
DISTRIBUTION A. Approved for Public Release
Approval ID: 88ABW-2019-5298.

1

Netlist Decompilation Workflow for Recovered

Design Verification, Validation, and Assurance

Katie Liszewski

Cyber Trust & Analytics

Battelle Memorial Institute

Columbus, OH USA

liszewski@battelle.org

Tim McDonley

Cyber Trust & Analytics

Battelle Memorial Institute

Columbus, OH USA

 mcdonley@battelle.org

Josh Delozier

Cyber Trust & Analytics

Battelle Memorial Institute

Columbus, OH USA

 delozier@battelle.org

Andrew Elliott

Cyber Trust & Analytics

Battelle Memorial Institute

Columbus, OH USA

 elliottas@battelle.org

Dylan Jones

Cyber Trust & Analytics

Battelle Memorial Institute

Columbus, OH USA

 jonesdt@battelle.org

 Matt Sutter

Cyber Trust & Analytics

Battelle Memorial Institute

Columbus, OH USA

 sutter@battelle.org

Adam Kimura

Cyber Trust & Analytics

Battelle Memorial Institute

Columbus, OH USA

kimura@battelle.org

I. INTRODUCTION

Over the last few decades, the cost and difficulty of
producing integrated circuits at ever shrinking node sizes has
vastly increased, resulting in the manufacturing sector moving
overseas. Using offshore foundries for chip fabrication,
however, introduces new vulnerabilities into the design flow
since there is little to no observability into the manufacturing
process. At the same time, both design and optimization are
becoming increasingly complex, particularly as SoC designs
gain popularity. Common practices such as porting a design
across node sizes and reusing cores at multiple
area/performance tradeoffs further complicate assurance as
layout specific features impede comparison.

Methods have been developed for conducting integrated
circuit decomposition on fabricated chips [1][2][16] to extract
the as-fabricated design files such as the GDSII layout or gate-
level netlist. While mature netlist equivalency checking tools
are included with any design flow, there is a lack of tools for
performing deeper analyses on the extracted designs for the
purposes of hardware assurance or design recovery from
obsolete parts. To this end, there is a need for a tool to extract
functionality from netlists at a higher abstraction level to
reconstruct behavioral Register Transfer Level (RTL) code.

II. LEVERAGING SOFTWARE DECOMPILATION AS AN ANALOG

TO HARDWARE DECOMPILATION

Software decompilation is a well-established technique that
has been used since the 1960s to recover lost source code, verify
code against design changes produced by the compiler, and
support detection of malicious code. In seeking to recover RTL,
these 80 years of expertise in reconstructing functionality are
invaluable. We introduce the terminology of “hardware
decompilation” and explore where software techniques are
relevant, how existing netlist structure recovery techniques fit
into the decompilation pipeline, and present new techniques
that are unique to hardware decompilation.

The general phases of decompilation and organizational
structure that this paper draws from, as outlined by Cristina

Cifuentes [3], consists of three basic steps. In software
decompilation, a parser lifts or converts low-level code into
language-independent mnemonics called an intermediate
language (IL), while maintaining design hierarchy using
abstract syntax trees (ASTs) or similar hierarchical data
structures. An analysis phase recovers control flow and data or
register groupings by considering the software binary as a
network graph. This phase can be augmented using well-
established graph and information theoretic techniques
including identification of known functions, referred to as
signature identification. The final phase simply compiles the IL
into the language of choice. Figure 1 contrasts the software
decompilation and proposed hardware decompilation flows.

Figure 1. Traditional software decompilation (left) and proposed hardware

decompilation for behavioral recovery of an extracted netlist (right)

mailto:liszewski@battelle.org
mailto:liszewski@battelle.org
mailto:liszewski@battelle.org
mailto:liszewski@battelle.org
mailto:liszewski@battelle.org
mailto:liszewski@battelle.org
mailto:liszewski@battelle.org
mailto:liszewski@battelle.org
mailto:liszewski@battelle.org
mailto:liszewski@battelle.org
mailto:liszewski@battelle.org
mailto:kimura@battelle.org

DISTRIBUTION A. Approved for Public Release
Approval ID: 88ABW-2019-5298.

