
Falcon Down: Breaking Falcon Post-Quantum
Signature Scheme through Side-Channel Attacks

Emre Karabulut
Department of Electrical and Computer Engineering

North Carolina State University
NC, USA

ekarabu@ncsu.edu

Aydin Aysu
Department of Electrical and Computer Engineering

North Carolina State University
NC, USA

aaysu@ncsu.edu

Abstract—This paper proposes the first side-channel attack
on FALCON—a NIST Round-3 finalist for the post-quantum
digital signature standard. We demonstrate a known-plaintext
attack that uses the electromagnetic measurements of the device
to extract the secret signing keys, which then can be used to forge
signatures on arbitrary messages. The proposed attack targets
the unique floating-point multiplications within FALCON’s Fast
Fourier Transform through a novel extend-and-prune strategy
that extracts the sign, mantissa, and exponent variables without
false positives. The extracted floating-point values are then
mapped back to the secret key’s coefficients. Our attack, notably,
does not require pre-characterizing the power profile of the
target device or crafting special inputs. Instead, the statistical
differences on obtained traces are sufficient to successfully
execute our proposed differential electromagnetic analysis. The
results on an ARM-Cortex-M4 running the FALCON NIST’s
reference software show that approximately 10k measurements
are sufficient to extract the entire key.

Index Terms—side-channel attacks, post-quantum cryptogra-
phy, digital signatures

I. INTRODUCTION
Advances in computing technology have a drastic effect

on code breaking. Just like how Bombe, the first electro-
mechanical computer, has solved the infamous Enigma cipher,
the first practical quantum computer can crack today’s encryp-
tion schemes. Indeed, it is well known that quantum algorithms
offer exponential speedup on solving integer factorization [1]
and (elliptic curve) discrete logarithm [2] problems that exist-
ing public-key systems rely on. Post-quantum cryptography,
therefore, seeks alternative classical algorithms that can resist
quantum cryptanalysis. The growing concern of the quantum
threat has motivated the National Institute of Standards and
Technology (NIST) to solicit and evaluate applications for
a post-quantum cryptography standard, which is an ongoing
process envisioned to be complete by 2023.

Although algorithms can be mathematically-sound against
classical or quantum cryptanalysis, their implementations may
leak secret information through side-channels [3]. These at-
tacks find a correlation between secret values and implemen-
tation behaviors such as execution time, power consumption,
and electromagnetic (EM) radiation. Among these attacks,
physical side-channels (like the EM leakage) are of particular
importance since they exist not because of bad design choices
per se but due to the physics of data-dependent CMOS activity.
These attacks can succeed with only a few tests obtained
from the physical device and without needing any functional
quantum computer. Side-channel attacks are important for

NIST as well, as they are a criterion for determining the
ultimate standard [4].

We propose the first side-channel attack on FALCON—a
NIST Round-3 finalist for the post-quantum digital signature
standard [5]. Although FALCON is one of the three finalists,
no side-channel attacks have been published on it. Existing
attacks on the other two finalists [6]–[8] or similar lattice
cryptosystems [9]–[17] do not trivially extend to FALCON’s
unique computations. Specifically, FALCON applies a Fast
Fourier Transform (FFT) over floating-point numbers rather
than using the popular Number Theoretic Transform (NTT),
whose side-channels have been thoroughly evaluated [18],
[19]. We first show that a straightforward attack on the
floating-point variables (and particularly the mantissa part)
suffers from false positives due to multiplication. But we then
propose a novel extend-and-prune strategy that resolves false
positives by taking the intermediate additions into account.

We execute the proposed attack on the EM traces obtained
from the FALCON reference software implementation run-
ning on the ARM-Cortex-M4 microcontroller. Notably, our
attack does not require a pre-characterization of the target
device under different keys, i.e., works without templates [20].
The results show that, on average, the targeted floating-
point variables can be captured with over 99.99% probability
with around 10k measurements. Upon extracting the targeted
intermediate variables and reverting back to the prior steps of
FALCON, we show that the adversary can recover the entire
secret key and successfully sign arbitrary messages.

The contributions of this paper are as follows.
• We propose the first side-channel attack on NIST’s

Round-3 post-quantum digital signature standard finalist
FALCON. We analyze the algorithm, reveal the vulnera-
ble computations that can leak information and that leak-
age can cause forging signatures on arbitrary messages.

