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ABSTRACT
In this paper, we introduce the problem of Asynchronous Data

Dissemination (ADD). Intuitively, an ADD protocol replicates a

message to all honest nodes in an asynchronous network, given

that at least 𝑡 + 1 honest nodes initially hold the message where 𝑡

is the maximum number of malicious nodes. We design a simple

yet efficient ADD protocol for 𝑛 parties that is information theoret-

ically secure, tolerates up to one-third malicious nodes, and has a

communication cost of 𝑂(𝑛 |𝑀 |+𝑛2
) for replicating a message𝑀 .

We then use our ADD protocol to improve many important

primitives in cryptography and distributed computing. For reliable

broadcast, assuming the existence of collision resistance hash func-

tions, we present a protocol with communication cost𝑂(𝑛 |𝑀 |+^𝑛2
)

where ^ is the size of the hash function output. This is an improve-

ment over the best-known complexity of 𝑂(𝑛 |𝑀 |+^𝑛2
log𝑛) under

the same setting. Next, we use our ADD protocol along with addi-

tional new techniques to improve the communication complexity

of Asynchronous Verifiable Secret Sharing (AVSS) and Asynchro-

nous Complete Secret Sharing (ACSS) with no trusted setup from

𝑂(^𝑛2
log𝑛) to 𝑂(^𝑛2

) . Furthermore, we use ADD and a publicly-

verifiable secret sharing scheme to improve dual-threshold ACSS

and Asynchronous Distributed Key Generation (ADKG).

1 INTRODUCTION
In this paper, we propose and study a new problem which we call

Asynchronous Data Dissemination (ADD). Briefly, the goal is to repli-
cate a data blob from a subset of honest nodes to all honest nodes,
despite the presence of some malicious nodes. More specifically,

in a network of 𝑛 nodes where up to 𝑡 nodes could be malicious, a

subset of at least 𝑡 + 1 honest nodes start with a common message

blob 𝑀 , and the goal is to have all honest nodes output 𝑀 at the

end of the protocol.

We will present a solution for the ADD problem with 𝑛 ≥ 3𝑡 + 1,

where at least 𝑡 + 1 honest nodes start with the message 𝑀 . For

a message𝑀 of size |𝑀 |, our protocol has a total communication

cost of 𝑂(𝑛 |𝑀 |+𝑛2
). Moreover, our solution to the ADD problem is

information theoretically secure i.e., it does not rely on any crypto-

graphic assumption. Additionally, if we assume the existence of a

collision-resistant hash function with output size ^ , we can extend

our ADD protocol to any 𝑡 ≤ (1/2 − 𝜖)𝑛 for 𝜖 > 0 with a total

communication cost of 𝑂(𝑛 |𝑀 |/𝜖 + 𝑛2^).

We then observe that ADD lies in the heart of many important

problems, including asynchronous reliable broadcast (RBC) [14, 17],

asynchronous verifiable secret sharing (AVSS) [4, 16], asynchronous

complete secret sharing (ACSS) [55], dual-threshold ACSS [3, 37],

and asynchronous distributed key generation (ADKG) [2, 37], as

illustrated in Figure 1. Using our solution to ADD with 𝑛 ≥ 3𝑡 + 1

and some additional new techniques, we can construct solutions to

RBC Dual-Threshold
ACSSAVSS ACSS ADKG

ADD

Figure 1: Illustration of the relationships between the problems in this

paper. Asynchronous Data Dissemination (ADD) can be used to solve Asyn-

chronous Reliable Broadcast (RBC), Asynchronous Verifiable Secret Sharing

(AVSS), Asynchronous Complete Secret Sharing (ACSS), Dual-threshold

ACSS and Asynchronous Distributed Key generation (ADKG).

Table 1: Comparison of protocols proposed in this paper with best known

protocols realizing different primitives under different setup and crypto-

graphic assumption. Here 𝑛 is the number of nodes in the system and ^ is

the security parameter.

Scheme

Communication

Cost (total)

Cryptographic

Assumption

Setup Reference

RBC

extension

𝑂(𝑛2 |𝑀 |) None None [14]

𝑂(𝑛 |𝑀 |+^𝑛2
log𝑛) Hash None [17]

𝑂(𝑛 |𝑀 |+^𝑛2
) 𝑞-SDH+DBDH Trusted [43]

𝑂(𝑛 |𝑀 |+^𝑛2
) Hash None this work

AVSS

and

ACSS

𝑂 (̂ 𝑛2
log𝑛) DL+RO PKI [55]

𝑂 (̂ 𝑛2
log𝑛) DL+RO None [3]

∗

𝑂 (̂ 𝑛2
) 𝑞-SDH + Hash Trusted [4]

𝑂 (̂ 𝑛2
) DL+Hash None

† this work

Dual

Threshold

ACSS
∗

𝑂 (̂ 𝑛2
log𝑛) DL+RO None [3]

𝑂 (̂ 𝑛2
) 𝑞-SDH + Hash Trusted [3]

𝑂 (̂ 𝑛2
) DL+RO

†
PKI this work

ADKG

𝑂 (̂ 𝑛3
log𝑛) DL+RO None [3, 37]

𝑂 (̂ 𝑛3
) Strong RSA+DCR+RO PKI this work

†
Our AVSS does not require PKI, but our ACSS does. Also, If we assume DBDH

assumption, then we do not need RO in our dual-threshold ACSS.

∗
As presented, the ACSS scheme of [3] only supports uniform random secrets. All

the dual-threshold ACSS scheme also only support uniform random secrets. But

they can be extended to arbitrary secrets using techniques from [51].

the problems in Figure 1 with improved communication complexity

or weaker assumptions.

Overview of our results. Table 1 compares our results with ex-

isting works. As mentioned, all our protocols are built on top of

ADD with 𝑛 = 3𝑡 + 1, which intuitively replicates a message 𝑀

to all honest nodes, given the initial condition that at least 𝑡 + 1

honest nodes have 𝑀 as the input and rest of the nodes have ⊥.
To implement ADD efficiently, our protocol first leverages error-

correcting code to encode 𝑀 into 𝑛 codewords, and then the 𝑖-th

node is responsible for dispersing the 𝑖-th codeword. For any node

𝑖 that has input ⊥, it learns and disperses the 𝑖-th codeword after

receiving 𝑡 + 1 identical messages from the set of 𝑡 + 1 honest nodes

that have input𝑀 . After each node 𝑖 disperses the 𝑖-th codeword,



honest nodes repeatedly try to reconstruct the message𝑀 when-

ever at least 2𝑡 + 1 codewords are received. The node outputs the

reconstructed message if it matches 2𝑡 + 1 codewords. The ADD

protocol is information-theoretic, has a total communication cost

of 𝑂(𝑛 |𝑀 |+𝑛2
), and tolerates 𝑡 < 𝑛/3 faults.

The first primitive we can improve is reliable broadcast (RBC) [14,

17] for large messages, a fundamental primitive in asynchronous

networks. Briefly, a reliable broadcast protocol implements a broad-

cast channel in an asynchronous network and ensures that all hon-

est nodes in the network deliver the same message if any honest

node delivers. RBC has been used to construct many higher-level

protocols such as atomic broadcast [1, 26, 30, 33, 39, 42], asyn-

chronous multi-party computation [38, 55], and asynchronous dis-

tributed key generation [2, 30, 37]. All of these involve RBC for long

messages, typically of size Ω(𝑛) where𝑛 is the total number of nodes

in the protocol. The problem of RBC for long messages is called

RBC extensions. The classic RBC protocol due to Bracha [14] solves

1-bit RBC with communication cost 𝑂(𝑛2
), and therefore 𝑂(𝑛2 |𝑀 |)

for broadcasting a message𝑀 . Prior to our work, the most closely

related and inspiring work is the asynchronous information disper-

sal (AVID) protocol due to Cachin and Tessaro [17]. Their protocol

uses error-correcting codes and Merkle path proofs and has a total

communication cost of 𝑂(𝑛 |𝑀 |+^𝑛2
log𝑛); it can be modified to

solve RBC extension with the same total communication cost.

We show that we can combine Bracha’s classic RBC protocol [14]

with our ADD protocol to obtain an improved solution to RBC

extension. The key observation is that running the Bracha’s RBC

protocol on the hash digest of 𝑀 can establish exactly the initial

condition for ADD that at least 𝑡 + 1 honest nodes start with 𝑀

and no honest node starts with any other message. As a result,

after running our ADD protocol, every honest node unanimously

outputs the message𝑀 . Compared to current best RBC extension

protocol [17], we remove the log𝑛 term in the communication cost

as we remove the Merkle path proofs.

Our ADD solution along with additional techniques also im-

proves the communication costs of Asynchronous Verifiable Se-

cret Sharing (AVSS) [4, 16] and its variants such as Asynchronous

Complete Secret Sharing (ACSS) and Dual-Threshold ACSS [3, 37].

Typically, state-of-the-art protocols for these primitives use RBC

extension as a black-box, but they also have other bottleneck steps

in terms of communication cost. For example, without any trusted

setup, the best known AVSS protocol [3] instantiated with polyno-

mial commitment schemes from [15] has a communication cost of

𝑂 (̂ 𝑛2
log𝑛) due to two steps: a RBC on an𝑂 (̂ 𝑛) size message, and

an all-to-all gossip of 𝑂 (̂ log𝑛) size polynomial evaluation proofs.

The polynomial evaluation proofs are needed because the RBC

extension is executed without nodes checking the validity of the

message. Hence, to reduce the total communication cost of AVSS it

is not sufficient to use a more communication efficient black-box

RBC extension protocol. Instead, as mentioned earlier, we open the

black-box of RBC extension and propose an improved protocol that

checks the validity of messages during RBC on the message digest

followed by an ADD to replicate the message.

In summary, we make the following contributions.

• We introduce the Asynchronous Data Dissemination (ADD) prob-

lem for asynchronous networks where up to a threshold frac-

tion of nodes could be malicious. We design an information-

theoretically secure and efficient protocol to solve the ADD

problem that tolerates up to 1/3 malicious nodes and has cost

𝑂(𝑛 |𝑀 |+𝑛2
) for a message𝑀 of size |𝑀 |. Assuming collision resis-

tance hash function, we can extend this ADD protocol to tolerate

up to 1/2 malicious nodes.

• We then use ADD to design an improved asynchronous reliable

broadcast protocol for any message 𝑀 with a communication

cost of 𝑂(𝑛 |𝑀 |+^𝑛2
). Our construction assumes the existence of

collision-resistant hash functions of output size ^.

• Finally, we use our solution to ADD along with additional tech-

niques to design asynchronous verifiable secret sharing (AVSS),

asynchronous complete secret sharing (ACSS), dual-threshold

ACSS, asynchronous distributed key generation, all with im-

proved communication cost or weaker assumptions comparing

to the state-of-the-art solutions.

Paper Organization. The rest of the paper is organized as follows.
We describe our system model, introduce notations and provides

some necessary background §2. In §3 we first formally introduce

the problem of Asynchronous Data Dissemination (ADD) and de-

scribe our protocol for ADD that meets the desired communication

cost. Next, in §4 we describe how we use ADD to implement re-

liable broadcast extensions. We then provide details construction

of communication efficient AVSS ACSSand dual threshold ACSS

in §5. Next in §6, we show how to modify our dual-threshold ACSS

to improve the communication cost of asynchronous DKG §6. In §7

we describe the related work and conclude after a discussion in §8.

2 SYSTEM MODEL AND PRELIMINARIES

Cryptographic Assumptions. Let G be a group of order 𝑞 where

𝑞 is a prime number and Z𝑞 be the field with integer operation mod-

ulo 𝑞. Throughout the paper, we use hash(·) as a collision resistance

hash function. We will use ^ to denote the size of cryptographic

objects, e.g., the length of the hash function output, the size of a

ciphertext of an encryption scheme, or the size of an element in the

groupG. These objects may slightly differ in size in practice. In that

case, we assume they are on the same order, or one can interpret ^

as the largest among them.

Network and Adversarial Assumptions. We consider an asyn-

chronous network of 𝑛 = 3𝑡 + 1 nodes where a malicious adversary

can corrupt up to 𝑡 nodes in the network. The corrupted nodes

can deviate arbitrarily from the protocol. The remaining nodes are

honest and strictly adhere to the protocol. We also assume that

every pair of honest nodes have access to pairwise reliable and

authenticated channels. The network is asynchronous, so the ad-

versary can arbitrarily delay or reorder messages between honest

nodes, but must eventually deliver every message.

Error Correcting Code. Our ADD protocol uses error correcting

codes. For concreteness, we will use the standard Reed Solomon (RS)

codes [49]. A (𝑚,𝑘) RS code in Galois Field F = GF(2
𝑎

) with𝑚 ≤
2
𝑎 − 1, encodes 𝑘 data symbols from GF(2

𝑎
) into codewords of𝑚

symbols fromGF(2
𝑎

). LetRSEnc(𝑀,𝑚,𝑘) be the encoding algorithm.

Briefly, the RSEnc takes input a message 𝑀 consisting of 𝑘 + 1

2



data symbols, treats it as a polynomial of degree 𝑘 and outputs𝑚

evaluation of the corresponding polynomial.

Let RSDec(𝑘, 𝑟,𝑇 ) be the RS error correction procedure. The

RSDec takes as input a set of codeword symbols 𝑇 (some of which

may be incorrect), and outputs a degree 𝑘 polynomial, by correcting

up to 𝑟 errors (incorrect symbols) in 𝑇 . It is well-known that [40]

RSDec can correct up to 𝑟 errors in 𝑇 and output the original mes-

sage provided |𝑇 |≥ 𝑘 + 2𝑟 + 1. Concrete instantiations of RSEnc
include the Berlekamp-Welch algorithm [53], the algorithm due to

Gao [31], etc.

3 ASYNCHRONOUS DATA DISSEMINATION
In this section, we formally define the problem of Asynchronous

Data Dissemination (ADD). We then provide our solution to the

problem, and finally analyze its correctness and performance.

3.1 Problem Statement
Formally, we define Asynchronous Data Dissemination as follows.

Definition 3.1 (Asynchronous Data Dissemination (ADD)). Given
a network of 𝑛 nodes, of which up to 𝑡 could be malicious, let

𝑀 be a data blob that is the input of at least 𝑡 + 1 honest nodes.

The remaining honest nodes start with ⊥. A protocol Π solves

Asynchronous Data Dissemination (ADD) if it ensures that every

honest node eventually outputs𝑀 .

Here on, we refer to the honest nodes that start with the message

𝑀 as the sender nodes and the honest nodes that start with ⊥ as

the recipient nodes.
A simple but important observation is that to solve ADD in a

network with 𝑡 faults, the number of honest sender nodes must be

at least 𝑡 + 1. Otherwise, to any honest recipient node 𝑖 , the set of

honest senders that claim to start with 𝑀 is indistinguishable from

the set of malicious senders that behave honestly but claim to start

with𝑀 ′. This justifies the initial condition of at least 𝑡 + 1 honest

sender nodes. In addition, in all of the applications considered in

this paper, we have 𝑛 ≥ 3𝑡 +1, which is optimal for an asynchronous

network. We will focus on the case of 𝑛 = 3𝑡 + 1 for convenience.

