
Leakage, leakage, leakage . . .models: How to
determine what contributes to leakage

Si Gao and Elisabeth Oswald

Digital Age Research Center (D!ARC), University of Klagenfurt, Austria
firstname.lastname@aau.at

Abstract. Leakage attacks and simulators strongly rely on crucial knowl-
edge about the state that is being leaked on. Despite 20 years of effort,
in terms of how to find the relevant state, we did not actually go very
far: to date, we still constantly assume users already know the state, or
users can reliably find it based on a few attack trials and their own expe-
rience. This is far from the truth that is encountered in practice: whilst
software platforms give an illusion of a sequential update to variables,
the reality in the underlying hardware is that previous values remain
part of the state and many things happen in parallel. We put forward a
novel notion for the “completeness” of an assumed state, together with
an efficient statistical test that is based on “collapsed models”. This test
can even cope in a grey box setting where the state contains multiple 32-
bit variables. We illustrate how our novel test can help to guide attacks
and leakage simulators, reveal new form of leakage that is previously un-
known and deepen our understanding of the realistic leakage as well as
the underlying architecture.

Keywords: Leakage model, Intermediate state, Security evaluation

1 Introduction

Since Kocher’s seminal work [1], research has explored the properties of all “key
ingredients” that contribute to successful side channel (key recovery) attacks.
These key ingredients include side channel distinguishers (i.e. the way in which
side channel leakage is statistically exploited in attacks), and side channel leakage
models (i.e. the way in which side channel leakage is predicted or modelled by
an adversary). The latter component, the leakage model, is crucial for attacks
(a better model leads to attacks requiring fewer leakage observations), but it is
also of fundamental significance in the context of security evaluations.

Looking at the leakage model in the context of attacks, it is perhaps obvious
that attacks using models that are closer to the true device leakage should be
better (i.e. require fewer traces for successful attacks). Thus, a lot of research
has gone into deriving good estimates for the functional representation of models
from real device data [2–6]. Such leakage model takes the relevant intermediate
state as input, then map the state into leakage value(-s).

Perhaps surprisingly, not much work has been done that establishes what the
relevant state actually is on modern devices. Modern cryptographic devices range
from simple 8-bit processors with little parallelism, over mid-range 32-bit pro-
cessors with multiple components operating in parallel, to complex application
specific crypto processors again featuring significant amounts of parallelism. If
we consider some crypto implementation on an off-the-shelf processor, the most
basic question would be: “what components are actually contributing to the
computation at any moment in time”?

In a realistic setting (such as the ones mentioned above), finding the state
is far from easy. The vast majority of low to mid-range processors (e.g. ARM-
Cortex M family, AVR, etc) are closed source. If open source descriptions are
available, e.g. ARM released some semi-obfuscated VHDL descriptions, then
these are at best architecturally similar to the commercial products of the same
type, but they are not micro-architecturally equivalent at all. Micro-architectural
effects have been explored and exploited across many recent works [7–11]. These
papers show how a wrong assumption about the state renders provably secure
masking schemes completely insecure in practice.

In the context of application specific crypto cores, the situation is not better
as their descriptions are typically also not available to the public. Taking the
perspective of a designer of an application specific crypto core (who has access
to such a description), it is in principle possible to identify the components that
are active during any cycle. However inclusion of everything that contributes
without understanding of the amount of its contribution or its relevance, may
lead to a model that becomes entirely impractical to work with. Thus even in
this context, a methodology to decide what is the “state that matters” would
be desirable.

Our contribution. We stress that finding the exact intermediate state from a
typical processor in a grey box setting is a long-standing problem: like many
(statistical learning) problems, a universally optimal solution is unlikely to exist.
Thus, whilst we do not claim optimality of our work, we claim the following
contributions:

1. We clearly state the identification of the actual state as a fundamental prob-
lem and discuss its impact on attacks and leakage simulators.

2. We put forward a novel notion for models—denoted as “completeness”—
which flags the tested model has captured all relevant state.

3. We put forward a novel statistical methodology based on what we call “col-
lapsed” models: using the nested F-tests, we can test whether a leakage
model is complete in a “collapsed” setup and infer whether it is complete in
the original un-collapsed setup.

4. We show how our approach can find subtle leakage that can be easily ne-
glected. Although such leakage does not necessarily contribute to more effec-
tive attacks, it plays an important role in comprehensive security evaluations.

5. We discuss the importance of completeness in the context of simulators for
leakage detections and demonstrate that our approach can lead to better
models for simulations.

2

Organisation. We start our discussion with clarifying some definitions and in-
troducing a few useful statistically tools in Section 2. Section 3 introduces the
concept of completeness and proposed a necessary (but not sufficient) test to
verify completeness. We further show how our novel test can be applied when
analysing the leakage from both unprotected and masked implementations (Sec-
tion 4), revealing subtle leakage that is otherwise difficult to find. Section 5
confirms completeness is also critical for leakage simulators, as an incomplete
leakage model could jeopardise the following detection accuracy. We summarise
our discussion and emphasise a few important lessons learned in Section 6.

2 Preliminaries

2.1 Leakage modelling: state of the art

We use some simple notation throughout this paper. We call the set X the entire
device state (i.e. it is a set of key and input dependent variables) that contribut-
ing to the leakage function L at some point in time during the computation. The
variable Y = {yi} ∈ Y is a leakage observation that is available to an adversary.
We also follow the usual convention that traces are noisy, whereby the leakage
contribution L(X) and the (Gaussian) noise N(0, σ2) are independent:

yi = L(X) +N(0, σ2).

For the sake of readability we will drop the time index in our notation: but
it should be understood throughout this paper that the set X is different for
different points (i.e. yi) in time during the computation of an algorithm1.

Considering the detailed hardware specification is not always available (eg.
ARM cores, commercial IP cores etc.), the relevant device state X (for a certain
time index) is typically unknown. We can of course, build a overly conservative
model using all possible state X̂ where X ⊂ X̂ (eg. all appeared intermediate
states within the encryption). However, such model is neither valid for attacks
(depends on too many key bits), nor ideal for profiling (requires infeasible amount
of traces).

The de facto practice is, building leakage models (i.e. the purple part in Fig-
ure 1) is usually divided into two steps. The first step is identifying a concise
state Z (the purple trapezoid in Figure 1): unlike X̂, Z is relatively small so pro-
filing/model building can be finished within reasonable time and effort. For in-
stance, the typical assumption is that the intermediate state depends completely
on the output of the S-box computation (denoted by the 8-bit variable Sout),
which leads to the cardinality of the state being rather small, i.e. Z = {Sout}
and hence #{Z} = 28 (there are 28 different values that Sout can take, each of
which could in principle leads to a unique leakage value).

1 We use the concept of “time points” for readability, but one could equally use the
concept of clock cycles or instructions instead.

3

Input Output

key

Traces

Crypto
algorithm

key guess

L(Z)

Z

Leakage
 model

key
candidate

Attack

Evaluation/certification

GE
PI/HI etc.

X̂

X

detection
result

Leakage simulator

L(Z)≈L(X)?

F-test

X̂ Z

Our proposal

Fig. 1: A typical SCA workflow

The next step builds a specific model using only Z (i.e. the purple rectangle
in Figure 1): various techniques have been proposed, including trivial templat-
ing [2], regression-based modelling [3, 4], step-wise regression [12] etc. Previous
works [12, 3, 13] have also proposed various metric to evaluate/certificate the de-
vice’s leakage (as well as the quality of model that built from the measurements).
As many will be utilised later, the next two subsections explain these techniques
in details, then move on to our point of interest: what should we do about the
first step?

2.2 Approaches to build L̃(Z)

Already in the early days of side channel research, the concept of profiling (aka
leakage modelling, aka templating) was introduced by Chari et al. [2]. In their
original paper, the idea was to assume that the distribution of the measurements
from the same state value should follow a (multivariate) normal distribution,
and an adversary with a priori access to a device could simply estimate the
parameters of the distribution.

An alternative to the direct parameter estimation is the use of regression
techniques to derive an equivalent model. A paper by Schindler et al. [3] proposes
the use of regression to derive a model for a considered intermediate value. They
select Z to be a single variable such as Sout and then fit coefficients to a bit-
linear model (i.e. to each bit of Sout). This linear model is a slightly more flexible
alternative for the standard Hamming weight model, as each bit now can have an
individual (unequal) contribution to the leakage. But a regression model for Sout

can also be based on 256 coefficients and this would be equivalent to building
256 templates (in the spirit of Chari et al.) for the state Sout.