2

III. NETLIST DECOMPILATION

A. Netlist Preprocessing and Graph Generation

Both hardware and software decompilation begin with a
format that is designed for machine use and not amenable to
human interaction, literal circuitry or bitstreams for ASICs and
FPGAs respectively and machine code for software. The
software workflow starts with recognizing and decoding the
binary file format. This forensics process is akin to decoding a
bitstream into a netlist and has been studied by [13][14] and
others. Recovering a netlist from an ASIC is much more difficult
and error prone as it requires advanced material decomposition
and imaging capabilities [17]. Decompilation aids in verifying a
netlist was accurately recovered by producing a synthesizable,
lintable, and readable end product.

Once a suitable target has been produced, a number of
parsing steps as indicated in Figure 1 are required before an
analysis can be done. The initial parsing stage for netlists is
considerably less difficult than in software. Since machine code
and data are stored together in the same binary format, an
outstanding problem in software is the impossibility of realizing
a parser that can distinguish code from data, particularly for
architectures with arbitrary instruction lengths such as Intel x86.
Netlists, unlike machine code, are typically represented in a
hardware description language (HDL) and can be easily parsed
with a standard HDL parser to produce an AST. Verilator [4]
was chosen to conduct this process since it is open source,
robust, and produces an XML AST while requiring only a small
amount of preprocessing of the netlist.

In both software and hardware, the semantic representation
used to produce an AST should be as language independent as
possible. This is necessary in software decompilation as
assembly languages have idiosyncrasies such as branch delay
slots and seemingly simple instructions such as call (i.e. jump)
which change several registers simultaneously. In fact, it is
common practice for decompilers to have their own intermediate
representation language to further improve syntax analysis in the
conversion from assembly to source code [3]. Netlists suffer
from similar issues in that they contain standard cells or LUTs
and, if recovered directly from a bitstream or a synthesis
byproduct, IP blocks. A further obstacle are primitives which are
defined by directly specifying state transitions; therefore, they
must be abstracted before the analysis can occur. Since most of
a Verilog netlist consists of basic logic, the choice was made to
simply reduce complex statements to simpler Verilog rather than
create an IL.

Two preprocessing steps are required before using Verilator.
First, primitive tables are converted to behavioral code using a
heavily modified version of PyVerilog. This introduces events
and both improves readability and simplifies extraction of data
and control flow during the analysis phase. Second, the netlist
hierarchy is flattened by replacing all submodule instances with
their respective code, replacing IO with the corresponding wires
from the top-level module to reduce the number of unnecessary
variables. Flattening the netlist in this way allows for easier
matching across equivalent designs.

When the source netlist is initially read into the parsing
script, a list of all sub-modules instantiated within the design is
generated. The script then looks for the definitions of these sub-
modules within either the source netlist file, or a helper library
file also provided as an argument to the script. All sub-module
definitions are ultimately appended to a preprocessed version of
the source netlist used in later stages of the parsing workflow.

It may be the case that the top-level module contains
instances of what are known as Verilog user-defined primitives
rather than, or in addition to, modules. While a user-defined
primitive and a module are similar in that both can be viewed as
sub-structures that may be instantiated as part of a top-level
design, they differ in how their behavior is implemented as
Verilog code. User-defined primitive definitions are coded using
Verilog ‘table’ constructs. The table code separates the
primitive’s inputs and outputs on the left and right. Each row of
the table specifies some combination of input values, or edge
transitions. The right side of the table specifies the value or
transition of the output corresponding to those input conditions.
To better illustrate this concept, the simple user-defined
primitive definition of a D Flip Flop is shown in Figure 2. To
get a clear example of how the function of the primitive is
defined in terms of the rows of the table, we can look at the first
row of the table. Under the ‘D’ column we see ‘1’ and under
‘CP’ (the clock signal), we see ‘(01).’ This row therefore
specifies how the output of ‘Q’ transitions under the condition
that the value of ‘D’ is 1 and the clock is making a positive edge
transition. By looking at the right side of the table, we find ‘?’
under the ‘Qt’ column and ‘1’ under the ‘Qt+1’ column. The
entire row can thus be interpreted as specifying that when ‘D=1’
and the clock makes a positive edge transition, the next value of
the output ‘Q’ will be 1 (‘Qt+1 = 1’) regardless of its previous
value (‘Qt = ?’). This is exactly the behavior we would expect
of positive edge triggered D Flip Flop.

Figure 2. D Flip-Flop Primitive Converted to Verilog Module with

Procedural Blocks

A key phase of the preprocessing step involves converting any
user-defined primitives into equivalent module definitions. This
not only regularizes the structure of the XML Syntax Tree, but
also defines the behavior of the primitive making use of

DISTRIBUTION A. Approved for Public Release
Approval ID: 88ABW-2019-5298.