The simplest ADD protocol just has each honest sender multi-

cast its input to all other nodes. A recipient node, upon receiving

𝑡 + 1 identical copies of a message 𝑀 , outputs 𝑀 . Since we begin

with 𝑡 + 1 honest senders, every recipient node will eventually

receive 𝑡 + 1 identical messages. Furthermore, whenever an honest

node receives 𝑡 + 1 identical message, say 𝑀 ′, this means that at

least one honest sender sent𝑀 ′. Since honest senders only send𝑀 ,

this implies that𝑀 ′ = 𝑀 . The issue with this approach is that it is

not communication efficient. Specifically, this approach has a total

communication cost of 𝑂(𝑛2 |𝑀 |).
An alternate ADD protocol is where each recipient node request

𝑀 from the sender nodes, to which an honest sender reply by

sending 𝑀 . Again, the issue with this approach is that malicious

nodes may redundantly request 𝑀 from all the honest senders.

Since there are 𝑡 = Θ(𝑛) malicious nodes and each malicious node

request𝑀 from all the sender nodes, this approach also has a total

communication cost of 𝑂(𝑛2 |𝑀 |).

Algorithm 1 Pseudocode for node 𝑖 in ADD for 𝑛 = 3𝑡 + 1

1: // encoding phase.
2: input𝑀𝑖 : either𝑀𝑖 = 𝑀 or𝑀𝑖 = ⊥
3: if 𝑀𝑖 ̸= ⊥ then
4: Let𝑀′ = [𝑚1,𝑚2, . . . ,𝑚𝑛] := RSEnc(𝑀𝑖 , 𝑛, 𝑡 )

5: // dispersal phase
6: if 𝑀𝑖 ̸= ⊥ then
7: 𝑚∗

𝑖
:= 𝑚𝑖

8: send ⟨DISPERSE,𝑚 𝑗 ⟩ to node 𝑗 for every 𝑗 = 1, 2, . . . , 𝑛

9: else
10: upon receiving 𝑡 + 1 identical ⟨DISPERSE,𝑚𝑖 ⟩ do
11: 𝑚∗

𝑖
:= 𝑚𝑖

12: // reconstruction phase
13: multi-cast ⟨RECONSTRUCT,𝑚∗

𝑖
⟩ to all nodes

14: if 𝑀𝑖 ̸= ⊥ then
15: output𝑀 and return;

16: Let𝑇 = {}
17: For every ⟨RECONSTRUCT,𝑚∗

𝑗
⟩ received from node 𝑗 , add (𝑗,𝑚∗

𝑗
) to𝑇

18: for 0 ≤ 𝑟 ≤ 𝑡 do // online Error Correction
19: Wait till |𝑇 | ≥ 2𝑡 + 𝑟 + 1

20: Let 𝑝𝑟 (·) = RSDec(𝑡, 𝑟,𝑇 )

21: if 2𝑡 + 1 elements (𝑗, 𝑎) ∈ 𝑇 satisfy 𝑝𝑟 (𝑗 ) = 𝑎 then
22: output coefficients of 𝑝𝑟 (·) as𝑀 and return

3.2 Our Approach
We present two variants of our ADD protocol. The first variant

requires 𝑛 ≥ 3𝑡 + 1 and is information-theoretically secure. The

second variant of our ADD protocol requires 𝑛 ≥ 2𝑡 +1 but assumes

the existence of a collision resistance hash function. As discussed

earlier, since all the application of ADD we discuss in this paper

require 𝑛 ≥ 3𝑡 + 1 (due to reasons orthogonal to ADD) we will focus

on the 𝑛 ≥ 3𝑡 + 1 variant of our ADD protocol. The 𝑛 ≥ 2𝑡 + 1

variant will be given in Appendix B.

Our ADD protocol has three phases: Encoding, Dispersal, and
Reconstruction. Figure 2 illustrates our ADD protocol for a network

of 𝑛 = 4 nodes with 𝑡 = 1. Also, we provide the pseudocode of the

protocol for node 𝑖 in Algorithm 1.

Encoding phase. In the encoding phase, every sender (who holds

𝑀 ̸= ⊥) encodes 𝑀 using a (𝑛, 𝑡 ) Reed-Solomon code, i.e., using

RSEnc(·) described in §2. Line 2 − 4 in Algorithm 1 illustrates this.

The encoded message 𝑀 ′ = RSEnc(𝑀) can be written as a vector

𝑀 ′ = [𝑚1,𝑚2, . . . ,𝑚𝑛]. Here each𝑚𝑖 is of size approximately |𝑚𝑖 |=
|𝑀 |/𝑡 because, after encoding,

|𝑀 ′ |= 𝑛 |𝑀 |
𝑡
⇒ |𝑀

′ |
𝑛

=

|𝑀 |
𝑡

(1)

Dispersal phase. After encoding𝑀 into𝑀 ′, the senders start the
dispersal phase (Line 5 − 10 in Algorithm 1). During the dispersal

phase, every sender sends the message ⟨DISPERSE,𝑚 𝑗 ⟩ to node 𝑗 .

A recipient node 𝑗 , upon receiving 𝑡 + 1 DISPERSE messages for

the identical message𝑚′
𝑗
sets𝑚′

𝑗
as its local share𝑚∗

𝑗
. Each honest

sender node 𝑖 , sets𝑚𝑖 as its local share𝑚
∗
𝑖
.

Reconstruction phase. During the reconstruction phase, every

node 𝑖 multi-casts ⟨RECONSTRUCT, 𝑖,𝑚∗
𝑖
⟩ to all other nodes. Then,

every recipient node 𝑗 , upon receiving enough shares, uses the

standard Online Error Correcting (OEC) algorithm from [7] (line

3



1. Input: 
2. RSEnc

1. Input: 
2. RSEnc

1. Input: 

Node 1

Node 2

Node 3

Node 4

3. Output  

3. Output OEC

3. Output  

Figure 2: A example execution of ADD with 4 nodes {1, 2, 3, 4} among which node 4 is malicious and node 2 does not start with𝑀 . As described, after the

distribution phase, node 2 will receive 2 = 𝑡 + 1 identical copies of𝑚2 from node 1 and 4 and hence will output𝑚2 as𝑚∗
2
. As a result, after the reconstruction

phase, node 2 will receive 3 correct chunks of𝑀′ which is sufficient for reconstructing𝑀 .

17− 23 in Algorithm 1). Briefly, the OEC algorithm [7] performs up

to 𝑡 trials of reconstruction. In the 𝑟 -th trial, the recipient waits until

it receives RECONSTRUCT messages from 2𝑡 + 𝑟 + 1 nodes and tries

to decode the message polynomial. If the reconstructed polynomial

agrees with 2𝑡 + 1 points in the RECONSTRUCT messages received so

far, the recipient outputs the decoded message; otherwise, it waits

for one more RECONSTRUCT message and tries again.

3.3 Analysis
Next, we will prove that our protocol solves the ADD problem.

Towards this end, we will first prove that every honest node will

hold the correct local share at the end of the dispersal phase. Next,

we will argue that every honest node successfully reconstructs the

message 𝑀 . Recall that we refer to the nodes that start with the

message𝑀 as the sender nodes and the honest nodes that start with
⊥ as the recipient nodes.

Lemma 3.2. After the dispersal phase each honest node 𝑗 holds𝑚∗
𝑗

where𝑚∗
𝑗
is the 𝑗 th coordinate of𝑀 ′ = RSEnc(𝑀,𝑛, 𝑡 ).

Proof. Recall that RSEnc encoding procedure is deterministic.

If node 𝑗 is a sender, then it trivially holds𝑚∗
𝑗
. Thus, we focus on

the case where node 𝑗 is a recipient node.

Again since RSEnc encoding is deterministic, all honest senders

compute the same𝑀 ′, and they all send𝑚∗
𝑗
to node 𝑗 . No honest

node will send DISPERSE with any𝑚 𝑗 ̸= 𝑚∗
𝑗
. Since node 𝑗 holds

𝑚 𝑗 only if it receives 𝑡 + 1 identical DISPERSE messages for𝑚 𝑗 , no

honest node will hold𝑚 𝑗 ̸= 𝑚∗
𝑗
at the end of the dispersal phase.

Since there are at least 𝑡 + 1 honest senders, and they all send𝑚∗
𝑗
to

node 𝑗 , node 𝑗 will eventually receive at least 𝑡+1 DISPERSEmessage

for𝑚∗
𝑗
and will hold𝑚∗

𝑗
at the end of the dispersal phase. □

To argue that each honest recipient will eventually recover the

message at the end of the reconstruction phase of our ADD protocol,

we first prove the following Lemma about OEC. As we mention

earlier, we tailor the Lemma for the specific case of 𝑛 = 3𝑡 + 1, but

it can be easily generalized (ref. Appendix B).

Lemma 3.3. If at least 2𝑡 + 1 correct codewords of the encoding of
a message𝑀 are received, OEC will eventually reconstruct𝑀 .

Proof. Let 𝑇𝑟 be the set of received symbols up to iteration 𝑟

(including iteration 𝑟 ).

First, we will argue that every honest node will eventually output

a message. Let’s focus on a single honest node, say 𝑖 . Let’s assume

𝑟1 corrupt nodes sent incorrect symbols to node 𝑖 and 𝑟2 corrupt

nodes did not send anything. Note that 𝑟1 + 𝑟2 ≤ 𝑡 .

Now consider the (𝑡 − 𝑟2)
th
iteration; since 𝑟2 nodes never sent

any symbols to node 𝑖 , 𝑖 will receive 2𝑡 + (𝑡 −𝑟2) + 1 distinct symbols

on the polynomial 𝑝(·) of which 𝑟1 symbols are incorrect, then

|𝑇𝑡−𝑟2
|= 2𝑡 + (𝑡 − 𝑟2) + 1 ≥ 𝑡 + 2𝑟1 + 1 (2)

hence the algorithm RSDecwill correct 𝑟1 errors and will return the

polynomial 𝑝𝑡−𝑟2
(·) as the message during the (𝑡 − 𝑟2)

th
iteration.

For correctness, let’s assume that node 𝑖 outputs the polynomial

𝑝𝑟 (·) as the message in the 𝑟 th
iteration. Then, 𝑝𝑟 (·) is consistent

with 2𝑡 + 1 points from 𝑇𝑟 , of which at least 𝑡 + 1 are from honest

nodes. All these belong on both polynomial 𝑝(·), and 𝑝𝑟 (·). Since,
𝑝𝑟 (·) is a degree 𝑡 polynomial and agrees on 𝑡 + 1 points with 𝑝(·),
𝑝𝑟 (·) = 𝑝(·) as a polynomial as well. □

Lemma 3.4. At the end of reconstruction phase of our ADD protocol,
every honest node outputs𝑀 .

Proof. Clearly, every honest sender outputs𝑀 . Thus, we again

focus on honest recipient nodes.

From Lemma 3.2, at the end of the dispersal phase, every honest

node holds the correct component of𝑀 ′ = RSEnc(𝑀,𝑛, 𝑡 ). This im-

plies that every recipient node will eventually receive RECONSTRUCT
messages from all the honest nodes. Hence, due to guarantees of

the OEC protocol, i.e., Lemma 3.3, this implies that all honest nodes

will eventually output𝑀 . □

We will next argue about the total communication cost of our

ADD protocol.

Lemma 3.5. The total communication cost of our ADD protocol is
𝑂(𝑛 |𝑀 |+𝑛2

).

Proof. Recall that |𝑀 ′ |= (𝑛/𝑡 )|𝑀 |= 𝑂(|𝑀 |). During the dispersal
phase, each sender node sends a message of size |𝑀 ′ |/𝑛 + 𝑂(1)

to every other node. During the reconstruction phase, each node

multi-casts a message of size |𝑀 ′ |/𝑛 + 𝑂(1). Therefore, the total

communication cost of the protocol is 𝑛 |𝑀 ′ |+𝑂(𝑛2
), which is the

same as 𝑂(𝑛 |𝑀 |+𝑛2
). □

Using Lemma 3.2, 3.4 and 3.5, we have that Algorithm 1 solves

ADD with a communication complexity of 𝑂(𝑛 |𝑀 |+𝑛2
).

Now let’s analyze the computation cost of each node in Algo-

rithm 1. The encoding step at every sender during the dispersal

phase involves 𝑂(𝑛2
) operations (additions and multiplications)

in Z𝑞 . The recipient nodes do nothing. During the reconstruction
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Algorithm 2 Bracha’s RBC [14]

1: // only broadcaster node
2: input𝑀
3: send ⟨PROPOSE, 𝑀 ⟩ to all

4: // all nodes
5: upon receiving ⟨PROPOSE, 𝑀 ⟩ from the broadcaster do
6: send ⟨ECHO, 𝑀 ⟩ to all

7: upon receiving 2𝑡 + 1 ⟨ECHO, 𝑀 ⟩ messages and not having sent a READY
message do

8: send ⟨READY, 𝑀 ⟩ to all

9: upon receiving 𝑡 +1 ⟨READY, 𝑀 ⟩ messages and not having sent a READY
message do

10: send ⟨READY, 𝑀 ⟩ to all

11: upon receiving 2𝑡 + 1 ⟨READY, 𝑀 ⟩ messages do
12: output𝑀

phase, in the good case, each node needs to invoke the RSDec al-
gorithm only once, i.e., only 𝑟 = 1. Furthermore, the nodes need to

perform the consistency check only once. However, each honest

node would need to invoke RSDec 𝑡 times in the worst case. Hence,

the computation cost would be higher.

4 RELIABLE BROADCAST EXTENSION
In this section, we will describe how we can use our ADD protocol

to design a protocol for reliable broadcast extensions. The problem

of reliable broadcast was introduced by Bracha [14]. In the same

paper, Bracha also provided a protocol for reliable broadcast of a

single bit with total communication complexity of𝑂(𝑛2
). Before we

describe our solution, we define the problem of reliable broadcast.

Definition 4.1 (Reliable Broadcast). A protocol for a set of nodes

{1, ...., 𝑛}, where a distinguished node called the broadcaster holds

an initial input𝑀 of size |𝑀 |, is a reliable broadcast (RBC) protocol
tolerating an adversary A, if the following properties hold

• Agreement. If an honest node outputs a message𝑀 ′ and a dif-

ferent honest node outputs a message𝑀 ′′, then𝑀 ′ = 𝑀 ′′.
• Validity. If the broadcaster is honest, all honest nodes eventually
output the message𝑀 .

• Totality. If an honest node outputs a message, then every honest

node eventually outputs a message.

