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Abstract
CryptoNote blockchains like Monero represent the largest public deployments of linkable ring
signatures. Beginning with the work of Kumar et al. (ESORICS 2017) and Möser et al. (PoPETs
2018), several techniques have been proposed to trace CryptoNote transactions, i.e. identify the actual
signing key, by using the transaction history. Yu et al. (FC 2019) introduced the closed set attack for
undeniable traceability and proved that it is optimal by showing that it has the same performance
as the brute-force attack. However, they could only implement an approximation of the closed set
attack due to its exponential time complexity. In this paper, we show that the Dulmage-Mendelsohn
(DM) decomposition of bipartite graphs gives a polynomial-time implementation of the closed set
attack. Our contribution includes open source implementations of the DM decomposition and the
clustering algorithm (the approximation to the closed set attack proposed by Yu et al). Using these
implementations, we evaluate the empirical performance of these methods on the Monero dataset in
two ways — firstly using data only from the main Monero chain and secondly using data from four
hard forks of Monero in addition to the main Monero chain. We have released the scripts used to
perform the empirical analysis along with step-by-step instructions.
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1 Introduction

1.1 CryptoNote Transactions
Coins in CryptoNote blockchains are associated with stealth addresses, which are also called
one-time addresses or transaction outputs [21]. We will use the term output for brevity. Each
output is uniquely identified by a public key, which is a point on an elliptic curve. To spend
from an output, the spender needs to know the corresponding secret key.

In a transaction, the spender creates a ring of outputs which is a set containing the
output being spent and some other outputs sampled from the CryptoNote blockchain (these
are called decoy outputs or mixins). The spender generates a linkable ring signature [15]
over the ring of outputs using the secret key of the output being spent. This signature only
reveals that the signer knows the secret key corresponding to one of the ring outputs, without
revealing the identity of the actual output being spent.

To prevent double spending from an output, the linkable ring signature reveals the key
image of the output being spent. The key image of an output is a collision-resistant one-way
function of the secret key. For example, in Monero the public key associated with an output
is given by P = xG where G is the base point of an elliptic curve group and x is the secret
key. The key image I of the output associated with P is given by xHp(P ), where Hp(·) is
a cryptographic hash function that maps its input to a point on the elliptic curve. In the
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1:2 Analysis of CryptoNote Transaction Graphs using the DM Decomposition

rest of this paper, when we speak of the key image of an output we mean the result of the
one-way function applied to the secret key associated with the output.

If the owner of the output corresponding to P tries to spend the coins associated with
it more than once, then the key image I would appear again in the second transaction,
identifying it as a double spending transaction. Such transactions will be rejected by miners,
as blocks including them would be considered invalid by the network. In this sense, the key
image acts as a nullifier of an output, ensuring that it is spent only once.

1.2 CryptoNote Transaction Graphs
Consider a CryptoNote transaction which spends from two existing outputs and creates three
new outputs as illustrated in Figure 1. The new outputs are denoted by T1, T2, T3. The
transaction has two rings of outputs of size five each, (P1, P2, . . . , P5) and (Q1, Q2, . . . , Q5).
Exactly one output from each ring is being spent in the transaction. The key images I1 and
I2 of the outputs being spent are revealed in the transaction. Note that the two rings can
have common outputs.

For the purpose of illustration, suppose that the two rings have two outputs in common.
Let Q1 = P4 and Q2 = P5. The relationship between the ring outputs and the key images
in this transaction can be represented by the bipartite graph in Figure 2. The union of the
two ring output sets forms one vertex class and the two key images form the other vertex
class. An edge between an output and a key image indicates that the latter could be the
true key image of that output. Note that the new outputs T1, T2, T3 play no role in the
construction of the bipartite graph. We will refer to such output/key image bipartite graphs
as transaction graphs.

As each key image must have been generated from a unique output, any pair of edges
(Pi, I1) and (Qj , I2) such that Pi ̸= Qj is a plausible candidate for the true relationship
between the outputs and key images. A matching on a graph is a subset of the edges such
that no two edges in the subset share a vertex (see Section 5.2 for a precise definition). The
pair of edges (Pi, I1) and (Qj , I2) with Pi ̸= Qj is a matching on the graph in Figure 2. In
fact, it is a matching of maximum size as any three edges in this graph would have two which
meet in either I1 or I2.

Let us now consider a similar bipartite graph induced by the set of all transactions which
have appeared up to the block having height h. The key image vertex class Kh in this graph
is the set of all key images which have appeared on the blockchain up to block height h.

P1 P2 P3 P4 P5

Ring for first spending output

I1

Key image of first
spending output

Q1 Q2 Q3 Q4 Q5

Ring for second spending output

I2

Key image of second
spending output

T1

First newoutput

T2

Second newoutput

T3

Third newoutput

Figure 1 A CryptoNote transaction with two inputs and three outputs
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Figure 2 Transaction graph corresponding to the transaction in Figure 1

The output vertex class Oh is the set of all outputs which have appeared in at least one
transaction ring in the blocks up to height h. Note that Oh is not the set of all outputs
which have appeared on the blockchain in blocks up to height h. We represent the edge
set of the transaction graph induced by the CryptoNote transaction rings as a subset E of
Oh ×Kh. For P ∈ Oh and I ∈ Kh, the edge (P, I) belongs to E if the output P appeared in
the transaction ring used to create I (via the linkable ring signature).

Since each key image I ∈ Kh is generated from a unique output P ∈ Oh, we have
|Kh| ≤ |Oh|. In a bipartite graph with vertex classes of cardinality m and n, the size of
a maximum matching can be at most min(m, n). Since the edges corresponding to the
true association between outputs and key images form a matching of size |Kh|, the induced
bipartite graph always has a maximum matching. In fact, we have the following principle
which has been discussed by Monero Research Lab researchers [12] and others [25, 26].

▶ Observation 1. Any maximum matching on a CryptoNote transaction graph is a plausible
candidate for the ground truth, i.e. the true association between outputs and key images.

1.3 Tracing CryptoNote Transactions
While a single linkable ring signature over a ring of public keys guarantees signer anonymity
against computationally bounded adversaries [15], CryptoNote blockchains typically have
signatures created using overlapping rings which can reveal the identity of the signing key.
In this context, the signing key is the public key corresponding to the secret key which was
used to generate the linkable ring signature.

▶ Definition 2. A CryptoNote transaction ring is said to be traceable if the true signing
key is correctly identified.

