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Abstract

The advent of blockchain protocols has reignited the interest in adaptively secure broad-
cast, as it is by now well known that broadcasting over a diffusion network allows an adaptive
adversary to corrupt the sender depending on the message s/he attempts to send and change
it. Hirt and Zikas [Eurocrypt ’10] proved that this is an inherent limitation of broadcast in
the simulation-based setting, i.e., that this task is impossible against an adaptive adversary
corrupting a strict majority of the parties.

In this work, we show that, contrary to previous perception, the above limitation is not an
artifact of simulation-based security, but that it also applies to the property-based broadcast
definition adapted for adaptive adversaries. We then turn to the resource-restricting cryptog-
raphy (RRC) paradigm, which was proven useful in circumventing strong impossibility results,
and ask whether it also allows us to circumvent the above negative result. We answer this
question in the affirmative, by showing that time-lock puzzles (TLPs)—which can be viewed as
an instance of RRC—indeed allow for achieving the property-based definition and circumvent
the impossibility of adaptively secure broadcast.

The natural question is then, do TLPs also allow for simulation-based adaptively secure
broadcast against corrupted majorities? It turns out that they do not, which serves as yet
another motivation for simulation-based security, especially when dealing with adaptive ad-
versaries. Nonetheless, we show that a positive result can be achieved if we turn to what is
essentially a non-committing version of TLPs, which uses access to a programmable random
oracle.
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1 Introduction
A physical broadcast channel enables a set of n parties to communicate as if talking via a mega-
phone: Once a party speaks, all other parties are guaranteed to hear its message. In a broadcast
protocol (aka Byzantine generals [64, 56]) the parties are asked to realize this megaphone capability
over point-to-point channels, even when a subset of them collude and actively disrupt the proto-
col’s execution. The standard formulation of a broadcast protocol requires two core properties:
agreement (all honest parties output the same value, even if the sender is cheating) and validity (if
the sender is honest then all honest parties output its message). A broadcast protocol is t-resilient
if both properties hold facing any set of (up to) t misbehaving and colluding parties.

Broadcast is one of the most studied problems in the context of fault-tolerant distributed com-
puting and cryptographic protocols, leading to numerous breakthrough results. For example, clas-
sical results show that while t-resilient broadcast protocols can be constructed in the plain model
for t < n/3 [64, 35], a larger corruption threshold cannot be tolerated [56, 33, 11]. Overcoming
this lower bound requires working in weaker models. A common approach is to assume a setup
assumption in the form of a public-key infrastructure (PKI) for digital signatures [27] (where every
party generates a pair of signing/verification keys, and publishes its verification key during the
setup phase), or more involved correlated randomness (where a trusted party generates correlated
secrets to the parties before the protocol begins; e.g., an “information-theoretic PKI” [65]); this
approach enables broadcast protocols tolerating any number of t ≤ n corruptions.1

The resource-restricting paradigm. Another, more recent approach to weakening the
model without using “private-coin setup assumptions” is the resource-restricting cryptography
paradigm [40], where instead of considering arbitrary adversaries that run in probabilistic poly-
nomial time (PPT), additional restrictions are assumed on their capabilities. For example, when
the computational power of the adversary is smaller than the combined computational power of the
honest parties, Nakamoto-style consensus [38, 63] employs proofs of work (PoWs) [28] to overcome
the aforementioned lower bound without relying on PKI-like setup assumptions. This is a fruitful
promising approach that has led to broadcast protocols [3] and secure multi-party computation
protocols [40] that can tolerate any dishonest minority, given only a “public-coin setup.”

Another example of resource-restricting cryptography is time-based hardness. Here there is no
restriction on the overall computational power of the adversary (other than being PPT); instead,
there is an assumed bound on the number of parallel steps that the adversary can take within a
given time interval. This assumption enables the usage of time-lock puzzles (TLPs) [67, 7] and
has been used for example by Boneh and Naor [9] to overcome the lower bound of Cleve [23]
and construct a fair coin-tossing protocol. This approach has led to several interesting results,
such as resource fairness [36], non-interactive non-malleable commitments [57], and round-efficient
randomized broadcast [69]. Another use case of time-based hardness which has been shown to be
sufficiently strong to overcome Cleve’s impossibility is verifiable delay functions [10, 66, 71].

Simulation-based vs. property-based definitions. Secure multi-party computation proto-
cols (MPC) [72, 43] enable a set of mutually distrusting parties to compute a function on their
private inputs, while guaranteeing various properties such as correctness, privacy, independence of
inputs, and more. While the original security definitions had the above property-based flavor, nowa-
days the standard definition formalizes the above requirements (and others) in a simulation-based

1For the related consensus problem (aka Byzantine agreement), where all parties have an input, the best achievable
bound is t < n/2 [34].
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manner [15, 16, 42]. Informally, in the simulation paradigm for security, the protocol execution is
compared to an ideal world where the parties have access to a trusted party (aka the “ideal func-
tionality”) that captures the security properties the protocol is required to achieve. The trusted
party takes the parties’ inputs and performs the computation on their behalf. A protocol is then
regarded secure if for any adversary attacking it, there exists an ideal-world adversary (the “simula-
tor”) attacking the execution in the ideal world, such that no external distinguisher (environment)
can tell the real and the ideal executions apart.

Simulation-based definitions provide several advantages compared to the property-based ap-
proach. First, in a property-based definition, it may be the case that an important property is
missed (e.g., one may require privacy of the inputs but neglect to require input independence); this
may be subtle to notice since the properties should capture both the guarantees towards the honest
parties as well as the influence the adversary may have over the computation. Second, the holistic
approach provides a simple and clear definition that can be applied in complex settings, such as
adaptive corruptions and concurrent executions. Third, many simulation-based security definitions
guarantee security under composition, which enables analyzing a complex task where sub-protocols
are modeled as ideal functionalities, and later replaced by protocols securely realizing them.

For the specific case of broadcast, the commonly used ideal functionality (e.g., [19, 44]) mimics
an ideal megaphone in a rather simple way: First, the sender provides its message to the ideal
functionality, who later hands it out to the adversary and to all the parties.

Adaptively secure broadcast. It is not hard to see that a broadcast protocol that is secure
according to the property-based definition also realizes the ideal megaphone functionality when the
set of corrupted parties is defined at the onset of the protocol (i.e., when the adversary is static).
However, as observed by Hirt and Zikas [48], this is no longer true in the adaptive-corruption
setting. The issue is that a rushing adversary may be the first to learn the input message of the
sender, in which case it can corrupt the sender and replace its message (or simply crash it, in case
of fail-stop adversaries). For example, the protocol of Dolev and Strong [27] (and the vast majority
of the protocols in the literature) begins by having the sender send its message to all other parties,
who then proceed to make sure they all agree on the output value. In case the first party receiving
this message is corrupted, the adversary can decide whether to corrupt the sender (thus preventing
all other parties from learning it) as a function of that message.

Hirt and Zikas [48] defined a weaker functionality that captures this capability of the adversary
to influence the output. In this unfair broadcast functionality, once the functionality receives the
input from the sender, it first hands it to the adversary, who can now corrupt the sender and
replace its input before the functionality sends the output to the remaining honest parties. Such
a broadcast protocol is unfair because the adversary gets a “double dipping” capability to both
learn the sender’s input before other parties and to change it. This is in contrast to the megaphone
functionality that allows the adversary to either be the first to learn the message or to corrupt the
sender (without first learning the message) and choose the output, but not both. This difference is
best illustrated when each party broadcasts a random bit: if unfair broadcast is used the adversary
has the capability to bias the agreed-upon bits towards 0 by corrupting only senders that broadcast
1 and flipping their bit, whereas if the ideal megaphone is used the adversary does not get any
advantage over simply randomly guessing which parties broadcast 1.2

Hirt and Zikas [48] further showed that the megaphone functionality can be realized for t ≤ n/2
(i.e., when the adversary cannot corrupt a majority of the parties); the idea is for the sender to

2In the context of collective coin tossing, the capability of the adversary to first learn the sender’s message and
later to corrupt the sender and change its input has been referred to as strongly adaptive [45, 50, 54, 46].
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“commit” its message into the system using verifiable secret sharing (VSS), and later use unfair
broadcast to reconstruct the original message (as observed in [24, 25], robust secret sharing can be
used instead of VSS). For the dishonest-majority setting, Hirt and Zikas [48] showed an impossibility
result for adaptively secure broadcast protocols that realize the megaphone functionality. This
impossibility captures a large class of protocols (that includes all of the known approaches to
construct broadcast protocols) where there is an a-priori-known round R such that prior to round
R it is guaranteed that no set of size bn/2c − 1 “knows” the sender’s input (in the sense that if
this set emulates in its head a continuation of the protocol where all other parties crash, it has a
noticeable error probability), and at round R there exists a set of size bn/2c − 1 that “knows” the
sender’s input (i.e., by emulating the continuation, the set errs only with negligible probability).
In the sequel, we will denote this class of “step-release” protocols by Πstep-rel.

Atomic vs. non-atomic multisend. The attack from [48] applies in the so called non-atomic
multisend model, where sending multiple messages to the network are considered as separate oper-
ations. This is the classical model considered in the distributed-computing literature since the ’80s
(e.g., [32, 27, 33]), where the adversary could corrupt a party and crash it (or change its input [31])
after the party sends its messages to some of the parties, but before it completed sending to all
parties. This is also the standard model for capturing adaptive corruptions in the MPC literature
(e.g., [18, 15, 16, 20]). The non-atomic multisend model captures, for example, the setting where
the outgoing communication of a party goes through a central router (e.g., an ISP) that may block
some (or all) outgoing messages thus enabling the adversary to perform its attack. The ability of
the adversary to corrupt a party in such a manner is also referred to as strongly rushing [2, 1, 69].

