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I. INTRODUCTION 

Over the last few decades, the cost and difficulty of 
producing integrated circuits at ever shrinking node sizes has 
vastly increased, resulting in the manufacturing sector moving 
overseas. Using offshore foundries for chip fabrication, 
however, introduces new vulnerabilities into the design flow 
since there is little to no observability into the manufacturing 
process. At the same time, both design and optimization are 
becoming increasingly complex, particularly as SoC designs 
gain popularity. Common practices such as porting a design 
across node sizes and reusing cores at multiple 
area/performance tradeoffs further complicate assurance as 
layout specific features impede comparison. 

Methods have been developed for conducting integrated 
circuit decomposition on fabricated chips [1][2][16] to extract 
the as-fabricated design files such as the GDSII layout or gate-
level netlist.  While mature netlist equivalency checking tools 
are included with any design flow, there is a lack of tools for 
performing deeper analyses on the extracted designs for the 
purposes of hardware assurance or design recovery from 
obsolete parts.  To this end, there is a need for a tool to extract 
functionality from netlists at a higher abstraction level to 
reconstruct behavioral Register Transfer Level (RTL) code.  

II. LEVERAGING SOFTWARE DECOMPILATION AS AN ANALOG 

TO HARDWARE DECOMPILATION 

Software decompilation is a well-established technique that 
has been used since the 1960s to recover lost source code, verify 
code against design changes produced by the compiler, and 
support detection of malicious code. In seeking to recover RTL, 
these 80 years of expertise in reconstructing functionality are 
invaluable. We introduce the terminology of “hardware 
decompilation” and explore where software techniques are 
relevant, how existing netlist structure recovery techniques fit 
into the decompilation pipeline, and present new techniques 
that are unique to hardware decompilation. 

The general phases of decompilation and organizational 
structure that this paper draws from, as outlined by Cristina 

Cifuentes [3], consists of three basic steps. In software 
decompilation, a parser lifts or converts low-level code into 
language-independent mnemonics called an intermediate 
language (IL), while maintaining design hierarchy using 
abstract syntax trees (ASTs) or similar hierarchical data 
structures. An analysis phase recovers control flow and data or 
register groupings by considering the software binary as a 
network graph. This phase can be augmented using well-
established graph and information theoretic techniques 
including identification of known functions, referred to as 
signature identification. The final phase simply compiles the IL 
into the language of choice. Figure 1 contrasts the software 
decompilation and proposed hardware decompilation flows.  

 

Figure 1. Traditional software decompilation (left) and proposed hardware 

decompilation for behavioral recovery of an extracted netlist (right) 
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III. NETLIST DECOMPILATION 

A. Netlist Preprocessing and Graph Generation 

Both hardware and software decompilation begin with a 
format that is designed for machine use and not amenable to 
human interaction, literal circuitry or bitstreams for ASICs and 
FPGAs respectively and machine code for software. The 
software workflow starts with recognizing and decoding the 
binary file format.  This forensics process is akin to decoding a 
bitstream into a netlist and has been studied by [13][14] and 
others. Recovering a netlist from an ASIC is much more difficult 
and error prone as it requires advanced material decomposition 
and imaging capabilities [17]. Decompilation aids in verifying a 
netlist was accurately recovered by producing a synthesizable, 
lintable, and readable end product. 

Once a suitable target has been produced, a number of 
parsing steps as indicated in Figure 1 are required before an 
analysis can be done. The initial parsing stage for netlists is 
considerably less difficult than in software.  Since machine code 
and data are stored together in the same binary format, an 
outstanding problem in software is the impossibility of realizing 
a parser that can distinguish code from data, particularly for 
architectures with arbitrary instruction lengths such as Intel x86. 
Netlists, unlike machine code, are typically represented in a 
hardware description language (HDL) and can be easily parsed 
with a standard HDL parser to produce an AST.  Verilator [4] 
was chosen to conduct this process since it is open source, 
robust, and produces an XML AST while requiring only a small 
amount of preprocessing of the netlist. 