To illustrate how CryptoNote transaction rings can be traced, consider three CryptoNote
transaction rings having ring members {P1}, {P1, P2}, and {P1, P2, P3, P4} respectively.
Let I1, I2, I3 be the distinct key images created from these three transaction rings. The
corresponding CryptoNote transaction graph is shown in Figure 3.
(a) The first transaction ring has only one member and is therefore trivially traceable. The

key P1 must be the signing key. Such transactions are called zero-mixin transactions.
(b) In isolation, either P1 or P2 could have been the signing key in the second transaction

ring. But once P1 has been identified as the signing key in the first transaction, we
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Figure 3 Transaction graph corresponding to three CryptoNote transactions

know that I1 is the key image corresponding to P1. Since the signing key in the second
transaction ring has key image I2 ̸= I1, it must be equal to P2.

(c) Similarly, we can eliminate P1 and P2 from the set of possible signing keys of the third
transaction ring. Any one of the remaining two ring members, P3 and P4, can the true
signing key of this ring. There is not enough information to conclusively identify one of
them as the true signing key.

In this example, the first two transaction rings are traceable and the third one is not. But
the effective mixin size of the third transaction ring was reduced from 3 to 1. So the presence
of traceable rings can affect the privacy of other untraceable rings.

1.4 Paper Organization
We present related work in Section 2 followed by a summary of our contributions in Section 3.
The closed set attack and the clustering algorithm for approximating it are described in
Section 4. In Section 5, we describe the Dulmage-Mendelsohn (DM) decomposition. In
Section 6, we show that the DM decomposition finds all possible closed sets in a CryptoNote
transaction graph. In Section 7, we describe the empirical results obtained by applying the
DM decomposition to the Monero transaction graph with and without information from
hard forks. Section 8 concludes the paper.

2 Related Work

The first traceability analyses on CryptoNote blockchains were performed by Kumar et
al. [14] and Möser et al. [17]. They both studied the Monero blockchain history and found
that zero-mixin transactions have a cascade effect of rendering other transactions traceable.
This technique for achieving undeniable traceability is called the cascade attack.1 They also
considered heuristics for tracing transactions like the guess-newest heuristic and the output
merging heuristic. But these methods only achieve plausible traceability and can lead to
false positives.

In our survey of related work, we restrict our attention to methods for undeniable
traceability. Readers interested in methods for plausible traceability can refer to [14, 17, 23,
18, 7]. A line of work describing the design of better ring samplers and sustainable ring-based
anonymous systems can be found in [20, 11, 8].

The cascade attack proceeds in an iterative manner. First, it marks the outputs in zero-
mixin transactions as spent. Then it marks these outputs as mixins in other (non-zero-mixin)

1 The second transaction ring in the example of Section 1.3 was traced using the cascade attack.
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transactions. If all outputs except one in a transaction ring are marked as mixins, then
the remaining output is identified as the output being spent (and the transaction becomes
undeniably traceable). The outputs which have been newly marked as spent in a ring are
marked as mixins in other rings. The process continues until no new outputs can be marked
as spent.

The initial implementation of Monero did not hide the transaction amounts. In January
2017, Monero introduced a new transaction type called ring confidential transaction (RingCT),
where transaction output amounts are hidden in Pedersen commitments. RingCT became
mandatory in September 2017 [4].

While the cascade attack was able to trace a significant percentage of non-RingCT
transactions, RingCT transactions remain immune to it. In our empirical evaluation, we
found that the cascade attack could not trace any RingCT transactions up to block height
2,530,000. This was primarily because RingCT transactions did not allow zero-mixin rings.

Wijaya et al. [22] observed that a zero-mixin effect could be created in RingCT transactions
by spending n times from a ring of size n. The n outputs in the ring can then be marked
as mixins in other transaction rings. They name this type of spending behavior the ring
attack. As a proof of concept, they created five outputs in Monero block 1,468,425 and then
spent all of them using the other four as mixins in five transaction rings in block 1,468,439.
This behavior does not arise naturally due to the mixin sampling strategy in Monero. Up to
Monero block 2,530,000 (January 4, 2022), the ring of size 5 created by Wijaya et al. is the
only RingCT ring which exhibits this behavior.

Yu et al. [26] defined a closed set to be a set of n outputs which can be represented as
a union of n transaction rings. As each transaction ring must spend a unique output, the
outputs in a closed set can be marked spent. They proved that the closed set attack (which
finds all closed sets) is optimal by showing that its output is equivalent to the output of a
brute-force attack. However, they observed that the naive method of finding closed sets by
testing all subsets of the outputs has exponential time complexity.

As a workaround, they proposed an approximate algorithm to identify closed sets called
the clustering algorithm. After executing the cascade attack [14, 17] on the transaction rings,
the clustering algorithm attempts to find closed sets by combining transaction rings which
are close to each other (see Section 4 for a more detailed description). They proved that the
clustering algorithm can identify all closed sets up to size 5. While the performance of closed
set attack is better than the cascade attack, they reported that no RingCT transactions were
traced by their algorithm.

Several projects have forked the Monero blockchain resulting in multiple blockchains
with large numbers of common outputs. When a common output is spent in two different
forks, the same key image appears in both spending transactions. The real output is then
contained in the intersection of the transaction rings of such transactions. Wijaya et al. [24]
and Hinteregger et al. [13] used repeated key images which appeared in Monero and two
hard forks, Monero Original [2] and MoneroV [3], to trace transactions in all three chains.
While their methods were the first ones which successfully traced RingCT transactions in
Monero, they reported that the overall impact of their techniques was small. Only a small
percentage of the total set of transactions were rendered traceable. Wijaya et al. [24] also
discuss strategies for mitigating the loss of anonymity due to key reuse in hard forks.

The Monero reference implementation includes a tool for identifying spent outputs using
the techniques described above [6]. It implements the cascade attack, finds transactions
which cause the ring attack characterized by Wijaya et al. [22], attempts to identify closed
sets, and performs the cross-chain analysis proposed by Wijaya et al. [24] and Hinteregger
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1:6 Analysis of CryptoNote Transaction Graphs using the DM Decomposition

et al. [13]. It is included in every Monero release as an executable with the name monero-
blockchain-mark-spent-outputs. It is informally called the “blackball tool” in the Monero
community as the set of spent outputs represent a blacklist which should be avoided when
sampling mixins. To perform cross-chain analysis, the tool takes the LMDB database files of
all chains as input.

We noticed two issues with the Monero blackball tool with regard to cross-chain analysis.
Firstly, the tool is not able to read the LMDB database of MoneroV [3] due to a discrepancy
in the transaction formats in the main Monero code and the MoneroV code. This discrepancy
did not affect our analysis as we used the JSON-RPC interface of the MoneroV client [3]
to extract the transaction data. Secondly, and more seriously, the tool only uses an integer
index to uniquely identify an output across chains and not the output public key.