More generally, the basis of regression is that we can express any real valued
function of Z as the polynomial L̃ =

∑
j βjuj(Z) [14], or short L̃ = β(Z). In

this polynomial the explanatory variables uj are monomials of the form
∏n−1

i=0 z
ji
i

4

where zi denotes the i-th bit of Z and ji denote the i-th bit of j (with n the
number of bits needed to represent Z in binary). Regression then estimates the
coefficients βj . The explanatory variables uj simply represent the different values
that Z can take. If we do not restrict the uj then the resulting model is typically
called the full model. If no subscript is given, we implicitly mean the full modelIn
many previous attacks, the leakage model is restricted to just contain the linear
terms. We denote this particular linear model using a subscript l.

2.3 Quality of L̃(Z)

Coefficient of determination For any model L̃(Z) that is estimated from the side
channel measurements Y , the “modelling error” can be defined as the residual
sum of squares (RSS),

RSS =

q∑
i=1

(y(i) − L̃(z(i)))2

where q represents the number of traces and z(i) represents the value of z for the
i-th measurement. Meanwhile, the explained data-variance can be interpreted as
the explained sum of squares (ESS),

ESS =

q∑
i=1

(
L̃(z(i))− ȳ

)2
where ȳ represents the mean of measured values Y . If L̃ is derived from linear
regression on Y , RSS and ESS should sum up to the total sum of squares (TSS),

TSS =

q∑
i=1

(
y(i) − ȳ

)2
Then, the coefficient of determination (R2) is defined as:

R2 =
ESS

TSS
= 1− RSS

TSS
.

Given two estimated models L̃1 and L̃2, whereby both models are assumed to
have the same number of terms (i.e. same restrictions on uj(Z) in Section 2.2),
the model with the higher R2 value would be considered as better. The crucial
point here is that both models need the same number of terms, because the R2

increases with the number of terms that are included in the model. Consequently,
the R2 does not lend itself to investigate models that represent approximations
in different numbers of terms.

Cross-validation An important aspect in model validation is to check if a model
overfits the data. If a model overfits the data, it will generalise badly, which
means it is bad in terms of predicting new data. Therefore using cross-validation
of any chosen metric (e.g. the RSS) is essential [13] when aiming for models with
a high predictive power. Given two models, one can compute via cross validation
both RSS values and then judge their relative predictive power.

5

Perceived information Leakage certification aims at providing guarantees about
the quality of an evaluation, based on estimating the amount of information
leaked by a target device [13, 15, 16]. Consequently, ensuring that the used model
is good becomes a critical pre-condition when using such an approach [16]. Vari-
ous techniques have been proposed, including comparing the “assumption error”
against the “estimation error” [13], moment-based comparison of the measure-
ments and the model [15], and bounding the mutual information with Hypothet-
ical information (HI) [16].

F-tests Given two “nested” models (i.e. there is a so called full model and a
restricted model which only consists of a subset of terms), the F-test is the
most natural way to decide whether the restricted model is missing significant
contribution compared to the full model. More specifically, assuming a full model
L̃f (Zf) and a restricted model L̃r(Zr), where Zr is constructed by removing
zf − zr explanatory variables (set regression coefficients to 0) from Zf , one can
compute the F-statistic as

F =

RSSr−RSSf

zf−zr
RSSf

q−zf

.

The resulting F follows the F distribution with (zf−zr, q−zf) degree of freedom.
A p-value below a statistically motivated threshold suggests that at least one of
the removed variables is potentially useful. This approach was used in [6] to
derive relatively fine grained models on selected intermediate states.

2.4 Approaches to find Z

It is critical to remember that all approaches above (at least their current usage
in the community) assume the concise Z has already been found. In other words,
whether we assume users already know X beforehand and simply set Z = X
(eg. through analysing hardware details etc.) or users have already constructed
an appropriate Z that ensures X ⊆ Z through some trial-and-error process.
To our knowledge, this step is often quite ad hoc: users try some set of Z,
evaluate the leakage model with R2 or cross-validation (or alternatively, perform
attacks with CPA). If the evaluation/attack result is not successful, it suggests
the current Z is unlikely to be correct. Otherwise, Z might be a part of X, but
not necessarily complete. Based on their initial knowledge, users can repeat this
process and determine what they believed to be the most suitable Z, without
much confidence if this Z is sufficient.

Leakage certification techniques, eg. “assumption error” v.s. “estimation er-
ror” [13] are also designed under the assumption that Z is given. Such tech-
nique can sometimes be utilised to test the scenario where the selected Z is not
sufficient: however, we remind readers this does not fit with authors’ original
intension and its statistical power is far from ideal (see Appendix A).

6

Unfortunately, as we can see in Figure 1, having one insufficient Z affects
all following steps. Take an AES encryption as an instance, if our target mea-
surement depends on both the first Sbox output (Sout,1) and the second Sbox
output (Sout,2), it is fairly possible that users did not notice Sout,1 also appears
and simply define Z = {Sout,2}. As a consequence, all following results will be
jeopardised—attacks being less efficient, evaluations/certifications being overly
optimistic or leakage simulators miss a certain flaw.

3 Model quality: is my leakage model complete?

In this section, we focus on the other side of model quality: more specifically, we
propose a necessary (but not sufficient) test to check whether the selected Z is
complete or not.

3.1 Relatively-completeness

Although in our community the nested F-test is mainly used for determining
the degree of L̃(Z) [6, 12], as an ANalysis Of VAriance (ANOVA) technique, its
primary usage is to determine whether a certain regression term has statistically
significant contribution to the regression model. In a side channel context, this
means we can not only verify if there are second order interactions in L̃(Z) (aka
the usage in ELMO [6]), but also in a coarser grain, verify whether a certain
element/bit is contributing or not.

Definition 1. For any selected Z, we denote it as complete (with respect to
X) if the F-test claims L̃(Z) did not miss any significant contributing factor
compared with L̃(X). With infinite profiling traces (i.e. infinite statistical power),
this usually suggests X ⊆ Z.

The problem with this definition is usually we do not know the exactX, therefore
cannot construct the model L̃(X). However, as we will discuss in details later, it
is possible to explicitly define an overly-conservative set X̂ that ensures X ⊆ X̂.

Corollary 1. For any selected Z, we denote it as complete (with respect to X) if
the F-test claims L̃(Z) did not miss any significant contributing factor compared
with L̃(X̂).

As X̂ is a superset of X, it is not hard to see that if Z is complete wrt. X̂, it
should also be complete wrt. X. Informally, this means if we can first explicitly
define X̂, then test our selected Z against it, the F-test result will illustrate
whether Z is complete or not (up to some statistical power), even if the true X
remains unknown. The remaining challenges are a) how to define a complete X̂
at the first place, and b) how can we test Z against X̂ in F-test.

7

Toy example. Say we have an unknown relevant set X. Although X is unknown,
we can define an overly conservative set X̂ = {x0, x1, x2, x3} that satisfies X ⊆
X̂. At this point, we wish to test if we can discard x3 and see if Z = {x0, x1, x2}
is a good model. Following our discussion in Section 2.3, we can estimate from
realistic measurements:

L̃f = β(X̂)

L̃r = β(Z)

If the F-test reports a p-value lower than the significance level, we can conclude
at least one of the regression terms involves x3 is contributing. In other words,
x3 ∈ X and X 6⊆ Z, which suggests the model built with Z is missing some
leakage.

Ensuring X̂ is complete Assuming a block cipher encryption (ECB mode) al-
ways starts from a “clean context”2, the encryption process itself becomes an
oracle that embedded with a secret constant key. Any intermediate state, no
matter what it represents, can always be fully determined by the full plaintext
(unprotected case, no masking). Considering our primary assumption defines L
as a deterministic function, defining X̂ as all possible inputs (i.e. plaintext) en-
ables a conservative model that can express any leakage during the encryption.
Although such X̂ can trivially define a complete model, the problem is for most
block ciphers (eg. AES-128), this full model requires an infeasible number of
traces to built (eg. more than 2128 for AES-128). This is the core challenge we
are aiming at in the next section.

Note. We remind readers that the key point here is including “all possible in-
puts”: if the target is a masked AES-128, building leakage model should use X̂
that include all random masks that added into the encryption. We propose here a
test that verifies the quality of the leakage model in a profiling setup: it cannot be
used as a leakage detection test where the fixed/random bit is about the secret,
rather than any existing state. The F-test, as an ANOVA test, is not restricted to
any specific statistical moment: however, if applied in a masked implementation,
the corresponding leakage detection is specific to 1st order moment (note that
this version is no longer an ANOVA test) [18].

3.2 Collapsed F-test for completeness

Following our previous discussion, the full model is often too large that there is
little chance we can use the F-test “as is”. There are two key observations that
help us to derive a novel work-around, that deals with arbitrary size variables.

The first observation is that the F-test, although typically used to deal with
proportional models, actually tests for the inclusion/exclusion of explanatory
variables. Thus in principle, the F-test does not care about the specific regression

2 This can be archived by clearing the contexts using techniques like [17], as long as
the procedure is not called too frequently.

8

coefficients (for as long as they are non-zero), and thus it lends itself to also work
with nominal models. The latter do not require estimation of coefficients, but
just a decision if or not a coefficient is included in the model (if so, it is set to
1; otherwise, it is set to 0).

