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ABSTRACT
As the Internet of Things (IoT) rolls out today to devices whose
lifetime may well exceed a decade, conservative threat models
should consider attackers with access to quantum computing power.
The SUIT standard (specified by the IETF) defines a security ar-
chitecture for IoT software updates, standardizing the metadata
and the cryptographic tools—namely, digital signatures and hash
functions—that guarantee the legitimacy of software updates. SUIT
performance has been evaluated in the pre-quantum context, but
it has not yet been studied in a post-quantum context. Taking the
open-source implementation of SUIT available in RIOT as a case
study, we overview post-quantum considerations, and quantum-
resistant digital signatures in particular, focusing on low-power,
microcontroller-based IoT devices which have stringent resource
constraints in terms of memory, CPU, and energy consumption.
We benchmark a selection of proposed post-quantum signature
schemes (LMS, Falcon, and Dilithium) and compare them with cur-
rent pre-quantum signature schemes (Ed25519 and ECDSA). Our
benchmarks are carried out on a variety of IoT hardware including
ARM Cortex-M, RISC-V, and Espressif (ESP32), which form the bulk
of modern 32-bit microcontroller architectures. We interpret our
benchmark results in the context of SUIT, and estimate the real-
world impact of post-quantum alternatives for a range of typical
software update categories.
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1 INTRODUCTION
Decades of experience with the Internet and networked software
has brought about the motto you can’t secure what you can’t update.
Meanwhile, recent technological and societal trends have fuelled
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the massive deployment of cyberphysical systems; these systems
are increasingly pervasive, and we are increasingly dependent on
their functionalities. A so-called Internet of Things (IoT) emerges,
weaving together an extremely wide variety of machines (embedded
software and hardware) which are required to cooperate via the
network, at large scale.

Unpatched devices—or worse, unpatchable devices—quickly be-
come liabilities. Exploits weaponizing compromised IoT devices
are demonstrated time and again, sometimes spectacularly as with
botnets such as Mirai [2, 9]. The twist is, however, that the cure can
become a disease: software updates are themselves an attack vector.
Attacks can consist in lacing a legitimate software update with
malware, compromising the updated device in effect [53]. Once IoT
devices are deployed, up and running, it thus becomes crucial to
have answers ready to the following questions:

• How, and when, is software embedded in IoT devices up-
dated?

• How are software updates secured, and what level of security
is provided?

In this paper we tackle these questions, focusing on low-power
IoT devices, and anticipating adversaries equipped with quantum
computers.

Low-power IoT characteristics. A prominent and particularly chal-
lenging component of IoT deployments consists in integrating low-
power, resource-constrained IoT devices into the distributed system.
These devices are typically based on low-cost microcontrollers (e.g.,
ARM Cortex M, RISC-V, ESP), which interconnect via a low-power
radio (e.g., BLE, IEEE 802.15.4, LoRa) or via a wired communication
bus. An estimated 250 billion microcontrollers are in use today
around the globe [36]. Compared to microprocessor-based devices,
microcontrollers aim for a different trade-off: They offer much
smaller capacity in computing, networking, memory [20], in order
to achieve radically lower energy consumption and a tiny price
tag (<1$ unit price). To give an idea, it is not uncommon to have
a memory budget of 64 kB of RAM and 500 kB of ROM (flash)
in total for the whole embedded system software—including dri-
vers, crypto libraries, OS kernel, network stack and application



logic. Nonetheless, the functionalities and services provided by
constrained microcontroller-based devices are as crucial as those
of other, less constrained elements in the cyberphysical system.

Quantum adversaries. Robust and commoditized quantum com-
puters still sound futuristic today. While it would be hazardous to
predict the imminence of a breakthrough, progress in this domain
has picked up substantially. Among others, prominent Big Tech (in-
cluding Google, IBM, Intel, Microsoft) have already been designing,
building and operating small quantum computers over the last years.
Currently, the capacity of existing quantum computers are being
incrementally enhanced with more quantum bits, which steadily
improves their performance. As the lifetime of IoT devices rolled
out today can largely exceed a decade, conservative threat models
should consider attackers which benefit from quantum-computing
power, on top of traditional computing power.

Post-quantum cryptography. Post-quantum cryptosystems (and
in particular, post-quantum signature schemes) are designed to run
on contemporary hardware, yet resist adversaries equipped with
both classical and quantum computers. There are many signature
schemes that claim post-quantum security, some old and some
new, but until now none has seen wide deployment. Recent inter-
national research on post-quantum schemes has revolved around
the National Institute of Standards and Technology (NIST) Post-
Quantum Cryptography project [54], which aims to distinguish a
limited number of candidate schemes for eventual standardization.
This process is currently in its third round, and draft standards are
expected between 2022 and 2024.

Post-quantum security for low-power IoT.. Let’s get back to the
motto you can’t secure what you can’t update (securely). In our quest
for post-quantum security, a first order priority is to guarantee
in a future-proof manner that software updates received via the
network on low-power IoT devices are legitimate. When verifying
the legitimacy of a software update, the crucial cryptographic tool
is a digital signature. Open standards targeting IoT security (such
as the IETF [59]) specify the safe usage of a variety of digital sig-
nature schemes to secure software updates on low-power devices,
including one scheme (LMS [48]) that offers quantum resistance.