• We show that a straightforward attack on the targeted
computations fails due to multiplication false positives
and introduce a novel attack that can resolve false guesses
through an extend-and-prune strategy.

• We apply the proposed attack on the reference software
of FALCON taken from NIST’s website and demonstrate
that the proposed attack can extract the entire signing
keys with a few thousand measurements when FALCON
runs on an ARM-Cortex-M4 microcontroller.

The rest of the paper is organized as follows. Section II

Algorithm 1 FALCON Key Generation Algorithm [5]
Input: A monic polynomial φ ∈ Z[x], a modulus q
Output: A secret key sk and a public key h

1: f, g, F,G← NTRUGen(φ, q)

2: B ←
[
g −f
G F

]
3: B̂ ← FFT (B)
4: G← B̂ × B̂∗ . × represents matrix multiplication
5: T ← ffLDL∗(G)
6: for each leaf of T do
7: leaf.value← σ/

√
leaf.value

8: end for
9: sk ← (B̂, T)

10: h← gf−1mod(q)
11: return sk, h

provides a background on the FALCON signature scheme
and the underlying computations. Section III describes the
proposed attack. Section IV shows the attack results. Section
V discusses possible countermeasures along with other related
aspects, and Section VI concludes the paper.

II. BACKGROUND

This section provides background information about the
FALCON digital signature algorithm and the threat model.

A. Threat Model

Our work follows the standard assumptions in EM side-
channel attacks where the adversary has physical access to
the device and captures EM measurements while the key-
dependent computations are carried out [21]. Two notable
advantages of our attack over some recent work on lattice
cryptography side-channels is not requiring to craft special
inputs [15], [22] or another source of vulnerability such as a
timing side-channel [23] to extract the secret information.

B. The Falcon Post-Quantum Digital Signature Scheme

FALCON is a post-quantum, lattice-based, hash-and-sign
signature scheme [5]. FALCON consists of key generation,
signing, and signature verification procedures. Here we sum-
marize the first two procedures since they are crucial to
understand our attack. We refer the interested reader to the
official FALCON specification document for details [5].

Algorithm 1 shows the key generation procedure that pro-
duces the secret key sk for creating and the public key h
for verifying signatures. The inputs of the algorithm are the
parameters φ and q: all operations occur over an n degree
monic polynomial φ that is xn + 1 for the binary case and
xn−xn/2+1 for the ternary case, while q is the modulus prime
number. This algorithm first randomly samples the coefficients
of the polynomials f and g ∈ Z[x] from a discrete Gaussian
distribution and then computes F and G ∈ Z[x] that satisfy the
NTRU equation fG− gF = q mod φ. The polynomials f ,
g, F , and G are called private elements. These polynomials
are then combined, passed through the FFT, and converted

Algorithm 2 FALCON Signature Generation Algorithm [5]
Input: a message m, a secret key sk, a bound β2

Output: a signature sig of m
1: r ← {0, 1}320 uniformly
2: c← HashToPoint (r||m)
3: t← (−1

q FFT (c)� FFT (F),
1
qFFT (c)� FFT (f))

4: do . � represents FFT multiplication
5: do
6: z ← ffSampling (t, T)

7: s← (t− z)
[
FFT (g) −FFT (f)
FFT (G) −FFT (F)

]
8: while s2 > [β2]
9: (s1, s2)← invFFT (s)

10: s← Compress(s2, 8 · sbytelen− 328)
11: while s =⊥
12: return sig = (r, s)

into the full-rank Gram matrix G. To compute the binary tree
T , FALCON applies an LDL decomposition on G. The key
generation algorithm returns the public key h that satisfies
the equation of gf−1 = h and the secret key sk has two
components B̂ and T that are derived from four polynomials
f, g, F,G ∈ Z[x]. Thus, this key generation hardness is
based on the quantum-resilient NTRU problem that relies on
the difficulty of recovering f and g polynomials given the
polynomial ring element h. The polynomial coefficients of
these private polynomials f and g has a range of -127 to +127
integer values.

Algorithm 2 illustrates FALCON’s signing procedure, which
takes in a message m, the signing key sk, and a bound to
check the validity of the signature, and returns a signature
with two components: r and s. The algorithm first hashes the
given message m with a uniformly random salt r to compute
c. Then, the hashed value c goes to the FFT domain and gets
multiplied private elements f and F to obtain short vectors
s1, s2 where s1 + s2h = c. Lastly, the vector s2 is encoded
(compressed) to generate the signature bitstring s.

