symmetrically for the input wire B of a gate and ‘Bad Event 3’ is defined when
inactive candidates are queried on both input wires. They are all analysed in a
similar manner.

‘Bad Event 1’ is triggered by the following sub-events:

– the output from the query is the active output label and the candidate is the
inactive input label ;

– the output from the query is the inactive output label and the candidate is
the inactive input label ;

– the output from the query is a valid output label - the active or inactive
output wire label used in the garbling - but the input label tested is not the
inactive input label. This case is possible since the RO maps each input to
an output value independently and uniformly at random. So a value that is
not the inactive input label could be mapped to a gate output label.

Intuitively, the resistance against this event stems from the size of the set of
candidate labels to be tested. Stemming from the fact that ℓ is appropriately
set, and there is a unique active label Lg, it follows that there are 2ℓ − 1 can-
didate labels for which the output of RO is unknown to the adversary. Beyond
this information, any two labels within the set of possible labels are uniform and
independent. This holds by construction because the labels of a wire are either
sampled uniformly at random (input wire labels) or derived as projections of
random oracle outputs (internal wire labels). The latter also results in a random
ℓ-bit string owing to the fact that the random oracle outputs are sampled freshly
and uniformly at random for each distinct domain value, and the nature of the
gate garbling ∇g used to select a subset of these bits. Within the set of candi-
date labels for a wire, there is always the inactive label - used in the garbling
- triggering the bad event. However, possibly other ‘false positive’ label values
may also trigger the bad event owing to the nature of the random oracle out-
puts. When considering multiple RO queries, this amounts to sampling without
replacement.

In essence, the security argument boils down to the fact that the set of
candidate labels is sufficiently large so that the adversary cannot cover a non-
negligible portion of it within their query budget. Our analysis shows that the
advantage gained by making queries to RO increases linearly in the number of
queries and decreases exponentially in ℓ (Theorem 4). Thus, the advantage is
always negligible.

1 The proof technique we use is similar to the one in [BHKR13] except that our
adversary is PPT rather than query bounded. Since we do not assume anything
about the adversarial strategy in our proof, this implies only that the bound on the
number of queries is polynomial.
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It remains to argue that when adversarial queries are made across different
random oracles in different gates the bound on the probability of bad events
remains unchanged. As a special case, let us consider two gates such that the
output wire of one feeds into the other gate as input. First, note that the co-
domain (all possible RO outputs) of the random oracle is {0, 1}ℓ′ . However the
domain is much smaller: {0, 1}2ℓ. Due to this, the size of its range (the subset
of the co-domain that is the set of actual RO outputs corresponding to all the
RO inputs) is also upper-bounded by 22ℓ. However, due to the properties of the
random oracle, it is not possible to distinguish between its co-domain and range
without querying the domain set. If a label in the range of RO is the inactive
input label to the next gate, it will have triggered a ‘Bad Event’ as the inactive
output label of the previous gate, ending the game. If the label is not the inactive
input label, the adversary learns that further queries using this label as input
are unnecessary, but gains no insight how to choose the candidate for the next
query among the other 2ℓ− 1 candidate input labels. Learning not to query this
label to RO has cost the adversary a query in the previous gate hence it remains
the case that “one query → one discarded value”.

It follows that no additional advantage beyond what was learned directly by
the query propagates between gates. This analysis holds without loss of gener-
ality when considering any number of gates in the circuit. We use this to bound
the probability of encountering any of the three bad events, given t(κ) queries
to the random oracles and conclude that this probability is negligible in κ in our
main result (Theorem 1).

3 Preliminaries

Table 1 contains a list of all the parameters with respect to which our gar-
bling scheme is constructed. We refer the reader to Appendix A for additional
preliminaries including the definition of a random oracle.

Table 1. Table of Parameters

Parameter Information

n number of circuit input wires

m number of circuit output wires

q number of gates in the circuit

ℓ (external length parameter) length of a wire label

ℓ′ (internal length parameter) length of approximate keys

ℓg length of garbled gate ∇g

κ computational security parameter

s number of adversarial random oracle queries

Circuit Notation. For a function f : {0, 1}n → {0, 1}m, let C be its circuit
representation. Let q be the number of gates in C. Each gate g ∈ [q] is defined
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by a gate functionality fg ∈ {AND,XOR}, two input wires A,B and an output
wire g where, A,B, g ∈ [n+ q] and topological ordering holds: A,B < g.

Garbling Scheme. [BHR12] abstracts garbling as a primitive containing four
algorithms as given in Definition 1. In the definition, a function f is represented
as a circuit C. We also denote by Φ(C) the topology of the circuit C. Finally,
x ∈ {0, 1}n denotes the function input and y ∈ {0, 1}m denotes the function
output.

Definition 1 (Garbling Scheme [BHR12]). Let f : {0, 1}n → {0, 1}m be
a function with a circuit representation C. Let κ be a computational security
parameter. A garbling scheme GS = (Gb,En,De,Ev) consists of four polynomial-
time algorithms:

– Gb(1κ,C)→ (F, e, d): returns a garbling F , input encoding set e, and output
decoding set d.

– En(e, x) := X: returns the encoding X for function input x.
– Ev(F,X) := Y : returns the output labels Y by evaluating F on X.
– De(Y, d) := {⊥, y}: returns either the failure symbol ⊥ or a value y = f(x).

These algorithms must satisfy the following properties:

– Correctness: For every circuit C and input x,

Pr[y = C(x) : (F, e, d)← Gb(C), X = En(e, x), Y = Ev(F,X), y = De(d, Y )] = 1

– Privacy: Let Algorithm 1 denote the actions of the challenger C in an indis-
tinguishability game. Let A be a PPT adversary. Let Φ be a leakage function
representing the topology of a circuit. For all polynomials t(·), and suffi-
ciently large κ, when A runs for t(κ) time steps (with access to RO), for all
circuits C0,C1 s.t. Φ(C0) = Φ(C1) and every x0, x1 s.t. C0(x

0) = C1(x
1)

of the choice of A, there exists a polynomial p(·) such that A’s advantage is,

Adv(κ) =

∣∣∣∣Pr[ARO(C0,C1, x
0, x1, F,X, d) = b]− 1

2

∣∣∣∣ < 1

p(κ)

Algorithm 1 Privacy

1: proc Garble(C0,C1, x
0, x1)

2: if x0, x1 ̸∈ {0, 1}n or Φ(C0) ̸= Φ(C1) or C0(x
0) ̸= C1(x

1) return ⊥
3: b← {0, 1}
4: (F, e, d)← Gb(1κ,Cb)
5: X = En(e, xb)
6: Return (F,X, d)
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4 The Scheme

In this section we present our garbling scheme. The algorithms for the garbling
scheme are presented in Section 4.1. We go on to present in Section 4.2 the
intuition behind why the scheme presented is correct. In Section 4.3, we discuss
the security guarantee we require and outline the proof of security. A full proof
is presented in Appendix B.

4.1 Garbling Algorithm

For a function f : {0, 1}n → {0, 1}m, let C be its circuit representation. The
garbling algorithm has the following form:

Algorithm 2 Algorithm Gb(1κ,C)

1: set the external length parameter ℓ = κ
2: set the internal length parameter ℓ′ = 8ℓ
3: Init(C, ℓ)→ e
4: Circuit(e,C, ℓ, ℓ′) = (F,D)
5: DecodingInfo(D, ℓ)→ d
6: Return F, e, d

The garbling algorithm as above begins by setting the variables ℓ and ℓ′

defined in Table 1. These parameterize the lengths of the inputs and outputs of
the random oracles that are employed in the construction. The ‘external length
parameter’ ℓ parameterizes the length of all wire labels throughout the circuit.
The additional ‘internal length parameter’ ℓ′ parameterizes the length of the
intermediate values in the gate garbling – the outputs of RO – and serves as a
loose upper bound on the length of each gate garbling ℓg. The actual length of the
gate garbings are variable and much smaller than ℓ′ bits. Since the intermediate
garbling values never have to be communicated, and so do not contribute to
the communication complexity, ℓ′ can be arbitrarily larger than ℓ. We refer the
reader to Appendix A.2 for details as to why ℓ′ is set to 8ℓ. Finally, ℓ is also
the Hamming weight of ∇g and parameterizes the effective length of the gate
garbling.