The second and crucial observation is that for the use case of finding models
with a high explanatory power, we can bound the explanatory variables to a
smaller space.

Bounding the explanatory variables We suggest that it is possible to bound
the explanatory variables to a much smaller space. For instance, assuming our
target process has four inputs A, B, A′ and B′. Each input is a n-bit state, where
2n explanatory variables can be constructed from (a0, a1, ..., an−1), ai ∈ F2. By
setting ai = a0 (and a0 drawn at random from {0, 1}), we can bound to the
input A to a much smaller space:

a = (a0, a0, ..., a0), a0 ∈ F2.

Applying this restriction to the other 3 inputs, the full model now contains only
24 parameters, which is clearly feasible.

Of course, such a restriction is not for free: originally, there could be many
interaction terms between the explanatory variables. In the “collapsed” model
Lc where we have bounded the inputs, these terms are “collapsed” and “added”
to the remaining terms, e.g. a1a0 becomes a0 as a1 = a0. In fact, as there is only
1 bit randomness, a0 now becomes a “leakage vane” for the operand A: having
this term in Lc suggests A appears in L, but certainly not in the same way as
in Lc. We can expand this idea by allowing two bits of randomness: this enables
us to differentiate between linear and non-linear models.

Formalising this idea, we define a mapping called “collapse” Coll on the
uj(Z), where Z = {AA′BB′}. Recalled that uj(Z) can be written as

uj(Z) =
∏

zjii

where ji represents the i-th bit of the binary representation of j. For any j ∈
[0, 24n), we define a 24n → 2n map Coll as:

Coll(j) = jcoll = {ja, ja′ , jb, jb′} ∈ [0, 24)

where ja =
∨n−1

i=0 ji, ja′ =
∨2n−1

i=n ji, jb =
∨3n−1

i=2n ji, jb′ =
∨4n−1

i=3n ji. Readers can
easily verify that when all operands are bounded to 1-bit, we have

uj(Z) = ujcoll(Zc) ,Zc = {zc|zc = a0||a′0||b0||b′0}

The latter can be easily tested in an F-test. In the following, we show that the
test model passes the F-test in our “collapsed” case is a necessary (but not
sufficient) condition for passing the F-test in the original setup.

Theorem 1. If a collapsed term ujcoll(Zc) cannot be ignored from L̃c (i.e.

βjcoll 6= 0), at least one of the corresponding uj(Z) cannot be ignored from L̃
(i.e. βj 6= 0).

9

Proof. In the original case, any leakage model can always be written as

L̃(Z) =

24n−1∑
j=0

βjuj(Z)

However, considering the inputs have been bounded, such model collapses to:

L̃(Z) =

24−1∑
jcoll=0

 ∑
∀j,Coll(j)=jcoll

βj

ujcoll(Zc)

Thus, if a certain collapsed term ujcoll(Zc) has a significant contribution to L̃c

(i.e. βjcoll 6= 0), one can conclude that:∑
∀j,Coll(j)=jcoll

βj 6= 0⇒ ∃j, βj 6= 0

Clearly nothing can be concluded if the above sum equals 0, which suggests this
is only a necessary condition. ut

Theorem 1 implies that whilst we still cannot directly test L̃ = β(X̂), we
can now test the restricted (and collapsed) models L̃cr = β(Zc) against the
collapsed full model L̃c = β(X̂c): if the F-test finds enough evidence to reject
a model L̃cr in relation to the collapsed full model L̃c, then it is clear that the
model L̃r would also be rejected in comparison to the full model L̃.

Toy example. Suppose we want to test L̃r = β(AB),β ∈ (0, 1)2
2n

against L̃ =

β(AA′BB′),β ∈ (0, 1)2
4n

. As mentioned before, for n = 32, direct testing is not
feasible. However, we can bound the inputs and test

L̃cr = β0 + β1a0 + β2b0 + β3a0b0

L̃c = β0 + β1a0 + β2a
′
0 + β3b0 + β4b

′
0

+ β5a0b0 + β6a
′
0b
′
0 + β7a

′
0b0 + β8a0b

′
0 + β9b0b0 + β10a0a

′
0

+ β11a0a
′
0b
′
0 + β12a0a

′
0b0 + β13a0b

′
0b0 + β14a

′
0b
′
0b0

+ β15a0a
′
0b0b

′
0

If the F-test rejects the null hypothesis, then we know that the missing terms
make a difference not only in L̃c but also in L̃. Therefore, we can conclude the
L̃r is also not complete, without explicitly testing them. The price to pay is
that unlike the original F-test, our collapsed test becomes a necessary yet not
sufficient condition: that being said, any Z that fails our test still presents a
genuine concern, as it directly suggests the selected Z is unlikely to be complete
and all following steps can be potentially jeopardised.

Considering from now on we will always work with collapsed models, we will
not continue using the double subscript cr, but revert back to just using r.

10

3.3 Statistical power of the nested F-test

For any statistic test, an important question to ask is how much power does it
preserve. To compute the power, we first need to consider the effect size that
we are dealing with. The effect size in our case relates to the difference between
the restricted model and the full model, which can be computed (according to
Cohen [19]) as:

f2 =
R2

F −R2
R

1−R2
F

=
RSSR −RSSF

RSSF

Under the alternative hypothesis, the computed F-statistic follows a non-
central F distribution with non-centrality parameter λ and two degrees of free-
dom from the numerator df1 and the denominator df2. When f2 = 0, this be-
comes the null distribution of the central F-distribution. Thus, when the false
positive rate is set to α, the threshold of F-statistic is

Fstatth = QF (df1, df2, 1− α)

where QF is the quantile function of the central F distribution. The false-negative
rate β can be computed as

β = Fnc(Fstatth, df1, df2, λ),

λ = f2(df1 + df2 + 1),

where Fnc is the CDF function of the non-central F distribution. The statistical
power for effect size f2 is then 1 − β. Our test in Section 5.1 has df1 = {256 −
7, 256−19, 256−16}, df2 = q−256, q = 20000, per-test α = 10−3.7, which comes
to 1 − β ≈ 1 for the small effect size f2 = 0.02 in [19]. According to [20] this
corresponds indeed to what they observed in similar experiments.

3.4 Finding the exact X

It is not hard to see our collapsed F-test is only a necessary step for the decision
problem, whereas in practice users might be interested to learn the answer of the
optimisation problem —what does the “exact” X contain? Unfortunately, our
test only provides some informal “clues”: one can of course repetitively apply our
test to find a model that F-test favoured; however, the order of adding/deducting
terms play a critical role and the overall methodology becomes less reliable.

On the other hand, what we are genuinely interested in is not what does
X consist of, but why does X contain those elements. In other words, apart
from the fact that the “statistical diagnose” is far from ideal, we usually pre-
fer the “(micro-)architectural diagnose”, which cannot be simply asserted from
statistics. For example, let us consider

L(X) = x1 + x2 − 2x1x2 = x1 ⊕ x2

11

Two leakage models can end in this form, namely

L(Z) = 〈β, Z〉,β = {0, 1, 1,−2}, Z = {1, x1, x2, x1x2}

L(Z ′) = 〈β′, Z ′〉,β′ = {0, 1}, Z ′ = {1, x1 ⊕ x2}

Unless further restrictions have been added for the coefficients (β), from a nomi-
nal view, there is no chance to distinguish one from the other. However, these two
models can have entirely different architectural reasoning, where the first one is
about two concurrent bit with coupling/cross-line interaction, while the second
could be about transition leakage. In this specific case, no statistical method
can resolve the issue: although they are architecturally different, their leakage
models are exactly the same.

Therefore, in this paper, we do not propose a method to find the exact X: in
practice, we believe it is more sensible to take these statistical clues as supple-
ments for users’ understanding about the device. Useful facts can be drawn from
our test, yet the conclusion cannot be made purely from statistical reasoning.
In our following experiments, we sometimes explore such clues to some possible
architectural reasoning: note that our test here cannot guarantee the reasoning
is correct.

4 Application 1: leakage analysis

4.1 Unprotected AES

To demonstrate how our test should be applied, let us start our discussion with
a trivial target: the first round Sbox look-up in an AES-128 encryption. For
convenience, we only analyse the first 4 Sbox look-ups: for all 16 Sboxes, one
can take more traces and perform the same analysis, or further extend the model
step by step to cover all Sboxes.

Experimental setup We select the TinyAES [21] as our target implementation,
running on an ARM Cortex M3 core (NXP LPC1313). As the code is written
in C, the compiling toolchain and commercial core create a grey-box scenario:
we can locate the Sbox computation from C, yet do not fully understand what
is happening in each cycle on the power trace. The working frequency is set to
12 MHz, while our oscilloscope (Picoscope 5243D) captures 10k traces at 250
MSa/s (for both the collapsed case and the un-collapsed case). Altogether the
4 Sbox computations cost 17 µs, which counts to around 204 cycles and 4250
samples on the power trace.

