
Appenzeller to Brie: Efficient Zero-Knowledge Proofs for
Mixed-Mode Arithmetic and Z

2
𝑘

Carsten Baum

Aarhus University

cbaum@cs.au.dk

Lennart Braun

Aarhus University

braun@cs.au.dk

Alexander Munch-Hansen

Aarhus University

almun@cs.au.dk

Peter Scholl

Aarhus University

peter.scholl@cs.au.dk

ABSTRACT
Zero-Knowledge proofs are highly flexible cryptographic protocols

that are an important building block for many secure systems.

Typically, these are defined with respect to statements that are

formulated as arithmetic operations over a fixed finite field. This

inflexibility is a disadvantage when it comes to complex programs,

as some fields are more amenable to express certain operations than

others. At the same time, there do not seem to be many proofs with

a programming model similar to those found in modern computer

architectures that perform arithmetic with 32 or 64 bit integers.

In this work, we present solutions to both of these problems.

First, we show how to efficiently check consistency of secret values

between different instances of Zero Knowledge protocols based

on the commit-and-prove paradigm. This allows a protocol user

to easily switch to the most efficient representation for a given

task. To achieve this, we modify the extended doubly-authenticated
bits (edaBits) approach by Escudero et al. (Crypto 2020), originally
developed for MPC, and optimize it for the Zero-Knowledge set-

ting. As an application of our consistency check, we also introduce

protocols for efficiently verifying truncations and comparisons of

shared values both modulo a large prime 𝑝 and modulo 2
𝑘
.

Finally, we complement our conversion protocols with new

protocols for verifying arithmetic statements in Z
2
𝑘 . Here, we

build upon recent interactive proof systems based on information-

theoretic MACs and vector oblivious linear evaluation (VOLE), and

show how this paradigm can be adapted to the ring setting. In par-

ticular, we show that supporting such modular operations natively

in a proof system can be almost as efficient as proofs over large

fields or bits, and this also easily plugs into our framework for Zero

Knowledge conversions.

KEYWORDS
Zero Knowledge Protocols; Commit and Prove; Rings; Conversion

1 INTRODUCTION
Zero-Knowledge proofs are a cryptographic primitive where a

prover convinces a verifier that a statement is true. The verifier

should be convinced only of true statements even if the prover is

malicious, and moreover, the verifier should not learn anything

beyond the fact that the statement holds. Current state-of-the-art

Zero-Knowledge (ZK) protocols for arbitrary functions work over

either Z𝑝 for a large 𝑝 or Z2. The computation is typically modeled

as a circuit of operations that equal the operations of the underlying

field, and the efficiency of a proof depends on the number of gates

that the circuit has.

A recent line of work has been investigating the scalability of

ZK protocols for very large statements, represented as, for instance,

circuits with billions of gates. This can be seen in work such as

zero-knowledge from garbled circuits [17, 19, 23, 32] and vector

oblivious linear evaluation (VOLE) [4, 14, 29, 30]. To handle complex

statements, protocols in this setting often have the drawback of

requiring more interaction compared with other approaches such

as MPC-in-the-head, SNARKs or PCPs, thus sacrificing on proof

sizes and public verifiability. However, the advantage is that these

protocols typically have lower overhead for the prover, in terms of

computational and memory resources, thus scaling better as the

statement size increases.

Certain functions are known to be “more efficient” to express

as circuits over a specific domain. For example, comparisons or

other bit operations are most efficient when expressed over Z2,
while integer arithmetic best fits into Z𝑝 . At the same time, neither

of these captures arithmetic modulo 2
𝑘
efficiently, which is the

standard model of current computer architectures. Most state-of-

the-art ZK compilers only operate over a single domain, so for

example, if this is Z𝑝 for a large prime 𝑝 , then any comparison

operation will first require a costly bit-decomposition, followed by

emulation of the binary circuit logic in Z𝑝 . If there was instead a

way to efficiently switch representations, a more suitable protocol

over Z2 could be used instead, for certain parts of the computation.

1.1 Our Contributions
In this work, we address the above shortcomings, by introducing ef-

ficient conversion protocols for “commit-and-prove”-type ZK, such

as recent VOLE-based protocols. We then build on these conver-

sions by presenting new, high-level gadgets for common operations

like truncation and comparison. Finally, we supplement this with

efficient ZK protocols for arithmetic circuits over Z
2
𝑘 , which are

also compatible with our previous protocols.

Below, we give a more detailed, technical summary of these

contributions.

Commit-and-prove setting. Our protocols work in the commit-

and-prove paradigm, where the prover first commits to the secret

witness, before proving various properties about it. Assume we

have two different commitment schemes, working over Z2 and

Z𝑀 , and denote by [𝑥]2 or [𝑥]𝑀 that the value 𝑥 ∈ Z𝑀 has been

committed to in one of the two respective schemes.

1

Note that our protocols are completely agnostic as to the com-

mitment scheme that is used, provided it is linearly homomor-

phic. However, in practice a fast instantiation can be obtained

using information-theoretic MACs based on recent advances in

VOLE [7, 8, 28, 31] from the LPN assumption. This has been the

approach taken in recent VOLE-based ZK protocols [4, 29], which

exploit the high computational efficiency and low communication

overhead of LPN-based VOLE.

Conversions. The goal of our conversion protocol is to verify that
a sequence of committed bits [𝑥0]2, . . . , [𝑥𝑚−1]2 correspond to the

committed arithmetic value [𝑥]𝑀 , where 𝑥 =
∑𝑚−1
𝑖=0 2

𝑖𝑥𝑖 mod 𝑀 .

In the MPC setting, Escudero et al. [15] showed how to use ex-
tended doubly-authenticated bits, or edaBits, for this task. edaBits
are random tuples of commitments (([𝑟𝑖]2)𝑚−1𝑖=0

, [𝑟]𝑀) that are guar-
anteed to be consistent. By preprocessing random edaBits, [15]
showed how conversions between secret values can then be done ef-

ficiently in MPC in an online phase. Note that in MPC, the edaBits
are actually secret-shared and known to nobody; however, the

protocol of [15] starts by first creating private edaBits known to

one party, and then summing these up across the parties to obtain

secret-shared edaBits. In the ZK setting, the prover knows the

values of the edaBits, so the second phase can clearly be omitted.

With this observation, a straightforward application of edaBits
leads to the following basic conversion protocol between prover P
and verifierV:

(1) P commits to [𝑥0]2, . . . , [𝑥𝑚−1]2.
(2) P andV run the edaBits protocol to generate a valid commit-

ted edaBit ([𝑟0]2, . . . , [𝑟𝑚−1], [𝑟]𝑀).
(3) P uses ([𝑟0]2, . . . , [𝑟𝑚−1]2, [𝑟]𝑀) to convert [𝑥0]2, . . . , [𝑥𝑚−1]2

into [𝑥]𝑀 correctly.

In the last step, P will first commit to [𝑥]𝑀 , then open [𝑥 + 𝑟]𝑀
toV , and finally prove that 𝑥 + 𝑟 equals the sum of the committed

bits [𝑥𝑖]2 and [𝑟𝑖]2. The latter check requires the verification of a

binary circuit for addition modulo𝑀 over Z2.
In our protocol, we introduce several optimizations of this ap-

proach, tailored to the ZK setting. Firstly, we observe that in the

ZK setting, it is not necessary to create random verified edaBits,
if we can instead just apply the edaBit verification protocol to the

actual conversion tuples ([𝑥0]2, . . . , [𝑥𝑚−1]2, [𝑥]𝑀), from the wit-

ness. This change would remove the need for the binary addition

circuits in the last step. Unfortunately, the protocol of [15] cannot

be used for this setting, as it uses a cut-and-choose procedure where

a small fraction of edaBits are opened and then discarded, which

may leak information on our conversion tuples. Instead, we present

a new edaBit consistency check where the cut-and-choose step

does not leak on the secret conversion tuples used as input, essen-

tially by replacing the uniformly random permutation of edaBits
with a permutation sampled from a more restricted set. This re-

quires a careful analysis to show that the modified check still has a

low enough cheating probability.

In addition, we present a simplification of the protocol which

further reduces communication, by using “faulty daBits”. daBits
(doubly-authenticated bits) are length-1 edaBits ([𝑥]2, [𝑥]𝑀), which
are used in the consistency check of [15] when𝑀 is not a power of

2. However, producing a correct daBit requires proving that [𝑥]𝑀
is a bit, introducing an extra check. We show that our protocol with

a slight modification remains secure even when the daBits may

be inconsistent. Essentially, this boils down to showing that any

errors in faulty daBits can be translated into equivalent errors in

the binary addition circuit used to check the edaBits. Since our
basic protocol is already resilient to faulty addition circuits, the

same security analysis applies.

Comparison & Truncation. Using our efficient conversion check,

we give new protocols for verifying integer truncation and integer

comparison on committed values. A natural starting point would

be to adapt the MPC protocols in [15], which also used edaBits for
these operations. However, a drawback of these protocols is that in

addition to edaBits, they use auxiliary binary comparison circuits,

which add further costs. We show that in the ZK setting, these can

be avoided, and obtain protocols which only rely on our efficient

conversion check.

As a building block of our protocols, we make use of the fact

that our edaBit consistency check can easily be used to prove

that a committed value 𝑥 ∈ Z𝑀 is at most 𝑚 bits in length, for

some public𝑚. We then show that integer truncation in Z𝑀 can

be decomposed into just two length checks, by exploiting the fact

that the prover can commit to arbitrary values dependent on the

witness. Then, given truncation, we can easily obtain a comparison

check, which shows that a committed bit [𝑏]2 encodes 𝑏 = (𝑥
?

< 𝑦),
where [𝑥]𝑀 , [𝑦]𝑀 are committed.

ZK for Arithmetic Circuits over Z
2
𝑘 . Our conversion, truncation

and comparison protocols can all be made to work with either a

field Z𝑝 , or a ring Z2𝑘 , giving flexibility in high-level applications.

While ZK protocols for Z𝑝 and Z2 have been well-studied, there

is less work on protocols for circuits over Z
2
𝑘 , especially in the

commit-and-prove setting. We take the first steps towards this, by

showing how to use VOLE-based information-theoretic MACs for

ZK over Z
2
𝑘 , by adapting the techniques from SPDZ

2
𝑘 [12]. Given

the MACs, which serve as homomorphic commitments in Z
2
𝑘 , we

show how to efficiently verify multiplications on committed values.

We present two possible approaches: the first is based on a simple

cut-and-choose procedure, adapted from [29] for binary circuits;

in the second approach, we adapt the field-based multiplication

check from [4] to work over rings, which requires some non-trivial

modifications.

Since these protocols use VOLE-based information-theoretic

MACs, we obtain ZK protocols in the preprocessing model, assum-

ing a trusted setup to distribute VOLE (or short seeds which expand

to VOLE [7]). Removing the trusted setup can be done with an ac-

tively secure VOLE protocol over Z
2
𝑘 . We note that the LPN-based

construction of [7] also works over Z
2
𝑘 (as implemented in [28]),

although currently only with passive security. It is an interesting

future direction to extend efficient actively secure protocols [8, 29]

to the Z
2
𝑘 setting.

Concrete Efficiency. We analyze the efficiency of our protocols,

in terms of the bandwidth requirements and the amount of VOLE

or OT preprocessing that is needed. Compared with a baseline pro-

tocol consisting of a straightforward application of edaBits [15]
to ZK, our optimized conversion protocol reduces communication

by more than 2x, while also reducing the number of VOLEs re-

quired by around 4x. Since our protocol does not introduce any

2

extra computation, we expect the concrete performance gains in an

implementation to be similar (depending on the network setting).

Our Z
2
𝑘 protocols achieve amortized communication costs of a

single ring element to open a commitment, and two elements of the

larger ring Z
2
𝑘+𝑠 , where 𝑠 is a statistical security parameter, plus

two VOLEs, to verify a multiplication. The former is optimal, and

the latter is competitive with state-of-the-art protocols for large

fields such as [4, 29], which need to transfer 2–3 field elements.

1.2 Related Work
Recently and independently, Quicksilver [30] proposed a newVOLE-

based ZK protocol for boolean and arithmetic circuits (without

support for conversions). Unlike the protocols in this work, Quick-

silver makes non-black-box use of information-theoretic MACs

to improve efficiency, obtaining a cost of just 1 field element per

multiplication gate when evaluating a circuit. Since the core of our

protocol uses potentially faulty information to verify edaBits, it
seems likely that the techniques from Quicksilver could be plugged

in to avoid having to deal with these faulty components, which

would simplify much of our security analysis. On the down side,

since Quicksilver makes non-black-box use of VOLE-based MACs,

it would not be applicable in settings based on other types of homo-

morphic commitments, or applications such as proofs of disjunc-

tions in [4], which assumes a black-box commitment scheme. Thus,

our protocol is more general and may be of use in a wider range of

applications. We leave a more detailed exploration of combining

Quicksilver and our techniques as future work.

Another related work is Rabbit [24], which provided improved

protocols for secure comparison and truncation based on edaBits,
in the MPC setting. Similarly to our work in ZK, Rabbit allows to

avoid the large “gap” between the field size and the desired message

space when running these protocols; however, our techniques in

the ZK setting are different.

In LegoSNARK [10] the authors show how to combine different

succinct ZK proof systems. Our work differs as we focus on the

setting where data is represented in different rings of possibly

constant size for each subtask, whereas [10] relies on large groups.

2 PRELIMINARIES
In this section we introduce several primitives which are used

throughout the constructions in this paper.

2.1 Notation
We use 𝑀 to denote a modulus which is either a large prime 𝑝 ,

or 2
𝑘
. As a short hand, ≡𝑘 denotes equality modulo 2

𝑘
. We use

[𝑥]𝑀 or [𝑥]2 to denote authenticated values (see Sections 2.3 and

2.4) from the plaintext space Z𝑀 or Z2, and write just [𝑥] when
the modulus is clear from the context. We let 𝑠 denote a statistical

security parameter and [𝑛] denote the set {1, . . . , 𝑛}.

2.2 Zero-Knowledge Proofs
Zero-knowledge proofs (of knowledge) are interactive two-party

protocols that allow the prover P to convince a verifierV that a

certain statement is true (and that it possesses a witness to this

fact). This happens in a way such thatV does not learn anything

else besides this fact that it could not compute by itself. Instead of

using the classical definition by Goldwasser et al. [18], we define

zero-knowledge using an ideal functionality FZK for satisfiability

of circuits C: On input (Prove, C,𝑤) from P and (Prove, C) from
V the functionality FZK outputs ⊤ toV iff. C(𝑤) = 1 holds, and

sends ⊥ otherwise [29].

Following previous works (e.g. [4, 29]), we use the commit-and-

prove strategy to instantiate FZK using homomorphic commitments

(see Section 2.4). These allow the prover P to commit to its witness

𝑤 . Then the circuit C can be evaluated on the committed witness

to obtain a commitment to the output, which is opened to prove

that indeed C(𝑤) = 1 holds.

2.3 VOLE and Linearly Homomorphic MACs
Oblivious transfer (OT) [16] is a two-party protocol, where the re-

ceiver can obliviously inputs a bit𝑏 to choose between twomessages

𝑚0,𝑚1 held by the sender to obtain𝑚𝑏 . In correlated OT (COT) [2]

the messages are chosen randomly given a sender-specified corre-

lation function, e.g. 𝑥 ↦→ 𝑥 + 𝛿 such that𝑚1 = 𝑚0 + 𝛿 holds over

some domain. Thus, the receiver obtains𝑚𝑏 = 𝛿 · 𝑏 +𝑚0.

While OT inherently requires relatively costly public key cryp-

tography [20], OT extension [21] allows to expand a small number

of regularly computed OTs into a large number of OTs using only

relatively cheap symmetric key cryptography.

Oblivious linear-function evaluation (OLE) [22, 25] is an arith-

metic generalization of COT allowing a receiver to evaluate a secret

linear equation 𝛼 · 𝑋 + 𝛽 (over a field F𝑝 or ring Z
2
𝑘) held by the

sender at a point of its choice 𝑥 to obtain 𝑦 = 𝛼 · 𝑥 + 𝛽 . This can
be extended into vector OLE (VOLE) [1] where 𝑥 and 𝛽 are vec-

tors of the same length rather than single field elements. Subfield
VOLEs [9] furthermore extends this concept such that the elements

of 𝛼 and 𝛽 live in an extension field F𝑝𝑟 ⊃ F𝑝 . Random (subfield)

VOLE, where the inputs are chosen randomly by the functionality,

is easier to realize and can be used to instantiate normal VOLE, by

sending correction values.

We use information-theoreticmessage authentication codes (MACs)

to authenticate values in finite fields Z𝑝 and rings Z
2
𝑘 . The case

Z
2
𝑘 is discussed in Section 5.2 where we adapt the work of [12] to

the zero-knowledge setting. For fields Z𝑝 , we use BeDOZa-style
MACs [6] which can be generated as follows: To authenticate values

𝑥1, . . . , 𝑥𝑛 ∈ Z𝑝 known to P, random keys Δ, 𝐾 [𝑥1], . . . , 𝐾 [𝑥𝑛] ∈𝑅
Z𝑝 are chosen by V , and then P obtains the MACs 𝑀 [𝑥𝑖] ←
Δ · 𝑥𝑖 + 𝐾 [𝑥𝑖] ∈ Z𝑝 . We use the notation [𝑥𝑖]𝑝 for this. To open

[𝑥]𝑝 ,P sends 𝑥 and𝑀 [𝑥] toV , who checks that𝑀 [𝑥] = Δ·𝑥+𝐾 [𝑥]
holds. These authentications are linearly homomorphic: Given au-

thenticated values [𝑥]𝑝 and [𝑦]𝑝 and public values 𝑎, 𝑏, P and

V can locally compute [𝑧]𝑝 for 𝑧 := 𝑎 · 𝑥 + 𝑦 + 𝑏 by setting

𝑀 [𝑧] := 𝑎 · 𝑀 [𝑥] + 𝑀 [𝑦] and 𝐾 [𝑧] := 𝑎 · 𝐾 [𝑥] + 𝐾 [𝑦] − Δ · 𝑏.
For large enough 𝑝 , this is secure since forgery would imply cor-

rectly guessing a random element of Z𝑝 . For smaller 𝑝 , the keys Δ
and 𝐾 [𝑥𝑖] are instead chosen from an extension field Z𝑝𝑟 such that

𝑝𝑟 is large enough. The MACs can be efficiently computed with

(subfield) VOLE [4, 29].

3

2.4 Homomorphic Commitment Functionality
As discussed in Section 2.2, we use the commit-and-prove paradigm

for our zero-knowledge protocols. To this end, we define a com-

mitment functionality. It allows the prover P to commit to values,

and choose to reveal them at a later point in time, such that the

verifierV is convinced that the values had not been modified in the

meantime. Moreover, the functionality allows to perform certain

operations of the underlying algebraic structure on the committed

values, and to check if these satisfy certain relations.

The commitment functionality can be instantiated using linearly

homomorphic information-theoretic MACs (see Section 2.3). For

finite fields Z𝑝 , this was shown with the protocols Wolverine [29]

and Mac’n’Cheese [4]. We refer to their works for details. For rings

Z
2
𝑘 , we present an instantiation in Section 5.2.

We formally define the homomorphic commitments using the

ideal functionality F 𝑅ComZK given in Figure 1. The parameter 𝑅 de-

notes the message space, which is in our case either a ring Z
2
𝑘

or a field Z𝑝 . In addition to the common Input and Open opera-

tions, which enables P to commit to a value and reveal it toV at a

later point, we also model Random and CheckZero, for generating
commitments of random values and verifying that a committed

value equals zero, respectively, which enables more efficient imple-

mentations. Moreover, F 𝑅ComZK allows via Affine to compute affine

combinations of committed values with public coefficients yielding

again a commitment of the result. Finally, CheckMult allows to
verify that a set of triples satisfy a multiplicative relation, i.e. for

each triple, the third commitment contains the product of the first

two committed values.

Since the commitment functionality is implemented using information-

theoretic MACs, we use the same notation [𝑥] to denote a com-

mitted value 𝑥 ∈ 𝑅. We use this shorthand to to simplify the pre-

sentation of higher-level protocols without explicitly mentioning

the commitment identifiers. We use also shorthands for the dif-

ferent methods of F 𝑅ComZK, e.g. we write something like [𝑧] ←
𝑎 · [𝑥] + [𝑦] + 𝑏 when invoking the Affine method (see Figure 1).

We write [𝑥]𝑀 , if the domain Z𝑀 of the committed values is not

clear from the context, or if we have to distinguish commitments

over multiple different domains.

2.5 Extended Doubly-Authenticated Bits
A doubly-authenticated bit (or daBit for short) is a bit 𝑏 that is

authenticated in both a binary and arithmetic domain, i.e. a tuple

([𝑏]2, [𝑏]𝑀). daBits can be used to convert a single bit from the

binary to the arithmetic domain or vice versa [24, 26].

Their generalization, called edaBits (due to Escudero et al. [15]),
is defined as𝑚 bits𝑏0, . . . , 𝑏𝑚−1 which are each authenticated in the
binary domain while their sum is authenticated in the arithmetic

one, i.e. ([𝑏0]2, . . . , [𝑏𝑚−1]2, [𝑏]𝑀), for some𝑚 ≤ ⌈log𝑀⌉. These
edaBits allow for optimised conversions of authenticated values,

and allow to securely compute truncations or extract the most

significant bit of a secret value in MPC.

We now quickly recap their edaBits generation protocol (origi-

nally defined in the multi-party computation context) as we build

upon their construction later. The construction of [15] consists of

two different phases: in the first phase, each party locally samples

edaBits and proves to all other parties that they were computed

correctly. Then, in a second phase, these local contributions are

Homomorphic Commitment Functionality F 𝑅ComZK

The functionality communicates with two parties P,V as

well as an adversaryS thatmay corrupt either party.Smay

at any point send a message (abort), upon which F 𝑅ComZK
sends (abort) to all parties and terminates. F 𝑅ComZK con-

tains a state st that is initially ∅.
Random On input (Random, id) from P,V and where

(id, ·) ∉ st:
(1) If P is corrupted, obtain 𝑥id ∈ 𝑅 from S. Otherwise

sample 𝑥id ∈𝑅 𝑅 uniformly at random.