The complete garbling algorithm employs two random oracles of the following
forms: (1) ROg : {0, 1}2ℓ → {0, 1}ℓ′ ; and (2) RO′ : {0, 1}2ℓ → {0, 1}. The first
is used in each gate and so it uses the gate number g as a tweak. The latter is
used for circuit output decoding.

Input Encoding Generation. The garbler starts by executing Init(C, ℓ)→ e, for-
mally described in Algorithm 3. Let n be the number of input wires in C and ℓ
be the external length parameter. This algorithm uses the garbler’s randomness
to sample ℓ-length labels to represent the 0 and 1 values for each input wire.
These labels are sampled uniformly at random, under the constraint that two
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labels for the same wire cannot take the same value. This resulting set of input
wire labels is the input encoding set e.

Algorithm 3 Init(C, ℓ)

1: extract n from C
2: e = []
3: for input wire W ∈ [n] do
4: Sample LW

0 ← {0, 1}ℓ uniformly at random
5: Sample LW

1 ← {0, 1}ℓ − {LW
0 } uniformly at random

6: Set e[W ] = eW = (LW
0 , LW

1 )
7: end for
8: Return e

Garbled Circuit Generation. The garbler now runs a deterministic algorithm to
generate the garbled circuit: Circuit(e,C, ℓ, ℓ′) = (F,D). This algorithm receives
as input a circuit C with q gates and a projective input encoding set e with
labels for all n input wires. The output of this algorithm is a garbled circuit
F , and a set D of pairs of labels for the m output wires of the garbled circuit.
A description for it is given in Algorithm 4. This algorithm works gate-by-gate
where it creates a garbled gate by calling a subroutine described in Algorithm 5.
The garbled circuit so produced is F = (∇1, . . . ,∇q).

Algorithm 4 Circuit(e,C, ℓ, ℓ′)

1: ∀g ∈ [q], initialize the random oracle ROg[2ℓ, ℓ′]
2: initialize the wire label set W = [W1, . . . ,Wn+q]
3: for each circuit input wire A do
4: WA = (LA

0 , L
A
1 ) ∈ e

5: end for
6: initialize F = [], D = []
7: for each gate g = (fg, A,B, g) in C in topological order do
8: extract input wire labels LA

0 , L
A
1 , L

B
0 , L

B
1 ∈W

9: compute (Lg
0, L

g
1,∇g)← Gate(LA

0 , L
A
1 , L

B
0 , L

B
1 , g, fg, ℓ)

10: set F [g]← ∇g

11: set Wg = (Lg
0, L

g
1) ∈W

12: if g is an output gate then
13: D[g]← (Lg

0, L
g
1)

14: end if
15: end for
16: Return (F,D)

Gate Garbling. We discuss now the subroutine that the garbling algorithm uses
to garble each gate of the circuit: (Lg0, L

g
1,∇g) ← Gate(LA0 , L

A
1 , L

B
0 , L

B
1 , g, fg, ℓ).
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This subroutine receives the gate index g, input labels set (LA0 , L
A
1 , L

B
0 , L

B
1 ) and

a gate functionality indicator, fg ∈ {AND,XOR}. For simplicity and complete-
ness, we only discuss these functionalities although we can encode any gate func-
tionality over binary inputs. The subroutine outputs a gate garbling ∇g (with
Hamming weight ℓ) and a set of labels for the gate output wire (Lg0, L

g
1), each of

ℓ-bit length. The details of this subroutine are formally described in Algorithm 5.
This is a deterministic function but with access to random oracle ROg.

Algorithm 5 Gate((LA0 , L
A
1 ), (L

B
0 , L

B
1 ), g, fg, ℓ)

1: Xg
00 = ROg(LA

0 , L
B
0 )

2: Xg
01 = ROg(LA

0 , L
B
1 )

3: Xg
10 = ROg(LA

1 , L
B
0 )

4: Xg
11 = ROg(LA

1 , L
B
1 )

5: initialize ∇g ← 0ℓ
′

6: let j = 1
7: repeat
8: Slice ← Xg

00[j]||X
g
01[j]||X

g
10[j]||X

g
11[j]

9: if fg == AND ∩ Slice ∈ {0000, 0001, 1110, 1111} then ▷ See Table 2
10: ∇g[j]← 1
11: else if fg == XOR ∩ Slice ∈ {0000, 1001, 0110, 1111} then ▷ See Table 3
12: ∇g[j]← 1
13: end if
14: j = j + 1
15: until HW (∇g) = ℓ
16: ℓg = j
17: if fg == AND then
18: Lg

0 = Xg
00 ◦ ∇g ▷ A ◦B = projection of A[i] for positions with B[i] = 1

19: Lg
1 = Xg

11 ◦ ∇g

20: else if fg == XOR then
21: Lg

0 = Xg
00 ◦ ∇g

22: Lg
1 = Xg

01 ◦ ∇g

23: end if
24: Return (Lg

0, L
g
1,∇g)

A gate is garbled in the following stages. First, given the set of input labels
(LA0 , L

A
1 , LB0 , L

B
1 ), note that each of the combinations in ((LA0 , L

B
0 ), (LA0 , L

B
1 ),

(LA1 , L
B
0 ), (L

A
1 , L

B
1 )) is a 2ℓ-bit string where ℓ bits are common with any other

combination. To unlink the pairs, the input label combinations are passed into
a random oracle ROg. In order for this function to sample fresh outputs for
different gates which may have potentially the same input wires, the input to
ROg also includes the gate id g as a tweak. For bits a, b ∈ {0, 1}, this step
creates ROg(LAa , L

B
b ) = Xg

ab. The values (Xg
00, X

g
01, X

g
10, X

g
11) are intermediate

garbling values termed ‘approximate key’, each ℓ′-bit long, that are the outputs
of the random oracle. Note that since ℓ′ is an internal length parameter and, as
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all internal variables are not communicated, it can be arbitrarily long without
effecting the communication complexity of the garbling scheme.

Next, the set (Xg
00, X

g
01, X

g
10, X

g
11) is used to create a gate garbling ∇g of

size ℓg bits. This lies in the heart of our construction and is one of our key
contributions. The length of ∇g is ℓg ≤ ℓ′ and it varies for different garbled
gates. The details on how exactly ∇g is created are given in Tables 2–3 and
depends on the gate type. These truth-tables decide how a single index of ∇g is
set as a function of the bits in the same index in each of (Xg

00, X
g
01, X

g
10, X

g
11).

These tables are part of the description of the garbling scheme and are fixed
prior to running the garbling algorithm. Namely, calculating these tables can be
viewed as a function independent and reusable (for multiple garblings) phase.

We require that ∇g has Hamming weight ℓ, the effective length. Therefore, it
is generated bit-by-bit until the Hamming weight comes to ℓ. The gate garbling
∇g is also made such that for any intermediate value Xg

ab, the output label can
be derived as ∇g ◦Xg

ab = Lgfg(a,b) where ◦ is an operation that projects the bits

in Xg
ab over all the positions where ∇g is set to 1. An essential property that ∇g

satisfies is that on its application with any of the Xg
ab, it produces one of two

values Lg0 and Lg1 that are distributed uniformly at random in {0, 1}ℓ and that
too according to the gate functionality. These, along with the gate garbling ∇g

are the outputs of this subroutine.

Decoding Information. The last of the Garbler’s algorithms is a randomized
algorithm: DecodingInfo(D, ℓ) → d. It takes the labels set for the output wires,
D, and returns a sequence d that allows the evaluator to map them back to their
plain values; see Algorithm 6. This function also employs a random oracle RO′.