Garay et al. [37] noticed that this attack does not translate to the atomic multisend model
where the sender is guaranteed not to be corrupted in the time between sending its first message
for a given round and the time it completes sending all messages for that round, and, further, a
message that has been sent is guaranteed to arrive at its destination. Interestingly, Garay et al.
[37] showed another variation of this attack illustrating that the protocol of Dolev and Strong [27]
(and all other protocols in the literature) does not realize the megaphone functionality even in
the atomic-multisend model. Complementarily, Garay et al. [37] constructed an adaptively secure
broadcast protocol tolerating t < n corruptions in this model.

The atomic-multisend model has recently gained popularity in many consensus protocols that
seek security against adaptive corruptions (e.g., [22, 1, 21, 70, 8]). However, the non-atomic-
multisend model is a preferred model as it requires less assumptions on the underlying commu-
nication network. This model is more challenging to work with as it considers more powerful
adversaries; indeed, certain impossibility results in the non-atomic multisend model do not trans-
late to the atomic-multisend realm [48, 12, 1].

Thus, the main question we ask in this paper is:
Can the impossibility of adaptively secure broadcast [48] be circumvented in the resource-
restricted paradigm?

Intriguingly, the answer to the above seemingly innocent question is different depending on
the definition of (adaptively secure) broadcast one adopts (property-based vs. simulation-based)
and/or on how strong a setup we are willing to assume. In particular, we answer this question
in the affirmative in the case of property-based definition via TLPs, which can be viewed as an
instance of RRC. However, in the case of simulation-based security, it turns out that TLPs do
not suffice. Nonetheless, we show that a positive result—i.e., simulation-based adaptively secure
broadcast against corrupted majorities—can be achieved based on non-committing TLPs, which
use access to a programmable random oracle.
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1.1 Our Contributions

Our work does a thorough investigation of adaptively secure broadcast both in the property-based
and in the simulation-based security settings.

Property-based definition of broadcast. Our first contribution towards overcoming the im-
possibility results of Hirt and Zikas [48] is to come up with a simpler, property-based definition
that captures the essence of their attack. Property-based definitions are indeed better suited for
understanding lower bounds as they highlight the exact attack surface that is exploited. With the
illustrating example of broadcasting a random bit in mind (where the adversary’s goal is to corrupt
only parties who broadcast 1 and flip their bit), we provide the following definition (see Definition 5
for a formal version).

Definition (Broadcast, property-based definition, informal). An n-party protocol is an adaptively
secure t-resilient broadcast protocol according to the property-based definition if, in addition to
agreement and validity, it satisfies the following fairness property:

Fairness: The probability of any PPT adversary to win the following fairness game is bounded
by 1/2 + negl(κ) (where κ denotes the security parameter). When attacking an execution of
the protocol where the sender begins with a random bit b← {0, 1} as its input, we say that the
adversary wins the fairness game if one of the following events occurs:

b = 0 and the sender remained honest at the end of the protocol;
b = 1 and the common output of the honest parties is 0.

Property-based vs. simulation-based broadcast. It is not hard to verify that any broadcast
protocol that is secure according to the simulation-based definition (i.e., realizes the ideal mega-
phone functionality) is also secure according to the property-based definition of (adaptively secure)
broadcast. The intuition is that a simulator that interacts with the megaphone functionality can
win the fairness game only with probability 1/2 (by guessing the input), and therefore any adver-
sary that can win the fairness game with a noticeable probability over 1/2 can be translated to a
distinguisher between the real and ideal computations. We formally prove this result in Lemma 9.

However, one may ask whether the property-based definition is actually weaker than the
simulation-based definition, or if it is equivalent. Stated differently, does the property-based defini-
tion above capture the attack from [48]? Indeed, the attack from [48] rules out the simulation-based
definition but that may be due to another feature of the megaphone functionality.

Our second contribution is extending the impossibility result from [48] to rule out the property-
based definition for the same class of protocols Πstep-rel. This means that in term of feasibility, the
simulation-based definition and the property-based definition are equivalent, i.e., for t ≤ n/2 both
definitions can be satisfied, and for t > n/2 both definitions cannot be satisfied (by protocols from
the class Πstep-rel). Note that this does not imply that any protocol that satisfies the property-based
definition also satisfies the simulation-based definition.

Theorem 1 (Impossibility for property-based broadcast, informal). Let t > n/2. Then, there is no
adaptively secure broadcast protocol (from the class Πstep-rel) tolerating a fail-stop, PPT t-adversary
that satisfies the property-based definition of (adaptively secure) broadcast.

We note that the impossibility result holds even assuming any correlated-randomness setup
and/or secure data erasures.
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Overcoming the property-based impossibility via TLPs. Next, we study whether the
resource-restricting paradigm can be used to overcome the impossibility of adaptively secure broad-
cast. We use time-lock puzzles [67, 7] for this task. The idea is quite simple: the sender “hides” its
message inside a TLP and uses a protocol for unfair broadcast (e.g., [27, 69]) to send the puzzle to
all parties; every recipient can open the puzzle after investing a polynomial amount of computation
and obtain the output.

The guarantee provided by a TLP with gap ε < 1 is that when setting the puzzle with difficulty
parameter T 1/ε, any adversary that can evaluate circuits of polynomial size, but of depth bounded
by T (κ), cannot solve the puzzle with better than negligible probability. We say that an adversary
is (R, T )-bounded if the number of parallel steps it can take within R rounds is bounded by T (κ).
Therefore, if the unfair broadcast protocol takes R rounds, we are guaranteed that any (R, T )-
bounded adversary cannot win the fairness game with more than 1/2 + negl(κ) probability.

In fact, our protocol does not require a “lightweight” generation of the puzzle, and can use a
puzzle generation that is as computationally expensive as solving the puzzle. Therefore, we only
require the weak variant of time-lock puzzles [59, 7] that allows for parallelizable, yet computa-
tionally expensive puzzle generation, and can be based on one-way functions and the existence of
non-parallelizing languages [7].

Theorem 2 (Feasibility of property-based broadcast via TLPs, informal). Let t ≤ n, let T be a
polynomial, assume that weak time-lock puzzles exist, and that unfair broadcast can be computed
in R rounds. Then, there is an adaptively secure broadcast protocol tolerating an (R, T )-bounded
t-adversary that satisfies the property-based definition of (adaptively secure) broadcast.

TLP barriers for simulation-based broadcast. Next, we ask whether time-lock puzzles are
also sufficient to satisfy the simulation-based definition of broadcast. Somewhat surprisingly, the
answer to this question is negative, thus posing a separation between the two definitions. The
main reason is illustrated when trying to simulate the protocol that satisfies the property-based
definition. When the sender is honest and a simulator tries to simulate the TLP without knowing
the message, it gets stuck, since the TLP is a committing object: Once the puzzle is generated it can
only be opened to a unique value. Therefore, the simulator success probability is again restricted
to correctly guessing the sender’s input, which results in a noticeable distinguishing probability
between the real and ideal computations.

In Section 5.1 we extend this argument to rule out any adaptively secure broadcast protocol
(from the class Πstep-rel) even facing an (R, T )-bounded adversary. In turn, this impossibility result
implies that the TLP assumption is not sufficient for realizing simulation-based broadcast.

Theorem 3 (Impossibility for simulation-based broadcast from TLPs, informal). Let t > n/2, and
let R and T be polynomials. Then, there is no adaptively secure broadcast protocol (from the class
Πstep-rel) tolerating an (R, T )-bounded, fail-stop, PPT t-adversary that satisfies the simulation-based
definition of broadcast.

The impossibility result can be extended to hold even assuming any correlated-randomness
setup, secure data erasures, a non-programmable random oracle, and time-lock puzzles.

Overcoming the simulation-based impossibility via a programable random oracle. We
note that this “barrier” resembles other barriers in achieving adaptive security of committing cryp-
tographic primitives, such as commitments [17] and public-key encryption [61]. Next, we show that
a programmable random oracle can be used to construct a non-committing variant of TLPs, which
in turn allows us to overcome the above barrier. Namely, instead of hiding the message m inside
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the puzzle, the sender samples a random one-time pad key x, hides x inside the puzzle, and unfairly
broadcast the puzzle along with c = m ⊕ H(x). Now the simulator can simulate a puzzle when
the sender is honest, and upon a corruption request of the sender (or after R rounds have elapsed,
and it can safely ask the megaphone functionality for the output), the simulator can program the
random oracle appropriately.

Theorem 4 (Feasibility of simulation-based broadcast via TLPs in the RO model, informal). Let
t ≤ n, let T be a polynomial, assume that weak TLPs exist, and that the unfair broadcast can be
computed in R rounds. Then, there is an adaptively secure broadcast protocol, according to the
simulation-based definition, tolerating an (R, T )-bounded t-adversary in the programmable random-
oracle model.