(2) Set st← st ∪ {(id, 𝑥id)} and send 𝑥id to P.
We use the shorthand [𝑥] ← Random().
Affine Combination On input (Affine, id𝑜 , id1, . . . , id𝑛,
𝛼0, . . . , 𝛼𝑛) from P,V where (id𝑖 , 𝑥id𝑖) ∈ st for 𝑖 = 1, . . . , 𝑛

and (id𝑜 , ·) ∉ st:
(1) Set 𝑥id𝑜 ← 𝛼0 +

∑𝑛
𝑖=1 𝛼1 · 𝑥id𝑖 and st ← st ∪

{(id𝑜 , 𝑥id𝑜)}.
We use shorthands such as [𝑧] ← 𝑎 · [𝑥] + [𝑦] + 𝑏.
CheckZero On input (CheckZero, id1, . . . , id𝑛) from

P,V and where (id𝑖 , 𝑥id𝑖) ∈ st for 𝑖 = 1, . . . , 𝑛:

(1) If 𝑥id1 = · · · = 𝑥id𝑛 = 0, then send (success) to V ,

otherwise send (abort) to all parties and terminate.

We use the shorthand CheckZero([𝑥1], . . . , [𝑥𝑛]).
Input On inputs (Input, id, 𝑥id) from P and (Input, id)
fromV and where (id, ·) ∉ st:
(1) Set st← st ∪ {(id, 𝑥)}.
We use the shorthand [𝑥] ← Input(𝑥).
Open On input (Open, id1, . . . , id𝑛) from P,V where

(id𝑖 , 𝑥id𝑖) ∈ st for 𝑖 = 1, . . . , 𝑛:

(1) Send 𝑥id1 , . . . , 𝑥id𝑛 , toV .

We use the shorthand 𝑥1, . . . , 𝑥𝑥 ← Open([𝑥1], . . . , [𝑥𝑛]).
Moreover, we might use the following macro: 𝑥 ←
Open([𝑥], lst) denotes that P sends 𝑥 toV and they add

[𝑥] − 𝑥 to the list lst.

MultiplicationCheck Upon P & V in-

putting (CheckMult, (id𝑥,𝑖 , id𝑦,𝑖 , id𝑧,𝑖)𝑛𝑖=1) where

(id𝑥𝑖 , 𝑥𝑖), (id𝑦𝑖 , 𝑦𝑖), (id𝑧𝑖 , 𝑧𝑖) ∈ st for 𝑖 = 1, . . . , 𝑛:

(1) Send (success) to V if 𝑥𝑖 · 𝑦𝑖 = 𝑧𝑖 holds for all

𝑖 = 1, . . . , 𝑛, otherwise send (abort) to all parties and

terminate.

We use the shorthand CheckMult(([𝑥𝑖], [𝑦𝑖], [𝑧𝑖])𝑛𝑖=1).

Figure 1: Ideal functionality modeling homomorphic com-
mitments of values in the ring (or field) 𝑅 of the prover P to
the verifierV.

combined to global, secret edaBits. In our setting however, only

the prover will use edaBits, thus it is clear that the second phase

can be omitted. Our sampling protocol will only have to ensure

that each edaBit ([𝑥0]2, . . . , [𝑥𝑚−1]2, [𝑥]𝑀) is indeed consistent,

i.e. that 𝑥 =
∑𝑚−1
𝑖=0 𝑥𝑖2

𝑖
mod 𝑀 .

4

The first phase of the edaBit sampling routine of [15] then

works as follows (when adapted to the Zero-Knowledge setting):

(1) The prover locally samples (𝑁𝐵+𝐶)𝑚 bits 𝑟𝑖, 𝑗 for 𝑗 ∈ [𝑁𝐵+𝐶]
and 𝑖 ∈ {0, . . . ,𝑚−1}. It then combines these into the𝑁𝐵+𝐶 val-

ues 𝑟 𝑗 ←
∑𝑚−1
𝑖=0 2

𝑖𝑟𝑖, 𝑗 . This yields edaBits {(𝑟𝑖, 𝑗)𝑚−1𝑖=0
, 𝑟 𝑗 } 𝑗 ∈[𝑁𝐵+𝐶] .

(2) The prover then commits to the binary values 𝑟𝑖, 𝑗 over Z2 and
to the combined values 𝑟 𝑗 over Z𝑀 .

(3) The prover and verifier engage in a check that ensures that

the committed values of the prover are consistent. For this, the

prover first opens 𝐶 of the 𝑁𝐵 +𝐶 committed tuples to show

consistency (where the choice is made by the verifier). Then the

𝑁𝐵 edaBits are distributed into 𝑁 buckets of size 𝐵. 𝐵 − 1 of
the edaBits are then used to verify that the remaining edaBit
per bucket is consistent without leaking information about it.

(4) If the check passes, then the remaining edaBit in each of the

𝑁 buckets is known to be consistent.

The main challenge in this protocol is the bucket check in the

penultimate step; [15] show that certain consistency checks can be

performed in an unreliable manner, while still being hard to cheat

overall, which leads to a complicated analysis.

3 CONVERSIONS BETWEEN Z2 AND Z𝑀
In this section we present our protocol for performing proofs of

consistent conversions in mixed arithmetic-binary circuits that will

work with any such ZK protocol as described in the preliminaries.

3.1 Conversions and edaBits in ZK
In secure multi-party computation, edaBits are used to compute a

conversion of a value [𝑥]𝑀 that is secret-shared among multiple

parties. In the zero-knowledge setting, the prover knows the under-

lying value 𝑥 , so there is no need to convert [𝑥]𝑀 securely into its

bit decomposition ([𝑥0]2, . . . , [𝑥𝑚−1]2) online. Instead, the prover
can commit to ([𝑥0]2, . . . , [𝑥𝑚−1]2, [𝑥]𝑀) in advance, which would

itself form a valid edaBit if the conversion is correct. We call the

inputs and outputs of conversion operations conversion tuples.

Definition 3.1 (Conversion Tuple). Let 𝑀 ∈ N+,𝑚 ≤ ⌈log
2
(𝑀)⌉,

𝑥 ∈ Z𝑀 and 𝑥𝑖 ∈ Z2. Then the tuple ([𝑥0]2, . . . , [𝑥𝑚−1]2, [𝑥]𝑀) is
called a conversion tuple. We call ([𝑥0]2, . . . , [𝑥𝑚−1]2, [𝑥]𝑀) consis-
tent iff 𝑥 =

∑𝑚−1
𝑖=0 2

𝑖𝑥𝑖 mod 𝑀 .

Our conversion protocol in this section provides an efficient way

to verify that a large batch of conversion tuples are consistent, i.e.

that the committed values are indeed valid edaBits. We note that

an alternative approach would be to directly apply the method

of [15] — here, first a set of random, verified conversion tuples is

created, and then one of these is used to check the actual conversion

tuple in an online phase. Unfortunately, this online phase check

itself involves verifying a binary circuit for addition mod𝑀 , which

introduces additional expense. We therefore design a new protocol

to avoid this, with further optimizations.

Our protocols perform conversions on committed values in Z2
and Z𝑀 , where we recall that𝑀 is either a large prime or 2

𝑘
. We

model these commitments using the functionality F 2,𝑀
ComZK in Fig-

ure 16 in Appendix A , which extends two instances of F 𝑅ComZK
for 𝑅 = Z2 and 𝑅 = Z𝑀 and simply parses all method calls to the

respective instance.

Finally, we define the ideal functionality for verifying conver-

sions FConv in Figure 2. This functionality extends F 2,𝑀
ComZK with a

single method VerifyConv. It essentially checks whether or not the

two representations of some hidden value are consistent.

Functionality FConv

FConv extends the existing functionality F 2,𝑀
ComZK, thus con-

taining two commitment instances:

(1) [·]2 allows to commit to values from Z2; and
(2) [·]𝑀 allows to commit to values from Z𝑀 ,

plus the interface VerifyConv. It is assumed that the id’s
used for VerifyConv have been used with the respective

instance of Input prior to calling this method.

VerifyConv: Upon P and V inputting

(VerifyConv, 𝑁 ,𝑚, {(id(𝑗)
0
, . . . , id(𝑗)

𝑚−1), id
(𝑗) } 𝑗 ∈[𝑁]):

(1) If 𝑐 (𝑗) =
∑𝑚−1
𝑖=0 2

𝑖𝑐
(𝑗)
𝑖

for all 𝑗 ∈ [𝑁] then output

(success) toV , otherwise output abort.

Figure 2: Functionality FConv checking edaBits

3.2 The Conversion Verification Protocol ΠConv

The following protocol ΠConv verifies the correctness of a batch of

𝑁 conversion tuples. ΠConv uses FDabit (Figure 3) to verify correct-

ness of daBits (recall, a daBit is an edaBit of length 1), which is

needed in one stage of the protocol. Later, we show how to remove

most of the daBit check to improve efficiency.

ΠConv also uses multiplication triples, namely, random values

[𝑥]2, [𝑦]2, [𝑧]2 where 𝑧 = 𝑥 ·𝑦; one multiplication triple can then be

used to verify a multiplication on committed inputs at a cost of two

openings in Z2, using a standard technique. In our case, however,

we allow the prover to choose all the triples, without verifying their

consistency.

Functionality FDabit

This functionality extends F 2,𝑀
ComZK with the extra function

VerifyDabit that takes a set of IDs {(id0, 𝑗 , id1, 𝑗)} 𝑗 ∈[𝑁] and
verifies that 𝑏id

0, 𝑗

= 𝑏id
1, 𝑗

where 𝑏id
0, 𝑗 ∈ Z2 an 𝑏id

1, 𝑗 ∈ Z𝑀
for all 𝑗 ∈ [𝑁]. It is assumed that the id’s have been Input
prior to calling this method.

Verify: On input (VerifyDabit, 𝑁 , {(id0, 𝑗 , id1, 𝑗)} 𝑗 ∈[𝑁])
by P andV where (id0, 𝑗 , 𝑏id0, 𝑗), (id1, 𝑗 , 𝑏id1, 𝑗) ∈ st.
(1) If 𝑏id0, 𝑗 = 𝑏id1, 𝑗 for all 𝑗 ∈ [𝑁], then output (success)

toV , otherwise output abort.

Figure 3: Functionality FDabit checking daBits.
On a high level, ΠConv, in Figure 4, consists of three phases:

(1) Initially, P commits to auxiliary random edaBits, daBits and

multiplication triples necessary for the check. The daBits are

verified separately, and thenV chooses a random permutation.

5

Protocol ΠConv

Assume that FDabit contains 𝑁 committed conversion

tuples {[𝑐 (𝑖)
0
]2, . . . , [𝑐 (𝑖)𝑚−1]2, [𝑐

(𝑖)]𝑀 }𝑖∈[𝑁] .

// P commits auxiliary values for conversion check.

daBits are then verified.

(1) P commits to the following values using FDabit:
(a) Random edaBits ([𝑟 (𝑗)

0
]2, . . . , [𝑟 (𝑗)𝑚−1]2, [𝑟

(𝑗)]𝑀) 𝑗 ∈[𝑁𝐵+𝐶] .
(b) Random daBits ([𝑏 (𝑗)]2, [𝑏 (𝑗)]𝑀) 𝑗 ∈[𝑁𝐵] .
(c) Random multiplication triples

([𝑥 (𝑗)]2, [𝑦 (𝑗)]2, [𝑧 (𝑗)]2) 𝑗 ∈[𝑁𝐵𝑚+𝐶𝑚]
(2) P and V send (VerifyDabit, 𝑁𝐵,
{([𝑏 (𝑗)]2, [𝑏 (𝑗)]𝑀)} 𝑗 ∈[𝑁𝐵]) to FDabit.

// P andV shuffle the auxiliary values and a subset gets

opened and verified.

(3) V samples uniformly random permutations 𝜋1 ∈
𝑆𝑁𝐵+𝐶 , 𝜋2 ∈ 𝑆𝑁𝐵, 𝜋3 ∈ 𝑆𝑁𝐵𝑚+𝐶𝑚 and sends them to P.

(4) Both parties shuffle the edaBits

[𝑟 (𝑗)
0
]2, . . . , [𝑟 (𝑗)𝑚−1]2, [𝑟

(𝑗)]𝑀 locally according to 𝜋1.

They then shuffle [𝑏 (𝑗)
2
]2, [𝑏 (𝑗)𝑀]𝑀 according to 𝜋2 and

[𝑥 (𝑗)]2, [𝑦 (𝑗)]2, [𝑧 (𝑗)]2 according to 𝜋3.
(5) Run a cut-and-choose procedure as follows:

(a) P opens {[𝑟 (𝑗)
0
]2, . . . , [𝑟 (𝑗)𝑚−1]2, [𝑟

(𝑗)]𝑀 }𝑁𝐵+𝐶𝑗=𝑁𝐵+1 (the

last 𝐶 edaBits) towards V , who in turn checks

that 𝑟 (𝑗)
?

=
∑𝑚−1
𝑖=0 2

𝑖 · 𝑟 (𝑗)
𝑖

.

(b) P opens the 𝑥,𝑦 values for the last 𝐶𝑚 triples

{[𝑥 (𝑗)]2, [𝑦 (𝑗)]2}𝑁𝐵𝑚+𝐶𝑚𝑗=𝑁𝐵𝑚+1 and proves to V that

CheckZero([𝑧 (𝑗)]−𝑥 (𝑗) ·𝑦 (𝑗)) for all opened triples.

// P andV verify each conversion tuple in a bucket.

(6) For the 𝑖’th conversion tuple [𝑐0]2, . . . , [𝑐𝑚−1]2, [𝑐]𝑀 ,

do the following for 𝑗 ∈ [𝐵]:
(a) Let [𝑟0]2, . . . , [𝑟𝑚−1]2, [𝑟]𝑀 be the (𝑖 − 1) · 𝐵 + 𝑗 ’th

edaBit and [𝑐 + 𝑟]𝑀 = [𝑐]𝑀 + [𝑟]𝑀 .

(b) Let ([𝑒0]2, . . . , [𝑒𝑚]2) ←
bitADDcarry([𝑐0]2, . . . , [𝑐𝑚−1]2, [𝑟0]2, . . . , [𝑟𝑚−1]2).

(c) Convert [𝑒𝑚]𝑀 ← convertBit2A([𝑒𝑚]2) using the

(𝑖 − 1) · 𝐵 + 𝑗 ’th daBit ([𝑏]2, [𝑏]𝑀).
(d) Let [𝑒 ′]𝑀 ← [𝑐 + 𝑟]𝑀 − 2𝑚 · [𝑒𝑚]𝑀 .

(e) Let 𝑒𝑖 ← Open([𝑒𝑖]2) for 𝑖 = 0, . . . ,𝑚 − 1. Then run

CheckZero([𝑒 ′]𝑀 −
∑𝑚−1
𝑖=0 2

𝑖 · 𝑒𝑖).
(7) If any of the checks fail,V outputs abort. Otherwise it
outputs (success).

Figure 4: Protocol ΠConv to verify Conversion Tuples

(2) After permuting the edaBits and multiplication triples, both

parties run an implicit cut-and-choose phase. Here, P opens 𝐶

of the edaBits and triples, which are checked byV .

(3) We place each conversion tuple into one of 𝑁 buckets, each of

which contains a conversion tuple ([𝑐0]2, . . . , [𝑐𝑚−1]2, [𝑐]𝑀),
and a set of 𝐵 edaBits {([𝑟0]2, . . . , [𝑟𝑚−1]2, [𝑟]𝑀)𝑖 }𝐵−1𝑖=0

. None

of these have been proven consistent, but 𝐶 edaBits coming

from the same pool have been opened in the previous step.

Now, over 𝐵 iterations the prover and verifier for each 𝑗 ∈
[𝐵] compute [𝑐 + 𝑟 𝑗]𝑀 = [𝑐]𝑀 + [𝑟 𝑗]𝑀 and use an addition

circuit to check that ([𝑒0]2, . . . , [𝑒𝑚]2) = ([𝑐0]2, . . . , [𝑐𝑚−1]2)+
([𝑟0]2, . . . , [𝑟𝑚−1]2). The addition circuit is evaluated using the

multiplication triples (which also may be inconsistent).

The checkswithin each bucket use the two sub-protocols convertBit2A
(Figure 5) and bitADDcarry (Figure 6). The former converts an au-

thentication of a bit [𝑏]2 into an arithmetic authentication [𝑏]𝑀
while the latter adds two authenticated values ([𝑥0]2, . . . , [𝑥𝑚−1]2)
and ([𝑦0]2, . . . , [𝑦𝑚−1]2). This uses a ripple-carry adder circuit,

which satisfies the following weak tamper-resilient property, as

observed in [15].

Procedure convertBit2A

Input A daBit ([𝑟]2, [𝑟]𝑀) and a commitment [𝑥]2.
Protocol
(1) 𝑐 ← Open([𝑟]2 ⊕ [𝑥]2).
(2) Output [𝑥]𝑀 ← 𝑐 + [𝑟]𝑀 − 2 · 𝑐 · [𝑟]𝑀 .

Figure 5: Procedure to convert bit from Z2 to Z𝑀 .

Procedure bitADDcarry

Input Commitments [𝑥0]2, . . . , [𝑥𝑚−1]2, [𝑦0]2, . . . , [𝑦𝑚−1]2.
Protocol Let 𝑐0 = 0.

(1) Compute [𝑐𝑖+1]2 = [𝑐𝑖]2 ⊕ (([𝑥𝑖 ⊕ 𝑐𝑖]2) ∧ ([𝑦𝑖 ⊕
𝑐𝑖]2)),∀𝑖 ∈ {0, . . . ,𝑚 − 1}

(2) Output [𝑧𝑖]2 = [𝑥𝑖 ⊕ 𝑦𝑖 ⊕ 𝑐𝑖]2,∀𝑖 ∈ {0, . . . ,𝑚 − 1} and
[𝑐𝑚]2.

Figure 6: A ripple-carry adder

Definition 3.2. A binary circuit 𝐶 : Z2𝑚
2
→ Z𝑚+1

2
is weakly

additively tamper resilient, if given any additively tampered circuit

𝐶∗, obtained by flipping the output of any fixed number of AND

gates in 𝐶 , one of the following two properties hold:

(1) ∀(𝑥,𝑦) ∈ Z2𝑚
2

: 𝐶 (𝑥,𝑦) = 𝐶∗ (𝑥,𝑦); or
(2) ∀(𝑥,𝑦) ∈ Z2𝑚

2
: 𝐶 (𝑥,𝑦) ≠ 𝐶∗ (𝑥,𝑦)

Note that the type of additive tampering in Definition 3.2 models

the errors induced by faulty multiplication triples, when used to

evaluated a circuit in ZK orMPC. Intuitively, the definition says that

the output of the tampered circuit is either incorrect on every pos-

sible input or equivalent to the original un-tampered circuit. This

gives us the property that an adversary cannot pass the verification

protocol using a tampered circuit with both a good conversion

tuple and a bad one. Thus, if any provided multiplication triples are

6

incorrect, then the check at those positions would only pass with

either a good or a bad conversion tuple (or edaBit), but not both.
While bitADDcarry will ensure that (assuming correct triples)

([𝑒0]2, . . . , [𝑒𝑚]2) are computed as required, care must be taken

regarding [𝑐 + 𝑟 𝑗]𝑀 as this may not be representable by𝑚 bits any

longer (but rather𝑚+1). To remedy this, we use a daBit to convert
[𝑒𝑚]2 into an arithmetic authentication [𝑒𝑚]𝑀 to remove the carry

from [𝑐 +𝑟 𝑗]𝑀 by computing [𝑒 ′]𝑀 = [𝑐 +𝑟 𝑗]𝑀 − 2𝑚 · [𝑒𝑚]𝑀 . Now

all that remains is to open [𝑒 ′]𝑀 (which “hides” 𝑐 using 𝑟 𝑗) as well

as ([𝑒0]2, . . . , [𝑒𝑚−1]2) and check that 𝑒 ′
?

=
∑𝑚−1
𝑖=0 2

𝑖 · 𝑒𝑖 .

Remark 1. When 𝑀 = 2
𝑘 , we can optimize ΠConv by removing

the conversion step 6(d), which uses daBits. Instead, we simply ignore
the carry bit and set 𝑒𝑚 = 0, then in step (f), we can compute 𝑒 ′ by
first opening 2𝑘−𝑚 (𝑐 +𝑟), then divide this by 2𝑘−𝑚 to obtain 𝑒 ′ = 𝑐 +𝑟
mod 2

𝑚 . This can then be compared with
∑𝑚−1
𝑖=0 𝑒𝑖 , as required.

3.3 Proof of security
Due to space constraints, the full proof of security can be found in

Appendix B. We summarize the proof below.

In order to prove the security of ΠConv, we first observe that

instead of letting P choose multiplication triples, we might equiva-

lently model this by letting P specify circuits instead (that will be

evaluated instead of the Ripple Carry Adder). Then, we define an

abstraction of the protocol as a balls-and-bins type game, similar

to [15], and analyze the success probability of an adversary in this

game.A winning in this abstraction rather than in the protocol

ΠConv. We make this abstraction, as a straightforward analysis of

the conversion protocol is rather complex. This is due to there being

multiple ways for A to pass the check with a bad conversion tuple.

The first is by corrupting 𝐾 conversion tuples, then corrupting 𝐾 ·𝐵
edaBits and hoping that these end up in the right buckets, cancel-

ing out the errors in the conversion tuples. The second approach

is to corrupt a set of edaBits and then guess the arrangement of

these, thus yielding how many circuitsA would have to corrupt in

order to cancel out the errors of the conversion tuples. Furthermore,

conversion tuples (and edaBits) may be corrupted in several ways.

To avoid these issues, we describe an abstract security game which

only provides a better chance for the adversary to win than the

original protocol. In summary, we show the following:

Theorem 3.3. The probability of ΠConv not detecting at least
one incorrect conversion tuple is upper bounded by 2

−𝑠 whenever
𝑁 ≥ 2

𝑠/(𝐵−1) and 𝐶 = 𝐶 ′ = 𝐵 for bucket size 𝐵 ∈ {3, 4, 5}.

The proof can be found in Appendix B.1. The approach is similar

to that of [15], however in our case since the conversion tuples

are now fixed to be one per bucket, we have not taken a random

permutation across all edaBits and conversion tuples. Therefore,

we need a different analysis to show that this restriction on the

permutation still suffices.

