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Abstract

Following the pioneering work of Boneh and Franklin (CRYPTO ’01), the challenge of con-
structing an identity-based encryption scheme based on the Diffie-Hellman assumption remained
unresolved for more than 15 years. Evidence supporting this lack of success was provided by
Papakonstantinou, Rackoff and Vahlis (ePrint ’12), who ruled out the existence of generic-group
identity-based encryption schemes supporting an identity space of sufficiently large polynomial
size. Nevertheless, the breakthrough result of Döttling and Garg (CRYPTO ’17) settled this
long-standing challenge via a non-generic construction.

We prove a tight impossibility result for generic-group identity-based encryption, ruling out
the existence of any non-trivial construction: We show that any scheme whose public parameters
include npp group elements may support at most npp identities. This threshold is trivially met
by any generic-group public-key encryption scheme whose public keys consist of a single group
element (e.g., ElGamal encryption).

In the context of algebraic constructions, generic realizations are often both conceptually
simpler and more efficient than non-generic ones. Thus, identifying exact thresholds for the
limitations of generic groups is not only of theoretical significance but may in fact have practical
implications when considering concrete security parameters.
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1 Introduction

Identity-based encryption [Sha84, BF01, Coc01] is one of the key pillars underlying modern cryp-
tography, enabling a variety of access-control applications and paving a path towards more ex-
pressive forms of encryption schemes. Starting with the first realizations of identity-based en-
cryption schemes by Boneh and Franklin [BF01] (based on the bilinear Diffie-Hellman assump-
tion) and Cocks [Coc01] (based on the quadratic residuosity assumption) in the random-oracle
model [BR93], extensive research has been devoted to constructing such schemes in the standard
model (e.g., [CHK03, BB04a, BB04b, Wat05]) and based on other cryptographic assumptions (e.g.,
[GPV08, CHK+10, ABB10]).

Despite the significant progress, a substantial gap remained for nearly two decades between the
cryptographic assumptions that are known to imply public-key encryption and those that are known
to imply identity-based encryption. This gap was first studied by Boneh, Papakonstantinou, Rack-
off, Vahlis, and Waters [BPR+08] who showed that identity-based encryption cannot be realized in
a black-box manner based on trapdoor permutations or CCA-secure public-key encryption. Then,
Papakonstantinou, Rackoff and Vahlis [PRV12] studied the possibility of constructing generic-group
identity-based encryption schemes (i.e., identity-based encryption schemes that do not exploit any
particular property of the representation of the underlying group [Sho97, Mau05]). They showed
that there are no generic-group constructions of identity-based encryption schemes supporting an
identity space of sufficiently large polynomial size. The result of Papakonstantinou, Rackoff and
Vahlis explained, in particular, the lack of success in resolving the long-standing open problem of
constructing an identity-based encryption scheme based on the Diffie-Hellman assumption. Never-
theless, the recent breakthrough of Döttling and Garg [DG17b, DG17a] settled this open problem
via a non-generic construction.

Our contribution: A tight impossibility result for generic-group IBE. In the context of
algebraic constructions, generic realizations are often both conceptually simpler and more efficient
than non-generic ones. Thus, identifying exact thresholds for the limitations of generic groups is not
only of theoretical significance but may in fact have practical implications when considering concrete
security parameters.

For identity-based encryption schemes, such a potential threshold naturally arises by comparing
the size of the scheme’s identity space to the number of group elements that are included in the
scheme’s public parameters. Specifically, for any npp ≥ 1, already ElGamal encryption yields a
generic-group identity-based encryption scheme that supports npp identities and whose public pa-
rameters consist of npp group elements (not including the group’s generator). However, the work
of Papakonstantinou, Rackoff and Vahlis [PRV12] only ruled out the existence of generic-group
identity-based encryption schemes over an identity space of sufficiently large polynomial size1.

We prove a tight impossibility result for constructing generic-group identity-based encryption
schemes, showing that any such scheme whose public parameters consist of npp group elements may
support up to npp identities. This matches the above-mentioned naive threshold that is obtained via
ElGamal encryption, and more generally via any generic-group public-key encryption scheme whose
public keys consist of a single group element. We prove the following theorem:

Theorem 1.1 (Simplified). Let IBE be a secure generic-group identity-based encryption scheme
over an identity space ID = {IDλ}λ∈N whose public parameters consist of npp(λ) group elements,
where λ ∈ N is the security parameter. Then, |IDλ| ≤ npp(λ) for all sufficiently large λ ∈ N.

1Papakonstantinou et al. proved their result for an identity space of exponential size, but their proof seems to hold
for an identity space of sufficiently large polynomial size.
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We prove our result by presenting a generic-group adversary that breaks the security of any
identity-based encryption scheme whose public parameters consist of npp group elements and supports
more than npp identities. Our result applies to schemes satisfying a rather weak (non-adaptive) notion
of security (thus ruling out, in particular, schemes that satisfy more standard notions of security),
and to schemes with imperfect correctness.

Compared to the work of Papakonstantinou, Rackoff and Vahlis [PRV12], on the one hand our
proof follows a similar two-step structure: We first show that any generic-group identity-based
encryption scheme can be transformed into one in which secret keys do not contain group elements,
and then we present an attack on any such scheme that supports more identities than the number
of group elements included in its public parameters. On the other hand, however, our result does
not only provide a tight impossibility result, but in fact provides a somewhat more direct technical
description of our attack and of its analysis. Such a description is enabled partially due to the fact
that we prove our result within Maurer’s generic-group model [Mau05], whereas Papakonstantinou
et al. proved their result within Shoup’s incomparable generic-group model [Sho97], as discussed in
Section 1.1 (e.g., in Maurer’s model we do not have to take into account the additional randomness
that is somewhat artificially “injected” into cryptographic computations in Shoup’s model due to its
random injective encoding of group elements).

Specifically, for our first step, our transformation for eliminating group elements from secret
keys is essentially identical to the corresponding transformation of Papakonstantinou et al. and is
provided together with a significantly more direct analysis. For our second step, our attack is based
on that of Papakonstantinou et al. which relies on the common technique of attacking the security
of an idealized-model scheme relative to a partly-simulated view of the model. Unlike our first step,
in this step our attack and its analysis simultaneously refine and simplify those of Papakonstantinou
et al. for obtaining a tight bound.

1.1 Overview of Our Approach

The framework. We prove our result within the generic-group model introduced by Maurer
[Mau05], which together with the incomparable model introduced by Shoup [Sho97], seem to be
the most commonly used approaches for capturing generic-group computations. At a high level, in
both models algorithms have access to an oracle O for performing the group operation and for testing
whether two group elements are equal. The difference between the two models is in the way that
algorithms specify their queries to the oracle. In Maurer’s model algorithms specify their queries
by pointing to two group elements that have appeared in the computation so far (e.g., the 4th and
the 7th group elements), whereas in Shoup’s model group elements have an explicit representation
(sampled uniformly at random from the set of all injective mappings from the group to sufficiently
long strings) and algorithms specify their queries by providing two strings that have appeared in the
computation so far as encodings of group elements.

Jager and Schwenk [JS08] proved that the complexity of any computational problem that is
defined in a manner that is independent of the representation of the underlying group (e.g., computing
discrete logarithms) in one model is essentially equivalent to its complexity in the other model.
More generally, however, these two models are rather incomparable. On one hand, the class of
cryptographic schemes that are captured by Maurer’s model is a subclass of that of Shoup’s model –
although as demonstrated by Maurer his model still captures all schemes that only use the abstract
group operation and test whether two group elements are equal. On the other hand, the same holds
also for the class of adversaries, and thus in Maurer’s model we have to break the security of a given
scheme using an adversary that is more restricted when compared to adversaries in Shoup’s model.
We refer the reader to Section 2.1 for a formal description of Maurer’s generic-group model.
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Generic-group identity-based encryption. A generic-group identity-based encryption scheme
IBE over an identity space ID consists of four algorithms, denoted Setup, KG, Enc and Dec. In-
formally (and quite briefly), the algorithm Setup produces a master secret key msk ∈ {0, 1}∗ and
public parameters pp, and the algorithm KG on input the master secret msk and an identity id ∈ ID
produces a secret key skid. Next, the algorithm Enc on input public parameters pp, an identity
id ∈ ID and a message b ∈ {0, 1}, produces a ciphertext c, which should be correctly decrypted
(allowing decryption error) by the decryption algorithm Dec using the secret key skid. The outputs
of these four algorithms may consist of a combination of group elements and an explicit string, with
the exception of assuming without loss of generality that the master secret key msk is always an
explicit string (e.g., the internal randomness on which Setup is invoked).

