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Abstract. We give a quantum reduction from finding short codewords in a random linear
code to decoding for the Hamming metric. This is the first time such a reduction (classical or
quantum) has been obtained. Our reduction adapts to linear codes Stehlé-Steinfield-Tanaka-
Xagawa’ re-interpretation of Regev’s quantum reduction from finding short lattice vectors to
solving the Closest Vector Problem. The Hamming metric is a much coarser metric than the
Euclidean metric and this adaptation has needed several new ingredients to make it work. For
instance, in order to have a meaningful reduction it is necessary in the Hamming metric to
choose a very large decoding radius and this needs in many cases to go beyond the radius where
decoding is unique. Another crucial step for the analysis of the reduction is the choice of the
errors that are being fed to the decoding algorithm. For lattices, errors are usually sampled
according to a Gaussian distribution. However, it turns out that the Bernoulli distribution
(the analogue for codes of the Gaussian) is too much spread out and can not be used for the
reduction with codes. Instead we choose here the uniform distribution over errors of a fixed
weight and bring in orthogonal polynomials tools to perform the analysis and an additional
amplitude amplification step to obtain the aforementioned result.

1. Introduction

Code-based Cryptography. Many cryptosystems as public-key encryption schemes [McE78,
Ale11, MTSB12], authentication protocols [Ste93] or pseudorandom generators [FS96] are built
relying on the hardness of finding the closest codeword, a task called decoding. In the case of a
random linear code, which is the standard case, this problem can be expressed as follows

Definition 1 (DP(q, n, k, t)). The decoding problem with parameters q, n, k, t ∈ N is defined as:

• Given: (G,uG + e) where G ∈ Fk×nq and u ∈ Fkq are sampled uniformly at random over
their domain and e ∈ Fnq over the words of weight t,
• Find: e

This problem really corresponds to decode the code C which is the k-dimensional vector space
generated by the rows of G:

(1) C
def
= {uG : u ∈ Fkq},

i.e. we are given the noisy codeword c + e where c belongs to C and we are asked to find the
error e (or what amounts to the same, the original codeword c). This problem for random codes
has been studied for a long time and despite many efforts on this issue, the best algorithms are
exponential in the codelength n in the regime where t, k and n− k are all linear in n.

Usually this decoding problem is considered in the regime where the code rate R def
= k

n is fixed in
(0, 1) and q = 2, but there are also other interesting parameters for cryptographic applications.
For instance, the Learning Parity with Noise problem (LPN) corresponds to DP(q, n, k, t) where
n is the number of samples, k the length of the secret while the error is sampled according to
a Bernoulli distribution of fixed rate t/n. As the number of samples in LPN is unlimited, this
problem really corresponds to decoding a code of rate arbitrarily close to 0.
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While the security of many code-based cryptosystems relies on the hardness of the decoding
problem, it can also be based on finding a “short” codeword (as in [MTSB12] or in [AHI+17,
BLVW19, YZW+19] to build collision resistant hash functions), a problem which is stated as
follows.

Definition 2 (short codeword problem SCP(q, n, k, w)). Let q, n, k, w ∈ N. The short codeword
problem with parameters q, n, k, w is defined as follows:

• Given: H ∈ F(n−k)×n
q which is sampled uniformly at random,

• Find: c ∈ Fnq such that Hcᵀ = 0 and the weight of c belongs to (0, w]

Here we are looking for a non-zero codeword c of weight ≤ w in the k-dimensional code C defined
by the so-called parity-check matrix H, namely:

C
def
=
{
c ∈ Fnq : Hc

ᵀ
= 0

}
.

Decoding and looking for short codewords are problems that have been conjectured for a long time
to be extremely close. They have been studied for a long time [Pra62, Ste88, Dum89, MMT11,
BJMM12, MO15, BM18], and for instance in the regime of parameters where the rate R = k

n

is fixed in (0, 1), the best algorithms for solving them are the same (namely Information Set
Decoding). A reduction from decoding to the problem of finding short codewords is known but in
an LPN context [AHI+17, BLVW19, YZW+19]. However, even in an LPN context, no reduction
is known in the other direction. These problems can be viewed in some sense as a code version of
the LWE and SIS problems respectively in lattice based cryptography [Reg09]. A breakthrough
there was to obtain a quantum reduction from SIS to LWE [Reg05, SSTX09]. Our contribution
in this article is precisely to give the code based version of this reduction, namely a quantum
reduction from finding short codewords to decoding. This problem was open for quite some time.
To simplify the statements, we will state it in the regime of parameters where the rate R is fixed
in (0, 1), but actually it also works in the LPN setting (but needs to be adapted in several places
where we use exponential bounds in n).

Parameter range for DP and SCP. An important parameter for the reduction is the distance
decoding t. The largest value of t for which the decoding problem is ensured to have a unique
solution is equal to

⌊
dmin−1

2

⌋
where dmin

def
= min{d(c, c′) : c ∈ C, c′ ∈ C, c 6= c′} is the

minimum distance of C (which depends of course on the metric d(·, ·) that is considered). Standard
probabilistic arguments can be used to show that the minimum distance of a random linear code
(code C obtained as in (1) by a generator matrix G chosen uniformly at random in Fk×nq ) is
with very high probability equal, up to an additive constant, to the Gilbert-Varshamov distance
dGV(n, k) (or simply dGV if there is no ambiguity). It is defined (for all metrics) for a code of
dimension k and length n, as the largest integer t for which

(2) qk ·Bt ≤ qn

where Bt is the size of a ball of radius t. For the Hamming metric we have

δGV(n, k) = h−1
q

(
1− k

n

)
+O

(
1

n

)
where

hq(x)
def
= −x logq

(
x

q − 1

)
− (1− x) logq(1− x) and h−1

q its inverse ranging over [0,
q − 1

q
]

and δGV(n, k) is the normalized Gilbert-Varshamov distance defined as δGV(n, k)
def
= dGV(n,k)

n .

This Gilbert-Varshamov distance turns out to quantify also the region where we typically have
unique decoding. More precisely, it turns out that the same probabilistic arguments also show
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that the solution of the decoding problem is unique with probability 1 − 2−Ω(n) as long as t ≤
(1− ε)dGV(n, k) as n goes to infinity for fixed positive ε.

Whereas the best algorithms for solving the decoding have exponential complexity in n as soon
as t is linear in n and the code rate R def

= k
n is bounded away from 0 and 1, this is not true for the

short codeword problem which becomes easy when the weight w is above a certain range. The
reason for this, is that it is easy to produce codewords of small weight by using the fact that the
code is a vector space of dimension k. Thus we can just produce codewords with k − 1 entries
equal to 0 by solving a linear system which gives good candidates for having small weight. It is
straightforward that this strategy produces in polynomial time, for instance with the Hamming
metric, codewords of weight ≈ ωeasy(n, k)n where

(3) ωeasy(n, k)
def
=

q − 1

q
(1− k/n)

Obtaining larger weights is also readily obtained by choosing only part of the k − 1 entries to be
equal to 0. It should be noted that below ωeasy(n, k) the best known algorithms for solving this
problem have all exponential complexity for a fixed rate R and a fixed ratio ω = w

n .

Regev’s quantum reduction strategy adapted to coding theory. In [Reg05] (see also the
extended version [Reg09]) Regev showed how to transform a random oracle solving the decoding
problem in a lattice into a quantum algorithm outputting a rather small vector in the dual lattice.
Our aim is to show here that the natural translation of this approach in coding theory gives an
algorithm that outputs a rather small vector in the dual code. Roughly speaking Regev’s approach
relies on a fundamental result about the Fourier transform.

Proposition 1. Consider an Abelian group G and a function f : G 7→ C that is constant on the
cosets of a subgroup H of G. Then the Fourier transform f̂ is constant on the dual subgroup H⊥.