Only computation leaks. A trivial way to analyse such implementation is fol-
lowing the “only computation leaks” principle [22]: denote the first 4 bytes of
the Sbox input as {x0, x1, x2, x3} and the output as {s0, s1, s2, s3}. If the core
is computing the first Sbox, we should see the leakage of both x0 and s0 but

12

200 400 600 800
Time(*4ns)

0

10

20

30

40

50

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600 800
Time(*4ns)

0

10

20

30

40

50

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600 800
Time(*4ns)

0

10

20

30

40

50

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600 800
Time(*4ns)

0

10

20

30

40

50

-
l
o
g
(
p
-
v
a
l
u
e
)

Fig. 2: Collapsed F-test on each Sbox computation

nothing else. As the outputs are completely determined by the inputs, following
the same principle in Section 3.1, we define the uncollapsed complete model as

L̃(X̂) = β{∀j uj(X̂)|x̂ = x0||x1||x2||x3, x̂ ∈ X̂}

Respectively, for the first Sbox, if “only computation leaks”,

L̃(Z) = β{∀j uj(Z)|z = x0, z ∈ Z}

As we do not restricted the degree of L̃, s0 is fully determined by x0, therefore
already included by L̃(Z). Ideally, we should compare these two models in an
F-test. Although the latter is fine, the former, as we stated in Section 3.2, cannot
be built easily as it takes more than 232 traces. However, if we “collapse” each
byte to 2 bits3, the former model contains only 28 terms whereas the latter has
only 22.

Figure 2 illustrates the F-test results for all 4 Sbox computations. Clearly,
“only computation leaks” is hardly enough: the measured leakage does contain
more than just the computed byte. This suggests any following attack might
be not optimal, while security evaluations/leakage certifications that built on

3 Note that although S(x0) is still an 8-bit value, in a collapsed case, it only has 2-bit
entropy and can be expressed with only 2 bits. Therefore L̃(Z) can still portray any
leakage caused by S(x0).

13

this assumption can be overly optimistic. We stress this is only a “can/may”
rather than a “must”: take attacks for instance, even if the missing leakage does
contain useful information, considering the relevant key bits and the Signal to
Noise Ratio (SNR), there is no guarantee it can definitely contribute to more
efficient attacks. On the other hand, it is also quite risky to simply ignore the
missing leakage and assume it will not help attackers.

One step further. Now let us further investigate what is the missing part .
Through deliberately adding possible terms to the model and repeating the test,
we found one acceptable leakage model is always assuming each computation
leaks all 4 bytes. However, within 10k traces, it seems each byte’s leakage is still
on its own (i.e. no significant cross-byte interaction). The red line in Figure 2
suggests this model is not rejected.

With this new finding in mind, we revert back to the un-collapsed case: with
the un-collapsed trace set, we plot the linear regress attack [4] results (targeting
each Sbox output) with the correct key in Figure 3: as expected, each Sbox com-
putation leaks mainly for the byte it is computing. However, from the second
Sbox, we start to see a small peak (slightly above the threshold) for the first
Sbox output. For the last byte, all previous three Sbox outputs have an influ-
ence, which is consistent with what we observed in Figure 2. The fact that the
linear regression distinguisher can also find this peak confirms the existence and
exploitability of such leakage in realistic attacks.

Realistic attacks. In a non-profiled attack setup, the existence of such extra leak-
age does not improve the overall attack. The full 32-bit key in our experiments
can be reliably extracted within 200 traces, whereas the subtle leakage we found
above only started to contribute after 1000 traces. The SNR gap makes adding
such leakage pointless. Again, we argue that it is equally risky to proceed secu-
rity evaluation with the trivial model and neglect such leakage, as the trade-off
might change between each implementation, especially if the implementation is
masked.

Architectural reasoning. As said before, the statistical reasoning cannot answer
why such leakage appears. Therefore, we have no choice other than reading
the source code and making guesses about the hidden processor details. The
code in TinyAES [21] suggests these 4 bytes are stored within one word, but
not accessed adjacently in Sbox look-up: this explains why we did not see any
Hamming distance style leakage. From the existing knowledge, we suspect the
observed leakage is from the fact that the processor loads more than the target
byte in a load instruction: as suggested in Section 5.2 of [11], it is indeed quite
common to load the entire word from memory then discard the unnecessary
bytes.

4.2 Masked AES: Sbox look-up

In the following, we further investigate the impact of our F-test on masked im-
plementations. Specifically, we select the affine masking implementation from

14

200 400 600 800
Time(*4ns)

0

10

20

30

40

50

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600 800
Time(*4ns)

0

10

20

30

40

50

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600 800
Time(*4ns)

0

10

20

30

40

50

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600 800
Time(*4ns)

0

10

20

30

40

50

-
l
o
g
(
p
-
v
a
l
u
e
)

Fig. 3: Linear regression attack for each Sbox computation

ANSSI [23] as our target. The security of this implementation has been ques-
tioned by Bronchain and Standaert [24]: through the so-called “dissection” pro-
cedure, they had successfully recovered the full key with less than 2000 traced
in a profiling setup. In fact, the critical part of this attack is performing “sub-
attacks” on each trace in order to recover the temperate masks [24]. Considering
such implementation requires repetitively loading masks from the memory, this
“dissection” procedure is often quite effective in a profiling setup, where attacker
can match the measured trace with a number of pre-built multivariate templates
(eg. also applied by many attacks in the DPAContest [25]).

In the following, we investigate the leakage of this implementation in our
experimental setup4. We stick with the same measurement setup as Section 4.1,
where we analyse the masked Sbox calculation of the first 4 Sboxes.

Note that the original implementation also includes hiding techniques, such as
random shuffling. Unless stated otherwise, our following analysis always assume
shuffling is not presented (i.e. “#define NO SHUFFLE” in the code). Readers
can take this as the non-shuffling analysis (which is an option in the authors’

4 The original Compute GTab function contains a few instructions (eg. uadd8) that
are not available on our platform. We had rewritten an equivalent version in pure
Thumb-16 assembly. This makes no difference in our leakage analysis as we are not
targetting this part.

15

analysis [23]), or take it as a follow-up analysis where the shuffling permutation
has been already recovered using the technique in [24].

Affine Masking As this implementation is specific to AES, each data byte is
protected as an element on the Galois Field GF(28). More specifically, each data
byte x is presented as:

C(x; rm, ra) = (rm⊗ x)⊕ ra

where C is the encoding function, rm is called the multiplicative mask and ra
the additive mask. Note that by definition, rm is uniform on [1, 255] (i.e. cannot
be 0). For the i-th state byte xi, the implementation stores the additive mask
rai accordingly in a mask array ra. The multiplicative mask rm, on the other
hand, is shared among all 16 bytes within this encryption. Each linear operation
(eg. ShiftRow, MixColumn) can be done separately on ra and x. Meanwhile, the
masked Sbox is pre-computed according to the multiplicative mask rm and the
Sbox input/output mask rin and rout:

S′(rm⊗ x⊕ rin) = rm⊗ S(x)⊕ rout

Code snippet for the Sbox In order to compute the Sbox’s ouput using the pre-
computed table, one must transfer the additive mask rai to rin, then after the
table look-up, transfer rout back to rai. The SubBytesWithMask function per-
forms this task as follow:

SubBytesWithMask:

... //r3=C(x) r10=ra

... //r0=i r8=S’

ldrb r4, [r3, r0] //(1) r4=C(x)_i^rin

ldrb r6, [r10, r0] //(2) r6=ra_i

eor r4, r6 //(3) r4=C(x)_i^rin^ra_i

ldrb r4, [r8, r4] //(4) r4=rmS(x)^rout

eor r4, r6 //(5) r4=rmS(x)^rout^ra_i

strb r4, [r3, r0] //(6) store r4 to state

... //removing rout later

Note that the rin is added before this function, therefore line (1)-(3) purely focus
on removing rai. Similarly, removing rout is postponed to the end of the Sbox
calculation, therefore not presented in this code.

Only computation leaks. Following the same spirit of Section 4.1, we analyse
the leakage of the first Sbox look-up and uses 1 bit to represent the first 4 xi.
Similarly, all random masks must also be considered in our leakage analysis: we
use 6 bits to represent ra0:3, rin and rout representatively. When collapsed to 1
bit, rm is restricted to 1 (i.e. nullifies the protection of rm). Thus, we exclude
this bit from our F-test and analyse the leakage where rm is set to 1. This
means we will not cover any potential unexpected leakage introduced by rm in

16

50 100 150 200 250 300
Time(*4ns)

0

5

10

15

20

25

30

35

40

45

-
l
o
g
(
p
-
v
a
l
u
e
)

50 100 150 200 250 300
Time(*4ns)

0

5

10

15

20

25

30

35

40

45

-
l
o
g
(
p
-
v
a
l
u
e
)

Fig. 4: Leakage analysis for the first Sbox

our experiment: of course, one can always switch to 2-bit version and use more
traces to cover rm.