Summary of our contributions. Taken together, our results distill the essence of the im-
possibility result from [48]; this emphasizes that the impossibility is not just an artifact of the
simulation-based definition, but it also applies to the natural extension of the property-based
broadcast definition to the adaptive-corruptions case. Further, we show how the resource-restricting
paradigm separates the property-based definition from the simulation-based definition. This serves
as yet another motivation for using simulation-based security, especially when designing adaptively
secure protocols. Finally, we put forth the notion of non-committing time-lock puzzles in the pro-
grammable random oracle, and use it to achieve simulation-based adaptively secure broadcast. Our
results are summarized in Table 1.

property-based simulation-based

pki 7 Thm 1 7 HZ [48]
pki+tlp 3 Thm 2 7 Thm 3
pki+ro+tlp 3 Thm 2 3 Thm 4

Table 1: Feasibility of adaptively secure broadcast with non-atomic multisend synchronous commu-
nication. The left column considers the property-based definition and the right one the simulation-
based definition. All negative results (lower bounds) are for protocols in the class Πstep-rel and hold
for any dishonest majority of fail-stop corruptions and any correlated-randomness setup; all positive
results (protocol constructions) tolerate an arbitrary number of malicious corruptions and require
a pki for signatures. tlp stands for a weak time-lock puzzle and ro stands for programmable
random-oracle model.

1.2 Additional Related Work

Recently, Wan et al. [69] used time-lock puzzles to construct adaptively secure (unfair) broadcast
protocols in the non-atomic multisend model, with the goal of reducing the round complexity
of randomized broadcast from linear to poly-logarithmic, facing a constant fraction of corrupted
parties. As pointed out by the authors, their goal was not to realize the megaphone functionality,
but only to satisfy the property-based definition of (unfair) broadcast. The main idea in [69] is to
use TLPs to “hide” the contents of the messages within a round in a way that essentially provides
atomic-multisend guarantees. Given this, they run the poly-logarithmic-round protocol of Chan
et al. [21], which in turn is based on Dolev and Strong [27]. We note that although the protocol
in [69] relies on similar assumptions as the ones in this work, it does not answer the question posed
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in this paper as it is vulnerable to the attack from [37], showing that the Dolev-Strong protocol [27]
is not adaptively secure even in the atomic-multisend model.

Baum et al. [6] study a stronger version of TLPs that provide universal composability. They
define an ideal TLP functionality, and prove that realizing it inherently requires a programmable
random oracle. Next, they realize the TLP functionality based on generic-group-style formalization
of the repeated-squaring technique from [67] as well as a restricted programmable and observable
random oracle [14]. In contrast to the weaker, property-based definition of TLP [67, 7] (used in
this paper), the reliance on a random oracle enables the TLP functionality to define a known step
with the guarantee that the adversary learns nothing about the content of the TLP prior to that
step and that once that step is reached, the content of the puzzle is fully revealed.

In more detail, Baum et al. [6] give an elegant argument showing that coin-flipping protocols
based on TLP, such as the one of Boneh and Naor [9], cannot be simulated without resorting to
a programmable RO, even facing so-called computationally restricted environments. Essentially,
when simulating a TLP-based coin-flipping protocol, the environment may first get the information
needed to learn the output (possibly after the conclusion of the protocol) and then abort. Next,
it can check whether the output learned from its view matches the honest party’s output; if so it
outputs ideal and if not real. The simulator who receives the honest party’s output must simulate
the view using this output bit without knowing whether the environment will abort or not; in
case of abort, the simulator must equivocate the output obtained from the committed view by the
environment to be a random bit—a task that cannot be achieved in the standard model.

Although our proof technique and overall reasoning are very different from that in [6], the source
of the impossibility in both cases is the fact that TLPs are non-equivocable. Such equivocality turns
out to be essential in both simulation arguments, despite the inherent difference of the primitives
and the statements themselves. For example, as the impossibility of [6] relies on Cleve’s impossibil-
ity [23], the attack applies even with static corruptions; further, when considering the multiparty
setting it is oblivious to the underlying network (e.g., it applies even given a broadcast channel). In
contrast, in our setting, the attack crucially relies on the adaptive and rushing capabilities of the
adversary, and is very sensitive to the underlying network assumptions (e.g., the attack no longer
holds in the atomic-multisend model).

Organization of the paper. Section 2 presents the model and the cryptographic primitives
that are used in this paper. In Section 3 we present the property-based and simulation-based
definitions of broadcast and of unfair broadcast. In Section 4 we analyze the property-based
definition, presenting the impossibility result and the protocol construction from time-lock puzzles.
Finally, Section 5 treats the simulation-based definition, separating it from the property-based
definition, and showing how to realize it in the programmable random-oracle model.

2 Preliminaries

2.1 The Model

An n-party protocol π = (P1, . . . , Pn) is an n-tuple of interactive Turing machines (ITMs). The
term party Pi refers to the ith ITM; we denote the set of parties by P = {P1, . . . , Pn}. Each party
Pi starts with input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗. Without loss of generality, the
input length of each party is assumed to be the security parameter κ. We consider protocols that
additionally have a setup phase (used, e.g., to model a public-key infrastructure (PKI)) where a
trusted dealer samples (possibly correlated) secret values (r1, . . . , rn) ← Dπ from some efficiently
sampleable distribution Dπ, and hands party Pi the secret string ri (referred to as the correlated
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randomness of Pi). While our lower bounds hold with respect to any distribution for correlated
randomness, our upper bounds rely on a weaker setup assumption of a PKI for digital signatures,
where each party generates a pair of signing/verification keys and publishes its verification key.

An adversary A is another ITM describing the behavior of the corrupted parties. It starts the
execution with input that contains the security parameter (in unary) and an additional auxiliary
input. At any time during the execution of the protocol the adversary can corrupt one of the honest
parties, in which case the adversary can read its internal state (containing its input, random coins,
correlated randomness, and incoming messages) and gains control over it. A t-adversary is limited
to corrupt up to t parties.

The parties execute the protocol over a fully connected synchronous network of point-to-point
channels. That is, the execution proceeds in rounds: Each round consists of a send phase (where
parties send their messages from this round) followed by a receive phase (where they receive mes-
sages from other parties). The adversary is assumed to be rushing, which means that it can see the
messages the honest parties send in a round before determining the messages that the corrupted
parties send in that round. The communication lines between the parties are assumed to be ideally
authenticated (and thus the adversary cannot modify messages sent between two honest parties
but can read them).

Throughout the execution of the protocol, all the honest parties follow the instructions of the
prescribed protocol, whereas the corrupted parties receive their instructions from the adversary.
In our positive results, the adversary is considered to be actively malicious, meaning that it can
instruct the corrupted parties to deviate from the protocol in any arbitrary way. Our lower bounds,
however, only rely on fail-stop adversaries that can crash parties, but not cheat in any other way.
At the conclusion of the execution, the honest parties output their prescribed output from the
protocol, the corrupted parties do not output anything and the adversary outputs an (arbitrary)
function of its view of the computation (containing the views (internal states) of the corrupted
parties).

Atomic multisend. A subtle point that is central to this work is the capabilities of the adversary
when corrupting a party that has just sent its messages for the round. Two central models are
considered in the literature:

In the atomic multisend model [37] a message that has been sent to the network is guaranteed
to be delivered to its recipients even if the sender becomes corrupted shortly after sending;
further, the messages are sent to the network as an atomic operation in the sense that once
the sender begins sending its messages for the round it cannot become corrupted until it has
finished sending all of its messages for the round. This model has gained popularity in many
recent consensus protocols (e.g., [22, 1, 21, 70, 8]).
In the standard (non-atomic multisend) model, the operation of sending messages to the channel
is not atomic, and the adversary may corrupt a sender after it sent its message to some party
Pi and before it has sent its message to another party Pj ; further, the adversary can drop
the message the newly corrupted sender sent to Pi and replace it with another. This is the
model that has been used in classical models of distributed computation (e.g., [32, 27, 33, 31])
and cryptographic protocols [18, 15, 16, 20]. This models has also been referred to as strongly
adaptive [45, 50, 54, 46] and strongly rushing [2, 1, 69].

In this work we consider the non-atomic-multisend model. Clearly, this is the preferred one as it
requires less assumptions on the underlying communication network. However, this model is more
challenging to work with as it considers more powerful adversaries; indeed, certain impossibility
results in the non-atomic multisend model do not translate to the atomic-multisend realm [48, 12, 1].
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In fact, as proven by Katz et al. [51], atomic multisend is a strictly weaker model facing dishonest-
majority as it cannot be realized from the basic ingredients needed for synchronous communication
(bounded-delay channels and a synchronizing clock).

Secure data erasures. Two models are normally considered in the adaptive-corruption setting,
depending on the ability of honest parties to securely erase certain parts of their memory (i.e., from
their internal state) without leaving any trace; see [18, 15] for a discussion. While some impossibility
results of adaptively secure cryptographic protocols crucially rely on parties not being able to erase
any information, and completely break otherwise (e.g., [61, 41, 47, 39]), other impossibility results
are stronger and do not rely on the absence of secure erasures (e.g., [48, 52, 12, 26]).

In this work we do not assume secure erasures for our protocol constructions; however, our im-
possibility results hold even in the secure-erasures model. This makes for the strongest statements;
to avoid confusion we will state the model explicitly in each section.

2.2 Simulation-Based Security

Some of the results in this work consider a simulation-based definition of broadcast, where security
is defined via the real vs. ideal paradigm. Namely, a protocol is considered secure if every attack
that can be executed by a PPT adversary in the real-world execution, can be simulated by a PPT
simulator in an ideal world, where an incorruptible trusted third party (aka, the ideal functionality)
receives inputs from the parties and carries out the computation on their behalf. For the specific
task of broadcast, the trusted party receives the input from the broadcaster and delivers it to all
other parties (see Section 3.2).