Algorithm 6 DecodingInfo(D, ℓ)

1: initialize RO′[2ℓ, 1] and d = []
2: for output wire j ∈ [m] do
3: extract Lj

0, L
j
1 ← D[j]

4: repeat
5: Sample dj ∈R {0, 1}ℓ
6: until RO′(Lj

0, d
j) = 0 and RO′(Lj

1, d
j) = 1

7: d[j]← dj

8: end for
9: Return d

Completing the Garbling Scheme. Given the above procedure for garbling, it
now remains to describe, for completeness, the working of the input encoding
algorithm En, the evaluation algorithm Ev and the output decoding algorithm
De. The interfaces and purpose of these are respectively the same as in standard
garbling [BHR12]. For brevity we only describe them in algorithmic form in
Algorithms 7–9.
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Algorithm 7 Algorithm En(e, x)

1: initialize X = []
2: for every j ∈ [n] do
3: set X[j] = Lj

xj
= ej [xj ]

4: end for
5: Return X

Algorithm 8 Algorithm Ev(F,X)

1: initialize Y = []
2: for each gate g ∈ [q] in a topological order do
3: LA, LB ← active labels associated with the input wires of gate g
4: extract ∇g ← F [g]
5: Lg ← ROg(LA, LB) ◦ ∇g

6: if g is a circuit output wire then
7: Y [g]← Lg

8: end if
9: end for
10: Return Y

4.2 Intuition Behind Our Scheme

The mainstream literature on garbled circuits has been operating under the
gate-by-gate paradigm. Speaking informally, binary gates are individually and
progressively garbled in topological order. The garbling of each gate g involves
six labels (LA0 , L

A
1 , L

B
0 , L

B
1 , L

g
0, L

g
1) where (LA0 , L

A
1 ) (resp., LB0 , L

B
1 ) are the labels

corresponding to the 0 and 1 values of the left (resp., right) input wire, and
(Lg0, L

g
1) are the same for the output label. The garbling algorithm samples values

for the labels (sometimes with additional constraints on their relations) and uses
each pair of input labels as a key for encrypting the output label. This is the
setting in which [LP09] proves the security of garbling schemes using a primitive
that was later termed by [BHR12] a Dual-Key Cipher (DKC).

A DKC takes two keys (input labels for garbling) and a message (an output
label) and outputs ‘ciphertexts’ that are sent to the evaluator. Later, [ZRE15]
termed this kind of garbling as ‘linear’. They provided a model for linear gar-
bling and showed that any scheme in their model that simultaneously achieves
correctness and privacy requires at least two ciphertexts, thus providing a lower
bound on the communication efficiency of such schemes. Our scheme deviates
from [ZRE15]’s linear model in several key points which we explain below.

Approximate Keys. Despite a syntactical similarity, a major difference from
prior work is that we do not consider the input labels as keys. Instead, we
consider them as an entropy source to an Approximate-Key-Derivation Function.
This function, modeled as a random oracle and denoted by RO, converts each
label pair into a uniformly distributed string of length ℓ′. The resulting tuple
t = (X00, X01, X10, X11) can be viewed as a set of approximate keys.
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Algorithm 9 Algorithm De(Y, d)

1: initialize y = []
2: for j ∈ [m] do
3: y[j]← RO′(Y [j], dj)
4: end for
5: Return y

Output Label Derivation. The tuple t contains approximate keys in the following
sense: t = (X00, X01, X10, X11) can be viewed as a 4 × ℓ′ binary matrix. The
garbler scans for each j ∈ [ℓ′], the indices tj = (X00[j], X01[j], X10[j], X11[j]).
For an AND gate, the bits in the same column in X00, X01 and X10 must agree
on the same value. When they do, the respective position in Lg0 is set to this
value and the respective position in Lg1 is set to the corresponding bit value from
X11. Otherwise (i.e., if they do not agree), the value in position j is not included
in the construction of the output label.

Table 2 is a truth table according to which the indices tj are used to set the
jth index of ∇g when the gate functionality to be garbled is the AND function.
Note that the index in ∇g is set to 1 only in the rows of the table where it holds
that X00[j] = X01[j] = X10[j]. Further, each index j of ∇g is set independently,
depending on a different ‘slice’ tj . Each value in this slice is an output from the
random oracle and so the slice is a uniformly random value in {0, 1}4. The right

Table 2. For a gate index g and j ∈ [ℓ′], this table defines ∇g
∧[j] (where fg = AND)

as a function of Xg
00[j], X

g
01[j], X

g
10[j], X

g
11[j]. In addition, the right side demonstrates

how Xg
ab[j]◦∇

g[j] collapses into only two distinct key values Lg
0 = L00 = L01 = L10 and

Lg
1 = L11. Each row in the table corresponds to a one bit-slice of the values Xg

ab[j] for
a, b ∈ {0, 1}.

Xg
00 Xg

01 Xg
10 Xg

11 ∇g
∧ L00 L01 L10 L11

0 0 0 0 0 1 0 0 0 0
1 0 0 0 1 1 0 0 0 1
2 0 0 1 0 0 - - - -
3 0 0 1 1 0 - - - -
4 0 1 0 0 0 - - - -
5 0 1 0 1 0 - - - -
6 0 1 1 0 0 - - - -
7 0 1 1 1 0 - - - -
8 1 0 0 0 0 - - - -
9 1 0 0 1 0 - - - -
10 1 0 1 0 0 - - - -
11 1 0 1 1 0 - - - -
12 1 1 0 0 0 - - - -
13 1 1 0 1 0 - - - -
14 1 1 1 0 1 1 1 1 0
15 1 1 1 1 1 1 1 1 1

side of Table 2 contains the value in the output label that is a result of projecting
the value of Xg

ab in the positions where ∇g contains 1. One can see that L00, L01,
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and L10 always have the same value (and are therefore the same). If anywhere
among the ℓ′ positions we have L11 ̸= (L00 = L01 = L10) (i.e., Lines 1 and 14 in
Table 2) then,

{LA0 , LA1 } × {LB0 , LB1 } 7→ {L
g
0, L

g
1} (1)

preserves the structure of a binary AND.
The case for an XOR gate is similar except that the agreement is sought

between L00 and L11, as well as between L01 and L10 (see the right side of
Table 3). The additional constraint requires that at least once in the ℓ′ positions
(L00 = L11) ̸= (L01 = L10). Then, {LA0 , LA1 } × {LB0 , LB1 } 7→ {L

g
0, L

g
1} preserves

the structure of a binary XOR. Table 3 is a truth table according to which the
indices tj are used to set the jth index of ∇g when the gate functionality is the
XOR function. Note that the index in ∇g is set to 1 only in the rows of the table
where it holds that X00[j] = X11[j] and X01[j] = X10[j].

Table 3. For a gate index g and j ∈ [ℓ′], this table defines ∇g
⊕[j] (where fg = XOR) as

a function in Xg
00[j], X

g
01[j], X

g
10[j], X

g
11[j]. In addition, the right side demonstrates how

Xg
ab[j]◦∇

g[j] collapses into only two distinct values Lg
0 = L00 = L11 and Lg

1 = L01 = L10.
Each row in the table corresponds to one bit-slice of the values Xg

ab[j] for a, b ∈ {0, 1}.

Xg
00 Xg

01 Xg
10 Xg

11 ∇g
⊕ L00 L01 L10 L11

0 0 0 0 0 1 0 0 0 0
1 0 0 0 1 0 - - - -
2 0 0 1 0 0 - - - -
3 0 0 1 1 0 - - - -
4 0 1 0 0 0 - - - -
5 0 1 0 1 0 - - - -
6 0 1 1 0 1 0 1 1 0
7 0 1 1 1 0 - - - -
8 1 0 0 0 0 - - - -
9 1 0 0 1 1 1 0 0 1
10 1 0 1 0 0 - - - -
11 1 0 1 1 0 - - - -
12 1 1 0 0 0 - - - -
13 1 1 0 1 0 - - - -
14 1 1 1 0 0 - - - -
15 1 1 1 1 1 1 1 1 1

Both Table 2 and Table 3 are part of the description of the garbling scheme:
that is, they are predetermined and remain the same regardless of the function
garbled or the randomness used.