The structure of our proof. We prove our result by presenting a generic-group adversary that
breaks the security of any identity-based encryption scheme whose public parameters pp consist of npp
group elements (and, possibly, an additional explicit string) and supports more than npp identities.
As mentioned above, at a high level, we follow a two-step structure similar to that introduced in
the work of Papakonstantinou et al. [PRV12]: We first show that any generic-group identity-based
encryption scheme can be transformed into one in which secret keys do not contain group elements
(while modifying only its key-generation and decryption algorithms), and then we present an attack
on any such scheme that supports more identities than the number of group elements included in
its public parameters. The remainder of this section consists of a high-level informal description of
these two steps (we note that the following description omits crucial technical details, and we refer
the reader to the relevant sections for formal descriptions and proofs).

In what follows, given a generic-group identity-based encryption scheme we let pp1, . . . , ppnpp ,
skid,1, . . . , skid,nsk

and c1, . . . , cnct denote the group elements included in its public parameters pp and
in each of its secret keys skid and ciphertexts c, respectively (for simplicity, we assume throughout
this informal overview that public parameters, secret keys and ciphertexts do not additionally contain
explicit strings).

Step I: Eliminating group elements from secret keys. Given a generic-group identity-based
encryption scheme IBE = (Setup,KG,Enc,Dec), we modify its key-generation algorithm KG and
decryption algorithm Dec as follows:

• The modified key-generation algorithm K̃G on input the public parameters pp, the master
secret key msk ∈ {0, 1}∗ and an identity id ∈ ID, first produces a secret key skid by invoking
the underlying key-generation algorithm KG. Then, for each message b ∈ {0, 1}, it repeatedly
computes DecO(pp, skid,EncO(pp, id, b)) using fresh randomness for Enc and Dec, and collects
into a set Lid all linear equations that result from the positively-answered equality queries
in these computations. Note that since the group elements that are given as input to these
computations are those included in pp and skid (as well as the generator 1 ∈ ZN that is given
as input to all computations), then each such equation is of the form α0 · 1 +

∑npp

`=1 α` · pp` +∑nsk
`=1 β` · skid,` = 0 for some coefficients α0, . . . , αnpp , β1, . . . , βnsk

∈ ZN . The algorithm then
outputs the modified secret key s̃kid = Lid which consists of (npp+nsk+1)-dimensional vectors
of coefficients over ZN (and does not contain group elements).

• The modified decryption algorithm D̃ec on input the public parameters pp, a modified secret
key s̃kid = Lid and a ciphertext c, emulates the computation DecO(pp, skid, c) using symbolic
variables instead of the group elements skid,1, . . . , skid,nsk

included in the secret key skid. As
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long as it is able to obtain and to respond with the correct answer to all emulated equality
queries, then the emulation will be identical to the actual computation DecO(pp, skid, c).

Note that since the group elements that are given as input to the actual computation are those
included in pp, skid and c (as well as the generator 1 ∈ ZN ), then each emulated equality query
corresponds to a linear equation of the form α0·1+

∑npp

`=1 α`·pp`+
∑nsk

`=1 β`·skid,`+
∑nct

`=1 γi·ci = 0,
for coefficients α0, . . . , αnpp , β1, . . . , βnsk

, γ1, . . . , γnct ∈ ZN . Now, the algorithm D̃ec uses the set
Lid and the actual oracle O for responding to this query as follows. If there exist α′0, . . . , α′npp

∈
ZN such that (α′0, . . . , α′npp

, β1, . . . , βnsk
) ∈ span(Lid), then D̃ec issues to the actual oracle O an

equality queries corresponding to the linear equation (α0−α′0)·1+
∑npp

`=1(α`−α
′
`)·pp`+

∑nct
`=1 γ` ·

c` = 0, and return its output as the response. If there do not exist such α′0, . . . , α
′
npp
∈ ZN ,

then D̃ec responds negatively.

In other words, the algorithm D̃ec uses the knowledge provided by the set Lid in order to
translate each equality query involving the group elements of pp, skid and c into an equality
queries that involves the group elements of only pp and c. A simple probabilistic argument
(see Claim 3.2) shows that this translation introduces only an arbitrary polynomially-small
decryption error 1/p(λ) when setting the number of iterations performed by the modified key-
generation algorithm to p(λ) · (npp(λ) + nsk(λ)).

Step II: Our attack. Let IBE = (Setup,KG,Enc,Dec) be a generic-group identity-based encryp-
tion scheme over an identity space ID whose public parameters consist of npp group elements, whose
secret keys do not contain group elements, and that supports at least npp+1 identities. For simplicity
and without loss of generality we assume that {1, . . . , npp + 1} ⊆ ID.

The key observation underlying our attack is based on considering the set of linear equations that
result from the positively-answered equality queries in the computations DecO(pp, skid,EncO(pp, id, b))
for each message b ∈ {0, 1} and identity id ∈ {1, . . . , npp+1}. Given that the secret keys skid do not
contain any group elements, then the group elements that are given as input to these computations
are only those that are included in the public parameters pp (as well as the generator 1 ∈ ZN that is
given as input to all computations). Thus, each such equation is of the form α0 ·1+

∑npp

`=1 α` ·pp` = 0
for some coefficients α0, . . . , αnpp ∈ ZN . Given that (1, pp1, . . . , ppnpp

) is a non-zero vector, then the
vectors of coefficients of these sets of equations span a linear subspace of dimension at most npp.

Therefore, for at least one identity id ∈ {1, . . . , npp + 1}, it must be the case that the set
of linear equations that result from the positively-answered equality queries in the computation
DecO(pp, skid,Enc

O(pp, id, b)) is contained in the linear subspace spanned by the sets of linear equa-
tions that result from the positively-answered equality queries in the computations

DecO(pp, sk1,Enc
O(pp, 1, b)), . . . ,DecO(pp, skid−1,Enc

O(pp, id− 1, b)).

Moreover, once our adversary discovers this subspace by using the secret keys sk1, . . . , skid−1, then
it can intuitively generate alternative public parameters pp∗ that are consistent with this subspace,
together with a matching alternative master secret key msk∗. Then, it uses the alternative public
parameters pp∗ and master secret key msk∗ for generating an alternative secret key sk∗id for decrypting
the challenge ciphertext. The correctness of the scheme guarantees that, with high probability, sk∗id
will decrypt correctly a ciphertext that is encrypted and decrypted relative to pp∗, and we show that
sk∗id is in fact useful also when encrypting and decrypting relative to pp.
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1.2 Paper Organization

The remainder of this paper is organized as follows. First, in Section 2 we present the basic notation
used throughout the paper, and formally describe the framework of generic-group identity-based
encryption. Then, in Section 3 we show that any generic-group identity-based encryption scheme
can be transformed into one in which secret keys do not contain group elements. Finally, in Section
4 we present an attack on any generic-group identity-based encryption scheme whose secret keys do
not contain group elements, and that supports more identities than the number of group elements
included in its public parameters.

2 Preliminaries

In this section we present the basic notions and standard cryptographic tools that are used in this
work. For a distribution X we denote by x ← X the process of sampling a value x from the
distribution X. Similarly, for a set X we denote by x ← X the process of sampling a value x from
the uniform distribution over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}. A function
ν : N→ R+ is negligible if for any polynomial p(·) there exists an integer N such that for all n > N
it holds that ν(n) ≤ 1/p(n).

2.1 Generic Groups and Algorithms

We prove our results within the generic-group model introduced by Maurer [Mau05]. We consider
computations in cyclic groups of order N (all of which are isomorphic to ZN with respect to addition
modulo N), for a λ-bit prime N that is generated by an order-generation algorithm PrimeGen(1λ),
where λ ∈ N is the security parameter.

When considering such groups, each computation in Maurer’s model is associated with a table
B. Each entry of this table stores an element of ZN , and we denote by Vi the group element that
is stored in the ith entry. Generic algorithms access this table via an oracle O, providing black-box
access to B as follows. A generic algorithm A that takes d group elements as input (along with an
optional bit-string) does not receive an explicit representation of these group elements, but instead,
has oracle access to the table B, whose first d entries store the ZN elements corresponding to the d
group elements in A’s input. That is, if the input of an algorithm A is a tuple (g1, . . . , gd, x), where
g1, . . . , gd are group elements and x is an arbitrary string, then from A’s point of view the input is
the tuple (ĝ1, . . . , ĝd, x), where ĝ1, . . . , ĝd are pointers to the group elements g1, . . . , gd (these group
elements are stored in the table B), and x is given explicitly.