We present our results in a synchronous model with an online distinguisher (aka, the envi-
ronment); this is the prevalent model in many frameworks for cryptographic protocols; see, e.g.,
[16, 62, 49, 55, 4, 58, 5, 6]. Such a model requires the simulator to report its view to the distinguisher
in every round.3 We do not rely on any other specific properties of the model, but for concreteness,
we state our results in the synchronous model of the UC framework as defined in [51, 55, 5].

Loosely speaking, we consider protocols that run in a hybrid model where parties have access to
a simple “clock” functionality Gclock . This functionality keeps a counter, which is incremented once
all honest parties request the functionality to do so, i.e., once all honest parties have completed
their operations for the current round. In addition, all communication is done over bounded-delay
channels, where each party requests the channel to fetch messages that are sent to him, such that
the adversary is allowed to delay the message delivery by a bounded and a priori known number
of fetch requests. Stated differently, once the sender has sent some message, it is guaranteed that
the message will be delivered within a known number of activations of the receiver. For simplicity,
we assume that every message is delivered within a single fetch request.

We note that when considering online distinguishers, a resource-restricted adversary may bypass
its limitations by delegating some of its computation to the environment. It is therefore standard
to restrict the resources of the environment as well, see e.g., [36]. In this work, when considering
a resource-restricted adversary in the simulation-based setting, we will consider the pair of an
adversary and an environment as resource restricted, in the sense the their joint resource is bounded.

To simplify the presentation we describe the functionalities and protocols in a less technical way
than standard UC formulations (e.g., we do not explicitly mention the session id and party id in
every message, and somewhat abuse the activation policy by batching several operations together).

3Note that the stand-alone version of synchronous protocols (e.g., [18, 15, 42]) considers offline distinguishers and
only requires the simulator to provide an indistinguishable view from the environment after the completion of the
protocol.
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2.3 Time-Lock Puzzles

Time-lock puzzles [67] enable a sender to “lock” its message in a way that “unlocking” requires
an inherently sequential computation. This is a powerful primitive that has led to many results,
and has been extensively studied; see, e.g., [9, 36, 59, 7, 57, 29, 60, 13, 68, 53, 69, 30, 6]. While
the standard definition requires the puzzle generation to be “lightweight” compared to solving the
puzzle, our feasibility results can be based on the weaker notion in which puzzle generation is
as computationally expensive as solving the puzzle (yet, as opposed to puzzle solving, the puzzle
generation is parallelizable). Such weak time-lock puzzles are known from the minimal assumption
of one-way functions [59, 7] and the existence of non-parallelizing languages. In this paper we follow
the formulation of Bitansky et al. [7].

Puzzles. A puzzle is associated with a pair of parameters: A security parameter κ determining
the cryptographic security of the puzzle, as well as a difficulty parameter T that determines how
difficult it is to solve the puzzle.

Definition 1 (Puzzle). A puzzle is a pair of algorithms (PGen,PSol) satisfying the following
requirements.

• Syntax:
Z ← PGen(T, s) is a probabilistic algorithm that takes as input a difficulty parameter T
and a solution s ∈ {0, 1}κ, where κ is a security parameter, and outputs a puzzle Z.
s = PSol(Z) is a deterministic algorithm that takes as input a puzzle Z and outputs a
solution s.

• Completeness: For every security parameter κ, difficulty parameter T , solution s ∈ {0, 1}κ
and puzzle Z in the support of PGen(T, s), PSol(Z) outputs s.

• Efficiency:
Z ← PGen(T, s) can be computed in time poly(log T, κ).
PSol(Z) can be computed in time T · poly(κ).

Time-lock puzzles. In a time-lock puzzle, we require that the parallel time required to solve a
puzzle is proportional to the time it takes to solve the puzzle honestly, up to some fixed polynomial
loss.

Definition 2 (Time-lock puzzle). A puzzle (PGen,PSol) is a time-lock puzzle with gap ε < 1
if there exists a polynomial T1(·), such that for every polynomial T (·) ≥ T1(·) and every polysize
adversary A = {Aκ}κ∈N of depth depth(Aκ) ≤ T ε(κ), there exists a negligible function µ, such that
for every κ ∈ N, and every pair of solutions s0, s1 ∈ {0, 1}κ:

Pr
[
b← Aκ(Z)

∣∣∣ b← {0, 1}, Z ← PGen(T, sb)
]
≤ 1/2 + µ(κ).

Definition 3 (Weak puzzle). A weak puzzle is a pair of algorithms (PGen,PSol) satisfying the
Syntax and Completeness requirements as per Definition 1, and the following weak efficiency re-
quirement.

• Weak Efficiency:
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Z ← PGen(T, s) can be computed by a uniform circuit of size poly(T, κ) and depth
poly(log T, κ).
PSol(Z) can be computed in time T · poly(κ).

Mahmoody et al. [59] showed how to construct a weak time-lock puzzle in the random-oracle
model while Bitansky et al. [7] showed how to construct it from any one-way function and non-
parallelizing language.

Definition 4 (Non-parallelizing language). A language L ∈ DTime(T (·)) is non-parallelizing
with gap ε < 1 if for every family of non-uniform polysize circuits B = {Bκ}κ∈N where depth(Bκ) ≤
T ε(κ) and every large enough κ, Bκ fails to decide Lκ = L ∩ {0, 1}κ.

Theorem 5. [7] Let ε < 1. Assume that one-way functions exist, and that for every polynomially
bounded function T (·) there exists a non-parallelizing language L ∈ DTime(T (·)) with gap ε. Then,
for any ε1 < ε there exists a weak time-lock puzzle with gap ε1.

3 Broadcast Protocols: Definitions
Intuitively, a broadcast protocol should emulate a “megaphone” functionality in the sense that when
the sender speaks, all recipients receive the sender’s message. This is traditionally captured via the
agreement and validity properties. However, as observed in Hirt and Zikas [48], such a property-
based definition falls short of capturing the ideal megaphone functionality when facing adaptive
corruptions. Namely, the ideal megaphone functionality does not allow the adversary to corrupt the
sender after learning its input message, and change it retrospectively. Hirt and Zikas [48] further
showed that the ideal megaphone functionality cannot be realized in the dishonest-majority setting
in the standard (non-atomic-multisend) communication model.

3.1 Property-Based Broadcast

With the goal of distilling the essence of the impossibility result in [48], we provide a weaker,
property-based definition that is complete in the presence of adaptive corruptions. Recall that when
broadcasting a random bit via an “unfair” broadcast (following [48] terminology), the adversary
gets to learn the input bit before deciding whether to corrupt the sender and change its input;
for example, the adversary may corrupt the sender when the input is 1 and flip it to 0, but when
the input is 0 the adversary may continue without corrupting the sender. Informally, a broadcast
protocol should not concede this capability to the adversary.

Without loss of generality, we consider the message space to be {0, 1}κ. Looking ahead, our
lower bounds hold even in the simpler, Boolean case where the message space is {0, 1}, while our
upper bounds hold for any polynomial-length messages.

Definition 5 (Broadcast, property-based definition). An n-party protocol π, where a distin-
guished sender holds an initial input message m ∈ {0, 1}κ, is a broadcast protocol (according to the
property-based definition) tolerating an adaptive PPT t-adversary, if the following conditions are
satisfied:

Termination: There exists an a-priori-known round R such that the protocol is guaranteed to
complete (i.e., every so-far honest party produces an output value) within R rounds.
Agreement: All honest parties (at the end of the protocol) output the same value, with all but
negligible probability.
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Validity: If the sender is honest (at the end of the protocol) then all honest parties (at the end
of the protocol) output m, with all but negligible probability.
Fairness: For every PPT adversary A it holds that

Pr
[
Exptfair-bcast

π,A (κ) = 1
]
≤ 1

2 + negl(κ),

where the experiment Exptfair-bcast
π,A (κ) is defined in Figure 1.

Experiment Exptfair-bcast
π,A (κ)

1. The challenger samples a uniformly random bit b← {0, 1} and invokes A on input 1κ.
2. The challenger samples correlated randomness (r1, . . . , rn) ← Dπ and simulates the protocol

π on sender-input bκ toward A, who can adaptively corrupt parties throughout the execution.
(The challenger simulates all honest parties, and upon a corruption request reveals the internal
state of the corrupted party to the adversary, as well as the control over that party.)

3. The output of the experiment is set to 1 if:
b = 0 and the sender is honest at the end of the protocol;
b = 1 and the output value of an arbitrary honest party is 0κ.

Otherwise, the output of the experiment is set to 0. (If all parties are corrupted, the output is
set to be 0.)

Figure 1: The fairness-property experiment for adaptively secure broadcast

Note that, as observed in [48], the protocol of Dolev and Strong [27] (as well as most broadcast
protocols in the literature) allows an adversary to first learn the sender’s input message m, and
later change the common output as a function of m. Therefore, this protocol does not satisfy
the fairness property (even in the atomic-multisend model [37]). The broadcast protocols from
[48, 24, 25] satisfy this property for t ≤ n/2 in the standard (non-atomic-multisend) model, and
similarly, the protocol from [37] for t < n in the atomic-multisend model.

We shall refer to the commonly used property-based definition of broadcast as unfair broadcast.