Outputs in a single Monero chain are partitioned by their amounts (with RingCT outputs
having dummy amount zero) and are assigned increasing indices in the order of their
appearance on the chain. This means that outputs which appear in two different chains after
a fork can have the same index even though they have different public keys. Consequently,
the cross-chain analysis performed by the blackball tool has errors. To be fair, the tool
outputs error messages during its execution when it encounters disjoint transaction rings
for the same key image. The presence of code for generating these error messages suggests
that the blackball tool developers are aware of this issue. To avoid such errors, we used the
public keys of the outputs as their unique identifier in our cross-chain analysis.

3 Our Contributions

Our contributions are as follows.
1. Our main contribution is to show that the Dulmage-Mendelsohn (DM) decomposition

of bipartite graphs gives an efficient implementation of the closed set attack, which is
the optimal method for undeniable traceability in CryptoNote blockchains. Computing
the DM decomposition involves finding a maximum matching, a depth-first search from
all unmatched vertices, and a computation of strongly connected components, all on the
CryptoNote transaction graph. All three algorithms have polynomial time complexity in
the number of nodes and edges of the graph.

2. We implemented the DM decomposition, the cascade attack, and the closed set attack
in Rust. The code is available at https://github.com/avras/cryptonote-analysis
under an MIT license. While an open source implementation of the DM decomposition
already existed in CSparse [9], it was much slower than the proprietary implementation in
Matlab [1]. Our implementation of the DM decomposition has performance comparable
to the Matlab implementation.

3. We compute the empirical performance of the DM decomposition method on Monero and
show that it outperforms the clustering algorithm approximation to the closed set attack
proposed by Yu et al. [26].

4. While previous traceability attacks have been effective against non-RingCT transactions in
Monero, RingCT transactions have been mostly immune. Only cross-chain analysis which
uses information from hard forks has been able to trace Monero RingCT transactions
[13]. We compute the empirical performance of the DM decomposition method using
information from four different hard forks: Monero Original, MoneroV, Monero v7, and
Monero v9. Our results show that, even with hard fork information, Monero RingCT
transactions are mostly immune to undeniable traceability via the DM decomposition
method.

https://github.com/avras/cryptonote-analysis
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5. We released the scripts used to generate our empirical results in the code repository at
https://github.com/avras/cryptonote-analysis. We prepared detailed instructions
on how to reproduce our results and made them available at https://www.respectedsir.
com/cna.

4 The Closed Set Attack and Clustering Algorithm

In a CryptoNote blockchain, let Ri = {Pi,1, Pi,2, . . . , Pi,ni} be the ring of public keys in the
ith transaction. Let Rh = {R1, R2, . . . , Rn} be the multiset2 of all transaction rings which
have appeared on the blockchain up to height h. Since each ring has a unique key image
associated with it, the set of key images Kh has size n.

As per the notation introduced in Section 1.2, the set of outputs that have appeared in
at least one transaction ring is given by Oh = ∪n

i=1Ri. Let m = |Oh|. As the number of key
images cannot exceed the number of public keys, we have m ≥ n.

4.1 Brute-Force Attack
Yu et al. [26] proposed the closed set attack and argued that it is optimal because of having
identical traceability performance to the brute-force attack. We will use the notion of a
system of distinct representatives [16] to describe the brute-force attack.

▶ Definition 3. Let S = {S1, S2, . . . , Sn} be a multiset of subsets of a finite set S. A set of
n distinct elements {s1, s2, . . . , sn} which satisfies si ∈ Si is called a system of distinct
representatives (SDR) for S.

In the context of CryptoNote blockchains, an SDR {P1, P2, . . . , Pn} for the multiset
Rh = {R1, R2, . . . , Rn} corresponds to a possible candidate for the sequence of signing keys
for the rings in Rh. This is because for each i the key Pi belongs to Ri and all the Pi’s are
distinct.

The brute-force attack for tracing CryptoNote transactions is shown in Algorithm 1. This
attack prunes the rings in Rh to generate the multiset R′

h = {R′
1, R′

2, . . . , R′
n} where each

R′
i is a subset of Ri. It includes only those keys in R′

i which are potential signing keys for
the ring Ri.

The time complexity of the brute-force attack is O (
∏n

i=1 |Ri|) as each Pi can be inde-
pendently chosen in |Ri| ways. If the number of rings Ri in Rh with at least two keys is n2,
then

∏n
i=1 |Ri| ≥ 2n2 . Thus the brute-force attack becomes infeasible as the number of rings

with at least one mixin increases.

4.2 Closed Set Attack
Yu et al. [26] define a closed set as follows.

▶ Definition 4. Let Rh = {R1, R2, . . . , Rn} be a multiset of CryptoNote transaction rings
and Oh = ∪n

i=1Ri. A subset C of Oh having cardinality k is called a closed set of Rh if
there exist k transaction rings Ri1 , Ri2 , . . . , Rik

in Rh such that C = ∪k
j=1Rij

.

2 In a multiset, elements can occur more than once.
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1:8 Analysis of CryptoNote Transaction Graphs using the DM Decomposition

Algorithm 1 The brute-force attack for tracing CryptoNote transactions

Input : A multiset of transaction rings Rh = {R1, R2, . . . , Rn}
Output : A multiset of pruned transaction rings R′

h = {R′
1, R′

2, . . . , R′
n} where

∅ ≠ R′
i ⊆ Ri for all i ∈ {1, 2, . . . , n}

// Initialize the rings in R′
h to the empty set;

for i← 1 to n do
R′

i ← ∅
end
// Iterate over elements of R1 ×R2 × · · · ×Rn to find SDRs;
foreach (P1, P2, . . . , Pn) in R1 ×R2 × · · · ×Rn do

if {P1, P2, . . . , Pn} is an SDR then
for i← 1 to n do

// Add Pi to R′
i;

R′
i ← R′

i ∪ {Pi}
end

end
end

▶ Example 5. To illustrate the definition and significance of a closed set, suppose that Rh

contains four transaction rings of the following form.

R1 = {P1, P2, P3} ,

R2 = {P2, P3} ,

R3 = {P1, P3} ,

R4 = {P1, P2, P3, P4} .