Since our RBC extension protocol relies upon the RBC protocol

due to Bracha [14], for completeness we will first describe the

RBC protocol of Bracha [14] in Algorithm 2. The main idea of

Bracha’s RBC is to use quorum intersection (of ECHO messages)

for agreement, and use vote amplification (of READY messages) for

totality. However, the protocol needs to attach the input𝑀 in every

vote message, leading to a high communication cost of 𝑂(𝑛2 |𝑀 |).
We present our RBC extension protocol in Algorithm 3 where

we highlight the changes from Bracha’s RBC in blue. The core idea

in our RBC extension protocol is to run the Bracha-style reliable

broadcast protocol only on the hash of the message 𝑀 , and then

replicate the message𝑀 using our ADD protocol. The previous best

RBC due to Cachin and Tessaro [17] also runs RBC on the hash

digest, but their protocol requires attaching Merkle path proofs in

the messages during dispersal and reconstruction, which inevitably

incurs a cost of 𝑂(𝑛 |𝑀 |+^𝑛2
log𝑛). In contrast, our ADD protocol

Algorithm 3 RBC extension for a long message𝑀

1: // only broadcaster node
2: input𝑀
3: send ⟨PROPOSE, 𝑀 ⟩ to all

4: // all nodes
5: upon receiving ⟨PROPOSE, 𝑀 ⟩ from the broadcaster do
6: let ℎ := hash(𝑀)

7: send ⟨ECHO, ℎ⟩ to all

8: upon receiving 2𝑡 + 1 ⟨ECHO, ℎ⟩ messages and not having sent a READY
message do

9: send ⟨READY, ℎ⟩ to all

10: upon receiving 𝑡 + 1 ⟨READY, ℎ⟩ messages and not having sent a READY
message do

11: send ⟨READY, ℎ⟩ to all

12: upon receiving 2𝑡 + 1 ⟨READY, ℎ⟩ messages do
13: if received ⟨PROPOSE, 𝑀 ⟩ and ℎ = hash(𝑀) then
14: ADD(𝑀)

15: else
16: ADD(⊥)

removes such Merkle path proof and only incurs a communication

cost of 𝑂(𝑛 |𝑀 |+𝑛2
) for replicating the message, leading to a total

communication cost of 𝑂(𝑛 |𝑀 |+^𝑛2
) for RBC extension.

More specifically, the broadcaster of our RBC extension protocol

first multi-cast𝑀 to all other nodes. Every honest node upon receiv-

ing the message from the leader, first participates in a Bracha-style

RBC on ℎ, the hash of the message𝑀 . Once the RBC terminates, i.e.,

the node receives 2𝑡 +1 READYmessages for some ℎ, the node inputs

𝑀 to the ADD protocol if ℎ = hash(𝑀). Otherwise, the node inputs

⊥ to the ADD protocol if ℎ ̸= hash(𝑀). Recall that in Bracha’s RBC,

a node outputs 𝑀 when receiving 2𝑡 + 1 READY messages for 𝑀 ,

which implies at least 𝑡 + 1 honest nodes have received 𝑀 from

the broadcaster before sending ECHO for𝑀 . Similarly, in our RBC

extension protocol, when a node receives 2𝑡 + 1 READYmessages for

some hash ℎ, at least 𝑡 + 1 honest nodes have received the message

𝑀 such that hash(𝑀) = ℎ. Moreover, the agreement property of

the Bracha-style RBC guarantees that no two honest nodes will

agree on different hashes, and thus any honest node that receives

𝑀 ′ ̸= 𝑀 from the broadcaster will input ⊥ to the ADD. Therefore,

the initial condition of ADD is met in our construction. Hence, the

guarantees of our ADD protocol ensure the desired properties of

the RBC extension protocol.

Remark. Our RBC extension construction first uses a Bracha-style

RBC on a short digest to set up the initial condition of ADD, and

then executes ADD. We remark that this structure will repeatedly

appear in all the protocols we design in this paper.

4.1 Analysis
First, we show that running Bracha’s RBC on the hash ℎ sets up

the initial condition for ADD.

Lemma 4.2. If any honest node executes ADD(𝑀), then there at
least 𝑡 + 1 nodes that receive𝑀 from the broadcaster and multi-cast
⟨ECHO, ℎ⟩ where ℎ = hash(𝑀).

Proof. An honest node 𝑖 executes ADD(𝑀) only upon receiving

⟨READY, ℎ = hash(𝑀)⟩ messages from a quorum Q2 of 2𝑡 + 1 nodes.
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Since, there are at most 𝑡 malicious nodes in the system, at least 𝑡 +1

of the nodes in Q2 are honest. This implies that at least one honest

node receives a ⟨ECHO, ℎ⟩ message from a quorum Q1 of 2𝑡 +1 nodes

and then multi-casts ⟨READY, ℎ⟩ message. Again, at least 𝑡 + 1 nodes

of Q1 are honest. These at least 𝑡 + 1 honest nodes receive𝑀 from

the broadcaster and multi-cast ⟨ECHO, ℎ⟩ messages. □

Lemma 4.3. If any honest node executes ADD(𝑀), then no honest
node executes ADD(𝑀 ′) for any𝑀 ′ ̸= 𝑀 and𝑀 ′ ̸= ⊥, and eventually
all honest nodes execute ADD(𝑀) or ADD(⊥) among which at least
𝑡 + 1 honest nodes execute ADD(𝑀).

Proof. Let node 𝑖 executes ADD(𝑀), then by Lemma 4.2, there

exits a quorum Qℎ of honest nodes who sent ⟨ECHO, ℎ⟩ message

where ℎ = hash(𝑀). Now, for the sake of contradiction assume

that an honest node 𝑗 executes ADD(𝑀 ′) for some 𝑀 ′ ̸= 𝑀 , then

by Lemma 4.2, there exist a quorum Qℎ′ of honest nodes of size
𝑡 + 1 that sent ⟨ECHO, ℎ′⟩ message where ℎ′ = hash(𝑀 ′). This is
impossible as there are at most 2𝑡 + 1 honest nodes and an honest

node sends ECHO message at most once.

Since at least 𝑡 + 1 honest nodes multi-cast ⟨READY, ℎ⟩, these
messages eventually reach all honest nodes, and all 2𝑡 + 1 honest

nodes will multi-cast ⟨READY, ℎ⟩ according to the protocol. Hence,

eventually all honest nodes receive 2𝑡 + 1 ⟨READY, ℎ⟩ messages and

executes ADD(𝑀) or ADD(⊥). By Lemma 4.2, at least 𝑡 + 1 honest

nodes that receive𝑀 from the broadcaster will executes ADD(𝑀)

according to the protocol. □

Now, we can prove the properties of RBC extension are satisfied.

Lemma 4.4 (Agreement andTotality). If an honest node outputs
𝑀 , then no honest node will output𝑀 ′ ̸= 𝑀 , and every honest node
will eventually output𝑀 .

Proof. If an honest node outputs 𝑀 , then some honest node

must execute ADD(𝑀). No honest node executes ADD(𝑀 ′) for any
𝑀 ′ ̸= 𝑀 , otherwise according to Lemma 4.3 the initial condition

for ADD is met for message 𝑀 ′ and all honest nodes will output

𝑀 ′. Since some honest node executes ADD(𝑀), by Lemma 4.3, all

honest nodes will execute ADD(𝑀) or ADD(⊥), among which at

least 𝑡 + 1 honest nodes receiving𝑀 from the broadcaster that will

execute ADD(𝑀). Hence, it is a execution of our ADD with the

required initial condition, by Lemma 3.4, every honest node will

output𝑀 . □

Lemma 4.5 (Validity). When the broadcaster is honest and has
an input𝑀 , then every honest will eventually output𝑀 .

Proof. When the broadcaster is honest, it will send ⟨PROPOSE, 𝑀⟩
to all nodes. As a result, 2𝑡 + 1 honest node will multi-cast ⟨ECHO, ℎ⟩
to all other nodes. As a result, every honest node will eventually

multi-cast ⟨READY, ℎ⟩ message to others. Since, there are at least

2𝑡 + 1 honest nodes, every honest node will start ADD with 𝑀 ,

i.e., ADD(𝑀). Since ADD ensures correctness and totality for any

number of senders greater than 𝑡 , this implies that every honest

node will output𝑀 . □

Next, we will analyze the message and communication complex-

ity of the protocol.

Lemma 4.6. Assuming existence of collision resistance hash func-
tions, Algorithm 3 solves RBC extension with message complexity of
𝑂(𝑛2

) and communication complexity of𝑂(𝑛 |𝑀 |+^𝑛2
), where ^ is the

size of the output of the hash function.

Proof. Recall from §3, the message complexity of our ADD

protocol for a linear size message is 𝑂(𝑛2
). In addition to running

our ADD protocol, the leader multi-cast a single PROPOSE to all

other nodes. Moreover, every honest in our RBC extension protocol

multi-casts a single ECHO message and a single READY message.

Hence, the total message complexity is 𝑂(𝑛2
).

Formessage𝑀 , its proposal has a communication cost of𝑂(𝑛 |𝑀 |).
The multi-cast of ECHO and READY message has a communication

cost of 𝑂(𝑛^) for each node; hence a total communication cost

is 𝑂(^𝑛2
). From Lemma 3.5, the communication cost of ADD is

𝑂(𝑛 |𝑀 |+𝑛2
). Combining all these costs, we get that the total com-

munication cost of our RBC extension protocol is𝑂(𝑛 |𝑀 |+^𝑛2
). □

Combining the above lemmas, we get the following theorem.

Theorem 4.7. In an asynchronous network of 𝑛 nodes where
𝑡 < 𝑛/3, assuming existence of collision resistance hash functions,
Algorithm 3 solves RBC extension with message complexity𝑂(𝑛2

) and
communication complexity 𝑂(𝑛 |𝑀 |+^𝑛2

) where ^ is the size of the
output of the hash function.

4.2 Applications of Reliable Broadcast
Reliable broadcast has been used as a crucial primitive in many

protocols ranging from atomic broadcast [26, 30, 33, 39, 42], state

machine replication [22, 54], asynchronous verifiable secret shar-

ing [3, 4, 17, 55], asynchronous multi-party computation [38, 55],

asynchronous distributed key generation [2, 37], etc.. Almost all

these protocols involve reliable broadcast of messages of size at

least linear in the number of participants in the network.

Direct improvements. For some of the above applications such

as atomic broadcast and asynchronous MPC, our improvements to

RBC extension directly improves them. For example, HoneyBadger

BFT [42] uses 𝑂(𝑛) reliable broadcast of 𝑂(𝑛) size messages. Hence,

their protocol has a total cost of 𝑂(𝑛3
log𝑛) per block. With our

RBC extension, the communication cost of HoneyBadger BFT will

reduce to𝑂(𝑛3
). Similarly, both Dumbo [33] and Aleph [30] use RBC

to gossip𝑂(𝑛) size messages for every block, hence we immediately

reduce their communication cost by a log𝑛 factor as well.

Other cases. However, for some other primitives, simply replac-

ing the RBC extension protocol with our improved one does not

immediately reduce the asymptotic communication cost of the

overall protocol because there are often other bottleneck steps in

the protocol. For example, hbACSS [55] is an ACSS scheme with

𝑂 (̂ 𝑛2
log𝑛). But the cost arises from an RBC extension of message

of size 𝑂 (̂ 𝑛 log𝑛), thus we can not simply use our improved RBC

extension to improve the communication cost. Similarly, Haven [3]

is a dual-threshold ACSS protocol for uniform secrets that has a

communication of 𝑂 (̂ 𝑛2
log𝑛). These cost arise from two sources:

a reliable broadcast of 𝑂(^𝑛) size message as well as a step where

nodes gossip zero-knowledge proofs of size 𝑂 (̂ log𝑛). In the next

section, we introduce additional techniques to obtain protocols for

these primitives with communication complexity of 𝑂 (̂ 𝑛2
).
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5 ASYNCHRONOUS (DUAL THRESHOLD)
VERIFIABLE SECRET SHARING

In this section, we will provide a protocol for asynchronous veri-

fiable secret sharing that does not require any trusted setup and

has a communication complexity of 𝑂 (̂ 𝑛2
). Prior to our work, the

best-known protocol for AVSS in the same threat model had a com-

munication cost of 𝑂 (̂ 𝑛2
log𝑛) [17] and a communication cost of

𝑂(^𝑛2
) has only been achieved with a trusted setup [4]. Before

we dive into our solution, we will formally define the problem of

asynchronous verifiable secret sharing and its desired properties.

Our definitions are borrowed from the definitions of [45].

5.1 Definitions and Preliminaries
For all these primitives, we assume a finite field F of order 𝑞. Let ^
be the security parameter and negl(̂ ) is a negligible function in _.

Definition 5.1 (Asynchronous Verifiable Secret Sharing). Let (Sh,Rec)
be a pair of protocols in which a dealer 𝐿 shares a secret 𝑠 using Sh.
We say that (Sh,Rec) is a 𝑡-resilient AVSS scheme if the following

properties hold with probability 1 − negl(̂ ):

• Termination:
(1) If the dealer 𝐿 is honest, then each honest node will eventually

terminate the Sh protocol.

(2) If an honest node terminates Sh protocol, then each honest

node will eventually terminate Sh.
(3) If all honest node start Rec, then each honest node will even-

tually terminate Rec.
• Correctness:
(1) If 𝐿 is honest, then each honest node upon terminating Rec,

outputs the shared secret 𝑠 .

(2) If 𝐿 is corrupt and some honest node terminates Sh, then there

exists a fixed secret 𝑠 ′ ∈ F, such that each honest node upon

completing Rec, will output 𝑠 ′.
• Secrecy: If 𝐿 is honest and no honest node has begun execut-

ing Rec, then an adversary that corrupts up to 𝑡 nodes has no

information about 𝑠 .

Note that, by definition of the Termination property, AVSS schemes

allow a situation where despite finishing the sharing phase and

entering the reconstruction phase, an honest node does not receive

its share from the dealer. Such a situation usually arises when the

dealer is malicious and only sends the valid shares to a subset of

honest nodes, yet the corrupted nodes also claim to have the shares

so that all honest nodes terminate the sharing phase.

To accommodate for this scenario, a stronger primitive called

Asynchronous Complete Secret Sharing (ACSS) is defined as follows.

An ACSS is an AVSS scheme that additionally ensures that at the

end of sharing phase, every honest node receives its shares of a

consistent secret. This holds even if the dealer is corrupt.

Definition 5.2 (Asynchronous Complete Secret Sharing). An Asyn-

chronous Complete Secret Sharing protocol is an AVSS protocol

that additionally satisfy the following completeness property.

• Completeness: If some honest node terminates Sh, then there

exists a degree 𝑡 polynomial 𝑝(·) over F such that 𝑝(0) = 𝑠 ′

and each honest node 𝑖 will eventually hold a share 𝑠𝑖 = 𝑝(𝑖).

Moreover, when 𝐿 is honest 𝑠 ′ = 𝑠 .

We also provide a protocol that improves the best known dual-

threshold ACSS scheme. A dual-threshold ACSS scheme is formally

defined as follows, and sometimes referred to as high-threshold

ACSS as well.

Definition 5.3 (Dual-threshold ACSS). A (𝑛, ℓ, 𝑡 ) dual-threshold

ACSS with 𝑛 nodes is an ACSS scheme with the additional property

that the reconstruction threshold ℓ can be any value in the range

[𝑡 + 1, 𝑛 − 𝑡].