In both software and hardware, the semantic representation 
used to produce an AST should be as language independent as 
possible. This is necessary in software decompilation as 
assembly languages have idiosyncrasies such as branch delay 
slots and seemingly simple instructions such as call (i.e. jump) 
which change several registers simultaneously. In fact, it is 
common practice for decompilers to have their own intermediate 
representation language to further improve syntax analysis in the 
conversion from assembly to source code [3]. Netlists suffer 
from similar issues in that they contain standard cells or LUTs 
and, if recovered directly from a bitstream or a synthesis 
byproduct, IP blocks. A further obstacle are primitives which are 
defined by directly specifying state transitions; therefore, they  
must be abstracted before the analysis can occur. Since most of 
a Verilog netlist consists of basic logic, the choice was made to 
simply reduce complex statements to simpler Verilog rather than 
create an IL. 

Two preprocessing steps are required before using Verilator. 
First, primitive tables are converted to behavioral code using a 
heavily modified version of PyVerilog. This introduces events 
and both improves readability and simplifies extraction of data 
and control flow during the analysis phase. Second, the netlist 
hierarchy is flattened by replacing all submodule instances with 
their respective code, replacing IO with the corresponding wires 
from the top-level module to reduce the number of unnecessary 
variables. Flattening the netlist in this way allows for easier 
matching across equivalent designs. 

When the source netlist is initially read into the parsing 
script, a list of all sub-modules instantiated within the design is 
generated. The script then looks for the definitions of these sub-
modules within either the source netlist file, or a helper library 
file also provided as an argument to the script. All sub-module 
definitions are ultimately appended to a preprocessed version of 
the source netlist used in later stages of the parsing workflow. 

It may be the case that the top-level module contains 
instances of what are known as Verilog user-defined primitives 
rather than, or in addition to, modules. While a user-defined 
primitive and a module are similar in that both can be viewed as 
sub-structures that may be instantiated as part of a top-level 
design, they differ in how their behavior is implemented as 
Verilog code. User-defined primitive definitions are coded using 
Verilog ‘table’ constructs. The table code separates the 
primitive’s inputs and outputs on the left and right. Each row of 
the table specifies some combination of input values, or edge 
transitions. The right side of the table specifies the value or 
transition of the output corresponding to those input conditions. 
To better illustrate this concept, the simple user-defined 
primitive definition of a D Flip Flop is shown in Figure 2. To 
get a clear example of how the function of the primitive is 
defined in terms of the rows of the table, we can look at the first 
row of the table. Under the ‘D’ column we see ‘1’ and under 
‘CP’ (the clock signal), we see ‘(01).’ This row therefore 
specifies how the output of ‘Q’ transitions under the condition 
that the value of ‘D’ is 1 and the clock is making a positive edge 
transition. By looking at the right side of the table, we find ‘?’ 
under the ‘Qt’ column and ‘1’ under the ‘Qt+1’ column. The 
entire row can thus be interpreted as specifying that when ‘D=1’ 
and the clock makes a positive edge transition, the next value of 
the output ‘Q’ will be 1 (‘Qt+1 = 1’) regardless of its previous 
value (‘Qt = ?’). This is exactly the behavior we would expect 
of positive edge triggered D Flip Flop. 

 

Figure 2. D Flip-Flop Primitive Converted to Verilog Module with 

Procedural Blocks 

A key phase of the preprocessing step involves converting any 
user-defined primitives into equivalent module definitions. This 
not only regularizes the structure of the XML Syntax Tree, but 
also defines the behavior of the primitive making use of 
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procedural always blocks rather than tables. The use of 

procedural blocks allows for an easier construction of the 
sequential graph of the device later in the workflow. Figure 3 
displays a user-defined primitive instance of a purely 
combinational 2-to-1 multiplexer that has been converted into 
an equivalent module definition. Note that in the case of a purely 
combinational primitive design, no procedural blocks are 
necessary within the module definition as the device has no edge 
sensitivities. Instead, the behavior of the device can be described 
using a single continuous assign statement for each output. 

Once all sub-modules and user-defined primitives have been 
converted and appended to the preprocessed file, a call to 
Verilator is made on the preprocessed file to produce the syntax 
tree of the Verilog code in XML format. Once the syntax tree 
has been created, it is converted into a Python Ordered 
Dictionary structure and passed to the flattening script. 