Definition 6 (Unfair broadcast, property-based definition). An n-party protocol π tolerating
an adaptive PPT t-adversary, is an unfair broadcast protocol if agreement, validity and termination
hold, but fairness does not necessarily hold.

3.2 Simulation-Based Broadcast

While the property-based definitions provide the core requirements of broadcast, they are weaker
than simulation-based definitions and are therefore more suitable for lower bounds. We next present
the stronger simulation-based definitions which are better suited for proving the security of protocol
constructions.

Definition 7 (Broadcast, simulation-based definition). An n-party protocol π, is a broadcast
protocol (according to the simulation-based definition) tolerating an adaptive PPT t-adversary, if π
securely realizes the broadcast functionality, defined in Figure 2.
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The functionality Fbc

Initialization: The functionality initializes the output message mout ..= ⊥ and a Boolean flag
isOutputLocked ..= false.
Input: The sender sends an input messagem ∈ {0, 1}κ. The functionality sets the output message
mout ..= m.
Output request: If the adversary asks to receive the output value and there exists at
least one corrupted party, the functionality hands the adversary the message mout and sets
isOutputLocked ..= true. If all parties are honest, the functionality ignores this request.
Corruption request: If the adversary corrupts the sender, the functionality hands the ad-
versary the message mout. The adversary can provide the functionality a message m′ and if
isOutputLocked = false, the functionality sets the output message to be mout ..= m′.
Output: The functionality sends mout as output to all parties and sets isOutputLocked ..= true.

Figure 2: The broadcast functionality

Next, we provide the simulation-based definition of unfair broadcast, where the adversary can
first learn the message and later corrupt the sender and replace its message.

Definition 8 (Unfair broadcast, simulation-based definition). An n-party protocol π, is an
unfair broadcast protocol (according to the simulation-based definition) tolerating an adaptive PPT
t-adversary, if π securely realizes the unfair broadcast functionality, defined in Figure 3.

The functionality Fubc

Input: The sender sends an input message m ∈ {0, 1}κ. The functionality sets the output value
mout ..= m and sends m to the adversary.
Corruption request: If the adversary corrupts the sender, the adversary can provide the func-
tionality a message m′ and if no honest party received the output yet, the functionality sets the
output message to be mout ..= m′.
Output: The functionality sends mout as output to all parties.

Figure 3: The unfair-broadcast functionality

As a sanity check, we prove that a protocol that satisfies the simulation-based definition (Defi-
nition 7) also satisfies the property-based definition (Definition 5).

Lemma 9. If an n-party protocol π is a broadcast protocol according to the simulation-based def-
inition tolerating an adaptive PPT t-adversary, then π is a broadcast protocol according to the
property-based definition tolerating an adaptive PPT t-adversary.

Proof. Assume that π satisfies Definition 7 but does not satisfy Definition 5. If termination, agree-
ment, or validity are not satisfied, then we immediately derive a contradiction; therefore, we assume
that the fairness property is not satisfied. This means that there exists a PPT adversary A′ that
can win Exptfair-bcast

π,A′ (κ) (i.e., bias the output to 0κ while keeping the sender honest given 0κ as
input) with probability 1/2 + µ(κ) for a non-negligible µ.

Consider the environment Z and adversary A defined as follows: First, Z chooses a random
bit b← {0, 1} and activates the sender with input bκ. Next, the A attacks the protocol execution
by proceeding according to the operations of A′. Finally, the environment checks whether when
b = 0 the sender remained honest, and when b = 1 the output of an arbitrary honest party is 0κ;
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if so, the environment outputs 1 (real) and otherwise 0 (ideal). By construction, the environment
outputs 1 when interacting with the real-world protocol with probability 1/2 + µ(κ).

By Definition 7, there exists a PPT simulator S that can simulate this attack. However, by
definition of Fbc, the simulator can exactly simulate one of the two actions below, but not both.

Learn the input without corrupting the sender; in this case if the input is 1κ the adversary can
no longer influence the output to be 0k.
Corrupt the sender without first learning the input value and set the output to be 0κ; in this
case if the input is 0κ the sender does not remain honest.

It follows that for any PPT simulator, the environment will output 1 when interacting with the ideal-
world computation with probability 1/2 + negl(κ). This leads to a contradiction to the assumption
that π satisfies Definition 7.

4 Property-Based Adaptively Secure Broadcast
In this section we analyze the property-based definition of adaptively secure broadcast. In Sec-
tion 4.1 we extend the impossibility result of Hirt and Zikas [48] to this regime, and in Section 4.2
we show how to overcome this impossibility using resource-restricted cryptography; namely, via
time-lock puzzles.

First we observe that the impossibility proof of Hirt and Zikas [48, Lemma 8] makes an implicit
assumption that for an invocation of broadcast with sender Ps, the adversary, is aware of the first
subset of P \ {Ps} of size t− 1, which receives information about the input that Ps is attempting
to broadcast, and the actual round in which this occurs. An analogue of this property can also
be defined for computationally secure protocols, where information might be available to a set but
computationally inaccessible. In fact, it is easy to verify that all known broadcast protocols have
such a “release” round, which is not only defined, but also publicly known by the protocol structure.
For instance, in common protocols where the sender sends its input to everyone in the first round
(e.g., [27, 35]), the first round is actually this public round. We will denote the class of protocols
with such as step-release structure as Πstep-rel. In the following, we formally specify this class and
prove our impossibility results for all protocols that satisfy it.

For any given protocol π in the correlated-randomness model, any subset of parties P̂ ⊆ P, and
any round ρ, let VIEWρ

π,P̂(x, κ) denote the joint view of the parties in P̂ at the beginning of round ρ
in an honest execution (i.e., without the adversary corrupting anyone) on sender-input x, where κ
is the security parameter. In particular, VIEW1

π,P̂(·) consists of the inputs and the setup (including
randomness) of all parties in P̂ at the beginning of the protocol (before any message is exchanged).
For simplicity—in order to capture also randomized protocols with non-simultaneous termination—
we will allow the view to be defined even after a party terminates: if for some P ∈ P̂, party P
terminates in some round ρ ≤ R (where R is the upper bound of the protocol’s round complexity
guaranteed to exist by the termination property of Definition 5), then VIEWR

π,P̂(·) includes the view
of this party up to termination (round R). We will also assume for simplicity (again without loss
of generality) that for any such party, its view includes the party’s output.

The definition of the class Πstep-rel ensures that a round r̂π and a set P̂π ⊆ P \ {Ps} of size
|P̂π | < bn/2c are defined by the protocol, such that the set P̂π is the first set of parties that are
able to learn the actual input and this happens in round r̂π; i.e., no other set of parties (of the
same size) is able to output the input of the sender based on its view from rounds 1, . . . , r̂π − 1.
Formally:
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Definition 10 (The protocol class Πstep-rel). For any protocol π in the class Πstep-rel, there exists
some round number r̂π, a set P̂π ⊆ P \ {Ps} of size |P̂π | < bn/2c, and a PPT algorithm B̂π such
that the following properties hold:

1. There exists a negligible function ν such that for any input x it holds that

Pr
[
B̂π
(

VIEWr̂π

π,P̂π
(x, κ)

)
= x

]
≥ 1− ν(κ).

2. Let D be the input domain of the broadcast protocol (the set of possible inputs). If the input x
is chosen uniformly at random from D, then the output of the honest parties in the following
experiment is y 6= x with noticeable probability:

(a) Initiate the protocol π with sender Ps receiving a uniformly distributed input x ← D,
and sample and distribute the correlated randomness according to π.

(b) Consider a fail-stop adversary that corrupts the parties in P̂π ∪ {Ps} in round r̂π and
crashes them before sending their round-r̂π messages.

(c) Have the honest parties complete their protocol and set y to the output of any honest
party (e.g., the one with the smallest index.)

4.1 Impossibility of Property-Based Adaptively Secure Broadcast

We start by adapting the impossibility result of Hirt and Zikas [48] to work with the property-based
definition. In particular, we present a simpler argument than [48] that extends the impossibility to:
(1) capture a smaller, Boolean input domain (as opposed to exponential-size domain in [48]), and (2)
we show the impossibility with respect to a property-based definition (as opposed to the simulation-
based definition in [48]). We also observe that this proof strategy works both for deterministic and
randomized protocols assuming any correlated-randomness setup and/or secure data erasures. We
note that by Lemma 9 an impossibility of a broadcast protocol according to the property-based
definition also rules out such protocols secure according to the simulation-based definition.

Theorem 1. Let t > n/2. Then, there exists no broadcast protocol in the class Πstep-rel (secure
according to the property-based definition) tolerating an adaptive, fail-stop PPT t-adversary. The
theorem holds both for deterministic and randomized protocols assuming any correlated-randomness
setup and/or secure erasures.

Proof. Without loss of generality, we prove this statement for Boolean broadcast. Assume towards
a contradiction that π is a Boolean broadcast protocol (according to the property-based definition)
with sender Ps tolerating an adaptive PPT t-adversary. By classical impossibility results [56, 33, 11],
if t ≥ n/3 then π cannot be defined in the plain model (even assuming standard cryptographic
hardness assumptions), and some form of setup is required. That is, we consider a trusted dealer
that samples correlated randomness (r1, . . . , rn)← Dπ from some efficiently sampleable distribution
Dπ, and privately hands each Pi the string ri. Without loss of generality, assume that the random
coins used by each party are defined within ri, so the transcript and the view of each party are
random variables over the probability space defined by the random coins used for sampling from
Dπ and by the random choice of the input bit x← {0, 1}.