C. FFT over Floating-Point Numbers

FALCON argues that it uses trapdoor samplers and thus
needs to operate with floating-point arithmetic and with FFT
rather than integer arithmetic and NTT [5]. FALCON approxi-
mates the floating-point numbers used in arithmetic operations
similar to the IEEE 754 floating-point (double precision) stan-
dard. This approximation represents a floating-point number
with 64 bits where the MSB is the sign bit, the following 11
bits are exponent and the rest 52 bits are mantissa. FALCON
requires the floating-point arithmetic during signing and key
generation steps we show in Algorihtms 1 and 2.

FALCON speeds up the multiplication of ring polynomi-
als with FFT, which operates over the ring Zq/φ(x) where
φ(x) is a monic reduction polynomial. FFT reduces the
time-complexity by transforming polynomials in Zq/φ(x) to
another domain where polynomial multiplication becomes a
coefficient-wise (scalar) multiplication. FALCON’s signing

Fig. 1. The multiplication of the private element f and hashed message
polynomial c. The attack targets the coefficient-wise (scalar) floating-point
multiplications at the FFT domain.

procedure first converts the hashed message and the coef-
ficients of private key elements (f, g, F,G) to the floating-
point numbers, then applies the FFT domain transformation
on them (see Algorithm 2, line 3). Therefore, the FFT algo-
rithm converts the 8-bit integer coefficients of the private key
elements to 64-bit floating-point coefficients. FFT algorithm
applies floating-point addition, subtraction, and multiplication
between the coefficients of the input polynomial. After passing
to the FFT domain, FALCON signing algorithm performs a
coefficient-wise (scalar) floating-point multiplication between
the private key elements f and F and the hashed message
output c.

III. THE PROPOSED SIDE-CHANNEL ATTACK

This section presents the proposed attack on FALCON
digital signature algorithm and the related challenges. First,
we describe the intermediate computation we target and why
recovering that variable enables recovering secret keys and
forging signatures. We then introduce the challenges of exe-
cuting the side-channel attack on the targeted computation and
how we addressed those challenges.

A. The Targeted Operation FFT (c)�FFT (f) and Rationale

Our attack targets the floating-point multiplication within
the computations of FFT (c) � FFT (f) (see Algorithm 2,
line 3). We argue that (i) a known-plaintext attack on these
computations is possible and (ii) that capturing the coefficients
of FFT (f) with a side-channel attack enables the adversary
to sign arbitrary messages.

FALCON’s private elements consist of polynomials f , g,
F , and G. These polynomials are used to compute the secret
signing key components T and B̂ (see Algorithm 2). As
described in Section II, polynomials F and G form an NTRU
equation with f and g; hence, if the adversary knows the
polynomials f and g, it can compute F and G, derive the entire
secret key, and successfully sign arbitrary messages. Since
the public key h also is the product of gf−1, the adversary
needs to extract either the polynomial f or g to perform

Fig. 2. The proposed attack on FALCON’s floating-point multiplications.
Targeting multiplications (shown in red dashed lines) creates false positives
and targeting intermediate additions (shown in greed dashed lines) eliminates
them.

the successful attack. To that end, we target the operation
FFT (c)�FFT (f) (see Algorithm 2, step 3), where the FFT-
based polynomial multiplication between the hashed message
c and the private polynomial element of f occurs. Targeting
this computation with a side-channel attack is feasible because
c is known to the adversary and thus the secret f can be
hypothesized and checked through the leakage.

Figure 1 shows the details of the targeted FFT-based mul-
tiplication between the hashed message c and the private
element f . FALCON reference implementation first converts
the integer coefficients of the polynomials c and f to floating-
point. Then, FALCON applies an FFT transformation over
these floating-point coefficients. After the FFT conversion,
FALCON performs a coefficeint-wise (scalar) floating-point
multiplication between the 64-bit coefficients of FFT (c) and
FFT (f). Since the uniformly random salt r and the message
m are public, FFT (c) can be computed (and thus known)
by the adversary. The proposed attack, therefore, focuses on
the floating-point multiplications between the coefficients of
the known FFT (c) and secret FFT (f). If the adversary suc-
cessfully extracts the coefficients of the polynomial FFT (f),
it can recover the private element f because FALCON’s FFT
function is reversible and one-to-one.