3

procedural always blocks rather than tables. The use of

procedural blocks allows for an easier construction of the
sequential graph of the device later in the workflow. Figure 3
displays a user-defined primitive instance of a purely
combinational 2-to-1 multiplexer that has been converted into
an equivalent module definition. Note that in the case of a purely
combinational primitive design, no procedural blocks are
necessary within the module definition as the device has no edge
sensitivities. Instead, the behavior of the device can be described
using a single continuous assign statement for each output.

Once all sub-modules and user-defined primitives have been
converted and appended to the preprocessed file, a call to
Verilator is made on the preprocessed file to produce the syntax
tree of the Verilog code in XML format. Once the syntax tree
has been created, it is converted into a Python Ordered
Dictionary structure and passed to the flattening script.

Figure 3. 2-to-1 Multiplexer Converted to Module with Single Continuous

Assign Statement

The role of the flattening script is to replace any sub-module
instances within the top-level module with their respective
behavioral code. To do this, the script performs a depth-first
walk of the syntax tree dictionary. When a sub-module instance
is found within a higher-level module, one of two things may
occur. If the submodule instance has itself already been parsed,
the contents of the sub-module definition are copied into the
higher-level module’s syntax tree and all variable names within
the module definition are replaced with the corresponding port
names in the higher-level module. The sub-module instance is
then removed from the syntax tree of the higher-level module. If
the sub-module has not yet been parsed, a recursive call is made
to the parsing function on the sub-module instance. In this way,
the top-level module is recursively flattened from the bottom up.

Two directed graphs are generated from the AST. The first
consists of sequential or blocking operations and corresponds
roughly to the control and data flow graphs for software. The
second is the combinational logic, corresponding to basic blocks
in software. Sequential graphs are useful for bus identification
and hierarchy reconstruction. Combinational graphs provide a
structure for signature comparison. Boolean satisfiability (SAT)
solver-based techniques for signature matching have been
known since the 1980s. Further, apart from asynchronous
designs, all combinational graphs are trees. Tree isomorphisms
are efficient, unlike SAT solvers or loopy graph isomorphisms.
Trees also lend themselves to fuzzy matching algorithms not
available to general graphs.

The sequential graph of the design is formed by adding a
node for each procedural always block found within the

flattened Verilog file. Any nets appearing in the edge condition,
within if conditionals, or appearing on the right side of assign

statements within the always block are considered inputs to

the block. A node is added to the graph for each input pointing
from the input node to the always block node. Alternatively,

any nets assigned a value within the always block (those

appearing on the left side of assign statements) are considered
outputs to the block. A node is added to the graph for each output
pointing from the always block node, to the output node. This

method of constructions is illustrated in Figure 4.

Figure 4. Procedural Always Block Graph Representation

A typical netlist will incorporate possibly thousands of
procedural always blocks. A good method of isolating the

registers of the design is to remove the clock signal from the
generated sequential graph and separate all connected
components. The resulting ‘islands’ seen in the graph
correspond to the different registers in the design. This is
illustrated in the Figure 5. Removing the clock signal can be
done either manually or heuristically. For most sequential
graphs clock, reset, and other global synchronizing events are
very heavily utilized. This flows from the definition of a
sequential graph. A threshold can thus be set for degree of nodes
and all nodes above that degree can be removed. In practice the
gap is so large, a six-sigma threshold is not unreasonable by
default, but this can be arbitrarily adjusted.

Figure 5. Connected Components of the Sequential Graph Representing

Individual Registers

DISTRIBUTION A. Approved for Public Release
Approval ID: 88ABW-2019-5298.

4

Generally, the fan-out of a given connected component
representing an always block will feed into the combinational

logic of the design as an input. Alternatively, the inputs to the
always block feed out of the combinational logic as outputs,

and thus a loop is formed between the combinational logic and
memory portion of the design. Furthermore, considering the
combinational ‘path’ between the fan-in and fan-out of a given
always block provides a potential means of register mapping

between similar designs. The combinational graph of the
design represents all combinational logic in the form of a
directed acyclic tree. The graph is formed by assigning nodes to
all nets, wires, and operators appearing in continuous assign

statements within the flattened Verilog file. An edge is drawn
from any net or wire to the operator which acts upon it.
Similarly, an edge is drawn from any operator to any wire which
has its value assigned the result of the operator acting on other
nets in the design. The combinational graph constructed is
illustrated in the Figure 6 of an OAI22X1 cell which is
comprised of two ORs, one AND, and one NOT operation.