Arguably this innocent looking fact (together with the fact that the Fourier transform can be
performed in polylog time when the group G is Abelian) is the key to several remarkable quantum
algorithms solving in polynomial time the period finding in a vectorial Boolean function [Sim94],
the factoring problem [Sho94] or the discrete logarithm problem [Sho94]. All of these problems
can be rephrased in terms of the hidden Abelian subgroup problem, where one is given such a
function f that is constant (and distinct) on the cosets of an unknown subgroup H and one is
asked to recover H. This is achieved by :
(i) creating the uniform superposition 1√

|G|

∑
x∈G |x〉 |f(x)〉,

(ii) measuring the second register and discarding it, yielding a quantum state of the form
1√
|H|

∑
h∈H |x+ h〉,

(iii) applying the Fourier transform to it yielding a superposition of elements in the dual subgroup
H⊥ (and therefore gaining information on H in this way).

Proposition 1 is used in a similar way in Regev’s reduction. Translating Regev’s reduction in
coding theory would use this framework by considering that the linear code C we want to decode
plays the role of the aforementioned H. From now on we will assume that this code is of dimension
k and length n over Fq. The algorithm would basically look as follows for reducing the search of
small codewords in the dual code C⊥ = {c⊥ ∈ Fnq : c · c⊥ = 0, ∀c⊥ ∈ C} (where x · y =

∑n
i=1 xiyi

is the standard inner product in Fnq ) to decoding errors of weight t in C.

Step 1. Use a quantized version of the decoding algorithm to prepare the state

1√
Z

∑
c∈C,e

πe |c + e〉
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where Z is a normalizing constant and (|πe|2)e is a probability distribution on errors that
concentrates around the weight t we are able to decode. This is done
(i) by preparing first a superposition of codewords and errors

1√
Z

∑
c∈C

∑
e∈Fnq

πe |c〉 |e〉 ,

(ii) then adding the second register to the first one to get the entangled state
1√
Z

∑
c∈C

∑
e∈Fnq

πe |c + e〉 |e〉

(iii) disentangle it by a quantized version of the decoding algorithm which from c + e

recovers e and subtracts it from the second register to get the state
1√
Z

∑
c∈C

∑
e∈Fnq

πe |c + e〉 |0〉

Step 2. Apply the quantum Fourier transform on Fnq to obtain a superposition of elements c⊥ in
the dual code ∑

c⊥∈C⊥
αc⊥

∣∣c⊥〉 .
Step 3. Measure the register to output c⊥ of rather small norm in C⊥.

The second point is a direct consequence of Proposition 1. The last point raises the issue of
whether or not the Fourier transform concentrates the weight output by this algorithm on weights
t′ for which finding a codeword in C⊥ is not known to be easy, as is the case for Regev’s reduction
on lattices equipped with the Euclidean metric.

On the difficulty of translating Regev’s reduction to the Hamming metric. This thread
of research has already been pursued in the binary case by Yilei Chen [Che] and later on in [CV],
where basically the following approach was taken. The natural analogue of the Gaussian noise
model used in Regev’s reduction [Reg09] in the case of the Hamming metric is the i.i.d. Bernoulli
model on each coordinate, i.e. |πe|2 = (p/(q− 1))|e|(1− p)n−|e| where |e| stands for the Hamming
weight of e, n the length of e and p the parameter of the Bernoulli noise. Both distributions can
be expressed in terms of the heat kernel operator (the usual Laplacian in the case of the Gaussian
noise and the discrete Laplacian for the case of Fnq ), in both cases the Fourier transform yields
a dual noise which is itself Gaussian or Bernoulli based and the quantum state corresponding
to the error is a product state which simplifies a great deal the computation. However, it has
been realized that this natural approach hits a wall. The problem is the following: we begin to
choose the parameter p of the Bernoulli noise, so that the typical weight pn of an error e is equal
to or slightly below the weight t we can decode. It turns out that the most likely weight we
measure at Step 3 is always zero if we want to have a chance that the dual codeword we measure
has normalized weight < ωeasy, i.e. is in the regime where there is a chance that it is difficult
to produce such words. In other words, the straightforward application of Regev’s approach to
coding theory fails to give a useful reduction.

We give in Section C of the appendix an explanation for the failure of this approach. It can be
summarized by saying that the Bernoulli noise model is not enough concentrated on the typical
weight pn. Intuitively what is going wrong in the case of the Bernoulli noise model, can be
explained by bringing in the quantum state

|π〉 def=
∑
e∈Fnq

πe |e〉 ,

which represents in some sense the noise we add to the codeword.
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In the case of an i.i.d Bernoulli noise of parameter p (i.e. a q-ary symmetric channel of crossover
probability p) we have

|π〉 =
∑
e∈Fnq

(1− p)
n−|e|

2

(
p

q − 1

) |e|
2

|e〉 =

√1− p |0〉+
∑
α∈F∗q

√
p

q − 1
|α〉

⊗n

Applying the quantum Fourier transform to this state yields a quantum state

|π〉̂ =
∑
e∈Fnq

(1− p⊥)
n−|e|

2

(
p⊥

q − 1

) |e|
2

|e〉 =

√1− p |0〉+
∑
α∈F∗q

√
p⊥

q − 1
|α〉

⊗n

where p⊥ def
=

(√
(q − 1)(1− p)−√p

)2

q

The issue is to understand which is the most likely weight we get when we measure the quantum
state at Step 3. This should be the integer w which maximizes the probability pw to measure a
dual codeword c⊥ of weight w which is equal to (see Lemma 4 in Section A of the appendix)

(4) pw =
q2k

Z

∑
c⊥∈C⊥:|c⊥|=w

|π̂c⊥ |
2

where |π〉̂ =
∑

e∈Fnq
π̂e |e〉. In our case, π̂ is a radial function (namely π̂e = f(|e|) for some

function f). Therefore we have (for |e| = w): pw = qn+k

Z
N⊥w
qn−k

|π̂e|2 where N⊥w is the number
of codewords of weight w in C⊥. The density of codewords of Hamming weight w in a random
code C⊥ is about the same as the density of elements of weight w in the whole space Fnq , namely

1
qn−k

N⊥w ≈
(q−1)w(nw)

qn . However there is one notable exception, namely when w = 0 where the
density of codewords is 1

qn−k
instead of 1

qn . In other words, if π̂0 is too big, it is in 0 that pw
is maximal. For w > 0, we expect that the maximum of w is attained for weights where the
probability of measuring a weight w is maximal when we measure directly the quantum state |π〉̂,
in this case the most likely outcome is a weight ≈ p⊥n. We miss to measure this quantity since in
our case |π̂0|2 is just too large. It is readily seen that

π̂0 =
〈π|1〉√
qn

(where 1 is the all one vector and 〈|〉 the hermitian product) and that more or less the best we can
do to minimize this quantity if we stick to (i) radial probability distributions |πe|2 (i.e. depending
only on the weight of e –which is a natural constraint), (ii) distributions that concentrate almost
all their probability around weight t, and (iii) nonnegative πe’s(1) is to actually concentrate the
whole distribution on the weight t.

Our approach. This is precisely what we have done by choosing

|π〉 =
∑

e:|e|=t

1√
St
|e〉

where St is the cardinality of the sphere of radius t in the Hamming metric, namely (q − 1)t
(
n
t

)
.

Making this choice actually complicates rather significantly the reasoning. Understanding which
weight w maximizes pw is much more involved (it involves in particular rather delicate properties

(1)This restriction simplifies significantly the proof in several crucial places. Furthermore if we ask ourselves
whether in the Bernoulli case we can improve upon the choice of πe by keeping the equality |πe|2 = (p/(q−1))|e|(1−
p)n−|e| and choosing πe in the complex numbers, it turns out that the choice of positivity for the πe that was made
leads to a dual distribution |π〉̂ which is concentrated on the smallest possible weight, namely p⊥n here.
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of Krawtchouk polynomials). However, it will turn out that when ω def
= w

n lies in a whole interval

starting precisely at τ⊥ def
=

(√
(q−1)(1−τ)−

√
τ
)2

q where τ def
= t

n , we have many points where pw is
actually 1

poly(n) . The weight distribution is in this case not really concentrated on a single value
but is spread out on a large interval (but with the property that there are weights w close to
τ⊥n for which pw = 1

poly(n) ). In other words, the previous Bernoulli noise model (with probability

τ) now captures with its most likely weight outcome τ⊥n when we measure |π〉̂ directly, weights
which are rather likely to be output at Step 3 (and 0 is now not anymore the most likely outcome).