The complete model is therefore defined as

L̃(X̂) = β{∀j uj(X̂)|x̂ = x0:3||ra0:3||rin||rout, x̂ ∈ X̂}

Following our common practice, it is expected that all the computed values
are leaked plus some transitions in the code snippet. As a starter, let us first use
some coarse-grained model that is ensured to captured all possible computation
for the first Sbox:

L̃(Z) = β{∀j uj(Z)|z = x0||ra0||rin||rout, z ∈ Z}
Readers can easily verify that all the intermediate values appear in the code

snippet can be expressed by this restricted model L̃(Z). However, once again,
we find this x0-only model is hardly satisfying in the collapsed F-test : as we can
see in Figure 4, the blue line clearly passes the threshold, which suggests the
realistic leakage contains much more than what L̃(Z) can express.

One step further. Following the same clue we found in Section 4.1, it is sensible
to assume each ldrb loads not only the target byte, but also the other bytes
within the same word. Thus, our line (1) loaded:

{rm⊗ x0 ⊕ ra0, rm⊗ x1 ⊕ ra1, rm⊗ x2 ⊕ ra2, rm⊗ x3 ⊕ ra3}

Line (2) loaded
{ra0, ra1, ra2, ra3}

If we added both these values (plus their transitions) into L̃(Z), the red lines
shows that the first peak around 100-150 is gone, suggesting the leakage has
been safely captured in the collapsed model. However, the second half of the
trace still presents some extra leakage.

Let us further consider line (4): if it also loads a word,

{S′(rm⊗x0⊕rin), S′(rm⊗x0⊕rin⊕1), S′(rm⊗x0⊕rin⊕2), S′(rm⊗x0⊕rin⊕3)}

17

The tricky bit of this word is its byte-order depends on rin, which varies
from trace to trace. Therefore, if we calculate the memory bus transition leakage
from line (2) to (4), the correct form can be complicated. Nonetheless, we can
always create a conservative term Za1 where za1 = x0||rin||rout||r1: adding
β(Za1) covers all possible transitions between ra1 and the Sbox output bytes
from line(4), despite which byte it is transmitting to. Similarly, we add Za2 and
Za3 to L̃(Z) and construct a model that passes the F-test (i.e. the cyan line in
the left half of Figure 4).

We further verifies the inference we made based on the F-test—ldrb loads
word and causes word-wise transitions. In order to confirm such leakage does
exist, we go back to the original un-collapsed implementation and perform a
linear regression attack [4] on rm⊗ xi⊕ rin. In theory, ldrb should load x0 only,
which means only rm ⊗ x0 ⊕ rin should be computed as for the masked table
look-up. However, we did observe that the other 3 bytes also contribute to peaks
on the regression results in the right half of Figure 4. To our knowledge, the
most reasonable explanation is such leakage is from the transition from line (1)
and (2), where the entire word is loaded in both cases.

Non-profiled attacks. The existence of leakage for rm⊗xi⊕rin provides a clue for
non-profiled attacks: as all 4 bytes leaks the same way around point 100, we can
raise our measurements to their 2nd order moments, which cancels the influence
of rin. However, unlike trivial Boolean masking schemes, now xi (or xi ⊕ xi+1)
is still protected by rm. That being said, considering if we have a “collision”
(aka xi = xj) within a word, we know for sure rm⊗ xi ⊕ rin = rm⊗ xj ⊕ rin as
both rm and rin are shared among all bytes. Such restriction further affects the
variance of the measured leakage, which could be exploited through 2nd order
attacks.

Implementing this idea, we have tested 50 plaintexts that have collisions and
50 plaintexts without collision in the first word. Within each test, we perform
a fixed-v.s.-random t-test can plot the minimal p-value in Figure 5. After 2500
fixed traces and 2500 random traces, nearly 90% of the collision cases can be
identified, which confirms the validity of our analysis above.

It is not hard to see such oracle provides a link between each key bytes:
in a chosen plaintext setup, attackers can manipulate the plaintext and learn
information about the secret key. Ideally, if we found 3 collisions within the
same word and figured out their collision index through adaptively testing, the
key space for each word can be reduced to 28. Repeat that with the other 3 words,
we can enumerate the remaining 232 key guess space and learn the full key. We
leave the question of what is the most efficient attack strategy to readers, as it
is out of the scope of this paper. However, based on our experimental results,
the trace efficiency of this attack is no match for its profiling counterpart [24].
Nevertheless, our collapsed F-test clearly reveals new leakage presented in this
implementation that enriches our previous understanding: whether such leakage
is exploitable or can be exploited efficiently is not ensured by the F-test itself.

18

5 10 15 20 25 30 35 40 45 50

Traces [*50]

0

2

4

6

8

10

12

14

16

18

20

-lo
g1

0(
p-

va
lu

e)

Univariate 2nd order T-test: collision v.s. no collision

5 10 15 20 25 30 35 40 45 50

Traces [*50]

0

2

4

6

8

10

12

14

16

18

20

-lo
g1

0(
p-

va
lu

e)

Bivariate 2nd order T-test: collision v.s. no collision

Fig. 5: Collision Oracle

Notes. Although slightly off the topic, we list a few intriguing facts about this
implementation/attack which might be a worthwhile topic for future works:

– Bivariate attacks. A trivial alternative is to construct our oracle above with
bivariate leakage (i.e. one sample for x0 and one sample for x1) and combine
multiple points on the trace with the “mean-free” product. As we can see
in the right half of Figure 5, this approach turns out to be less efficient.
One possible explanation is combining 2 samples introduces two independent
sources of noise.

– Leakage for line (4). At the first glance, the word-wise leakage for line(4)
seems to be a better target. The entire word is masked with 1 byte rm, 1
byte rout and contains 8-bit of secret key. In our experiment, we found the
influence of rm to be onerous, at least in a non-profiling setup. However,
as this leakage reveals a certain key-byte’s value (v.s. reveals the key byte’s
relation to other key bytes), we leave the exploitability of such leakage as an
open problem.

– Avoiding leakage. The exploited leakage above can be easily prevented, if the
implementation loads something else between line (1) and (2). In other word,
this is a specific implementation pitfall, not linked to the masking scheme
itself. As a comparison, the bivariate version in the right half of Figure 5 is
not affected by these subtle implementation details.

– Link to t-test. The exploited leakage can be found through 2nd order fixed-
v.s.-random (or fixed-v.s.-fixed) t-test, suppose the selected fixed constant
contains “collision”. For a randomly selected constant, the probability that it
has a “collision” in the first word is around 0.04, which poses again a question
on the “coverage” of using 1 or 2 fixed constant(-s) in leakage detections [18].

5 Application 2: Leakage Simulators

In recent years, various leakage simulators have been proposed in order to enable
early-stage leakage awareness [26]. Using a leakage simulator, developers can
identify and patch potential leakage in a very early stage, even if they have no

19

access to the target device. In this section, we utilise our new test to challenge
existing leakage simulators that have either asserted models or estimated models.

Throughout this section, we use the same ARM Cortex M3 core as our target
software platform. Each profiling trace set include 20k profiling traces to estimate
and evaluate the model. All the setup remains the same as Section 4, except for
the working frequency is reduced to 1 MHz: lower frequency helps to build a
clearer cycle-to-cycle view, which is essential for analysing the quality of the
estimated models. Note that every following statements will be specific to this
setup: our test judges the leakage model based on the realistic measurements.
Changing the setup affects the measurements, which should have an impact on
the leakage model as well.

5.1 Instruction-wise modelling

As pointed out by Buhan, Batina, Yarom and Schaumont, one of the remaining
challenge for gray-box simulators is “(they) target relatively simple architec-
ture” [26]. In fact, many tools only target at algorithmic variables that may
correspond to multiple intermediate states in the core. Even if the simulator
takes binary code (eg. ELMO [6]), the undocumented micro-architectural effects
can still cause all sort of issues [11]. In theory, our collapsed F-test can be a
confirmation step here: if a leakage simulator failed our test, it suggests some
contributing factor can be missing in its leakage model. Thus, in the following,
we first check whether the common instruction-wise leakage models are complete
(or not), then move on to check whether such tools provide a complete model
for an entire gadget (code snippet).

Architectural view Figure 6a shows a simplified architectural description for a
realistic ARM M3 core [27]: whilst different realisations of an M3 adhere to this
architecture, their micro-architectural features (such as buffers or registers) will
differ. A common micro-architectural element for such a processor architecture
would be some so-called pipeline registers: these are the input registers in Figure
6b. Thus we can map the entire red block in Figure 6a to Figure 6b.