 

Figure 3. 2-to-1 Multiplexer Converted to Module with Single Continuous 

Assign Statement 

The role of the flattening script is to replace any sub-module 
instances within the top-level module with their respective 
behavioral code. To do this, the script performs a depth-first 
walk of the syntax tree dictionary. When a sub-module instance 
is found within a higher-level module, one of two things may 
occur. If the submodule instance has itself already been parsed, 
the contents of the sub-module definition are copied into the 
higher-level module’s syntax tree and all variable names within 
the module definition are replaced with the corresponding port 
names in the higher-level module. The sub-module instance is 
then removed from the syntax tree of the higher-level module. If 
the sub-module has not yet been parsed, a recursive call is made 
to the parsing function on the sub-module instance. In this way, 
the top-level module is recursively flattened from the bottom up.  

Two directed graphs are generated from the AST. The first 
consists of sequential or blocking operations and corresponds 
roughly to the control and data flow graphs for software. The 
second is the combinational logic, corresponding to basic blocks 
in software. Sequential graphs are useful for bus identification 
and hierarchy reconstruction. Combinational graphs provide a 
structure for signature comparison.  Boolean satisfiability (SAT) 
solver-based techniques for signature matching have been 
known since the 1980s. Further, apart from asynchronous 
designs, all combinational graphs are trees. Tree isomorphisms 
are efficient, unlike SAT solvers or loopy graph isomorphisms. 
Trees also lend themselves to fuzzy matching algorithms not 
available to general graphs. 

The sequential graph of the design is formed by adding a 
node for each procedural always block found within the 

flattened Verilog file. Any nets appearing in the edge condition, 
within if conditionals, or appearing on the right side of assign 

statements within the always block are considered inputs to 

the block. A node is added to the graph for each input pointing 
from the input node to the always block node. Alternatively, 

any nets assigned a value within the always block (those 

appearing on the left side of assign statements) are considered 
outputs to the block. A node is added to the graph for each output 
pointing from the always block node, to the output node. This 

method of constructions is illustrated in Figure 4. 

 

Figure 4. Procedural Always Block Graph Representation 

A typical netlist will incorporate possibly thousands of 
procedural always blocks. A good method of isolating the 

registers of the design is to remove the clock signal from the 
generated sequential graph and separate all connected 
components. The resulting ‘islands’ seen in the graph 
correspond to the different registers in the design. This is 
illustrated in the Figure 5. Removing the clock signal can be 
done either manually or heuristically. For most sequential 
graphs clock, reset, and other global synchronizing events are 
very heavily utilized. This flows from the definition of a 
sequential graph. A threshold can thus be set for degree of nodes 
and all nodes above that degree can be removed. In practice the 
gap is so large, a six-sigma threshold is not unreasonable by 
default, but this can be arbitrarily adjusted. 

 

Figure 5. Connected Components of the Sequential Graph Representing 

Individual Registers 
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Generally, the fan-out of a given connected component 
representing an always block will feed into the combinational 

logic of the design as an input. Alternatively, the inputs to the 
always block feed out of the combinational logic as outputs, 

and thus a loop is formed between the combinational logic and 
memory portion of the design. Furthermore, considering the 
combinational ‘path’ between the fan-in and fan-out of a given 
always block provides a potential means of register mapping 

between similar designs.  The combinational graph of the 
design represents all combinational logic in the form of a 
directed acyclic tree. The graph is formed by assigning nodes to 
all nets, wires, and operators appearing in continuous assign 

statements within the flattened Verilog file. An edge is drawn 
from any net or wire to the operator which acts upon it. 
Similarly, an edge is drawn from any operator to any wire which 
has its value assigned the result of the operator acting on other 
nets in the design. The combinational graph constructed is 
illustrated in the Figure 6 of an OAI22X1 cell which is 
comprised of two ORs, one AND, and one NOT operation. 

 

Figure 6. Combinational Graph Representation of OAI22X1 

While signature matching of logical structures may be easier in 
hardware than in software, registers are one of the most difficult 
structures to recover in hardware. Register recovery is akin to 
array/struct recovery in software, but unlike an array in software, 
which can be inferred by specific events such as a malloc() 