We do not claim that side-channel vulnerabilities are exclu-
sive to the floating-point multiplication within the FALCON
signing algorithm. But we do claim that our proposed attack
is sufficient to extract the signing keys. Other parts of the
algorithm such as the key generation steps may also leak
information.

B. Retrieval of FFT (f) via Divide-and-Conquer

Figure 2 shows FALCON’s floating-point multiplication
steps on two coefficients. The multiplication operation takes
in two 64-bit coefficients and generates a 64-bit output.
The operation consists of three parts: mantissa multiplication,
exponent addition and sign bit computation.

Fig. 3. An example EM measurement trace from our experiment showing
the related mantissa, exponent, and sign computations.

The mantissa multiplication has four steps. First, it concate-
nates 52-bit mantissa of the input coefficients with a single
bit ‘1’ to make it the most-significant-bit (MSB). Second,
it splits the mantissa bits as the higher-order 28 bits and
the lower-order 25 bits. Third, it applies a straightforward
schoolbook integer multiplication on the split mantissa bits
of the two coefficients. Due to the splitting, four addition
operations occur within the schoolbook multiplication, which
would generate 106-bit products. Since mantissa size has to be
ultimately 52 bits, the bottom bits are called the unused, sticky
bits. The fourth step, therefore, is to round the multiplication
product to 52 bits by removing those sticky bits.

FALCON applies the exponent addition on the 11-bit ex-
ponents of the input coefficients. Exponent addition also gets
an extra carry bit from the mantissa multiplication result. The
final operation is calculating the sign bit, which is an XOR
operation between the MSB bits of the input coefficients.

We perform a divide-and-conquer strategy to attack FAL-
CON’s floating-point multiplication. Our attack method sep-
arately recovers mantissa, exponent, and sign bits, and it
combines them to obtain the coefficients of FFT (f). Without
such a strategy, a straightforward differential attack would
need to create massive tables having 264 entries for each
coefficient. Figure 3 shows a captured EM trace of the targeted
floating-point multiplication between two coefficients. The red
line is the EM signal and the black dash lines annotate during
which time samples mantissa, exponent and sign operations
are performed.

The key challenge in achieving this attack is eliminating
the false positives that occur on the mantissa multiplication.
Indeed, multiplication is known to generate false positives
because the results are correlated, i.e., similar coefficients
will produce a similar multiplication output. For example,
the FFT (f) coefficient ‘1’ and ‘2’ will generate the same
values shifted by one binary digit. This is handled by our
novel extend-and-prune technique.

C. Extend-and-Prune Technique to Remove False Positives

We address the key challenge of eliminating the multiplica-
tion false positive through a novel extend-and-prune technique.
The crux of this technique is to use the top guesses obtained
on attacking the multiplication (extend phase) and to evaluate

their correctness by attacking the next operation (prune phase),
which is the addition of intermediate products (see Figure 2).

Although the polynomial f coefficients are defined as
integer numbers ranging between −127 and 127, these are
converted to floating-point numbers and then passed to the
FFT domain. Since the FFT algorithm mixes and diffuses
all the input coefficients and since FFT performs floating-
point arithmetic, the FFT-domain coefficients have the range of
[0, 264], even though the inputs have the range of [−127, 127].

Our extend-and-prune is tuned for the implementation of
FALCON floating-point arithmetic. For extracting the man-
tissa part, we first attack the lower-order 25 bits of the
multiplication—figure 2 shows the two lower-order 25 bits
as B and D where B is known and D is the secret value. Our
differential attack on D×B multiplication follows the usual
steps: creating hypothesis guesses on a secret lower-order 25
bits (D), computing the expected switching activity for each
multiplication (using Hamming weight), and checking correla-
tions between them and the corresponding EM measurements.
We also repeat the same procedure on the D×A, where A is
known and D is the secret value. This is the extend phase of
our attack and is expected to generate false positives.

The second step in our attack is the prune phase, where we
target the addition of D×B and D×A to prune false positive
values and to recover the 25 bits of the secret mantissa. Unlike
multiplication, the addition will not generate false positives:
for example, the same coefficients of ‘1’ vs. ‘2’ generates
results having different Hamming weights based on the other
input of the addition. With sufficient many tests, the secret
coefficients of ‘1’ vs. ‘2’ (and other cases that generate a false
positive on the multiplication) can be differentiated from one
another.