All generic algorithms in this paper receive as input the order N and a generator of the group
(we capture this fact by always assuming that the first entry of B is occupied by 1 ∈ ZN ). The
oracle O allows for two types of queries:

• Group-operation queries: On input (i, j, ◦) for i, j ∈ N and ◦ ∈ {+,−}, the oracle checks
that the ith and jth entries of the table B are not empty, computes Vi ◦ Vj mod N and stores
the result in the next available entry. If either the ith or the jth entries are empty, the oracle
ignores the query.

• Equality queries: On input (i, j,=) for i, j ∈ N, the oracle checks that the ith and jth entries
of the table B are not empty, and then returns 1 if Vi = Vj and 0 otherwise. If either the ith
or the jth entries are empty, the oracle ignores the query.

In this paper we consider interactive computations in which multiple algorithms pass group
elements (as well as non-group elements) as inputs to one another. This is naturally supported by
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the model as follows: When a generic algorithm A outputs k group elements (along with a potential
bit-string σ), it outputs the indices of k (non-empty) entries in the table B (together with σ). When
these outputs (or some of them) are passed on as inputs to a generic algorithm C, the table B is
re-initialized, and these values (and possibly additional group elements that C receives as input) are
placed in the first entries of the table. Additionally, we rely on the following conventions:

1. Throughout the paper we refer to values as either “explicit” ones or “implicit” ones. Explicit
values are all values whose representation (e.g., binary strings of a certain length) is explicitly
provided to the generic algorithms under consideration. Implicit values are all values that
correspond to group elements and that are stored in the table B – thus generic algorithms can
access them only via oracle queries. We will sometimes interchange between providing group
elements as input to generic algorithms implicitly, and providing them explicitly. Note that
moving from the former to the latter is well defined, since a generic algorithm A that receives
some of its input group elements explicitly can always simulate the computation as if they were
received as part of the table B.

2. For a group element g, we will differentiate between the case where g is provided explicitly
and the case where it is provided implicitly via the table B, using the notation g in the former
case, and the notation ĝ in the latter. Additionally, we extend this notation to a vector v of
group elements, which may be provided either explicitly (denoted v) or implicitly via the table
B (denoted v̂).

2.2 Generic-Group Identity-Based Encryption

The following definition adapts the standard notion of an identity-based encryption scheme to the
generic-group model.

Definition 2.1. A generic-group identity-based encryption scheme over an identity space ID =
{IDλ}λ∈N is a quadruple IBE = (Setup,KG,Enc,Dec) of generic algorithms defined as follows:

• The algorithm Setup is a probabilistic algorithm that receives as input the security parameter
λ ∈ N and the group order N , and outputs a master secret key msk ∈ {0, 1}∗ and public
parameters pp = (ppG, ppstr), where ppG is a tuple of npp group elements and ppstr is a binary
string.

• The algorithm KG is a (potentially) probabilistic algorithm that receives as input public pa-
rameters pp, a master secret key msk and an identity id. It outputs an identity secret key
skid = (skid,G, skid,str), where skid,G is a tuple of group elements and skid,str is a binary string.

• The algorithm Enc is a probabilistic algorithm that receives as input public parameters pp, an
identity id, and a bit b ∈ {0, 1}. It outputs a ciphertext c = (cG, cstr), where cG is a tuple of
group elements and cstr is a binary string.

• The algorithm Dec is a (potentially) probabilistic algorithm that receives as input public pa-
rameters pp, an identity secret key skid, and a ciphertext c. It outputs either a bit b ∈ {0, 1}
or the special rejection symbol ⊥.

We consider the standard correctness and security requirements of identity-based encryption
schemes. In fact, we consider a rather weak notion of non-adaptive security asking the attacker to
choose both the challenge identity and the identities for which secret keys are provided ahead of time
(since we prove an impossibility result then this can only strengthen our result).

Definition 2.2. A generic-group identity-based encryption scheme IBE = (Setup,KG,Enc,Dec)
over an identity space ID = {IDλ}λ∈N has decryption error ε = ε(λ) if for any security parameter

6



λ ∈ N, for any N produced by PrimeGen(1λ), for any (msk, pp) produced by SetupO(1λ), for any
id ∈ IDλ, and for any b ∈ {0, 1} it holds that

Pr
[
DecO(pp, skid,Enc

O(pp, id, b)) = b
]
≥ 1− ε

where skid ← KGO(pp,msk, id), and the probability is taken over the internal randomness of the
algorithms KG, Enc and Dec.

We note that our results can be easily adapted to a more relaxed notion of correctness, asking
that the above holds for almost all (msk, pp) produced by SetupO(1λ) instead of for all such (msk, pp).

Definition 2.3. A generic-group identity-based encryption scheme IBE = (Setup,KG,Enc,Dec)
over an identity space ID = {IDλ}λ∈N is non-adaptively secure if for any generic-group algorithm
A = (A1,A2) that issues a polynomial number of queries there exists a negligible function ν(λ) such
that ∣∣∣∣Pr [ExptIBE,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ ν(λ)
for all sufficiently large λ ∈ N, where the experiment ExptIBE,A(λ) is defined as follows:

1. N ← PrimeGen(1λ).
2. (id∗, id1, . . . idk, state) ← AO1 (1λ, N), for a polynomial k = k(λ), where id∗, id1, . . . idk ∈ IDλ

and id∗ /∈ {id1, . . . idk}.
3. (msk, pp)← SetupO(1λ, N).
4. skidi ← KGO(pp,msk, idi) for i ∈ [k].
5. c∗ ← EncO(pp, id∗, b) for b← {0, 1}.
6. b′ ← AO2 (state, pp, c∗, skid1 , . . . , skidk).
7. If b′ = b then output 1, and otherwise output 0.

3 Eliminating Group Elements From Secret Keys

In this section we show that any generic-group identity-based encryption scheme can be transformed
into one in which secret keys do not contain group elements. The transformation supports the same
identity space, and does not modify the scheme’s setup and encryption procedures (in particular, it
does not increase the number of group elements that are contained in the scheme’s public parameters).
The transformation does modify the scheme’s key-generation and decryption algorithms, leading to
an arbitrary polynomially-small increase in the scheme’s decryption error. We prove the following
theorem:

Theorem 3.1. Let IBE be a generic-group identity-based encryption scheme over an identity space
ID = {IDλ}λ∈N with decryption error ε(λ) and whose public parameters consist of npp(λ) group
elements. Then, for any polynomial p(λ), there exists a generic-group identity-based encryption
scheme ĨBE over the identity space ID with decryption error ε(λ)+1/p(λ), whose public parameters
consist of npp(λ) group elements, and whose secret keys do not contain group elements.

Preliminaries. Let A be a generic-group algorithm that receives as input group elements g1, . . . , gk
(in addition to the group element 1 ∈ ZN that is always provided as the first input to all algorithms)
and an explicit string str. We let EQ

(
AO(ĝ1, . . . , ĝk, str)

)
denote the random variable corresponding

to the set of all (k+ 1)-dimensional vectors over ZN resulting from the positively-answered equality
queries in the (possibly randomized) computation AO(ĝ1, . . . , ĝk, str).
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Formally, for each equality query (i, j) that is positively answered during this computation,
let Vi and Vj denote the group elements that are located in the ith and jth entries of the table
B associated with oracle O in this computation (i.e., Vi and Vj are the two group elements for
which A issues this equality query). Then, Vi and Vj are linear combinations of the group elements
1, g1, . . . , gk that are provided as input to the computation, and the coefficients of these linear
combinations can be determined by keeping track of the computation’s group-operation queries. Let
Vi − Vj = α0 · 1 +

∑k
`=1 α` · g` for α0, . . . , αk ∈ ZN . The set EQ

(
AO(ĝ1, . . . , ĝk, str)

)
consists of all

such vectors (α0, . . . , αk) ∈ Zk+1
N .

In addition, for a generic-group identity-based encryption IBE = (Setup,KG,Enc,Dec), and for
any public parameters pp produced by Setup we let pp = (pp1, . . . , ppnpp , ppstr), where pp1, . . . , ppnpp

are group elements and ppstr is an explicit string (recall that any msk produced by Setup is an explicit
string). Similarly, for any secret key skid produced by KG we let skid = (skid,1, . . . , skid,nsk

, skid,str)
where skid,1, . . . , skid,nsk

are group elements and skid,str is an explicit string, and for any ciphertext
c produced by Enc we let c = (c1, . . . , cnct , cstr), where c1, . . . , cnct are group elements and cstr is an
explicit string.

Finally, our proof relies on the following lemma (which is proved in Appendix A):

Lemma 3.2. Let k ≥ 1, and let X1, . . . , Xk be independent and identically distributed random
variables over subsets of a linear vector space V of dimension dim(V ). Then,

Pr [Xk * span (X1 ∪ · · · ∪Xk−1)] ≤
dim(V )

k
.

The remainder of this section consists of the proof of Theorem 3.1.