Roughly speaking with our approach, we transform through the quantum Fourier transform a
decoding algorithm correcting τn errors into an algorithm outputting with non-negligible proba-
bility words of weight ≈ τ⊥n in the dual code. If τ⊥ is below ωeasy(n − k, n)n (here we want to
find short codewords in the dual code C⊥ which is of dimension n − k) then this would yield a
useful reduction. τ⊥ is clearly a decreasing function of τ and the issue is now whether or not there
exists a τ < δGV(n, k) (this is the biggest value for which we can hope that decoding is successful
with probability 1 − o(1)) such that τ⊥ < ωeasy(n, n − k). It turns out that in many cases we
have to choose τ > δGV(n, k)/2 meaning that we are not in the regime where the decoding has
necessarily at most one solution. This complicates somehow the proof of the reduction since with
a quantized version of the decoding algorithm we will not be able to produce at Step 1 the state
1
Z

∑
c∈C,e πe |c + e〉 (since decoding fails for some e) but we will be able to show that as long as

τ < δGV(n, k) we will get a state close to this one. This will be enough for our purpose.

Moreover by building upon the proof technique of [SSTX09] we can show a reduction which is more
relevant to cryptography. We consider that we have a decoding algorithm which is only successful
for some potentially very small probability ε and we want to turn it into an algorithm outputting
a word of weight ≈ τ⊥n in the dual code C⊥ with some probability poly(ε). The “ideal” version
of the algorithm that we have presented before (where we assume that we are always successful
with our decoding algorithm) only describes a state that we get at Step 2 which is not completely
orthogonal (the scalar product is bounded from below by a quantity poly(ε)) to the “real” state
after applying this approximate decoding process + quantum Fourier step. If we were to measure
this state directly at that point we would not be sure to measure with probability poly(ε) a word of
weight ≈ τ⊥n. To ensure this, we have to apply a quantum amplification step that would produce
in the ideal case a state which is concentrated on a certain weight w close to τ⊥n. It is based on
the fact that for a random code we know with probability 1 − 2−Ω(n) with exponential precision
the probability of measuring a weight w close to τ⊥n. Putting all these ingredients together we
are able to prove the following result.

Theorem 1 (informal). The short codeword problem SCP(q, n, n − k,w) reduces to the decoding
problem DP(q, n, k, t) for w = τ⊥n+O(1) where

τ
def
=

t

n

τ⊥
def
=

(√
(q − 1)(1− τ)−

√
τ
)2

q

It will turn out that for q = 2 (see Section 3) we can find for any rate R = k
n in (0, 1) a

t < dGV(n, k) for which the corresponding w is below ωeasy(n, n− k)n (the reduction is useful in
this case). Unfortunately, this is not true anymore when q ≥ 5, where there is always a range for
R for which w is above ωeasy(n, n − k)n and this for any choice of t < dGV(n, k): the reduction
becomes useless in this case. Roughly speaking, when q grows, the Hamming metric gets coarser
(we have only n+1 different values for the metric on Fnq , whereas the size of the ambient space gets
bigger) and this reflects in the fact that the range of values of R where this reduction is useful gets
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smaller. The whole approach that we have followed here (properly choosing the error distribution,
if needed go beyond the unique decoding radius for decoding, and apply a subsequent amplification
step if needed) can of course be adapted to other metrics. It is easy for instance to apply it for
the rank metric [DRT21] which becomes increasingly popular in code-based cryptography, see for
instance [ABD+19, AAB+19, BCG+19, BGHM20]. This metric is even coarser: on Fm×nq there
are only 1 + min(m,n) different values for the metric. In this case, it can be verified that the
reduction is always useless (i.e. reduces to weights which are always easy to produce for a random
linear code). However, it should be interesting to investigate it for metrics like the Lee metric
(more or less the L1 norm version of the Euclidean metric on Znq ) which has also begun to find
its way in code-based cryptography [HTW20] and should have a behavior closer to the Euclidean
metric if the size of the alphabet grows with the code length.

Notation. For a and b integers with a ≤ b, we denote by Ja, bK the set of integers {a, a+1, . . . , b}.
Vectors are in row notation and they will be written with bold letters (such as e). Uppercase bold
letters are used to denote matrices (such as H). St is the sphere of radius t around 0 in Fnq (for a
metric | · | that will be clear from the context) and St is its cardinality. poly(n) denotes a quantity
which is an O (na) for some constant a.

2. Quantum Reduction from Sampling Short Codewords to Decoding

2.1. A general result. We assume here that we have a probabilistic algorithm A that solves
(sometimes) the decoding problem at distance t. Its inputs are a generator matrix G ∈ Fk×nq of
a code C ⊆ Fnq (i.e: C = {uG : u ∈ Fkq}) and a noisy codeword c + e where c belongs to C. We
denote by w ∈ {0, 1}` the internal coins of A . It outputs with a certain probability ε, the “right”
e when being fed with c+e where c is chosen uniformly at random in C and e is chosen uniformly
at random among the errors of weight t:

ε
def
= PG,c,e,w (A (G, c + e,w) = e) .

We can implement A quantumly in the following way: it maps the quantum state |e〉 |c + e〉 |w〉
to |e−A (G, c + e,w)〉 |c + e〉 |w〉. The quantum reduction starts by building the initial super-
position

|ψ0〉
def
=

1√
2`qk

∑
e∈Fnq

∑
c∈C

∑
w∈F`2

πe |e〉 |c〉 |w〉

where |π〉 def=
∑

e∈Fnq
πe |e〉 is some quantum superposition of errors. The quantum algorithm which

gives the reduction can be described as follows.

Algorithm of the quantum reduction.

Initial state preparation =
1√
2`qk

∑
e∈Fnq

∑
c∈C

∑
w∈F`2

πe |e〉 |c〉 |w〉

adding e to c: 7→ 1√
2`qk

∑
e∈Fnq

∑
c∈C

∑
w∈F`2

πe |e〉 |c + e〉 |w〉

applying A : A7→ 1√
2`qk

∑
e∈Fnq

∑
c∈C

∑
w∈F`2

πe |e−A (G, c + e,w)〉 |c + e〉 |w〉(5)

QFT on the 2nd register: 7→
∣∣∣ψQFT

A

〉
(6)

Amplification of amplitudes: 7→
∣∣∣ψAmpl

A

〉
(7)

measuring the whole state: 7→ |e〉
∣∣c⊥〉 |w〉(8)
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We will now give a general theorem about an algorithm A of this kind and will show that it
succeeds with probability poly(ε) to output a codeword of the dual code C⊥ of some weight u by
using only a polynomial number of calls to A when certain conditions are met.

Theorem 2. Assume that |π〉 =
∑

e∈Fnq
|e〉 is radial and nonnegative, i.e πe = f(|e|) for some

function f and πe ≥ 0 for all e ∈ Fnq . Let pt
def
=
∑

e:|e|=t = Stf(t)2. |π〉̂ =
∑

e∈Fnq
π̂e |e〉 is radial

too and we let f⊥(u) = π̂e where e is any element of Fnq of Hamming weight u. Furthermore,
assume that :
〈π|1〉2

qn−k
= 2−Ω(n),

qk

Su
= 2−Ω(n) and Su|f⊥(u)|2 = Ω

(
1

poly(n)

)
for some 1 ≤ u ≤ n.

with |1〉 being the (unnormalized) superposition of all errors : |1〉 def
=
∑

e∈Fnq
|e〉.

Suppose that there exists an algorithm A solving the decoding problem with success probability ε.

Then, there exists a quantum algorithm making only a polynomial number of calls to A and to
additional elementary 1 or 2 qubit gates which takes as input a generator matrix G ∈ Fk×nq of C

and outputs a codeword of weight u in C⊥ with probability bigger than p2tε
3

16 −O(p4
t ε

5)− 2−Ω(n) −
O
(
q−min(k,n−k)

)
.

Remark 1. This theorem is stated here for the Hamming metric, but actually it can be applied to
any metric for which the Fourier transform is radially preserving: it also applies for instance to
the rank metric.