Figure 6. Combinational Graph Representation of OAI22X1

While signature matching of logical structures may be easier in
hardware than in software, registers are one of the most difficult
structures to recover in hardware. Register recovery is akin to
array/struct recovery in software, but unlike an array in software,
which can be inferred by specific events such as a malloc()

or memcmp() subroutine call, registers must be found by

analyzing the netlist graph structure. This work leverages the
RELIC algorithm [5][15] as one method to detect registers.
RELIC assumes a group of flip-flops with similar fan-in
structures are likely to be in the same word of a register, whereas
a group of flip-flops with vastly different fan-in structures are
unlikely to be related. Nodes going out of or into flip-flops
always form roots or leaves respectively in the combinational
graph. Finding fan-in and fan-out then consists of finding all
paths through the tree which connect to these nodes. The RELIC
algorithm approximates graph isomorphism by computing a
fuzzy similarity score between logic structures. By comparing
the similarity of the fan-in structure of every pair of flip-flops in
a netlist, an undirected graph can be created to visualize the
relationships between individual registers. In this similarity
graph, flip-flops in the original netlist are represented as nodes,
with edges between them indicating a similarity score greater
than zero and the edge weight relating to the similarity score.
When low-weighted edges are filtered out, the resulting graph
contains separate connected components, with each connected

component indicating a group of similar flip-flops. Using this
method, RELIC was able to successfully identify all bits of
multi-bit registers in many test cases but returns false positives
or fails to recognize relationships in others.

A more robust register detection method would aggregate
results from multiple algorithms in addition to RELIC to
accurately recover register bit groupings across situations where
a single algorithm would fail to yield useful results. To this end,
other methods of identifying multi-bit dataflow structures are
also being explored, such as identifying counter or multiplexer
structures. Identified word-level structures such as these reveal
information about busses, which can be propagated forward and
backward through the netlist to identify other word-level
structures connected to the identified components. Identifying
busses and word-level objects in a netlist is a crucial step for
converting netlists back into behavioral RTL. It elevates the
conversion process to a higher level of abstraction, with a focus
on identifying word-level operations and data path recovery
rather than identifying single-bit structures floating in a sea of
gates. This makes components of the design more human-
identifiable and is a necessary step for recognition of higher-
level modules and behavior.

Software is delimited by basic blocks. A basic block is a
section of code wherein all instructions are executed
sequentially without repetition or interruption. These can be
identified by looking for instructions which interrupt control
flow. For example, by identifying the setup instructions of a
function, you can identify the beginning of a basic block, as it
would be the target of a call (i.e. jump) instruction. Similarly,
the instructions which terminate a function typically signify the
end of a basic block since the function must return control to
another basic block. Ultimately, identifying these parts allow for
one to identify the basic blocks which are being used to generate
a control-flow graph of the program. The software decompiler
then just needs to use its knowledge of the program structure and
the syntax to generate the higher-level source code.

B. Combinational and Sequential Graph Analyses

Hierarchy and module reconstruction in hardware are a
difficult and subjective problem. Module reconstruction does
not have a good analog in software since hardware lacks the
delineating instructions. To gain some traction, hierarchy
reconstruction in hardware is addressed by computing maximal
directed cycles in the sequential graph, as is done for
reintroducing loops in software. Structures with I/O only
consisting of identified registers or control bits (such as clock
or reset), or that appear repeatedly, are labeled as modules. This
still has limited success for two reasons. First, instances of
modules are not repeated with near the frequency of function
calls in software. Secondly, mining subgraphs is known to be a
nondeterministic polynomial time (i.e. NP-complete) problem.
Fortunately, both the software and hardware community reuse
code heavily. Signature matching or finding smaller known
functions within an unknown code base is computationally

DISTRIBUTION A. Approved for Public Release
Approval ID: 88ABW-2019-5298.

5

much more feasible than directly mining the entire graph for the
unknown codebase.