Proof of Theorem 3.1. Let IBE = (Setup,KG,Enc,Dec), and let p = p(λ) be a polynomial. We
construct a generic-group identity-based encryption scheme ĨBE = (S̃etup, K̃G, Ẽnc, D̃ec) by letting
S̃etup = Setup and Ẽnc = Enc, and by defining the algorithms K̃G and D̃ec as follows.

The key-generation algorithm K̃G
O
(pp,msk, id):

1. Generate skid = (ŝkid,1, . . . , ŝkid,nsk
, skid,str)← KGO(pp,msk, id).

2. For every b ∈ {0, 1} and i ∈ [M − 1], where M = p · (npp + nsk), compute
DecO(pp, skid,Enc

O(pp, id, b)) using fresh randomness for Enc and Dec, and let

Lid,b,i = EQ
(
DecO(pp, skid,Enc

O(pp, id, b))
)
⊆ Znpp+nsk+1

N .

3. Output s̃kid = (Lid, skid,str), where Lid =
⋃
b∈{0,1},i∈[M−1] Lid,b,i.

The decryption algorithm D̃ec
O
(pp, s̃kid, c):

1. Let pp = (p̂p1, . . . , p̂pnpp , ppstr), s̃kid = (Lid, skid,str), and c = (ĉ1, . . . , ĉnct , cstr).

2. Emulate the computation DecO(pp, skid, c) using symbolic variables instead of skid,1, . . . , skid,nsk

(recall that skid = (ŝkid,1, . . . , ŝkid,nsk
, skid,str)) by responding to each equality query (i, j) as follows:
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(a) Let Vi and Vj denote the corresponding group elements, and let

Vi − Vj = α0 · 1 +
npp∑
`=1

α` · pp` +
nsk∑
`=1

β` · skid,` +
nct∑
`=1

γi · ci,

where α0, . . . , αnpp , β1, . . . , βnsk
, γ1, . . . , γnct ∈ ZN (as explained above, these coefficients can be

found by keeping track of the emulated computation’s group-operation queries ).

(b) If there exist α′0, . . . , α′npp
∈ ZN such that (α′0, . . . , α

′
npp
, β1, . . . , βnsk

) ∈ span(Lid), then issue
group-operation queries for positioning the group element Wi,j = (α0 − α′0) · 1 +

∑npp

`=1(α` −
α′`) · pp` +

∑nct

`=1 γ` · c` in the table B. If Wi,j = 0 (this can be determined by issuing a
single equality query), then answer the equality query (i, j) positively, and otherwise answer
it negatively.

(c) If there do not exist such α′0, . . . , α′npp
∈ ZN , then answer the equality query (i, j) negatively.

3. Output the result of the emulated computation.

First, in terms of efficiency, note that if the algorithms (Setup,KG,Enc,Dec) issue at most a
polynomial number of queries, then so do the algorithms (S̃etup, K̃G, Ẽnc, D̃ec). Second, in terms
of security, note that the scheme ĨBE is at least as secure as the scheme IBE : The schemes have
the same setup and encryption algorithms, and the modified key-generation algorithm K̃G is defined
by applying a poly-query procedure to the output of the underlying key-generation algorithm KG.
Therefore, any adversary attacking the scheme ĨBE while issuing a polynomial number of queries
(recall Definition 2.3) can be efficiently transformed into an adversary attacking the scheme IBE
while issuing a polynomial number of queries and with (at least) the same advantage.

We are thus left with bounding the decryption error of the scheme ĨBE (recall Definition 2.2).
Fix a security parameter λ ∈ N, an integer N that is produced by PrimeGen(1λ), a pair (msk, pp)
that is produced by SetupO(1λ), an identity id ∈ IDλ, and a message b ∈ {0, 1}. The scheme IBE
has decryption error at most ε(λ), and therefore

Pr
[
D̃ec

O
(pp, s̃kid,Enc

O(pp, id, b)) 6= b
]

≤ ε(λ) + Pr
[
D̃ec

O
(pp, s̃kid,Enc

O(pp, id, b)) 6= DecO(pp, skid,Enc
O(pp, id, b))

]
(3.1)

In order to bound the probability in which the computations D̃ec
O
(pp, s̃kid,Enc

O(pp, id, b)) and
DecO(pp, skid,Enc

O(pp, id, b)) do not produce the same output, it suffices to bound the probability
in which an equality query is answered positively in one computation but negatively in the other
computation (as long as the responses to all equality queries are consistent then the emulated com-
putation carried out by D̃ec perfectly simulates Dec’s computation).

Assuming that the responses to equality queries are consistent among the two computations up
to a certain point, then both computations issue the exact same next equality query (i, j). Following
the description of D̃ec, let Vi and Vj denote the group elements in the ith and jth entries of the
emulated table B̃, and let Vi−Vj = α

(t)
0 ·1+

∑npp

`=1 α
(t)
` ·pp`+

∑nsk
`=1 β

(t)
` · skid,`+

∑nct
`=1 γ

(t)
` · c`. There

are three cases to consider:

Case I: If there exist α′0, . . . , α′npp
∈ ZN such that

(
α′0, . . . , α

′
npp
, β

(t)
1 , . . . , β

(t)
nsk

)
∈ span(Lid), then

α′0 · 1+
∑npp

`=1 α
′
` · pp`+

∑nsk
`=1 β

(t)
` · skid,` = 0. Therefore, α(t)

0 · 1+
∑npp

`=1 α
(t)
` · pp`+

∑nsk
`=1 β

(t)
` · skid,`+

9



∑nct
`=1 γ

(t)
i · ci = 0 if and only if (α(t)

0 − α′0) · 1 +
∑npp

`=1(α
(t)
` − α

′
`) · pp` +

∑nct
`=1 γ

(t)
` · c` = 0, and thus

the emulation obtains the correct answer to the equality query (i, j).

Case II: If the equality query (i, j) is negatively answered in Dec’s computation, and there do not
exist α′0, . . . , α′npp

∈ ZN such that
(
α′0, . . . , α

′
npp
, β

(t)
1 , . . . , β

(t)
nsk

)
∈ span(Lid), then it is also answered

negatively in D̃ec’s computation.

Case III: If the equality query (i, j) is positively answered in Dec’s computation, and there do
not exist α′0, . . . , α′npp

∈ ZN such that
(
α′0, . . . , α

′
npp
, β

(t)
1 , . . . , β

(t)
nsk

)
∈ span(Lid), then the equality

query (i, j) is negatively answered in D̃ec’s computation. However, we show that this case occurs
with probability at most 1/p(λ).

Recall that a ciphertext c← EncO(pp, id, b) is of the form c = (c1, . . . , cnct , cstr), where c1, . . . , cnct

are group elements and cstr is an explicit string. Since the only group elements that are given as
input to the computation EncO(pp, id, b) are 1, pp1, . . . , ppnpp , then each cv is of the form cv =
δv,0 · 1 +

∑npp

`=1 δv,` · pp`, for coefficients δv,0, . . . , δv,npp ∈ ZN that are determined by the group-
operation queries issued during the computation EncO(pp, id, b). Therefore,

Vi − Vj = α
(t)
0 · 1 +

npp∑
`=1

α
(t)
` · pp` +

nsk∑
`=1

β
(t)
` · skid,` +

nct∑
`=1

γ
(t)
` · c`

=

(
α

(t)
0 +

nct∑
v=1

·δv,0

)
· 1 +

npp∑
`=1

(
α

(t)
` +

nct∑
v=1

·δv,`

)
· pp` +

nsk∑
`=1

β
(t)
` · skid,`.

Now, in this case there do not exist α′0, . . . , α′npp
∈ ZN such that

(
α′0, . . . , α

′
npp
, β

(t)
1 , . . . , β

(t)
nsk

)
∈

span(Lid), and therefore in particular
(
α′0, . . . , α

′
npp
, β

(t)
1 , . . . , β

(t)
nsk

)
/∈ span(

⋃
i∈[M−1] Lid,b,i) for the

specific choice of α′` =
(
α

(t)
` +

∑nct
v=1 ·δv,`

)
for every ` ∈ {0, . . . , npp}. That is, this implies that for

the computation DecO(pp, skid,Enc
O(pp, id, b)) it holds that

EQ
(
DecO(pp, skid,Enc

O(pp, id, b))
)
* span

 ⋃
i∈[M−1]

Lid,b,i

 .