Garbling other gate functionalities. Generalizing the above technique for gar-
bling the two-input binary AND and XOR functionalities, let us now see how an
n-input binary gate computing any functionality fg can be garbled. A gate g
with n input wires and one output wire, with each wire holding binary values
would have two ℓ-length labels for each wire. For each input wire indexed i ∈ [n],
let these labels be Li0, L

i
1 ∈ {0, 1}ℓ. Garbling such a gate would require a random
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oracle of the form ROg : {0, 1}nℓ → {0, 1}ℓ′ . Let a = {ai}i∈[n] ∈ {0, 1}n be a
possible input value to this gate. The garbling proceeds by first making 2n calls
to the random oracle of the form ROg({Lai

i }i∈[n]) → Xg
a , for all a ∈ {0, 1}n.

Letting t = {Xg
a}a∈{0,1}n be the set of approximate keys, we need that t be

partitioned into two sets: t0 = {Xg
a}fg(a)=0 containing all approximate keys that

need to be mapped to the gate output label Lg0, and t1 = {Xg
a}fg(a)=1 with those

that are mapped to Lg1. Now, a table similar to Table 2,3 needs to be generated
for the functionality fg. On the left of the column with ∇g

fg
, this would contain

m = 2n columns, one corresponding to each Xg
a . The table would contain 2m

rows corresponding to all possible values one ‘slice’ of t can take. Out of these,
the index in ∇g

fg
is set to 1 only when the values in the ‘slice’ of t0 are equal

and the values in the ‘slice’ of t1 are equal. So, out of the 2m rows, only 4 rows
set ∇g

fg
to 1: the row with either 0m or 1m, or the row that equals the transpose

vector of the truth table of fg, or the complement thereof. In effect, there is
no need for enumerating the entire table since knowing these 4 combinations
suffices for gate garbling.

Let us consider the special case of 2-input binary gates for some function-
ality fg. The random oracle is of the form ROg : {0, 1}2ℓ → {0, 1}ℓ′ as seen
in the scheme in Section 4.1. There are 4 approximate keys in the tuple t =
(Xg

00, X
g
01, X

g
10, X

g
11). The table for setting the bits in ∇g

fg
would have 22 = 4

columns on the left of that for ∇g
fg

and 24 = 16 rows. Out of these, 4 rows would

set the bit in ∇g
fg

to 1. Therefore, when a garbled gate is generated for a 2-input
binary gate, it originates from the same distribution regardless of the gate func-
tionality. This also forms the basis of the gate functionality hiding property of
our garbling scheme.

No ciphertexts. Consider the evaluation function of our scheme, Ev. Given two
input labels, the evaluator can obtain from the random oracle exactly one ap-
proximate key whereas what they need is the output label. To enable this, the
garbler records in ∇ the bit positions from which the output label is derived and
sends it to the evaluator.

There are several reasons why we believe ∇ should not be considered as a
ciphertext. First, it does not encrypt any labels but instead encodes the relation
between an approximate-key and the output label. Secondly, whereas a cipher-
text normally captures the relation between a pair of input labels and the output
label, ∇ captures the relation between all input labels and both output labels.
Finally, each bit of ∇ is zero with probability 3

4 and one with probability 1
4 . This

less-than-1 entropy allows to compress ∇ which for the standard meaning of the
term ‘ciphertext’ is normally not possible.

4.3 Security

Adversary. We consider a PPT adversary A that runs for t(κ) time steps, where
t(·) is a polynomial in the security parameter κ. A has access to the random
oracles ROg and RO′ but, owing to its running time, is restricted to making at
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most t(κ) queries overall. Among these, we make a distinction between the set
of honest queries H, and adversarial queries Q.

Honest queries. Given the challenge (F,X, d) output from Algorithm 1, we term
the set of queries made in Ev(F,X) = Y and De(Y, d) as the honest queries H.
For a circuit C with q gates and m output wires, this includes q calls to RO,
and m calls to RO′. Therefore, |H| = q + m and its contents are determined
completely by the challenge.

Adversarial queries. Any other query A makes is an adversarial query in Q.

Definition 2. A set of adversarial queries Q that an adversary A makes to
the random oracles ROg, and RO′ is permissible if it holds that for a security
parameter κ, and polynomial t(·),

|Q| < t(κ)

Security Game. The security game for Privacy from Definition 1 is an interaction
between the adversary A and the challenger C. Let Φ be a leakage function de-
noting the topology of a circuit. That is, for a circuit C, Φ(C) outputs everything
except the gate functionality of each gate in the circuit. First A picks circuits
C0,C1 of its choice such that Φ(C0) = Φ(C1), and two inputs x0, x1 ∈ {0, 1}n
such that C0(x

0) = C1(x
1). Then, (C0,C1, x

0, x1) are given to C. On receiving
this, C first samples a bit b ← {0, 1} uniformly at random. It then garbles Cb,
creating (F, e, d). It encodes xb using e to get X. The challenge (F,X, d) is sent
back to A. Now A with polynomial running time, and access to the random
oracles ROg, and RO′ to make honest queries H and adversarial queries Q, is
tasked with guessing b that was used internally by C.

The adversary’s view. In the privacy game, A has in its view (C0,C1, x
1, x0)

of its own choice, (F,X, d) that it receives as the challenge, the set of honest
queries (and responses) H, and the set of adversarial queries (and responses)
Q. We define a function V(·) that represents the information learnt by A. For
instance, V(F,X, d) refers to the information A can deduce from the challenge
(F,X, d). In particular, by V(F,X, d,H,Q) we denote all the information learnt
by the adversary2. The advantage Adv of A as in Definition 1 can be restated as

Adv =

∣∣∣∣Pr[A(V(F,X, d,H,Q)) = b]− 1

2

∣∣∣∣
where the probability distribution is taken over the secrets of the challenger
C (i.e., random choice of b ← {0, 1}, and the randomness used in garbling:
(F, e, d)← Gb(Cb)), and the choice of the adversarial query set Q.

2 We omit writing (C0,C1, x
0, x1) and other garbling parameters like ℓ and ℓ′ for

brevity but it is assumed to be always included.
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Winning the security game. From V(F,X, d,H,Q), the adversary aims to dis-
tinguish between the cases that the challenger chooses b = 0 and b = 1. We are
now ready to present our main theorem that we prove in Appendix B.

Theorem 1. Let GS = (Gb,En,Ev,De) be a garbling scheme as in Algorithms 2–
9. Let κ be a computational security parameter. Then for all polinomials t(·) and
all PPT adversaries A that run for t(κ) time steps, having access to all random
oracles RO ∈ (ROg,RO′), participating in the Privacy game (Definition 1), there
exists a polynomial p(·) such that A has advantage,

Adv =

∣∣∣∣Pr[ARO(C0,C1, x
0, x1, F,X, d) = b]− 1

2

∣∣∣∣ < 1

p(κ)

Proof Outline. We prove that our garbling scheme preserves privacy against a
PPT adversary. The privacy game (Algorithm 1) returns as a challenge (F,X, d)
and the adversary A is tasked with guessing the bit b such that (F, e, d) ←
Gb(Cb) and X = En(e, xb). Note that the garbling (F, d) in isolation is dis-
tributed identically for both C0 and C1. This is because the garbling technique
creates each gate garbling ∇g in a way that it is distributed identically regardless
of the gate functionality fg ∈ {AND,XOR} and Φ(C0) = Φ(C1).

We denote by honest queries the RO queries that are necessary for evaluating
the garbling F on X. Then our proof follows by proving in Theorem 2 that given
the challenge (F,X, d) and the set of honest queries H only, the view of the
adversary A is identically distributed for the cases where b = 0 and b = 1. In
order to show this, we first prove that nothing beyond the active path P of the
evaluation is revealed from the given information. Next, we show that the active
path is identically distributed for both cases.

All queries that are not honest queries are referred to as adversarial queries.
When an adversarial query is made, we make a distinction between the case
where a response lies in the garbling F , and those that do not. We call the
former a ‘Bad Event’. When a ‘Bad Event’ occurs we assume an adversary can
detect this, and that it gives it enough information to distinguish for b. Therefore,
we bound the probability of a Bad Event for a single query in Theorem 3.