This theorem will follow from a sequence of lemmas. Roughly speaking the proof uses the following
steps.

Step 1. The first one explains that after applying A in the previous reduction we get a state

|ψA 〉
def
=

1√
2`qk

∑
e∈Fnq

∑
c∈C

∑
w∈F`2

πe |e−A (G, c + e,w)〉 |c + e〉 |w〉

which is sufficiently close to the “disentangled” state

(9) |ψideal〉
def
=

1√
Z

∑
e∈Fnq

∑
c∈C

∑
w∈F`2

πe |0n〉 |c + e〉 |w〉

where Z is a normalizing constant ensuring that the quantum state is indeed valid (i.e. is
of norm 1).

Step 2. We then analyze the effect of the Fourier transform on the “ideal state” |ψideal〉, which
gives a quantum state

∣∣∣ψQFT
ideal

〉
, and we study a subsequent measure of it. We namely

prove that measuring it would output a codeword c⊥ in C⊥ of weight u with probability
1

poly(n) .

Step 3. The last amplitude step is a unitary transform U which when applied to
∣∣∣ψQFT

ideal

〉
would

output a state
∣∣∣ψAmpl

ideal

〉
whose norm is concentrated up to a negligible 2−Ω(n) term on

codewords c⊥ of weight u. We prove in this step how this can be achieved by making
only a polynomial number of calls to A under the assumptions of Theorem 2 and finish
the proof by proving that if we apply U to

∣∣∣ψQFT
A

〉
then the conclusion of the theorem

follows.

The reason why we use an amplification step is that because of the assumption on the success
probability of our decoding algorithm we can only say that

∣∣∣ψQFT
A

〉
is at trace distance ≤ 1 − η

of
∣∣∣ψQFT

ideal

〉
for some η > 0 depending polynomially on ε. This implies that the distribution of
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outcomes after measurement between these states will be at statistical distance ≤ 1−η but even if
measuring

∣∣∣ψQFT
ideal

〉
would yield a codeword c⊥ in C⊥ of weight u with probability 1

poly(n) , measuring∣∣∣ψQFT
A

〉
might give such a codeword with probability 0. This is not true anymore if we were to

reason now on
∣∣∣ψAmpl

ideal

〉
. It is at trace distance ≤ 1−η from

∣∣∣ψAmpl
A

〉
, but now measuring

∣∣∣ψAmpl
A

〉
yields necessarily a codeword c⊥ in C⊥ of weight u with probability ≥ η − 2Ω(n) since the norm
of
∣∣∣ψAmpl

ideal

〉
is exponentially concentrated around such codewords and the trace distance between

the outcomes of measuring
∣∣∣ψAmpl

A

〉
and

∣∣∣ψAmpl
ideal

〉
is also ≤ 1− η.

The detailed proofs of these steps are given in Section A of the appendix.

2.2. Application to the Hamming metric. The assumptions of Theorem 2 will be satisfied
for the Hamming metric for a weight u close to τ⊥n and we will be able to prove that

Theorem 3. Suppose that there exists an algorithm A solving with success probability ε the
decoding problem at Hamming distance 1 ≤ t

def
= τn ≤ min

(
n
q , dGV(n, k)(1− δ)

)
for some δ > 0.

Then, there exists a quantum algorithm making only a polynomial number of calls to A and to
additional elementary 1 or 2 qubit gates which takes as input G ∈ Fk×nq , a generator matrix of C,

and which outputs c⊥ ∈ C⊥ of weight u def
= (τ⊥+ o(1))n with probability (over a uniform choice of

G) bigger than ε3

16 −O(ε5)− 2−Ω(n) where:

τ⊥
def
=

1

q

(√
(q − 1)(1− τ)−

√
τ
)2

This theorem is proved in Section B of the appendix.

Remark 2. The term n
q which appears in the upper-bound for the range of values for which we

can apply our reduction is of no importance in the most important case, namely in the binary case
(q = 2) and for larger values of q, [1, nq ] contains a significant part of the values of t for which the
reduction is useful (see Section 3). This term n

q comes from the way we estimated Krawtchouk
polynomials in the interval formed by their first and last zeros. We could have used [IS98] but this
would involve lengthy computations (but would improve the n

q term to q−1
q n). However the method

we used, relying on a generalization of [KS21, Prop. 25] avoids a lot of computations and is much
shorter.

3. About the usefulness of our reduction.

It is now interesting to look at the parameters for which this reduction is useful. In the example
of Fig. 1, when q = 2, when we take a code of rate R = 1

2 , we can see that τ⊥ is always above
ωeasy when τ < δGV (R)/2, hence the necessity of going beyond the unique decoding radius. An
important point- at some point when τ goes beyond δGV (R)/2, τ⊥ reaches ωeasy and goes below
as τ goes to δGV (R), meaning that we are able with our reduction to get a codeword of a weight
in the range where the problem is not known to be easy (above δGV (1 − R) which corresponds
to the smallest possible relative weight where there might be a solution and below ωeasy). As q
grows, it appears that the range of values τ for which the reduction is useful shrinks. We can see
that by taking a look at the cases where q = 7 or q = 57. In the latter, for example, the reduction
is never useful.

Now, if we plot τ⊥ against R when τ = δGV (R) (Fig. 2, when q = 2), the range of values for
which the short codeword problem is hard becomes more apparent. In fact, it is always between
δGV (1 − R) (below which there is no non-trivial codeword) and ωeasy (above which the problem
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0 δGV(R)/2 δGV(R)
τδGV(1−R)

ωeasy
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Figure 1. τ⊥ as function of τ for a rate R = 1/2.
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Figure 2. Optimal τ⊥ as function of R.

is easy). As q grows, when we plot τ⊥ for q = 7 and q = 57, we see that the range of values of R
for which τ⊥ is in the hard zone of the problem shrinks.
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Appendix A. Proof of Theorem 2

A.1. Step 1. We are going to measure the distance between quantum states as in [SSTX09] by
using the trace distance that is closely connected to the (classical) statistical distance. The trace
distance is defined as follows for pure quantum states:

(10) Dtr(|φ〉 , |ψ〉)
def
=

√
1− |〈φ|ψ〉|2

Two important properties of this distance are:

(i) It can never increase after a quantum evolution [NC16, §9,Th. 9.1];
(ii) The pair of probability distributions (pm, qm) of the measurement outcome m of any

quantum measurement performed on the pair of states (|φ〉 , |ψ〉) satisfies [NC16, §9,Th.
9.2]

(11) Dstat(pm, qm) ≤ Dtr(|φ〉 , |ψ〉)

where Dstat is the statistical distance (also called the total variation distance) between
two probability distributions. It is defined by:

Dstat(p, q)
def
=

1

2

∑
x∈X

|p(x)− q(x)|

where p and q are two discrete probability distributions on X .

In our case, the trace distance between |ψA 〉 and |ψideal〉 is upper-bounded in the following lemma.

Lemma 1. Let εG be the probability that A returns the right error e when the input matrix is
G, i.e.

εG
def
= Pc,e,w (A (G, c + e,w) = e) .

We have

Dtr(|ψA 〉 , |ψideal〉) ≤
√

1− 2`qkp2
t

Z
ε2
G

Proof. Let G be the set of (c, e,w)’s that correspond to inputs to A that are correctly decoded:

G
def
=
{

(c, e,w) ∈ C×St × F`2 : A (G, c + e,w) = e
}
.

We clearly have (πe ≥ 0):

〈ψA |ψideal〉 ≥
1√

2`qkZ

∑
(c,e,w)∈G

π2
e

=

√
2`qk

Z
Stf(t)2 #G

2`qkSt

=

√
2`qk

Z
pt εG.

�

All the probabilistic results of this section are easier to prove if instead of choosing a code C

by picking uniformly at random a generator matrix G for it (i.e. C
def
= {uG : u ∈ Fkq}) we

change slightly the probabilistic model by picking uniformly at random a parity-check matrix
H ∈ F(n−k)×n

q for it, i.e.
C = {x ∈ Fnq : Hx

ᵀ
= 0}.