The application BinDiff [10] is one of many software tools
which provide this functionality. According to [11], BinDiff
works on the abstract structure of an executable, ignoring the
concrete assembly-level instructions in the disassembly. The
structure of the functions and basic blocks (i.e. the features of
the control flow graph) are what is used for analysis. For
example, BinDiff can count the call graph edges, or the number
of calls to get to a function in a binary and compare it with
functions in the other binary to see if any match. By repeating
this procedure on all the functions in the two files, BinDiff gets
a score for how similar the two binaries are overall. Similarly,
netlists are generally a composite of modules with specific
functionality such as adders, timers, and multiplexers. By
employing the same techniques that BinDiff uses, the modules
making up a netlist can be compared with a large set of pre-
analyzed netlists of common hardware components in order to
find a match. The applicability of these algorithms for this task
works well since BinDiff was designed to work on different
architectures and across different compilers with different
optimizations. As such, netlist comparisons must be able to work
with respect to different platforms, implementations, and
manufacturing intricacies. Potential module matches identified
through subgraph matching can be confirmed using a SAT
solver. The AST of the design is walked through to produce a
set of Boolean logic equations that define the combinational
logic for the design. These equations are formatted for the
Python Z3 API and stored in a file. Z3 files for database entries
are stored and are later used to assist in signature matching. The
file contains logic that defines the combinational relationship
between inputs and outputs. It will also include internal wires
defined in the flattened Verilog file. Figure 7 presents a flow
diagram that illustrates the full logic flow comparison. In
instances where these wires are not needed, the equation set can
be reduced using a composition of the corresponding Boolean
logic equations. Control functions of the logic equation data
structure provide a means to perform operations on the structure.
A list of a possible links between inputs and outputs in the two

graphs can be generated. These sets are then used to generate
code to run those pairing assertions in Z3.

Components and modules that comprise a larger design can
be identified through signature matching. In this case,
combinational subgraphs of interest from the larger design can
be used to produce a bounding set on the search space. This
aligns itself well with the overall task of extracting RTL
components while also helping limit scalability issues in designs
with many nodes. Once a subgraph has been identified, its Z3
file is used to populate the logic data structure with the
corresponding equations. From there, the Z3 files from the
database are read into a separate logic data structure. Data
structure utilities also allow for the generation of a set of all
partially composed equation from the original set to be produced
that match the input and output structure of the signature match
candidate. This allows for some flexibility if the subgraph has
additional or missing nodes that might cause a failure to match.

C. Module Recovery and Generation of RTL

Modules are loaded into a LEC script that populates a data
structure with the logic equations. The equations are stored and
referenced by a key value corresponding to their node in the
graph. The terms in the equation are replaced with dummy
variables and a list is created to maintain a link between the
dummy variables and the term names in the design. Figure 8
shows the extracted logic and how it is represented in the logic
database.

Figure 8. The extracted logic (top) and the structural representation in the

logic database (bottom)

Figure 7. Logic Comparison Flow

DISTRIBUTION A. Approved for Public Release
Approval ID: 88ABW-2019-5298.

6

The first pass will attempt to identify any equations defining an
input-output relationship with the same structure between the
design and the database module. The equations in the data
structures are filled with dummy variables and compared against
the equations from the database module. The equations are
compared by a generated set of Z3 assertions and executing Z3
files during run time. In this first past, each test is done
individually without knowledge of previous test assertions or
matches. If a match is found, the equations are linked in a list,
the relationship of input wires between the database graph and
subgraph are stored, and the corresponding node names for the
terms are linked. The process will continue and any further
matches will also be added to the list. At the end of the first pass,
the control function will be handed back a list of possible match
candidates. Many of these matches will contain large numbers
of candidates due to the common occurrence of equations
relating to single gate structures. In the next phase, the control
code will identify any one-to-one match, link those nodes from
the design to the database module, and further limit the search
space. The control code will move progressively through the list
from small matching sets to larger sets. At each step, a system
of the matching sets will be used to try to further reduce the
search space. If a pairing between inputs produces a match for
the logic of two outputs, that pairing is then used as a candidate
for matching other outputs. Input pairings are scored based on
the number of output matches they are able to produce. An exact
match for all outputs, given an input pairing, would yield a
signature match for the module and the subgraph could be
replaced with the database module. Partial matches are also
useful in pointing to the need to redefine the subgraph or
spotting modules in the design that contain small alterations that
should be checked.