Common instruction-wise model A common simplification in many previous
gray-box simulators is focusing on the execute leakage within the ALU (i.e.
Figure 6b instead of Figure 6a). This choice is quite reasonable: even if the pro-
cessor has a multi-staged pipeline, we do not necessarily care about the leakage
from fetching the instructions (as it is often not data-dependent5). Following our
principles in Section 3.1, the reference full model for Figure 6b can be written
as

L̃f = β{AA′BB′}

5 Otherwise, the program has data-dependent branches, which should be checked
through information flow analysis first.

20

Scan control

Instruction
decoder and
logic control

Instruction pipeline
Read data register

Thumb instruction controller
Write data register

nENOUT

DBE

nENIN

B
bu

s

32-bit ALU

Barrel shifter

32 x 8
Multiplier

D[31:0]

DBGRQI

BREAKPTI

DBGACK

ECLK

nEXEC

ISYNC

BL[3:0]

APE

MCLK

nWAIT

nRW

MAS[1:0]

nIRQ

nFIQ

nRESET

ABORT

nTRANS

nMREQ

nOPC

SEQ

LOCK
nCPI

CPA

CPB

nM[4:0]

TBE

TBIT

HIGHZ

A
LU

bu
s

Register bank
(31 x 32-bit registers)
(6 status registers)

A
bu
s

Address
incrementer

Address register
P
C
bu
s

A[31:0]
ALE ABE

In
cr
em

e
nt
er

b
us

INSTRVALID

(a) Substantial view

Operand A Operand B

a

a’

b

b’

c’

ALU

(b) Architectural view

ASM function for ISWd2

a=(a
(1)

||a
(2)

) b=(b
(1)

||b
(2)

)

c=(c
(1)

||c
(2)

)

r

(c) Abstract view on
the code in Section 5.2

Fig. 6: Materialise the prototype on software: architectural v.s. abstract

Note that the output value C is completely determined by A and B, therefore
there is no need to add C into the model here. However, if further restrictions
(eg. the leakage of A is linear) have been added, we might need to add C when
necessary. In our experiments, we also consider the following leakage models:

L̃l = β{A,B,C}l: this model is a linear function in the current inputs and
output. Because of the linearity of the model, it is imperative to include
the output here. E.g. if the circuit implements the bitwise-and function, the
leakage on ab cannot be described by any linear function in a and b. In the
existing literature this is often further simplified to the Hamming weight of
just the output (aka the HW model).

L̃le = β{A,B,C,A′, B′, C ′, (dA), (dB), (dC)}l, where dA = A⊕ A′, dB = B ⊕
B′, dC = C⊕C ′: this model further includes Hamming distance information,
which can be regarded as an extension for both the Hamming weight and
the pure Hamming distance model (used in the MAPS simulator [28]); it
therefore also generalises the ELMO model [6] which only fits a single dummy
for the Hamming distance leakage.

L̃TA = β{AB}: this model represents template attacks [2], where all relevant
current inputs are taken into consideration. In this model the output does
not have to be included because we allow interactions between the input
variables. This model can also be taken as a faithful interpretation of “only
computation leaks” [22].

Target instruction. Before any further analysis, we need to craft a code snippet
that can trigger the simplified leakage in Figure 6b, while not causing any other

21

50 100 150 200 250
Time(*4ns)

0

20

40

60

80

100

120

-
l
o
g
(
p
-
v
a
l
u
e
)

50 100 150 200 250
Time(*4ns)

0

1

2

3

4

5

-
l
o
g
(
p
-
v
a
l
u
e
)

50 100 150 200 250
Time(*4ns)

0

20

40

60

80

100

120

-
l
o
g
(
p
-
v
a
l
u
e
)

Fig. 7: Comparing various models against L̃f

type of data-dependent leakage from other pipeline stages (i.e. fetch and decode).
Unfortunately, this is not always possible in a commercial closed source core, as
many resources lie in the micro-architecture. Nonetheless, in our experiments,
we evaluate the following code snippet on our device:

eors r2,r2 //r2=0

eors r1,r3 //r1=a’, r3=b’

nop

nop

eors r5,r7 //r5=a, r7=b **Target**

nop

nop

eors r5,r7 represents the cycle we are targeting at in Figure 6b: the 2 pipeline
registers are setted to value a and b, where the previous values are a′ and b′.
a′ and b′ are setted by eors r1,r3 : since both lines use eors, a (b) and a′ (b′)
should share the same pipeline register. The 2 nop-s before/after ensure all data-
dependent leakage should be caused by eors r5,r7 : in a 3-stage pipeline micro-
processor, the previous XOR-s should already been committed and retired, while
the fetching/decoding should be executing nop-s (which in theory, does not cause
any data-dependent leakage6).

Collapsed F-test Despite we are working at an instruction level, considering
each operand has 32-bit, building the full model L̃f is still infeasible. Thus, we

still need to “collapse” L̃f to a smaller space. More specifically, we allow each
operand to contain 2-bit randomness (a = {a1a2....a1a2}): comparing with the
1-bit strategy in Section 3.2, this option needs more traces to achieve reason-
able statistical power. However, with 2-bit random operands we can distinguish
whether the contribution of a specific term is linear or non-linear, which is of
interest when comparing existing simulators.

Figure 7 shows the F-test results: clearly, models that exclude transitions in
the inputs massively exceed the rejection threshold. This means that in these

6 In practice, this may depend on the content of r8 in ARM cores; our experiments
had already set r8 to 0 beforehand.

22

Table 1: Leakage detection results on a 2-share ISW multiplication gadget
Instruction Device ELMO MAPS L̃b

0
//r1 = a(1), r2 = a(2)

//r3 = b(1), r4 = b(2), r5 = r

1 mov r6, r1(mov.w r6, r1 for MAPS)

2 ands r6, r3//r6 = a(1)b(1)
3 mov r7, r4(mov.w r7, r4 for MAPS) X
4 ands r7, r2//r7 = a(2)b(2)
5 ands r1, r4//r1 = a(1)b(2) X X
6 eors r1, r5//r1 = a(1)b(2) ⊕ r X X
7 ands r2, r3//r2 = a(2)b(1) X X X X
8 eors r1, r2//r1 = a(1)b(2) ⊕ r ⊕ a(2)b(1)
9 eors r6, r1//c(1) = a(1)b(2) ⊕ r ⊕ a(2)b(1) ⊕ a(1)b(1) X X
10 eors r7, r5//c2 = r ⊕ a(2)b(2) X X X X

cases we can conclude that the dropped transition terms have a statistically
significant impact on the model. The linear model with transitions L̃le only
marginally fails the test: thus it again demonstrates how significant the transi-
tions are, but it also indicates that dropping higher-order terms does impact the
quality of the leakage model.

Conclusion. Clearly, none of the three models can be regarded as complete:
even if we had crafted a code snippet that avoids various disturbance, these
models do not looks promising. As a consequence, leakage detections built on
these models could miss potential leakage, due to the limited explanatory power
of their leakage model. Various effects could be contributing here (including the
bit-interaction [10]): we re-emphasize that we cannot confirm what is the exact
cause based on statistical reasoning alone.

5.2 Gadget-wise modelling

In this section we extend our study to a more interesting and complex bit of
code: masking gadgets. More specifically, we consider the Thumb-encoded 2-
share ISW multiplication gadget that is given in the second column (under the
header “Instruction”) of Table 1. To avoid overloading notations, we denote
the first share of input a as a(1). Considering this larger code sequence does not
control the pipeline registers or the other components (eg. the decoding stage) in
the core, we need to be aware that our architectural view of the ALU (Figure 6b)
may no longer be an adequate mental model for the actual reality in hardware
(Figure 6a). Considering mapping to the architecture in Figure 6b already loses
some information, it is expected that using a full model in Figure 6b is no longer
complete.

Gadget-wise full model Alternatively, we can switch to a more abstract view:
Figure 6c shows the functional view of our code in Table 1. Clearly, all functional

23

500 1000 1500 2000 2500
Time(*4ns)

0

20

40

60

80

100

120

140

160

180

200

-
l
o
g
(
p
-
v
a
l
u
e
)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

500 1000 1500 2000 2500
Time(*4ns)

0

2

4

6

8

10

12

14

16

-
l
o
g
(
p
-
v
a
l
u
e
)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Fig. 8: Model comparison based on a 2-share ISW multiplication in software

inputs a, b and r no longer reflect any architectural port/bus/register. Having
said that, assuming the core starts from a constant state (in our experiments,
ensured by clearing the data registers and memory buses before the function
call), all leakage can still be bounded with all possible inputs. Thus, if both
shares of a and b and r are collapsed to 2-bit, the full model can be defined as

L̃f = β{A(1)A(2)B(1)B(2)R}

Collapsed F-test With a proper definition of L̃f , we can again challenge L̃le in
the context of this snippet. Considering both ELMO and MAPS use a subset
of L̃le (and L̃l/L̃TA is not even close in Figure 7), we only tested L̃le in Figure
8. Compared with Figure 7, the left half clearly shows that this execute-only
simplification is far from ideal. As a consequence, at least in theory, some leakage
might be hard to find in both ELMO and MAPS.