Exactly one public key from each ring is used to generate the linkable ring signature. If a public
key was used twice, the key image would repeat and the later of the two transactions would
be rejected by the miners. Since the union of the first three rings R1∪R2∪R3 = {P1, P2, P3}
has cardinality 3, the set {P1, P2, P3} is a closed set. Each of the keys P1, P2, P3 must be
the signing key in exactly one of the first three rings. This implies that none of them can be
the signing key in the fourth ring R4. So we deduce that P4 must be the signing key of ring
R4, rendering the latter traceable. ⌟

The closed set attack for tracing CryptoNote transactions is shown in Algorithm 2. Yu et
al. [26] proved that it is is optimal for undeniable traceability by showing that its output
is identical to the output of the brute-force attack. We rephrase their Theorem 1 in our
notation as follows.

▶ Theorem 6 (Yu et al. [26]). Given a multiset Rh = {R1, R2, . . . , Rn} of CryptoNote
transaction rings, let the multiset Rclosed

h be the output of the closed set attack and the
multiset Rbrute

h be the output of the brute-force attack. Then Rclosed
h = Rbrute

h .

The running time of the closed set attack is dominated by the time required to find all
the closed sets in R′

h. Note that R′
h is initially equal to Rh. After a closed set is found,

some of its rings may be pruned. This may cause new closed sets to become available. Hence
the search needs to be performed again.
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Algorithm 2 The closed set attack for tracing CryptoNote transactions

Input : A multiset of transaction rings Rh = {R1, R2, . . . , Rn}
Output : A multiset of pruned transaction rings R′

h = {R′
1, R′

2, . . . , R′
n} where

∅ ≠ R′
i ⊆ Ri for all i ∈ {1, 2, . . . , n}

// Initialize the rings in R′
h to the rings in Rh;

for i← 1 to n do
R′

i ← Ri

end
// Iterate over all the closed sets;
foreach closed set C = ∪k

j=1R′
ij

do
for i← 1 to n do

// Check that the ring does not generate the closed set;
if i ̸∈ {i1, i2, . . . , ik} then

// Remove elements of C from R′
i;

R′
i ← R′

i ∩ Cc

end
end

end

The naive algorithm [26, Appendix A] for finding closed sets by considering all subsets
of R′

h becomes infeasible as the size of |Rh| increases. Instead, Yu et al. [26] proposed the
clustering algorithm as an approximation to the naive algorithm.

4.3 Clustering Algorithm
▶ Definition 7. A subset of Rh is called a cluster.

A cluster consists of a set of rings from Rh. The distance of a ring R from a cluster is
defined as follows.

▶ Definition 8. Let C = {Ri1 , Ri2 , . . .} be a cluster and let pk(C) = ∪R′∈CR′ be the set of
keys in it. The distance of a ring R ∈ Rh from a cluster C is defined as

d(R, C) = |R| − |pk(C) ∩R|.

▶ Example 9. Consider the rings R1, . . . , R4 from Example 5. Suppose we consider the
cluster C = {R1, R2}. Then we have pk(C) = {P1, P2, P3}, d(R3, C) = 0, and d(R4, C) = 1. ⌟

Yu et al. [26] use a cluster formation algorithm as a subroutine in their clustering algorithm.
This algorithm forms a cluster by starting from any transaction ring in Rh and adding other
rings which are at a distance of at most 1 from the running cluster (see Algorithm 3).

The clustering algorithm for finding closed sets is shown in Algorithm 4 where Cascade-
Attack is a procedure that implements the cascade attack of [14, 17]. CascadeAttack takes
a multiset of transactions rings as input and outputs a pruned multiset after removing keys
from each ring that have been identified as mixins by the cascade attack.

The clustering algorithm may fail to find certain closed sets because a ring that is
needed to form a closed set may be at a distance of 2 or more from the current cluster in
Algorithm 3. We observed this in our empirical analysis of the Monero transaction graph
where the clustering algorithm failed to find some closed sets that were found by the DM
decomposition.

AFT 2023
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Algorithm 3 ClusterForm: An algorithm for constructing a cluster

Input : A multiset of transaction rings Rh = {R1, R2, . . . , Rn} and a specific ring
R ∈ Rh

Output : A cluster C containing R

// Initialize C to the set containing R;
C ← {R}

// Iterate over all the rings in Rh not equal to R;
foreach R′ ∈ Rh \R do

// Check if R′ is within a distance of 1 from C;
if d(R′, C) ≤ 1 then

// Add R′ to C;
C ← C ∪R′

end
end

5 The Dulmage-Mendelsohn Decomposition

Consistent with notation used by Dulmage and Mendelsohn [10], we define an undirected
bipartite graph K as a triple (S, T, E) where S and T are non-empty sets representing vertex
classes and E ⊆ S × T represents the edge set. So an edge in K is given by an ordered
pair (s, t) where s ∈ S and t ∈ T . The ordering of the vertices in the edge (s, t) is simply a
consequence of putting S before T in the triple (S, T, E), and does not imply directivity. We
say that an edge (s, t) belongs to the graph K, written as (s, t) ∈ K, to mean that (s, t) ∈ E.
We only consider bipartite graphs K where both S and T are finite sets.

5.1 Minimum Covers of Bipartite Graphs
▶ Definition 10. Let K = (S, T, E) be a bipartite graph. Let A and B be subsets of S and T

respectively. A pair of such sets (A, B) is called a vertex cover for a bipartite graph K if
for each edge (s, t) ∈ K, either s ∈ A or t ∈ B (both conditions can also hold).

▶ Definition 11. The size of a vertex cover (A, B) is defined as |A|+ |B| where |X| denotes
the cardinality of a set X.

Since S and T are assumed to be finite sets, every vertex cover of K will have a finite size.

▶ Definition 12. The cover number of a bipartite graph K is the minimum of |A|+ |B|
over all vertex covers (A, B) of K.

▶ Definition 13. A vertex cover (A, B) of a bipartite graph K whose size equals the cover
number of K is called a minimum cover.

The following two results were proved by Dulmage and Mendelsohn [10].

▶ Lemma 14. If (A1, B1) and (A2, B2) are minimum covers of a bipartite graph K having
finite cover number, then (A1 ∩ A2, B1 ∪ B2) and (A1 ∪ A2, B1 ∩ B2) are both minimum
covers of K.