The advantage of dual-threshold ACSS with ℓ > 𝑡 is that, the

protocol can ensure secrecy of the secret even when the adversary

corrupts more than 𝑡 but less than ℓ nodes in the system. However,

to ensure termination, we need ℓ ≤ 𝑛 − 𝑡 . When 𝑛 = 3𝑡 + 1, ℓ can

be as large as 𝑛 − 𝑡 = 2𝑡 + 1.

Remark. By definition, ACSS solves AVSS as ACSS additionally

requires every honest node to hold the corresponding share once the

sharing phase terminates, and Dual-threshold ACSS solves ACSS

as it additionally ensures a higher threshold 𝑡 < ℓ ≤ 𝑛 − 𝑡 for the
adversary to break the secrecy and learn some information about

the secret.

5.2 Asynchronous Verifiable Secret Sharing
Our construction of AVSS has a total communication cost of𝑂 (̂ 𝑛2

)

and does not require any trusted setup. Briefly, our AVSS protocol

has a similar structure as our RBC extension protocol. We use a

Bracha’s RBC on the digest of a Pedersens’ polynomial commitment

to set up the initial condition for ADD; we then invoke ADD to

replicate the polynomial commitment. The AVSS algorithm is given

in Algorithm 4.

Our AVSS scheme is inspired by the VSS scheme of [47] and

crucially uses Pedersen’s polynomial commitment scheme that

provides two interfaces: PedPolyCommit and PedEvalVerify. Let
𝑝𝑝 be the public parameters. We describe its interfaces next and

provide the details in Appendix C.

• PedPolyCommit(𝑝𝑝, 𝑝(·), 𝑡, 𝑛)→ 𝒗, 𝒔, 𝒓 : The PedPolyCommit(·)
algorithm takes as input a 𝑡-degree polynomial 𝑝(·) and outputs

three vectors each consisting of 𝑛 elements. The vector 𝒗 is the

commitment to the polynomial and vectors 𝒔 and 𝒓 consists of
shares of every nodes.

• PedEvalVerify(𝑝𝑝, 𝒗, 𝑖, 𝑠𝑖 , 𝑟𝑖 ) → 0/1 : The PedEvalVerify(·) algo-
rithm takes as input a commitment 𝒗 to a polynomial 𝑝(·), a tuple
(𝑖, 𝑠𝑖 , 𝑟𝑖 ) and outputs 1 only if 𝑝(𝑖) = 𝑠𝑖 , and 0 otherwise.

During the sharing phase of our AVSS, the dealer 𝐿 with the

secret 𝑠 first samples a random 𝑡-degree polynomial 𝑝(·) such that

𝑝(0) = 𝑠 . The dealer then calls PedPolyCommit(·) to obtain a com-

mitment vector 𝒗 as well as share vectors 𝒔, 𝒓 (each of size 𝑂(𝑛^)).

Then, 𝐿 sends node 𝑗 𝒗 and the 𝑗 th element of vector 𝒔 and 𝒓 using
private messages. In particular, 𝐿 sends ⟨PROPOSE, 𝒗, 𝒔[ 𝑗], 𝒓[ 𝑗]⟩ to
node 𝑗 .

Upon receiving ⟨PROPOSE, 𝒗, 𝑠 𝑗 , 𝑟 𝑗 ⟩ from the dealer, node 𝑗 checks

whether ( 𝑗, 𝑠 𝑗 , 𝑟 𝑗 ) is a valid share or not using PedEvalVerify(·).
Upon successful verification, 𝑗 computes ℎ = hash(𝒗) and multi-

casts ⟨ECHO, ℎ⟩ message to all. The remaining steps of our AVSS

sharing phase is identical to our RBC extension protocol.

We remark the latter part of the sharing phase (starting from line

201) is almost an RBC extension protocol. But there is a minor but
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Algorithm 4 AVSS
PUBLIC PARAMETER: 𝑝𝑝 of Pedersen’s polynomial commitment

SHARING PHASE:

// As dealer 𝐿 with input 𝑠 :
101: Sample a 𝑡 -degree random polynomial 𝑝(·) such that 𝑝(0) = 𝑠

102: 𝒗, 𝒔, 𝒓 ← PedPolyCommit(𝑝𝑝, 𝑝(·), 𝑡, 𝑛)

103: for 𝑖 = 1, 2, ..., 𝑛 do
104: send ⟨PROPOSE, 𝒗, 𝒔[𝑖], 𝒓[𝑖]⟩ to node 𝑖

// As node 𝑖 :
201: upon receiving ⟨PROPOSE, 𝒗, 𝑠𝑖 , 𝑟𝑖 ⟩ do
202: if PedEvalVerify(𝑝𝑝, 𝒗, 𝑖, 𝑠𝑖 , 𝑟𝑖 ) then
203: let ℎ := hash(𝒗)

204: send ⟨ECHO, ℎ⟩ to all (if haven’t yet)
205: upon receiving 2𝑡 + 1 ⟨ECHO, ℎ⟩ messages do
206: send ⟨READY, ℎ⟩ to all (if haven’t yet)
207: upon receiving 𝑡 + 1 ⟨READY, ℎ⟩ messages do
208: send ⟨READY, ℎ⟩ to all (if haven’t yet)
209: upon receiving 2𝑡 + 1 ⟨READY, ℎ⟩ messages do
210: if received ⟨PROPOSE, 𝒗, 𝑠𝑖 , 𝑟𝑖 ⟩ and ℎ = hash(𝒗) then
211: ADD(𝒗)

212: else
213: ADD(⊥)

RECONSTRUCTION PHASE:

// every node 𝑖 after finishing the sharing phase

301: if PedEvalVerify(𝑝𝑝, 𝒗, 𝑠𝑖 , 𝑟𝑖 ) then
302: send ⟨RECONSTRUCT, 𝑠𝑖 , 𝑟𝑖 ⟩ to all

303: upon receiving ⟨RECONSTRUCT, 𝑠 𝑗 , 𝑟 𝑗 ⟩ from node 𝑗 do
304: if PedEvalVerify(𝑝𝑝, 𝒗, 𝑠 𝑗 , 𝑟 𝑗 ) then
305: 𝑇 = 𝑇 ∪ {𝑠 𝑗 }
306: if |𝑇 | ≥ 𝑡 + 1 then
307: output 𝑠 using Lagrange interpolation and return

important difference. In RBC extension, a node echoes whatever it

receives from the broadcaster; here in AVSS, however, every honest

node must verify the Petersen’s commitment it receives from the

dealer. Therefore, although it may be helpful to think of the sharing

phase as an RBC extension to aid understanding, we have to repeat

those steps in Algorithm 4 for rigor. The same situation occurs in

subsequent sections as well.

In the reconstruction phase, each node that received a valid share

from 𝐿 during the sharing phase multi-casts ⟨RECONSTRUCT, 𝑖, 𝑠𝑖 , 𝑟𝑖 ⟩
to all other nodes. Each node upon receiving ⟨RECONSTRUCT, 𝑗, 𝑠 𝑗 , 𝑟 𝑗 ⟩
fromnode 𝑗 , checkswhether ( 𝑗, 𝑠 𝑗 , 𝑟 𝑗 ) is valid usingPedEvalVerify(·).
Upon receiving 𝑡 + 1 valid shares, a node reconstructs the secret

using Lagrange interpolation.

We prove our AVSS protocol guarantees termination, correctness,

and secrecy against all PPT adversaries.

Lemma 5.4 (Termination). Assuming a collision resistant hash
function, the AVSS scheme in Algorithm 4 guarantees termination.

Proof. From Lemma 4.6 and 3.4, whenever an honest node ter-

minates the sharing phase, each honest node will eventually ter-

minate the sharing phase. Furthermore, from Lemma 4.4 and the

fact that nodes only send ECHO messages if their PedEvalVerify(·)
is successful (line 202), we get that if the sharing phase terminates

at an honest node, then PedEvalVerify(·) was successful for at least
𝑡 + 1 honest node. Without loss of generality, let 𝑆 be this set of

honest nodes. Then, Lemma C.1 implies that the share of nodes in 𝑆

are sufficient to reconstruct the secret 𝑠 . During the reconstruction

phase, since each honest node will eventually receive RECONSTRUCT
message from all nodes in 𝑆 , each honest node will eventually

output a secret. Hence, the AVSS scheme ensures termination. □

Lemma 5.5 (Correctness). Assuming a collision resistant hash
function, the AVSS scheme in Algorithm 4 guarantees correctness.

Proof. When the dealer is honest, the secret reconstructed using

the shares of only honest nodes is clearly equal to 𝑠 . Additionally,

note that during the reconstruction phase, an honest node only

accepts shares for which PedEvalVerify(·) is successful. Hence, the
uniqueness property (Theorem C.3) of the Pedersen’s VSS protocol

implies that whenever an honest node outputs a secret 𝑠 ′, 𝑠 ′ = 𝑠 .

When the sharing phase terminates for a malicious dealer, from

Lemma 3.4, every honest nodes outputs the same commitment vec-

tor 𝒗. Additionally, Lemma 4.4 together with the fact that nodes only

send ECHOmessages if their PedEvalVerify(·) is successful (line 202),
implies that the PedEvalVerify(·) associated with 𝒗 was successful

for at least 𝑡 + 1 honest node. By Lemma C.1, these honest nodes

can recover an appropriate secret. Thus, using the same argument

as above, every honest node reconstructs the same secret. □

Observe that the view of an adversary in our AVSS scheme is

identical to the view of the adversary in Pedersen’s VSS [47]. Hence,

the secrecy of our AVSS protocol follows from Theorem C.4.

5.3 Asynchronous Complete Secret Sharing
We can also extend our AVSS scheme to ensure the complete-

ness guarantees described in definition 5.2 using the encrypt-then-
disperse technique from [38, 55]. In doing so, the total communi-

cation cost increases only by a small constant factor. Since our

technique of extending our AVSS scheme to a ACSS scheme uses

techniques [55] in a straightfoward fashion, we will only describe

this part briefly below and refer the reader to [55].

During the sharing phase, the dealer additionally computes a

ciphertext vector 𝒄 that consists of encryptions of shares (𝑠𝑖 , 𝑟𝑖 ) of

each node 𝑖 .

𝒄 = {𝑐1, . . . , 𝑐𝑛} = {Enc𝑝𝑘1
(𝑠1, 𝑟1), . . . Enc𝑝𝑘𝑛 (𝑠𝑛, 𝑟𝑛)} (3)

Here, 𝑝𝑘𝑖 is the public key of node 𝑖 , Enc𝑝𝑘𝑖 (𝑥 ) denotes a CPA secure

public key encryption of 𝑥 using public key 𝑝𝑘𝑖 .

The dealer then also sends 𝒄 along with the PROPOSE message.

Note that since the dealer is sending 𝒄 anyway with the proposal,

the dealer no longer needs to send the plaintext shares. Upon re-

ceiving 𝒄 , each node decrypts its plaintext share using its secret key

and validates it using PedEvalVerify(·). As in [55], if the decrypted

share turns out to be invalid, then the node uses it as evidence to

implicate the dealer. When the dealer is determined to be faulty,

each node enters a share recovery phase, which ensures that each

node receives its share. It is important to note that during both the

leader implication step and the share recovery step, each node only

multi-casts 𝑂 (̂ ) bits to all other nodes.
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Now we give a proof sketch to this ACSS protocol. Termination

and correctness of our ACSS scheme follow directly from the termi-

nation and correctness guarantees of our AVSS scheme. For secrecy,

note that when the dealer is honest, the share recovery phase is

not invoked. Hence, when the dealer is honest, before any honest

node starts reconstruction of the secret, the encryption hides the

shares and the view of the adversary in our ACSS scheme is com-

putationally indistinguishable to to the view of the adversary in

AVSS. Hence ACSS also ensures secrecy.

Lastly, completeness is clear when the dealer is honest. When the

dealer is malicious, completeness follows from the fact that a single

genuine blame is sufficient to initiate the recovery protocol. Hence,

the recovery protocol ensures that every honest node reconstructs

the committed polynomial and the corresponding secret.

5.4 Dual-threshold ACSS
Wewill first describe a dual-threshold ACSS for uniform secrets. The

term “uniform secret” [3, 21, 51] refers to the fact that the dealer

can only share uniformly random secrets. In particular, given a

group G of a prime order 𝑞 with a randomly chosen generator 𝑔1,

the schemes allow the dealer to share a secret of the form 𝑔𝑠
1
where

𝑠 ∈ Z𝑞 is chosen uniformly at random. However, using techniques

from [51], we can extend the scheme to allow the dealer to share

an arbitrary secret in Z𝑞 .
Our dual-threshold ACSS scheme in Algorithm 5 is also publicly-

verifiable, i.e., any external verifier, who need not be a participant,

can check that the dealer 𝐿 acted honestly without learning any

information about the shares or the secret.

Before we provide details of our dual-threshold ACSS, we want

to discuss whywe cannot extend our ACSS scheme described in §5.3

to tolerate a higher reconstruction threshold. More concretely, what

would go wrong if 𝑝(·) is a ℓ-degree polynomial for ℓ > 𝑡 + 1? The

issue is that, in our ACSS protocol, it is possible that the sharing

phase terminates, and only 𝑡 + 1 honest nodes received their shares

but all honest nodes initiate the recovery protocol. In such situation,

if the reconstruction threshold ℓ > 𝑡 + 1, there are not enough valid

shares to recover 𝑝(0).

Next, we describe our dual-threshold ACSS protocol and sum-

marize it in Algorithm 5.

For any given 𝑛 ≥ 3𝑡 +1, our scheme can tolerate any reconstruc-

tion threshold ℓ in the range 𝑡 + 1 ≤ ℓ ≤ 𝑛 − 𝑡 . Our dual-threshold
ACSS scheme internally uses a PVSS scheme. For concreteness,

we will use the PVSS scheme from Scrape [21], which is secure

assuming the existence of a Random Oracle and the hardness of

the Decisional Diffie-Hellman problem. If one wishes to avoid the

Random Oracle, one can use the recent PVSS scheme from [25],

which is secure assuming the hardness of Bilinear decisional Diffie-

Hellman (DBDH) problem.

We briefly summarize the interface of PVSS. Let 𝑝𝑝 be the public

parameters.

• PVSS.Share(𝑝𝑝, 𝑠, ℓ, 𝑛) → 𝒗, 𝒄, 𝝅 : For a uniform random 𝑠 ∈ F,
the vector 𝒗 is a commitment to a degree-ℓ random polynomial

with 𝑝(0) = 𝑠 . The vector 𝒄 consists of encrypted shares of each

node. The vector 𝝅 consists of non-interactive zero-knowledge

proofs that each encryption in 𝒄 is a correct encryption of shares

of 𝑠 .