When a query does not lead to a bad event, this implies that its response
is irrelevant to the construction of (F, d). Making such a query does not give
the adversary any advantage over the case considered in Theorem 2. However, it
restricts the domain of future queries to the random oracles. As a result, a future
query to it may have a higher probability of incurring a bad event. In Theorem 4,
we bound the advantage that the adversary would have on making s adversarial
queries. This is done by first, calculating the probability that an ith query leads
to a bad event given that i− 1 previous queries have not triggered a bad event.
This probability is an increasing function of i. Next, A’s advantage is bounded as
the complement of the probability that no bad event has occurred in s queries.
The probability of no bad event occurring is calculated as the product of the
complement of the individual probabilities for each round i that was previously
calculated.
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This result is extended to the case where A makes t(κ) adversarial queries,
completing the proof for the main theorem: Theorem 1. The detailed proof for
this can be found in Appendix B.

5 Supporting Free-XOR

The garbling scheme in Section 4 can be further extended to support free-XOR.
The idea is similar to existing free-XOR schemes where the garbler samples a
secret global offset ∆ ∈ {0, 1}ℓ. For each input wire, the 0-label is sampled
uniformly at random and the 1-label is set such that L0 ⊕ L1 = ∆. The XOR
gate is evaluated by setting the output label as the bitwise XOR between the
labels of the two input wires. This complies with the XOR gate functionality and
maintains the invariant that for the output wire of the XOR gate, L0 ⊕ L1 = ∆.
This gate itself has no garbling representation.

It now remains to show that other gate functionalities like AND can be
garbled in such a way that the output wire labels maintain the same invari-
ant. This is done by including ∆ as one of the constraints, along with t =
(X00, X01, X10, X11), that is used to create ∇g. Table 4 indicates the new set of
constraints. In this table, the index j in ∇g is set to 1 only when the indices
in X00 = X01 = X10 and when for the desired index j′ in ∆, it holds that
X00 ⊕X11 = ∆. Algorithm 10 details the gate garbling algorithm for the AND
gate when the scheme needs to support free-XOR. Note that while the index j
is incremented in every iteration, going over all the indices in ∇g, the index j′

is incremented only when one bit in ∇g is set to 1, so as to move to the next
element in ∆. This continues until the ℓ bits in ∆ are exhausted.

Note that out of the 32 different ways that ∇g[j] can be set in Table 4, only
1
8 of them sets it to 1 and the rest set the bit to 0. So in order to maintain a
Hamming weight of ℓ in ∇g, its size would become 8ℓ in expectation. Therefore,
supporting free-XOR in this scheme incurs the cost of increasing the size of the
gate garbling ∇g by double in expectation.

Although this modification to the scheme for free-XOR compatibility in-
creases the size of the garbled gates, its security can be analysed in the same
way as given in the proof in Appendix B. The same security analysis as that
in the original scheme follows, with the exception that the leakage function Φ
now not only reveals the topology of the circuit, but also the position of the
XOR gates. Such a leakage function is also invertable and so the extension from
indistinguishability based privacy to simulation based privacy still holds.

Our security proof follows a ‘Bad Event’ analysis and the advantage that
the adversary gains is calculated in terms of the probability of encountering a
bad event. Therefore, for this scheme that is compatible with free-XOR, the
advantage in the privacy game can be calculated as being the same as that for
the scheme in Section 4. However, there remains a crucial difference between the
modified scheme and the original. In the original scheme, we assume for simplicity
that if a Bad Event is encountered, the adversary can distinguish and security is
violated. However, this may not always be the case. In practice, encountering a
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Table 4. For a gate index g, j ∈ [ℓ′] and j′ ∈ [ℓ], this table defines ∇g
∧[j] (where

fg = AND) as a function of Xg
00[j], X

g
01[j], X

g
10[j], X

g
11[j] and ∆[j′]. In addition, the

right side demonstrates how combining Xg
ab[j] ◦ ∇

g[j] collapses into only two distinct
values Lg

0 = L00 = L01 = L10 and Lg
1 = L11 such that Lg

0 ⊕ Lg
1 = ∆. Each row in the

table corresponds to one bit-slice of the values Xg
ab[j] for a, b ∈ {0, 1}.

∆ Xg
00 Xg

01 Xg
10 Xg

11 ∇g
∧ L00 L01 L10 L11

0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 - - - -
2 0 0 0 1 0 0 - - - -
3 0 0 0 1 1 0 - - - -
4 0 0 1 0 0 0 - - - -
5 0 0 1 0 1 0 - - - -
6 0 0 1 1 0 0 - - - -
7 0 0 1 1 1 0 - - - -
8 0 1 0 0 0 0 - - - -
9 0 1 0 0 1 0 - - - -
10 0 1 0 1 0 0 - - - -
11 0 1 0 1 1 0 - - - -
12 0 1 1 0 0 0 - - - -
13 0 1 1 0 1 0 - - - -
14 0 1 1 1 0 0 - - - -
15 0 1 1 1 1 1 1 1 1 1
16 1 0 0 0 0 0 - - - -
17 1 0 0 0 1 1 0 0 0 1
18 1 0 0 1 0 0 - - - -
19 1 0 0 1 1 0 - - - -
20 1 0 1 0 0 0 - - - -
21 1 0 1 0 1 0 - - - -
22 1 0 1 1 0 0 - - - -
23 1 0 1 1 1 0 - - - -
24 1 1 0 0 0 0 - - - -
25 1 1 0 0 1 0 - - - -
26 1 1 0 1 0 0 - - - -
27 1 1 0 1 1 0 - - - -
28 1 1 1 0 0 0 - - - -
29 1 1 1 0 1 0 - - - -
30 1 1 1 1 0 1 1 1 1 0
31 1 1 1 1 1 0 - - - -

bad event would only aid in violating privacy when it is encountered at certain
favourable wires or gates, depending on the circuit topology. But, in the modified
scheme, if a bad event in encountered this would mean that an inactive output
label has been found. Along with the active value already known, this would
also reveal the value of the global offset ∆. This reveals all the inactive labels
throughout the garbling and the privacy is violated.

Summarizing, in the original scheme, in practice, encountering a Bad Event
may not always violate privacy. But, when the scheme is modified for free-XOR,
encountering a Bad Event would always violate privacy. Owing to our conserva-
tive approach, the proof in Appendix B accounts for the worst case scenario when
analyzing the scheme in Section 4, and is therefore agnostic to whether free-XOR
compatibility was leveraged or not. Therefore it follows that both schemes are
secure.
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Algorithm 10 Gate((LA0 , L
A
1 ), (L

B
0 , L

B
1 ), g, ℓ,∆)

1: Xg
00 = ROg(LA

0 , L
B
0 )

2: Xg
01 = ROg(LA

0 , L
B
1 )

3: Xg
10 = ROg(LA

1 , L
B
0 )

4: Xg
11 = ROg(LA

1 , L
B
1 )

5: initialize ∇g ← 0ℓ
′

6: let j = 1, j′ = 1.
7: repeat
8: Slice ← ∆[j′]||Xg

00[j]||X
g
01[j]||X

g
10[j]||X

g
11[j]

9: if Slice ∈ {00000, 10001, 11110, 01111} then ▷ See Table 4
10: ∇g[j]← 1
11: j′ = j′ + 1
12: end if
13: j = j + 1
14: until j′ == ℓ
15: ℓg = j
16: Lg

0 = Xg
00 ◦ ∇g

17: Lg
1 = Xg

11 ◦ ∇g

18: Return (Lg
0, L

g
1,∇g)

Garbling Other Gates. We now extend the discussion in Section 4.2 to show how
a general n-input binary gate computing any functionality fg can be garbled in
a way that is free-XOR compatible. The first stage of gate garbling remains
the same wherein a random oracle is used to generate the 2n approximate keys
t = {Xg

a}a∈{0,1}n . Out of these, let t0 = {Xg
a}fg(a)=0, and t1 = {Xg

a}fg(a)=1.
Similar to Table 4, the table for creating ∇g

fg
contains m = 2n + 1 columns on

the left where 2n columns correspond to the approximate keys and one column
is for the global offset ∆. The number of rows in the table would be 2m out of
which only 4 would set ∇g to 1: the rows where each element in t0 takes the same
value b0, each element in t1 takes the same value b1, and it holds that b0 ⊕ b1
equals the value in ∆.
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Supplementary Material

A Additional Preliminaries

A.1 Random Oracles

The security proof of our scheme holds in the random oracle model, which
abstracts a truly random function. Following the notation from [KL14], the
random-oracle model posits the existence of a public, random function R that
can be evaluated only by “querying” an oracle – which can be thought of as a
“black box” – returning R(x) when given input x. More precisely,

Definition 3 (Random Oracle). A random oracle RO is an interface for an
oracle function R : {0, 1}a → {0, 1}b that is sampled uniformly from the family
of functions that map the domain of binary strings {0, 1}a into {0, 1}b.