or memcmp() subroutine call, registers must be found by 

analyzing the netlist graph structure. This work leverages the 
RELIC algorithm [5][15] as one method to detect registers. 
RELIC assumes a group of flip-flops with similar fan-in 
structures are likely to be in the same word of a register, whereas 
a group of flip-flops with vastly different fan-in structures are 
unlikely to be related. Nodes going out of or into flip-flops 
always form roots or leaves respectively in the combinational 
graph. Finding fan-in and fan-out then consists of finding all 
paths through the tree which connect to these nodes. The RELIC 
algorithm approximates graph isomorphism by computing a 
fuzzy similarity score between logic structures. By comparing 
the similarity of the fan-in structure of every pair of flip-flops in 
a netlist, an undirected graph can be created to visualize the 
relationships between individual registers. In this similarity 
graph, flip-flops in the original netlist are represented as nodes, 
with edges between them indicating a similarity score greater 
than zero and the edge weight relating to the similarity score. 
When low-weighted edges are filtered out, the resulting graph 
contains separate connected components, with each connected 

component indicating a group of similar flip-flops. Using this 
method, RELIC was able to successfully identify all bits of 
multi-bit registers in many test cases but returns false positives 
or fails to recognize relationships in others. 

A more robust register detection method would aggregate 
results from multiple algorithms in addition to RELIC to 
accurately recover register bit groupings across situations where 
a single algorithm would fail to yield useful results. To this end, 
other methods of identifying multi-bit dataflow structures are 
also being explored, such as identifying counter or multiplexer 
structures. Identified word-level structures such as these reveal 
information about busses, which can be propagated forward and 
backward through the netlist to identify other word-level 
structures connected to the identified components. Identifying 
busses and word-level objects in a netlist is a crucial step for 
converting netlists back into behavioral RTL. It elevates the 
conversion process to a higher level of abstraction, with a focus 
on identifying word-level operations and data path recovery 
rather than identifying single-bit structures floating in a sea of 
gates. This makes components of the design more human-
identifiable and is a necessary step for recognition of higher-
level modules and behavior. 

Software is delimited by basic blocks. A basic block is a 
section of code wherein all instructions are executed 
sequentially without repetition or interruption. These can be 
identified by looking for instructions which interrupt control 
flow. For example, by identifying the setup instructions of a 
function, you can identify the beginning of a basic block, as it 
would be the target of a call (i.e. jump) instruction. Similarly, 
the instructions which terminate a function typically signify the 
end of a basic block since the function must return control to 
another basic block. Ultimately, identifying these parts allow for 
one to identify the basic blocks which are being used to generate 
a control-flow graph of the program. The software decompiler 
then just needs to use its knowledge of the program structure and 
the syntax to generate the higher-level source code.  

B. Combinational and Sequential Graph Analyses 

Hierarchy and module reconstruction in hardware are a 
difficult and subjective problem.  Module reconstruction does 
not have a good analog in software since hardware lacks the 
delineating instructions. To gain some traction, hierarchy 
reconstruction in hardware is addressed by computing maximal 
directed cycles in the sequential graph, as is done for 
reintroducing loops in software. Structures with I/O only 
consisting of identified registers or control bits (such as clock 
or reset), or that appear repeatedly, are labeled as modules. This 
still has limited success for two reasons. First, instances of 
modules are not repeated with near the frequency of function 
calls in software. Secondly, mining subgraphs is known to be a 
nondeterministic polynomial time (i.e. NP-complete) problem. 
Fortunately, both the software and hardware community reuse 
code heavily. Signature matching or finding smaller known 
functions within an unknown code base is computationally 
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much more feasible than directly mining the entire graph for the 
unknown codebase. 

The application BinDiff [10] is one of many software tools 
which provide this functionality. According to [11], BinDiff 
works on the abstract structure of an executable, ignoring the 
concrete assembly-level instructions in the disassembly. The 
structure of the functions and basic blocks (i.e. the features of 
the control flow graph) are what is used for analysis. For 
example, BinDiff can count the call graph edges, or the number 
of calls to get to a function in a binary and compare it with 
functions in the other binary to see if any match. By repeating 
this procedure on all the functions in the two files, BinDiff gets 
a score for how similar the two binaries are overall. Similarly, 
netlists are generally a composite of modules with specific 
functionality such as adders, timers, and multiplexers. By 
employing the same techniques that BinDiff uses, the modules 
making up a netlist can be compared with a large set of pre-
analyzed netlists of common hardware components in order to 
find a match. The applicability of these algorithms for this task 
works well since BinDiff was designed to work on different 
architectures and across different compilers with different 
optimizations. As such, netlist comparisons must be able to work 
with respect to different platforms, implementations, and 
manufacturing intricacies. Potential module matches identified 
through subgraph matching can be confirmed using a SAT 
solver. The AST of the design is walked through to produce a 
set of Boolean logic equations that define the combinational 
logic for the design. These equations are formatted for the 
Python Z3 API and stored in a file. Z3 files for database entries 
are stored and are later used to assist in signature matching. The 
file contains logic that defines the combinational relationship 
between inputs and outputs. It will also include internal wires 
defined in the flattened Verilog file. Figure 7 presents a flow 
diagram that illustrates the full logic flow comparison.  In 
instances where these wires are not needed, the equation set can 
be reduced using a composition of the corresponding Boolean 
logic equations. Control functions of the logic equation data 
structure provide a means to perform operations on the structure. 
A list of a possible links between inputs and outputs in the two 