Algorithm 5 Dual-threshold ACSS for uniform secrets

PUBLIC PARAMETERS: 𝑝𝑝 := (𝑛, 𝑡, ℓ, 𝑔0, 𝑔1, {𝑝𝑘𝑖 }) for 𝑖 = 1, 2, . . . , 𝑛

PRIVATE PARAMETERS: Node 𝑖 has secret key 𝑠𝑘𝑖 i.e., 𝑝𝑘𝑖 = 𝑔
𝑠𝑘𝑖
1

SHARING PHASE:

// As dealer 𝐿 with input 𝑠 :
101: 𝒄, 𝒗,𝝅 ← PVSS.Share(𝑝𝑝, 𝑠, ℓ, 𝑛)

102: for 𝑖 = 1, 2, ..., 𝑛 do
103: send ⟨PROPOSE, 𝒄, 𝒗,𝝅 ⟩ to node 𝑖

// As receiver 𝑖 :
201: upon receiving ⟨PROPOSE, 𝒄, 𝒗,𝝅 ⟩ do
202: if PVSS.Verify(𝑝𝑝, ℓ, 𝒄, 𝒗,𝝅 ) then
203: Let ℎ := hash(𝒗 ∥𝒄)

204: send ⟨ECHO, ℎ⟩ to all (if haven’t yet)
205: upon receiving 2𝑡 + 1 ⟨ECHO, ℎ⟩ messages do
206: send ⟨READY, ℎ⟩ to all (if haven’t yet)
207: upon receiving 𝑡 + 1 ⟨READY, ℎ⟩ messages do
208: send ⟨READY, ℎ⟩ to all (if haven’t yet)
209: upon receiving 2𝑡 + 1 ⟨READY, ℎ⟩ messages do
210: if received ⟨PROPOSE, 𝒄, 𝒗,𝝅 ⟩ and ℎ = hash(𝒗 ∥𝒄) then
211: ADD(𝒗 ∥𝒄)

212: else
213: ADD(⊥)

RECONSTRUCTION PHASE:

// every node 𝑖 with key 𝑝𝑘𝑖 , 𝑠𝑘𝑖
301: 𝑠𝑖 := 𝒄[𝑖]𝑠𝑘𝑖 ; �̃� := dleq.Prove(𝑠𝑘𝑖 , 𝑔1, 𝑝𝑘𝑖 , 𝒄[𝑖], 𝑠𝑖 );

302: send ⟨RECONSTRUCT, 𝑠𝑖 , �̃�𝑖 ⟩ to all

303: upon receiving ⟨RECONSTRUCT, 𝑠 𝑗 , �̃� 𝑗 ⟩ from node 𝑗 do
304: if dleq.Verify(�̃�, 𝑔1, 𝑝𝑘 𝑗 , 𝒄[𝑗], 𝑠 𝑗 ) then
305: 𝑇 = 𝑇 ∪ {𝑠 𝑗 }
306: if |𝑇 | ≥ ℓ then
307: 𝑔𝑠

1
:= PVSS.Recon(𝑇 )

308: output 𝑔𝑠
1
and return

• PVSS.Verify(𝑝𝑝, ℓ, 𝒗, 𝒄, 𝝅 ) → 0/1 : The PVSS.Verify function

takes in the tuple (𝒗, 𝒄, 𝝅 ) and outputs 1 only if 𝒗 is a commit-

ment to a ℓ-degree polynomial 𝑝(·). Each component of 𝒄 is a

valid encryption of shares of 𝑝(0).

Our dual-threshold ACSS make use of a non-interactive protocol

for checking equality of discrete logarithm. In particular, given

a group G of prime order 𝑞, two uniformly random generators

𝑔0, 𝑔1 ∈ G and a tuple (𝑔0, 𝑥, 𝑔1, 𝑦), a prover P wants to prove to

a PPT verifierV , in zero-knowledge, that there exists an witness

𝛼 such that 𝑥 = 𝑔𝛼
0
and 𝑦 = 𝑔𝛼

1
. We describe the interfaces of

a protocol that achieve this functionality next and provide the

detailed protocol in Appendix D.

• dleq.Prove(𝛼,𝑔0, 𝑥, 𝑔1, 𝑦) → 𝜋 : Given tuple (𝑔0, 𝑥, 𝑔1, 𝑦) and 𝛼

where𝛼 = log𝑔0

𝑥 = log𝑔1

𝑦, dleq.Prove outputs an non-interactive
zero-knowledge proof 𝜋 that such an 𝛼 exists.

• dleq.Verify(𝜋,𝑔0, 𝑥, 𝑔1, 𝑦) → 0/1 : Given a proof 𝜋 and a tuple

(𝑔0, 𝑥, 𝑔1, 𝑦), dleq.Verify outputs 1 if log𝑔0

𝑥 = log𝑔1

𝑦, and 0 oth-

erwise.

The dealer 𝐿 with a uniform random secret 𝑠 ∈ F, first com-

putes the PVSS shares for the secret using PVSS.Share. Let (𝒗, 𝒄, 𝝅 )
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be the three vectors output by the PVSS.Share(·). Next, 𝐿 multi-

casts ⟨PROPOSE, 𝒗, 𝒄, 𝝅⟩ to all nodes. Each node upon receiving the

proposal from 𝐿 validates shares of every node using PVSS.Verify.
Upon successful verification, each nodemulti-cast ⟨ECHO, hash(𝒗∥𝒄)⟩
to all other nodes. After which the protocol has a structure similar

to our AVSS protocol.

In the reconstruction phase, each node decrypts its share using

its secret key and generates a non-interactive zero-knowledge proof

of correct decryption using dleq.Prove algorithm. Let 𝑠𝑖 and �̃�𝑖 be

the decrypted share and its correctness proof of node 𝑖 , respectively.

Node 𝑖 then multi-casts ⟨RECONSTRUCT, 𝑖, 𝑠𝑖 , �̃�𝑖 ⟩ to all nodes. Each

node upon receiving a RECONSTRUCT message validates it for cor-

rectness using the dleq.Verify algorithm. Finally, after receiving

ℓ valid RECONSTRUCT message, each honest node reconstructs ℎ𝑠

using Lagrange interpolation.

Dual-threshold ACSS for arbitrary secrets Although our dual-

threshold ACSS in Algorithm 5 only supports uniform secrets, it can

be extended to arbitrary secrets 𝑧 ∈ Z𝑞 using techniques from [51].

Moreover, 𝑧 need not be uniformly distributed over Z𝑞 . Briefly, to
share a secret 𝑧 ∈ Z𝑞 , the dealer first runs the sharing phase of

Algorithm 5 for a random secret 𝑔𝑠
1
along with a RBC on 𝑧 · ℎ−𝑠 .

Upon reconstructing ℎ𝑠 , each honest node can use this to recover

𝑧. The security of this approach require the DDH assumption. We

will refer the reader to [51] for more details on this approach.

We next analyze our dual-threshold ACSS protocol.

Lemma 5.6 (Termination). Our dual-threshold ACSS protocol in
Algorithm 5 guarantees termination for any ℓ ≤ 𝑛 − 𝑡 .

Proof. When the dealer is honest, then the termination property

of our dual-threshold ACSS follows directly from the completeness

property of the dleq.Prove protocol and the fact the PVSS.Verify
check will be successful at every honest node.

Alternatively, when the dealer is malicious, and the sharing

phase terminates at an honest node., then a similar argument as

Lemma 5.4 implies that every honest node will eventually terminate

the sharing phase. Furthermore, from Lemma 4.2, the PVSS.Share
check successful in at least 𝑡 + 1 honest node. Hence, except with

probability 1 −
(
2𝑡+1

𝑡+1

)
1

𝑞𝑡+1
, 𝒗 is a commitment to a degree ℓ poly-

nomial. Furthermore, all these nodes check that shares of every

other node encrypted as per the protocol specification. Hence, ex-

cept with negligible probability, 𝒄 is generated as per the protocol

specification. Also, our ADD protocol guarantees that every node

will eventually output 𝒗, 𝒄, 𝝅 , hence, each honest will eventually

receive their encrypted shares and will multi-cast it during the

reconstruction phase. For any given ℓ ≤ 𝑛 − 𝑡 , since there are at
least ℓ honest nodes in the system, this implies that during the

reconstruction phase, each honest node will receive at least 𝑛 − 𝑡
valid decrypted shares and will terminate the Reconstruction phase

of the protocol. □

Lemma 5.7 (Correctness). Assuming dleq.Prove ensures sound-
ness, our dual-threshold ACSS protocol guarantees correctness for any
ℓ ≤ 𝑛 − 𝑡 .

Proof. During the reconstruction phase of the protocol, the

soundness guarantee of dleq.Prove ensures that each honest node

only accepts valid decrypted shares. Furthermore, all of these points

lie on a fixed degree-ℓ polynomial, which gets finalized whenever

the sharing phase terminates at an honest node. Also, any set of ℓ

valid shares will result in the same output. □

Lemma 5.8 (Completeness). The dual-threshold ACSS in Algo-
rithm 5 ensures completeness.

Proof. When the dealer is honest, completeness follows from

the completeness property of dleq.Prove, i.e., an honest prover can

always convince an honest verifier. When the dealer is malicious,

at the end of sharing phase, from the guarantees of our ADD proto-

col, every honest node will eventually receive 𝒗, 𝒄, 𝝅 . Furthermore,

Lemma 4.4 implies that at least 𝑡 + 1 nodes validated 𝒗, 𝒄, 𝝅 for

correctness. Hence, by soundness guarantees of dleq.Prove, 𝒄 con-
sists of correct encryptions of shares of each node. Putting all these

together, we get that Algorithm 5 guarantees completeness. □

Lastly, when the secret is a uniform random element 𝑔𝑠
1
∈ G,

IND1-Secrecy property (Definition E.2) of Scrape’s PVSS implies

that to an adversary that corrupts up to ℓ , assuming hardness of

DDH, 𝑔𝑠
1
is indistinguishable from a randomly chosen element.

Hence, when we use it as a one time pad in the transformation

of [51], our dual-threshold ACSS ensures secrecy.

Remark. Unlike existing dual-threshold ACSS such as [3, 17, 37],

our dual-threshold ACSS ensures secrecy even in scenarios where

adversary corrupts more than 𝑡 nodes during both sharing and re-

construction phase. However, for termination of the sharing phase,

we require that adversary corrupts only up to 𝑡 nodes during the

sharing phase and 𝑛 − ℓ nodes during the reconstruction phase.

6 ASYNCHRONOUS DISTRIBUTED KEY
GENERATION

In this section, we present a protocol for asynchronous distributed

key generation (ADKG). Briefly, the goal of the ADKG protocol is

to generate a public key of the form 𝑔𝑠 where 𝑔 is a generator of an

appropriate group, 𝑠 is a secret, and nodes hold threshold shares of

the secret 𝑠 . These shares can be used as secret keys for applications

such as threshold signatures. One crucial property we want from

the DKG protocol is that an adversary that corrupts up to 𝑡 nodes in

the system does not learn any information about the secret except

the public key 𝑔𝑠 . We refer readers to [32, 37] for more detailed

definition of the (asynchronous) distributed key generation.

Prior to our work, themost efficient ADKG protocol that achieves

these properties is due to Kokoris et al. [37]. In particular, Kokoris

et al. provide a generic technique to convert a dual-threshold ACSS

scheme with some additional properties (which we describe later) to

an ADKG. Here on we will refer to this transformation as the KMS

transformation. The KMS transformation uses 𝑛 distinct invocation

of the dual-threshold ACSS, where each node acts as a dealer in one

invocation. Thus, if we instantiate the KMS transformation with

the dual-threshold ACSS from [3], we get an ADKG protocol with

communication cost of 𝑂 (̂ 𝑛3
log𝑛).

The additional properties the KMS transformation needs from a

dual-threshold ACSS are:

(1) Homomorphism. For two secrets 𝑢 and 𝑣 , possibly shared by

two different dealers, let 𝑢𝑖 and 𝑣𝑖 be the shares held by node 𝑖 ,
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then there is an efficient homomorphic operation ⊞ such 𝑢𝑖 ⊞ 𝑣𝑖
is the 𝑖th share of the secret 𝑢 + 𝑣 .

(2) Knowledge soundness. If the sharing phase terminates for a

secret 𝑠 ∈ Z𝑞 , then the dealer knows 𝑠 .

The KMS transformation needs these properties because it will

aggregate secrets from multiple dealers. Hence, it naturally needs

homomorphism. It also requires knowledge soundness since we do

not want a malicious node to select a secret that depends on the

secrets of honest dealers.

Note that our dual-threshold ACSS scheme in Algorithm 5 do

not satisfy homomorphism. Next, we introduce some modification

to Algorithm 5 to achieve both homomorphism and knowledge

soundness while retaining the communication cost of𝑂 (̂ 𝑛2
). After

that, we can plug it into the KMS transformation to get an ADKG

scheme with communication cost of 𝑂 (̂ 𝑛3
).

Briefly, we need verifiable encryption of discrete logarithms, i.e., a
CPA secure encryption scheme that allows an encrypter to prove in

zero-knowledge about the correct encryption of discrete logarithm

of a known value. We know of such an instantiation by Camenisch

and Shoup [18]. Their construction assumes the hardness of strong

RSA [5, 29] and DCR [44]. Next, we will introduce the verifiable

encryption of discrete logarithm problem and its interface.

6.1 Verifiable Encryption of Discrete Logs
The problem of verifiable encryption of discrete logarithm involves

three parties: a proverP, a verifierV , and a receiverR. The receiver
R has a public-private key pair (𝑝𝑘, 𝑠𝑘). Let G be a group chosen

appropriately and let 𝑔 ∈ G be a random generator of G. Given
(𝑔, 𝑥, 𝑐, 𝑝𝑘), the prover P wants to convince the verifierV that 𝑐 is

an public key encryption of 𝛼 under the public key 𝑝𝑘 such that

𝑔𝛼 = 𝑥 and P knows 𝛼 .

The protocol due to Camenisch and Shoup [18] for verifiable

encryption of discrete logarithm is a “Σ-protocol” and is zero-

knowledge and knowledge sound. In particular, the protocol has

the following interfaces.

• CS.KeyGen(1
^

) → (𝑝𝑘, 𝑠𝑘). The key generation algorithm out-

puts a public-private key pair for the encryption scheme.

• CS.Encrypt(𝑝𝑘, 𝛼) → 𝑐: Given a public key 𝑝𝑘 , a message 𝛼 ,

CS.Encrypt computes the public key encryption of 𝛼 .

• CS.Decrypt(𝑠𝑘, 𝑐) → 𝛼 : The CS.Decrypt function decrypts a

ciphertext 𝑐 using the secret key 𝑠𝑘 and outputs the message 𝛼 .

• CS.EncAndProve(𝑝𝑘, 𝛼, 𝑔)→ (𝑐, 𝑥, 𝜋 ): CS.EncAndProve function
encrypts a uniformly randomly chosen message 𝛼 using the

public-key 𝑝𝑘 , compute 𝑔𝛼 , and creates a non-interactive zero-

knowledge proof of knowledge 𝜋 of the statement that the P
knows 𝛼 such that 𝑐 = CS.Encrypt(𝑝𝑘, 𝛼) and 𝑥 = 𝑔𝛼 .

• CS.VerifyDLog(𝑝𝑘,𝑔, 𝑥, 𝑐, 𝜋 )→ 0/1. Given the tuple (𝑝𝑘,𝑔, 𝑥, 𝑐, 𝜋 ),

the CS.VerifyDLog(·) outputs 1 if there exists 𝛼 such that 𝑥 =

𝑔𝛼 ∧ 𝑐 = CS.Encrypt(𝑝𝑘, 𝛼). Note that CS.VerifyDLog needs to

do these checks without using the secret key or the underlying

message. The proof 𝜋 assists in that.