By Definition 10 there exist a round number r̂π, a set P̂π , and an algorithm B̂π for the protocol
π. The adversary A that breaks the fairness property of Definition 5 is defined as follows: Let T (·)
denote the polynomial that bounds the running time of the protocol.
1. For rounds 1, . . . , r̂π − 1 the adversary corrupts no party.
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2. At the beginning of round r̂π: A corrupts all the parties in P̂π , and uses its rushing ability to
deliver all the messages that parties outside of P̂π send to the corrupted parties. This way,
VIEWr̂π

π,P̂π
includes all messages that are in those parties’ view of an honest execution at round

r̂π.
3. A computes ŷ ← B̂π(VIEWr̂π

π,P̂π
) and proceeds as follows:

if ŷ = 1, then A corrupts also the sender Ps and crashes all corrupted parties—so that the
last messages received by parties in P \ (P̂π ∪{Ps}) were the ones received at round r̂π−1.
else (i.e., if ŷ = 0) the adversary does not corrupt Ps and allows all parties to continue
playing their protocol.

Next, we show that adversary A violates the fairness property of Definition 5. In slight abuse
of notation, but without loss of generality, we will use P to denote the broadcast-protocol parties
simulated by the Challenger in Exptfair-bcast

π,A (κ), and denote the sender by Ps. First we observe
that the input b that the Challenger uses in its simulation of broadcast towards A is distributed
uniformly. Hence, the views that A and Challenger witness in the fairness experiment up to round
r̂π are distributed identically as in an honest execution of π, and, therefore, the properties of the
class Πstep-rel hold for the interaction between them.

We consider the following events in the simulated execution of π between the Challenger and A:
Eb=0 occurs when the Challenger chooses b = 0.
Eb=1 occurs when the Challenger chooses b = 1.
Eh occurs if the sender Ps is honest at the end of the simulated protocol execution.
Ec occurs if the sender Ps gets corrupted before the end of the simulated protocol execution.
Eflip occurs if on sender input x, some party that is honest until it terminates, outputs y = 1−x
in the simulated execution. (Note that by agreement this implies that all honest parties will
output y except with negligible probability.)
Note that the events Eb=0 ∧ Eh and Eb=1 ∧ Ec ∧ Eflip are disjoint, therefore:

Pr
[
Exptfair-bcast

π,A = 1
]

= Pr
[
(Eb=0 ∧ Eh) ∨ (Eb=1 ∧ Ec ∧ Eflip)

]
= Pr

[
(Eb=0 ∧ Eh)

]
+ Pr

[
(Eb=1 ∧ Ec ∧ Eflip)

]
. (1)

Next, we observe that when the input bit is b = 0, then the adversary A corrupts the sender
and flips the output bit only with negligible probability (i.e., the probability that B̂π outputs the
wrong value 1, which is negligible for the protocols in the class we are considering). Hence:

Pr
[
(Eb=0 ∧ Eh)

]
= Pr

[
Eh | Eb=0

]
· Pr

[
Eb=0

]
= 1

2 · Pr
[
Eh | Eb=0

]
≥ 1

2 · (1− ν(κ)), (2)

for some negligible function ν(·).
Similarly, by the second property of the protocol class Πstep-rel, the above adversary makes the

honest parties output 1− b with noticeable probability. Hence:

Pr
[
Eb=1 ∧ Ec ∧ Eflip

]
= Pr

[
Ec ∧ Eflip | Eb=1

]
· Pr

[
Eb=1

]
= 1

2 · Pr
[
Ec ∧ Eflip

]
≥ 1

2 ·
(
1− µ(κ)

)
· q(κ), (3)

for some noticeable function q : N→ [0, 1] and some negligible function µ(·).
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Putting the above together we get that:

Pr
[
Exptfair-bcast

π,A = 1
]

= Pr
[
(Eb=0 ∧ Eh)] + Pr[(Eb=1 ∧ Ec ∧ Eflip)

]
≥ 1

2 · (1− ν(κ)) + 1
2 ·
(
1− µ(κ)

)
· q(κ)

= 1
2 + q(κ)

2 − ν(κ) + µ(κ) · q(κ)
2 . (4)

Since q(κ) is not negligible, nor is q(κ)/2. Furthermore, since µ(κ) and ν(κ) are negligible and
q(·) ≤ 1, it holds that µ(κ) · q(κ) is also negligible; hence, so is ν(κ) + µ(κ) · q(κ). Therefore,

q(κ)
2 − ν(κ) + µ(κ) · q(κ)

2
is a noticeable function, which means that Equation 4 contradicts the fairness property of the
broadcast definition.

4.2 Property-Based Adaptively Secure Broadcast Protocol

Next, we proceed to show that the property-based definition of broadcast can be realized assuming
a time-lock puzzle. The high-level idea is quite simple. The sender hides its message inside a (weak)
time-lock puzzle, and uses an unfair broadcast protocol (e.g., Dolev and Strong [27]) to deliver the
puzzle to all parties. The TLP parameters should guarantee that the adversary cannot solve the
puzzle before the unfair broadcast completes.

In the spirit of resource-restricting cryptography, we will not consider arbitrary PPT adversaries,
since otherwise the impossibility results from Section 4.1 will kick in. Instead we will assume an
upper bound on the number of parallel steps an adversary can perform during the protocol’s
execution.
Definition 11 ((R, T )-bounded adversary). A PPT adversary A is (R, T )-bounded if for every
κ ∈ N, the maximal depth of a circuit that A can evaluate within R communication rounds is
bounded by T (κ).
Theorem 2. Let t ≤ n and let T (·) be a polynomial. Assume that weak time-lock puzzles with
gap ε < 1 exist and that unfair broadcast can be computed in R rounds against an adaptive PPT
t-adversary. Then, Protocol πbc-prop (Figure 4) is a broadcast protocol (according to Definition 5)
that is secure against an (R, T )-bounded adaptive PPT t-adversary.

Protocol πbc-prop(T, κ)

Hybrid model: The protocol is defined in the unfair broadcast Fubc-hybrid model, where Fubc
produces an output within R rounds.
Public parameters: A puzzle (PGen,PSol) with gap ε < 1, a difficulty parameter T , and the
security parameter κ.
Private input: The sender has a private input m ∈ {0, 1}κ.
The protocol:

• Lock: The sender computes Z ← PGen(T 1/ε,m).

• Unfair broadcast: The sender broadcasts Z via Fubc.

• Recover the output: Upon receiving Z, each party computes m = PSol(Z) and outputs m.

Figure 4: Adaptively secure, property-based, broadcast protocol
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Proof. We prove each property separately.

Termination. Every honest party is guaranteed to receive a puzzle from Fubc within R rounds,
and therefore is guaranteed to produce an output and terminate after a polynomial number of steps
needed to open the puzzle.

Agreement. By definition of Fubc, all honest parties are guaranteed to receive the same Z, and
therefore, by the correctness of the time-lock puzzle, are guaranteed to output the same message
with overwhelming probability.

Validity. Assume the sender is honest at the end of the execution and is set with input m. By
definition of Fubc, all honest parties are guaranteed to receive Z. Therefore, by the correctness of
the time-lock puzzle, all honest parties will compute m = PSol(Z) with overwhelming probability.

Fairness. Let A be an (R, T )-bounded PPT adversary that wins Exptfair-bcast
π,A (κ) with probability

1/2 + µ(κ) for a non-negligible µ. Note that the only information that A receives during the
execution of the protocol is the puzzle Z (since the views of non-sender parties that get corrupted
contain no information about the input bit), and based on this information A has to decide whether
to corrupt the sender and flip its bit, i.e., decide whether the puzzle Z contains 1κ. Since A is
(R, T )-bounded and has to decide whether to corrupt the sender within R rounds, the algorithm
that A computes can be represented as a depth T (κ) circuit. However, since the difficulty parameter
of the puzzle is set to T 1/ε, it follows that A can be used to break the security of the time-lock
puzzle, according to Definition 2.

By instantiating Fubc with the protocol of Dolev and Strong [27] we derive the following corol-
lary.

Corollary 12. Assume that weak time-lock puzzles with gap ε < 1 exist, let t ≤ n, and let T (·) be a
polynomial. Then, there exists a broadcast protocol (according to the property-based definition) that
is secure against an (n, T )-bounded adaptive PPT t-adversary, given a PKI for digital signatures.

5 Simulation-Based Adaptively Secure Broadcast
In this section we analyze the simulation-based definition of broadcast. In Section 5.1 we show that
the assumptions used in Section 4.2 that satisfy the property-based definition are not sufficient
to realize the simulation-based definition, and in Section 5.2 we show how to overcome the new
impossibility via the new notion of non-committing time-lock puzzles.

5.1 Impossibility of Simulation-Based Adaptively Secure Broadcast

We demonstrate that for the class of protocols Πstep-rel (which in particular includes our protocol
from the previous section proved secure according to the property-based definition), assuming time-
lock puzzles does not help in realizing the simulation-based definition. This demonstrates not only
the separation between the two definitions, property-based and simulation-based, but also the fact
that time-lock puzzles are less effective in a simulation-based setting. Intuitively, the reason is that
the puzzle is a non-interactive object which has a binding property (once handed over, its solution
cannot be changed) and a temporary hiding property (while the solver works to solve the puzzle,
they cannot distinguish it from a puzzle with another solution). In fact, once one observes these
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properties, the limits of the strength of TLPs for simulation-based adaptive security becomes less
of a surprise, as it resembles analogous issues displayed by primitives with similar properties, such
as commitments [17] and public-key encryption [61].