▶ Lemma 15. Let (A1, B1) and (A2, B2) be minimum covers of a bipartite graph K having
finite cover number. If A1 ⊆ A2, then B1 ⊇ B2.
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Algorithm 4 The clustering algorithm

Input : A multiset of transaction rings Rh = {R1, R2, . . . , Rn}
Output : A multiset of pruned transaction rings R′

h = {R′
1, R′

2, . . . , R′
n} where

∅ ≠ R′
i ⊆ Ri for all i ∈ {1, 2, . . . , n}

// Run the cascade attack on Rh;
R′

h ← CascadeAttack(Rh);
// Set flag to true;
flag ← true;

while flag is true do
flag ← false;
// Iterate over all the rings in R′

h;
foreach R′ ∈ R′

h do
// Form a cluster starting from R′ using Algorithm 3;
C′ = {R′

i1
, R′

i2
, . . . , R′

ik
} ← ClusterForm(R′);

if C = ∪k
j=1R′

ij
is a closed set then

for i← 1 to n do
// Check that the ring does not generate the closed set C;
if i ̸∈ {i1, i2, . . . , ik} then

// Check if C and R′
i have elements in common;

if C ∩R′
i ̸= ∅ then

// Remove elements of C from R′
i;

R′
i ← R′

i ∩ Cc;
// Set the flag to indicate modification of transaction rings;
flag ← true;

end
end

end
if flag is true then

// Run the cascade attack on R′
h;

R′
h ← CascadeAttack(R′

h);
// Run the cascade attack on the cluster C′;
C′′ = {R′′

i1
, R′′

i2
, . . . , R′′

ik
} ← CascadeAttack(R′

h);
// Replace the rings in R′

h with intra-cluster cascade attack results;
for j ← 1 to k do

R′
ij
← R′′

ij
;

end
end

end
end

end

Setting A1 = A2 in the above lemma gives us the following corollary.

▶ Corollary 16. If (A, B1) and (A, B2) are both minimum covers of a bipartite graph K

having finite cover number, then B1 = B2.

AFT 2023
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For a bipartite graph K, let C be the set of all minimum covers. Let us define the following
sets obtained by taking intersections and unions of the components of the minimum covers.

A∗ =
⋂

(A,B)∈C

A, A∗ =
⋃

(A,B)∈C

A, (1)

B∗ =
⋂

(A,B)∈C

B, B∗ =
⋃

(A,B)∈C

B. (2)

By Lemma 14, if K has a finite cover number then the pairs (A∗, B∗) and (A∗, B∗) are both
minimum covers of K.

▶ Example 17. Reconsider the bipartite graph shown in Figure 3 with vertex classes
S = {P1, P2, P3, P4} and T = {I1, I2, I3}. Since (∅, T ) is a minimum cover the graph, A∗ = ∅
and B∗ = T . As ({P1}, {I2, I3}) and ({P1, P2}, {I3}) are the only other minimum covers,
A∗ = {P1, P2} and B∗ = {I3}.

5.2 Maximum Matchings on Bipartite Graphs
In a graph, we say that edges (s, t) and (s′, t′) share a vertex if either s = s′ or t = t′.

▶ Definition 18. A matching on a bipartite graph K = (S, T, E) is a subset M of the edge
set E such that no two edges in M share a vertex. The cardinality |M | is called the order
of the matching M .

▶ Definition 19. A maximum matching on a bipartite graph K is a matching on K of
maximum order.

The following definition classifies edges according to their membership in maximum
matchings on K.

▶ Definition 20. An edge (s, t) of a bipartite graph K is said to be admissible if there exists
a maximum matching M on K such that (s, t) ∈M . An edge which is not admissible is said
to be inadmissible.

The following result by König [16] says that maximum matchings have the same size as
minimum covers in bipartite graphs. We will need it in the proof of Theorem 26.

▶ Proposition 21. The cover number of a finite bipartite graph equals the order of maximum
matchings on the graph.

5.3 Definition of the DM Decomposition
With the above definitions in place, we are ready to describe the DM decomposition.

▶ Definition 22. Let K = (S, T, E) be a bipartite graph having a finite cover number. The
Dulmage-Mendelsohn decomposition of K is a partition of S × T into three disjoint
sets R1, R2, R3 which satisfy the following properties:
1. The set of admissible edges in K equals E ∩R1.
2. The set of inadmissible edges in K equals E ∩R2.
3. E ∩R3 = ∅.

The fine structure of the sets R1, R2, R3 depends on the minimum covers of K. Let us
consider two cases.
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5.3.1 Case 1: A∗ = A∗.
If A∗ = A∗, then the graph K has only one minimum cover given by (A∗, B∗) = (A∗, B∗).
In this case, the following result holds.

▶ Proposition 23. Let K = (S, T, E) be a bipartite graph having a finite cover number. If K

has only one minimum cover given by (A∗, B∗), then the Dulmage-Mendelsohn decomposition
of K is the partition of S × T into the sets R1, R2, R3 given by

R1 = (A∗ × (B∗)c)
⋃

((A∗)c ×B∗) ,

R2 = A∗ ×B∗, (3)
R3 = (A∗)c × (B∗)c.

5.3.2 Case 2: A∗ ̸= A∗.
Now suppose A∗ ̸= A∗. By definition, A∗ ⊆ A∗. So A∗ must be a proper subset of A∗. Then
there exists at least one non-empty set X ⊂ S such that A∗ ∩ X = ∅ and (A∗ ∪ X, Y ) is
a minimum cover of K for some Y ⊂ T . The existence of such a set follows from the fact
A∗ \A∗ is a candidate for X. Let S1 be a set of smallest cardinality among all candidates
for X. There may be many possibilities for S1, all having the same smallest cardinality. We
can pick any one of them.

Let (A1, B1) be a minimum cover with A1 = A∗ ∪ S1. By Corollary 16, B1 is uniquely
determined by A1. As A∗ ⊆ A1, Theorem 15 tells us that B1 ⊆ B∗. As all minimum covers of
K have the same size, we have |A∗|+|B∗| = |A1|+|B1|. Since |A1| > |A∗|, we have |B1| < |B∗|.
Thus B1 is a proper subset of B∗. Let T1 = B∗ \ B1. Since |A1| − |A∗| = |B∗| − |B1|, we
have |S1| = |T1|.

If A1 = A∗, the process stops. Otherwise, there exists at least one non-empty set X ⊂ S

such that A1 ∩X = ∅ and A1 ∪X is the first component of a minimum cover of K. Let S2
be a set of smallest cardinality among all candidates for X. Let (A2, B2) be a minimum
cover with A2 = A1 ∪ S2 = A∗ ∪ S1 ∪ S2. As before, B2 is uniquely determined by A2 and
B2 ⊂ B1. Let T2 = B1 \ B2. Since |A2| − |A1| = |B1| − |B2|, we have |S2| = |T2|. Since
B∗ = T1 ∪B1 and T2 = B1 \B2, we have B∗ = T1 ∪ T2 ∪B2.