The following lemma characterizes a key property of the random oracle. Here
we denote by RO the random oracle itself, and by V(·) the information learnt by
an adversary, even when potentially unbounded.

Lemma 1 (Query Independence). Let RO : {0, 1}a → {0, 1}b be a random
oracle with fixed sized inputs of length a. Let Q = (q1, . . . , qm) be the queries
made to the random oracle. Let R = (r1, . . . , rm) be the set of responses such
that for each query qj, rj is its response. Then V(Q) = {Q,R}. For a query
q ̸∈ Q, for all random choices of responses r ∈ {0, 1}b,

Pr[RO(q) = r|V(Q)] = Pr[RO(q) = r]

Proof: The random oracle RO works by seeing a query q ∈ {0, 1}a, and if
q has not been queried before, it samples a fresh element r ∈ {0, 1}b from the
range, and then maps q to r as its response. This mapping is stored in a list of
prior queries. If q had been queried before, the random oracle will find it on this
list and return the response in its mapping. Letting Q be the list of all previous
queries, over all random choices of r,

Pr[RO(q) = r|q ̸∈ Q] =
1

2b
.

Note that for the case that a query q is not in the list of previously made queries,
its response is freshly sampled and independently of all previous query responses.
Therefore,

Pr[RO(q) = r|V(Q), q ̸∈ Q] =
1

2b
.

If, by contradiction, V(Q) ⊃ {Q,R}, this would mean that more information
about the random oracle is revealed. Then, there would exist queries q ̸∈ Q for
which,

Pr[RO(q) = r|V(Q), q ̸∈ Q] ̸= 1

2b

This would contradict the fact that the response is sampled independently.
Therefore, the lemma follows. ⊓⊔
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A.2 Setting the Length of RO Output

The random oracle RO is employed in each gate in the garbling to derive the
apprixomate keys t = (X00, X01, X10, X11) from the gate input labels LA0 , L

A
1 and

LB0 , L
B
1 . This oracle RO takes as an input a gate id g ∈ [q] as a tweak, and two

ℓ-bit labels: one from each input wire A and B. It outputs an ℓ′-bit value Xab. In
the garbling scheme, for a security parameter κ, we set ℓ = κ and ℓ′ = 8ℓ = 8κ.
In this section we discuss the reason why ℓ′ is set this way in terms of κ.

The primary reason stems from the nature of the algorithm used to create
∇g. The gate garbling ∇g is created bit-by-bit independently until it contains
ℓ positions with 1. From Table 2,3 it is evident that a position j in ∇g is set
to 1 with probability 1

4 over a random choice of (X00[j], X01[j], X10[j], X11[j]) ∈
{0, 1}4. As these bits originate from random oracle outputs, they are indeed
distributed uniformly at random. Therefore, ℓ′ needs to be set such that the
probability of ∇g having Hamming weight < ℓ is negligible in κ. Let us now
examine this probability for ℓ′ = 8κ.

For a gate g, let H be a random variable that denotes the Hamming weight of
∇g derived from a random t = (X00, X01, X10, X11) where each Xab ∈ {0, 1}ℓ

′
.

Then,

H ∼ Binomial(ℓ′,
1

4
) = Binomial(8κ,

1

4
)

Using the Normal approximation with µ = np = 8κ
4 = 2κ and σ2 = npq = 1.5κ,

we have
H ∼ Nom(2κ, 1.5κ)

Pr[H < κ] = Pr[µ+ Zσ < κ]

= Pr[2κ+ Z
√
1.5κ < κ]

= Pr

[
Z < − κ√

1.5κ

]

=

∫ − κ√
1.5κ

−∞

1√
2π

e−
x2

2 dx

which is negligible in κ.

B Proof of Theorem 1

Before stating the proof itself, we define certain terms used within our proof.

B.1 Proof Setup

In the security game, the adversary’s goal given (F,X, d) is to distinguish whether
(F, d)← Gb(C0) and X = En(e, x0), or (F, d)← Gb(C1) and X = En(e, x1). Go-
ing forward, for a gate g, we denote by LA and LB the active input labels, and
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by Lg the active output label. These values are revealed during the evaluation
of F on X. We show in our proof that the knowledge of these active values only
gives the adversary A zero advantage in distinguishing b.

We denote by LA∗ and LB∗ the inactive input labels, and by Lg∗ the inactive
output label. We term as a “Bad Event”, the case where an adversary A learns
an inactive label for any wire in F . These reveal additional information about
the circuit and potentially its correlation to X, leading the adversary to gain
advantage in distinguishing in the privacy game. For simplicity of analysis, we
assume that when a random oracle query leads to a ‘Bad Event’, privacy is
already violated, without needing further work/queries from the adversary. For
any wire indexed i, we denote by Li

′
a candidate for an inactive label. Such a

candidate is queried to the random oracle in order to learn whether it is the
inactive label or not. We bound the probability of a “Bad Event” by computing
a bound on the number of such possible queries. We then argue that for each
query to a random oracle RO ∈ (ROg,RO′), the probability of encountering a
bad event is negligible.

We denote by Q the set of adversarial queries and responses. Setting |Q| = s,
Q has the following form:

Q =

{
[gi, qi, ri]

}
i∈[s]

where gi is the gate index for when RO is queried, qi is the value input during
the ith query, and ri is its respective response.

We denote by H, the set of honest queries and responses. Given the challenge
(F,X, d), this is the set of queries to ROg,RO′ that are made within Ev(F,X) =
Y and De(Y, d) = y. The set H has the following form:

H =

{
{[g, (LAg , LBg ), XABg ]}g∈[q]

{[−, (Y [j], dj), yj ]}j∈[m]

We denote by P the corresponding active path in F . P contains all the values
revealed when evaluating the garbling (F, d) on X. All the elements in P can be
derived from the elements in H. P has the form:

P =

{{
LAg , LBg , XABg , Lg

}
g∈[q]

⋃{
Y [j], dj , yj

}
j∈[m]

}
Note that all the labels Lw, for each wire w ∈ [n + q] are of length ℓ-bits

(Table 1). This is also the length of the output labels Y [j] and decoding labels
dj for each output wire j ∈ [m]. For each gate g ∈ [q], the values XABg has
length ℓ′-bits. This is also an upper bound on the length of the gate garbling
∇g. Each ∇g has Hamming weight ℓ. This Hamming weight is often referred to
as the effective key length and the indices in ∇g containing 1 are termed as the
effective key positions.

Definition 4 (Bad Event 1). For a gate g with a garbling ∇g, let LB be the
set of candidate inactive labels for input wire B. Let Lg∗ be the inactive output
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label and Lg be the active output label. ‘Bad Event 1’ occurs when for Lb
′ ∈ LB

that is queried by the adversary to RO, it holds that,

ROg(LA, Lb
′
) ◦ ∇g ∈ {Lg, Lg∗}

For simplicity, we treat the test for whether a candidate output label Lg
′
is

the inactive label Lg∗ as requiring zero additional calls after the call to ROg for
Bad Event 1 (Definition 4).