IV. EXPERIMENTAL RESULTS

A. Data Acquisition and Benchmarking

Several test articles were developed to use in experiments for
collecting empirical data. Python scripts for generating the
sequential graphs were run on a Serial Peripheral Interface (SPI)
netlist that was extracted from a fabricated layout [16]. The SPI
consisted of roughly 400 cells, including 63 flip flops. The graph
was generated in 9.13 seconds on an Ubuntu 18.03 virtual
machine run on a host computer with an Intel Core i5-835U CPU
running at 1.7 GHz. The graph contained 806 nodes and edges
and revealed the flip flop structures of the extracted netlist.
Signature matching was done with the Python Z3 API for exact
matches and Levenshtein Distance for fuzzy matching due to
convenience of implementation [6].

This framework also makes comparative validation easier.
To this end, sequential and combinational graphs were
constructed for a floating-point unit (FPU) golden test article
along with the same FPU design with inserted malicious
circuitry. The inserted circuitry was designed to break the
multiplication design pipeline after a specific clock cycle count.
Differences between the two graphs were extreme as shown in
Figure 9. The graphs are analyzed based on degree (i.e. the
number of nodes/edges connected to the node being analyzed.)
The original design on the left is dominated by the clock signal
which has degree 1384 in the sequential graph and the inverted

reset in the combinational graph with degree 537. All flip-flops
also are identical and contain 7 nodes. However, the design
containing the malicious insertion on the right has a
combinational graph with 13 nodes of degree between 46 and
86 including reset and a sequential graph with 6 nodes of degree
between 170 and 174.

Figure 9. Sequential graphs of the golden FPU (left) and FPU with

malicious insertion (right). The additional nodes are red.

One notable observation was the single flip-flop with 8 nodes,
the extra being the reset. Upon deeper inspection, this is a
differential flip-flop which asserts reset on an event. While the
event is not trivial to recover with the current maturity of the
toolset, this behavior is indicative of a denial-of-service-like
Trojan that would reset the FPU.

In order to obtain metrics for real world devices with
different sized netlists, the workflow was completed for a SPI
module, a floating-point unit, floating-point processor, and
AES core. The results of these runs are displayed in Table I.
The metrics help to assess the scalability of workflow over
larger netlists as a design grows in complexity. The tests were
run on the same Ubuntu 18.03 virtual machine from the host
computer with an Intel Core i5-835U CPU running at 1.7 GHz.

TABLE I. PARSING SCRIPT PERFORMANCE METRICS

TEST ARTICLE DESIGN BENCHMARKS

SPI

Interface

(small)

FPU

(medium)

Processor

(large)

AES Core

(very large)

Preprocessing
Time

0.0692s 1.3585s 3.248s 10.1s

Flattening Time 0.6463s 27.7335s 304.4473s 930.345s

Graph

Generation Time
0.3065s 2.0682s 16.1446s 98.56s

Z3 Equation
Generation Time

0.0067s 2.0969s 9.2735s 15.645s

Total Execution

Time
1.1276s 34.1421s 334.0910s 1054.65s

Combinational
Nodes

1,156 35,819 84,429 235,678

Combinational

Edges
1,316 47,634 111,434 345,543

Sequential Nodes 2,420 6,229 27,519 67,786

Sequential Edges 4,278 8,996 39,663 89,864

DISTRIBUTION A. Approved for Public Release
Approval ID: 88ABW-2019-5298.

7

B. Mapping Non-database Modules to Known Database

Structures

An 8-bit counter was compared to a 4-bit toggle flip-flop counter
within the database. The Verilog files for the designs are shown
in Figure 10. Once the 8-bit counter was put through the
workflow, the Z3 files were created and compared to the
database entry Z3 file of the 4-bit counter. A matching subgraph
was determined for the lower 4 bits of the 8-bit counter. From
there, the modules were loaded into the LEC script. Figure 11
presents the database counter and subgraph after having
populated the logic data structure. From here the control code
will search for logically equivalent equation structures using
dummy variables. The control code will pass parameters to the
code generator to develop Z3 tests. If the tests show that the
equations are never different, a match is made. One iteration of
this is shown below. Once the process is complete, a list of
matches is returned along with an output of any one-to-one
matched equations.

Figure 10. 4-bit counter module (top) from database and the 8-bit design

match target (bottom).

Figure 11. Subgraph output logic (top) and database module logic(bottom)

as stored in logic data structure.

Figure 12. Example of a Z3 assertion set (top). After all test vectors have

completed the set of match candidates is returned (bottom).