Applying Lemma 3.2 with the linear subspace V ⊆ Znpp+nsk+1
N defined as

V =

{(
α0, . . . , αnpp , β1, . . . , βnsk

)
∈ Znpp+nsk+1

N

∣∣∣ α0 · 1 +
npp∑
`=1

α` · pp` +
nsk∑
`=1

β` · skid,` = 0

}
,

which is of dimension at most npp + nsk since (1, pp1, . . . , ppnpp , skid,1, . . . , skid,nsk
) is a non-zero

vector, and with random variables X1, . . . , XM that are independently sampled from the distribution

10



EQ
(
DecO(pp, skid,Enc

O(pp, id, b))
)
, we obtain from Eq. (3.1) that

Pr
[
D̃ec

O
(pp, s̃kid,Enc

O(pp, id, b)) 6= b
]

≤ ε(λ) + Pr

EQ (DecO(pp, skid,EncO(pp, id, b))) * span

 ⋃
i∈[M−1]

Lid,b,i


= ε(λ) + Pr [XM * span (X1 ∪ · · · ∪XM−1)]

≤ ε(λ) + dimV

M(λ)

≤ ε(λ) + npp(λ) + nsk(λ)

M(λ)

= ε(λ) +
1

p(λ)
.

4 Attacking Generic-Group IBE Schemes

In this section we present a generic-group adversary that breaks the security of any generic-group
identity-based encryption scheme whose secret keys do not contain group elements, and that supports
more identities than the number of group elements included in its public parameters. We prove the
following theorem:

Theorem 4.1. Let npp(λ) be a function of the security parameter λ ∈ N. Let IBE be a secure generic-
group identity-based encryption scheme over an identity space ID = {IDλ}λ∈N with decryption error
ε(λ) ≤ 1/160(npp(λ)+1), whose public parameters consist of npp(λ) group elements, and whose secret
keys do not contain group elements. Then, |IDλ| ≤ npp(λ) for all sufficiently large λ ∈ N.

Regarding the decryption error ε(λ) ≤ 1/160(npp(λ)+ 1) considered in the above theorem, recall
that our transformation from Section 3 leads to an arbitrary polynomially-small increase in the
scheme’s decryption error.

Preliminaries. Recall that for any generic-group algorithm A that receives as input group ele-
ments g1, . . . , gk and an explicit string str we let EQ

(
AO(ĝ1, . . . , ĝk, str)

)
denote the random variable

corresponding to the set of all (k + 1)-dimensional vectors over ZN resulting from the positively-
answered equality queries in the computation AO(ĝ1, . . . , ĝk, str) (see Section 3 for the more formal
definition). Our proof relies on the following lemma (which is proved in Appendix B):

Lemma 4.2. Let k ≥ 1, and let X1, . . . , Xk be random variables over subsets of a linear vector space
V of dimension dimV . Let Y be distributed uniformly over {1, . . . , k} and independent of X1, . . . , Xk.
Denote by GoodSpan the set of all (i, U1, . . . , Uk) ⊆ [k]×

(
2V
)k for which

Pr
X1,...,Xk,Y

[XY ⊆ span (X1 ∪ · · · ∪XY−1) | Y = i,X1 = U1, . . . , Xi−1 = Ui−1] ≥
k − dimV

2k
.

Then,

Pr
X1,...,Xk,Y

[(Y,X1, . . . , Xk) ∈ GoodSpan] ≥ k − dimV

2k
.

The remainder of this section consists of the proof of Theorem 4.1.
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Proof of Theorem 4.1. Let IBE be a generic-group identity-based encryption scheme over an
identity space ID = {IDλ}λ∈N with decryption error ε(λ) ≤ 1/160(npp+1), whose public parameters
consist of npp = npp(λ) group elements, and whose secret keys do not contain group elements. Assume
toward a contradiction that |IDλ| ≥ npp+1 for infinitely many values of λ ∈ N, and assume without
loss of generality that {1, . . . , npp + 1} ⊆ IDλ for any such λ ∈ N. We present a generic-group
adversary A that issues a number of queries which is polynomial in λ, npp, and in the number of
queries issued by Enc and Dec, and for which

∣∣Pr [ExptIBE,A(λ) = 1
]
− 1/2

∣∣ is non-negligible for any
such λ ∈ N (recall Definition 2.3 describing the experiment ExptIBE,A). The adversary A = (A1,A2)
is defined as follows:

Our adversary A = (A1,A2)

The algorithm AO1 (1λ, N):

1. Sample i← {1, . . . , npp + 1}, and output the challenge identity id∗ = i, the identities (1, . . . , i− 1)
for which secret keys will be provided to A2, and the state state = (1λ, N, i).

The algorithm AO2 (state, pp, c∗, sk1, . . . , ski−1):

1. Let pp = (pp1, . . . , ppnpp , ppstr) for group elements pp1, . . . , ppnpp and an explicit string ppstr (and
recall that sk1, . . . , ski−1 are explicit strings).

[Part I: Using sk1, . . . , ski−1 for learning information on pp]

2. For each j ∈ {1, . . . , i− 1} perform the following steps:

(a) Initialize a set Ej = ∅ of (npp + 1)-dimensional vectors over ZN .

(b) For each message b ∈ {0, 1} repeat the following step for 8(npp + 1) iterations:
Compute DecO(pp, skj ,Enc

O(pp, j, b)) using fresh randomness for Enc and Dec, and update
Ej ← Ej ∪ EQ

(
DecO(pp, skj ,Enc

O(pp, j, b))
)
.

(c) Emulate a fresh oracle Ô in order to find (pp∗,msk∗, sk∗j ), where pp∗ = (pp∗1, . . . , pp
∗
npp
, pp∗str) for

group elements pp∗1, . . . , pp∗npp
and explicit strings pp∗str, msk∗ and sk∗j , subject to the following

requirements:

i. (pp∗,msk∗) and sk∗j are in the supports of SetupÔ(1λ, N) and KGÔ(pp∗,msk∗, j), respec-
tively.

ii. pp∗str = ppstr.
iii. For every (α0, . . . , αnpp) ∈ E1 ∪ · · · ∪ Ej−1 it holds that α0 · 1+

∑npp

`=1 α` · pp∗` = 0 (i.e., pp∗
satisfies the constraints induced by E1 ∪ · · · ∪ Ej−1).

iv. For each b ∈ {0, 1} it holds that Pr
[
DecÔ(pp∗, sk∗j ,Enc

Ô(pp∗, j, b)) = b
]
≥ 19/20, where

the probability is taken over the internal randomness of Enc and Dec (i.e., the decryption
error of sk∗j is at most 1/20).

v. For each b ∈ {0, 1} it holds that

Pr
[
EQ

(
DecÔ(pp∗, sk∗j ,Enc

Ô(pp∗, j, b))
)
* span (E1 ∪ · · · ∪ Ej−1)

]
≤ 1

5
,

where the probability is taken over the internal randomness of Enc and Dec.

(d) If such (msk∗, pp∗, sk∗j ) are found then for each message b ∈ {0, 1} repeat the following step
for 8(npp + 1) iterations:
Compute DecO(pp, sk∗j ,Enc

O(pp, j, b)) using fresh randomness for Enc and Dec, and update

Ej ← Ej ∪ EQ
(
DecO(pp, sk∗j ,Enc

O(pp, j, b))
)
.
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[Part II: Constructing an alternative sk∗i for decrypting the challenge ciphertext]

3. Emulate a fresh oracle Ô in order to find (pp∗,msk∗, sk∗i ), where pp∗ = (pp∗1, . . . , pp
∗
npp
, pp∗str) for

group elements pp∗1, . . . , pp∗npp
and explicit strings pp∗str, msk∗ and sk∗i , subject to the following

requirements:

(a) (pp∗,msk∗) and sk∗i are in the supports of SetupÔ(1λ, N) and KGÔ(pp∗,msk∗, i), respectively.

(b) pp∗str = ppstr.

(c) For every (α0, . . . , αnpp) ∈ E1 ∪ · · · ∪ Ei−1 it holds that α0 · 1 +
∑npp

`=1 α` · pp∗` = 0 (i.e., pp∗
satisfies the constraints induced by E1 ∪ · · · ∪ Ei−1).

(d) For each b ∈ {0, 1} it holds that Pr
[
DecÔ(pp∗, sk∗i ,Enc

Ô(pp∗, i, b)) = b
]
≥ 19/20 , where the

probability is taken over the internal randomness of Enc and Dec (i.e., the decryption error
of sk∗i is at most 1/20).

(e) For each b ∈ {0, 1} it holds that

Pr
[
EQ

(
DecÔ(pp∗, sk∗i ,Enc

Ô(pp∗, i, b))
)
* span (E1 ∪ · · · ∪ Ei−1)

]
≤ 1

5
,

where the probability is taken over the internal randomness of Enc and Dec.