Using this, in Appendix B.2 we then prove security of ΠConv:

Theorem 3.4. Let 𝑁 ≥ 2
𝑠/(𝐵−1) , 𝐶 = 𝐶 ′ = 𝐶 ′′ = 𝐵 and 𝐵 ∈

{3, 4, 5} such that 𝑠
𝐵−1 > 𝐵, then protocol ΠConv (Figure 4) UC-

realises FConv (Figure 2) in the FDabit-hybrid model. Specifically, no
environment Z can distinguish the real-world execution from the
ideal-world execution except with probability at most 2−𝑠 .

3.4 Faulty daBits
When working in Z𝑝 (i.e.𝑀 = 𝑝), our previous protocol requires a

source of daBits, namely, committed tuples ([𝑏]2, [𝑏]𝑀), where 𝑏
is a random bit. Generating consisting daBits requires verifying
that [𝑏]𝑀 indeed contains a bit, which is done with a potentially

costly multiplication check by showing that 𝑏 (1 − 𝑏) = 0. In this

section, we optimise the protocol for the Z𝑝 case by showing that

ΠConv remains secure even with potentially faulty daBits. More

concretely, convertBit2A (which is part of the verification protocol)

will use daBits which are only proven consistent modulo 2. This

is much cheaper to achieve and avoids to check that 𝑏 ′ is a bit.

Definition 3.5. A faulty daBit is a pair ([𝑏]2, [𝑏 ′]𝑀) such that

𝑏 ≡ 𝑏 ′ mod 2, but not necessarily 𝑏 ′ ∈ {0, 1}.

In Step 6 of ΠConv (Figure 4), daBits are used in convertBit2A
(Figure 5) to transform the final carry bit [𝑒𝑚]2 from bitADDcarry
(Figure 6) into [𝑒 ′𝑚]𝑀 such that 𝑒𝑚 = 𝑒 ′𝑚 . We show that using a

faulty daBit cannot help the adversary in passing the check with

incorrect conversions. First, we observe that with a faulty daBit,

the output becomes 𝑒 ′𝑚 = 𝑒𝑚 + (−1)𝑒𝑚 ·𝛿 where 𝛿 = (−1)𝑏 · (𝑏 ′−𝑏)
where (𝑏 ′ − 𝑏) > 1 represents the difference (or error) between 𝑏 ′

and 𝑏 for the used daBit ([𝑏]2, [𝑏 ′]𝑀). As a result, |𝑒 ′𝑚 | > 1 where

| · | denotes absolute value. This carry bit [𝑒 ′𝑚]𝑀 is then used to

remove the potential carry from [𝑐 + 𝑟]𝑀 by computing

[𝑒 ′]𝑀 ← [𝑐 + 𝑟]𝑀 − 2𝑚 · [𝑒 ′𝑚]𝑀
in Step 6d of ΠConv. However, when 𝑒

′
𝑚 ∉ {0, 1} is multiplied with

2
𝑚
, we either subtract or add something much larger than what

may be represented by𝑚 bits from [𝑐 + 𝑟]𝑀 . Because this error is

so large, it is impossible for the adversary to cancel this out with

faulty multiplication triples or conversion tuples. Essentially, this

holds because faulty triples only introduce a 1-bit error, and the

result will always still be representable in𝑚 bits.

A full security analysis, showing that faulty daBits do not im-

pact the security of ΠConv, can be found in Appendix C.

Formally, we define an ideal functionality FFDabit (Figure20 in
Appendix Appendix C) that encompasses this idea of two bits (𝑏, 𝑏 ′)
such that 𝑏 ′ ≡ 𝑏 mod 2.

Creating Faulty daBits. We now describe a revised daBit veri-

fication protocol ΠFDabit realizing FFDabit, that, for a given daBit
([𝑏]2, [𝑏 ′]𝑀), only verifies that 𝑏 ≡ 𝑏 ′ mod 2. For this check, it suf-

fices to compute random linear combinations in the two domains

and then open the values, giving consistency modulo 2. We define

the protocol ΠFDabit in Figure 7, and show the following statement

in Appendix C:

Lemma 3.6. ProtocolΠFDabit (Figure 7) UC-realizes FFDabit (Figure
20) except with probability 2

−𝑠+1.
We note that the main complexity of our faulty daBit check is

just that of creating the𝛾 ·𝑠 auxiliary daBits.We assume the random

bits 𝑒𝑖 can be generated by letting the verifier pick a seed and then

using some expansion function on both sides. Since𝛾 = 𝑠+ log𝑁 +1,
the dominant communication cost — namely committing to 𝛾 · 𝑠
daBits and multiplying to check that 𝑐𝑖 (1−𝑐𝑖) is zero — amortizes

away when 𝑁 is large. This is in contrast to a secure daBit protocol,
which would need incur these costs for every faulty daBit.

7

Protocol ΠFDabit

Inputs 𝑁 supposed faulty daBits ([𝑏𝑖]2, [𝑏𝑖]𝑝)𝑖∈[𝑁] . De-
fine 𝛾 = 𝑠 + ⌈log

2
(𝑁 + 1)⌉ and require that (𝑁 + 1) · 2𝛾+2 <

(𝑝 − 1)/2 for a statistical security parameter 𝑠 .

Protocol Perform the following check 𝑠 times:

(1) P samples 𝛾 random bits {[𝑐𝑖]𝑝 }𝑖∈[𝛾] . It additionally
creates [𝑐1]2. It does not prove consistency among

[𝑐1]𝑝 and [𝑐1]2.
(2) P shows that {[𝑐𝑖]𝑝 }𝑖∈[𝛾] are bits by showing that

CheckZero([𝑐𝑖]𝑝 · (1− [𝑐𝑖]𝑝)) = (success) for 𝑖 ∈ [𝛾].
(3) V generates 𝑁 random bits 𝑒𝑖 .

(4) Let [𝑟]2 ← [𝑐1]2 +
⊕𝑁

𝑖=1 𝑒𝑖 · [𝑏𝑖]2
(5) 𝑟 ← Open([𝑟]2)
(6) Let [𝑟 ′]𝑀 ← [

∑𝑁
𝑖=1 𝑒𝑖 · 𝑏𝑖]𝑝

(7) Let 𝜏 = Open([𝑟 ′]𝑝 +
∑𝛾
𝑗=1
[𝑐𝑖]𝑝 · 2𝑖−1).

(8) Check if 0 ≤ 𝜏 < 2
𝛾
and 𝑟 = 𝜏 mod 2. If not, abort.

Output (success).

Figure 7: Our optimised consistency check for daBits, that
no longer checks that [𝑏]𝑝 is a bit

3.5 Complexity of Verifying Conversions
In Table 1, we present the amortized costs for verifying the cor-

rectness of a single conversion tuple ([𝑥0]2, . . . , [𝑥𝑚−1]2, [𝑥]𝑀), in
terms of the amount of communication required, and preprocessed

correlated OTs or VOLEs. Note that to simplify the table, we assume

that𝑚 ≈ log 𝑝 , and so count the cost of sending one Z𝑀 element in

the protocol as𝑚 bits. Also, in this analysis we ignore costs that are

independent of the number of conversions being checked, such as

the small number of checks in the faulty daBit protocol. In Appen-

dix F, we give a more detailed breakdown of these costs, including

complexities of the sub-protocols bitADDcarry and convertBit2A.

Table 1: Costs of verifying a conversion between Z2 and Z𝑚
(where either𝑚 = 𝑝 prime or𝑚 = 2

𝑘) in form of the number
of needed COTs and VOLEs, and the communication that
is additionally required. The “basic” protocol variant uses
edaBits directly, while the “optimized” rows include all of
our novel optimizations.𝑚 ≤ ⌈log(𝑝)⌉, 𝑘 denotes the bitsize
of the converted value, and 𝐵 is the bucket size.

Protocol Comm. in bits #COTs #VOLEs

basic, Z𝑝 , log(𝑝) ≤ 𝑠 13𝐵𝑚 + 6𝑚 + 𝐵 − 1 4𝐵𝑚 + 3𝑚 + 𝐵 − 1 11𝐵 − 4
basic, Z𝑝 , log(𝑝) > 𝑠 10𝐵𝑚 + 6𝑚 + 𝐵 − 1 4𝐵𝑚 + 3𝑚 + 𝐵 − 1 8𝐵 − 4
optimized, Z𝑝 6𝐵𝑚 + 𝐵 4𝐵𝑚 + 𝐵 2𝐵

optimized, Z
2
𝑘 5𝐵𝑚 4𝐵𝑚 𝐵

The “basic” baseline comparison in Table 1 comes from a straight-

forward application of using edaBits for ZK, similarly to [15].

Namely, this protocol would first generate consistent edaBits us-
ing [15], and then verify the conversion using a single binary ad-

dition circuit (similar to the the bucket-check in Figure 4, step 6).

However, this requires doing the check with𝑚 verified multiplica-

tion triples (over Z2) and a single daBit, which in turn requires an

additional verified multiplication (over Z𝑀). To estimate these costs,

we used the Wolverine [29] protocol for verifying AND gates at a

cost of 7 bits per gate, and Mac’N’Cheese [4] for verifying triples

in a larger field.

Since COTs and VOLEs can be obtained from pseudorandom

correlation generators with very little communication [29, 31], the

remaining online communication dominates. Hence, our optimized

protocol saves at least 50% communication. To give a concrete

number, e.g. for the Z𝑝 variant with𝑚 = 32, when verifying a batch

of around a million triples and 40-bit statistical security, we can use

bucket size 𝐵 = 3, and the communication cost drops from 1442 to

579 bits, a reduction of around 60%.

Note that, as mentioned in Section 1.2, the “basic” approach could

also be optimized by verifying these multiplications with the recent

Quicksilver protocol [30]. This would bring the basic costs closer to

the costs of our optimized protocols, while requiring non-black-box

use of the information-theoretic MACs, unlike our more generic

commit-and-prove protocol.

4 TRUNCATION AND INTEGER COMPARISON
In this section, we provide protocols for verifying integer truncation

and comparison. With truncation, we mean that given integers 𝑙,𝑚

and two authenticated values 𝑥, 𝑥 ′ of 𝑙 and 𝑙 −𝑚 bits, we want to

verify that 𝑥 ′ corresponds to the upper 𝑙 −𝑚 bits of 𝑥 , i.e. 𝑥 ′ = ⌊ 𝑥
2
𝑚 ⌋

over the integers. Integer comparison is then the problem of taking

two authenticated integers and outputting 0 or 1 (authenticated)

depending on which input is the largest. Both protocols take as

input both the input and output of the function from the prover

and then verify the correctness of the provided data.

We also describe a novel way of checking the length of an au-

thenticated integer. We ask the prover to provide not only the

authenticated ring element, but also its bit decomposition. By prov-

ing consistency of these two representations, the prover shows that

the authenticated ring element can be represented by the provided

bit decomposition of which we can check the length. The naïve

way of achieving this would be using a protocol for integer com-

parison or a less-than circuit. However, both of these ways would

require auxiliary consistent edaBits in addition to possibly other

operations. Instead, we only have to verify that the input forms a

consistent edaBit and therefore save anything beyond that.

We note that the integers in this section are signed in the in-

terval [−2𝑙−1, 2𝑙−1), but the protocols are all defined over a mod-

ulus 𝑀 ≥ 2
𝑙
where 𝑀 is either a prime 𝑝 or 2

𝑘
. Given an integer

𝛼 ∈ [−2𝑙−1, 2𝑙−1), this can be represented by a corresponding ring

element in Z𝑀 .

4.1 Truncation
In Figure 8 we present a functionality FVerifyTrunc that takes a batch
of commitments [𝑎 𝑗]𝑀 and their supposed truncations (by𝑚 𝑗

bits)

[𝑎′
𝑗
]𝑀 . The functionality ensures that the truncations are correct,

namely, 𝑎′
𝑗
= ⌊ 𝑎 𝑗

2
𝑚𝑗 ⌋. Note that this functionality we realise is

flexible, in that it can support a large batch of truncations, each of

which may be of a different length.

8

Functionality FVerifyTrunc

The functionality FVerifyTrunc extends F 2,𝑀
ComZK with

VerifyTrunc that verifies truncations of committed

values from Z𝑀 . The function takes a set of IDs

{(id0, 𝑗 , id1, 𝑗)} 𝑗 ∈[𝑁] of elements 𝑎id
0, 𝑗

, 𝑎id
1, 𝑗 ∈ Z𝑀 and a

set of integers {𝑚 𝑗 } 𝑗 ∈[𝑁] such that𝑚 𝑗 ∈ [𝑀] represents
by how much 𝑎id

0, 𝑗

is truncated to reach 𝑎id
1, 𝑗

for 𝑗 ∈ [𝑁].
It is assumed that the underlying values of the id’s have
been Input prior to calling this method.

VerifyTrunc: Upon P and V inputting

(VerifyTrunc, 𝑁 , {𝑚 𝑗 , (id0, 𝑗 , id1, 𝑗)} 𝑗 ∈[𝑁]):

• Check that 𝑎id
1, 𝑗

= ⌊ 𝑎id
0, 𝑗

2
𝑚𝑗 ⌋, for each 𝑗 ∈ [𝑁]. If all

checks pass, output (success), otherwise abort.

Figure 8: Functionality FVerifyTrunc that verifies a truncation

We now construct a protocol for verifying truncations, which

can securely realise FVerifyTrunc using just a single call to our batch

conversion protocol, FConv, on a vector of tuples that is twice the

length of the number of truncations. For the protocol, we will have

that in addition to each input [𝑎]𝑀 , the prover also provides:

• the truncated value [𝑎𝑡𝑟]𝑀 of [𝑎]𝑀 and its bit decomposition

([𝑎0𝑡𝑟]2, . . . , [𝑎𝑙−𝑚−1𝑡𝑟]2)
• the initial𝑚 bits of [𝑎]𝑀 ; [𝑎′]𝑀 = [𝑎 mod 2

𝑚]𝑀 as well as its

bit decomposition ([𝑎′
0
]2, . . . , [𝑎′𝑚−1]2)

Having access to [𝑎𝑡𝑟]𝑀 and [𝑎′]𝑀 allows the verifier then to check

that 𝑎 = 2
𝑚 ·𝑎𝑡𝑟 +𝑎′, which is sufficient to prove the claim.Observe

that runningΠConv on [𝑎𝑡𝑟]𝑀 and ([𝑎0𝑡𝑟]2, . . . , [𝑎𝑙−𝑚−1𝑡𝑟]2) not only
shows consistency between the binary and arithmetic representa-

tions, but also that [𝑎𝑡𝑟]𝑀 can be represented by 𝑙 −𝑚 or less bits

(same goes for [𝑎′]𝑀 and its bit decomposition).

We first define an ideal functionality FCheckLength (Figure 9) that

encapsulates this concept of using FConv as a way of bounding the

size of an authenticated value.

The protocol ΠCheckLength ensures that [𝑎]𝑀 can be represented

by𝑚 bits, as it proves consistency between the two representations

of 𝑎. The security of this protocol directly follows from using FConv.
The cost of the protocol also directly follows from the consistency

check described in Figure 4.

We prove that ΠVerifyTrunc securely realises the functionality

FVerifyTrunc, in AppendixD. Observe thatΠCheckLength andΠVerifyTrunc
do not utilise anything specific about 𝑀 except 𝑙 ≤ 𝑀 and both

work for Z𝑝 and Z
2
𝑘 .4.2 Integer Comparison

We now discuss how to compare two signed, 𝑙-bit integers 𝛼 and 𝛽 .

The way the protocol works is by having the prover (and verifier)

compute [𝛼]𝑀 − [𝛽]𝑀 and have the prover compute the truncation

of this which is only the most significant bit. Now we may run

ΠVerifyTrunc on the truncation and use the truncation as the output

of the comparison. We remark that, similarly to previous works

in the MPC setting [11, 15], this gives the correct result as long as

Functionality FCheckLength

This functionality extends F 2,𝑀
ComZK with the extra func-

tion VerifyLength that takes a set of IDs {id𝑗 } 𝑗 ∈[𝑁] of
elements 𝑥 id

𝑗 ∈ Z𝑀 and a set of integers {𝑚 𝑗 } 𝑗 ∈[𝑁] such
that𝑚 𝑗 ∈ [𝑀] represents the supposed lengths of the ele-

ments {𝑥 id𝑗 } 𝑗 ∈[𝑁] . FCheckLength communicates with two

parties P,V . It is assumed that the underlying values of

the id’s have been Input prior to calling this method.

VerifyLength: Upon P and V inputting

(VerifyLength, 𝑁 , {𝑚 𝑗 , id𝑗 } 𝑗 ∈[𝑁]) :
• Check that 𝑥𝑖𝑑

𝑗
may be described by 𝑚 𝑗

bits for all

𝑗 ∈ [𝑁]. Output (success) if so, otherwise abort.

Figure 9: Functionality to verify length of commitments

Protocol ΠCheckLength

Input A set of tuples {[𝑥 𝑗]𝑀 ,𝑚 𝑗 , } 𝑗 ∈[𝑁] where 𝑥 𝑗 ∈
[0, 2𝑙) and𝑚 𝑗

defines the claimed bitlength of 𝑥 𝑗 .

Protocol
(1) For each 𝑗 ∈ [𝑁], P commits to [𝑥 𝑗

0
]2, . . . , [𝑥 𝑗𝑚 𝑗−1]2.

(2) Let𝑚 = max𝑗 {𝑚 𝑗 }, and for 𝑖 =𝑚 𝑗 , . . . ,𝑚−1, let [𝑥 𝑗
𝑖
]2

denote a dummy commitment to zero (which can be

easily obtained with CheckZero).
(3) Run FConv on {([𝑥 𝑗

0
]2, . . . , [𝑥 𝑗𝑚−1]2, [𝑥

𝑗]𝑀)} 𝑗 ∈[𝑁]
and output what FConv outputs.

Figure 10: Protocol ΠCheckLength that verifies that committed
elements are bounded.

𝛼, 𝛽 ∈ [−2𝑙−2, 2𝑙−2), so that 𝛼−𝛽 ∈ [−2𝑙−1, 2𝑙−1), so this introduces
a mild restriction on the range of values that can be supported.

5 INTERACTIVE PROOFS OVER Z
2
𝑘

In this section, we provide the foundations for an interactive proof

system that natively operates over Z
2
𝑘 . First, we show how linearly

homomorphic commitments for Z
2
𝑘 can be constructed from VOLE

in Section 5.1. Then, in Section 5.2, we present two protocol variants

which instantiate F Z2𝑘ComZK, and prove their security in Section 5.3.

5.1 Linearly Homomorphic Commitments from
Vector-OLE

To construct linearly homomorphic commitments over the ring

Z
2
𝑘 , we use a variant of the information-theoretic MAC scheme

from SPDZ
2
𝑘 [12]: Let 𝑠 be a statistical security parameter. To

authenticate a value 𝑥 ∈ Z
2
𝑘 known to P towardsV (denoted as

[𝑥]), we choose the MAC keys Δ ∈𝑅 Z2𝑠 and 𝐾 [𝑥] ∈𝑅 Z2𝑘+𝑠 , and
compute the MAC tag as

𝑀 [𝑥] := Δ · 𝑥 + 𝐾 [𝑥] ∈ Z
2
𝑘+𝑠 (1)

9

Protocol ΠVerifyTrunc

Input A set of tuples {[𝑎 𝑗]𝑀 ,𝑚 𝑗 , [𝑎 𝑗𝑡𝑟]𝑀 } 𝑗 ∈[𝑁] where
𝑎 𝑗 ∈ [0, 2𝑙),𝑚 𝑗

defines the number of bits that has been

truncated and [𝑎𝑡𝑟]𝑀 represents the supposed truncation.

Protocol (1) For each 𝑗 ∈ [𝑁], P commits to the least-

significant 𝑚 bits of [𝑎 𝑗]𝑀 , denoted as [𝑎′]𝑀 =

[𝑎 𝑗 mod 2
𝑚]𝑀 .

(2) The parties call FCheckLength with input

{[𝑎′]𝑀 ,𝑚 𝑗 } 𝑗 ∈[𝑁] ∪ {[𝑎
𝑗
𝑡𝑟]𝑀 , 𝑙 −𝑚 𝑗 } 𝑗 ∈[𝑁] .

(3) For each 𝑗 , let [𝑦]𝑀 = [𝑎 𝑗]𝑀 − (2𝑚 · [𝑎 𝑗𝑡𝑟]𝑀 + [𝑎′]𝑀)
and run CheckZero([𝑦]𝑀).
Abort if any of the checks fail. Otherwise output

(success).

Figure 11: Protocol to verify the truncation of an element
from Z𝑀

where 𝑥 = 𝑥 mod 2
𝑘
, i.e. 𝑥 is a representative of the corresponding

congruence class of integers modulo 2
𝑘
. Then P gets 𝑥 and𝑀 [𝑥],

whereasV receives Δ and 𝐾 [𝑥].
Initially 𝑥 may be chosen as 𝑥 = 𝑥 ∈ {0, . . . , 2𝑘 −1}. Applying the

arithmetic operations described below can result in larger values

though, which do not get reduced modulo 2
𝑘
because all computa-

tion happens modulo 2
𝑘+𝑠

. For a commitment [𝑥] we always use 𝑥
to denote the representative hold by P.

This MAC schemes allows us to locally compute affine combi-

nations: E.g. for [𝑧] ← 𝑎 · [𝑥] + [𝑦] + 𝑏 with public 𝑎, 𝑏 ∈ Z
2
𝑘 , the

parties compute 𝑧 ← 𝑎 · 𝑥 +𝑦 + 𝑏 and𝑀 [𝑧] ← 𝑎 ·𝑀 [𝑥] +𝑀 [𝑦], as
well as 𝐾 [𝑧] ← 𝑎 · 𝐾 [𝑥] + 𝐾 [𝑦] − Δ · 𝑏. Then we have

𝑀 [𝑧] ≡𝑘+𝑠 𝑎 ·𝑀 [𝑥] +𝑀 [𝑦]
≡𝑘+𝑠 𝑎 · (Δ · 𝑥 + 𝐾 [𝑥]) + (Δ · 𝑦 + 𝐾 [𝑦])
≡𝑘+𝑠 Δ · (𝑎 · 𝑥 + 𝑦) + (𝑎 · 𝐾 [𝑥] + 𝐾 [𝑦])
≡𝑘+𝑠 Δ · (𝑎 · 𝑥 + 𝑦 + 𝑏) + (𝑎 · 𝐾 [𝑥] + 𝐾 [𝑦] − Δ · 𝑏)
≡𝑘+𝑠 Δ · 𝑧 + 𝐾 [𝑧] .