One step further. Similar to Section 4, we can also try to build a better leakage
model by adding terms and re-evaluating the model quality through F-test. Of
course, the final output of this ad-hoc procedure (L̃b in Figure 8) does not have
any architectural reasoning. Nonetheless, as we can see in the right half of Figure
8, such model is still a valid one and can potentially do better than L̃l in our
F-test.

Considering here we have much more inputs with complicated computation
than Section 4, building L̃b takes much more effort and sophisticated decisions.
Each cycle usually involves a fairly complicated leakage model: in the follow-
ing, we simply briefly summarise our findings. In our experience, it seems most
operands will influence the leakage for at least 2 cycles, which seems to suggest
the decoding stage does significantly contribute to the data-dependent leakage.

Leakage detection. We further investigate how these leakage models affect the
efficacy of the leakage detections on the corresponding simulators. The last four
columns in Table 1 show leakage detection results (obtained via a first order
t-test) on realistic devices, simulations based on ELMO, simulations based on

24

MAPS and simulations based on the model we manually constructed respec-
tively.

MAPS captures all register transitions, including the pipeline registers in the
micro-architecture (command line option “-p”) [28]. MAPS reported 3 leaking
instructions in our experiments: 2 are verified by the realistic 1st order t-test,
while cycle 3 is not. Technically, this may not be a false-positive because MAPS
is using the 32-bit instruction mov.w instead of the tested 16-bit instruction
mov7.

ELMO captures the operands and transitions on the ALU data-bus [6]: per-
haps surprisingly, ELMO reported exactly the same leaking cycles as MAPS.
Detailed analysis shows that both cycles leak information from their operands’
transitions: ELMO captured this as data-bus transitions, while MAP claimed
this as pipeline register transitions. Considering the pipeline registers are con-
nected to the corresponding ALU data-bus, this is hardly unexpected8.

Our manually constructed model is indeed significantly better than both
MAPS and ELMO as Table 1 shows. It reports the same leaking cycles as are
reported for the real measurements. Specifically, cycle 5 reported leakage from
the ALU output bus transition (aka dC in Figure 6b), which is a part of L̃le but
not covered by ELMO or MAPS. We suspect cycle 6 (1250-1500) and 9 (2000-
2250) come from the decoding stage: they are merely a preview of the leakage
of cycle 7 and 10.

At least in this specific example, it is evident that strongly failed F-test
results do indicate that a model is likely to lack the explanatory power to be
useful for simulators, which further affects the detection accuracy. If designers
prefer to have some confidence about the accuracy of those tools, we recommend
to at least capture some realistic measurements and verify their models’ quality
with our collapsed F-test : if the F-test already reports a warning, designers
should keep in mind that some implementation flaw can potentially escape the
early-stage detection.

6 Discussion and conclusion

This paper puts the state that is captured by a leakage model at the centre
stage. We put forward the novel notion of “completeness” for a model. A model
is complete if it captures all relevant state information, thus suitable to be the
basis for leakage simulators or security evaluations.

Deciding if a model is complete or not initially seems like an impossible task
in the case of modern processors. Even for a 2-operand instruction, if we take
previous values into account, there are 24n values to take into account. For n = 8

7 For some reason, MAPS seems to have a problem with the 16-bit mov instruction
in our experiments.

8 At this point we want to clarify that although ELMO is specifically designed for
the M0 core architecture, and we are working with an M3 here, the parts of the
architecture that relate to the instructions in our implementation are identical (to
the best of our knowledge) to the M0.

25

(this corresponds to a small micro-controller), it is computationally expensive;
but for n = 32 (this correspond to a modern microprocessor), it becomes clearly
infeasible. We overcome this problem by introducing a novel statistical technique
by using collapsed models as part of a nested F-test methodology. This test is
robust and effective as we illustrate based on a range of concrete experiments.
As a bonus, our novel methodology helps to determine the complete model for a
given device efficiently, with minimal device knowledge (all our examples in this
paper are in a grey box setting).

Beyond this novel test, and our demonstration of its efficacy, we affirm a
range of important points when it comes to attacks and simulations:

– Although our novel test does not guarantee the missing leakage will con-
tribute to attacks, it is always recommended to apply this test and ensure
the security evaluations are based on solid ground, rather than thin air.

– An accurate simulation model is not guaranteed to capture all relevant leak-
age. Therefore simulation accuracy (i.e. cross-validation R2 or SSE) alone
should not be the basis for a security certification in the style of [13, 16, 29].

– A complete model is essential for leakage simulators: the detection accuracy
can be significantly affected if the leakage is overly-simplified compared with
realistic measurements.

– Whilst we do not cover leakage detection explicitly in our paper, there are
clear implications for detection from our findings. So-called “specific leakage
detection” [30] relies on specifying a leakage model (and therefore state).
Clearly a leakage detection that is based on an incomplete state can miss
out leaks.

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings. (1999) 388–397

2. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Cryptographic Hard-
ware and Embedded Systems - CHES 2002, 4th International Workshop, Redwood
Shores, CA, USA, August 13-15, 2002, Revised Papers. (2002) 13–28

3. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In Rao, J.R., Sunar, B., eds.: Cryptographic Hardware and Embed-
ded Systems - CHES 2005, 7th International Workshop, Edinburgh, UK, August
29 - September 1, 2005, Proceedings. Volume 3659 of Lecture Notes in Computer
Science., Springer (2005) 30–46

4. Doget, J., Prouff, E., Rivain, M., Standaert, F.: Univariate side channel attacks
and leakage modeling. J. Cryptogr. Eng. 1(2) (2011) 123–144

5. Whitnall, C., Oswald, E.: Profiling DPA: efficacy and efficiency trade-offs. In
Bertoni, G., Coron, J., eds.: Cryptographic Hardware and Embedded Systems -
CHES 2013 - 15th International Workshop, Santa Barbara, CA, USA, August
20-23, 2013. Proceedings. Volume 8086 of Lecture Notes in Computer Science.,
Springer (2013) 37–54

26

6. McCann, D., Oswald, E., Whitnall, C.: Towards practical tools for side channel
aware software engineering: ’grey box’ modelling for instruction leakages. In: 26th
USENIX Security Symposium (USENIX Security 17), Vancouver, BC, USENIX
Association (2017) 199–216

7. Papagiannopoulos, K., Veshchikov, N.: Mind the gap: Towards secure 1st-order
masking in software. In Guilley, S., ed.: Constructive Side-Channel Analysis and
Secure Design - 8th International Workshop, COSADE 2017, Paris, France, April
13-14, 2017, Revised Selected Papers. Volume 10348 of Lecture Notes in Computer
Science., Springer 282–297

8. Gigerl, B., Hadzic, V., Primas, R., Mangard, S., Bloem, R.: Coco: Co-design and
co-verification of masked software implementations on cpus. IACR Cryptol. ePrint
Arch. 2020 (2020) 1294

9. Meyer, L.D., Mulder, E.D., Tunstall, M.: On the effect of the (micro)architecture
on the development of side-channel resistant software. IACR Cryptol. ePrint Arch.
2020 (2020) 1297

10. Gao, S., Marshall, B., Page, D., Oswald, E.: Share-slicing: Friend or foe? IACR
Transactions on Cryptographic Hardware and Embedded Systems 2020(1) (Nov.
2019) 152–174

11. Marshall, B., Page, D., Webb, J.: Miracle: Micro-architectural leakage evaluation.
IACR Cryptol. ePrint Arch. (2021) https://eprint.iacr.org/2021/261.