Lemma 2. In the same setting as in Definition 4, let BLB ⊆ LB be the set
of candidates leading to ‘Bad Event 1’, Lb

′
be the candidate queried in the i-th

query, and Li ⊆ LB the set consisting of the previous i − 1 queried candidates.
For effective key length ℓ of ∇g it holds that,

Pr[ROg(LA, Lb
′
) ◦ ∇g ∈ {Lg, Lg∗}|BLB ∩ Li = ∅] ≤ 1

2ℓ − i
+ 2−ℓ+1

i.e., the probability that the i-th query triggers ‘Bad Event 1’ is upper bounded
by 1

2ℓ−i−1
+ 2−ℓ+1 as long as none of the previous queries triggered the same.

Proof: Let S = LB − Li be the set of candidate input labels that have not
yet been queried. Note that the size of the set S ≥ 2ℓ − i − 1. Let E be the
event that BLB ∩ Li = ∅ ∩ Lb

′ ̸∈ Li, that is, a new label is being queried and
none of the previous i − 1 queries have triggered a Bad Event. We calculate
the probability of ‘Bad Event 1’ by considering two cases. One case is when the
inactive input label is chosen: Lb

′
= LB∗ ∈ S. Querying on this yields one of Lg∗

or Lg (according to the gate functionality) with probability 1. The other case is
when any other candidate Lb

′

i ∈ S is picked. Since the output of ROg is a truly
random string in {0, 1}ℓ, it can yield Lg∗ or Lg with probability 2

2ℓ
. Therefore,

we have that,

Pr[ROg(LA, Lb
′
) ◦ ∇g ∈ {Lg, Lg∗}|E]

= Pr[ROg(LA, Lb
′
) ◦ ∇g ∈ {Lg, Lg∗}|E, Lb

′
= LB∗] · Pr[Lb

′
= LB∗

∣∣∣∣E]

+ Pr[ROg(LA, Lb
′
) ◦ ∇g ∈ {Lg, Lg∗}|E, Lb

′
̸= LB∗] · Pr[Lb

′
̸= LB∗

∣∣∣∣E]

= 1 · 1

2ℓ − i− 1

+
2

2ℓ
· 2

ℓ − i− 2

2ℓ − i− 1

≈ 1

2ℓ − i− 1
+ 2−ℓ+1

⊓⊔
Symmetrically, we define Bad Event 2 and 3 as follows:
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Definition 5 (Bad Event 2). For a gate g with a garbling ∇g, let LA be the
set of candidate inactive labels for input wire A. Let Lg∗ be the inactive output
label and Lg be the active output label. ‘Bad Event 2’ occurs when for La

′ ∈ LA,
it holds that,

ROg(La
′
, LB) ◦ ∇g ∈ {Lg, Lg∗}

Definition 6 (Bad Event 3). For a gate g with a garbling ∇g, let LB and LA

be the set of candidate inactive labels for input wire B and A respectively. Let
Lg∗ be the inactive output label and Lg be the active output label. ‘Bad Event 3’
occurs when for Lb

′ ∈ LB and La
′ ∈ LA, it holds that,

ROg(La
′
, Lb

′
) ◦ ∇g ∈ {Lg, Lg∗}

We also have that,

Corollary 1. In the same setting as Definition 5, let BLA ⊆ LA the set of
candidates leading to ‘Bad Event 2’, La

′
be the candidate queried in the i-th

query, and Li ⊆ LA the set consisting of the previous i − 1 queried candidates.
For effective key length ℓ of ∇g it holds that,

Pr[ROg(La
′
, LB) ◦ ∇g ∈ {Lg, Lg∗}|BLA ∩ Li = ∅] ≤ 1

2ℓ − i− 1
+ 2−ℓ+1

i.e., the probability that the i-th query triggers ‘Bad Event 2’ is upper bounded
by 1

2ℓ−i
+ 2−ℓ+1 as long as none of the previous queries triggered the same.

Corollary 2. In the same setting as Definition 6, let BLA,LB ⊆ LA×LB be the

ordered set of candidates leading to ‘Bad Event 3’, Lb
′
and La

′
be the candidate

queried in the i-th query, and Li ⊆ LA×LB be the set consisting of the previous
i− 1 queries. For effective key length ℓ of ∇g it holds that,

Pr[ROg(La
′
, Lb

′
) ◦ ∇g ∈ {Lg, Lg∗}|BLA,LB ∩ Li = ∅] ≤ 1

2ℓ − i− 1
+ 2−ℓ+1

i.e., the probability that the i-th query triggers ‘Bad Event 3’ is upper bounded
by 1

2ℓ−i
+ 2−ℓ+1 as long as none of the previous queries triggered the same.

B.2 The Complete Proof

Theorem 2 (Honest-but-Curious Adversarial Behaviour). Let A be a
PPT adversary. In the privacy game as in Algorithm 1, given (C0,C1, x

0, x1)
of A’s choice such that Φ(C0) = Φ(C1) and C0(x

0) = C1(x
1), the challenge

(F,X, d), and H, the set of honest queries only, it holds that,

Pr[F, d← Gb(C0), X = En(e, x0)|V(F,X, d,H)]

=Pr[F, d← Gb(C1), X = En(e, x1)|V(F,X, d,H)]

Proof: Before proving the above theorem, consider the following lemmas:
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Lemma 3 (Honest Queries reveal only the Active Path). Let (F,X, d) be
the challenge that is output from Algorithm 1. Let H be the set of honest queries
and let P be the active path. Then,

V(F,X, d,H) = P

Informally, the proof follows in two stages. The first step is to show that
V(F,X, d,H) does indeed include P . This can be shown by the construction
of the garbling scheme. Next, it remains to show that nothing beyond P is
revealed. In order to prove this, we show that given P , the tuple (F,X, d,H) can
be constructed. This completes the proof.

Proof: The proof follows in two steps. First we need to show that P can indeed
be derived from V(F,X, d,H). That is,

P ⊆ V(F,X, d,H)

This holds by construction. The active path P can be derived from V(F,X, d,H)
since all of its elements can be determined from H. Recall, H is the set of honest
queries to the random oracles that are necessary for computing Y = Ev(F,X)
and y = De(Y, d) from the challenge. By definition, it has the form,

H =

{
{[g, (LAg , LBg ), XABg ]}g∈[q]

{[−, (Y [j], dj), yj ]}j∈[m]

So (F,X, d,H) does indeed complete all the information in the active path:

P =

{{
LAg , LBg , XABg , Lg

}
g∈[q]

⋃{
Y [j], dj , yj

}
j∈[m]

}
In order to complete the proof of the theorem, it remains to show that nothing

beyond P is revealed from V(F,X, d,H). That is,

P ⊇ V(F,X, d,H)

We show this by showing that P alone can be used to recreate the tuple (F,X, d,H).
First, note that X contains the set of active labels for all circuit input wires.
This is contained within P . The set d = {dj}j∈[m] is the decoding information,
also contained within P . H can also be determined by P . For each gate g, the
elements (LAg , LBg , XABg ) ∈ P are the query and response for ROg. The set{
Y [j], dj , yj

}
j∈[m]

is the set of RO′ query and responses in H. Finally, F is a

set of gate garblings, ∇g. For each g ∈ [q], this can be derived from examining
XABg and Lg: ∇g is set to 1 for only those positions in XABg whose projection
gives Lg. This completes the proof. ⊓⊔
Lemma 4 (Active Paths are Identically Distributed). For the garbling
(F0, d0, e) ← Gb(C0), let X0 = En(e, x0) and let P0 and H0 be the correspond-
ing active path and honest queries set. Similarly, For the garbling (F1, d1, e) ←
Gb(C1), let X1 = En(e, x1) and let P1 and H1 be the active path and honest
queries set. Then if C0(x

0) = C1(x
1) and Φ(C0) = Φ(C1), it holds that,

{F0, d0, X0, P0, H0} ≡ {F1, d1, X1, P1, H1}
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Proof: The proof for this considers the distribution A0 = {F0, d0, X0, P0, H0}
that is derived using C0 and x0, and the distribution A1 = {F1, d1, X1, P1, H1}
that is derived using C1 and x1. Let us examine these distributions:

– In both distributions, the garbling (F0, d0) ∈ A0 and (F1, d1) ∈ A1 are
distributed the same way. The garbling F0, d0 are a garbling of C0, and
F1, d1 are a garbling of C1 using the garbling scheme in Algorithms 2-6. It
holds that their topology, Φ(C0) = Φ(C1). The garbling produced does not
reveal any information beyond Φ. This is because the gate garbling ∇g is
distributed the same way regardless of the functionality fg ∈ {AND,XOR}
due to the nature of Algorithm 5 and Table 2,3.