We will denote PG and PH respectively the probabilities in the initial model and the probabilities
in the new model. The two probability distributions are closely related: the first model always
produces linear codes of dimension≤ k and codes of dimension = k with probability 1−O

(
q−(n−k)

)
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whereas the second model always produces linear codes of dimension ≥ k and codes of dimension
= k with probability 1−O

(
q−k

)
. This relationship is expressed by the following lemma.

Lemma 2. Let E be an ensemble of linear codes of length n in Fq. We have

PG(E) ≤ PH(E) +O
(
q−min(k,n−k)

)
.

With this new probabilistic model we can easily upper-bound the probability that Z is bigger than
2`qk(1 + η) for any η > 0.

Lemma 3. Let η > 0. We have:

PG(Z > 2`qk(1 + η)) ≤ 1

η

〈π|1〉2

qn−k
+O

(
q−min(k,n−k)

)
.

Proof. This is obtained through Markov’s inequality by computing EH(Z). We namely have

Z =

∥∥∥∥∥∥
∑

c∈C,e∈Fnq ,w∈F`2

πe |0n〉 |c + e〉 |w〉

∥∥∥∥∥∥
2

= 2`

∥∥∥∥∥∥
∑

c∈C,e∈Fnq

πe |c + e〉

∥∥∥∥∥∥
2

= 2`

qk ∑
e∈Fnq

π2
e +

∑
(c,e)6=(c′,e′):
c+e=c′+e′

πeπe′


= 2`qk

1 +
∑

e6=e′:H(e−e′)ᵀ=0

πeπe′


where H is an arbitrary-parity check matrix for C. Let

X
def
=

∑
e6=e′:H(e−e′)ᵀ=0

πeπe′ .

The point of the probabilistic model where the parity-check matrix H is chosen uniformly at
random is that for non-zero element x ∈ Fnq we have

PH(x ∈ C) = PH(Hx
ᵀ

= 0) =
1

qn−k
.

From this we deduce

EH(X) =
∑
e6=e′

πeπe′PH((e− e′) ∈ C)

=
∑
e6=e′

πeπe′

qn−k

≤
∑
t,t′

f(t)f(t′) St St′

qn−k

=
(
∑
t f(t) St)

2

qn−k

=
〈π|1〉2

qn−k
.
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Therefore,

PG(Z > 2`qk(1 + η)) = PG(X > η)

≤ PH(X > η) +O
(
q−min(k,n−k)

)
(by Lemma 2)

≤ 1

η
EH(X) +O

(
q−min(k,n−k)

)
(Markov inequality)

≤ 1

η

〈π|1〉2

qn−k
+O

(
q−min(k,n−k)

)
.

�

By putting Lemmas 1 and 3 (with η = 1) together we immediately obtain the following proposition.

Proposition 2. With probability greater than 1− 〈π|1〉
2

qn−k
−O

(
q−min(k,n−k)

)
over the choices of G

we have:

Dtr(|ψA 〉 , |ψideal〉) ≤
√

1− p2
t

2
ε2
G.

A.2. Step 2. Recall that the quantum Fourier transform |ψ〉̂ of a state |ψ〉 def
=
∑

x∈Fnq
αx |x〉 is

defined by using the characters χy of the additive group Fnq (there are as many characters as there
are elements in Fnq and we assume that the characteristic of Fq is the prime p with q = ps)

χy(x)
def
= e

2iπTr(x·y)
p where

x · y def
=

n∑
i=1

xiyi with x = (xi)
n
i=1 and y = (yi)

n
i=1

Tr(a)
def
= a+ ap + ap

2

+ ·+ ap
s−1

|ψ〉̂ def
=

1√
qn

∑
x,y∈Fnq

αxχy(x) |y〉

The dual code C⊥ of a linear code C over Fq is easily seen to be defined equivalently from the
inner product x · y or from the characters as follows

C⊥
def
= {y ∈ Fnq : ∀c ∈ C, χy(c) = 1}
= {y ∈ Fnq : ∀c ∈ C, y · c = 0}.

If we apply the unitary U corresponding to the quantum Fourier transform on the second register
of |ψideal〉 (given in Equation (9)) it is readily seen that we obtain:∣∣∣ψQFT

ideal

〉
def
= (Id⊗U⊗ Id) |ψideal〉 =

qk√
Z

∑
c⊥∈C⊥

∑
w∈F`2

π̂c⊥ |0n〉
∣∣c⊥〉 |w〉 ,

where |π〉̂ =
∑

e∈Fnq
π̂e |e〉 is the quantum Fourier transform of |π〉.

Lemma 4. If the Fourier transform is radially preserving, meaning that it transforms a radial
function into a radial function, then after measuring

∣∣∣ψQFT
ideal

〉
we obtain a state |0n〉

∣∣c⊥〉 |w〉 with
c⊥ ∈ C⊥ of weight u with probability 2`q2k

Z N⊥u
∣∣f⊥(u)

∣∣2 where f⊥(u)
def
= π̂e for an arbitrary e of

weight u and N⊥u is the number of codewords of weight u in C⊥.

Proof. For e ∈ Fnq , let

|1C+e〉
def
=
∑
c∈C

|c + e〉 .
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We have

|1C+e〉̂ =
∑
c∈C

1√
qn

∑
y∈Fnq

χy(c + e) |y〉

=
1√
qn

∑
y∈Fnq

χy(e)
∑
c∈C

χy(c) |y〉

=
qk√
qn

∑
c⊥∈C⊥

χc⊥(e)
∣∣c⊥〉 (since

∑
c∈C

χy(c) = 0 if y /∈ C⊥ and qk else)(12)

Therefore

∣∣∣∣∣ ∑
e∈Fnq ,c∈C

πe |c + e〉

〉̂
=

∑
e∈Fnq

πe|1C+e〉̂

=
qk√
qn

∑
e∈Fnq

πe
∑

c⊥∈C⊥
χc⊥(e)

∣∣c⊥〉
= qk

∑
c⊥∈C⊥

1√
qn

∑
e∈Fnq

πeχc⊥(e)
∣∣c⊥〉

= qk
∑

c⊥∈C⊥
π̂c⊥

∣∣c⊥〉 ,

The lemma directly follows from this last equation. �

A.3. Step 3. For this we first need to have a good estimation of
∣∣∣ψQFT

ideal

〉
’s amplitudes. This will

be a consequence of the following lemma.

Lemma 5. If the generator matrix G of a code C is chosen uniformly at random in Fk×nq then
the number N⊥u of codewords of weight u in C⊥ satisfies

P

(∣∣∣∣N⊥u − Su
qk

∣∣∣∣ ≥ (Suqk
)3/4

)
≤ (q − 1)

√
qk

Su
.

Proof. Let 1x be the indicator function of the event “x ∈ C⊥”. By definition,

(13) N⊥u =
∑

x∈Su

1x
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It is clear that E(1x) = P(x ∈ C⊥) = 1
qk
. Therefore, E(N⊥u ) = Su

qk
. By using Bienaymé-

Tchebychev’s inequality, we obtain:

P
(∣∣∣∣N⊥u − Su

qk

∣∣∣∣ ≥ a) ≤ Var(N⊥u )

a2

=
1

a2

 ∑
x∈Su

Var(1x) +
∑

x,y∈Su
x6=y

E(1x1y)− E(1x)E(1y)



≤ 1

a2

 ∑
x∈Su

E(1x) +
∑

x,y∈Su
x 6=y

E(1x1y)− E(1x)E(1y)



=
1

a2

Suqk +
∑

x,y∈Su
x 6=y

E(1x1y)− E(1x)E(1y)

(14)

where we used that Var(1x) ≤ E(12
x) = E(1x). Let us now upper-bound the second term of the

inequality. It is readily verified that:

E(1x1y) =

{
1/qk if x and y are colinear
1/q2k otherwise.