12. Whitnall, C., Oswald, E., Standaert, F.: The myth of generic dpa...and the magic
of learning. In: Topics in Cryptology - CT-RSA 2014 - The Cryptographer’s Track
at the RSA Conference 2014, San Francisco, CA, USA, February 25-28, 2014.
Proceedings. (2014) 183–205

13. Durvaux, F., Standaert, F., Veyrat-Charvillon, N.: How to certify the leakage of a
chip? In Nguyen, P.Q., Oswald, E., eds.: Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings.
Volume 8441 of Lecture Notes in Computer Science., Springer (2014) 459–476

14. Crama, Y., Hammer, P.L., eds.: Boolean Models and Methods in Mathematics,
Computer Science, and Engineering. Cambridge University Press (2010)

15. Durvaux, F., Standaert, F., Pozo, S.M.D.: Towards easy leakage certification:
extended version. J. Cryptogr. Eng. 7(2) (2017) 129–147

16. Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Standaert, F.: Leakage
certification revisited: Bounding model errors in side-channel security evaluations.
In Boldyreva, A., Micciancio, D., eds.: Advances in Cryptology - CRYPTO 2019 -
39th Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 18-22, 2019, Proceedings, Part I. Volume 11692 of Lecture Notes in Computer
Science., Springer (2019) 713–737

17. Gao, S., Marshall, B., Page, D., Pham, T.H.: FENL: an ISE to mitigate analogue
micro-architectural leakage. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(2)
(2020) 73–98

18. Whitnall, C., Oswald, E.: A cautionary note regarding the usage of leakage de-
tection tests in security evaluation. Cryptology ePrint Archive, Report 2019/703
(2019)

19. Cohen, J.: Chapter 9 - f tests of variance proportions in multiple regres-
sion/correlation analysis. In Cohen, J., ed.: Statistical Power Analysis for the
Behavioral Sciences. Academic Press (1977) 407 – 453

20. Whitnall, C., Oswald, E.: A critical analysis of ISO 17825 (’testing methods for
the mitigation of non-invasive attack classes against cryptographic modules’). In:

27

Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on
the Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part III. (2019) 256–284

21. kokke: Tiny aes in c
22. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In

Naor, M., ed.: Theory of Cryptography, First Theory of Cryptography Conference,
TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings. Volume 2951
of Lecture Notes in Computer Science., Springer (2004) 278–296

23. Benadjila, R., Khati, L., Prouff, E., Thillard, A.: Hardened library for aes-128
encryption/decryption on arm cortex m4 achitecture

24. Bronchain, O., Standaert, F.: Side-channel countermeasures’ dissection and the
limits of closed source security evaluations. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2020(2) (2020) 1–25

25. ParisTech, T.: Dpa contest 2008/2009
26. Buhan, I., Batina, L., Yarom, Y., Schaumont, P.: Sok: Design tools for side-channel-

aware implementions (2021)
27. Limited, A.: Arm7tdmi technical reference manual.

https://developer.arm.com/documentation/ddi0210/c/ (2004)
28. Corre, Y.L., Großschädl, J., Dinu, D.: Micro-architectural power simulator for

leakage assessment of cryptographic software on ARM cortex-m3 processors. In
Fan, J., Gierlichs, B., eds.: Constructive Side-Channel Analysis and Secure Design
- 9th International Workshop, COSADE 2018, Singapore, April 23-24, 2018, Pro-
ceedings. Volume 10815 of Lecture Notes in Computer Science., Springer (2018)
82–98

29. Lerman, L., Veshchikov, N., Markowitch, O., Standaert, F.: Start simple and then
refine: Bias-variance decomposition as a diagnosis tool for leakage profiling. IEEE
Trans. Computers 67(2) (2018) 268–283

30. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for
side-channel resistance validation. In: NIST non-invasive attack testing workshop.
Volume 7. (2011) 115–136

31. Standaert, F., Malkin, T., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In Joux, A., ed.: Advances in Cryptology -
EUROCRYPT 2009, 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings. Volume 5479 of Lecture Notes in Computer Science., Springer (2009)
443–461

A PI, HI & Assumption error

Leakage certification approaches such as described in [13, 15, 16] (based on the
general framework introduced by Standaert, Malkin and Yung [31]) aim at pro-
viding guarantees about the quality of an evaluation, based on estimating the
amount of information leaked by a target device.

In order to estimate the amount of leaked information (i.e. the mutual infor-
mation), the intermediate state must be selected as a first step. In our notation,
this means the user must correctly provide an enumerable state Z that ensures
the corresponding model L̃(Z) is close to the full model L̃(X) w.r.t. its explana-
tory power. Then, one can estimate the mutual information of MI(Z;L) using
concepts like perceived information (PI) or hypothetical information (HI) [16].

28

(a) HD leakage without any noise (b) HD leakage with noise variance 0.1

Fig. 9: Moment based detection of “assumption error”

The common choice for Z is often a variable that relates to a single S-box
[13, 15, 16]: because the MI calculation runs through all possible values of Z, it
corresponds to a template attack. This extremely popular choice is potentially
inadequate because the device state is likely to be considerably more complex
(as we have argued before), and it will likely include at least transition leaks,
which cannot be captured in this way. Consequently, prior to any of these leakage
certification approaches, it is imperative to test what state must be considered.

A.1 Estimating “assumption errors”

In [13] Durvaux et al. proposed a technique to test for (the so-called) assumption
errors in the leakage model [13]. One could be tempted to regard this as an
alternative solution for testing completeness. Unlike our F-test, their approach is
based on checking if the distance between pairs of simulated samples (generated
with a profiled model) and the distance between simulated and actual samples
behave differently.

However, their technique of checking assumption errors is about ensuring
that the estimation of MI is accurate. In order words, their technique is not
an effective way to test whether Z is complete or not. To demonstrate this, we
present a simple experiment that is based on the common example of leakage
from an AES S-box output (S(p1 ⊕ k1), where p1 is the plaintext byte and k1 is
the corresponding key byte). Let us further assume that the leakage function L
depends on not only on S(p1⊕k1), but also the previous S-box output S(p0⊕k0):

L = HW (S(p1 ⊕ k1)) +HD(S(p1 ⊕ k1), S(p0 ⊕ k0)).

Taking advantage of the code from [15], we can validate the power of detecting
the above “assumption error”: Figure 9a portrays the moment-based estimation
on the leakage function above in a noise free setting. Each line corresponds to a
model value, and if any value leads to a line that keeps getting “darker”, it would
suggest the p-value is small enough to confidently report an “assumption error”.
Even if there is no noise (left figure), only the kurtosis marginally reports errors.
With some small noise added in (Figure 9b), the situation remains the same.
Only the kurtosis gives some small p-values, but there is no statistical decision

29

Fig. 10: F-test with noise variance 0.1

criterion that enables us to draw a firm conclusion here. This outcome should
not be surprising. Because p0 is an independent random variable, the Hamming
distance part follows Binomial distribution B

(
n
2 ,

n
4

)
where n is the bit-length of

p0 (for AES, n = 8). With Z = P1, the estimated model would be:

M = HW (S(p1 ⊕ k1)) +N
(n

2
,
n

4

)
where N (µ, σ2) represents the Gaussian distribution. For any fixed value of p1⊕
k1, the “distance between pairs of simulated samples” becomes

DM =
{
l1 − l2|l1 ∈ N

(n
2
,
n

4

)
, l2 ∈ N

(n
2
,
n

4

)}
Meanwhile, “the distance between simulated and actual samples” becomes:

DLM =
{
l1 − l2|l1 ∈ N

(n
2
,
n

4

)
, l2 ∈ B (0.5, n)

}
It is well-known that with reasonably large n, the binomial distribution will

asymptotically approximate the Gaussian distribution. The idea behind this test
in [13] is based on an expected inconsistency between the unexplained leakage
distribution and estimated Gaussian distribution: the test becomes powerless if
the former equals/stays close to Gaussian, which is not really a rare case in side
channel applications.

In contrast, our F-test can detect such an “error” with ease, see Fig. 10. The
advantage here requires though to explicitly assign X = {P1P0}. Without some
guess work (or a priori knowledge) one may need to use a collapsed full model
instead, say using 1 bit for each plaintext byte and testing on a trace set larger
than 216.

We want to emphasize at this point that these previous works did not aim for
testing the completeness of the state as such, so our findings do not invalidate
their statements. We merely wish to point out that there is a difference between
their ideas of “assumption errors” and our notion of “completeness”.

A.2 HI&PI

Bronchain, Hendrickx and Massart et al. proposed that using the concepts of
Perceived Information (PI) and Hypothetical Information (HI), one can “bound

30

the information loss due to model errors quantitatively” by comparing these two
metrics, estimate the true unknown MI and obtain the “close to worst-case”
evaluations [16].

It is critical to remember the “worse-case” are restricted the computed MI:
back to previous our example, estimating HI and PI still bound the correct mu-
tual information MI(K1;P1, L). The additional Hamming distance term affects
how we should interpret this metric: when combing multiple key-bytes to ob-
tains the overall security-level, MI(K1;P1, L) might not be as helpful as one
may hope.

More concretely, we tested our example simulation leakage with the code
provided in [16]: as we can see in Figure 11, PI and HI still bounds the correct
MI. The only difference here is MI itself decreases as P0 and K0 are not taken
into consideration.

Fig. 11: PI and HI estimation for the leakage function

A.3 Bias-Variance Decomposition

Lerman, Veshchikov and Markowitch et al. also proposed a diagnosis tool based
on the bias-variance decomposition [29]. The goal of their tool is purely predictive—
“guiding the design of the best profiled attack”. In other words, the “syndrome
to diagnose” is still restricted to the specific selected intermediate state. In our
example, the additional Hamming distance will be taken as part of the random
noise. Admittedly, unless the missing Hamming distance is taken into the model
building procedure, any corresponding leakage will always end up in the noise.
Therefore, any model can be perfectly estimated, yet that does not guarantee it
is complete, as the estimated noise is not necessarily pure measurement noise.

31