If we proceed in this manner, the process will stop for some k where

A∗ ∪ S1 ∪ S2 . . . ∪ Sk = A∗. (4)

At this point, (A∗, B∗) will be the resulting minimum cover. Furthermore, the Ti’s satisfy

B∗ = T1 ∪ T2 ∪ . . . Tk ∪B∗. (5)

In the intermediate stages of this process, (Ai, Bi) is a minimum cover for K for each
i ∈ {1, 2, . . . , k} where

Ai = A∗ ∪ S1 ∪ S2 ∪ . . . ∪ Si, (6)
Bi = Ti+1 ∪ Ti+2 ∪ . . . ∪ Tk ∪B∗. (7)

Equations (4) and (5) give the following decompositions of the vertex classes S and T .

S = A∗
⋃

(A∗)c = A∗ ∪ S1 ∪ S2 . . . ∪ Sk

⋃
(A∗)c, (8)

T = (B∗)c
⋃

B∗ = (B∗)c
⋃

T1 ∪ T2 . . . ∪ Tk ∪B∗. (9)
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The k +2 sets in the unions on the extreme right of both the above equations form a partition
of S and T respectively. These partitions are unique except for a permutation of the Si’s
having same cardinality, with the Ti’s appropriately permuted.

With these definitions in place, we have the following result from [10].

▶ Proposition 24. Let K = (S, T, E) be a bipartite graph having a finite cover number. Then
the Dulmage-Mendelsohn decomposition of K is given by the partition of S × T into the sets
R1, R2, R3 given by

R1 = (A∗ × (B∗)c)
⋃

(S1 × T1)
⋃

. . .
⋃

(Sk × Tk)
⋃

((A∗)c ×B∗) , (10)

R2 = (A∗ ×B∗)
⋃

(A∗ ×B∗)
⋃
i<j

(Si × Tj) , (11)

R3 = ((A∗)c × (B∗)c)
⋃

((A∗)c × (B∗)c)
⋃
i>j

(Si × Tj) . (12)

▶ Example 25. Consider the bipartite graph in Figure 3 with vertex classes S = {P1, P2, P3, P4}
and T = {I1, I2, I3}.

(i) As we noted in Example 17, A∗ = ∅, B∗ = T and A∗ = {P1, P2}, B∗ = {I3}.
(ii) As ({P1}, {I2, I3}) is the only candidate for (A1, B1), we have S1 = {P1} and T1 = {I1}.
(iii) As ({P1, P2}, {I3}) is the only candidate for (A2, B2), we have S2 = {P2} and T2 = {I2}.
The DM decomposition is given by

R1 = {(P1, I1), (P2, I2), (P3, I3), (P4, I3)} ,

R2 = {(P1, I3), (P2, I3), (P1, I2)} ,

R3 = {(P3, I1), (P3, I2), (P4, I1), (P4, I2), (P2, I1)}

The graph has no edges in R3. The edges in R2 cannot appear in any maximum matching,
as P1 must be matched to I1 and P2 must be matched to I2. The edges in R1 appear in at
least one maximum matching on the graph. ⌟

To visualize the DM decomposition, suppose that the vertices in S are ordered according
to the partition in Equation (8), i.e. the vertices in A∗ appear first, followed by vertices in
S1, S2, . . . , Sk, and (A∗)c. Similarly, suppose that the vertices in T are ordered according to
the partition in Equation (9). Then the DM decomposition can be represented by Figure 4,
where the rows correspond to vertices in T and the columns correspond to vertices in S.
The admissible edges lie in blocks along the diagonal, the inadmissible edges lie above these
blocks, and there are no edges below these blocks.

5.4 Computing the DM Decomposition
The DM decomposition of a bipartite graph K can be computed by finding a maximum
matching M on K, then finding subsets of vertex classes unreachable from M via alternating
paths, and finally by finding strongly connected components of the subgraph induced by the
unreachable vertices (see [19] for details). Surprisingly, the DM decomposition is independent
of the particular maximum matching chosen in the first step [19]. The component algorithms
of the DM decomposition computation have worst-case running times which are polynomial
in the number of graph vertices and edges.

We implemented the DM decomposition in Rust. Our code is available at https:
//github.com/avras/cryptonote-analysis under an MIT license. While an open source

https://github.com/avras/cryptonote-analysis
https://github.com/avras/cryptonote-analysis
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(
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× B∗

R2

R3

Figure 4 Visualization of the DM decomposition of a bipartite graph

implementation of the DM decomposition already existed in CSparse [9], it was much
slower than the proprietary implementation in Matlab [1]. Our implementation of the DM
decomposition has performance comparable to the Matlab implementation. Instructions on
preparing the input data for our implementation are available at https://www.respectedsir.
com/cna.

6 The DM Decomposition Finds All Closed Sets

By Theorem 6, the closed set attack is an optimal method for performing undeniable
traceability analysis on CryptoNote transaction graphs. However, the naive method of
finding closed sets by checking all subsets of the transaction rings [26, Appendix A] is not
computationally feasible. The clustering algorithm for finding closed sets is guaranteed to
find all closed sets of size 5 or less [26, Theorem 2]. While it does find closed sets with size
more than 5, it is not guaranteed to find all closed sets.

In this section, we show that the DM decomposition finds all the closed sets in a
CryptoNote transaction graph. As the DM decomposition can be computed in polynomial
time, we obtain an efficient method to achieve the best possible undeniable traceability
performance.

Let us establish/recall the following notation.
(i) Let Rh = {R1, R2, . . . , Rn} be the multiset of all transaction rings which have appeared

on the blockchain up to height h.
(ii) Let Ii be the key image corresponding to ring Ri.
(iii) Let Kh = {I1, I2, . . . , In} be the set of all key images that have appeared on the

blockchain up to height h.

AFT 2023
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Pk+1

Pk+2

Pk+3

Pm

...

...

I1

I2

Ik

Ik+1

Ik+2

In

Figure 5 Transaction graph used in the proof of Theorem 26

(iv) Let Oh = ∪n
i=1Ri = {P1, P2, . . . , Pm} be the set of all keys (outputs) that have appeared

in at least one transaction ring.
(v) Let E ⊆ Oh ×Kh be the edge set of the transaction graph induced by the rings in Rh.

For P ∈ Oh and I ∈ Kh, the edge (P, I) belongs to E if the output P appeared in the
transaction ring used to create I.