We follow the same aforementioned procedure to extract the
D over addition operation. Higher-order bits of the mantissa
multiplication follows the same steps of multiplications and
additions. We, therefore, apply the same extend-and-prune
technique on the secret coefficents’ higher-order 27 bits. Note
that we do not bypass the first multiplication and directly
attack the addition operation because the D×B and D×A
product bit locations do not align with each other, resulting in
a decrease in the attack’s success.

The proposed attack applies the same differential EM attack
(DEMA) procedure to extract the exponent bits and sign bits.
Figure 2 reflects that the floating-point implementation adds
two exponents of the polynomials FFT (f) and FFT (c) and
applies an XOR operation on the sign bits. Combined version
of the separately recovered mantissa, exponent and sign bits
represents one full coefficient.

IV. EVALUATION RESULTS

We used the public, reference software of FALCON Round-
3 found in the submission package to the NIST stan-
dardization. We compiled the code with gcc-arm-none-
eabi-4_8-2014q1 compiler tool and with -O0 flag, and
then ported the generated executable on to an ARM-Cortex-
M4. The processor is clocked at 168 MHz and the measure-

Fig. 4. The results of the proposed attack on a floating-point coefficient during FALCON signing. Correct guesses marked in bold red, significant false guesses
in blue, and dashed lines mark the confidence interval of 99.99%. Attack returns the correct guesses for (a) sign, (b) exponent, (c), mantissa multiplication (c)
and addition (d), validating our approach. For this coefficient, the correct values can be extracted with over 99.99% confidence in less than 10k measurements.

ments are obtained through a EM Probe LS (low sensitivity)
RISC-EMP430LS, which is a near-field probe of measuring
up to 1 GHz with 20 mV/1 T@1 MHz sensitivity. The EM
probe measurements noise are reduced using a choke coil and
sampled with a PicoScope 3206D Oscilloscope at 500 Ms/s.

For the proposed differential side-channel attack, we use
the Pearson correlation coefficient based distinguisher on the
hamming weight models [24]. This test aims to differentiate
populations through their covariance, i.e., by checking if
deviations from mean occur in a similar fashion. Correlation
trace ri,j for a guess i is defined as

ri,j =

∑D
d=1

[(
hd,i − hi

) (
td,j − tj

)]√∑D
d=1

(
hd,i − hi

)2∑D
d=1

(
td,j − tj

)2 (1)

where D is the number of traces each having T data points,
td,j is a EM trace with 0 < d ≤ D and 0 < j ≤ T , tj is
the mean EM trace, hd,i is a leakage estimate in trace d for
the guessed value i, and hi is the mean of this estimate. The
result ri,j returns a correlation trace with values between [-
1,1] that estimates the linear relationship between the guesses
ri and the EM measurement for each guess i and time j. This
trace depicts the significance and the timing information of
the differential EM leak.

Figure 4 shows the results of our proposed attacks,
and it validates that our attacks work in practice and can
break FALCON. The attack executes on the coefficient
0xC06017BC8036b580, which means that the correct sign bit
is 0x1, exponent bits are 0x406 and the mantissa bits are
0x017bc8036b580 (the higher-order bits are 0x00BDE40 and
lower-order bits are 0X36b580). The correlation time plots
in Figure 4 (a–d) respectively quantifies that the correlation
traces (ri,j)s for the correct and false-positive guesses for sign,
exponent and mantissa cross the 99.99% confidence interval,

while those that are within the margin are true negatives, i.e.,
we do not have a false negative case. The plot only shows up
to top 21 guesses for the mantissa part for visual clarity—the
attack evaluates up 227 guesses for the higher-order mantissa
bits and 225 guesses for the lower-order bits.

Figures 4 (c) and (d) verify our hypothesis about the
proposed attack. Indeed, when the attack executes on the
multiplication of mantissa bits, the results in Figure 4 (c)
illustrates that significant false positives do occur at the first
step of the attack when it targets mantissa multiplications.
The correlation result of the top-5 guesses, which include the
correct guess and 4 false positives, are actually exactly the
same (shown slightly different in the figure for visual clarity).
However, the results in Figure (d) validates that with our
extend-and-prune strategy, the false positives are all eliminated
when the attack then trails the guesses in the earlier step by
focusing on the intermediate additions.