Before stating our results we first extend the notion of (R, T )-bounded adversaries to the
simulation-based setting, where the adversary can use the computational resources of the envi-
ronment. We consider the pair of environment Z and adversary A to be (R, T )-bounded, meaning
that for every κ ∈ N, the maximal depth of a circuit that Z and A can jointly evaluate within R
communication rounds, is bounded by T (κ).

We note that by restricting the joint resources of the environment and the adversary, we actually
obtain a stronger impossibility result, since even a weaker distinguisher can distinguish between
the real execution and the simulated one. Moreover, the result is in fact even stronger since we do
not restrict the simulator to be (R, T )-bounded.

We are now ready to state the impossibility result, which states that even TLPs cannot help
circumvent the impossibility of adaptively secure broadcast under simulation-based security. In-
formally, this is proven by using the fact that, by definition of Πstep-rel, in round r̂π the adversary
attacking π and corrupting P̂π has all the information it needs to recover the output (even when the
sender is honest). This means that, in order to simulate, the simulator needs to give its adversary
this information. But the only way the simulator can ensure this is by asking the functionality Fbc
for the sender’s input. This gives rise to the following distinguishing strategy for the environment:
Once the environment gets its round r̂π messages, it attempts to flip the output by corrupting the
sender and all parties in the set P̂π defined by class Πstep-rel. What complicates things is that,
unlike the proof of Theorem 1, the environment cannot set a trap for the simulator by making its
choice to corrupt the sender depend on the output of B̂π. The reason is that the input (to B̂π)
view of round r̂π might include TLPs, which the environment cannot quickly solve (within round
r̂π) by the time it decides whether or not to corrupt the sender and try to flip the output.

Instead the environment does the following: It always, optimistically, corrupts the sender and
tries to flip the output; it then uses input-dependent check-events to distinguish as follows. If
the input is 0 the environment checks that the simulator gave it consistent r̂π-round messages by
running algorithm B̂π;4 otherwise, if the input is 1 then it checks if the simulator managed to flip
the bit by looking at the output of Fbc. As discussed above, the only way the simulator can ensure
that the first check succeeds is by asking the functionality Fbc for the input; however, when this
happens, the output of Fbc gets locked which will make it impossible for the simulator to flip the
output. Hence, one of the two check events will occur noticeably more frequently in the real than
in the ideal world, rendering the protocol insecure. We proceed with formal statement and proof.

Theorem 3. Let t > n/2 and let R, T be polynomials in κ. Then, there exists no broadcast protocol
in Πstep-rel, which is secure according to the simulated-based definition and tolerates an adaptive,
fail-stop, PPT, t-adversary. The theorem holds both for deterministic and randomized protocols
assuming any (even inefficient5) correlated-randomness setup and/or secure data erasures and holds
even for (R, T )-bounded environments and adversaries and assuming time-lock puzzles.

Proof. Let π be a broadcast protocol from the class Πstep-rel. As in the proof of Theorem 1 we
consider a (trusted dealer that samples a) correlated-randomness setup (r1, . . . , rn) ← Dπ from
some distribution Dπ, and privately hands each Pi the string ri. Without loss of generality, assume
that the random coins used by each party are defined within ri, so the transcript and the view of

4The environment can take its time running B̂π after the protocol terminates.
5Classical correlated randomness setup assumes efficient sampling and distribution mechanisms. By removing

such restrictions here we can even capture non-programmable random oracle, as an exponential-space correlated
randomness functionality that samples the entire random table of the RO.
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each party are random variables over the probability space defined by the random coins used for
sampling from Dπ and by the random choice of the input bit x← {0, 1}.

By Definition 10 there exist a round index r̂π, a set P̂π , and an algorithm B̂π for the protocol
π. One might be tempted to play the same strategy as in the proof of Theorem 1—i.e., at round
r̂π, the adversary who corrupts the parties in P̂π evaluates B̂π on their view, and depending on
the output of B̂π, either corrupts the sender and crashes all corrupted parties, or lets the protocol
complete. Unfortunately, this attack might not work in this setting, as the definition of B̂π makes
no restriction on the (parallel) time that it takes to compute its output other than that this time
is polynomial. Thus, an (R, T )-bounded adversary/environment pair might not be able to evaluate
B̂π before round r̂π finishes. This is, for example, the case if the view of the parties in P̂π includes
a freshly generated time-lock puzzle, as in the protocol πbc-prop (Figure 4), that requires multiple
rounds to be solved by an (R, T )-bounded adversary.

Thus, we need a different strategy for the environment. Consider the following two (R, T )-
bounded environments Z0 and Z1: Zb gives the sender input b with probability 1 and works as
follows: It instantiates an execution with a dummy adversary [16], namely, an adversary that simply
follows the environment’s instructions. It then proceeds is as follows:
1. For rounds 1, . . . , r̂π − 1 it (instructs the adversary to) corrupts no party.
2. At the beginning of round r̂π: The environment tells its dummy adversary A to corrupt all

the parties in P̂π , and use its rushing ability to deliver all the messages that parties outside of
P̂π send to the corrupted parties. This way, VIEWr̂π

π,P̂π
includes all messages that are in those

parties’ view of an honest execution at round r̂π.
3. After receiving all r̂π-round messages from all honest parties running the protocol (or from

the simulator in the ideal world) Zb instructs A to corrupt also the sender Ps and crash
all corrupted parties, including the sender, so that the last messages received by parties in
P \ (P̂π ∪ {Ps}) were the ones received at round r̂π − 1.

4. Zb allows the protocol to terminate and records the output y of any honest party.
5. Finally, Zb takes its time after the protocol has outputted to evaluate b̂ = B̂π(VIEWr̂π

π,P̂π
).6

6. The output of Zb is then computed as follows:
If b = 0: output 0 (real) if b̂ = b and output 1 (ideal) otherwise;
if b = 1: output 0 (real) if y = 0 and output 1 (ideal) otherwise.

Next, We show that any simulator that successfully simulates against Z0 will fail to simulate
against Z1. To make the statement even stronger, we do not even restrict the simulator to be (R, T )-
bounded. Indeed, let S be any simulator in the Fbc-ideal experiment for the dummy adversary.

We consider the following events in the real execution of π with this environment Z and the
dummy adversaryA (recall that b stands for the input bit, b̂ for the output of B̂π, and y for the
common output bit):
EZ,A,π
b=b̂ occurs when in the real experiment b = b̂.
EZ,A,πb=1 occurs when in the real experiment b = 1.
EZ,A,πb=0 occurs when in the real experiment b = 0.
EZ,A,πb=16=y occurs when in the real experiment b = 1 and y = 0.

6Observe that the fact that the environment is (R, T )-bounded restricts how fast it can compute the output of
B̂π but since B̂π is a polynomial-time algorithm, a polynomial-time environment will be able to compute it within
its runtime.
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By definition of the events, for the environments Z0 and Z1 we have:

Pr
[
EZ0,A,π
b=0

]
= Pr

[
EZ1,A,π
b=1

]
= 1. (5)

Additionally, by correctness of the protocol π and the definition of the class Πstep-rel, there exists a
negligible function µ such that:

Pr
[
EZ0,A,π
b=b̂

]
= 1− µ(κ). (6)

Since Z0 always uses input bit b = 0, it always uses the first condition to determine the output, i.e.,
output 0 (real) if and only if b = b̂. Hence, for the output REALZ0,A,π(κ) of the environment Z0 in
the real experiment with (dummy) adversary A, the output is 1 (ideal) with negligible probability:

Pr [REALZ0,A,π(κ) = 1] = Pr
[
EZ0,A,π
b=b̂

]
= µ(κ). (7)

Additionally, for the environment Z1, by definition of the class Πstep-rel when every party in P̂π
crashes before sending their r̂π-round message, then the output of the honest parties is flipped with
noticeable probability. That is, there exists a noticeable function q such that.

Pr
[
EZ1,A,π
b=16=y

]
= q(κ). (8)

Since Z1 always uses input bit b = 1, it always uses the second condition to determine the output,
i.e., output 0 (real) if and only if y = 0. Hence:

Pr [REALZ1,A,π(κ) = 0] = Pr
[
EZ1,A,π
b=16=y

]
= q(κ). (9)

Let us now turn to the ideal experiment. Consider the following events in the ideal execution
of π with environment Z and the simulator S:
EZ,S,Fbc
b=b̂ occurs when in the ideal experiment b = b̂.
EZ,S,Fbc
b=0 occurs when in the ideal experiment b = 0.
EZ,S,Fbc
b=1 occurs when in the ideal experiment b = 1.
EZ,S,Fbc
b=16=y occurs when in the ideal experiment b = 1 and y = 0.
EZ,S,Fbc

rush which occurs when the simulator asks Fbc for the output while the sender is still honest
and before sending the r̂π-round simulated messages to the environment.
As above, we have:

Pr
[
EZ0,S,Fbc
b=0

]
= Pr

[
EZ1,S,Fbc
b=1

]
= 1. (10)

We next observe that the event EZ,S,Fbc
rush occurs with the same probability for Z0 and Z1. The

reason is that this event is triggered by the simulator based on its view of the (ideal) execution
before it gets any information from Fbc and while Zb (asks its adversary to) behave according to the
protocol. Indeed, up to round r̂π, the environment Zb behaves identically to Zb̄ and independently
of b. Thus, for some function fS,π,Fbc(κ) it holds that:

Pr
[
EZ1,S,Fbc

rush

]
= Pr

[
EZ0,S,Fbc

rush

]
= fS,π,Fbc(κ). (11)

We next observe that when the simulator asks for the value before corrupting the sender (and
hence before learning any information about the input), by definition of Fbc the output gets locked
to this (input) value and cannot be flipped even if S later corrupts the sender. Hence:
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Pr
[
EZ1,S,Fbc
b=16=y

∣∣∣ EZ1,S,Fbc
rush

]
= 0. (12)

Therefore, for the output IDEALZ1,S,Fbc(κ) of the environment Z1 in the ideal experiment with
simulator S we have:

Pr [IDEALZ1,S,Fbc(κ) = 0] = Pr
[
EZ1,S,Fbc
b=16=y

]
= Pr

[
EZ1,S,Fbc
b=16=y

∣∣ EZ1,S,Fbc
rush

]
· Pr

[
EZ1,S,Fbc

rush

]
+ Pr

[
EZ1,S,Fbc
b=16=y

∣∣ EZ1,S,Fbc
rush

]
· Pr

[
EZ1,S,Fbc

rush

]
Eq.12= Pr

[
EZ1,S,Fbc
b=16=y

∣∣ EZ1,S,Fbc
rush

]
· Pr

[
EZ1,S,Fbc

rush

]
Eq.11
≤ fS,π,Fbc(κ). (13)

Moreover, when the simulator does not ask for the output value before corrupting the sender,
the r̂π-round messages are independent of the actual input value b. Since b is chosen randomly and
b̂ is the outcome of algorithm B̂π on a view independent of b, it holds that:

Pr
[
EZ0,S,Fbc
b=b̂

∣∣ EZ0,S,Fbc
rush

]
= 1

2 . (14)

Thus,

Pr [IDEALZ0,S,Fbc(κ) = 1] = Pr
[
EZ0,S,Fbc
b=b̂

]
= Pr

[
EZ0,S,Fbc
b=b̂

∣∣ EZ0,S,Fbc
rush

]
· Pr

[
EZ0,S,Fbc

rush

]
+ Pr

[
EZ0,S,Fbc
b=b̂

∣∣ EZ0,S,Fbc
rush

]
· Pr

[
EZ0,S,Fbc

rush

]
Eqs.14,11= Pr

[
EZ0,S,Fbc
b=b̂

∣∣ EZ0,S,Fbc
rush

]
· Pr

[
EZ0,S,Fbc

rush

]
+ 1

2 · fS,π,Fbc(κ)

≥ 1
2 · fS,π,Fbc(κ). (15)

Putting things together, the distinguishing advantage of Z0 in distinguishing a real execution
of π with dummy adversary A from and an Fbc-ideal execution with simulator S is:∣∣∣Pr [REALZ0,A,π(κ) = 1]− Pr [IDEALZ0,S,Fbc(κ) = 1]

∣∣∣. (16)

Since Pr[REALZ0,A,π(κ) = 1] is negligible (by Equation 7), the assumed security of π (which demands
that the above distinguishing advantage be negligible) implies that Pr[IDEALZ0,S,Fbc(κ) = 1] should
also be negligible, which, by Equation 15, means that fS,π,Fbc(κ) is negligible.

However, in this case the distinguishing advantage of Z1, defined as∣∣∣Pr [REALZ1,A,π(κ) = 0]− Pr [IDEALZ1,S,Fbc(κ) = 0]
∣∣∣, (17)

will be noticeable since by Equations 9 and 13 it holds that Pr[REALZ1,A,π(κ) = 0] is noticeable
and Pr[IDEALZ1,S,Fbc(κ) = 0] is at most fS,π,Fbc(κ), hence negligible. This contradicts the assumed
security of π.

5.2 Simulation-Based Adaptively Secure Broadcast Protocol

The main reason why the protocol from Section 4.2 does not realize the simulation-based definition
is that once the simulator simulates an honest sender broadcasting the puzzle Z (without knowing
the real input value), it cannot equivocate the content of the puzzle upon corruption of the sender, or
when the protocol completes and the output is revealed. We now proceed to construct an adaptively
secure broadcast protocol that satisfies the simulation-based definition in the random-oracle model.
First off, we introduce the notion of time-lock puzzles that are non-committing.
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Non-committing time-lock puzzles. Standard constructions of time-lock puzzles are commit-
ting in the sense that once a puzzle is generated, it can be opened into a unique message with
all but negligible probability. In contrast, a non-committing time-lock puzzle enables a simulator
to initially simulate a puzzle, and later, given an arbitrary message m, to “explain” the puzzle as
containing m (and, in particular, ensure that the puzzle is opened for m). We show how to achieve
this notion given a standard time-lock puzzle and a programmable random oracle, by generating
Z = PGen(T, x) for a random x ← {0, 1}κ and attaching c = H(x) ⊕m to the puzzle. Once the
simulator is asked to equivocate the new puzzle (Z.c) to the message m, it can program the random
oracle to return H(x) = c⊕m.

We proceed to state the theorem.
Theorem 4. Assume that weak time-lock puzzle with gap ε < 1 exist and that unfair broadcast can
be computed in R rounds against an adaptive, PPT t-adversary, for t ≤ n. Let T (·) be a polynomial.
Then, Protocol πbc-sim (Figure 5) is a broadcast protocol according to the simulation-based definition
(Definition 7) that is secure against an adaptive t-adversary in the programmable random-oracle
model, where the adversary and the environment are PPT and (R, T )-bounded.

Protocol πbc-sim(T, κ)

Hybrid model: The protocol is defined in the unfair broadcast Fubc-hybrid model, requiring R
rounds. The parties have access to a random oracle H : {0, 1}κ → {0, 1}κ.
Public parameters: A puzzle (PGen,PSol) with gap ε < 1, a difficulty parameter T , and the
security parameter κ.
Private input: The sender has a private input m ∈ {0, 1}κ.
The protocol:

• Lock: The sender samples a random x← {0, 1}κ and computes Z ← PGen(T 1/ε, x).

• Unfair broadcast: The sender sets c = m⊕H(x) and broadcasts (Z, c) via Fubc.

• Recover the output: Upon receiving (Z, c), each party computes x = PSol(Z) and outputs
c⊕H(x).

Figure 5: Adaptively secure, simulation-based broadcast protocol

Proof. Correctness of the protocol follows from the correctness of the time-lock puzzle and of Fubc.
Without loss of generality, we will prove security against the dummy adversary (that simply acts as
a relay that delivers everything that it sees to the environment and sends whatever the environment
instructs it to send7). We will construct a PPT simulator interacting with the ideal functionality
Fbc and with ideal (dummy) parties P̃1, . . . , P̃n, such that no (R, T )-bounded environment can
distinguish between interacting with the real protocol and the dummy adversary or with the ideal
computation and the simulator, except with negligible probability.

The simulator S initially constructs virtual parties P1, . . . , Pn, and emulates the unfair broadcast
functionality Fubc and the random oracle H towards the environment Z. To simulate the protocol,
S proceeds as follows:

The simulator stores a list L of the random oracle queries made by the environment. Whenever
Z queries the random oracle with a value z, the simulator checks to see if a pair (z, w) (for
some w) appears in L, and if so returns w to Z; otherwise, S samples a random w ← {0, 1}κ,
adds (z, w) to L and returns w to Z.

7The dummy adversary is known to be the “worst-case adversary” in the sense that if the protocol is proven secure
in the face of the dummy adversary then the protocol is secure in the face of every adversary [16].
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If Z requests to corrupt a party before the first round, S corrupts the dummy party in the
ideal world. In case of corrupting the sender, S continues the rest of the simulation by honestly
running all the remaining honest parties.
In case the sender is honest in the first round, S samples random c, x← {0, 1}κ and computes
Z ← PGen(T, x). Next, S sends (Z, c) to Z as the leakage from Fubc.
If Z requests to corrupt a party during the first R rounds of the protocol, S corrupts the dummy
party in the ideal world. In case of corrupting the sender, S learns the input message m, and
adds (x,w) to L for w = m⊕ c (in case (x, ·) already appears in L the simulator aborts).
If after R rounds the sender is still honest, S requests the output from Fbc, receives back m,
and adds (x,w) to L for w = m⊕ c (in case (x, ·) already appears in L the simulator aborts).
If Z requests to corrupt a party after the first R rounds of the protocol, S corrupts the dummy
party in the ideal world.
Let Z be an (R, T )-bounded environment. Note that Z can distinguish if and only if it succeeds

in querying the random oracle on x during the first R rounds, since in this case the simulator must
decide on H(x) before knowing m. Denote by q(κ) an upper bound on the number of queries made
by Z, then it holds that this event occurs with at most q(κ)/2κ + µ(κ) probability, where µ(κ) is
the negligible probability in which the environment Z can learn x from the puzzle Z. In case this
event does not occur, the simulation is perfect and induces identically distributed views between
the real and the ideal computations.

By instantiating Fubc with the protocol of Dolev and Strong [27] we derive the following corol-
lary.

Corollary 13. Assume that weak time-lock puzzles with gap ε < 1 exist, let t ≤ n, and let T (·) be a
polynomial. Then, there exists a broadcast protocol (according to Definition 7) in the programmable
random-oracle model and given a PKI for digital signatures, that is secure against an adaptive
t-adversary, where the adversary and the environment are PPT and (R, T )-bounded.
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