6.2 Design and Analysis
We summarize the modifications to our dual-threshold ACSS to

achieve the properties required for the KMS transformation in Algo-

rithm 6. The main difference between Algorithm 5 and Algorithm 6

Algorithm 6 Homomorphic dual-threshold ACSS for ADKG

PUBLIC PARAMETER: {𝑝𝑘𝑖 } for 𝑖 = 1, 2, . . . , 𝑛 public keys of each node as

per encryption scheme of [18].

INPUT: 𝑛, 𝑡, ℓ

SHARING PHASE:

// As dealer 𝐿 with a uniform random input 𝑠 :
101: Sample a 𝑘-degree random polynomial 𝑝(·) such that 𝑝(0) = 𝑠

102: Let 𝑣𝑗 , 𝑐 𝑗 , 𝜋 𝑗 ← CS.EncAndProve(𝑝𝑘 𝑗 , 𝑔, 𝑝(𝑗 )) for 𝑗 = 1, 2, . . . , 𝑛.

103: Let 𝒗 = {𝑣1, 𝑣2, .., 𝑣𝑛 }, 𝒄 = {𝑐1, 𝑐2, .., 𝑐𝑛 }, and 𝝅 = {𝜋1, 𝜋2, .., 𝜋𝑛 }.
104: for 𝑖 = 1, 2, ..., 𝑛 do
105: send ⟨PROPOSE, 𝒗, 𝒄,𝝅 ⟩ to node 𝑖

// As receiver 𝑖 :
201: upon receiving ⟨PROPOSE, 𝒗, 𝒄,𝝅 ⟩ do
202: Sample a random code word y⊥ ∈ 𝐶⊥ and check whether

𝑛∏
𝑘=1

𝑣
𝑥⊥
𝑘

𝑘
= 1G

203: if CS.VerifyDLog(𝒗[𝑗], 𝒄[𝑗],𝝅[𝑗]) is valid for all 𝑗 then
204: let ℎ := hash(𝒗 ∥𝒄)

205: send ⟨ECHO, ℎ⟩ to all (if haven’t yet)
// the rest of the sharing phase is identical to line 205 to 213 of Algorithm 5.

RECONSTRUCTION PHASE:

// every node 𝑖 with key 𝑝𝑘𝑖 , 𝑠𝑘𝑖
301: 𝑠𝑖 := CS.Decrypt(𝑠𝑘𝑖 , 𝒄[𝑖])

302: send ⟨RECONSTRUCT, 𝑠𝑖 ⟩ to all

303: upon receiving ⟨RECONSTRUCT, 𝑠𝑖 ⟩ from node 𝑖 do
304: if 𝒗[𝑖] = 𝑔𝑠𝑖 then
305: 𝑇 = 𝑇 ∪ {𝑠𝑖 }
306: if |𝑇 | ≥ ℓ then
307: output 𝑠 using Lagrange interpolation and return

is the way the dealer encrypts the shares of each node computes

the corresponding zero-knowledge proofs, etc.

During the sharing phase, to share a uniform random secret

𝑠 ∈ Z𝑞 , the dealer 𝐿 samples a random ℓ-degree polynomial 𝑝(·)
such that 𝑝(0) = 𝑠 . Then for each 𝑗 ∈ {1, 2, . . . , 𝑛}, 𝐿 computes

(𝑣 𝑗 , 𝑐 𝑗 , 𝜋 𝑗 )← CS.EncAndProve(𝑔, 𝑝𝑘 𝑗 , 𝑝( 𝑗 )). Let

𝒗 = {𝑣1, . . . , 𝑣𝑛}; 𝒄 = {𝑐1, . . . , 𝑐𝑛}; and 𝝅 = {𝜋1, . . . , 𝜋𝑛} (4)

We will refer to 𝒗, 𝒄, 𝝅 as the commitment, encryption and proof

vector, respectively. Observe that the commitment vector is same as

the commitment vector of PVSS.Verify. Then the dealer multi-casts

the message ⟨PROPOSE, 𝒗, 𝒄, 𝝅⟩ to all other nodes.

Each node 𝑖 upon receiving ⟨PROPOSE, 𝒗, 𝒄, 𝝅⟩ checks while 𝒗
is a commitment to a polynomial of degree at most ℓ using step

(2) of PVSS.Verify. Then, for each tuple (𝑣 𝑗 , 𝑐 𝑗 , 𝜋 𝑗 ) node 𝑖 checks

whether 𝑐 𝑗 is an encryption of log𝑔 𝑣 𝑗 or not using CS.VerifyDLog.
If all the validation checks pass, node 𝑖 computes ℎ = hash(𝒗∥𝒄) and

multi-casts the ⟨ECHO, ℎ⟩ to all other nodes. The rest of the sharing

phase then has the same structure as in our Algorithm 5.

During the reconstruction phase, each node 𝑖 decrypt 𝑐[𝑖] to

recover its share 𝑠𝑖 i.e., 𝑠𝑖 := CS.Decrypt(𝑠𝑘𝑖 , 𝑐[𝑖]). Node 𝑖 then

multi-casts 𝑠𝑖 to all other nodes as ⟨RECONSTRUCT, 𝑖, 𝑠𝑖 ⟩ message.

A node 𝑗 upon receiving ⟨RECONSTRUCT, 𝑖, 𝑠𝑖 ⟩ from node 𝑗 , checks

whether 𝒗[ 𝑗] equals 𝑔𝑠 𝑗 , and accepts it only if the check pass. Lastly,
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after receiving ℓ or more valid RECONSTRUCT messages node 𝑗 re-

constructs the secret using Lagrange interpolation.

Now let’s look at the properties ensured by Algorithm 6. The

termination of our modified dual-threshold ACSS follows from

Lemma 5.6 and completeness property of the CS.EncAndProve.
Similarly, the completeness property follows from the soundness

guarantee ofCS.EncAndProve and that ADD ensures that all honest

nodes eventually receive 𝒗∥𝒄 . The correctness property follows

directly from Lemma 5.7.

For secrecy, we argue that, for a uniform secret 𝑠 , an adversary

learns nothing about 𝑠 beyond whatever is revealed by the public

key 𝑔𝑠 assuming the hardness of Computational Diffie-Helmann.

Note that this secrecy is slightly weaker than that the one Defi-

nition 5.1, which does not leak any information about 𝑠 . But this

is the natural definition of secrecy for DKG and is sufficient for

applications such as [10, 13, 27].

Lemma 6.1. For a uniformly random 𝑠 , given 𝑔𝑠 , assuming hard-
ness of Strong RSA and DCR, and the existence of a Random Oracle,
there exists an PPT simulator that can simulate the view of all static
PPT adversaries.

We only provide a proof sketch for Lemma 6.1. Let A be a PPT

adversary that corrupts up to ℓ nodes. Without loss of generality, let

A corrupts the first ℓ nodes. Let 𝑝𝑘𝑖 for 𝑖 = 1, 2, . . . , 𝑛 be the public

keys of the nodes. Given 𝑔𝑠 for a random secret 𝑠 , the simulator

S chooses ℓ random points 𝑠𝑖 ∈ Z𝑞 for 𝑖 = 1, 2, . . . , ℓ and sets

𝑣𝑖 = 𝑔
𝑠𝑖
1
. For ℓ < 𝑖 ≤ 𝑛, the S constructions 𝑣𝑖 using Lagrange

interpolation in the exponent. S then encrypts the share of the

each node 𝑗 ∈ {1, 2, . . . , ℓ} and for the remaining nodes, S uses the

CPA security of CS.Encrypt and send encryptions of all zero string.
Next, S uses the zero-knowledge simulator of the CS.EncAndProve
to construct the proofs 𝜋 𝑗 for ℓ < 𝑗 ≤ 𝑛. It is easy to see that the

view of A in its interaction with the simulator is computationally

indistinguishable from its view in the actual protocol.

Now, let’s analyze the communication cost of our modified dual-

threshold ACSS. Observe that each 𝒗, 𝒄 and 𝝅 are ^𝑛 bits long.

Hence, the communication cost of the sharing phase in 𝑂(^𝑛2
).

Similarly, during the reconstruction phase, each node multi-cast

𝑂(^) bits, the reconstruction phase has a communication cost of

𝑂 (̂ 𝑛2
). Hence, the total communication cost is 𝑂 (̂ 𝑛2

). Since KMS

transformation involves 𝑛 invocation of dual-threshold ACSS we

get a ADKG protocol with communication cost of 𝑂 (̂ 𝑛3
).

7 RELATEDWORK
To the best of our knowledge, the ADD problem has not been stud-

ied before. This may be in part because, despite being a simple

primitive, its applications are not immediately apparent. In hind-

sight, the biggest conceptual barrier for us in this work was to

realize the usefulness of ADD as opposed to designing protocols to

solve it. Even then, for many of the applications we have identified

for ADD in this work, we had to introduce additional techniques

to address other efficiency bottlenecks in them.

Reliable broadcast. The problem of reliable broadcast (RBC) was

introduced by Bracha [14]. In the same paper, Bracha provided

an RBC protocol for a single bit with a communication cost of

𝑂(𝑛2
), thus 𝑂(𝑛2 |𝑀 |) for |𝑀 | bits using a naïve approach. Almost

two decades later, Cachin and Tessaro [17] improved the cost

to 𝑂(𝑛 |𝑀 |+^𝑛2
log𝑛) assuming a collision-resistant hash function

with ^ being the output size of the hash. Hendricks et al. in [35]

propose an alternate RBC extension protocol with a communication

cost of 𝑂(𝑛 |𝑀 |+^𝑛3
) using a novel erasure coding scheme where

each element of a codeword can be verified for correctness.

Recently, assuming a trusted setup phase, hardness of 𝑞-SDH [11,

12] and Decisional bilinear Diffie-Hellman (DBDH) assumption [13],

Nayak et al. [43] reduced the communication cost to 𝑂(𝑛 |𝑀 |+^𝑛2
).

Our RBC protocol achieves the best of both, i.e., it only assumes

existence of collision resistant hash function, does not require a

setup, and has a communication cost of 𝑂(𝑛 |𝑀 |+^𝑛2
).

Asynchronous VSS/CSS. The problem of asynchronous verifiable

secret sharing has been studied for decades in many different set-

tings [3, 4, 6, 7, 16, 19, 20, 37, 45, 55]. The information-theoretically

secure schemes [19, 20, 24, 45, 46] mostly have high communi-

cation cost or sub-optimal fault tolerance. Using cryptographic

assumption such as collision resistance hash function and Deci-

sional Diffie-Hellman assumption, Cachin et al. [16] proposed a

AVSS scheme with communication cost of 𝑂(𝑛3^), and later im-

proved to 𝑂(^𝑛2
) by Backes et al. in [4] assuming a trusted setup

phase and the hardness of the 𝑞-SDH. Very recently, Alhaddad et

al. [3] proposed a ACSS scheme for secrets chosen at random with

a total communication cost of 𝑂 (̂ 𝑛2
log𝑛).

Someworks focused on improving the amortized communication

cost of AVSS for many secrets [3, 17, 55], such as amortized cost

of 𝑂(𝑛2^) per secret in Cachin et al. [17], and 𝑂(𝑛^) per secrets in

both hbACSS [55] and Haven [3].

Dual-threshold ACSS. The problem of dual-threshold AVSS was

introduced by Cachin and Tessaro [17] where they provide a dual-

threshold for 𝑡 < 𝑛/4 and ℓ < 𝑛/2 with communication cost of

𝑂(^𝑛3
). Only recently, Kokoris et al. [37] proposed the first dual-

threshold ACSS protocol for 𝑡 < 𝑛/3 and ℓ < 2𝑛/3 with a com-

munication cost of 𝑂(^𝑛3
) and Alhaddad et al. [3] improved the

communication cost to 𝑂(^𝑛2
log𝑛). If we assume a trusted setup

and use the polynomial commitment scheme of [36], then the total

communication cost can be improved to 𝑂 (̂ 𝑛2
). Moreover, during

the sharing phase, all of the above mentioned schemes provide

secrecy only against an adversary that corrupts up to 𝑡 nodes. Con-

trary to the existing schemes, our dual-threshold ACSS always

ensures secrecy against an adversary that corrupts up to ℓ nodes.

AsynchronousDistributedKeyGeneration.There are relatively
fewer works on asynchronous DKG [2, 20, 30, 37]. The ADKG con-

struction of Canetti and Rabin [20] uses 𝑛2
AVSSand is hence ineffi-

cient. Kokoris et al, [37] uses 𝑛 homomorphic dual-threshold ACSS

with reconstruction threshold of 2𝑡 + 1 to design an ADKG scheme.

Their original paper [37] uses a 𝑂 (̂ 𝑛3
) dual-threshold ACSS proto-

col and hence incur an expected cost of𝑂 (̂ 𝑛4
). Using our quadratic

homomorphic dual-threshold ACSS, we obtain a ADKG with ex-

pected communication cost of 𝑂(^𝑛3
). Two recent works [2, 30]

propose weaker variant of the ADKG with limited applications.

These schemes have total communication costs of 𝑂 (̂ 𝑛3
log𝑛) and

they can be improved to𝑂 (̂ 𝑛3
) using our RBC extension in a black

box manner.
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8 DISCUSSION
Concrete communication cost of ADD. Although reducing the

communication cost by a factor of log𝑛 is interesting from a theo-

retical point of view, it is equally important from a practical point

of view primitives to make the hidden constants small. Indeed, this

is the case with the primitives we construct in this work. In partic-

ular, our ADD with 𝑛 = 3𝑡 + 1 has a concrete communication cost,

𝐵ADD = 6𝑛 |𝑀 |+2𝑛2
. The factor 6 is due to the increase in the size

of the message due to RSEnc and the fact that ADD has two rounds

of communication. If we substitute 𝐵ADD in our RBC extension

protocol we get a communication cost of 𝑛 |𝑀 |+2^𝑛2
+ 𝐵ADD. Here

the 𝑛 |𝑀 | accounts for the communication cost the dealer incurs

during multi-cast of𝑀 to all nodes. The 2^𝑛2
is the cost of Bracha’s

RBC on the hash(𝑀).

A note on the ^. Although for notational convenience, we have

used a single parameter ^ for all cryptographic primitives, it is

worth noting that for the same level of security, the sizes of group

or field elements vary considerably depending upon the underly-

ing cryptographic assumptions. One needs to factor this in when

comparing concrete performance. For example, SHA256 outputs

are 32 bytes and provide 128 bits of security. The elliptic curve

group ed25519 has 32-byte group elements and also provides ap-

proximately 128 bits. However, for 128 bits of security, RSA group

elements need to be 384 bytes long. As a result, our ADKG con-

struction is not as efficient as our other constructions. We leave it

to future work to try to remove RSA from our ADKG construction

for better concrete efficiency.

Limitations of ADD. One limitation of ADD is that it may in-

crease the number of rounds needed by two. For example, our RBC

extension protocol requires five rounds whereas both [14] and [16]

require only three rounds. We leave reducing the round complexity

of our RBC extension as future work.