4. If such (msk∗, pp∗, sk∗i ) are not found then sample and output b′ ← {0, 1}.

5. If such (msk∗, pp∗, sk∗i ) are found then compute DecO(pp, sk∗i ,Enc
O(pp, i, b)) for λ times, where each

computation uses fresh randomness for Enc, Dec and b, and count the number of times in which
decryption was correct. If decryption was correct less than λ · 1120 ·

(
1− 1

20

)
times, then sample and

output b′ ← {0, 1}.

6. Compute and output b′ ← DecO(pp, sk∗i , c
∗).

In what follows we first analyze the number of queries issued by A, and then analyze its success
probability. It terms of oracle queries (i.e., group-operations queries and equality queries), note that
A1 does not issue any queries, and that A2 issues queries only in Steps 2(b), 2(d), 5 and 6. These
queries result from invoking the algorithms Enc and Dec, where Steps 2(b) and 2(d) consist of at
most O((npp)

2) such invocations, Step 5 consists of λ such invocations, and Step 6 consists of one
such invocation.

For analyzing A’s success probability, fix a security parameter λ ∈ N, a prime integer N that is
produced by PrimeGen(1λ), and a pair (msk, pp) that is produced by SetupO(1λ). Our proof relies
on the following notation:

• The experiment ExptIBE,A and the description of our adversary define the random variables
sk1, . . . , ski−1 corresponding to the secret keys that A2 is given as input. For our analysis, we
additionally consider the random variables ski, . . . , sknpp+1 that are independently sampled by
computing skj ← KGO(pp,msk, j) for each j ∈ {i, . . . , npp + 1}.

• We denote by Y the random variable corresponding to the choice of the challenge identity
i← {1, . . . , npp + 1} by A1.

• For each j ∈ {1, . . . , npp + 1} we let Ej = ∪8(npp+1)
v=1 Ej,v, where each Ej,v denotes the random

variable corresponding to the set of vectors of coefficients of the equations found in one iteration
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of Step 2(b) and of Step 2(d). More specifically, each Ej,v is sampled from the distribution

EQ
(
DecO(pp, skj ,Enc

O(pp, j, 0))
)
∪ EQ

(
DecO(pp, skj ,Enc

O(pp, j, 1))
)

∪ EQ
(
DecO(pp, sk∗j ,Enc

O(pp, j, 0))
)
∪ EQ

(
DecO(pp, sk∗j ,Enc

O(pp, j, 0))
)
,

where if A2 does not find a suitable sk∗j in Step 2(c), then we define

EQ
(
DecO(pp, sk∗j ,Enc

O(pp, i, 0))
)
= EQ

(
DecO(pp, sk∗j ,Enc

O(pp, i, 0))
)
= ∅.

• We denote by GoodSpan the set of all (i, U1, . . . , Unpp+1) ∈ {1, . . . , npp + 1} ×
(
2Z

npp+1

N

)npp+1

for which

Pr[EY ⊆ span (E1 ∪ · · · ∪ EY−1) | Y = i, E1 = U1, . . . Ei−1 = Ui−1] ≥
1

2(npp + 1)
.

For avoiding additional notation, we abuse notation and denote by GoodSpan the event in
which (Y, E1, . . . , Enpp+1) ∈ GoodSpan.

Claim 4.3. Pr[GoodSpan] ≥ 1
2(npp+1) .

Proof. This is direct application of Lemma 4.2 with k = npp +1, (X1, . . . , Xk) = (E1, . . . , Ek), Y as
defined above, and

V =

{
(α0, . . . , αnpp) ∈ Znpp+1

N

∣∣∣∣∣ α0 · 1 +
npp∑
`=1

α` · pp` = 0

}
.

Note that since (1, pp1, . . . , ppnpp) is a non-zero vector then dimV ≤ npp.

For the next claim, we denote by FindKey the event that A2 finds (msk∗, pp∗, sk∗i ) in Step 3 that
satisfies the required properties.

Claim 4.4. GoodSpan ⊆ FindKey.

Proof. We show that whenever the event GoodSpan occurs, then msk, pp, and at least one skY in
the support of KGO(pp,msk, Y ) already satisfy the the required properties. Therefore, in particular,
A2 finds some (msk∗, pp∗, sk∗i ) in Step 3 that satisfies the required properties. Properties (a), (b)
and (c) are trivially satisfied by (msk, pp, skY ) for any skY in the support of KGO(pp,msk, Y ). In
what follows we show that properties (d) and (e) are satisfied by at least one skY in the support of
KGO(pp,msk, Y ).

The decryption error of the scheme is at most 1
160(npp+1) . Therefore, for any value of Y it holds

that
Pr

KG,Enc,Dec

[
DecO(pp, skY ,Enc

O(pp, Y, b)) = b
]
≥ 1− 1

160(npp + 1)

where skY ← KGO(pp,msk, Y ), and the probability is taken over the internal randomness of the
algorithms KG, Enc and Dec. The above holds for any value of Y and independently of E1∪· · ·∪EY−1,
and therefore

Pr
KG,Enc,Dec

[
DecO(pp, skY ,Enc

O(pp, Y, b)) = b | GoodSpan
]
≥ 1− 1

160(npp + 1)
,
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where skY ← KGO(pp,msk, Y ), and the probability is taken over the internal randomness of the
algorithms KG, Enc and Dec. Denote by SkSmallErrorY the set of all outputs skY of KGO(pp,msk, Y )
for which

Pr
Enc,Dec

[
DecO(pp, skY ,Enc

O(pp, Y, b)) = b | GoodSpan
]
≥ 19

20
,

where now the probability is taken only over the internal randomness of the algorithms Enc and Dec.
Then,

1− 1

160(npp + 1)
≤ Pr

[
DecO(pp, skY ,Enc

O(pp, Y, b)) = b | GoodSpan
]

≤ Pr[skY ∈ SkSmallErrorY | GoodSpan] · 1

+ (1− Pr[skY ∈ SkSmallErrorY | GoodSpan]) ·
19

20
.

Therefore,

Pr[skY ∈ SkSmallErrorY | GoodSpan] ≥ 1− 1

8(npp + 1)
. (4.1)

Similarly, denote by SkGoodY the set of all outputs skY of KGO(pp,msk, Y ) for which

Pr[EY ⊆ span (E1 ∪ · · · ∪ EY−1) | (Y, E1, . . . , Enpp+1) ∈ GoodSpan, skY ] ≥
1

4(npp + 1)
.

Then, from the definition of GoodSpan we obtain

1

2(npp + 1)
≤ Pr[EY ⊆ span (E1 ∪ · · · ∪ EY−1) | (Y, E1, . . . , Enpp+1) ∈ GoodSpan]

≤ Pr[SkGoodY | GoodSpan] · 1 + (1− Pr[SkGoodY | GoodSpan]) ·
1

4(npp + 1)

and therefore

Pr[skY ∈ SkGoodY | (Y, E1, . . . , Enpp+1) ∈ GoodSpan] ≥ 1

4(npp + 1)
. (4.2)

Therefore, combining Eq. (4.1) and (4.2) we obtain

Pr[skY ∈ SkGoodY ∩ SkSmallErrorY | (Y, E1, . . . , Enpp+1) ∈ GoodSpan]

≥ 1

4(npp + 1)
− 1

8(npp + 1)

=
1

8(npp + 1)
. (4.3)

Note that property (d) is satisfied by any skY ∈ SkSmallErrorY . We will now show that property (e)
is satisfied by any skY ∈ SkGoodY conditioned on GoodSpan, which together with Eq. (4.3) (and the
fact that Pr[GoodSpan] > 0 as shown in Claim 4.3) settles the proof.

Recall that EY = ∪8(npp+1)
v=1 EY,v where {EY,v}

8(npp+1)
v=1 are identically distributed and independent
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given E1, . . . , EY−1 and skY . Therefore, the definition of SkGoodY implies that

1

4(npp + 1)
≤ Pr[EY ⊆ span (E1 ∪ · · · ∪ EY−1) | (Y, E1, . . . , Enpp+1) ∈ GoodSpan, skY ∈ SkGoodY ]

= Pr[∧8(npp+1)
v=1 (EY,v ⊆ span (E1 ∪ · · · ∪ EY−1)) | (Y, E1, . . . , Enpp+1) ∈ GoodSpan, skY ∈ SkGoodY ]

=

8(npp+1)∏
v=1

Pr[(EY,v ⊆ span (E1 ∪ · · · ∪ EY−1)) | (Y, E1, . . . , Enpp+1) ∈ GoodSpan, skY ∈ SkGoodY ]

=
(
Pr[(EY,1 ⊆ span (E1 ∪ · · · ∪ EY−1)) | (Y, E1, . . . , Enpp+1) ∈ GoodSpan, skY ∈ SkGoodY ]

)8(npp+1)
.