Therefore, we deduce that:∑
x,y∈Su
x6=y

E(1x1y)− E(1x)E(1y) =
∑

x∈Su

∑
y∈Su\x:

colinear to x

1

qk
− 1

q2k

≤
∑

x∈Su

∑
y∈Su\x:

colinear to x

1

qk

≤ (q − 2)Su
qk

(15)

It gives by plugging (15) in (14) :

P
(∣∣∣∣N⊥u − Su

qk

∣∣∣∣ ≥ a) ≤ 1

a2

(
Su
qk

+
(q − 2)Su

qk

)
=

(q − 1)Su
a2qk

which concludes the proof by choosing a =
(
Su
qk

)3/4

. �

The point of this lemma is that it will turn out that (where d+
GV(n, n − k) denotes the largest

integer t such that qn−k · St ≥ qn) we will choose a weight u such that it is above dGV(n, n − k)

and below d+
GV(n, n−k) and then for many metrics the term qk

Su
is exponentially small. Therefore,

the probability of measuring c⊥ ∈ C⊥ of weight u after measuring
∣∣∣ψQFT

ideal

〉
is known up to an

exponentially small factor.

Recall now that quantum amplitude amplification techniques (with a classical additional tweak)
[BHMT02, §2.1] enable to turn a quantum algorithm, that performs no measurement and which
succeeds with probability p, into a quantum algorithm that succeeds with probability exactly one
in roughly √p iterations. The same result algorithms carries over almost verbatim to give an
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algorithm working with probability very close to 1 if p is only known with good precision. Let us
give here the corresponding statement with the corresponding proof for the reader’s convenience.

Lemma 6. Let B be any quantum algorithm that performs no measurement. We suppose that
measuring the output of B gives a solution with probability p (in this case we say that B succeeds).
Furthermore, we suppose that p is unknown but we know q = Ω

(
1

poly(n)

)
such that:

(16) p ∈ ((1− δ)q, (1 + δ)q).

Then, there exists a quantum algorithm that runs a poly(n) number of times B and B−1 (and
uses poly(n) other gates) such that measuring the output of it gives a solution with probability
≥ 1− poly(n)O(δ2).

Proof. From any quantum algorithm that succeeds with probability a, it is easy to build (by
adding a qubit and a rotation) a new quantum algorithm that succeeds with probability αa for
any chosen α ∈ [0, 1] [BHMT02, §2.1]. By using this tweak, we can construct an algorithm B′

outputting a solution of B with probability p′ = αp for an α ∈ [0, 1] that we will choose later on.

Let θ def
= arcsin

√
αp. By hypothesis the output of B′ is equal to:

sin θ |G〉+ cos θ |B〉

where |G〉 denotes the quantum superposition of solutions and |B〉 a state orthogonal to it. Now
by making T steps of amplification, we obtain the following quantum state:

sin((2T + 1)θ) |G〉+ cos((2T + 1)θ) |B〉 .

The probability of measuring a solution is given by sin2((2T + 1)θ). We choose α as the largest
α ∈ [0, 1] such that

(17) T
def
=

π

4ρ
− 1

2
∈ Z+ where ρ def

= arcsin
√
αq.

Clearly T = poly(n).

Let us compute now the success probability psucc after T steps of amplification. We have the
following computation:

psucc = sin2((2T + 1)θ)

= sin2 ((2T + 1)ρ+ (2T + 1)(θ − ρ))

= cos2 ((2T + 1)(θ − ρ)) (by Equation (17))

≥ 1− ((2T + 1)(θ − ρ))
2

≥ 1− poly(n)(θ − ρ)2

≥ 1− poly(n)δ2.

�

We will make the following assumption in the whole section from now on.

Assumption 1. The error distribution π = (πe)e∈Fnq and 1 ≤ u ≤ n verify:

〈π|1〉2

qn−k
= 2−Ω(n),

qk

Su
= 2−Ω(n) and Su|f⊥(u)|2 = Ω

(
1

poly(n)

)
.

We have now the following proposition.
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Proposition 3. If the Fourier transform is radially preserving, then under Assumption 1 it exists
a quantum algorithm such that when starting from |ψideal〉, then for a proportion ≥ 1 − β(π) of
matrices G, the probability of obtaining a codeword c⊥ of weight u in C⊥ when measuring is greater
than or equal to 1− α(π) where:

α(π)
def
= Õ

( qk
Su

)1/4

+

√
〈π|1〉2

qn−k

2

β(π)
def
= (q − 1)

√
qk

Su
+

√
〈π|1〉2

qn−k
+O

(
q−min(k,n−k)

)
Proof. Let B be the quantum algorithm starting from |ψ〉 which computes (Id⊗U⊗Id) |ψ〉. This
algorithm succeeds when measuring a dual codeword c⊥ ∈ C⊥ of weight u. When starting with
|ψideal〉, the probability of success of B is equal to 2`q2kN⊥u

Z |f⊥(u)|2 by Lemma 4. Let,

E
def
=

G ∈ Fk×nq : Z > 2`qk

1 +

√
〈π|1〉2

qn−k

 or
∣∣∣∣N⊥u − Su

qk

∣∣∣∣ ≥ (Suqk
)3/4

 .

By Lemmas 3 and 5 we have that P(G ∈ E ) ≤ β(π) = (q− 1)
√

qk

Su
+
√
〈π|1〉2
qn−k

+O
(
q−min(k,n−k)

)
.

Therefore, for a proportion ≥ 1− β(π) of codes (over matrices G):

(i) Z ≤ 2`qk
(

1 +
√
〈π|1〉2
qn−k

)
and Z ≥ 2`qk (this is true for any G as πe ≥ 0 for any e),

(ii)
∣∣∣ qkN⊥uSu

− 1
∣∣∣ ≤ ( qkSu)1/4

.

Therefore, we have for a proportion ≥ 1− β(π) of codes:

(18) Su|f⊥(u)|2

1−
(
qk

Su

)1/4

1 +
√
〈π|1〉2
qn−k

 ≤ 2`q2kN⊥u
Z

|f⊥(u)|2 ≤ Su|f⊥(u)|2
(

1 +

(
qk

Su

)1/4
)
.

Now,

1−
(
qk

Su

)1/4

1 +
√
〈π|1〉2
qn−k

≥ 1−
(
qk

Su

)1/4

−

√
〈π|1〉2

qn−k

Therefore, by plugging this in Equation (18) we have for a proportion ≥ 1− β(π) of codes:

(19)
2`q2kN⊥u

Z
|f⊥(u)|2 ∈ Su|f⊥(u)|2 (1− δ, 1 + δ) where δ

def
=

(
qk

Su

)1/4

+

√
〈π|1〉2

qn−k

By Assumption (1), Su|f⊥(u)|2 = Ω
(

1
poly(n)

)
, δ = 2−Ω(n) while 2`q2kN⊥u

Z |f⊥(u)|2 denotes the
success probability of B. Therefore to conclude the proof we apply Lemma 6.

�

A.4. Proof of Theorem 2. Notation. From now on,
∣∣∣ψAmpl

ideal

〉
(resp.

∣∣∣ψAmpl
A

〉
) will denote the

quantum state after applying the quantum amplification algorithm of Proposition 3 on
∣∣∣ψQFT

ideal

〉
(resp.

∣∣∣ψQFT
A

〉
).

With this notation we are ready now to prove Theorem 2 which we now recall
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Theorem 2. Assume that |π〉 =
∑

e∈Fnq
|e〉 is radial and nonnegative, i.e πe = f(|e|) for some

function f and πe ≥ 0 for all e ∈ Fnq . Let pt
def
=
∑

e:|e|=t = Stf(t)2. |π〉̂ =
∑

e∈Fnq
π̂e |e〉 is radial

too and we let f⊥(u) = π̂e where e is any element of Fnq of Hamming weight u. Furthermore,
assume that :

〈π|1〉2

qn−k
= 2−Ω(n),

qk

Su
= 2−Ω(n) and Su|f⊥(u)|2 = Ω

(
1

poly(n)

)
for some 1 ≤ u ≤ n.

with |1〉 being the (unnormalized) superposition of all errors : |1〉 def
=
∑

e∈Fnq
|e〉.

Suppose that there exists an algorithm A solving the decoding problem with success probability ε.

Then, there exists a quantum algorithm making only a polynomial number of calls to A and to
additional elementary 1 or 2 qubit gates which takes as input a generator matrix G ∈ Fk×nq of C

and outputs a codeword of weight u in C⊥ with probability bigger than p2tε
3

16 −O(p4
t ε

5)− 2−Ω(n) −
O
(
q−min(k,n−k)

)
.