Another limitation of using ADD is the added computation it

introduces. These costs are due to encoding and decoding of the

message. Additionally, in the presence of malicious nodes, each

honest node may have to try decoding 𝑡 times. Since 𝑡 = Θ(𝑛),

each honest node possibly needs to perform 𝑂(𝑛2
log𝑛) extra field

operations. The exact overhead can be tricky to calculate since prior

protocols such as [16] involve more hash computation.

9 CONCLUSION
In this paper we have introduced the problem of asynchronous data

dissemination (ADD), which seeks to replicate a data blob𝑀 from a

subset of honest subset of honest nodes to all honest nodes, despite
the presence of some malicious nodes. We have presented an ADD

protocol for𝑛 parties with a communication cost of𝑂(𝑛 |𝑀 |+𝑛2
). We

then used our ADD protocol to improve the communication cost

or trust assumption of RBC extension, AVSS, ACSS, dual-threshold

ACSS, and ADKG. All our constructions have a common structure,

consisting of a Bracha’s RBC on a hash of a message𝑀 and an ADD

for replicating a long message𝑀 .

We believe ADD can be useful in other applications that we did

not study in this paper, e.g., in improving the communication cost

of recent randomness beacon protocols for both synchronous [25]

and asynchronous networks [8]. Generally speaking, ADD will

be useful in protocols that involve distribution of long common

messages across all nodes. These messages include but are not

limited to blocks in blockchain protocols, polynomial commitments,

encrypted shares, NIZK proofs, etc..
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A THRESHOLD SECRET SHARING
A (𝑛, 𝑘) threshold secret sharing scheme allows a secret 𝑠 ∈ Z𝑞 to be

shared among 𝑛 nodes such that any 𝑘 of them can come together

to reconstruct the original secret, but any subset of 𝑘 − 1 shares

cannot be used to reconstruct the original secret [9, 52]. We use the

common Shamir secret sharing [52] scheme , where the secret is

embedded in a random degree 𝑘 − 1 polynomial in the field Z𝑞 for

some prime 𝑞. Specifically, to share a secret 𝑠 ∈ Z𝑞 , a polynomial

𝑝(·) of degree 𝑘 − 1 is chosen such that 𝑠 = 𝑝(0). The remaining

coefficients of 𝑝(·), 𝑎1, 𝑎2, · · · , 𝑎𝑡 are chosen uniformly randomly

from Z𝑞 . The resulting polynomial 𝑝(𝑥 ) is defined as:

𝑝(𝑥 ) = 𝑠 + 𝑎1𝑥 + 𝑎2𝑥
2

+ · · · + 𝑎𝑘−1
𝑥𝑘−1

Each node is then given a single evaluation of 𝑝(·). In particular, the

𝑖th node is given 𝑝(𝑖) i.e., the polynomial evaluated at 𝑖 . Observe

that given 𝑡 + 1 points on the polynomial 𝑝(·), one can efficiently

reconstruct the polynomial using Lagrange Interpolation. Also note

that when 𝑠 is uniformly random inZ𝑞 , 𝑠 is information theoretically

hidden from an adversary that knows any subset of 𝑘 − 1 or less

evaluation points on the polynomial other than 𝑝(0) [52].

B ADD FOR HIGH THRESHOLD
Recall from §3 that it is impossible to solve ADD for 𝑛 < 2𝑡 + 1. In

this section we will describe how to extend our solution to ADD

with 𝑛 = 3𝑡 +1 to a threshold of the form 𝑡 = (1/2−𝜖)𝑛 for any 𝜖 > 0.

Briefly, to extend our results from §3 to an arbitrary 𝜖 > 0, we use

a larger𝑚 in the RSEnc and a collision resistant hash function. The

detailed changes in our original protocol is as follows.

During the encoding phase, to protect against an adversary cor-

rupting up to (1/2 − 𝜖)𝑛 nodes, each sender encodes the message

𝑀 with𝑚 ≥ (𝑘 + 1)/(2𝜖) (due to reasons to be described later). Let

𝑀 ′ = RSEnc(𝑀,𝑚,𝑘) be the encoded message.

Then, during the dispersal phase, each sender sends the 𝑖th com-

ponent of𝑀 ′,𝑚𝑖 to node 𝑖 . Note that size of𝑚𝑖 is

|𝑚𝑖 |=
𝑚 |𝑀 |
𝑛𝑘

≥ (1 + 𝑘)|𝑀 |
2𝜖𝑛𝑘
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Let ℎ = hash(𝑝(·)) i.e., hash of the coefficients of the original

polynomial 𝑝(·). Also, let 𝛼 := (𝑚/𝑛).

For 0 ≤ 𝑟 ≤ 𝑡 :

(1) Let𝑇𝑟 be the subset of shares received till iteration 𝑟 . Wait

until |𝑇𝑟 |≥ 𝛼(𝑛 − 𝑡 + 𝑟 + 1).

(2) Then run RSDec(𝑘 ; 𝑟 ;𝑇𝑟 ), and let 𝑝𝑟 (·) be the output poly-
nomial.

(3) If hash(𝑝𝑟 (·)) = ℎ∗, output 𝑝𝑟 (·). Otherwise, proceed to the
next iteration.

Figure 3: Hash based Online Error Correction (HOEC).

Furthermore, each sender additionallymulti-casts the cryptographic

digest, i.e., hash of message of ℎ = hash(𝑀) to all other nodes. Each,

recipient upon receiving 𝑡 + 1 identical hash ℎ sets it as ℎ∗. The
recipient uses the ℎ∗ during the reconstruction phase.

Similar to our 1/3
rd

ADD, during the reconstruction phase each

node 𝑖 , multi-casts𝑚∗
𝑖
to all other nodes. The procedure to recover

the message using the received reconstruction message differ from

OEC. In particular, every node instead runs the hash based OEC

that we design and refer to as the HOEC algorithm. We summarize

it in Figure 3 and describe it next.

The HOEC algorithm is iterative can take up to 𝑡 + 1 iterations.

In iteration 𝑟 , each recipient node 𝑖 waits to receive 𝑛 − 𝑡 + 𝑟 + 1

RECONSTRUCT messages. For every received message of the form

(RECONSTRUCT, ℓ,𝑚ℓ ) received till iteration 𝑟 , node 𝑖 adds (ℓ,𝑚ℓ ) to

a set 𝑇𝑟 . Then, the recipient uses the RSDec algorithm on 𝑇𝑟 to

recover the original message. Let 𝑝𝑟 (·) := RSDec(𝑡, 𝑟,𝑇𝑟 ) be the

output of the decoding algorithm, then the recipient outputs the

coefficients of 𝑝𝑟 (·) as the final message only if hash(𝑝𝑟 (·)) matches

ℎ∗, the hash received during the dispersal phase. Here hash(𝑝𝑟 (·))
denotes the hash of the coefficients of the polynomial 𝑝𝑟 (·). If the
hashes do not match, the recipient starts the next iteration.

The guarantees provided by HOEC is very similar to the guaran-

tees of OEC. But for completeness, we state it below.

Lemma B.1. For any (𝑚,𝑘), let (𝑎1, ..., 𝑎𝑛) be the output of the
encoding RSEnc(𝑀,𝑚,𝑘) of a message 𝑀 , where 𝑚 = (𝑘 + 1)/(2𝜖).
Assuming a collision resistant hash function, if an honest node 𝑖
receives at least 𝑛 − 𝑡 correct symbols of RSEnc(𝑀,𝑚,𝑘) where 𝑡 =

(1/2− 𝜖)𝑛 for 𝜖 > 0, HOEC ensures that node 𝑖 eventually outputs𝑀 .

Proof. Similar to our proof of OEC first we will argue that

every honest node will eventually output a polynomial and we will

treat the corrupt nodes that sent correct symbols to 𝑛𝑖 as honest.

Let’s focus on a single honest node, say𝑛𝑖 . LetA corrupts 𝑟 nodes

who either sends incorrect symbols or do not send any symbols to

𝑛𝑖 . Note that 𝑟 ≤ 𝑡 . Also, for any given𝑚, each node is responsible

for sending 𝛼 = 𝑚/𝑛 symbols to 𝑛𝑖 . Hence, an adversary controlling

𝑟 nodes manages 𝑟𝛼(1/2 − 𝜖) symbols.

Let’s assume 𝑟1 corrupt nodes sent incorrect symbols to 𝑛𝑖 and

𝑟2 corrupt nodes did not send anything. Note that 𝑟1 + 𝑟2 = 𝑟 .

Now consider the (𝑡 − 𝑟2)
th

iteration; since 𝑟2 nodes never sent any

symbols to 𝑛𝑖 , 𝑛𝑖 will receive 𝛼(𝑛 − 𝑡 + 𝑡 − 𝑟2) distinct symbols on

the polynomial 𝑝(·) of which 𝛼𝑟1 symbols are incorrect. Let I𝑡−𝑟2

be the set of received symbols in iteration 𝑡 − 𝑟2, then

|I𝑡−𝑟2
|= 𝛼(𝑛 − 𝑡 + 𝑡 − 𝑟2) = 𝛼(𝑛 − 𝑟2) (5)

Now consider 𝑘 + 2𝑟1𝛼 + 1. When𝑚 = (𝑘 + 1)/(2𝜖), we have

𝑘 + 2𝑟1𝛼 + 1 = 𝑘 + 2(𝑟 − 𝑟2)𝛼 + 1

≤ (𝑘 + 1) + 2(𝑡 − 𝑟2)𝛼

= (𝑘 + 1) + (1 − 2𝜖)𝑛𝛼 − 2𝑟2𝛼

= (𝑘 + 1) + (𝑛 − 𝑟2)𝛼 − 2𝜖𝑛𝛼 − 𝑟2𝛼

= (𝑘 + 1) + (𝑛 − 𝑟2)𝛼 − (𝑘 + 1) − 𝑟2𝛼

= (𝑛 − 𝑟2)𝛼 − 𝑟2𝛼 ≤ (𝑛 − 𝑟2)𝛼 (6)

the last inequality holds due to the fact that 𝑟2 ≥ 0.

Equation (6) implies that |I𝑡−𝑟2
|≥ 𝑘 + 2𝑟1𝛼 + 1, hence, the algo-

rithm RSDec will correct 𝛼𝑟1 errors and will return the polynomial

𝑝𝑡−𝑟2
(·) during the (𝑡 − 𝑟2)

th
iteration.

Next, for correctness, let’s assume that𝑛𝑖 outputs the polynomial

𝑝𝑟 (·) in the 𝑟 th
iteration. Then, hash(𝑝𝑟 (·)) = ℎ = hash(𝑝(·)). Hence,

by collision resistance property of the hash function, we get 𝑝𝑟 (·) =

𝑝(·) as polynomials. □

Note that Lemma 3.2 also holds for ℎ = hash(𝑀) in our high-

threshold ADD protocol. Hence, at the end of the dispersal phase

of our high-threshold ADD, every recipient node will output the

correct hash ℎ. We will next argue that during the reconstruction

phase of both ADD and high-threshold ADD every honest recipient

outputs𝑀 . Combining this with Lemma B.1 we get,

Lemma B.2. Assuming hash(·) is a collision resistant hash function,
at the end of the reconstruction phase of our high-threshold ADD every
honest node outputs𝑀 .

We will next analyze the communication complexity of our high-

threshold ADD.

Lemma B.3. Assuming the existence of collision resistant hash
function, for any 𝜖 > 0, in a network of 𝑛 nodes where up to (1/2 − 𝜖)

fraction of nodes could be malicious, our high-threshold ADD has a
total communication cost of𝑂(𝑛 |𝑀 |/𝜖 +𝑛2^). Here ^ is the size of the
output of the hash function.

Proof. During the dispersal phase, each sender sends a mes-

sage of size 𝑂(|𝑀 ′ |/𝑛 + ^) to every other node. Hence, the total

communication cost of every sender is 𝑂(|𝑀 ′ |+𝑛^). Since there are

Θ(𝑛) senders, the total communication cost in the dispersal phase is

𝑂(𝑛 |𝑀 ′ |+𝑛2^). During the reconstruction phase, each nodes sends

a message of size 𝑂(|𝑀 ′ |/𝑛) to every other node. Hence, the total

communication cost during the reconstruction phase is 𝑂(𝑛 |𝑀 ′ |)
Since in our high-threshold ADD |𝑀 ′ |= 𝑂(|𝑀 |/2𝜖), it has a total

communication cost of 𝑂(𝑛 |𝑀 |/𝜖 + 𝑛2^). □

C PEDERSEN’S VSS [47]
Let ^ be the security parameter. Let G be a cyclic abelian group of

prime order 𝑞 and Z𝑞 the group of integer modulo 𝑞. Let 𝑔0, 𝑔1 ←
G be two uniform and independent element from G. Before we

describe Pedersen’s VSS scheme, we will first briefly describe the

commitment scheme for a arbitrary secret 𝑠 ∈ Z𝑞 . To commit to a

secret 𝑠 , the committer samples a random 𝑟 ∈ Z𝑞 and computes

commit(𝑠, 𝑟 ) = 𝑣 = 𝑔𝑠
0
𝑔𝑟

1
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Let 𝑠 be the secret a node (the dealer) and let 𝑔0, 𝑔1 two

uniformly random and independent generators of a group G.

PedPolyCommit(𝑔0, 𝑔1, 𝑠)→ {𝒔, 𝒄, 𝒓}
(1) Sample 𝑟 ← Z𝑞 and let 𝑣0 = commit(𝑠, 𝑟 ).

(2) Sample 𝑎𝑘 , 𝑏𝑘 ∈ 𝑍𝑞 for 𝑘 = 1, 2, ..., 𝑡 and let:

𝑝(𝑥 ) = 𝑠 + 𝑎1𝑥 + . . . + 𝑎𝑡𝑥
𝑡
; and

𝜙(𝑥 ) = 𝑟 + 𝑏1𝑥 + . . . + 𝑏𝑡𝑥
𝑡

(3) Let 𝑣𝑘 = commit(𝑎𝑘 , 𝑏𝑘 ) for 𝑘 = 1, 2, ..., 𝑡 ,

(4) Let 𝒗 = {𝑣0, 𝑣1, . . . , 𝑣𝑡 }, 𝒔 = {𝑝(1), 𝑝(2), . . . , 𝑝(𝑛)}, and let

𝒓 = {𝜙(1), 𝜙(2), . . . , 𝜙(𝑛)}.
(5) return {𝒗, 𝒔, 𝒓}
PedEvalVerify(𝑔0, 𝑔1, 𝒗, 𝑖, 𝑠𝑖 , 𝑟𝑖 )→ 0/1:

(1) If

commit(𝑠𝑖 , 𝑟𝑖 ) = 𝑔
𝑠𝑖
0
𝑔
𝑟𝑖
1

=

𝑡∏
𝑗=0

𝑣𝑖
𝑗

𝑗

return 1 otherwise return 0.

Given PedPolyCommit and PedEvalVerify be the polyno-

mial commitment and evaluation scheme, respectively. The

VSS scheme is defined as below.