(vi) Let C be a closed set of Rh having cardinality k. By Definition 4, there exist k

transaction rings Ri1 , Ri2 , . . . , Rik
in Rh such that C = ∪k

j=1Rij . To describe this
scenario briefly, we will say that the rings Ri1 , Ri2 , . . . , Rik

constitute the closed set C.
Furthermore, there exist k keys Pi1 , . . . , Pik

in Oh such that C = {Pi1 , Pi2 , . . . , Pik
}.

(vii) Let IC = {Ii1 , Ii2 , . . . , Iik
} be the set of key images corresponding to the rings

Ri1 , Ri2 , . . . , Rik
that constitute C.

▶ Theorem 26. Let Gh = (Oh,Kh, E) be the CryptoNote transaction graph induced by the
rings in Rh and their corresponding key images. Let C be a closed set of Rh and let IC be
the set of key images corresponding to the rings that constitute C. Then (C,Kh \ IC) is a
minimum cover of Gh. Conversely, if (A, B) is a minimum cover of Gh where A ̸= ∅, then A

is a closed set.

Proof. Without loss of generality, we can assume that R1, R2, . . . , Rk are the rings that
constitute C and I1, I2, . . . , Ik are the key images corresponding to these rings. Furthermore,
let C = ∪k

i=1Ri = {P1, P2, . . . , Pk}.3 By definition, IC = {I1, I2, . . . , Ik}.
Suppose we draw the bipartite graph induced by the blockchain history by listing

P1, . . . , Pk and I1, . . . , Ik before the other vertices on each side. Let Pk+1, . . . , Pm be the
other outputs in Oh. Let Ik+1, . . . , In be the other key images in Kh. Figure 5 illustrates
this bipartite graph.

Since each key image in I1, I2, . . . , In corresponds to a unique true output on the left
hand side, there exists a maximum matching of order n on this graph. By Proposition 21,

3 In general, the rings that constitute C and the corresponding keys and key images may not have indices
1, 2, . . . , k. But we can always relabel the elements in these sets to satisfy our assumption.
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minimum covers of this graph will also have size n. Note that every edge in the graph is
incident on some element in {I1, I2, . . . , In}. Thus (∅,Kh) = (∅, {I1, . . . , In}) is a minimum
cover of the graph.

We claim that there are no edges between the key images I1, . . . , Ik and the outputs
Pk+1, Pk+2, . . . , Pm. To see this, suppose there is an edge from Ij to Pl for some j ∈
{1, 2, . . . , k} and l ∈ {k + 1, . . . , m}. Then Pl must belong to the ring Rj as it is the only
ring which contributes edges incident on Ij . This would mean Pl belongs to ∪k

i=1Ri =
{P1, P2, . . . , Pk}, which is a contradiction as l ≥ k + 1. So all the edges incident on I1, . . . , Ik

must have an output from P1, . . . , Pk on the other end.
The above argument shows that (C,Kh \ IC) = ({P1, . . . , Pk}, {Ik+1, . . . , In}) is a min-

imum cover of the graph. Thus every closed set of Rh is the first member of a minimum
cover of the transaction graph.

To prove the other direction, suppose that (A, B) is a minimum cover of the transaction
graph where A ̸= ∅. Let Bc = Kh \ B be the set of key images not in B. Suppose
Bc = {Ii1 , Ii2 , . . . , Iil

}.
Since (∅,Kh) is a minimum cover of the graph, every minimum cover must have size n.

This implies that |A|+ |B| = n. As l = |Bc| = n− |B|, the set A must have l outputs.
Since (A, B) is a cover of the transaction graph, every edge incident on key images in Bc

must be covered by an output in A (as B can only cover edges incident on the key images in
it). Each key image Iij in Bc is associated with a unique transaction ring Rij which contains
the true output corresponding to it. The ring Rij

is the set of outputs adjacent to Iij
in the

graph. We claim that Rij is a subset of A.
We prove our claim by contradiction. If there is a key P in Rij

that is not contained in
A, then the edge (P, Iij

) exists but P ̸∈ A and Iij
̸∈ B. This contradicts our assumption

that (A, B) is a vertex cover.
Since the transaction ring Rij

is a subset of A for every Iij
∈ Bc, we have ∪l

j=1Rij
⊆ A.

Furthermore,
∣∣∪l

j=1Rij

∣∣ ≥ l because each of the l key images Ii1 , Ii2 , . . . , Iil
has a unique

true output in ∪l
j=1Rij

. Putting all this together, we have

l ≤

∣∣∣∣∣∣
l⋃

j=1
Rij

∣∣∣∣∣∣ ≤ |A| = l. (13)

We conclude that A = ∪l
j=1Rij and that

∣∣∪l
j=1Rij

∣∣ = l, which proves that A is a closed set
of Rh. ◀

The above theorem says that finding all closed sets of a CryptoNote transaction graph
is equivalent to finding all minimum covers of it. When the graph has only one minimum
cover (i.e. when A∗ = A∗), there is only one possible closed set. For the case when A∗ ̸= A∗,
Dulmage and Mendelsohn proved the following theorem [10, Theorem 10] which shows
that all the possible minimum covers of a bipartite graph can be calculated from the DM
decomposition.

▶ Theorem 27. Let K = (S, T, E) be a bipartite graph having a finite cover number and
more than one minimum cover. Let A∗, B∗, S1, S2, . . . , Sk, T1, T2, . . . , Tk be as defined in
Section 5.3.2. Let (A, B) be a minimum cover of K. Then exists a subset Λ of the index set
{1, 2, . . . , k} such that

A =
(⋃

i∈Λ

Si

)
∪A∗, B =

( ⋃
i∈Λc

Ti

)
∪B∗.
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This theorem implies that every minimum cover of the transaction graph can be recovered
from the DM decomposition of the graph. This in turn implies that every closed set in the
transaction graph can be found from the DM decomposition.

7 DM Decomposition of the Monero Transaction Graph

We implemented the DM decomposition, the cascade attack, and the closed set attack in
Rust. Our code is available at https://github.com/avras/cryptonote-analysis under
an MIT license.

7.1 Empirical Analysis without Hard Fork Information

To evaluate the effectiveness of the DM decomposition in tracing transaction rings, we used
the results obtained by the clustering algorithm of Yu et al. [26] on Monero as the benchmark.
The latter results are the best results on Monero undeniable traceability which do not use
information from hard forks.

Yu et al. considered Monero transactions contained in blocks with height up to 1,541,236
(March 30, 2018). This data set contains 23,164,745 transaction rings (each one contributing
a key image) and 25,126,033 outputs. The corresponding bipartite graph has 58,791,856
edges. Out of the 23,164,745 transaction rings in the data set, 4,330,234 were RingCT rings
and the remaining 18,834,511 were pre-RingCT rings.