Therefore,

Pr[(EY,1 ⊆ span (E1 ∪ · · · ∪ EY−1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ∈ SkGoodY ] ≥
(

1

4(npp + 1)

) 1
8(npp+1)

≥ 4

5
.

In addition, recall that,

EY,v = EQ
(
DecO(pp, skY ,Enc

O(pp, Y, 0))
)
∪ EQ

(
DecO(pp, skY ,Enc

O(pp, Y, 1))
)

∪ EQ
(
DecO(pp, sk∗Y ,Enc

O(pp, Y, 0))
)
∪ EQ

(
DecO(pp, sk∗Y ,Enc

O(pp, Y, 0))
)
,

Now, since for each b ∈ {0, 1}, EQ
(
DecO(pp, skY ,Enc

O(pp, Y, b))
)
⊆ EY,1, then for each b ∈ {0, 1}

it holds that

Pr[EQ
(
DecO(pp, skY ,Enc

O(pp, Y, b))
)
⊆ span (E1 ∪ · · · ∪ Ei−1) |

(Y, E1, . . . , Enpp+1) ∈ GoodSpan, skY ∈ SkGoodY ] ≥
4

5
,

as required.

For the next claim, note that if the event GoodSpan occurs, then by Claim 4.4 the event FindKey
occurs as well, and therefore pp∗, msk∗ and sk∗i are well defined.

Claim 4.5. For each b ∈ {0, 1} it holds that

Pr
[
DecO(pp, sk∗i ,Enc

O(pp, i, b; r); r′) = DecÔ(pp∗, sk∗i ,Enc
Ô(pp∗, i, b; r); r′)

∣∣∣GoodSpan] ≥ 3

5
,

where the probability is taken over the internal randomness r ∈ {0, 1}∗ and r′ ∈ {0, 1}∗ of Enc and
Dec, respectively.

Proof. Fix b ∈ {0, 1}. The definition of the set GoodSpan, together with the fact that EY =

∪8(npp+1)
v=1 EY,v where {EY,v}

8(npp+1)
v=1 are identically distributed and independent given E1, . . . , EY−1

and skY , imply that
1

2(npp + 1)
≤ Pr[EY ⊆ span (E1 ∪ · · · ∪ EY−1) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ]

= Pr[∧8(npp+1)
v=1 (EY,j ⊆ span (E1 ∪ · · · ∪ EY−1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ]

=

8(npp+1)∏
v=1

Pr[(EY,j ⊆ span (E1 ∪ · · · ∪ EY−1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ]

= (Pr[(EY,1 ⊆ span (E1 ∪ · · · ∪ EY−1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ])
8(npp+1) .
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Therefore,

Pr[(EY,1 ⊆ span (E1 ∪ · · · ∪ EY−1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ] ≥
(

1

2(npp + 1)

) 1
8(npp+1)

≥ 4

5
.

Since

Ei,1 = EQ
(
DecO(pp, ski,Enc

O(pp, i, 0))
)
∪ EQ

(
DecO(pp, ski,Enc

O(pp, i, 1))
)

∪ EQ
(
DecO(pp, sk∗i ,Enc

O(pp, i, 0))
)
∪ EQ

(
DecO(pp, sk∗i ,Enc

O(pp, i, 0))
)
,

then, in particular, it holds that

Pr[EQ
(
DecO(pp, sk∗i ,Enc

O(pp, i, b))
)
⊆ span (E1 ∪ · · · ∪ Ei−1) | GoodSpan, ski] ≥

4

5
.

Since sk∗i and the randomness of Enc and Dec are independent of ski, then also

Pr[EQ
(
DecO(pp, sk∗i ,Enc

O(pp, i, b))
)
⊆ span (E1 ∪ · · · ∪ Ei−1) | GoodSpan] ≥

4

5
.

One of the requirements of (msk∗, pp∗, sk∗i ) is that

Pr
[
EQ

(
DecÔ(pp∗, sk∗i ,Enc

Ô(pp∗, i, b))
)
⊆ span (E1 ∪ · · · ∪ Ei−1)

]
≥ 4

5
,

where the probability is taken over the internal randomness of Enc and Dec, and therefore

Pr[EQ
(
DecO(pp, sk∗i ,Enc

O(pp, i, b; r); r′)
)
∪ EQ

(
DecÔ(pp∗, sk∗i ,Enc

Ô(pp∗, i, b; r); r′)
)

⊆ span (E1 ∪ · · · ∪ Ei−1) | GoodSpan] ≥
4

5
+

4

5
− 1 =

3

5
,

where the probability is taken over the internal randomness r ∈ {0, 1}∗ and r′ ∈ {0, 1}∗ of Enc and
Dec, respectively. Now, for each such r and r′ that satisfy

EQ
(
DecO(pp, sk∗i ,Enc

O(pp, i, b; r); r′)
)
∪EQ

(
DecÔ(pp∗, sk∗i ,Enc

Ô(pp∗, i, b; r); r′)
)
⊆ span (E1 ∪ · · · ∪ Ei−1)

we claim that

DecO(pp, sk∗i ,Enc
O(pp, i, b; r); r′) = DecÔ(pp∗, sk∗i ,Enc

Ô(pp∗, i, b; r); r′).

The two computations have the same explicit inputs since ppstr = pp∗str and sk∗i does not contain
group elements. Assuming that the responses to the equality queries are consistent among the two
computations up to a certain point, then both computations issue the exact same next equality
query (i1, i2). Let Vi1 and Vi2 denote the group elements that are located in the corresponding
entries of the table B associated with oracle O. Let V ∗i1 and V ∗i2 denote the group elements that
are located in the corresponding entries of the table B̂ associated with oracle Ô. Let Vi1 − Vi2 =
α0 ·1+

∑npp

r=1 αr ·ppr for α0, . . . , αr ∈ ZN . Since the two computations are the same up to this point,
V ∗i1 − V

∗
i2
= α0 · 1 +

∑npp

r=1 αr · pp∗r .
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On the one hand, if the equality query (i1, i2) is answered positively in the computation DecO(pp,
sk∗i ,Enc

O(pp, i, b; r); r′), then (α0, . . . , αnpp) ∈ EQ
(
DecO(pp, sk∗i ,Enc

O(pp, i, b; r); r′)
)
and therefore

(α0, . . . , αnpp) ∈ span (E1 ∪ · · · ∪ Ei−1). But pp∗ is chosen to satisfy (E1 ∪ · · · ∪ Ei−1), and so α0 ·
1 +

∑npp

r=1 αr · pp∗r = 0, and this equality query is also answered positively by the computation
DecÔ(pp∗, sk∗i ,Enc

Ô(pp∗, i, b; r); r′).
On the other hand, if the equality query (i1, i2) is answered positively by the computation

DecÔ(pp∗, sk∗i ,Enc
Ô(pp∗, i, b; r); r′), then an symmetric argument shows that this equality query is

also answered positively by the computation DecO(pp, sk∗i ,Enc
O(pp, i, b; r); r′).

Claim 4.6. For each b ∈ {0, 1} it holds that

Pr
[
DecO(pp, sk∗i ,Enc

O(pp, i, b)) = b
∣∣GoodSpan] ≥ 11

20
.

Proof. The event GoodSpan implies the event FindKey, and therefore the secret key sk∗i chosen in
Step 3 satisfies

Pr
[
DecÔ(pp∗, sk∗i ,Enc

Ô(pp∗, i, b)) = b
]
≥ 19

20
,

where the probability is taken over the internal randomness of the algorithms Enc and Dec. Com-
bining this with Claim 4.5 we obtain

Pr
[
DecO(pp, sk∗i ,Enc

O(pp, i, b)) 6= b
∣∣GoodSpan]

≤ Pr
[
DecO(pp, sk∗i ,Enc

O(pp, i, b; r); r′) 6= DecÔ(pp∗, sk∗i ,Enc
Ô(pp∗, i, b; r); r′)

∣∣∣GoodSpan]
+Pr

[
DecÔ(pp∗, sk∗i ,Enc

Ô(pp∗, i, b)) 6= b
]

≤ 2

5
+

1

20

=
9

20
.

For the following claims, we denote by Pass the event that sk∗i passes the test in Step 5, and
denote by Win the event in which ExptIBE,A(λ) = 1.

Claim 4.7. Pr[Win | GoodSpan] ≥ 11
20 ·

(
1− e−Ω(λ)

)
.

Proof. Claim 4.6 and Chernoff’s bound imply that

Pr[Win | GoodSpan] ≥ Pr[Win | Pass ∩ GoodSpan] · Pr[Pass | GoodSpan]

≥ 11

20
·
(
1− e−

(0.05)2

2
· 11
20
·λ
)
.