While we can initially set 𝑥 = 𝑥 , a result of a computation (here 𝑧)

might be larger than 2
𝑘 − 1, but for the computation we only care

about the lower 𝑘 bits of 𝑧 (denoted as 𝑧).

As in SPDZ
2
𝑘 , the MACs are obtained using vector OLE over

rings. We describe the protocols in the F 𝑠,𝑟vole2k-hybrid model (cf. Fig-

ure 12). This functionality can be instantiated as in [12], e.g. from

the oblivious transfer protocol of [27]. To open a commitment [𝑥],
first the upper 𝑠 bits of 𝑥 need to be randomized, by computing

[𝑧] ← [𝑥] + 2𝑘 · [𝑟] with random 𝑟 ∈𝑅 Z2𝑘+𝑠 . Then, 𝑧 and 𝑀 [𝑧]
are published and the MAC equation (Equation (1)) is verified. Fol-

lowing [12], we implement more efficient batched checks based on

random linear combinations. These are implemented in protocol

Π
Z
2
𝑘

ComZK-a (Figures 13 & 14).

Vector Linear Oblivious Evaluation for Z
2
𝑘 : F 𝑠,𝑟vole2k

Init This method needs to be the first one called by the

parties. On input (Init) from both parties the functionality

(1) IfV is honest, it samples Δ ∈𝑅 Z2𝑠 and sends Δ toV .

(2) IfV is corrupt, it receives Δ ∈ Z2𝑠 from S.
(3) Δ is then stored by the functionality.

All further Input queries are ignored.

Extend On input (Extend) from both parties the func-

tionality proceeds as follows:

(1) If both parties are honest, sample 𝑥, 𝐾 [𝑥] ∈𝑅 Z2𝑟 and

compute𝑀 [𝑥] ← Δ · 𝑥 + 𝐾 [𝑥] ∈𝑅 Z2𝑟 .
(2) If V is corrupted, it receives 𝐾 [𝑥] ∈ Z2𝑟 from S in-

stead.

(3) If P is corrupted, it receives 𝑥,𝑀 [𝑥] ∈ Z2𝑟 from S
instead, and computes 𝐾 [𝑥] ← 𝑀 [𝑥] − Δ · 𝑥 ∈ Z2𝑟 .

(4) (𝑥,𝑀 [𝑥]) is sent to P and 𝐾 [𝑥] is sent toV .

Figure 12: Ideal functionality for Vector-OLE with key size
𝑠 and message size 𝑟 . The functionality is based on F 𝑝,𝑟sVOLE
fromWolverine [29, Fig. 2].

5.2 Instantiation of F Z2𝑘ComZK

In this section, we present two protocols Π
Z
2
𝑘

ComZK-a and Π
Z
2
𝑘

ComZK-b

which instantiate the F Z2𝑘ComZK functionality (Figure 1). These are

adaptions of the Wolverine [29] and Mac’n’Cheese [4] protocols

to the Z
2
𝑘 setting and differ mainly in the implementation of the

CheckMult method.

Π
Z
2
𝑘

ComZK-a (Figures 13 & 14) adapts the bucketing approach from

Wolverine [29]: Let 𝐶, 𝐵 ∈ N be the parameters of the bucketing

scheme. To check that a collection of triples ([𝑎𝑖], [𝑏𝑖], [𝑐𝑖])𝑛𝑖=1
satisfy a multiplicative relation, i.e. 𝑎𝑖 · 𝑏𝑖 = 𝑐𝑖 for 𝑖 = 1, . . . , 𝑛, the

prover creates a set of ℓ := 𝑛 ·𝐵+𝐶 unchecked multiplication triples

of commitments. After randomly permuting the ℓ triples according

to the choice of the verifier, 𝐶 triples are opened and checked

by the verifier. The remaining 𝑛𝐵 triples are evenly distributed

into 𝑛 buckets. Then, each multiplication (𝑎𝑖 · 𝑏𝑖
?

= 𝑐𝑖) is verified
with the 𝐵 triples of the corresponding bucket with a variant of

Beaver’s multiplication trick [5]. For the check to pass despite an

invalid multiplication 𝑎𝑖 · 𝑏𝑖 ≠ 𝑐𝑖 , the adversary needs to corrupt

exactly those triples that end up in the corresponding bucket for

that multiplication.

For Π
Z
2
𝑘

ComZK-b (Figure 15), we have adapted the multiplication

check of Mac’n’Cheese [4], which is similar to the Wolverine [29]

optimization for large fields and SPDZ-style [13] sacrificing of mul-

tiplication triples. The soundness of this type of check is based on

the difficulty of finding a solution to a randomized equation. If a

multiplicative relation does not hold, the adversary needs to guess

a random field element in order to pass. Thus the original scheme

needs a large field to be sound. In the Z
2
𝑘 -setting, there are multiple

obstacles that we have to overcome. First, we would like to also

support small values of 𝑘 (e.g. 𝑘 = 8 or 16). Simultaneously, we

10

also have to deal with zero divisors (which complicate the check)

which were no issue in the field setting. Moreover, even though the

commitment scheme (see Section 5.1) uses the larger ring Z
2
𝑘+𝑠 it

only authenticates the lower 𝑘 bits of 𝑥 and cannot prevent modifi-

cations of the upper bits, which might lead to additional problems.

We overcome these challenges by further increasing the ring size

from Z
2
𝑘+𝑠 to Z

2
𝑘+2𝑠 , so that the commitment scheme provides au-

thenticity of values modulo 2
𝑘+𝑠

. We use the additional 𝑠 bits to

avoid overflows when checking correctness of the multiplicative

relations modulo 2
𝑘
with an 𝑠 bit random challenge. Increasing the

ring leads to larger storage requirements – the values 𝑥,𝑀 [𝑥], 𝐾 [𝑥]
now require 𝑘 + 2𝑠 bits. It has, however, essentially no influence on

the communication costs of CheckZero andOpen, since we need to
mask the additional 𝑠 bits only once, independently of the number

of checked commitments.

5.3 Proofs of Security
In this section we formally state the security guarantees of our

protocols. and give an overview of the corresponding proofs. Due

to space limits, most of the complete proofs are given in Appendix G.

5.3.1 Proof of Π
Z
2
𝑘

ComZK-a. The formal statement of security is

given in the following theorem:

Theorem 5.1. The protocol Π
Z
2
𝑘

ComZK-a(Figures 13 & 14) securely

realizes the functionality F Z2𝑘ComZK: No environment can distinguish
the real execution from a simulated one except with probability (𝑞cz +
𝑞cm) · 2−𝑠+log(𝑠+1) + 𝑞cm ·

(𝑛𝐵+𝐶
𝐵

)−1
, where 𝑞cz is the sum of calls to

CheckZero and Open, and 𝑞cm the number of calls to CheckMult.

We prove the theorem in the UC model by constructing a simula-

tor that generates a view indistinguishable to that in a real protocol

execution. In the case of a corrupted verifier, the simulation is per-

fect. For a corrupted prover, the distinguishing advantage depends

on thes oundness properties of the CheckZero and CheckMult pro-

tocols in Π
Z
2
𝑘

ComZK-a. These are stated in the following two lemmata.

The full proof of Theorem 5.1 is given in Appendix G.3.

Lemma 5.2. If P∗ andV run the CheckZero protocol of Π
Z
2
𝑘

com−a
with commitments [𝑥1], . . . , [𝑥𝑛] and (𝑥1, . . . , 𝑥𝑛) .𝑘 (0, . . . , 0),
thenV outputs (success) with probability at most Ycz := 2

−𝑠+log(𝑠+1) .

Since the CheckZero protocol is based on the MAC check from

[12], the proof of Lemma 5.2 is similar. It is given in Appendix G.1.

Lemma 5.3. If P∗ andV run the CheckMult protocol of Π
Z
2
𝑘

com−a
with parameters𝐵,𝐶 ∈ N such that𝐶 ≥ 𝐵 and inputs ([𝑎𝑖], [𝑏𝑖], [𝑐𝑖])𝑛𝑖=1
and there exists an index 1 ≤ 𝑖 ≤ 𝑛 such that 𝑎𝑖 · 𝑏𝑖 .𝑘 𝑐𝑖 then
V outputs (success) with probability at most Ycm + Ycz with Ycm :=(𝑛𝐵+𝐶

𝐵

)−1
, and Ycz the soundness error ofCheckZero given in Lemma 5.2.

The CheckMult protocol is based on the corresponding check

from Wolverine [29], and the same analysis also applies to the Z
2
𝑘

case. The proof of Lemma 5.3 can be found in Appendix G.2.

5.3.2 Proof of Π
Z
2
𝑘

ComZK-b. The formal statement of security is

given in the following theorem:

Protocol Π
Z
2
𝑘

ComZK-a (Part 1)

Each party can abort the protocol by sending the message

(abort) to the other party and terminating the execution.

Init For (Init), the parties send (Init) to F 𝑠,𝑘+𝑠vole2k. V re-

ceives its global MAC key Δ ∈ Z2𝑠 .
Random For (Random), the parties send (Extend) to
F 𝑠,𝑘+𝑠vole2k so that P receives𝑀 [𝑟], 𝑟 ∈ Z

2
𝑘+𝑠 andV receives

𝐾 [𝑟] ∈ Z
2
𝑘+𝑠 so that 𝑀 [𝑟] = Δ · 𝑟 + 𝐾 [𝑟] holds. This is

denoted as [𝑟].
Affine Combination For [𝑧] ← 𝛼0 +

∑𝑛
𝑖=1 𝛼𝑖 · [𝑥𝑖], the

parties locally set

• 𝑧 ← 𝛼0 +
∑𝑛
𝑖=1 𝛼𝑖 · 𝑥𝑖 (by P),

• 𝑀 [𝑧] ← ∑𝑛
𝑖=1 𝛼𝑖 ·𝑀 [𝑥𝑖] (by P),

• 𝐾 [𝑧] ← −Δ · 𝛼0 +
∑𝑛
𝑖=1 𝛼𝑖 · 𝐾 [𝑥𝑖] (byV).

CheckZero For (CheckZero, [𝑥1], . . . , [𝑥𝑛]), the parties
proceed as follows:

(1) If one of the 𝑥𝑖 is not equal to 0, then P aborts.

(2) They run [𝑟] ← Random().
(3) V samples 𝜒1, . . . , 𝜒𝑛 ∈𝑅 Z2𝑠 and sends them to P.
(4) Let 𝑝𝑖 := (𝑥𝑖 − 𝑥𝑖)/2𝑘 denote the upper 𝑠 bits of 𝑥𝑖 .

P computes 𝑝 ← 𝑟 + ∑𝑛
𝑖=1 𝜒𝑖 · 𝑝𝑖 ∈ Z2𝑠 and 𝑚 ←∑𝑛

𝑖=1 𝜒𝑖 ·𝑀 [𝑥𝑖] + 2𝑘 ·𝑀 [𝑟] ∈ Z2𝑘+𝑠 , and sends both to

V .

(5) Finally,V checks𝑚
?≡𝑘+𝑠 2𝑘 · Δ · 𝑝 +

∑𝑛
𝑖=1 𝜒𝑖 ·𝐾 [𝑥𝑖] +

2
𝑘 · 𝐾 [𝑟], and outputs (success) if the equality holds

and aborts otherwise

Input For (Input, 𝑥), where 𝑥 ∈ Z
2
𝑘 is known by P, the

parties first run [𝑟] ← Random(). Then P sends 𝛿 :=

𝑥 − 𝑟 mod 2
𝑘
toV , and they compute [𝑥] ← [𝑟] + 𝛿 .

Open For (Open, [𝑥1], . . . , [𝑥𝑛]), P sends 𝑥1, . . . , 𝑥𝑛 to

V , and they compute [𝑧𝑖] ← [𝑥𝑖] − 𝑥𝑖 for 𝑖 = 1, . . . , 𝑛,

followed by CheckZero([𝑧1], . . . , [𝑧𝑛]). The result of the
latter is returned.

Figure 13: Protocol Π
Z
2
𝑘

ComZK-a instantiating F Z2𝑘ComZK using a
Wolverine-like [29] multiplication check.

Theorem 5.4. The protocol Π
Z
2
𝑘

ComZK-b (Figure 15) securely realizes

the functionality F Z2𝑘ComZK: No environment can distinguish the real
execution from a simulated one except with probability (𝑞cz + 𝑞cm) ·
2
−𝑠+log(𝑠+1) + 𝑞cm · 2−𝑠 , where 𝑞cz is the sum of calls to CheckZero
and Open, and 𝑞cm the number of calls to CheckMult.

The proof of Theorem 5.4 is given in Appendix G.4. Except for

the simulation of CheckMult, it is largely similar to the proof of

Theorem 5.1. Again, we first prove a lemma about the soundness

error of the CheckMult operation, that we use to show indistin-

guishability of our simulation. The proof is included here, since it

shows why the adaption of the SPDZ-style sacrificing check from

large fields to the Z
2
𝑘 setting is secure.

11

Protocol Π
Z
2
𝑘

ComZK-a (Part 2)

MultiplicationCheck Let 𝐵,𝐶 ∈ N be parameters of the

protocol. On input (CheckMult, ([𝑎𝑖], [𝑏𝑖], [𝑐𝑖])𝑛𝑖=1) the
parties proceed as follows:

(1) P aborts if 𝑎𝑖 · 𝑏𝑖 ≠ 𝑐𝑖 (mod 2
𝑘) for some 𝑖 = 1, . . . , 𝑛.

(2) Let ℓ := 𝑛 · 𝐵 +𝐶 , and initialize lst← ∅
(3) They compute ([𝑥𝑖], [𝑦𝑖])ℓ𝑖=1 ← Random() so that P

receives (𝑥𝑖 , 𝑦𝑖)ℓ𝑖=1.
(4) P computes 𝑧𝑖 ← 𝑥𝑖 · 𝑦𝑖 for 𝑖 = 1, . . . , ℓ , and they run

([𝑧𝑖])ℓ𝑖=1 ← Input((𝑧𝑖)ℓ𝑖=1).
(5) V samples a permutation 𝜋 ∈𝑅 𝑆ℓ and sends it to P.
(6) They run (𝑥𝜋 (𝑖) , 𝑦𝜋 (𝑖) , 𝑧𝜋 (𝑖))𝐶𝑖=1 ←

Open(([𝑥𝜋 (𝑖)], [𝑦𝜋 (𝑖)], [𝑧𝜋 (𝑖)])𝐶𝑖=1, lst).
(7) V checks if 𝑥𝜋 (𝑖) · 𝑦𝜋 (𝑖) = 𝑧𝜋 (𝑖) for 𝑖 = 1, . . . ,𝐶 , and

aborts otherwise.

(8) For each (𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗) with 𝑗 = 1, . . . , 𝑛 and for each

(𝑥𝜋 (𝑘) , 𝑦𝜋 (𝑘) , 𝑧𝜋 (𝑘)) with 𝑘 = 𝐶 + (𝑗 −1) ·𝐵+1, . . . ,𝐶 +
𝑗 · 𝐵, they compute

(a) 𝑑 ← Open([𝑎 𝑗] − [𝑥𝜋 (𝑘)], lst) and 𝑒 ←
Open([𝑏 𝑗] − [𝑦𝜋 (𝑘)], lst) and

(b) [𝑤𝑘] ← [𝑧𝜋 (𝑘)]−[𝑐 𝑗]+𝑒 · [𝑥𝜋 (𝑘)]+𝑑 · [𝑦𝜋 (𝑘)]+𝑑 ·𝑒
(9) Finally, they run (CheckZero, lst, ([𝑤𝑘])ℓ𝑘=𝐶+1). If suc-

cessful and the check in Step 7 also passed,V outputs

(success) and aborts otherwise.

Figure 14: Protocol Π
Z
2
𝑘

ComZK-a instantiating F Z2𝑘ComZK using a
Wolverine-like [29] multiplication check.

Lemma 5.5. IfP∗ andV run theCheckMult protocol ofΠ
Z
2
𝑘

ComZK-b
with inputs ([𝑎𝑖], [𝑏𝑖], [𝑐𝑖])𝑛𝑖=1 such that there exists an index 1 ≤ 𝑖 ≤
𝑛 such that 𝑎𝑖 · 𝑏𝑖 .𝑘 𝑐𝑖 , thenV outputs (success) with probability
at most Y ′cm + Ycz with Y ′cm := 2

−𝑠 , and Ycz the soundness error of
CheckZero given in Lemma 5.2.

Proof. Suppose P∗ and V run the CheckMult protocol with
inputs as described in the lemma.

Since CheckZero′ is a variant of CheckZero from Π
Z
2
𝑘

ComZK-a for

the larger message space Z
2
𝑘+𝑠 , we can apply Lemma 5.2 again:

Hence, a P∗ that tries to cheat during CheckZero′ is detected by

V except with probability Ycz.

Now assume this does not happen, all the zero checks are correct,

andV accepts. Let 𝑖 be an index of an invalid triple such 𝑎𝑖 ·𝑏𝑖 .𝑘 𝑐𝑖 .
Then, P has chosen 𝑧𝑖 ∈ Z𝑠𝑘+𝑠 such that

0 ≡𝑘+𝑠 [· 𝑐𝑖 − 𝑧𝑖 − Y𝑖 · 𝑏𝑖 ≡𝑘+𝑠 [· 𝑐𝑖 − 𝑧𝑖 − [· 𝑎𝑖 · 𝑏𝑖 + 𝑥𝑖 · 𝑏𝑖
⇐⇒ 𝑧𝑖 − 𝑥𝑖 · 𝑏𝑖 ≡𝑘+𝑠 [· (𝑐𝑖 − 𝑎𝑖 · 𝑏𝑖) .

Let 𝑣 ∈ N be maximal such that 2
𝑣
divides 𝑐𝑖−𝑎𝑖 ·𝑏𝑖 . Since (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖)

is an invalid triple modulo 2
𝑘
, it is 𝑣 < 𝑘 . Now we divide both sides

of the equation by 2
𝑣
while also reducing the modulus to obtain:

(𝑧𝑖 − 𝑥𝑖 · 𝑏𝑖)/2𝑣 ≡𝑘+𝑠−𝑣 [· (𝑐𝑖 − 𝑎𝑖 · 𝑏𝑖)/2𝑣

Protocol Π
Z
2
𝑘

ComZK-b

Much of the protocol is identical to Π
Z
2
𝑘

ComZK-a (Figures 13

and 14) with the exception that the MACs are now

computed in the larger ring Z
2
𝑘+2𝑠 . Init, Random, Affine

Combination, Input and Open work exactly as in

Π
Z
2
𝑘

ComZK-a, although using F 𝑠,𝑘+2𝑠vole2k .

CheckZero For (CheckZero, [𝑥1], . . . , [𝑥𝑛]), the parties
proceed as follows:

(1) If one of the 𝑥𝑖 is not equal to 0, then P aborts.

(2) They run [𝑟] ← Random().
(3) V samples 𝜒1, . . . , 𝜒𝑛 ∈𝑅 Z2𝑠 and sends them to P.
(4) Let 𝑝𝑖 := (𝑥𝑖 − 𝑥𝑖)/2𝑘 denote the upper 2𝑠 bits of 𝑥𝑖 .

P computes 𝑝 ← 𝑟 + ∑𝑛
𝑖=1 𝜒𝑖 · 𝑝𝑖 ∈ Z22𝑠 and 𝑚 ←∑𝑛

𝑖=1 𝜒𝑖 · 𝑀 [𝑥𝑖] + 2𝑘 · 𝑀 [𝑟] ∈ Z2𝑘+2𝑠 , and sends both

toV .

(5) Finally,V checks𝑚
?≡𝑘+2𝑠 2𝑘 ·Δ ·𝑝 +

∑𝑛
𝑖=1 𝜒𝑖 ·𝐾 [𝑥𝑖] +

2
𝑘 · 𝐾 [𝑟], and outputs (success) if the equality holds

and aborts otherwise.

CheckZero’ CheckZero′ denotes a variant of the above
which checks that 𝑥𝑖 = 0 (mod 2

𝑘+𝑠), and is only used in

the multiplication check below. The difference is that only

the upper 𝑠 bits of the 𝑥𝑖 are hidden by 𝑝 (now from Z2𝑠)
instead of the upper 2𝑠 bits. The macro Open′([𝑥], lst) is
similarly an adaption revealing the lower 𝑘 + 𝑠 bits and
using CheckZero′.

MultiplicationCheck The parties proceed on input

(CheckMult, ([𝑎𝑖], [𝑏𝑖], [𝑐𝑖])𝑛𝑖=1) as follows:
(1) P aborts if 𝑎𝑖 · 𝑏𝑖 ≠ 𝑐𝑖 (mod 2

𝑘) for some 𝑖 = 1, . . . , 𝑛.

(2) Let lst := ∅.
(3) Generate ([𝑥𝑖])𝑛𝑖=1 ← Random() followed by [𝑧𝑖] ←

Input(𝑥𝑖 · 𝑏𝑖) for 𝑖 = 1, . . . , 𝑛.

(4) V sends a random value [∈𝑅 Z2𝑠 to P.
(5) Compute Y𝑖 ← Open′([· [𝑎𝑖] − [𝑥𝑖], lst) for 𝑖 =

1, . . . , 𝑛.

(6) Run CheckZero′(([· [𝑐𝑖] − [𝑧𝑖] − Y𝑖 · [𝑏𝑖])𝑛𝑖=1, lst). If
successful,V returns (success), otherwise abort.

Figure 15: Protocol Π
Z
2
𝑘

ComZK-b instantiating F Z2𝑘ComZK using a
Mac’n’Cheese-style [4] multiplication check.

Since (𝑐𝑖 − 𝑎𝑖 · 𝑏𝑖)/2𝑣 is odd, it is invertible modulo 2
𝑘+𝑠−𝑣

and we

can move it to the other side, getting

(𝑧𝑖 − 𝑥𝑖 · 𝑏𝑖)/2𝑣 · ((𝑐𝑖 − 𝑎𝑖 · 𝑏𝑖)/2𝑣)−1 ≡𝑘+𝑠−𝑣 [.
Since𝑘 > 𝑣 , we have𝑘+𝑠−𝑣 > 𝑠 , and the prover would have guessed
all 𝑠 bits of [∈ Z𝑠𝑠 which happens only with probability 2

−𝑠
.