– Considering the complete challenge (F0, d0, X0) ∈ A0 and (F1, d1, X1) ∈
A1, note that the active input labels sets contain labels that are sampled
independently and uniformly at random from {0, 1}ℓ. These distributions,
without making any random oracle queries, is also identically distributed
since X and F, d are independent when no RO queries are made.

– On evaluating the challenges, note that C0(x
0) = C1(x

1) and so the distri-
butions cannot be distinguished on the basis of the output of the evaluation.
The honest queries in the set H0 are determined by (F0, X0, d0). The dis-
tribution of these queries is identical to that in H1 that are determined by
(F1, X1, d1). This is because the probability that the random oracle query
responses are distributed as in H0 is the same as the probability of it be-
ing as in H1. Therefore (F0, d0, X0, H0) ∈ A0 and (F1, d1, X1, H1) ∈ A1 are
identically distributed.

– Finally, the active paths P0 and P1 respectively are determined completely
by H0 and H1.

Therefore,

{F0, d0, X0, P0, H0} ≡ {F1, d1, X1, P1, H1}

⊓⊔
Lemma 3 states that given (F,X, d) and the honest queries H only, nothing

beyond the active path P is revealed. Lemma 4 shows that the active paths for
anyC0, x

0 andC1, x
1 as in the privacy game is identically distributed. Therefore,

the theorem follows. ⊓⊔

Theorem 3 provides a bound on the advantage gained from a single adver-
sarial query.

Theorem 3 (Advantage of a single malicious query). Let A be a PPT
adversary. Given the challenge (F,X, d) as in Algorithm 1, A’s advantage on a
single adversarial query is bounded by,

Adv|Q|=1 ≤ 2−ℓ +
1

2ℓ − 2

where ℓ is the effective key length.
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Proof: From Lemma 2 and Corollary 1 and 2, we can conclude that when the
adversary A makes one adversarial query, it can encounter at most one of the 3
‘Bad Events’. The probability of the same happening can be bounded as,

Pr[Bad Event] ≤ max
j∈[3]

(Pr[Bad Event j])

≤ 1

2ℓ − 2
+ 2−ℓ

The adversary A can only gain advantage if the query it makes corresponds to
a ‘Bad Event’. Therefore, we can bound A’s advantage on a single adversarial
query by,

Adv|Q|=1 ≤ Pr[Bad Event] ≤ 1

2ℓ − 2
+ 2−ℓ

⊓⊔

Theorem 4 extends the result above to provide a bound on the advantage
gained from multiple adversarial queries.

Theorem 4 (Advantage in multiple malicious queries). Let A be a PPT
adversary. Given the challenge (F,X, d) as in Algorithm 1, the set of honest
queries H, and a set of adversarial queries Q such that |Q| = s, A’s advantage
is bounded by:

Adv|Q|=s <
s

2ℓ − 2

where ℓ is the effective key length.

Proof: In order to prove the above theorem, note that a query made by an
adversary A can be broadly classified under one of the following categories:

1. An Honest Query where the query and the response for the random oracle
lies on the active path of the garbling in the challenge (F,X, d). We have seen
in Theorem 2 that given all the queries H in the active path, A’s advantage
is 0.

2. An Adversarial Query yielding a ‘Bad Event’ is a query other than an Honest
Query for which the response of the random oracle lies within the garbling
in the challenge. This may reveal information about the garbling beyond the
active path. On such an event, without loss of generality, we consider privacy
as violated. Our proof builds towards bounding the probability of this event.

3. An Adversarial Query not yielding a ‘Bad Event’ is a random oracle query
and response that can evidently not be involved in the construction of the
challenge garbling. Making queries to the RO that yield such responses do
not help identify the inactive path and therefore give no advantage. That
is, given the honest-query-set H, and adversarial queries that do not lead to
a ‘Bad Event’, this will at most help narrow down the domain of the RO.
This helps increase the probability of eventually encountering a ‘Bad Event’.
However, until the ‘Bad Event’ is encountered, this gives A no advantage
over possessing H.
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Building on the above,let qi be the event that the ith adversarial query takes
place given that all i − 1 queries before it have not lead to any bad event. We
have from Lemma 2, and Corollary 1 and 2 that each of the ‘Bad Events’ 1, 2
and 3 are bounded as,

Pr[ Bad Event ∈ {1, 2, 3}
∣∣qi] ≈ 1

2ℓ − i− 1
+ 2−ℓ

Note that the probability of the ‘Bad Event’ increases with the increase in the
number of queries and in each query, the probability of encountering any ‘Bad
Event’ at all is calculated as the maximum of these above probabilities. Let us
now compute, the probability that a ‘Bad Event’ is encountered given |Q| = s
adversarial queries to the same random oracle:

Pr[ Bad Event
∣∣|Q| = s] = 1− Pr[¬ Bad Event

∣∣|Q| = s]

= 1−Πs
i=11− Pr[ Bad Event

∣∣qi]
< 1−Πs

i=1

(
1− 1

2ℓ − i− 1
− 2−ℓ

)
≈ 1−Πs

i=1

(
2ℓ − i− 2

2ℓ − i− 1

)
= 1− 2ℓ − s− 2

2ℓ − 2

=
s

2ℓ − 2

We have seen in the proof for Theorem 3 that one adversarial query can
trigger at most 1 ‘Bad Event’ and the adversary A’s advantage is bounded by
the probability of a ‘Bad Event’ occurring. Given an adversarial query, if the
response leads to a ‘Bad Event’, we assume that privacy is violated. If it does
not, the views of the adversary are still identical. We therefore need to calculate
the probability of at least one ‘Bad Event’ among |Q| = s adversarial queries.

The above is a bound on the probability of a ‘Bad Event’ on a particular ran-
dom oracle RO ∈ (ROg,RO′). It remains to extend this result to the case where
adversarial queries were made to different random oracles across different gate
garblings in the circuit. Note that each random oracle used in the construction
is independent. So the result of queries to one random oracle do not affect the
result of making (even the same) queries to a different random oracle, except
for possibly reusing the query space as a result of seeing a query output without
triggering a bad event. So the above is an upper bound that also extends to the
case where not all of the previous i − 1 queries have been made to the same
random oracle since all those cases are bounded by this case.

Hence it follows again that when |Q| = s, A’s advantage is bounded by:

Adv|Q|=s <
s

2ℓ − 2

⊓⊔
Summing up, we prove our final theorem:
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Theorem 1 (Overall advantage of a malicious adversary - Restated).
Let GS = (Gb,En,Ev,De) be a garbling scheme as in Algorithms 2–9. Let κ be
a computational security parameter. Then for all polinomials t(·) and all PPT
adversaries A that run for t(κ) time steps, having access to all random oracles
RO ∈ (ROg,RO′), participating in the Privacy game (Definition 1), there exists
a polynomial p(·) such that A has advantage,

Adv =

∣∣∣∣Pr[ARO(C0,C1, x
0, x1, F,X, d) = b]− 1

2

∣∣∣∣ < 1

p(κ)

Proof: Any PPT adversary A running for t(κ) time steps can make no more
than t(κ) queries to the random oracles. So, |Q| ≤ t(κ). We have from Theorem 4
that,

Adv|Q|=t(κ) <
t(κ)

2ℓ − 2

Setting ℓ = κ, this term is negligible in κ. ⊓⊔
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