VSS.Share(𝑠, 𝑔0, 𝑔1, 𝑛, 𝑡 ) :

(1) Let {𝒗, 𝒔, 𝒓} := PedPolyCommit(𝑔0, 𝑔1, 𝑠)

(2) Broadcast 𝒗 to all nodes and send 𝒔[𝑖], 𝒓[𝑖] to node 𝑖

VSS.Verify(𝑔0, 𝑔1, 𝒗, 𝑠𝑖 , 𝑟𝑖 )→ 0/1:

(1) Output PedEvalVerify(𝑔0, 𝑔1, 𝒗, 𝑖, 𝑠𝑖 , 𝑟𝑖 ).

Let 𝑇 be the set of valid shares 𝑠𝑘 where |𝑇 |= 𝑡 + 1, then

VSS.Recon({𝑠𝑘 }𝑘∈𝑇 )→ 𝑠 :

(1) Output ∑
𝑘∈𝑇

𝑠𝑘 · `𝑘 = 𝑝(0) = 𝑠 (7)

where `𝑘 =

∏
𝑗 ̸=𝑘

𝑗

𝑗−𝑘 for 𝑘 ∈ 𝑇 are Lagrange coefficients.

Figure 4: Pedersen’s VSS scheme [47]

To reveal such a commitment later, the committer reveals (𝑠, 𝑟 )

and the verifier checks whether 𝑔𝑠
0
𝑔𝑟

1
is equal to 𝑣 or not. We refer

to the reveal procedure as:

reveal(𝑣) := 𝑠, 𝑟 such that 𝑣 = 𝑔𝑠
0
𝑔𝑟

1

Pedersen [47] illustrates that the commitment scheme described

above information theoretically hides 𝑠 and binds 𝑠 to 𝑣 for a com-

putationally bounded prover, assuming the prover does not know

the discrete logarithm of 𝑔1 with respect to 𝑔0, i.e., the prover can

not efficiently compute log𝑔0

𝑔1. We summarize the VSS scheme

from [47] in Figure 4.

Observe that the commitment to the polynomial 𝑝(·) that embeds

the secret 𝑠 is linear in the number of nodes. Moreover, given the

linear size commitment and a tuple (𝑠𝑘 , 𝑡𝑘 ), one can efficiently verify

(without any extra information) whether 𝑠𝑘 is equal to 𝑝(𝑘) or not.

We will crucially use these properties to design our AVSS scheme

with a total communication cost of 𝑂 (̂ 𝑛2
).

Next, we briefly summarize the properties of the VSS scheme

described in Figure 4. Informally, Lemma C.1 states that once the

VSS.Share step terminated correctly, any set of 𝑡 + 1 nodes can

combine their shares to recover the secret. Theorem C.3 states that

any subset of 𝑡 + 1 nodes will reconstruct the same secret.

Lemma C.1 (Lemma 4.2 of [47]). Let 𝑆 ⊂ {1, 2, . . . , 𝑛} be a set of
𝑡 + 1 nodes such that the verification was successful for these 𝑡 + 1

nodes. Then these 𝑡 +1 nodes can find a pair (𝑠 ′, 𝑡 ′) such that 𝑣 = 𝑔𝑠
′

0
𝑔𝑡
′

1
.

Definition C.2 (Uniqueness). For all subsets 𝑆1 and 𝑆2 of {1, 2, . . . , 𝑛}
of size 𝑘 such that all nodes in 𝑆1 and 𝑆2 accepted their shares in the

verification protocol described above. Let 𝑠𝑖 be the secret computed

by the participants in 𝑆𝑖 , then 𝑠1 = 𝑠2.

Theorem C.3 (Theorem 4.2 of [47]). Under the assumption that
the dealer can not find log𝑔0

𝑔1 except with negligible probability in
|𝑞 |, the verification protocol satisfies uniqueness.

Let 𝑆 be the subset of nodes with |𝑆 |≤ 𝑡 , let view𝑆 be the internal

state of nodes in 𝑆 and messages sent and received by nodes in 𝑆 .

Then, the next theorem ensures formally states the secrecy property

of the VSS.

Theorem C.4 (Theorem 4.4 of [47]). For all adversary A, for
any subset 𝑆 ⊂ [𝑛] of size 𝑡 and view𝑆 , for all 𝑠 ∈ Z𝑞

Pr[A has secret | view𝑆 ] = Pr[A has secret]

D ZERO KNOWLEDGE PROOF OF EQUALITY
OF DISCRETE LOGARITHM

The dual-threshold AVSS protocol has a step that requires nodes

to produce zero-knowledge proofs about equality of discrete log-

arithms for a tuple of publicly known values. In particular, given

a group G of prime order 𝑞, two uniformly random generators

𝑔0, 𝑔1 ← G and a tuple (𝑔0, 𝑥, 𝑔1, 𝑦), a prover P wants to prove to a

probabilistic polynomial time (PPT) verifierV , in zero-knowledge,

the knowledge of a witness 𝛼 such that 𝑥 = 𝑔𝛼
0
and 𝑦 = 𝑔𝛼

1
.

Throughout this paper, we will use the Chaum-Pedersen "Σ-

protocols" [23], which assumes the hardness of the Decisional Diffie-

Hellman (DDH) problem, and can be made non-interactive using

the Fiat-Shamir heuristic [28].

Decisional Diffie–Hellman assumption. Given a group G with

generator 𝑔 ∈ G and uniformly random samples 𝑎, 𝑏, 𝑐 ← Z𝑞 , the
Decisional Diffie–Hellman (DDH) hardness assumes that the follow-

ing two distributions 𝐷0, 𝐷1 are computationally indistinguishable:

𝐷0 = (𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏 ) and 𝐷1 = (𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 ).

Protocol for equality of discrete logarithm. For any given tuple
(𝑔0, 𝑥, 𝑔1, 𝑦), the Chaum-Pedersen protocol proceeds as follows.

(1) P samples a random element 𝛽 ← Z𝑞 and sends (𝑎1, 𝑎2) to

V where 𝑎1 = 𝑔
𝛽

0
and 𝑎2 = 𝑔

𝛽

1
.

(2) V sends a challenge 𝑒 ← Z𝑞 .
(3) P sends a response 𝑧 = 𝛽 − 𝛼𝑒 toV .

(4) V checks whether 𝑎1 = 𝑔𝑧
0
𝑥𝑒 and 𝑎2 = 𝑔𝑧

1
𝑦𝑒 and accepts if

and only if both the equality holds.
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As mentioned, this protocol can be made non-interactive in the

Random Oracle model using the Fiat-Shamir heuristic [28, 48]. This

protocol guarantees completeness, knowledge soundness, and zero-

knowledge. The knowledge soundness implies that if P convinces

the V with non-negligible probability, there exists an efficient

(polynomial time) extractor that can extract 𝛼 from the prover with

non-negligible probability.

In our dual-threshold ACSS, we use the non-interactive variant

of the protocol described above and denote it dleq(·). In particular,

for any given tuple (𝑔0, 𝑥, 𝑔1, 𝑦) where 𝑥 = 𝑔𝑠
0
and 𝑦 = 𝑔𝑠

1
, 𝜋 ←

dleq.Prove(𝑠, 𝑔0, 𝑥, 𝑔1, 𝑦) generates the proof 𝜋 . Given the proof 𝜋

and (𝑔0, 𝑥, 𝑔1, 𝑦), dleq.Verify(𝜋,𝑔0, 𝑥, 𝑔1, 𝑦) verifies the proof.

E PUBLICLY VERIFIABLE SECRET SHARING
We restate this section from [25]. Our (𝑛, ℓ) dual-threshold ACSS

scheme for 𝑛 ≥ 3𝑡 + 1 and 𝑡 < ℓ ≤ 𝑛 − 𝑡 crucially rely on on a (𝑛, ℓ)

publicly verifiable secret sharing (PVSS). In particular, we use the

PVSS scheme from Scrape [21], which is an improvement over the

Schoenmakers scheme [51]. The scheme allows a node (dealer) to

share a secret 𝑠 ∈ Z𝑞 among 𝑛 nodes, such that any subset of at

least ℓ nodes can reconstruct 𝑔𝑠
1
. Here, 𝑔1 is a random generator

of G. Additionally, any subset of ℓ or less nodes, can not learn any

information about the secret 𝑠 .

The reconstruction threshold ℓ is chosen in a way such that valid

contribution from at least ℓ nodes are required to recover 𝑔𝑠
1
.

A key property of a PVSS scheme is that, not only the recipients

but any third party (with access to recipients’ public keys) can

verify, even before the reconstruction phase begins, that the dealer

has generated the shares correctly without having plaintext access

to the shares.

The PVSS scheme of Scrape [21] is non-interactive in the random

oracle model and has three procedures: PVSS.Share, PVSS.Verify,
and PVSS.Recon. A node (dealer) with public-private key pair 𝑝𝑘, 𝑠𝑘 ,

uses PVSS.Share to share a secret 𝑠 , other nodes or external users

use PVSS.Verify to validate the shares, and PVSS.Recon is used to

recover ℎ𝑠 . We describe them in detail in Figure 5.

The verification procedure of Scrape’s PVSS uses properties of

error correcting code, specifically the Reed Solomon code [49]. They

use the observation by McEliece and Sarwate [41] that sharing of a

secret using a degree ℓ polynomial among 𝑛 nodes is equivalent to

encoding the message (𝑥, 𝑎1, 𝑎2, · · · , 𝑎𝑡 ) using a [𝑛, ℓ + 1, 𝑛 − ℓ] Reed
Solomon code [49].

Let𝐶 be a [𝑛, 𝑘, 𝑑] linear error correcting code over Z𝑞 of length

𝑛 and minimum distance 𝑑 . Also, let 𝐶⊥ be the dual code of 𝐶 i.e.,

𝐶⊥ consists vectors 𝒚⊥ ∈ Z𝑛𝑞 such that for all 𝒙 ∈ 𝐶 , ⟨𝒙,𝒚⊥⟩ = 0.

Here, ⟨·, ·⟩ is the inner product operation. Scrape’s PVSS.Verify uses
the following basic fact (Lemma E.1) of linear error correcting code.

We refer readers to [21, Lemma 1] for its proof.

Lemma E.1. If 𝒙 ∈ Z𝑛𝑞 \𝐶 , and 𝒚⊥ is chosen uniformly at random
from 𝐶⊥, then the probability that ⟨𝒙, 𝑦⊥⟩ = 1 is exactly 1/𝑞.

The PVSS scheme of Scrape provides the IND1-Secrecy property

stated in Theorem E.3. Intuitively, for any (𝑛, ℓ) PVSS scheme, IND1-

secrecy ensures that prior to the reconstruction phase, the public

information together with the secret keys 𝑠𝑘𝑖 of any set of at most ℓ

players gives no information about the secret. Formally this is stated

Let 𝑠 be the secret a node (the dealer) with public-private

key pair (𝑠𝑘, 𝑝𝑘) wants to share with set of nodes with public

keys {𝑝𝑘 𝑗 } 𝑗 for 𝑗 = 1, 2, . . . , 𝑛. Let 𝑔0, 𝑔1 be two randomly

chosen generators of group G.

PVSS.Share(𝑠, 𝑔0, 𝑔1, 𝑛, ℓ, {𝑝𝑘} 𝑗, 𝑗=1,2,...,𝑛)→ (𝒗, 𝒄, 𝝅 ):

(1) Sample uniform random 𝑎𝑖 ∈ Z for 𝑘 = 1, 2, . . . , ℓ and let

𝑝(𝑥 ) = 𝑠 + 𝑎1𝑥 + . . . + 𝑎ℓ𝑥
ℓ
;

(2) Let 𝑣 𝑗 := 𝑔
𝑝(𝑗 )

0
; and 𝑐 𝑗 := 𝑝𝑘

𝑝(𝑗 )

𝑗
, for 𝑗 = 1, . . . , 𝑛.

(3) Let 𝜋 𝑗 := dleq.Prove(𝑝( 𝑗 ), 𝑔0, 𝑣 𝑗 , 𝑝𝑘 𝑗 , 𝑐 𝑗 )

(4) Output 𝒗 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}; 𝒄 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}, and 𝝅 =

{𝜋1, 𝜋2, . . . , 𝜋𝑛}.

PVSS.Verify(𝑔0, 𝑔1, 𝑛, ℓ, {𝑝𝑘} 𝑗, 𝑗=1,2,...,𝑛, 𝒗, 𝒄, 𝝅 )→ 0/1:

(1) Sample a random code word 𝒚⊥ ∈ 𝐶⊥ and check whether

𝑛∏
𝑘=1

𝑣
𝑥⊥
𝑘

𝑘
= 1G (8)

where 1G is the identity element of G.
(2) Check whether dleq.Verify(𝜋 𝑗 , 𝑔0, 𝑣 𝑗 , 𝑝𝑘 𝑗 , 𝑐 𝑗 ) = 1 for all 𝑗 .

(3) Output 1 if both checks pass, output 0 otherwise.

Let 𝑇 be the set of valid tuples of the form (𝑠𝑖 , �̃�𝑖 ) where

�̃�𝑖 = dleq.Prove(𝑠𝑘𝑖 , 𝑔1, 𝑝𝑘𝑖 , 𝑠𝑖 , 𝑐𝑖 ) where |𝑇 |= 𝑡 + 1, then

PVSS.Recon({𝑠𝑖 }𝑖∈𝑇 )→ 𝑔𝑠
1

:

(1) Output ∏
𝑖∈𝑇

(𝑠𝑖 )
`𝑖

=

∏
𝑖∈𝑇

𝑔
`𝑖 ·𝑝(𝑖)

1
= 𝑔

𝑝(0)

1
(9)

where `𝑖 =

∏
𝑗 ̸=𝑖

𝑗
𝑗−𝑖 for 𝑖 ∈ 𝑇 are Lagrange coefficients.

Figure 5: Scrape’s PVSS scheme.

as in the following indistinguishability based definition adapted

from [34, 50]:

Definition E.2. (IND1-Secrecy) A (𝑛, ℓ) PVSS is said to be IND1-

secret if for any probabilistic polynomial time adversaryA corrupt-

ing at most ℓ parties, A has negligible advantage in the following

game played against an challenger.

(1) The challenger runs the Setup phase of the PVSS as the dealer

and sends all public information to A. Moreover, it creates

secret and public keys for all honest nodes, and sends the

corresponding public keys to A.

(2) A creates secret keys for the corrupted nodes and sends the

corresponding public keys to the challenger.

(3) The challenger chooses values 𝑠0 and 𝑠1 at random in the

space of secrets. Furthermore it chooses 𝑏 ← {0, 1} uni-
formly at random. It runs the phase of the protocol with 𝑠0

as secret. It sendsA all public information generated in that

phase, together with 𝑠0.

The advantage of A is defined as |Pr[𝑏 = 𝑏 ′] − 1/2|.
17



Theorem E.3. (IND1-Secrecy [21, Theorem 1]) Under the deci-
sional Diffie-Hellman assumption, the PVSS protocol in [21] is IND1-
secret against a static probabilistic polynomial time adversary that
can collude with up to ℓ nodes.
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