Therefore, by the union bound, P∗ can makeV output (success)
with probability at most Ycz + 2−𝑠 . □

5.3.3 Communication Costs. In the protocols V samples ran-

dom coefficients 𝜒𝑖 inCheckZero and a permutation𝜋 inCheckMult
12

Table 2: Comparison of amortized communication costs in
bits per commitment/triple to verify. 𝑘 is the size of the mod-
ulus, 𝑠 depends on the statistical security parameter, 𝐵 is the
bucket size used in Π

Z
2
𝑘

ComZK-a.

Protocol CheckZero Open CheckMult

Π
Z
2
𝑘

ComZK-a 0 𝑘 3𝐵𝑘 and 3𝐵 VOLEs

Π
Z
2
𝑘

ComZK-b 0 𝑘 2 · (𝑘 + 𝑠) and 2 VOLEs

of Π
Z
2
𝑘

ComZK-a and sends these to P. To reduce the communication

costs, V can send a random seed instead, which both parties ex-

pand with a PRG to derive the desired random values. In this way,

V needs to transfer only _ bits (for a computational security pa-

rameter _) instead of 𝑛 · 𝑠 bits for CheckZero and log
2
(𝑛 · 𝐵 + 𝑐)!

bits for CheckMult.
The amortized communication costs per checked commitment

and multiplication triple of both protocols are given in Table 2.

Acknowledgements
This material is based upon work supported by the European

Research Council (ERC) under the European Unions’s Horizon

2020 research and innovation programme under grant agreement

No 803096 (SPEC), the Carlsberg Foundation under the Semper

Ardens Research Project CF18-112 (BCM), and the Defense Ad-

vanced Research Projects Agency (DARPA) under Contract No.

HR001120C0085. Any opinions, findings and conclusions or recom-

mendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the Defense Advanced

Research Projects Agency (DARPA). Distribution Statement “A”

(Approved for Public Release, Distribution Unlimited).

REFERENCES
[1] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior

Zichron. 2017. Secure Arithmetic Computation with Constant Computa-

tional Overhead. In CRYPTO 2017, Part I (LNCS), Jonathan Katz and Hovav

Shacham (Eds.), Vol. 10401. Springer, Heidelberg, 223–254. https://doi.org/10.

1007/978-3-319-63688-7_8

[2] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.

More efficient oblivious transfer and extensions for faster secure computation.

In ACM CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.).

ACM Press, 535–548. https://doi.org/10.1145/2508859.2516738

[3] Carsten Baum and Vadim Lyubashevsky. 2017. Simple Amortized Proofs of

Shortness for Linear Relations over Polynomial Rings. Cryptology ePrint Archive,

Report 2017/759. (2017). https://eprint.iacr.org/2017/759.

[4] Carsten Baum, Alex J. Malozemoff, Marc Rosen, and Peter Scholl. 2020.

Mac’n’Cheese: Zero-Knowledge Proofs for Arithmetic Circuits with Nested

Disjunctions. Cryptology ePrint Archive, Report 2020/1410. (2020). https:

//eprint.iacr.org/2020/1410.

[5] Donald Beaver. 1992. Efficient Multiparty Protocols Using Circuit Randomization.

In CRYPTO’91 (LNCS), Joan Feigenbaum (Ed.), Vol. 576. Springer, Heidelberg,

420–432. https://doi.org/10.1007/3-540-46766-1_34

[6] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-

homomorphic Encryption and Multiparty Computation. In EUROCRYPT 2011
(LNCS), Kenneth G. Paterson (Ed.), Vol. 6632. Springer, Heidelberg, 169–188.

https://doi.org/10.1007/978-3-642-20465-4_11

[7] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. 2018. Compressing

Vector OLE. In ACM CCS 2018, David Lie, Mohammad Mannan, Michael Backes,

and XiaoFeng Wang (Eds.). ACM Press, 896–912. https://doi.org/10.1145/3243734.

3243868

[8] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,

and Peter Scholl. 2019. Efficient Two-Round OT Extension and Silent Non-

Interactive Secure Computation. In ACM CCS 2019, Lorenzo Cavallaro, Johannes

Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, 291–308. https:

//doi.org/10.1145/3319535.3354255

[9] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter

Scholl. 2019. Efficient Pseudorandom Correlation Generators: Silent OT Ex-

tension and More. In CRYPTO 2019, Part III (LNCS), Alexandra Boldyreva and
Daniele Micciancio (Eds.), Vol. 11694. Springer, Heidelberg, 489–518. https:

//doi.org/10.1007/978-3-030-26954-8_16

[10] Matteo Campanelli, Dario Fiore, and Anaïs Querol. 2019. LegoSNARK: Modular

Design and Composition of Succinct Zero-Knowledge Proofs. In ACM CCS 2019,
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.).

ACM Press, 2075–2092. https://doi.org/10.1145/3319535.3339820

[11] Octavian Catrina and Sebastiaan de Hoogh. 2010. Improved Primitives for

Secure Multiparty Integer Computation. In SCN 10 (LNCS), Juan A. Garay and

Roberto De Prisco (Eds.), Vol. 6280. Springer, Heidelberg, 182–199. https://doi.

org/10.1007/978-3-642-15317-4_13

[12] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping Xing.

2018. SPD Z
2
𝑘 : Efficient MPC mod 2

𝑘
for Dishonest Majority. In CRYPTO 2018,

Part II (LNCS), Hovav Shacham and Alexandra Boldyreva (Eds.), Vol. 10992.

Springer, Heidelberg, 769–798. https://doi.org/10.1007/978-3-319-96881-0_26

[13] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-

party Computation from Somewhat Homomorphic Encryption. In CRYPTO 2012
(LNCS), Reihaneh Safavi-Naini and Ran Canetti (Eds.), Vol. 7417. Springer, Hei-

delberg, 643–662. https://doi.org/10.1007/978-3-642-32009-5_38

[14] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. 2020. Line-Point Zero Knowl-

edge and Its Applications. Cryptology ePrint Archive, Report 2020/1446. (2020).

https://eprint.iacr.org/2020/1446.

[15] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.

2020. Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits.

In CRYPTO 2020, Part II (LNCS), Daniele Micciancio and Thomas Ristenpart

(Eds.), Vol. 12171. Springer, Heidelberg, 823–852. https://doi.org/10.1007/

978-3-030-56880-1_29

[16] Shimon Even, Oded Goldreich, and Abraham Lempel. 1982. A Randomized

Protocol for Signing Contracts. In CRYPTO’82, David Chaum, Ronald L. Rivest,

and Alan T. Sherman (Eds.). Plenum Press, New York, USA, 205–210.

[17] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. 2015. Privacy-

Free Garbled Circuits with Applications to Efficient Zero-Knowledge. In EURO-
CRYPT 2015, Part II (LNCS), Elisabeth Oswald and Marc Fischlin (Eds.), Vol. 9057.

Springer, Heidelberg, 191–219. https://doi.org/10.1007/978-3-662-46803-6_7

[18] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1985. The Knowledge

Complexity of Interactive Proof-Systems (Extended Abstract). In 17th ACM
STOC. ACM Press, 291–304. https://doi.org/10.1145/22145.22178

[19] David Heath and Vladimir Kolesnikov. 2020. Stacked Garbling for Disjunctive

Zero-Knowledge Proofs. In EUROCRYPT 2020, Part III (LNCS), Anne Canteaut
and Yuval Ishai (Eds.), Vol. 12107. Springer, Heidelberg, 569–598. https://doi.org/

10.1007/978-3-030-45727-3_19

[20] Russell Impagliazzo and Steven Rudich. 1989. Limits on the Provable Con-

sequences of One-Way Permutations. In 21st ACM STOC. ACM Press, 44–61.

https://doi.org/10.1145/73007.73012

[21] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending Oblivi-

ous Transfers Efficiently. In CRYPTO 2003 (LNCS), Dan Boneh (Ed.), Vol. 2729.

Springer, Heidelberg, 145–161. https://doi.org/10.1007/978-3-540-45146-4_9

[22] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. 2009. Secure Arithmetic

Computation with No Honest Majority. In TCC 2009 (LNCS), Omer Rein-

gold (Ed.), Vol. 5444. Springer, Heidelberg, 294–314. https://doi.org/10.1007/

978-3-642-00457-5_18

[23] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. 2013. Zero-knowledge

using garbled circuits: how to prove non-algebraic statements efficiently. In ACM
CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM

Press, 955–966. https://doi.org/10.1145/2508859.2516662

[24] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh. 2021.

Rabbit: Efficient Comparison for Secure Multi-Party Computation. Financial

Crypto 2021. (2021).

[25] Moni Naor and Benny Pinkas. 1999. Oblivious Transfer and Polynomial Evalua-

tion. In 31st ACM STOC. ACM Press, 245–254. https://doi.org/10.1145/301250.

301312

[26] Dragos Rotaru and Tim Wood. 2019. MArBled Circuits: Mixing Arithmetic and

Boolean Circuits with Active Security. In INDOCRYPT 2019 (LNCS), Feng Hao,
Sushmita Ruj, and Sourav Sen Gupta (Eds.), Vol. 11898. Springer, Heidelberg,

227–249. https://doi.org/10.1007/978-3-030-35423-7_12

[27] Peter Scholl. 2018. Extending Oblivious Transfer with Low Communication via

Key-Homomorphic PRFs. In PKC 2018, Part I (LNCS), Michel Abdalla and Ricardo

Dahab (Eds.), Vol. 10769. Springer, Heidelberg, 554–583. https://doi.org/10.1007/

978-3-319-76578-5_19

[28] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, andMariana Raykova. 2019.

Distributed Vector-OLE: Improved Constructions and Implementation. In ACM
CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan

Katz (Eds.). ACM Press, 1055–1072. https://doi.org/10.1145/3319535.3363228

13

https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1145/2508859.2516738
https://eprint.iacr.org/2017/759
https://eprint.iacr.org/2020/1410
https://eprint.iacr.org/2020/1410
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3243734.3243868
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1145/3319535.3354255
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-642-32009-5_38
https://eprint.iacr.org/2020/1446
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1145/73007.73012
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1145/2508859.2516662
https://doi.org/10.1145/301250.301312
https://doi.org/10.1145/301250.301312
https://doi.org/10.1007/978-3-030-35423-7_12
https://doi.org/10.1007/978-3-319-76578-5_19
https://doi.org/10.1007/978-3-319-76578-5_19
https://doi.org/10.1145/3319535.3363228

[29] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2020. Wolverine:

Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean

and Arithmetic Circuits. Cryptology ePrint Archive, Report 2020/925. (2020).

https://eprint.iacr.org/2020/925.

[30] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. QuickSilver:

Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials

over Any Field. Cryptology ePrint Archive, Report 2021/076. (2021). https:

//eprint.iacr.org/2021/076.

[31] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. 2020. Ferret:

Fast Extension for Correlated OT with Small Communication. In ACM CCS 20,
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press,

1607–1626. https://doi.org/10.1145/3372297.3417276

[32] Samee Zahur, Mike Rosulek, and David Evans. 2015. Two Halves Make a

Whole - Reducing Data Transfer in Garbled Circuits Using Half Gates. In EURO-
CRYPT 2015, Part II (LNCS), Elisabeth Oswald and Marc Fischlin (Eds.), Vol. 9057.

Springer, Heidelberg, 220–250. https://doi.org/10.1007/978-3-662-46803-6_8

A MULTI-DOMAIN COMMITMENT
FUNCTIONALITY

Functionality F 2,𝑀
ComZK

F 2,𝑀
ComZK communicates with two parties P,V . It contains

two separate instances of the commitment functionality

F 𝑅ComZK, one for 𝑅 = Z2 and the other for 𝑅 = Z𝑀 . Com-

mitments are denoted as [·]2 and [·]𝑀 , respectively.

The parties can use the functions of F 𝑅ComZK with respect

to both domains Z2 and Z𝑀 , so all functions are parameter-

ized by a domain unless apparent from context. Then, any

use of [·]2 or [·]𝑀 interfaces are dealt with in the same

way as F 𝑅ComZK.

Figure 16: Ideal functionality modeling communication us-
ing commitments over multiple domains.

B PROOF OF SECURITY OF THE BASIC
CONVERSION PROTOCOL

B.0.1 The RealGame. In order to prove the security of ΠConv,

we define an abstract game RealGame (Figure 17). In this abstrac-

tion, the prover (orA) will pick additively tampered binary circuits

directly, rather than individual multiplication triples. Apart from

this change, the check run on each Conversion Tuple within each

bucket is the same (step 6). We define all elements used to verify

the consistency as checking tuples. These checking tuples contain
an edaBit, a daBit and a potentially tampered circuit.

This game models the conversion verification protocol closely,

but is also difficult to analyze. We therefore make some simplifying

assumptions about this game and arrive at the SimpleGame that
we present in the next section.

B.0.2 The SimpleGame. We define an additional abstraction

to the RealGame. This SimpleGame is even simpler in the sense

that it no longer considers edaBits, triples or daBits. We argue

that this simplified game SimpleGame models the RealGame,
before analyzing the probability of success for the SimpleGame.

Within the SimpleGame edaBits are transformed into balls in

such a way that a good edaBit is a clear ball () and bad (corrupt)

edaBits are shades of gray balls (I.e. or) where each shade

defines a different kind of corruption. Likewise, a good circuit is

a clear triangle () and bad circuits are gray triangles (). A bad

ball (or triangle) is bad in the sense that it helps the adversary win

the game. Everyone is given access to the public function 𝑓 that

takes two balls and a triangle and outputs 0 or 1. This function

𝑓 is isomorphic to the winning condition in step 6 of RealGame
and is modelled by the bucket check procedure shown in Figure 19.

Finally, the adversary wins if bucketcheck does not abort, meaning

that A passed all the checks, and there is at least one bad ball in

the output.

In each check within the buckets, two balls are placed as well

as one triangle. If the size of the buckets 𝐵 = 3, then one bucket

14

https://eprint.iacr.org/2020/925
https://eprint.iacr.org/2021/076
https://eprint.iacr.org/2021/076
https://doi.org/10.1145/3372297.3417276
https://doi.org/10.1007/978-3-662-46803-6_8

The RealGame

(1) A prepares 𝑁 + (𝑁𝐵 + 𝐶) authenticated

edaBits (representing the 𝑁 conversion tuples

and 𝑁𝐵 + 𝐶 edaBits required to run the check),

{([𝑟 𝑗
0
]2, . . . , [𝑟 𝑗𝑚−1]2, [𝑟

𝑗]𝑀)} 𝑗 ∈[𝑁+𝑁𝐵+𝐶] , 𝑁𝐵 + 𝐶 ′

potentially tampered circuits {𝐶 𝑗,∗} 𝑗 ∈[𝑁𝐵+𝐶′] and lastly

𝑁𝐵 daBits {([𝑏 𝑗]2, [𝑏 𝑗]𝑀)} 𝑗 ∈[𝑁𝐵] . These are all send to

the challenger.

(2) The challenger shuffles the 𝑁 edaBits representing

conversion tuples, then shuffles the remaining as well as

the circuits using 3 permutations.

(3) The challenger opens𝐶 checking edaBits and𝐶 ′ of
the circuits. If any of the edaBits or circuits are inconsis-

tent, terminate.

(4) The challenger pairs up the remaining 𝑁𝐵 circuits

with the 𝑁𝐵 daBits according to their permutations.

(5) The challenger lets the shuffled list of the 𝑁 edaBits
be the first edaBit of each bucket before pairing up the

remaining 𝑁𝐵 checking edaBits and 𝑁𝐵 circuits with the

buckets.

(6) Within each of the buckets, for every pair of

edaBits ([𝑟0]2, . . . , [𝑟𝑚−1]2, [𝑟]𝑀) (where this is the

first of the bucket) and ([𝑠0]2, . . . , [𝑠𝑚−1]2, [𝑠]𝑀) take
the next circuit 𝐶∗ and compute (𝑐0, . . . , 𝑐𝑚) ←
𝐶∗ (𝑟0, . . . , 𝑟𝑚−1, 𝑠0, . . . , 𝑠𝑚−1). Compute 𝑐 ← ∑𝑚−1

𝑖=0 𝑐𝑖2
𝑖

and check 𝑟 + 𝑠 − 2𝑚 · 𝑐𝑚
?

= 𝑐 .

A wins if all of the checks pass and there is a least one

inconsistent edaBit as the top element of a bucket.

Figure 17: An abstraction of the cutNchoose protocol used to
verify conversion tuples

contains four balls [𝐵1, 𝐵2, 𝐵3, 𝐵4] and three triangles [𝑇 1,𝑇 2,𝑇 3].
The bucketcheck procedure then checks all of the configurations

[𝐵1, 𝐵2,𝑇1], [𝐵1, 𝐵3,𝑇2], [𝐵1, 𝐵4,𝑇3] and check if any of these

configurations are {[, , }, {[, , }, {[, , } in which case

the check fails and terminate. When there are two bad balls and

one triangle (good or bad) however, whether or not to terminate

depends on the type of the bad balls. This means we consider bad

balls to be of different types (i.e. the prover provide conversions

tuples and edaBits with different types of corruption) and we

distinguish these with different color shades. As a result of this, the

procedure might terminate if the configuration matches [, ,]
and in other cases it terminates due to [, ,]. As the adversary
will need to match the balls with triangles, an isomorphic argument

can be made using different shadings for the triangles.

For clarity, we list the different advantageous (for the adversary)

combinations of balls and triangles in Table 3. If the configurations

within the buckets match those of the first three entries of Table 3

then bucketcheck will not terminate. If any match the penultimate

entry or the final entry, then bucketcheck terminates if the output

of 𝑓 is 0.

The SimpleGame

(1) A prepares 𝑁 + (𝑁𝐵 +𝐶) balls and corrupts 𝑏 of the
𝑁𝐵 +𝐶 balls. These are all sent to the challenger.

(2) The challenger opens𝐶 of the𝑁𝐵+𝐶 balls at random

and checks whether all𝐶 are good. If any of these balls are

bad, then terminate.

(3) The challenger shuffles the initial 𝑁 and the remain-

ing 𝑁𝐵 balls individually and then associates the initial

𝑁 balls individually with 𝑁 buckets. The challenger then

randomly assigns the remaining 𝑁𝐵 balls to the 𝑁 buckets

which each have capacity 𝐵. The arrangement of balls is

send to A.

(4) A prepares 𝑁𝐵 +𝐶 ′ triangles and corrupts 𝑡 of them.

These are all sent to the challenger.

(5) The challenger opens 𝐶 ′ of the triangles at random
and checks whether all𝐶 ′ are good. If any of these triangles
are bad, then terminate.

(6) The challenger shuffles the remaining 𝑁𝐵 triangles

and randomly assigns these to the 𝑁 buckets.

(7) The challenger runs the bucketcheck procedure (Fig-
ure 19).

(8) If bucketcheck returns 1, the challenger accepts the

first ball of each bucket, otherwise terminate.

A wins if the protocol has not terminated at this point and

at least one bad ball is accepted by the challenger.

Figure 18: A game working as a further abstraction of the
RealGame

Simplified bucket check for conversion tuples

Input
𝑁 buckets and a function 𝑓 . Each bucket contains 𝐵 + 1
balls {𝑥1, . . . , 𝑥𝐵} and 𝐵 triangles {𝑦1, . . . , 𝑦𝐵}.
Protocol
For each bucket, run the following check:

(1) Check the configuration of [𝑥1, 𝑥𝑖 |𝑦𝑖−1],∀𝑖 ∈ [2, 𝐵].
• If [𝑥1, 𝑥𝑖 |𝑦𝑖−1] ∈ {[, |], [, |], [, |]} re-

turn reject.
• If [𝑥1, 𝑥𝑖 |𝑦𝑖−1] ∈ [, |] and 𝑓 (, ,) = 0 return

reject.
• If [𝑥1, 𝑥𝑖 |𝑦𝑖−1] ∈ [, |] and 𝑓 (, ,) = 0 return

reject.
(2) Otherwise return accept.
If all checks returns accept, then output 1. Otherwise

output 0.

Figure 19: A bucket check procedure used to check consis-
tency of conversion tuples in the SimpleGame

We now show that RealGame can be modeled as SimpleGame
such that if SimpleGame is secure, then so is RealGame.

15

Table 3: Favorable combinations of balls and triangles for the
adversary

Circles Triangles

/

/

Lemma B.1. Security against all adversaries in SimpleGame im-
plies security against all adversaries in RealGame.

Proof. (Sketch.) We argue the security of our revised Real-
Game by showing that if there exists an efficient adversary B that

wins RealGame with non-negligible probability, then there exists

an efficient adversaryA against SimpleGame that wins with non-

negligible probability. A will simulate the RealGame challenger
and then use B to win SimpleGame.

Keep in mind that the point of SimpleGame is to mix circles and

triangles where a gray triangle () corresponds to a faulty binary

addition circuit and an empty triangle () represents a regular

binary addition circuit, but both of these representations are purely

semantics.

As mentioned, the adversary A simulates the challenger of Re-
alGame and then uses B to win SimpleGame. B sends a batch

of edaBits and a set of circuits (and daBits) to A. A randomly

permutes the edaBits and then transforms them into circles. A
does the same with the circuits (and corresponding daBits), except
these are turned into triangles. Now, whether a circle (or triangle)

is good or bad depends entirely on whether or not the edaBit (or
circuit) is consistent or not.

A sends the set of circles to the challenger of SimpleGame, who
then throws them randomly in buckets and sends these back to A.

The same happens with the set of triangles. In RealGame,A pairs

the edaBits and the circuits according to the same arrangement

as what was given to A from the SimpleGame challenger. These
are then given to B. If B is capable of winning RealGame, then B
can be used to win the SimpleGame, as the configuration given

by A to B is indistinguishable from that given by a real challenger

of RealGame. This is due to the same permutation and due to

the function 𝑓 being used within the SimpleGame: 𝑓 is created
specifically to mimic the checking procedure of RealGame, so this
behaves in an indistinguishable way as well.

If B wins RealGame with non-negligible probability, then A
wins the SimpleGame with the same probability. □

B.1 Analysis of the Cut and Choose procedure
We will now prove that this cut-and-choose protocol is sound, as

stated in 3.3.

In order to pass the bucketcheck, the adversarial prover will

have to fill every bucket with (ball, ball, triangle) arrangements

according to Table 3.

We will now analyze the probability of success of an adversarial

prover, i.e. that the prover gets through all three checks described

in bucketcheck with at least one inconsistent conversion tuple.

Throughout this analysis we will use 𝑏 to denote the number of

bad balls (of the edaBits within checking tuples) and 𝑡 to denote

the number of bad triangles. We assume that 𝑁 ≥ 2

𝑠
𝐵−1 .