V. CONCLUSION

In this paper, a workflow for decompilation of a gate-level
netlist into a human readable RTL Verilog file was presented.
Software decompilation methodologies were leveraged and
enabled this process although techniques and the challenges
vary between software and hardware. The well-established
software decompilation process is ripe with further techniques
which can be added to this workflow in future research.

ACKNOWLEDGMENT

All of the research presented in this paper was funded by
Wright-Patterson Air Force Research Lab in Dayton, OH.

REFERENCES

[1] Quijada, R., Dura, R., Pallares, J. et al. J Hardw Syst Secur (2018) 2:
322. https://doi.org/10.1007/s41635-018-0051-4

[2] Kimura, A., Scholl, J., Schaffranek, J., Sutter, M., Elliott, A., Strizich,
M., Via, G., Journal of Hardware and Systems Security (2019)

[3] C. Cifuentes, “Reverse Compilation Techniques,” Phd diss. Queensland
University of Technology, 1994.

[4] Verilator. (4.000, 2018), Wilson Snyder. Available:
https://www.veripool.org/wiki/verilator

[5] T. Meade, J. Yier, M. Tehranipoor, S. Zhang. "Gate-level Netlist
Reverse Engineering for Hardware Security: Control Logic Register
Identification", ISCAS, pp. 1334-1337, 2016.

[6] Z3. (4.8.7), N. Bjorner, L. de Moura, L. Nachmanson, C. Wintersteiger.
Microsoft Research. Available: https://github.com/Z3Prover/z3/

[7] Ilfak Guilfanov, “Decompilers and beyond.” Hex-Rays .com. Hex-Rays
SA, 2008. 10 Oct. 2019 https://www.hex-
rays.com/products/ida/support/ppt/decompilers_and_beyond_white_pap
er.pdf

[8] https://www.program-
transformation.org/Transform/DecompilationProcess

[9] Ilfak Guilfanov. “Decompiler internals: microcode.” RECON 2018.
Brussels, Belgium. http://www.hex-
rays.com/products/ida/support/ppt/recon2018.ppt.

[10] zynamics. “BinDiff.” www.zynamics.com/bindiff.

[11] zynamics. “BinDiff Manual.”
www.zynamics.com/bindiff/manual/index.html#chapUnderstanding.

[12] J. Koret. “Diaphora.” https://diaphora.re.

https://www.veripool.org/wiki/verilator
https://github.com/Z3Prover/z3/
https://www.hex-rays.com/products/ida/support/ppt/decompilers_and_beyond_white_paper.pdf
https://www.hex-rays.com/products/ida/support/ppt/decompilers_and_beyond_white_paper.pdf
https://www.hex-rays.com/products/ida/support/ppt/decompilers_and_beyond_white_paper.pdf
https://www.program-transformation.org/Transform/DecompilationProcess
https://www.program-transformation.org/Transform/DecompilationProcess
http://www.hex-rays.com/products/ida/support/ppt/recon2018.ppt
http://www.hex-rays.com/products/ida/support/ppt/recon2018.ppt
http://www.zynamics.com/bindiff
https://diaphora.re/

DISTRIBUTION A. Approved for Public Release
Approval ID: 88ABW-2019-5298.

8

[13] Benz, F., Seffrin, A., Huss S., BIL:A tool-Chain for Bitstream Reverse-
Engineering, IEEE, 978-1-4673-2256-0/12, 2012.

[14] Geraf, J., Harper, S., Lerner, L., Ensuring Design Integrity through
Analysis of FPGA Bitstreams and IP Cores, International Conference on
Reconfigurable Systems and Algorithms, 2012.

[15] Brunner, M., Baehr, J., Sigl, G., Improving on State Register
Identification in Sequential Hardware Reverse Engineering, IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST), 978-1-5386-8064-3/19, 2019.

[16] A. Kimura, A. Waite, J. Scholl, J. Schaffranek, G. D. Via, “From Silicon
to Simulation: A Full Decomposition of a Fabricated 130 nm Serial

Peripheral Interface for Establishing an Assurance Baseline Root-of-
Trust”, Physical Assurance and Inspection of Electronics (PAINE),
December 2020.

[17] A. Kimura, A. Waite, J. Scholl, G. Via, “Applied Failure Analysis Tools
and Techniques Towards Integrated Circuit Trust and Assurance”, ASM
International, Electronic Device Failure Analysis, Volume 23 No.1, 2020.