graphs can be generated. These sets are then used to generate 
code to run those pairing assertions in Z3.  

Components and modules that comprise a larger design can 
be identified through signature matching. In this case, 
combinational subgraphs of interest from the larger design can 
be used to produce a bounding set on the search space. This 
aligns itself well with the overall task of extracting RTL 
components while also helping limit scalability issues in designs 
with many nodes. Once a subgraph has been identified, its Z3 
file is used to populate the logic data structure with the 
corresponding equations. From there, the Z3 files from the 
database are read into a separate logic data structure. Data 
structure utilities also allow for the generation of a set of all 
partially composed equation from the original set to be produced 
that match the input and output structure of the signature match 
candidate. This allows for some flexibility if the subgraph has 
additional or missing nodes that might cause a failure to match.  

C. Module Recovery and Generation of RTL 

Modules are loaded into a LEC script that populates a data 
structure with the logic equations. The equations are stored and 
referenced by a key value corresponding to their node in the 
graph. The terms in the equation are replaced with dummy 
variables and a list is created to maintain a link between the 
dummy variables and the term names in the design.  Figure 8 
shows the extracted logic and how it is represented in the logic 
database. 

 

 

Figure 8. The extracted logic (top) and the structural representation in the 

logic database (bottom) 

Figure 7. Logic Comparison Flow 
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The first pass will attempt to identify any equations defining an 
input-output relationship with the same structure between the 
design and the database module. The equations in the data 
structures are filled with dummy variables and compared against 
the equations from the database module. The equations are 
compared by a generated set of Z3 assertions and executing Z3 
files during run time. In this first past, each test is done 
individually without knowledge of previous test assertions or 
matches. If a match is found, the equations are linked in a list, 
the relationship of input wires between the database graph and 
subgraph are stored, and the corresponding node names for the 
terms are linked. The process will continue and any further 
matches will also be added to the list. At the end of the first pass, 
the control function will be handed back a list of possible match 
candidates. Many of these matches will contain large numbers 
of candidates due to the common occurrence of equations 
relating to single gate structures. In the next phase, the control 
code will identify any one-to-one match, link those nodes from 
the design to the database module, and further limit the search 
space. The control code will move progressively through the list 
from small matching sets to larger sets. At each step, a system 
of the matching sets will be used to try to further reduce the 
search space. If a pairing between inputs produces a match for 
the logic of two outputs, that pairing is then used as a candidate 
for matching other outputs. Input pairings are scored based on 
the number of output matches they are able to produce. An exact 
match for all outputs, given an input pairing, would yield a 
signature match for the module and the subgraph could be 
replaced with the database module. Partial matches are also 
useful in pointing to the need to redefine the subgraph or 
spotting modules in the design that contain small alterations that 
should be checked.   

IV. EXPERIMENTAL RESULTS 

A. Data Acquisition and Benchmarking 

Several test articles were developed to use in experiments for 
collecting empirical data.  Python scripts for generating the 
sequential graphs were run on a Serial Peripheral Interface (SPI) 
netlist that was extracted from a fabricated layout [16]. The SPI 
consisted of roughly 400 cells, including 63 flip flops. The graph 
was generated in 9.13 seconds on an Ubuntu 18.03 virtual 
machine run on a host computer with an Intel Core i5-835U CPU 
running at 1.7 GHz. The graph contained 806 nodes and edges 
and revealed the flip flop structures of the extracted netlist.  
Signature matching was done with the Python Z3 API for exact 
matches and Levenshtein Distance for fuzzy matching due to 
convenience of implementation [6]. 