First consider the openings taking place during the first two

checks.

Opening 𝐶 balls: In the first check, 𝐶 of the 𝑁𝐵 + 𝐶 balls are

opened and checked for consistency. Thus

Pr[𝐶 balls are good] =
(𝑁𝐵+𝐶−𝑏

𝐶

)(𝑁𝐵+𝐶
𝐶

) ≈ (
1 − 𝑏

𝑁𝐵 +𝐶

)𝐶
For 𝑏 = (𝑁𝐵 + 𝐶)𝛼 (where 1/(𝑁𝐵 + 𝐶) ≤ 𝛼 ≤ 1),

the probability can be written as (1 − 𝛼)𝐶 . To bound this

success probability using the statistical security parameter

𝑠 , we consider 𝛼 ≥ 2
𝑠/𝐵−1
2
𝑠/𝐵 and 𝐶 = 𝐵:

Pr[𝐶 balls are good] ≈ (1 − 𝛼)𝐶 = (2−𝑠/𝐵)𝐵 = 2
−𝑠

We conclude that if the challenger opens 𝐶 = 𝐵 balls, then

A must corrupt less than an 𝛼 (for 𝛼 = 2
𝑠/𝐵−1
2
𝑠/𝐵) fraction of

the balls in order to achieve the respective success proba-

bility. We summarize in the following lemma.

Lemma B.2. The probability of A passing the second
check in SimpleGame is less than 2

−𝑠 , if the adversary
corrupts more than 𝛼 fraction of triangles for 𝛼 = 2

𝑠/𝐵−1
2
𝑠/𝐵

and the challenger opens 𝐶 triangles.

Opening 𝐶 ′ triangles: The second check if very similar to the

first check as the number of balls is the same as the trian-

gles. We therefore arrive at the following statement,

Pr[𝐶 ′ triangles are good] =
(𝑁𝐵+𝐶′−𝑡

𝐶′
)(𝑁𝐵+𝐶′

𝐶′
) ≈ (

1 − 𝑡

𝑁𝐵 +𝐶 ′
)𝐶′

Using similar argumentation but bounding by a 𝛽 fraction

rather than 𝛼 and letting 𝐶 ′ = 𝐶 = 𝐵, we conclude

Pr[𝐶 ′ triangles are good] ≈ (1 − 𝛽)𝐶 = (2−𝑠/𝐵)𝐵 = 2
−𝑠

Lemma B.3. The probability of A passing the second
check in SimpleGame is less than 2

−𝑠 , if the adversary
corrupts more than 𝛽 fraction of triangles for 𝛽 = 2

𝑠/𝐵−1
2
𝑠/𝐵 and

the challenger opens 𝐶 ′ triangles.

The Lemmas B.2 & B.3 imply that whenever the fraction or bad

ball or triangles is large enough, the adversary would already lose

during the first two checks. We now analyze the probability of

hitting arrangements that pass bucketcheck in such a way that

A wins with respect to small enough fractions of faulty balls and

triangles.

Bucketcheck procedure: We here consider the probability of filling

a bucket of size 𝐵 with bad balls and triangles as this case may

allow the adversary to win with an inconsistent conversion tuple.

The challenger has already fixed an arrangement of 𝑁𝐵 balls into

the 𝑁 buckets. Once this ball arrangement is fixed, it leads to a

restriction on the number of favorable arrangements of triangles.

As an illustration, consider the following arrangement of 9 balls

with 𝑁 = 3 buckets of size 3 and that A has corrupted 𝐾 = 1

16

buckets and that this happens to be the first bucket after having

been shuffled.

{(, ,), (, ,), (, ,)}
Note that we use different shades of grey for different types of bad

balls.

Using Table 3 we see there are two possible favorable combina-

tions of triangles.

{(, ,), (, ,), (, ,)}

{(, ,), (, ,), (, ,)}
This is due to the last entry of Table 3 saying that whenever

there are two bad balls, the check may pass using a good trian-

gle ([, ,]) or a bad triangle ([, ,]). In this example, let

𝑓 (, ,) = 1 (and 𝑓 (, ,) = 1) in which case the second ar-

rangement is the favorable arrangement.

As a result of this discussion, the probability of passing bucketcheck
depends on the probability of hitting that specific arrangement of

triangles among all possible arrangements of triangles. Thus, the

probability of A passing the last check of bucketcheck given a

specific arrangement of balls 𝐿𝑖 is given by

Pr[A passes bucketcheck|𝐿𝑖] ≤ 1/
(
𝑁𝐵

𝑡

)
where 𝑡 = 𝑁𝐵𝛽 . Thus,

Pr[A passes bucketcheck|𝐿𝑖] ≤
(𝑁𝐵𝛽)! · (𝑁𝐵 · (1 − 𝛽))!

𝑁𝐵!

as we know 0 ≤ 𝛽 ≤ 1.

Now, to give an upper bound for Pr[A passes bucketcheck] we
provide an upper bound of the probability for different ranges of 𝛼

and 𝛽 where the total probability is given by

Pr[A passes bucketcheck] =
∑︁
𝑖

Pr[A passes bucketcheck|𝐿𝑖]·Pr[𝐿𝑖]

where 𝐿𝑖 is a given arrangement. If we can then argue for all possible

1

𝑁𝐵
≤ 𝛼 ≤ 2

𝑠/𝐵−1
2
𝑠/𝐵 , the probability forPr[A passes bucketcheck|𝐿𝑖]

(for some configuration 𝐿𝑖), can be bounded by 2
−𝑠
, then

Pr[A passes bucketcheck] ≤
∑︁
𝑖

2
−𝑠 · Pr[𝐿𝑖]

We now try to bound Pr[A passes bucketcheck|𝐿𝑖]. To this end,
we will consider three different ranges from which 𝑡 might come

from, as defined by the monotonicity of the binomial coefficient(𝑁𝐵
𝑡

)
.

Case I.. Let 𝐵 ≤ 𝑡 ≤ (𝑁𝐵 − 𝐵). Now

Pr[A passes bucketcheck|𝐿𝑖] ≤ 1/
(
𝑁𝐵

𝑡

)
This probability is maximal at 𝑡 = 𝐵 or 𝑡 = 𝑁𝐵 − 𝐵 as given by

Pr[A passes bucketcheck|𝐿𝑖] =
𝐵! · (𝑁𝐵 − 𝐵)!

𝑁𝐵!

=
𝐵

𝑁𝐵
· 𝐵 − 1
𝑁𝐵 − 1 · · ·

1

𝑁𝐵 − (𝐵 − 1)

Now, given that 𝑁 ≥ 2
𝑠/𝐵

, we arrive at

Pr[A passes bucketcheck|𝐿𝑖] ≤
(

1

𝑠𝑠/𝐵

)𝐵
= 2
−𝑠

Lastly we note that

Pr[𝐿𝑖] =
(𝑁𝐵 − 𝑏)!
𝑁𝐵!

where 𝑏 describes the number of bad balls (and in turn 𝑁𝐵 − 𝑏 is
the number of good balls). Combining these two last equations, we

conclude

Pr[A passes bucketcheck] ≤ 𝑁𝐵!

(𝑁𝐵 − 𝑏)! · 2
−𝑠 · (𝑁𝐵 − 𝑏)!

𝑁𝐵!

when 𝑡 ∈ [𝐵, 𝑁𝐵 − 𝐵].

Case II.. Let 𝑡 > 𝑁𝐵 − 𝐵. Whenever 𝑡 is greater than 𝑁𝐵 − 𝐵, A
will not be able to pass the initial phase where 𝐶 = 𝐵 triangles are

opened.

Case III.. Due to this type of game being very difficult to analyse

generally, we instead consider it for the specific bucket sizes in our

theorem statement. We will begin by looking at a bucket size of 3

and then analyse 𝑡 = 0, 𝑡 = 1 and 𝑡 = 2.

Bucket size 3: For a bucket of size 3 and 𝑡 = 0 the analysis has

already been done in [15], who show that the success probability is

< 2
−𝑠
.

For 𝑡 = 1, however, the adversary could now also hope to place

a bad triangle in the top spot of a bucket. This does not change

the number of cases though, as the case of having a good ball and

a bad triangle in the top spot is equivalent to having a good ball

and a bad triangle in any other spot of the bucket. Furthermore,

increasing the amount of triangles does not increase the probability

of A hitting a favorable permutation (as already argued in Case I),
we conclude that 𝑡 = 1 remains similar to [15].

Lastly, we consider 𝑡 = 2. Now the adversary has to compensate

for an extra bad triangle, compared to the previous case. In this

case we encounter a specific arrangement that could be an issue

regarding our way of analysing these cases. We will argue, however,

that this is not a problem.

The following arrangement

{(, ,), (, ,), (, ,), (, ,)}
could lead to an adversary filling up more buckets than intended.

Let a predefined 𝐾 such that 1 ≤ 𝐾 ≤ 𝑁 − 1 exist such that A
wants to pass the test with 𝐾 bad conversion tuples. Now, we could

define 𝑏 = 𝐾𝐵 + 1 bad balls for 𝐾 = 2 and then with 𝑡 = 2 arrive

at the above arrangement. This arrangement however, allows A
to actually cheat in 3 buckets rather than 2, since if A hits the

following arrangement of triangles

{(, ,), (, ,), (, ,), (, ,)}
the bucket check could pass with three conversion tuples instead. To

remedy this situation, observe thatA does not simply win by filling

buckets with bad balls and triangles, but more specifically these

buckets must also contain a corrupt conversion tuple. Therefore,

if A only created 𝐾 = 2 inconsistent conversion tuples (and let’s

assume these are within the first two buckets), then the third bucket

will fail, regardless of the triangles hitting the correct arrangement

17

to satisfy three bad elements and in turn three bad buckets. As such,

this would not be a favorable arrangement.

When 𝐵 = 3 and 𝑡 = 2, there are a total of 6 favorable arrange-

ments for A when 𝐾 is fixed. For example, for 𝑁 = 4, 𝐵 = 3, 𝐾 = 2,

𝑡 = 2, these are the six possible configurations that are favorable

for A.

{(, ,), (, ,), (, ,), (, ,)}
{(, ,), (, ,), (, ,), (, ,)}
{(, ,), (, ,), (, ,), (, ,)}
{(, ,), (, ,), (, ,), (, ,)}
{(, ,), (, ,), (, ,), (, ,)}
{(, ,), (, ,), (, ,), (, ,)}

Note that the darker balls are such that 𝑓 (, ,) = 1 in all the

listed configurations, forcing A to specifically hit the in those

spots (i.e. forcing that only a single permutation of the triangles

will be favorable).

For all of the above cases, the success probability of A in the

bucket check can be expressed as

Pr[A passes bucketcheck] ≤
(
𝑁

𝐾

) (
𝐾𝐵

𝑔1 + 𝑏1

) (
(𝑁 − 𝐾)𝐵

𝑏2

)
1(𝑁𝐵

𝐾𝐵−𝑔1+𝑏2
) 1(𝑁𝐵

𝑡

)
(2)

where 𝑔1 is the total number of good balls in the 𝐾 buckets con-

taining bad conversion tuples, 𝑏1 is the total number bad balls of a

different kind from (represented as) and 𝑏2 is the total number

of bad balls having been placed in the remaining 𝑁 − 𝐾 buckets

containing good conversion tuples. Now, for each possible config-

uration (when varying 𝑔1, 𝑏1, 𝑏2 and 𝐾 but keeping 𝑡 = 2 static),

the probability of A winning is maximum at 𝐾 = 1 or 𝐾 = 𝑁 − 1.
Considering all possible favorable configurations, the second that

we list (with 𝑔1 = 0, 𝑏1 = 1, 𝑏2 = 1) has the highest probability of

success with 𝐾 = 𝑁 − 1.(
𝑁

𝑁 − 1

) (
3(𝑁 − 1)

1

) (
3(𝑁 − (𝑁 − 1))

1

)
1(
3𝑁

3(𝑁−1)+1
) 1(

3𝑁
2

)
= 𝑁 · (3𝑁 − 3) · 3 1(

3𝑁
3𝑁−2

) 1(
3𝑁
2

)
=

3𝑁 − 3
3𝑁 − 1 ·

2

3𝑁
· 2

3𝑁 − 1
≤ 3𝑁 − 3

3𝑁 − 1 · 2
−𝑠/2 · 2−𝑠/2 ≤ 2

−𝑠 , given 𝑁 ≥ 2
𝑠/2

Bucket size 4: We’ve already considered the cases of 𝑡 = 0, 𝑡 = 1 and

𝑡 = 2, so now we’ll consider 𝑡 = 3.

For the case when 𝐵 = 4 and 𝑡 = 3 there are a total of 10 favorable

configurations for A when 𝐾 is fixed. For example, for 𝑁 = 4 and

𝐾 = 2, there are the 10 cases:

{(, , ,), (, , ,), (, , ,), (, , ,)}
{(, , ,), (, , ,), (, , ,), (, , ,)}
{(, , ,), (, , ,), (, , ,), (, , ,)}
{(, , ,), (, , ,), (, , ,), (, , ,)}
{(, , ,), (, , ,), (, , ,), (, , ,)}
{(, , ,), (, , ,), (, , ,), (, , ,)}

{(, , ,), (, , ,), (, , ,), (, , ,)}
{(, , ,), (, , ,), (, , ,), (, , ,)}
{(, , ,), (, , ,), (, , ,), (, , ,)}
{(, , ,), (, , ,), (, , ,), (, , ,)}

Using eq. 2 we can compute the probabilities of success for all these

cases at 𝐾 = 1 and 𝐾 = 𝑁 − 1 in order to find the best possible

scenario for A. By doing so, we conclude that the 9’th case has the

highest probability of success at 𝐾 = 𝑁 − 1. Considering this case,

the probability is computed as,

Pr[A passes bucketcheck] ≤
(
𝑁

𝑁 − 1

) (
(𝑁 − 1) · 4

2

)
·
(
4

1

)
1(
4𝑁

4(𝑁−1)+1
) 1(

4𝑁
3

)
= 𝑁 ·

(
4𝑁 − 4

2

)
· 4 · (4𝑁 − 3)! · 3!)(4𝑁)! · 3! · (4𝑁 − 3)!(4𝑁)!

= 8(𝑁 −1) · (4𝑁 −5) · 3

4𝑁
· 3

4𝑁
· 2

4𝑁 − 1 ·
2

4𝑁 − 1 ·
1

4𝑁 − 2 ·
1

4𝑁 − 2
≤ 8(𝑁 − 1) · (4𝑁 − 5) · (2−𝑠/3)6, given 𝑁 ≥ 2

𝑠/3

Bucket size 5: As per the last bucket size, the analysis from the

previous cases carries over for 𝑡 = 0, 1, 2 and 3. In this case, we will

consider 𝑡 = 4, as this is the only remaining for 𝑡 < 𝐵.

For the case where 𝐵 = 5 and 𝑡 = 4, there are 15 favorable

arrangements for A when 𝐾 is a fixed integer. For instance, for

𝑁 = 4 and 𝐾 = 2, these are the cases.

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}

{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}
{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}
{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}
{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}
{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}
{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}
{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}
{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}
{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}
{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}
{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}
{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}
{(, , , ,), (, , , ,), (, , , ,), (, , , ,)}
Again, by using eq. 2, we compute the different probabilities of

success of all 15 cases in similar fashion to our analysis of 𝐵 = 3 and

𝐵 = 4 and conclude that the 13’th case has the highest probability

of winning at 𝐾 = 𝑁 − 1. We now describe this probability.

Pr[A passes bucketcheck] ≤
(
𝑁

𝑁 − 1

) (
(𝑁 − 1) · 5

2

)
·
(
5

2

)
1(
5𝑁

5(𝑁−1)+2
) 1(

5𝑁
4

)
= 𝑁 ·

(
5𝑁 − 5

2

)
·
(
5

2

)
· (5𝑁 − 3)! · 3!(5𝑁)! · 4! · (5𝑁 − 4)!(5𝑁)! ≤ 2

−𝑠 , given 𝑁 ≥ 2
𝑠/4

We summarize the analysis as follows.

18

Lemma B.4. The probability of A passing bucketcheck in Sim-
pleGame is less than 2−𝑠 given 𝑁 ≥ 2

𝑠/𝐵−1 and the challenger opens
𝐶 = 𝐵 balls and 𝐶 ′ = 𝐵 triangles during the first two checks of
SimpleGame for 𝐵 ∈ {3, 4, 5} given 𝑠 such that 𝑠

𝐵−1 > 𝐵.

Proof. This lemma follows from a case-by-case analysis of the

bucketcheck procedure, in combination with Lemmas B.2-B.3. □

Combining Lemma B.1 and Lemma B.4 completes the proof of

Theorem 3.3.

B.2 Proof of Security of the Protocol ΠConv
(Theorem 3.4)

Proof. We first consider a malicious prover and then afterwards

we consider the case of a malicious verifier. In both cases we con-

struct a simulator S given access to FConv that runs the adversary
A as a subroutine. We implicitly assume that S passes all commu-

nication between A andZ.

Malicious Prover. S sends (corrupted,P) to the ideal functional-

ity FConv. S creates a copy of the verifierV , and runs this verifier

according to the protocol ΠConv, while letting the prover P∗ behave
as instructed by the adversary A.

(1) In the setup-phase,P∗ sends edaBits {(𝑟 𝑗
0
, . . . , 𝑟

𝑗

𝑚−1, 𝑟
𝑗)} 𝑗 ∈[𝑁𝐵+𝐶] ,

daBits {(𝑏 𝑗 , 𝑏′, 𝑗)} 𝑗 ∈[𝑁𝐵+𝑠] and triples {(𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗)} 𝑗 ∈[𝑁𝐵𝑚+𝐶𝑚] .
S records and forwards all of these to FConv.

(2) S runs FDabit with the input provided by P∗. If FDabit returns
abort, then send abort to FConv and terminate. Otherwise con-

tinue.

(3) S randomly sample permutations 𝜋1 ∈ 𝑆𝑁𝐵+𝐶 , 𝜋2 ∈ 𝑆𝑁𝐵+𝑠
and 𝜋3 ∈ 𝑆𝑁𝐵𝑚+𝐶𝑚 and send these to P∗ before shuffling the

values provided by P∗.
(4) The simulator emulates the Cut-phase by calling Open on the

last𝐶 edaBits and triples and ensuring the consistency of each.
If any check fail, send abort to FConv and terminate.

(5) For each bucket during theChoose-phase,S emulate bitADDcarry
by running like an honest verifier and convertBit2A by calling

this using FConv.
(6) S runs the rest of the protocol as an honest verifier. If the

honest verifier outputs abort, then S sends abort to FConv and
terminate. If the honest verifier outputs (success), thenS sends

(VerifyConv, 𝑁 , {[𝑐 (𝑗)
0
]2, . . . , [𝑐 (𝑗)𝑚−1]2, [𝑐

(𝑗)]𝑀 } 𝑗 ∈[𝑁]) toFConv
(essentially forwarding the call made originally by P∗).

The messages that P∗ receives from S have the same distribution

as in the real protocols. Whenever the verifier simulated by S out-

puts abort (as in the protocol), then the verifier in the ideal setting

outputs abort as well (since S sends abort to FConv). The only case

where P∗ may distinguish between the ideal and real, is if the simu-

lated verifier run byS outputs (success) but at least one conversion
tuple is inconsistent, in which case FConv will abort. But if at least
one conversion is inconsistent, then by Theorem 3.3 the probability

with whichP∗ avoids being caught in Step 6 ofΠConv is at most 2
−𝑠
.

Malicious Verifier. S sends (corrupted,V) to the ideal function-

ality FConv. It also creates copies of the prover P and verifierV∗,
and runs the prover according to the protocol ΠConv, while letting

the verifier behave as instructed by the environment Z. If S re-

ceives abort from FConv, then it simply outputs abort and terminate.

Otherwise S interacts with the verifier as follows:

(1) S samples random values corresponding to the edaBits

{(𝑟 𝑗
0
, . . . , 𝑟

𝑗

𝑚−1, 𝑟
𝑗)} 𝑗 ∈[𝑁𝐵+𝐶] , daBits {(𝑏 𝑗 , 𝑏 𝑗)} 𝑗 ∈[𝑁𝐵+𝑠] and

triples {(𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗)} 𝑗 ∈[𝑁𝐵𝑚+𝐶𝑚] and commits to these by call-

ing (Input, ·, ·) using F 2,𝑀
ComZK in the appropriate domain.

(2) IfV∗ at any outputs abort, then send abort to FConv and ter-

minate.

(3) S sends (VerifyDabit, 𝑁𝐵 + 𝑠, {([𝑏 𝑗]2, [𝑏
′, 𝑗]𝑀)} 𝑗 ∈[𝑁𝐵+𝑠]). If

this call returns abort, then output abort and terminate. Other-

wise continue.

(4) On receiving 𝜋1, 𝜋2, 𝜋3, S locally shuffles the sampled values.

(5) During the Cut-phase, S opens the last 𝐶 edaBits, triples and
daBits honestly, as it knows the underlying values.

(6) During the remainder of the protocol, S runs like an honest

prover.

(7) Lastly, S sends

(VerifyConv, 𝑁 , {[𝑐 (𝑗)
0
]2, . . . , [𝑐 (𝑗)𝑚−1]2, [𝑐

(𝑗)]𝑀 } 𝑗 ∈[𝑁])
to FConv (again, forwarding the initial call) and outputs what-

everV outputs.

In both the ideal and real execution all values sent from the hon-

est prover (or simulator) to the verifier, are hidden by F 2,𝑀
ComZK. This

ensures indistinguishability between the two transcripts. Specifi-

cally, the randomly sampled edaBits, triples and daBits are indis-

tinguishable from ones sampled by the prover during a real execu-

tion, due to F 2,𝑀
ComZK. Any calls to VerifyDabit will fail in the real

only if the same call would fail in the ideal world, due to the usage

of FFDabit in both. Same goes for CheckZero. Lastly, bitADDcarry
only involves the prover sending values to the verifier, allowing

the verifier to reach the same value. An honest prover uses correct

circuits and therefore no information is leaked. Thus, the view of

V∗ simulated by S is distributed identically to its view in the real

protocol execution.

□

C PROOF OF CONVERSION PROTOCOL FOR
FAULTY DABITS

First we present the ideal functionality FFDabit (Figure 20) and

then prove Lemma 3.6. We then argue that we can use these faulty

daBits within the protocol ΠConv, by looking at what potential

errors might occur when using these, creating a revised RealGame
called RealGamefaulty and then providing a proof sketch reducing

the RealGamefaulty to the SimpleGame (Figure 18) of the original
proof in Lemma B.1.