Previous work [14], [17], [26], on Monero traceability has shown that RingCT transactions
in Monero are immune to undeniable traceability attacks. The same observation holds for
the DM decomposition approach. None of the 4,330,234 RingCT rings could be traced by
the DM decomposition (when information from hard forks is not used). Table 1 compares
the number of pre-RingCT transaction rings traced by the clustering algorithm and the DM
decomposition. Each row in the table gives results for transaction rings which have a certain
number of mixin outputs. The results for all transaction rings with 10 or more mixin outputs
are combined in the row with label “≥ 10”.

All the 16,335,308 rings traced by the DM decomposition are associated with a set Si

with |Si| = 1. The singleton set Ti corresponding to Si has the key image of the output in
Si. As seen from the last row, the DM decomposition identifies 341 more traceable rings
than the clustering algorithm. These new rings are only among the transaction rings having
2, 3, or 4 mixins.

Yu et al. report finding 3017 closed sets with sizes in the range 2 to 55. The DM
decomposition is able to find 3045 closed sets with 3041 of them having sizes in the range 2
to 55. The remaining four closed sets have sizes 103, 106, 119, and 122. This discrepancy is
due to the approximate nature of the clustering algorithm used by Yu et al. to find closed
sets.

To check if the transactions which have appeared after block 1,541,236 have affected the
traceability of RingCT rings, we computed the DM decomposition of the subgraph induced
exclusively by RingCT transaction rings in all blocks up to height 2,530,000 (January 4, 2022).4
This subgraph has 40,351,733 key images and 45,805,726 outputs with 409,626,277 edges
between them. Let K be the set of all the key images in this subgraph. Its DM decomposition

4 We could not try later block heights as the resulting transaction graphs were too large to fit in the
memory of our test machine.

https://github.com/avras/cryptonote-analysis
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No. of mixins No. of pre-RingCT Traced by clustering Traced by DM
rings algorithm decomposition

0 12,209,675 12,209,675 12,209,675
1 707,786 625,641 625,641
2 2,941,525 1,779,134 1,779,446
3 1,345,574 952,855 952,862
4 972,457 451,959 451,981
5 143,793 74,186 74,186
6 366,894 202,360 202,360
7 12,361 4,296 4,296
8 9,148 3,506 3,506
9 6,396 2,178 2,178
≥ 10 118,902 29,177 29,177
Total 18,834,511 16,334,967 16,335,308

Table 1 Monero traceability of pre-RingCT rings by the clustering algorithm vs DM decomposition
(up to block 1,541,236)

revealed only two minimum covers, (∅,K) and (S1,K \ T1) where |S1| = |T1| = 5. The set S1
consists of RingCT outputs with indices 3890287, 3890288, 3890289, 3890290, and 3890291.

These five outputs were created by Wijaya et al. [22] in block 1,468,425. All of them
were spent using the other four as mixins in five transaction rings in block 1,468,439 (Dec
17, 2017), to demonstrate that a set of outputs can be considered spent without relying on
zero-mixin transactions. These five outputs are also marked as spent by the Monero blackball
tool [6]. Thus, the DM decomposition of the Monero RingCT subgraph (using only main
chain data) does not identify any new outputs as spent.

There were 37,038,237 RingCT transaction rings in the blocks with heights from 1,468,426
to 2,530,000. The five spent RingCT outputs were chosen as mixins in only 25 of these RingCT
rings. Each of the 25 rings had at least 4 mixins and had their effective number of mixins
reduced by one. Thus, the RingCT rings are mostly unaffected by the DM decomposition
analysis.

The clustering algorithm was also able to identify the size 5 closed set. But it took 64
hours to finish running on our test machine while the DM decomposition could be computed
in 4 hours.

7.2 Empirical Analysis using Hard Fork Information

To check the immunity of Monero RingCT transactions against the DM decomposition
technique which incorporates hard fork information, we constructed a transaction graph
using four different hard forks: Monero Original, MoneroV, Monero v7, and Monero v9.
Table 2 gives the information regarding these forks where the last column contains the
number of RingCT key images which appeared both in fork chain and the Monero main
chain up to block height 2,530,000. While Monero Original and MoneroV were intentional
hard forks created by developers who preferred a different design, the blocks on the Monero
v7 and Monero v9 forks were unintentionally created by miners who were late in upgrading
to the latest version of the main Monero client. This is the reason for the small number of
blocks in the Monero v7 and Monero v9 forks.

We computed the performance of the DM decomposition technique on this graph up to
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Fork Name Fork block Number of Number of Number of
blocks in common common RingCT

fork key images key images
Monero Original 1,546,000 238,682 86,685 64,189

MoneroV 1,564,966 146,325 9,387 6,609
Monero v7 1,685,555 29 1,061 1,027
Monero v9 1,788,000 73 1,581 1,581

Table 2 Information about the four Monero hard forks

Monero block height 2,530,000 (January 4, 2022). We found that 63,060 RingCT transaction
rings out of 40,351,733 are undeniably traceable, i.e. only 0.15% of the RingCT rings are
undeniably traceable. Note that the number of traceable RingCT rings is less than the total
number of common RingCT key images shown in Table 2. This is because the appearance
of key image in both the main chain and the fork chain does not imply traceability. If the
transaction rings in both cases have more than one output in common, the true output being
spent may not be identified.

The clustering algorithm was also able to trace the same 63,060 RingCT transaction
rings. But it took 64 hours to finish while the DM decomposition took 4 hours. In fact, the
cascade attack, which is the first step in the clustering algorithm (see Algorithm 4), was able
to trace all these rings. The subsequent closed set search was fruitless as there were no closed
sets in the transaction graph, except for the size 5 closed set induced by Wijaya et al. [22].

Readers interested in the effect of the DM decomposition analysis (using hard forks)
on non-RingCT rings up to block height 2,530,000 can read the section at https://www.
respectedsir.com/cna/hardfork-nonringct.html in our documentation.

8 Conclusion

We showed that the classical notion of the Dulmage-Mendelsohn decomposition of bipartite
graphs gives an efficient implementation of the closed set attack, which is the optimal method
for undeniable traceability in CryptoNote blockchains. Combining the DM decomposition
with previously proposed methods for plausible traceability is an interesting direction for
future work. We have released open source implementations of the DM decomposition,
cascade attack, and clustering algorithm. We have also released the scripts used to generate
all the empirical results in this paper along with detailed instructions on how to use them.
We hope that these tools will be useful to other researchers, especially those working on
methods for plausible traceability.
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