Claim 4.8. Pr[Win | GoodSpan] ≥ 1
2 ·
(
1− e−Ω(λ)

)
.
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Proof. Recall that FindKey denotes the event in which A finds (msk∗, pp∗, sk∗i ) in Step 3 that satisfies
the required properties. Therefore,

Pr[Win | GoodSpan] = Pr[Win | FindKey ∩ GoodSpan] · Pr[FindKey | GoodSpan]
+Pr[Win | FindKey ∩ GoodSpan] · Pr[FindKey | GoodSpan]

= Pr[Win | FindKey ∩ GoodSpan] · Pr[FindKey | GoodSpan]

+
1

2
· Pr[FindKey | GoodSpan] (4.4)

Denote by FoundUseful the event in which A finds sk∗i in Step 3 and the success probability of sk∗i
at decrypting correctly is at least 1/2. That is, FoundUseful is the event in which for each b ∈ {0, 1}
it holds that Pr[DecO(pp, sk∗i ,Enc

O(pp, i, b)) = b] ≥ 1/2, where the probability is taken over the
internal randomness of the algorithms Enc and Dec. Then, FoundUseful ⊆ FindKey, and therefore,

Pr[Win | FindKey ∩ GoodSpan]

= Pr[Win | FoundUseful ∩ GoodSpan] · Pr[FoundUseful | FindKey ∩ GoodSpan]

+ Pr[Win | FindKey ∩ FoundUseful ∩ GoodSpan] · Pr[FoundUseful | FindKey ∩ GoodSpan] (4.5)

Now, it holds that

Pr[Win | FoundUseful ∩ GoodSpan] ≥ 1

2
(4.6)

and that

Pr[Win | FindKey ∩ FoundUseful ∩ GoodSpan]

≥ Pr[Win | Pass ∩ FindKey ∩ FoundUseful ∩ GoodSpan]

·Pr[Pass | FindKey ∩ FoundUseful ∩ GoodSpan] (4.7)

Recall that in Step 5 sk∗i passes the test when decryption is correct for more than λ · 11
20 ·
(
1− 1

20

)
=

0.5225 · λ times out of λ times. Therefore, by Chernoff’s bound,

Pr[Pass | FindKey ∩ FoundUseful ∩ GoodSpan] ≤ e−
(0.0225)2

3
· 1
2
·λ = e−Ω(λ). (4.8)

In addition,

Pr[Win | Pass ∩ FindKey ∩ FoundUseful ∩ GoodSpan] =
1

2
(4.9)

Thus, combining Eq. (4.7), (4.8) and (4.9) we obtain

Pr[Win | FindKey ∩ FoundUseful ∩ GoodSpan] ≥ 1

2
·
(
1− e−Ω(λ)

)
(4.10)

and combining Eq. (4.5), (4.6) and (4.10) we obtain

Pr[Win | FindKey ∩ GoodSpan] ≥ 1

2
·
(
1− e−Ω(λ)

)
. (4.11)

Finally, combining Eq. (4.4) and (4.11) we obtain

Pr[Win | GoodSpan] ≥ 1

2
·
(
1− e−Ω(λ)

)
.
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Claim 4.9. Pr
[
ExptIBE,A(λ) = 1

]
≥ 1

2 + 1
40(npp+1) − e

−Ω(λ)

Proof. From Claim 4.7 and Claim 4.8 we obtain

Pr[Win] = Pr[Win | GoodSpan] · Pr[GoodSpan] + Pr[Win | GoodSpan] · Pr[GoodSpan]

≥ 11

20
·
(
1− e−Ω(λ)

)
· Pr[GoodSpan] + 1

2
·
(
1− e−Ω(λ)

)
· (1− Pr[GoodSpan])

=
1

2
+

(
11

20
− 1

2

)
· Pr[GoodSpan]− e−Ω(λ)

=
1

2
+

1

20
· Pr[GoodSpan]− e−Ω(λ).

Lemma 4.3 now implies that

Pr[Win] ≥ 1

2
+

1

20
· 1

2(npp + 1)
− e−Ω(λ)

=
1

2
+

1

40(npp + 1)
− e−Ω(λ)

This settles the proof of Theorem 4.1.
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A Proof of Lemma 3.2

The random variables X1, . . . , Xk are independent and identically distributed, and therefore for every
i ∈ [k] it holds that

Pr [Xk * span (X1 ∪ · · · ∪Xk−1)] = Pr [Xi * span (X1 ∪ · · · ∪Xi−1 ∪Xi+1 ∪ · · · ∪Xk)] .

Thus,

Pr [Xk * span (X1 ∪ · · · ∪Xk−1)]

=
1

k
·
k∑
i=1

Pr [Xi * span (X1 ∪ · · · ∪Xi−1 ∪Xi+1 ∪ · · · ∪Xk)]

=
1

k
·
k∑
i=1

∑
U1,...,Uk⊆V

Pr [(X1, . . . , Xk) = (U1, . . . , Uk)] · 1{Ui*span(U1∪···∪Ui−1∪Ui+1∪···∪Uk)}

=
1

k
·

∑
U1,...,Uk⊆V

Pr [(X1, . . . , Xk) = (U1, . . . , Uk)] ·
k∑
i=1

1{Ui*span(U1∪···∪Ui−1∪Ui+1∪···∪Uk)},
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where for any event E we denote by 1E its indicator. Since the vector space V is of dimension
dim(V ), then for any U1, . . . , Uk ⊆ V there are at most dim(V ) indices i ∈ [k] for which Ui *
span (U1 ∪ · · · ∪ Ui−1 ∪ Ui+1 ∪ · · · ∪ Uk). Therefore,

Pr [Xk * span (X1 ∪ · · · ∪Xk−1)] ≤
1

k
·

∑
U1,...,Uk⊆V

Pr [(X1, . . . , Xk) = (U1, . . . , Uk)] · dim(V )

=
dim(V )

k
.

B Proof of Lemma 4.2

Our proof of Lemma 4.2 relies on the following lemma (note that, unlike in the statement of Lemma
3.2, here the random variables X1, . . . , Xk are not assumed to be independent or identically dis-
tributed):

Lemma B.1. Let k ≥ 1, and let X1, . . . , Xk be random variables over subsets of a linear vector
space V of dimension dim(V ). Let Y be distributed uniformly over {1, . . . , k} and independent of
X1, . . . , Xk. Then,

Pr
X1,...,Xk,Y

[XY * span (X1 ∪ · · · ∪XY−1)] ≤
dim(V )

k
.

Proof of Lemma B.1. Observe that

Pr
X1,...,Xk,Y

[XY * span (X1 ∪ · · · ∪XY−1)]

=
k∑
i=1

∑
U1,...,Uk⊆V

Pr
X1,...,Xk,Y

[Y = i ∧ (X1, . . . , Xk) = (U1, . . . , Uk)] · 1{Ui*span(U1∪···∪Ui−1)}

=

k∑
i=1

∑
U1,...,Uk⊆V

Pr
Y
[Y = i] · Pr

X1,...,Xk

[(X1, . . . , Xk) = (U1, . . . , Uk)] · 1{Ui*span(U1∪···∪Ui−1)}(B.1)

=
1

k
·

∑
U1,...,Uk⊆V

Pr
X1,...,Xk

[(X1, . . . , Xk) = (U1, . . . , Uk)] ·

(
k∑
i=1

1{Ui*span(U1∪···∪Ui−1)}

)
(B.2)

≤ 1

k
·

∑
U1,...,Uk⊆V

Pr
X1,...,Xk

[(X1, . . . , Xk) = (U1, . . . , Uk)] · dim(V ) (B.3)

=
dim(V )

k

where Eq. (B.1) follows from the fact that Y is independent of X1, . . . , Xk, Eq. (B.2) follows from
the fact that Y is uniformly distributed, and Eq. (B.3) follows from the fact that V is of dimension
dimV .

Equipped with Lemma B.1, we now prove Lemma 4.2.

Proof of Lemma 4.2. On the one hand, Lemma B.1 implies that

k − dimV

k
≤ Pr [XY ⊆ span (X1 ∪ · · · ∪XY−1)] .
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On the other hand,

Pr [XY ⊆ span (X1 ∪ · · · ∪XY−1)]

= Pr [XY ⊆ span (X1 ∪ · · · ∪XY−1) | (Y,X1, . . . , Xk) ∈ GoodSpan] · Pr[GoodSpan]
+Pr

[
XY ⊆ span (X1 ∪ · · · ∪XY−1) | (Y,X1, . . . , Xk) ∈ GoodSpan

]
· Pr[GoodSpan]

≤ Pr[GoodSpan] +
k − dimV

2k
.

Therefore,

Pr[GoodSpan] ≥ k − dimV

2k
.
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