The proof of Lemma 3.6 uses the following simple proposition:

Proposition C.1. For all 𝑏1, . . . , 𝑏𝑁 ∈ Z𝑝 it holds that

Pr

𝑒1,...,𝑒𝑁←{0,1}
[| (

𝑁∑︁
𝑖=1

𝑒𝑖𝑏𝑖 mod 𝑝) | < 1/2 ·max{|𝑏𝑖 |}] ≤ 1/2.

A proof for this can e.g. be found in [3, Lemma 2.3].

Proof of Lemma 3.6 (Sketch). We first consider a malicious

prover and then afterwards a malicious verifier. In both cases we

19

Functionality FFDabit

This functionality extends F 2,𝑀
ComZK with the extra func-

tion VerifyDabit that takes a set of IDs {(id0, 𝑗 , id1, 𝑗)} 𝑗 ∈[𝑁]
of (potentially faulty) daBits {(𝑏id0, 𝑗 , 𝑏id1, 𝑗)} 𝑗 ∈[𝑁] and
verifies that 𝑏id

0, 𝑗 ≡ 𝑏id
1, 𝑗

mod 2 where 𝑏id
0, 𝑗 ∈ Z2 an

𝑏id
1, 𝑗 ∈ Z𝑀 for all 𝑗 ∈ [𝑁]. It is assumed that the id’s of

the potential daBits have been Input prior to execution of

this method. FFDabit communicates with two parties P,V .

Verify: On input (VerifyDabit, 𝑁 , {(id0, 𝑗 , id1, 𝑗)} 𝑗 ∈[𝑁])
by P and V (where (id0, 𝑗 , 𝑏id0, 𝑗), (id1, 𝑗 , 𝑏id1, 𝑗) ∈ 𝑆 for

𝑗 ∈ [𝑁]).
• If 𝑏id0, 𝑗 ≡ 𝑏id1, 𝑗 mod 2 for all 𝑗 ∈ [𝑁], then output

(success) toV , otherwise output abort.

Figure 20: Ideal functionality modeling the verification of
faulty daBits.

argue intuitively for the existence of a correct simulator that, given

access to FFDabit and emulating F 2,𝑀
ComZK creates a correct distribu-

tion of transcripts.

Malicious Prover. S sends (corrupted,P) to the ideal function-

ality FFDabit. It also creates copies of the prover P∗ and verifier

V , and runs the verifier according to the protocol ΠFDabit, while

letting the prover behave as instructed by the environmentZ.

(1) S gives the provided set of id’s to FFDabit, given what P∗ inputs
into F 2,𝑀

ComZK.

(2) For each of the 𝑠 iterations, S follows the protocol honestly.

(3) If the protocol succeeds, then it runs VerifyDabit in FFDabit,
otherwise it sends abort.

As the S honestly provides 𝑁 random bits in each iteration and

nothing else is sent by the honest verifier, the view of P∗ is dis-
tributed equally to the real world. Z can only distinguish in the

case of the passing the check in ΠFDabit with a daBit ([𝑏]2, [𝑏 ′]𝑀)
such that 𝑏 . 𝑏 ′ mod 2, as this would not pass in the ideal world.

Consider the sum 𝑟 ′ =
∑𝑁
𝑖=1 𝑒𝑖𝑏𝑖 . Then since 0 ≤ 𝑟 ′+

∑𝛾
𝑖=1

𝑐𝑖2
𝑖−1 <

2
𝛾
for 𝑐𝑖 ∈ {0, 1} we know that −2𝛾 ≤ 𝑟 ′ < 2

𝛾
must hold (given

then lower bound on 𝑝 no wraparound can occur). As we compute

𝑟 ′ as in Proposition C.1 in each of the 𝑠 rounds, it must hold that

max𝑖∈[𝑁] {|𝑏𝑖 |} ≤ 2
𝛾+1

except with probability 2
−𝑠
. But then, by

definition, 𝜏 =
∑𝑁
𝑖=1 𝑒𝑖𝑏𝑖 +

∑𝛾
𝑖=1

𝑐𝑖2
𝑖−1

holds over the integers, and

in particular it holds that 𝑟 = 𝜏 = 𝑐0 +
∑𝑁
𝑖=1 𝑒𝑖𝑏𝑖 mod 2. Now, except

with probability 2
−𝑠
, the claim on the parity of the daBits follows

by a standard argument.

Malicious Verifier. S sends (corrupted,V) to the ideal function-

ality FFDabit. It also creates copies of the prover P and verifierV∗,
and runs the prover according to the protocol ΠFDabit, while letting

the verifier behave as instructed by the environmentZ.

(1) S sends (VerifyDabit, 𝑁 , {[𝑏 𝑗]2, [𝑏
′, 𝑗]𝑀 }) to FFDabit. If FFDabit

returns abort, then S outputs abort toV∗ and terminate. Oth-

erwise continue.

(2) Since FFDabit did not abort, we know that it holds for each

𝑗 ∈ [𝑁] that 𝑏 𝑗 ≡ 𝑏
′, 𝑗

mod 2. The simulator executes the

remainder of the protocol ΠFDabit as follows:

• For 𝑟 it opens a uniformly random bit.

• Then it reveals a uniformly random 𝜏 ∈ [0, 2𝛾 − 1] such that

𝜏 = 𝑟 mod 2.

The view ofV∗ simulated by S is distributed equally to its view

in the real world. We consider what the corrupted verifierV∗ sees
during an execution of ΠFDabit and compare this to the simulation.

In an honest protocol instance, 𝑐0 is uniformly randomly chosen

and therefore the revealed value 𝑟 is also uniformly random. This

is also true for the simulation. Now, observe that 𝑟 ′ ∈ [0, 𝑁] in
the protocol. The protocol adds a uniformly random value from

[0, 2𝛾 − 1] to 𝑟 ′, which hides all information about 𝑟 ′ by so-called

noise drowning but makes the lowest bit agree with 𝑟 . This is then

indistinguishable from a value as sampled in the simulation, as

𝜏 ≥ 2
𝛾
can only occur in the real protocol with probability 2

−𝑠
. □

We now in more detail consider what potential errors can be

caused by using a faultymultiplication triple during the bitADDcarry
procedure. The purpose of this discussion is to distinguish between

the potential errors caused by a faulty daBit and those caused by

a faulty multiplication triple.

Faulty Multiplication Triples: A single faulty multiplication triple

will allow for the change of the output of bitADDcarry (as described
in Figure 6 and the appendix in Section F.1) in such a way that it

results in a single bit being flipped (and in turn cause several bits

after this to be flipped due to the usage of a ripple-carry adder). As

such, the output will still be guaranteed to be bits, but if these were

to be summed up (as does happen in the final check of ΠConv), the

error essentially causes the adding or subtraction of an arbitrary

value errtriples < 2
𝑚

(although the result will always be positive,

as the output of the ripple-carry adder is treated as unsigned).

If we consider this in the context of the consistency check, a

faulty multiplication triple means that either some of the authen-

ticated bits [𝑒𝑖]2 for 𝑖 = 0, . . . ,𝑚 − 1 and/or the carry bit [𝑒𝑚]2 is
incorrect. This error can then be used to force equality of the check

𝑒 ′
?

=
∑𝑚−1
𝑖=0 2

𝑖 ·𝑒𝑖 (for 𝑒 ′ = [𝑟 +𝑠]𝑀 −2𝑚 · [𝑒𝑚]𝑀) in the case of an in-

consistent conversion tuple, by masking the error errtriples < 2
𝑚
,

thus allowing an adversarial prover to pass the check without a

consistent conversion tuple. Thus, a tampered circuit (or rather

inconsistent multiplication triple) only allows for the flipping of

output bits, meaning that we are guaranteed that any output from

the bitADDcarry evaluation will be bits, although they may lead to

arbitrary error 0 ≤ errtriples < 2
𝑚
.

Faulty daBits: We now look at what can happen when faulty

daBits are introduced. The only function that utilizes daBits
within ΠConv is the convertBit2A procedure as defined in Figure 5.

In convertBit2A, a part of the conversion of a bit from an au-

thentication in Z2 to one in Z𝑀 requires opening an addition of

two supposed bits (step 1) which will always yield a bit value 𝑐 .

Therefore, only the arithmetic part of the daBit ([𝑏]2, [𝑏 ′]𝑀) may

be incorrect. Let [𝑏 ′]𝑀 be an authentication of a different value

from [𝑏]2. This gives two cases.

(1) [𝑏 ′]𝑀 is a bit ([𝑏]2 flipped),
20

(2) [𝑏 ′]𝑀 is not a bit.

If 𝑏 ′ ∈ {0, 1} for 𝑏 ′ ≠ 𝑏, then the output [𝑥 ′]𝑀 will be the input

bit [𝑥]2 flipped. We show the computation for one example, but

note that this will happen with both combinations ((𝑏 = 0, 𝑏 ′ = 1)
or (𝑏 = 1, 𝑏 ′ = 0)).

Let 𝑥 = 0 and (𝑏 = 0, 𝑏 ′ = 1).
(1) 𝑐 = 𝑏 ⊕ 𝑥 = 0 ⊕ 0 = 0

(2) 𝑥 ′ = 𝑐 + 𝑟 ′ − 2 · 𝑐 · 𝑟 ′ = 0 + 1 − 2 · 0 · 1 = 1

We now argue why this particular type of error can break the

security proof of ΠConv in Section 3.3. Consider the case where

the carry bit of bitADDcarry is tampered such that it would have

been 𝑥 = 0, but was flipped to 𝑥err = 1. When 𝑥err is then input

to convertBit2A, it is flipped back to 𝑥 ′ = 𝑥 = 0 if a faulty daBit
([𝑏]2, [𝑏 ′]𝑀) such that 𝑏 ′ ∈ {0, 1} but 𝑏 ′ ≠ 𝑏 is used. This behav-

ior proofs to be detrimental to the analysis in Section 3.3: now, a

conversion tuple check might pass with either a good triple, or an

inconsistent triple in the case of this triple being negated by the call

to convertBit2A. This provides an adversarial prover more options

in winning SimpleGame and as much must be disallowed.

We now consider what happens in bitADDcarry when using a

daBit ([𝑏]2, [𝑏 ′]𝑀) where 𝑏 ′ ∉ {0, 1}. Define 𝛿 = (−1)𝑏 (𝑏 ′ − 𝑏).
Then the output of convertBit2A using 𝑥 as input is 𝑥err = 𝑥 +
(−1)𝑥 · 𝛿 .

This 𝑥err (authenticated in Z𝑀) is then used in the computation

[𝑐 ′]𝑀 = [𝑟 +𝑠]𝑀 −2𝑚 ·𝑥err which is meant to remove the potential

carry bit from the result of [𝑟 + 𝑠]𝑀 (in the case of a correct daBit),

such that we can check if 𝑐 ′
?

=
∑𝑚−1
𝑖=0 2

𝑖 ·𝑐𝑖 (where 𝑐𝑖 , 𝑖 = 0, . . . ,𝑚−1
are the bits from the sub-protocol bitADDcarry). Now, if 𝑥err isn’t
a bit, this causes 𝑐 ′ to be either larger (or smaller) than

∑𝑚−1
𝑖=0 2

𝑖 ·
𝑐𝑖 due to 2

𝑚 · 𝑥err being much larger than anything which can

be represented in 𝑚 bits, given that 𝑥err ∉ {0, 1}. To this end,

we conclude that a faulty daBit such that 𝑥err >∉ {0, 1} will
allow an adversary to pass ΠConv using an inconsistent conversion

tuple ([𝑟0]2, . . . , [𝑟𝑚−1]2, [𝑟]𝑀) with an error of errdaBit = 𝑟 −∑𝑚−1
𝑖=0 𝑟𝑖 ≥ 2

𝑚
.

We sum up this result in the following lemma.

LemmaC.2. For any inconsistent conversion tuple ([𝑟0]2, . . . , [𝑟𝑚−1]2, [𝑟]𝑀)
such that (𝑟 −∑𝑚−1

𝑖=0 𝑟𝑖) = err ∉ {0, 1} designed to pass ΠConv using
faulty multiplication triples, it must hold that err < 2

𝑚 , while if the
conversion tuple was designed to pass using faulty dabits, err ≥ 2

𝑚 .

C.1 Security Analysis of the Faulty Dabit
Approach

To accommodate for the daBits used within the conversion verifi-

cation, we now modify RealGame (Figure 17) . The purpose is to
treat daBits (which may now be inconsistent) separately, but still

have them be merged with the faulty addition circuits in order to

be able to reduce the security of this new RealGamefaulty (Figure
21) to that of our old SimpleGame (Figure 18). By having daBits
and circuits be combined, we can treat their combination as a single

entity such that we can directly describe RealGamefaulty in terms

of the SimpleGame syntax from the original proof. We formally

define the revised RealGamefaulty in Figure 21. The major differ-

ence is found in step 4, but in addition to this last check being

altered, the challenger must also open 𝐶 ′′ of the daBits.

For brevity, we only list theways inwhich this newRealGamefaulty
differs from the RealGame defined in Figure 17.

The RealGamefaulty with faulty daBits

(1) A prepares must now prepare 𝑁𝐵 + 𝐶 daBits

{([𝑏 𝑗]2, [𝑏
′, 𝑗]𝑀)} 𝑗 ∈[𝑁𝐵+𝐶] .

(2) The challenger opens 𝐶 edaBits, circuits and

daBits now. If any of the edaBits, daBits or circuits

are inconsistent, abort.
(3) The challenger pairs up the remaining 𝑁𝐵 circuits

with the remaining 𝑁𝐵 daBits according to their permu-

tations.

(4) (Modified step 6 of original RealGame) Within

each of the buckets, for every pair of edaBits
([𝑟0]2, . . . , [𝑟𝑚−1]2, [𝑟]𝑀) (where this is the first of

the bucket) and ([𝑠0]2, . . . , [𝑠𝑚−1]2, [𝑠]𝑀) take the

next circuit 𝐶∗ and daBit (𝑏2, 𝑏𝑀) and compute

(𝑐0, . . . , 𝑐 ′𝑚) ← 𝐶∗ (𝑟0, . . . , 𝑟𝑚−1, 𝑠0, . . . , 𝑠𝑚−1, (𝑏2, 𝑏𝑀)).
Define 𝛿 = (−1)𝑏2 · (𝑏𝑀 − 𝑏2) and then let 𝑐 ′𝑚 = 𝑐𝑚 +
(−1)𝑐𝑚 · 𝛿 where 𝑐𝑚 is the correct result. The circuit 𝐶∗

works as a tamper-resilient binary addition circuit, but

a potential error err is added to the carry bit 𝑐𝑚 if the

daBit (𝑏2, 𝑏𝑀) is inconsistent. If the daBit is consistent

then 𝑐 ′𝑚 = 𝑐𝑚 . Then compute 𝑐 =
∑𝑚−1
𝑖=0 2

𝑖 · 𝑐𝑖 and check

𝑐
?

= 𝑟 + 𝑠 − 2𝑚 · 𝑐 ′𝑚 .

Figure 21: The revised RealGamefaulty which handles (poten-
tially faulty) daBits separate from the circuits

Note that the term 𝑐 ′𝑚 = 𝑐𝑚 + (−1)𝑐𝑚 · 𝛿 corresponds to the

evaluation of

𝑐 ′𝑚 ← 𝑐 + [𝑏]𝑀 − 2 · 𝑐 · [𝑏]𝑀
when [𝑏]𝑀 is not an authentication of a bit, which is used during

convertBit2A.
We now make a very similar argument to that of Lemma B.1, but

for the new RealGamefaulty.

Lemma C.3. Security against all adversaries of the SimpleGame
implies security against all adversaries of the RealGamefaulty.

Proof. The only difference between this reduction and the orig-

inal (Lemma B.1), is that A now pairs up circuits and daBits and
converts these into triangles, rather than only the circuits.

□

As the inconsistency errdaBit in conversion tuples that may pass

ΠConv using a faulty daBit differs enough from the inconsistency

errtriples allowed by faulty multiplication triples (specificially

errtriples < errdaBit), we conclude that we can treat them as

one entity comparative to the tamper-resilient circuits of the origi-

nal RealGame, simply allowing for a wider range of errors. This

means the above proof sketch is a sufficient reduction from the

RealGamefaulty to the SimpleGame, allowing us to re-use our

proof from Lemma B.1.

21

D PROOF OF CORRECT TRUNCATION
Theorem D.1. The protocol ΠVerifyTrunc (Figure 11) UC-realizes

FVerifyTrunc (Figure 8) in the FCheckLength-hybrid model.

Before writing the proof, we make the following observations.

First, if correct information is provided by P, then the protocol

completes. Intuitively, if the prover provides a correct [𝑎′]𝑀 = [𝑎
mod 2

𝑚]𝑀 and [𝑎𝑡𝑟]𝑀 , then when both of these are subtracted

from [𝑎]𝑀 , then it will be equal to 0 as required by CheckZero.

CheckLength on ([𝑎′]𝑀 ,𝑚): This ensures that [𝑎′]𝑀 can be rep-

resented by𝑚 bits.

CheckLength on ([𝑎𝑡𝑟]𝑀 , 𝑙 −𝑚): This ensures that [𝑎𝑡𝑟]𝑀 can be

represented by 𝑙 −𝑚 bits.

CheckZero([𝑎]𝑀 − (2𝑚 · [𝑎𝑡𝑟]𝑀 + [𝑎′]𝑀)): This check ensures cor-

rectness of the two values [𝑎′]𝑀 and [𝑎𝑡𝑟]𝑀 . As we know

that they are both of correct length (𝑚 and 𝑙 −𝑚 respec-

tively), 2
𝑚 ·𝑎𝑡𝑟 +𝑎′ exactly represents all values in [0, 2𝑙−1].

Therefore, the truncation must be correct.

We now proceed with the proof.

Proof. We consider a malicious prover and a malicious verifier

separately. In both cases we will construct a simulator S given

access to FVerifyTrunc that will emulate FCheckLength. We implicitly

assume that S passes all communication between the adversary

(either P∗ orV∗ dependent on the case) and the environmentZ.

Malicious Prover. S sends (corrupted,P) to the ideal functional-

ity FVerifyTrunc. It also creates copies of the prover P∗ and verifier

V , and runs the verifier according to the protocolΠVerifyTrunc, while

letting the prover behave as instructed by the environmentZ.

(1) S forwards Input on [𝑎′]𝑀 .

(2) S forwards any calls toFCheckLength. If any calls toFCheckLength
returns ⊥, then S outputs ⊥ to FVerifyTrunc and abort.

(3) For the remainder of the protocol, S acts like an honest verifier.

(4) Lastly, S forwards the call (VerifyTrunc, ·, ·).
The only avenue for P∗ to distinguish the ideal from the real world

is the case of passing the verification check with an incorrect trun-

cation. As argued above, this can never happen. This completes the

proof for the case of a malicious prover.

Malicious Verifier. S sends (corrupted,V) to the ideal function-

ality FVerifyTrunc. It also creates copies of the prover P and verifier

V∗, and runs the prover according to the protocol ΠVerifyTrunc,

while letting the verifier behave as instructed by the environment

Z. If S receives ⊥ from FConv, then it simply abort. Otherwise S
interacts with the verifier as follows:

(1) S forwards the call (VerifyTrunc, 𝑁 , {𝑚 𝑗 , [𝑎 𝑗]𝑀 , [𝑎 𝑗𝑡𝑟]𝑀 } 𝑗 ∈[𝑁]).
If FVerifyTrunc returns ⊥, output ⊥ toV∗ and abort.

(2) For each 𝑗 ∈ [𝑁] S commits to a random value [𝑎′]𝑀 using

Input of FCheckLength. We assume that simulated commitments

to 𝑎 𝑗 , 𝑎
′, 𝑗

already exist in FCheckLength.
(3) For each iteration 𝑗 ∈ [𝑁], let 𝑙 be the size of 𝑎 𝑗 and𝑚 be the

size of 𝑎
′, 𝑗
. S runs (CheckLength, id𝑎

′, 𝑗
,𝑚) and

(CheckLength, id𝑎
𝑗
𝑡𝑟 , 𝑙−𝑚) in FCheckLength towards the verifier.

(4) S then computes 𝑦 𝑗 ← 𝑎 𝑗 − (2𝑚 ·𝑎 𝑗𝑡𝑟 +𝑎
′, 𝑗) using FCheckLength

and then runs (CheckZero, id𝑦 𝑗), which itmakes output (success).
The view ofV∗ simulated by S is distributed identically to its view

in the real protocol. Any value being communicated toV∗ is hidden
in the commitment functionality.

□

E A NAÏVE TRUNCATION PROTOCOL
For comparison, we now describe a “naïve” way of truncating some

value [𝑎]𝑀 where 𝑎 ∈ [0, 2𝑙) ⊂ Z𝑀 , without doing any conversions

to Z2. Informally, the prover provides [𝑎]𝑀 as well as its supposed

bit decomposition ([𝑎0]𝑀 , . . . , [𝑎𝑙−1]𝑀) authenticated in Z𝑀 . The

prover then has to convince the verifier that each authenticated

[𝑎𝑖]𝑀 is a bit and that they all sum up to [𝑎]𝑀 , thus proving the

correctness of the bit decomposition. Lastly, the prover and verifier

can individually sum up most-significant 𝑙 −𝑚 bits, resulting in the

truncated value [𝑎𝑡𝑟]𝑀 .

Protocol ΠNaiveTrunc

Input [𝑎]𝑀 and it’s supposed bit decomposition

([𝑎0]𝑀 , . . . , [𝑎𝑙−1]𝑀).
Protocol
(1) For 𝑖 = 0, . . . , 𝑙−1 compute [𝑦𝑖]𝑀 = [𝑎𝑖]𝑀 · (1−[𝑎𝑖]𝑀).
(2) Let [𝑦]𝑀 ←

∑𝑙−1
𝑖=0 [𝑎𝑖]𝑀2

𝑖
.

(3) Run CheckZero([𝑦]𝑀 , [𝑦0]𝑀 , . . . , [𝑦𝑙−1]𝑀), output

abort if the check fails and terminate.

(4) Let [𝑎𝑡𝑟]𝑀 ←
∑𝑙−𝑚
𝑖=0 [𝑎𝑙−𝑚+𝑖]𝑀2

𝑖
.