This framework also makes comparative validation easier.  
To this end, sequential and combinational graphs were 
constructed for a floating-point unit (FPU) golden test article 
along with the same FPU design with inserted malicious 
circuitry. The inserted circuitry was designed to break the 
multiplication design pipeline after a specific clock cycle count. 
Differences between the two graphs were extreme as shown in 
Figure 9. The graphs are analyzed based on degree (i.e. the 
number of nodes/edges connected to the node being analyzed.)  
The original design on the left is dominated by the clock signal 
which has degree 1384 in the sequential graph and the inverted 

reset in the combinational graph with degree 537. All flip-flops 
also are identical and contain 7 nodes. However, the design 
containing the malicious insertion on the right has a 
combinational graph with 13 nodes of degree between 46 and 
86 including reset and a sequential graph with 6 nodes of degree 
between 170 and 174.  

 

Figure 9. Sequential graphs of the golden FPU (left) and FPU with 

malicious insertion (right).  The additional nodes are red. 

One notable observation was the single flip-flop with 8 nodes, 
the extra being the reset. Upon deeper inspection, this is a 
differential flip-flop which asserts reset on an event. While the 
event is not trivial to recover with the current maturity of the 
toolset, this behavior is indicative of a denial-of-service-like 
Trojan that would reset the FPU. 

In order to obtain metrics for real world devices with 
different sized netlists, the workflow was completed for a SPI 
module, a floating-point unit, floating-point processor, and 
AES core. The results of these runs are displayed in Table I. 
The metrics help to assess the scalability of workflow over 
larger netlists as a design grows in complexity. The tests were 
run on the same Ubuntu 18.03 virtual machine from the host 
computer with an Intel Core i5-835U CPU running at 1.7 GHz. 

TABLE I.  PARSING SCRIPT PERFORMANCE METRICS 

 

TEST ARTICLE DESIGN BENCHMARKS 

SPI 

Interface 

(small) 

FPU 

(medium) 

Processor 

(large) 

AES Core 

(very large) 

Preprocessing 
Time 

0.0692s 1.3585s 3.248s 10.1s 

Flattening Time 0.6463s 27.7335s 304.4473s 930.345s 

Graph 

Generation Time 
0.3065s 2.0682s 16.1446s 98.56s 

Z3 Equation 
Generation Time 

0.0067s 2.0969s 9.2735s 15.645s 

Total Execution 

Time 
1.1276s 34.1421s 334.0910s 1054.65s 

Combinational 
Nodes 

1,156 35,819 84,429 235,678 

Combinational 

Edges 
1,316 47,634 111,434 345,543 

Sequential Nodes 2,420 6,229 27,519 67,786 

Sequential Edges 4,278 8,996 39,663 89,864 
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B. Mapping Non-database Modules to Known Database 

Structures 

An 8-bit counter was compared to a 4-bit toggle flip-flop counter 
within the database. The Verilog files for the designs are shown 
in Figure 10. Once the 8-bit counter was put through the 
workflow, the Z3 files were created and compared to the 
database entry Z3 file of the 4-bit counter. A matching subgraph 
was determined for the lower 4 bits of the 8-bit counter. From 
there, the modules were loaded into the LEC script. Figure 11 
presents the database counter and subgraph after having 
populated the logic data structure. From here the control code 
will search for logically equivalent equation structures using 
dummy variables. The control code will pass parameters to the 
code generator to develop Z3 tests. If the tests show that the 
equations are never different, a match is made. One iteration of 
this is shown below. Once the process is complete, a list of 
matches is returned along with an output of any one-to-one 
matched equations. 

 

 

Figure 10. 4-bit counter module (top) from database and the 8-bit design 

match target (bottom). 

 

 

Figure 11. Subgraph output logic (top) and database module logic(bottom) 

as stored in logic data structure. 

 

 

Figure 12. Example of a Z3 assertion set (top). After all test vectors have 

completed the set of match candidates is returned (bottom). 

V. CONCLUSION 

In this paper, a workflow for decompilation of a gate-level 
netlist into a human readable RTL Verilog file was presented. 
Software decompilation methodologies were leveraged and 
enabled this process although techniques and the challenges 
vary between software and hardware. The well-established 
software decompilation process is ripe with further techniques 
which can be added to this workflow in future research. 
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