We start the proof by proving the following point

Lemma 7. Call G the set of “good matrices” G ∈ Fk×nq that satisfy at the same time:
(i) εG ≥ ε/2,
(ii) Z ≤ 2`+1qk

The proportion of good matrices is at least ε/2− δ(π) where δ(π)
def
= 〈π|1〉2

qn−k
+O

(
q−min(k,n−k)

)
.

Proof. By definition,

ε =
1

qkn

∑
G∈Fk×nq

εG.

Let B be the set of matricesG that are not good, namely for which (a) εG < ε/2 or (b) Z > 2`+1qk.
By Lemma 3, the density of matrices verifying (b) is smaller than δ(π). Therefore,

ε ≤ 1

qkn

∑
G/∈B

1 + δ(π)
ε

2
≤ 1

qkn

∑
G/∈B

1 + δ(π) +
ε

2

which concludes the proof. �

We use this lemma to prove that the statistical distance between the distributions of weights
∣∣c⊥∣∣

we obtain by measuring
∣∣∣ψAmpl

A

〉
can not be to far away from the distribution of weights when we

measure the state
∣∣∣ψAmpl

ideal

〉
:

Lemma 8. Let P , respectively Q, be the distribution of the weights |c⊥| of the state |e〉
∣∣c⊥〉 |w〉

obtained by measuring the state
∣∣∣ψAmpl

A

〉
, respectively

∣∣∣ψAmpl
ideal

〉
. We have

Dstat(P,Q) ≤ 1− p2
t ε

3

16
+O

(
p4
t ε

5
)

+ δ(π).

Proof. Let

P (u|G)
def
= Pc,e,w

(
measuring

∣∣c⊥〉 of weight u in the 2nd register of
∣∣∣ψAmpl

A

〉
for a code choice G

)
Q(u|G)

def
= Pc,e,w

(
measuring

∣∣c⊥〉 of weight u in the 2nd register of
∣∣∣ψAmpl

ideal

〉
for a code choice G

)
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We start the proof by noticing that

Dstat(P,Q) =
1

2

∑
u

|P (u)−Q(u)| = 1

2

∑
u

∣∣∣∣∣∣
∑

G∈Fk×nq

1

qkn
(P (u|G)−Q(u|G))

∣∣∣∣∣∣
≤ 1

qkn

∑
G∈Fk×nq

1

2

∑
u

|P (u|G)−Q(u|G)|

=
1

qkn

∑
G∈Fk×nq

Dstat (P (u|G), Q(u|G))

≤
∑
G∈G

Dstat (P (u|G), Q(u|G))

qkn
+
∑
G/∈G

Dstat (P (u|G), Q(u|G))

qkn

≤
∑
G∈G

Dtr (|ψA 〉 , |ψideal〉)
qkn

+
∑
G/∈G

1

qkn

≤
∑
G∈G

√
1− p2tε

2

4

qkn
+
∑
G/∈G

1

qkn

=

√
1− p2

t ε
2

4
P(G ∈ G ) + P(G /∈ G )

≤ (ε/2− δ(π))

(
1− p2

t ε
2

8
+O

(
p4
t ε

4
))

+ 1− ε/2 + δ(π)

≤ 1− p2
t ε

3

16
+O

(
p4
t ε

5
)

+ δ(π).

�

We are now ready to prove Theorem 2.

Proof of Theorem 2. By Proposition 3 we know that

Q(u) ≥ 1− α(π))(1− β(π)) ≥ 1− α(π)− β(π).

But now we have the following computation,

P (u) ≥ Q(u)−Dstat(P,Q)

≥ 1− α(π)− β(π)− 1 +
p2
t ε

3

16
−O(p4

t ε
5)− δ(π)

=
p2
t ε

3

16
−O(p4

t ε
5)− α(π)− β(π)− δ(π)

which concludes the proof by definition of α(π), β(π) and δ(π). �

Appendix B. Proof of Theorem 3

Recall that we have chosen |π〉 as

(20) |π〉 =
1√(

n
t

)
(q − 1)t

∑
e∈Fnq :|e|=t

|e〉 .

This time, as long as t is below (1 − δ)dGV(n, k) for an arbitrary δ > 0 the term 〈π,1〉2
qn−k

is expo-
nentially small in n as shown by
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Lemma 9. If t ≤ (1− δ)dGV(n, k) then

〈π,1〉2

qn−k
=

St
qn−k

= qα(R,δ)n(1+o(1)) where α(R, δ) < 0.

Proof. Recall that the size Bt of the Hamming ball of radius t is of the form

Bt = qn hq(τ)(1+o(1))

where hq(x) = −(1− x) logq(1− x)− x logq

(
x
q−1

)
and τ = t/n. We obtain from this

〈π,1〉2

qn−k
=

St
qn−k

≤ Bt
BdGV

(since St ≤ Bt and BdGV ≤ qn−k)

≤ qn(hq(τ)−hq(δGV)+o(1))

≤ qn(hq((1−δ)δGV)−hq(δGV)+o(1))

with δGV
def
= dGV(n, k)/n. We finish the proof by noticing that hq((1− δ)δGV)− hq(δGV) < 0. �

The Fourier transform |π〉̂ of |π〉 can be expressed in terms of Krawtchouk polynomials as follows.

Lemma 10.
|π〉̂ =

1√
qn

∑
y∈Fnq

Kt(|y|)√(
n
t

)
(q − 1)t

|y〉

where

Kt(X; q, n)
def
=

t∑
j=0

(−1)j
(
X

j

)(
n−X
t− j

)
(q − 1)t−j

is the Krawtchouk polynomial of order n, parameter q and degree t ∈ J0, nK (2).

Proof. By definition of the Fourier transform we have

(21) |π〉̂ =
1√
qn

∑
y∈Fnq

1√(
n
t

)
(q − 1)t

∑
e∈Fnq
|e|=t

χy(e) |y〉 .

The sum of characters
∑

e∈Fnq
|e|=t

χy(e) can be expressed as a Krawtchouk polynomial evaluation (see

for instance Lemma 5.3.1 in [vL99, §5.3]):∑
e∈Fnq
|e|=t

χy(e) = Kt(|y|).

To finish the proof we just have to substitute the character sum for this expression in (21). �

Therefore, for the error distribution π we have:

(22) Su|f⊥(u)|2 =
1

qn

(
n

u

)
(q − 1)u

Kt(u)2

(q − 1)t
(
n
t

) .
To apply Theorem 2 to the Hamming case it remains now to understand how the Krawtchouk
polynomial evaluations behave. In particular, if we find some u such that:

Su|f⊥(u)|2 = Ω

(
1

poly(n)

)
and

qk

Su
= 2−Ω(n),

(2)To simplify notation, since q and n are clear here from the context: they are respectively the field size and
the length of the codes we consider, we will drop the dependency in q and n and simply write Kt(X).
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we would obtain a reduction from finding a dual codeword of weight u to decoding at distance t.
For our reduction to be meaningful we need to find the smallest u as possible. It is roughly given
by the first root of Kt as we prove in what follows.

Let us start by some basic facts on roots of Krawtchouk polynomials.

(1) For 1 ≤ t ≤ n, the polynomial Kt has t distinct real roots on (0, n).
(2) Let x1 be the first root of Kt. If 1 ≤ t ≤ n(q − 1)/q, we have [Lev95, Equation (128)]:

(23)
x1

n
= τ⊥ + o(1).

(3) The distance between any two consecutive roots of Kt is an o(n)

Proposition 4. Between any two consecutive roots of Kt, where 1 ≤ t ≤ n
q , there exists u such

that:

(24)
1

qn

(
n

u

)
(q − 1)u

Kt(u)2

(q − 1)t
(
n
t

) = Ω

(
1

n5

)
The proof of this proposition is given in Appendix D. It is a generalization for any q of [KS21,
Corollary 26] which corresponds to the case where q = 2.

We are now ready to prove Theorem 3. We are going to apply Theorem 2 with the error distribution
π that we just introduced. Our proof essentially consists in verifying each hypothesis of Theorem
2.