Output [𝑎𝑡𝑟]𝑀 .

Figure 22: Protocol that naïvely truncates 𝑎 by𝑚 bits

This protocol is much more expensive than our edaBit-based
approach, due to working in Z𝑀 for all operations. Each bit must

be committed to by a commitment over Z𝑀 , which itself requires

log
2
(𝑀) bits of communication. Furthermore, the checking of each

[𝑎𝑖]𝑀 for 𝑖 ∈ [𝑙] requires amultiplication, leading to further interac-

tion. To give an example, we analyze the cost of this protocol when

using Wolverine [29] to check the multiplications (alternative pro-

tocols such as [4] could also be used, but this does not significantly

change the costs). For 𝑙 multiplications in Z𝑀 , Wolverine runs a

total of (𝐵 − 1) · 𝑙 iterations, each requiring 1 multiplication triples,

for a total of (3(𝐵 − 1)) · 𝑙 random authentications and (𝐵 − 1)𝑙
fix (where fix corresponds to inputting a specific value into the

commitment functionality) in Z𝑀 . Secondly, each iteration opens

2 values and performs a single CheckZero. All calls to CheckZero
may be batched together and performed at the end, but the other

2 must be done in each iteration, for a total of 𝑙 · ((𝐵 − 1) · 2) + 1
openings in Z𝑀 . Lastly, in step 3, all the checks for 𝑎𝑖 (1−𝑎𝑖)

?

= 0 are

batched together for a total of 1 opening. Throughout this analysis,

we assume we’re working in a small field such that log(𝑀) ≤ 𝑠 for
some security parameter. If instead it holds that log(𝑀) > 𝑠 , then
we can save a factor (𝐵 − 1) in these costs.

22

Table 4: Comparison of the costs of ΠNaiveTrunc (Figure 22) and
ΠVerifyTrunc (Figure 11).

#Openings F2 #Openings Z𝑀 #Faulty triples F2 #Faulty triples Z𝑀

Naïve log(𝑀) ≤ 𝑠 0 𝑙 ((𝐵 − 1) · 2) + 2 0 (𝐵 − 1)𝑙
Naïve log(𝑀) > 𝑠 0 𝑙 · 2 + 2 0 𝑙

Ours 𝐵𝑙 + 2𝐵 2𝐵 + 1 𝐵𝑙 0

#(e)dabit COTs #(e)dabit VOLEs #Bits from fix

Naïve log(𝑀) ≤ 𝑠 0 0 2(𝐵 − 1)𝑙 log
2
(𝑀)

Naïve log(𝑀) > 𝑠 0 0 2𝑙 · log
2
(𝑀)

Ours 𝐵𝑙 + 2𝐵 4𝐵 (𝐵 + 1)𝑙 + (4𝐵 + 2) log
2
(𝑀)

A breakdown of the costs of ΠNaiveTrunc compared to those of

our optimized protocol ΠVerifyTrunc (Figure 11) is given in Table 4,

where we list both if log(𝑀) ≥ 𝑠 but also log(𝑀) > 𝑠 . In both cases,

for typical parameters (e.g. 𝑙 = 32 ≈ log𝑀 and 𝐵 = 3–5) the naive

protocol has much higher communication cost than ours, since

the number of Z𝑀 openings scales with the bit-length 𝑙 . To give a

concrete number, e.g. for the Z𝑝 variant with 𝑙 = 32 ≈ log𝑀 , when

verifying a batch of around a million multiplications and 40-bit

statistical security, we can use a bucket size 𝐵 = 3. This leads to

the communication of 8256 bits when using the naïve compared to

only 960 when using ours, when we disregard the construction of

the random authentications in Z2 and Z𝑝 for both protocols.

F SUB-PROTOCOLS
We look at the two sub-protocols convertBit2A and bitADDcarry
that is used in our protocol verifying converion tuples.

F.1 Complexity of bitADDcarry
We assume that the input is distributed prior to running the protocol.

The bitADDcarry circuit is implemented as a ripple-carry adder

which computes the carry bit at every position with the following

equation

𝑐𝑖+1 = 𝑐𝑖 ⊕ ((𝑥𝑖 ⊕ 𝑐𝑖) ∧ (𝑦𝑖 ⊕ 𝑐𝑖)),∀𝑖 ∈ {0, . . . ,𝑚 − 1} (3)

where 𝑐0 = 0 and 𝑥𝑖 , 𝑦𝑖 are the i’th bits of the two binary inputs.

The output is then

𝑧𝑖 = 𝑥𝑖 ⊕ 𝑦𝑖 ⊕ 𝑐𝑖 ,∀𝑖 ∈ {0, . . . ,𝑚 − 1} (4)

and the last carry bit 𝑐𝑚 . This requires𝑚 AND gates and as such𝑚

rounds of communication. As all the ⊕ can be computed by 𝑃1 and

𝑃2 locally (and as such requires no communication), 1 field element

must be communicated per round. As this circuit is evaluated 𝐵 − 1
times per bucket, it results in a total for (𝐵 − 1)𝑚 field elements

which must be communicated.

F.2 Complexity of convertBit2A
We consider the procedure convertBit2A as defined in figure 5. We

assume that the input (not the daBit) is distributed prior to run-

ning the protocol. This sub-protocol requires a single daBit to

convert the bit authenticated in F2 to F𝑀 . Having a single daBit
([𝑟]2, [𝑟]𝑀), we can convert a value [𝑥𝑚]2 by following the follow-
ing protocol.

(1) Compute [𝑐]2 = [𝑥𝑚]2 + [𝑟]2
(2) 𝑐 ← Open([𝑐]2)
(3) [𝑥]𝑀 = 𝑐 + [𝑟]𝑀 − 2 · 𝑐 · [𝑟]𝑀 .

We note that the only things requiring communication, is the dis-

tribution of the daBit used during the protocol and the opening of

the value [𝑐]2. As such, we conclude that this requires the sending
of four field elements (the opening of [𝑐]2 and the sending of the

two bits of the daBit) and the cost of generating 1 daBit.

G PROOFS OF THE Z
2
𝑘 PROTOCOLS

Here we present the full proofs of security that were omitted in

Section 5.3.

G.1 Proof of Lemma 5.2
In the proof of Lemma 5.2, we make use of Lemma 1 from Cramer

et al. [12] which we cite here:

Lemma G.1 (Lemma 1 from [12]). Let ℓ, 𝑟 and𝑚 be positive in-
tegers such that ℓ − 𝑟 ≤ 𝑚. Let 𝛿0, 𝛿1, . . . , 𝛿𝑡 ∈ Z, and suppose that
not all the 𝛿𝑖 ’s are zero modulo 2𝑟 , for 𝑖 > 0. Let 𝑌 be a probability
distribution on Z. Then, if the distribution 𝑌 is independent from the
uniform distribution sampling 𝛼 below, we have

Pr

𝛼,𝜒
1
,...,𝜒𝑡←𝑅Z2𝑚 ,

𝑦←𝑅𝑌

[
𝛼 ·

(
𝛿0 +

𝑡∑︁
𝑖=1

𝜒𝑖 · 𝛿𝑖

)
≡ℓ 𝑦

]
≤ 2
−ℓ+𝑟+log(ℓ−𝑟+1) .

Proof of Lemma 5.2. This proof is similar to the proof of Claim 1

in [12].

Since (𝑥1, . . . , 𝑥𝑛) .𝑘 (0, . . . , 0), there is at least one 𝑖 with 𝑥𝑖 .𝑘
0. Let 𝑝 ′ = 𝑝 + Y ∈ Z2𝑠 and𝑚′ ∈ Z2𝑘+𝑠 denote the values send by

the prover instead of 𝑝 and𝑚 which are specified in the protocol.

ForV to accept,𝑚′ must satisfy the following equality:

𝑚′ ≡𝑘+𝑠 2𝑘 · Δ · 𝑝 ′ +
𝑛∑︁
𝑖=1

𝜒𝑖 · 𝐾 [𝑥𝑖] + 2𝑘 · 𝐾 [𝑟] .

Subtracting (the honestly computed)

𝑚 =

𝑛∑︁
𝑖=1

𝜒𝑖 ·𝑀 [𝑥𝑖] + 2𝑘 ·𝑀 [𝑟]

=

𝑛∑︁
𝑖=1

𝜒𝑖 · (Δ · 𝑥𝑖 + 𝐾 [𝑥𝑖]) + 2𝑘 · (Δ · 𝑟 + 𝐾 [𝑟])

= 2
𝑘 · Δ · 𝑝 + Δ ·

𝑛∑︁
𝑖=1

𝜒𝑖 · 𝑥𝑖 +
𝑛∑︁
𝑖=1

𝜒𝑖 · 𝐾 [𝑥𝑖] + 2𝑘 · 𝐾 [𝑟]

on both sides yields

𝑚′ −𝑚 ≡𝑘+𝑠 2𝑘 ·Δ · Y −Δ ·
𝑛∑︁
𝑖=1

𝜒𝑖 · 𝑥𝑖 ≡𝑘+𝑠 Δ ·
(
2
𝑘 · Y −

𝑛∑︁
𝑖=1

𝜒𝑖 · 𝑥𝑖

)
.

Now, we invoke Lemma 1 from [12] (repeated as Lemma G.1 on

p. 23) with the following variables

𝛼 := Δ 𝛿0 := 2
𝑘 · Y 𝛿𝑖 := −𝑥𝑖 𝜒𝑖 := 𝜒𝑖

ℓ := 𝑘 + 𝑠 𝑚 := 𝑠 𝑟 := 𝑘

and get 2
−ℓ+𝑟+log(ℓ−1+1) = 2

−𝑠+log(𝑠+1)
as upper bound on the suc-

cess probability of P∗ finding𝑚′ −𝑚, which is necessary to make

V output (success). □

23

G.2 Proof of Lemma 5.3
Proof of Lemma 5.3. Suppose P∗ and V run the CheckMult

protocol with inputs as described in the lemma.

If the proposedmultiplication triples ([𝑥𝑖], [𝑦𝑖], [𝑧𝑖])ℓ𝑖=1 are valid,
i.e. 𝑥𝑖 · 𝑦𝑖 = 𝑧𝑖 for 𝑖 = 1, . . . , ℓ , and all commitments are opened

to the correct values, then the values𝑤𝑘 ≠ 0 for the invalid input

triples due to the correctness of Beaver multiplication [5]. So the

verifier outputs (failure).
Therefore, P∗ has two possible options: 1. It can try to cheat

during the CheckZero in Step 9 to reveal some different values

𝑑 ′, 𝑒 ′ ≠ 𝑑, 𝑒 or 𝑤𝑘 ≠ 0 in Step 8. This succeeds with probability

at most Ycz (see Lemma 5.2). 2. It can choose to generate invalid

multiplication triples. This can only be successful, if no invalid

triples are detected in Step 7, and then invalid triples are paired up

with invalid inputs in the right way.Weng et al. [29] have formalized

this as a “balls and bins game”. According to Lemma 2 of [29], an

adversary wins this game with probability at most Ycm =
(𝑛𝐵+𝐶
𝐵

)−1
.

By the union bound, P∗ can make V output (success) with
probability at most Ycz + Ycm. □

G.3 Proof of Theorem 5.1
Proof of Theorem 5.1. To show security in the UC-model, we

construct a simulatorSwith access to the ideal functionalityF Z2𝑘ComZK.

The environment can choose to corrupt one of the parties, where-

upon S simulates the interaction for the corrupted party. We cover

the two cases separately, and first consider a corrupted prover, then

a corrupted verifier.

Throughout the proof, we assume that the parties behave some-

what sensible, e.g. they use correct value identifiers, both parties

access the functionality in a matching way, and that the simulator

can always detect which method is to be executed.

Malicious Prover. S sends (corrupted,P) to the ideal function-

ality F Z2𝑘ComZK. It also creates copies of the prover P∗ and verifier

V , and runs the verifier according to the protocol Π
Z
2
𝑘

ComZK-a, while

letting the prover behave as instructed by the environment. For

this, S simulates the functionality of F 𝑠,𝑘+𝑠vole2k with corrupted P. If
the simulated P aborts the protocol, S sends (abort) to F Z2𝑘ComZK.

The method calls are simulated as follows:

For Random, the parties call the Expand of F 𝑠,𝑘+𝑠vole2k to generate

a commitment [𝑟] of the form 𝑀 [𝑟] = Δ · 𝑟 + 𝐾 [𝑟]. Since, P∗ is
corrupted, it is allowed to choose its outputs 𝑟, 𝑀 [𝑟] ∈ Z

2
𝑘+𝑠 . S

sends (Random) on behalf ofP∗ toF Z2𝑘ComZK and chooses 𝑟 := 𝑟 mod

2
𝑘
as value of the commitment. Hence, P∗ receives 𝑟, 𝑀 [𝑟] ∈𝑅

Z
2
𝑘+𝑠 as in the real protocol (in the F 𝑠,𝑘+𝑠vole2k-hybrid model). And S

keeps track of all the commitments generated.

Affine is purely local, so there is no interaction to be simulated.

S instructs the ideal functionality to perform the corresponding

operations and computes the resulting commitments.

For CheckZero, S first simulates the call to Random, and runs

the protocol with the simulated parties. Then it sends theCheckZero

message to F Z2𝑘ComZK. If the simulated verifier aborts, then S sends

(abort) to F Z2𝑘ComZK, which results in the ideal verifier aborting. To

show that the verifier’s output is indistinguishable between the real

execution and the simulation we combine the following two facts:

1. If the verifier aborts in the real execution, then it does the same

in the simulation. This holds by definition of the simulation. 2. If

the verifier outputs (success) in the real execution, then it does the

same in the simulation except with probability at most 2
−𝑠+log(𝑠+1)

.

We show the contraposition, i.e. if the verifier aborts in the simu-

lation, then it does the same in the real execution except with the

given probability. By definition of F Z2𝑘ComZK, the premise hold if one

of the input commitments contains a non-zero value. Thus, we can

apply Lemma 5.2, which gives us the desired consequence.

For Input, the parties first invoke Random to obtain a commit-

ment [𝑟], so S simulates this (see above). Input is the only method,

where the prover has a private input. The simulator can extract it

from P∗’s message 𝛿 ∈ Z
2
𝑘 by computing 𝑥 ← 𝛿 + 𝑟 (it knows 𝑟

because it simulates the F 𝑠,𝑘+𝑠vole2k functionality). Then S can send

(Input, 𝑥) on behalf of the corrupted prover to the ideal functional-

ity F Z2𝑘ComZK. For correctness, note that a commitment [𝑟] + (𝑥 − 𝑟)
contains the value 𝑥 iff. [𝑟] is a commitment to 𝑟 .

Since Open is implemented in terms of Affine and CheckZero,
and we have that a commitment [𝑥] contains a value 𝑥 iff. [𝑥] − 𝑥
is a commitment to 0. We can simulate the methods as describe

above. Hence, the simulation of Open fails exactly if the simulation

of CheckZero fails.
CheckMult is simulated in the same way as CheckZero. Here,

we apply Lemma 5.3, and get that the output ofV is the same in

the simulation and in the real execution except with probability at

most Ycz + Ycm.
This concludes the proof for the case of a corrupted prover. As

shown above, we can simulate its view perfectly for all methods.

Overall, by the union bound, the environment has an distinguishing

advantage of

(𝑞cz + 𝑞cm) · Ycz + 𝑞𝑚 · Ycm .

Malicious Verifier. The setup of the simulation in case of a cor-

rupted verifierV∗ is similar as before. S sends (corrupted,V) to
the ideal functionality F Z2𝑘ComZK. It creates copies of the proverP and

verifierV∗. The prover is run according to the protocol, whereas

the environment controls the verifier. For this, S simulates the

functionality of F 𝑠,𝑘+𝑠vole2k with corruptedV . For all methods, since

V does not have any private inputs no input extraction is neces-

sary. So the simulator can just send the corresponding message on

behalf of the verifier to F Z2𝑘ComZK. The method calls are simulated as

follows:

During initialization, S allowsV∗ to choose its MAC key Δwith

the simulated F 𝑠,𝑘+𝑠vole2k functionality.

For Random, the parties call the Expand of F 𝑠,𝑘+𝑠vole2k to generate

a commitment [𝑟] of the form𝑀 [𝑟] = Δ · 𝑟 + 𝐾 [𝑟] whereV∗ can
choose 𝐾 [𝑟]. S sends (Random) on behalf ofV∗ to F Z2𝑘ComZK.

As before, Affine is purely local, so there is no interaction to be

simulated. S instructs the ideal functionality to perform the corre-

sponding operations and computes the resulting commitments.

For CheckZero, S sends the respective message to F Z2𝑘ComZK. If it

aborts, then S instructs the simulated P to also abort by sending

(abort) to the simulatedV , which finishes the simulation. Other-

wise, S simulates the normal protocol execution: It first simulates

24

the call to Random and lets V∗ choose the coefficients 𝜒𝑖 . Since

F Z2𝑘ComZK did not abort, we know that 𝑥1 = · · · = 𝑥𝑛 = 0. We also

know Δ, 𝐾 [𝑥1], . . . , 𝐾 [𝑥𝑛], 𝐾 [𝑟], so we can sample 𝑝 ∈𝑅 Z2𝑠 and

compute𝑚 := 2
𝑗 · Δ · 𝑝 +∑𝑛

𝑖=1 𝜒𝑖 ·𝐾 [𝑥𝑖] + 2𝑘 ·𝐾 [𝑟] as expected by
the verifier.

For Input, S first simulates the call to Random as above, and

then sends a random value 𝛿 ∈𝑅 Z2𝑘 to the simulated verifier. Also,

S sends (Input) on behalf ofV∗ to F Z2𝑘ComZK.

For Open, S sends the Open on behalf of V∗ to F Z2𝑘ComZK and

receives the committed values 𝑥1, . . . , 𝑥𝑛 ∈ Z2𝑘 as output. It sends

these values to the simulated verifier, and then simulates Affine and
CheckZero as above. So the view is distributed identically to the

real protocol.

For CheckMult, S sends the corresponding message on behalf of

the corrupted verifier to F Z2𝑘ComZK. If it aborts, then S instructs the

simulated P to also abort by sending (abort) to the simulatedV .

Otherwise, S simulates the complete protocol using the constant

value 0 for all of the prover’s commitments. Because the simulated

P behaves like an honest prover, it samples all multiplication triples

([𝑥𝑖], [𝑦𝑖], [𝑧𝑖])ℓ𝑖=1 correctly. Since the view of theV is distributed

identically to the real execution and independent of the prover’s

real inputs: The opened triples in Step 6 are uniformly distributed,

valid multiplication triples. The values 𝑑, 𝑒 revealed in Step 8a are

distributed uniformly in Z
2
𝑘 , and the CheckZero passes since the

𝑤𝑘 are all 0.

This concludes the proof for the case of a corrupted verifier. As

shown above, we can simulate its view perfectly for all methods.

Overall, the environment has a distinguishing advantage as stated

in the theorem. □

G.4 Proof of Theorem 5.4
Proof of Theorem 5.4. Sincemost ofΠ

Z
2
𝑘

ComZK-b is actually iden-

tical to Π
Z
2
𝑘

ComZK-a we will refer to the Proof of Theorem 5.1 for these

parts, and focus on the differences here.

The subroutinesCheckZero andCheckZero′ are only very slightly

modified from the CheckZero from Π
Z
2
𝑘

ComZK-a. The latter is exactly

the same as in before, but for the larger message space Z
2
𝑘+𝑠 , and

the former additionally hides some more bits. Hence, the same

Lemma 5.2 can be applied here.

The remaining part of the proofs considers the different imple-

mentation of CheckMult:

Malicious Prover. The setup of the simulation is the same as in

the Proof of Theorem 5.1, i.e. S sends (corrupted,P) to the ideal

functionality F Z2𝑘ComZK and simulates copies of prover and verifier.

For the method CheckMult, S can exactly simulate the protocol

since it knows all the commitments, and [is sampled uniformly at

random from Z2𝑠 .

If the simulated verifier aborts, it sends (abort) to F Z2𝑘ComZK. Thus,

if the verifier aborts in the real execution, then it does the same

in the simulation. On the other hand, if the verifier aborts in the

simulation, then by Lemma 5.5 it also aborts in the real protocol,

except with probability Ycz + Y ′cm.

Malicious Verifier. Again, we have the same setup as before,

i.e. the simulator sends (corrupted,V) to the ideal functionality

F Z2𝑘ComZK and simulates copies of prover and verifier.

For CheckMult, we use the same strategy as in the Proof of

Theorem 5.1: S sends the corresponding message on behalf of

the corrupted verifier to F Z2𝑘ComZK. If it aborts, then S instructs the

simulated P to also abort by sending (abort) to the simulatedV .

Otherwise S simulates the complete protocol using the constant

value 0 for all of the prover’s commitments so that the verifier’s

view is the same as in the real execution.

Summarizing, we have shown that no environment can distin-

guish the simulation from a real execution of the protocol with

more than the stated advantage. □

25

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Zero-Knowledge Proofs
	2.3 VOLE and Linearly Homomorphic MACs
	2.4 Homomorphic Commitment Functionality
	2.5 Extended Doubly-Authenticated Bits

	3 Conversions between Z 2 and Z M
	3.1 Conversions and edaBits in ZK
	3.2 The Conversion Verification Protocol Conv
	3.3 Proof of security
	3.4 Faulty daBits
	3.5 Complexity of Verifying Conversions

	4 Truncation and Integer Comparison
	4.1 Truncation
	4.2 Integer Comparison

	5 Interactive Proofs over Z2k
	5.1 Linearly Homomorphic Commitments from Vector-OLE
	5.2 Instantiation of FComZKZ2k
	5.3 Proofs of Security

	References
	A Multi-Domain Commitment Functionality
	B Proof of Security of the Basic Conversion Protocol
	B.1 Analysis of the Cut and Choose procedure
	B.2 Proof of Security of the Protocol Conv (Theorem 3.4)

	C Proof of Conversion Protocol for Faulty Dabits
	C.1 Security Analysis of the Faulty Dabit Approach

	D Proof of Correct Truncation
	E A Naïve Truncation Protocol
	F Sub-protocols
	F.1 Complexity of bitADDcarry
	F.2 Complexity of convertBit2A

	G Proofs of the Z2k Protocols
	G.1 Proof of Lemma 5.2
	G.2 Proof of Lemma 5.3
	G.3 Proof of Theorem 5.1
	G.4 Proof of Theorem 5.4