Figures 4 (e–h) plot the correlation evolution taken at the
leakiest time sample on Figures (a–d), respectively. These
plots measure the number of traces needed to achieve a
statistically significant (of 99.99%) correlation. The leakage
of the correct guesses become statistically significant with as
few as a thousand measurements when attacking the exponent
and mantissa addition while other guesses die out.

The most challenging portion of the attack, in terms of the
number of measurements needed, is extracting the sign bit, and
it takes about a few hundred measurements to leak the correct
value and about 9k measurements to make the leak statistically
significant for this example. Overall, the measurement for all
coefficients can be confidently acquired with less than 10k
measurements. Note that the sign-bit leakage is symmetric for
the positive vs. negative sign guesses. This indeed is expected
and does not cause a problem for the attack because the correct
guess consistently has a positive correlation at the maximum

leakage point (i.e., red trace in Figure 4 (e) appears the same
way for both negative and positive signs).

We performed the proposed attack on FALCON-512 but the
same attack is applicable to the other setting (i.e., FALCON-
1024) because FALCON employs the same floating-point
arithmetic implementations for both parameters. The differ-
ence between the two settings is the polynomial ring size.
The polynomials in FALCON-512 have 512 coefficients, while
FALCON-1024 works with polynomials having 1024 coeffi-
cients.

V. DISCUSSIONS

A. Limitations of Our Attack
We proposed a generic attack that works without profiling

the target device by (re)-configuring a secret key and that is
still practical. We do not claim that our attack provides the
lower bound on the number of tests needed to extract the key.
It is possible to extend our attack by template [20] or machine-
learning based [25], [26] profiling techniques and by using
better measurement equipment.

B. Possible Countermeasures
The most popular techniques for side-channel mitigation

is hiding and masking. While hiding aims making power-
consumption constant, masking aims randomizing the inter-
mediates values processed by the implementation. Although
SABER, another NIST post-quantum signature finalist, has
a masked implementation recently proposed [27], this does
not yet exist for FALCON—such an implementation can be
considered by the FALCON team.

C. NTT vs. FFT—A Side-Channel Perspective
Based on our analysis, one can argue that FFT has possibly

a lower power/EM side-channel leakage compared to NTT.
While our attack on FFT requires around 10k traces, NTT has
shown to be vulnerable even with a single trace [19]. This is
probably due to the amount of non-linearity introduced. While
NTT applies a modular reduction prime p, this doesn’t exist in
FFT. Therefore, the attack is likely to distinguish and eliminate
wrong guesses easier in NTT. Further research is needed to
conduct a quantitative analysis.

D. Comparison with the Related Work
The difference between our approach and the attack on

floating-point arithmetic in prior work [28] is two-fold. First,
the earlier work focused on single-precision variables while
we analyze double-precision. Second, the earlier work only
focuses on a small part of the mantissa and cannot recover
from false positives while our novel attack eliminates false
positives and recovers the full mantissa—note the attack’s
precision in our scenario is more important since the adversary
targets secret cryptographic keys rather than the weights of a
neural network.

VI. CONCLUSIONS

This paper has demonstrated the first side-channel attack on
the NIST post-quantum finalist FALCON. We have revealed
the unique challenges of FALCON stemming from floating-
point arithmetic and the signature construction, and we have

addressed those challenges through novel attacks. The results
have validated that our attacks do work in practice with a few
thousand measurements and without a quantum computer. This
paper, therefore, motivates the need for strong countermea-
sures against such attacks and including the related overheads
in hardware/software performance figures.

VII. ACKNOWLEDGEMENTS

This research is supported in part by the by the National
Science Foundation under Grant No. 1850373. NCSU is an
academic partner of Riscure Inc., and we thank them for
providing hardware/software support for side-channel analysis.

REFERENCES

[1] P. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM Review, vol. 41, no. 2, pp. 303–
332, 1999.

[2] J. Proos et al., “Shor’s discrete logarithm quantum algorithm for elliptic
curves,” Quantum Info. Comput., vol. 3, no. 4, pp. 317–344, Jul. 2003.

[3] P. Kocher et al., “Differential power analysis,” in Advances in Cryptology —
CRYPTO’ 99, 1999, pp. 388–397.

[4] D. Moody, “The 2nd round of the NIST PQC standardization pro-
cess,” https://csrc.nist.gov/CSRC/media/Presentations/the-2nd-round-of-the-
nist-pqc-standardization-proc/images-media/moody-opening-remarks.pdf.