Proof of Theorem 3. First, |̂π〉 is clearly radial (its expression is given in Lemma 10).

By Lemma 9, 〈π,1〉
2

qn−k
= St

qn−k
= q−Ω(n) as t ≤ (1− δ)dGV(n, k) by assumption of Theorem 3.

Now, by Proposition 4, there exists u between the two first consecutive roots of Kt such that
Su|f⊥(u)|2 = 1

qn

(
n
u

)
(q − 1)u Kt(u)2

(q−1)t(nt)
= Ω

(
1
n5

)
.

We have |u − x1| = o(n) as the distance between any two consecutive roots of Kt is an o(n).
Therefore, by Equation (23): u

n = τ⊥ + o(1). Furthermore we deduce that log2 q
k/Su =

n
(
R− hq(τ⊥) + o(1)

)
. Now it can be verified that hq(τ⊥) > R for R ∈ (0, 1) and therefore

that qk/Su is negligible which concludes that proof. �

Appendix C. A first failed attempt

To apply Theorem 2, a natural choice for performing the reduction of searching short codewords
in C⊥ to decoding t errors in a linear code C ⊆ Fnq would be to choose a quantum state |π〉 that
at the same time

(i) concentrates most of its norm on vectors of weight ≈ t,
(ii) is radially symmetric,
(iii) would ideally be a separable quantum state |π〉 = |ψ〉⊗n which would simplify the compu-

tation of the Fourier transform a great deal.

All these requirements would lead to define the quantum state |π〉 as the separable state

∣∣πtry〉 def
=

√1− τ |0〉+
√
τ/(q − 1)

∑
α∈F∗q

|α〉

⊗n

Since |πtry〉 has also the following form∣∣πtry〉 =
∑
e∈Fnq

(1− τ)
n−|e|

2 (τ/(q − 1))
|e|
2 |e〉 ,
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measuring this state |πtry〉 really mimics the error we have in a q-ary symmetric channel of crossover
τ , i.e.

(25) µτ (e)
def
= P(measure outputs e) = (1− τ)n−|e|(τ/(q − 1))|e|

where e is any vector in Fnq . It is straightforward to compute the Fourier transform of this state
to obtain

|̂πtry〉 =

√1− τ⊥ |0〉+
√
τ⊥/(q − 1)

∑
α∈F∗q

|α〉

⊗n

In other words, the Fourier transform maps the quantum state “representing” the q-ary symmetric
channel of crossover probability τ to a quantum state “representing” the q-ary symmetric channel
of crossover probability τ⊥. This suggests that the quantum reduction outlined earlier reduces
searching for codewords of weight ≈ t⊥

def
= τ⊥n to decoding t errors in C. Unfortunately, the

fundamental quantity appearing in Theorem 2 which is 〈π
try,1〉2
qn−k

is not negligible at all. Indeed we
observe that

〈πtry,1〉2

qn−k
=

qk

qn

∣∣∣∣∣∣
∑
y∈Fnq

χy(0)πtryy

∣∣∣∣∣∣
2

= qk|f⊥(0)|2

= qk(1− τ⊥)n

It can be verified that there is no way to choose τ such that at the same time:
(i) τn ≤ dGV(n, k) (otherwise there is no hope to decode correctly most of the time)
(ii) τ⊥ ≤ ωeasy (otherwise finding codewords in C⊥ of weight τ⊥n is easy)
(iii) qk(1− τ⊥)n = o(1).

The reason of this behavior can be traced back to the fact that the quantity 〈π
try,1〉2
qn−k

= qk(1−τ⊥)n

is just too big. Notice that
〈πtry,1〉2

qn
= (1−H2(µτ , U))2

where µτ is the probability distribution on Fnq obtained from measuring |π〉 as defined in (25) (i.e.
corresponding to the error distribution of a q-ary symmetric channel of crossover probability τ),
U is the uniform distribution on Fnq and H(p,q) stands for the Hellinger distance between two
discrete probabilities p and q defined over a same probability space:

H(p, q)
def
=

√
1−

∑
i

√
pi, qi.

In other words the distribution of µτ is too much spread out and we need a distribution which is
much more concentrated around the weight t for which we assume to have a decoder for C.

Appendix D. Proof of Proposition 4

Our aim in this section is to prove the following proposition

Proposition 4. Between any two consecutive roots of Kt, where 1 ≤ t ≤ n
q , there exists u such

that:

(24)
1

qn

(
n

u

)
(q − 1)u

Kt(u)2

(q − 1)t
(
n
t

) = Ω

(
1

n5

)
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This proposition relies on [KS21, Proposition 25] which is a general result about orthogonal poly-
nomial for a positive discrete µ over {0, . . . , n}. Let (P0, . . . , Pn) be the family of orthogonal
polynomials with respect to the inner product 〈f, g〉 def=

∑n
i=0 f(i)g(i)µ(i).

Proposition 5 ([KS21, Proposition 25]). Let s > 0. Let the roots of Ps be y1 < · · · < ys. Assume
that y1 ≥ 1 and that ys ≤ n−1, and that the distance between any two consecutive roots is at least
2. Assume also that the ratios µ(j)

µ(j+1) and their inverses are uniformly bounded by some K > 0.
Then, for any 1 ≤ k ≤ s− 1 the `2 norm of Ps(3) is attained between yk and yk+1, up to a factor
of at most O(

√
Kn2).

The point is that Krawtchouk polynomials Kt’s are orthogonal polynomials (over {0, . . . , n}) for
the measure µ(j) =

(q−1)j(nj)
qn . Their `2-norm is given by:

(26)

√√√√ n∑
i=0

K2
t (i)µ(i) =

√
(q − 1)t

(
n

t

)
.

Furthermore their smallest (resp. largest) root is ≥ 1 (resp. ≤ n− 1), at least for n large enough
(see [Lev95, Corollary 6.1]). Therefore to prove Proposition 4 (by just applying Proposition 5) it
just remains to prove that the roots of Kt are at distance ≥ 2.

Lemma 11. When 1 ≤ t ≤ n
q , the roots of Kt are at distance ≥ 2.

This lemma will be a consequence of the following theorem.

Theorem 4 ([Kra03, Theorem 2]). Let P (x) be a discrete orthogonal polynomial, corresponding
to an orthogonality measure supported on a subset of integers. Suppose that P satisfies

(27) P (x+ 1) = b(x)P (x)− c(x)P (x− 1)

and has all its roots xi in the open interval I. Then for any i, |xi − xi−1| ≥ 1 provided c(x) > 0

for x ∈ I. If in addition, b(x) > 0 on I, then for any i, |xi − xi−1| ≥ 2.

Proof of Lemma 11. We are going to apply Theorem 4. First, Krawtchouk polynomials verify the
following equation:

(28) (q − 1)(n− x)Kt(x+ 1) = ((q − 1)(n− x) + x− qt)Kt(x)− xKt(x− 1)

All roots of Kt lie in the interval (0, n). Let,

∀x ∈ (0, n),

b(x)
def
= (q−1)(n−x)+x−qt

(q−1)(n−x)

c(x)
def
= x

(q−1)(n−x)

Clearly c(x) > 0 and b(x) > 0 (as q ≥ 2 and t ≤ n/q) on (0, n) which concludes the proof of this
lemma by applying Theorem 4. �

We are now ready to prove Proposition 4.

Proof of Proposition 4. The roots of Kt are at distance ≥ 2 and its smallest (resp. largest) root
is ≥ 1 (resp. ≤ n − 1). Furthermore, µ(j)

µ(j+1) = 1
q−1

j+1
n−j . Therefore, the ratios µ(j)

µ(j+1) and their

(3)The `2 norm of Ps is defined as |Ps|2
def
=

√∑n
i=0 Ps(i)2µ(i).
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inverses are uniformly bounded by (q− 1)n. By applying Proposition 5, between each consecutive
roots of Kt, there exists u such that

Kt(u)2µ(u) = |Kt|22 Ω

(
1

(q − 1)n n4

)
=⇒ Kt(u)2

(
n
u

)
(q − 1)u

qn
=

(
n

t

)
(q − 1)t Ω

(
1

n5

)
which concludes the proof.

�
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