[5] P. A. Fouque et al., “Falcon: Fast-fourier lattice-based compact signatures over
NTRU.”

[6] A. Park et al., “Side-channel attacks on post-quantum signature schemes based
on multivariate quadratic equations,” IACR TCHES, pp. 500–523, 2018.

[7] Y. Liu et al., “On security of fiat-shamir signatures over lattice in the presence
of randomness leakage.” IACR Cryptol. ePrint Arch., vol. 2019, p. 715, 2019.

[8] A. Fournaris et al., “Profiling dilithium digital signature traces for correlation
differential side channel attacks,” in International Conference on Embedded
Computer Systems. Springer, 2020, pp. 281–294.

[9] “Power analysis on NTRU implementations for RFIDs: First results,” pp. 128–
139, 2008.

[10] M.K. Lee et al., “Countermeasures against power analysis attacks for the
NTRU public key cryptosystem,” IEICE T FUND ELECTR, vol. 93, no. 1,
pp. 153–163, 2010.

[11] A. Wang et al., “Power analysis attacks and countermeasures on NTRU-based
wireless body area networks,” KSII Transactions on Internet and Information
Systems (TIIS), vol. 7, no. 5, pp. 1094–1107, 2013.

[12] A. Aysu et al., “Horizontal side-channel vulnerabilities of post-quantum key
exchange protocols,” in IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2018, pp. 81–88.

[13] T. Espitau et al., “Side-Channel Attacks on BLISS Lattice-Based Signatures:
Exploiting Branch Tracing Against strongSwan and Electromagnetic Emana-
tions in Micro-controllers,” in ACM CCS, 2017, pp. 1857–1874.

[14] T. Oder et al., “Practical CCA2-Secure and Masked Ring-LWE Implementa-
tion,” IACR TCHES, vol. 2018, no. 1, pp. 142–174, 2018.

[15] P. Ravi et al., “Generic side-channel attacks on CCA-secure lattice-based PKE
and KEMs,” IACR TCHES, vol. 2020, no. 3, pp. 307–335, 2020.

[16] J. Bos et al., “Assessing the feasibility of single trace power analysis of Frodo,”
in International Conference on Selected Areas in Cryptography. Springer,
2018, pp. 216–234.

[17] T. Gellersen et al., “Differential power analysis of the picnic signature
scheme,” IACR Cryptol. ePrint Arch., vol. 2020, p. 267, 2020.

[18] R. Primas et al., “Single-trace side-channel attacks on masked lattice-based
encryption,” in International Conference on Cryptographic Hardware and
Embedded Systems. Springer, 2017, pp. 513–533.

[19] P. Pessl et al., “More practical single-trace attacks on the number theoretic
transform,” in LatinCrypt. Springer, 2019, pp. 130–149.

[20] S. Chari et al., “Template attacks,” in Cryptographic Hardware and Embedded
Systems - CHES 2002, 2003, pp. 13–28.

[21] K. Gandolfi et al., “Electromagnetic analysis: Concrete results,” in Crypto-
graphic Hardware and Embedded Systems — CHES 2001, 2001, pp. 251–261.

[22] A. Park et al., “Chosen ciphertext simple power analysis on software 8-bit
implementation ring-LWE encryption,” in IEEE AsianHOST, 2016, pp. 1–6.

[23] R. Primas et al., “Single-trace side-channel attacks on masked lattice-based
encryption,” in Cryptographic Hardware and Embedded Systems – CHES
2017. Cham: Springer International Publishing, 2017, pp. 513–533.

[24] E. Brier et al., “Correlation power analysis with a leakage model,” in Crypto-
graphic Hardware and Embedded Systems - CHES 2004, 2004, pp. 16–29.

[25] H. Maghrebi, “Deep learning based side channel attacks in practice,” Cryptol-
ogy ePrint Archive, Report 2019/578, 2019.

[26] J. Kim et al., “Make some noise. unleashing the power of convolutional neural
networks for profiled side-channel analysis,” IACR TCHES, vol. 2019, no. 3,
pp. 148–179, May 2019.

[27] M. Van Beirendonck et al., “A side-channel resistant implementation of
SABER,” Cryptology ePrint Archive, Report 2020/733, 2020.

[28] L. Batina et al., “CSI NN: Reverse Engineering of Neural Network Ar-
chitectures Through Electromagnetic Side Channel,” in USENIX Security
Symposium, 2019, pp. 515–532.