Implementation approaches. It is common to develop crypto-
graphic implementations that tackle specific problems, such as
speed or size. Most of the time, the implementation tries to take ad-
vantage of special instructions or hardware. However, that narrows
the applicability of the implementation to specific architectures,
which does not fully reflect the reality of IoT. Usually, operating
systems (OS) need to support more than one architecture.

Typically, new cryptographic algorithm implementations are
demonstrated as stand-alone applications—a key first step in prov-
ing feasibility. But in practice, the OS does not have only the cryp-
tography package: it has other modules, a network stack, and the
kernel.

In this paper, we present a use case for cryptographic signatures,
and we study the impact of the pre-quantum to post-quantum tran-
sition. Focusing on portability and wide deployment, we did not
use any “enhanced” implementations such as tuned assembly, or

platform-specific instructions: we only modified the implementa-
tions to fit real-life conditions, such as those imposed by RIOT for
our use-case (for example: not dedicating the entire stack to crypto).

In this context, we aim to answer the following questions in our
paper:

• How do post-quantum security costs compare to typical pre-
quantum security costs?

• What is the footprint of quantum resistance security, relative
to typical low-power operating system footprints?

• What are the potential alternatives for post-quantum digital
signature schemes to secure IoT software updates?

• What hash functions should be used in this context?

Wewill address these questions under the assumption that we want
to achieve, and maintain, 128-bit conventional security (matching
current internet security standards) and NIST Level 1 post-quantum
security.

Paper contributions & outline. The main contributions of this
paper are:

• We provide an overview of the SUIT specification for se-
cure software updates on low-power IoT devices, using its
open-source implementation in a common operating system
(RIOT) as case study;

• We show how crypto primitives including digital signatures
and hash functions are used in compliance with SUIT;

• Weanalyze post-quantum considerations for SUIT-compliant
hash functions, which we benchmark on low-power 32-bit
microcontrollers;

• We survey post-quantum signature schemes, and derive a
selection of schemes most applicable for the secure IoT soft-
ware update use case;

• We benchmark signature schemes on heterogeneous low-
power IoT hardware based on popular 32-bit microcontrollers
(ARM Cortex-M, RISC-V and ESP32);

• We compare the performance of post-quantum signature
schemes (LMS, Dilithium, and Falcon) against that of typical
pre-quantum schemes (Ed25519, and secp256);

• We conclude on the cost of post-quantum security, and out-
line perspectives for low-power IoT.

2 RELATEDWORK
The performance of pre-quantum digital signature schemes in the
context of secure software updates on various Cortex-M microcon-
trollers is evaluated in [62]. Various NIST candidate post-quantum
schemes are compared as component algorithms in TLS 1.3 in [58],
analyzing performance, security, and key and signature sizes, as
well as the impact of post-quantum authentication on TLS 1.3
handshakes in realistic network conditions, while [45] shows a
real life experiment with clients using two post-quantum schemes:
an isogeny-based algorithm (SIKE) and a lattice-based algorithm
(HRSS). More recently, another experiment with different schemes
was conducted by Cloudflare [23, 56].

For pure post-quantum cryptographic implementation work tar-
geting microcontrollers, [21] evaluates the performance of stateful
LMS on Cortex-M4 microcontrollers, while pqm4 [42] aims to im-
plement and benchmark NIST candidate schemes on Cortex-M4,
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with M4 assembly subroutines plugged into some of the PQClean
implementations. (Note that among the NIST candidate signature
schemes, PQClean implements only Dilithium, Falcon, Rainbow,
and SPHINCS+; of these, pqm4 implements only Dilithium and Fal-
con.) Software verifying SPHINCS, RainbowI, GEMSS, Dilithium2,
and Falcon-512 signatures in Cortex-M3 using less than 8 kB of
RAM is presented in [33].

Many post-quantum digital signature schemes use SHA3 hashing
primitives under the hood. While the performance of SHA3 imple-
mentations in hardware (FGPA) have been studied in work such
as [34, 41, 43], surprisingly few studies focus on the performance
of software implementations of this standard hashing primitive on
low-power microcontrollers. Some prior work exists in this domain
with particular focus on 8-bit microcontrollers [13, 44]. Another
prior study has focused on comparing the performance of Keccak
variants on 32-bit ARM Cortex-M microcontrollers in [35].

3 CASE STUDY: LOW-POWER SOFTWARE
UPDATES WITH SUIT

The IETF standardizes the Software Updates for Internet of Things [50,
51] specifications (SUIT), which define a security architecture, stan-
dard metadata and cryptographic schemes able to secure IoT soft-
ware updates, applicable on microcontroller-based devices. An
open-source implementation of the SUIT workflow is for example
available in RIOT [61], a common operating system for low-power
IoT devices [12] which we use as base for our case study.

3.1 SUIT Workflow
The SUIT workflow is shown in Fig. 1. This workflow consists of
a preliminary phase (Phase 0) whereby the authorized maintainer
produces and flashes the IoT devices with commissioning material:
the bootloader, the initial image, and authorized crypto material.

Once the IoT device is commissioned, up and running, the main-
tainer can trigger iterations through cycles of phases 1-5, whereby
the authorized maintainer can build a new image (Phase 1), hash
and sign the corresponding standard metadata (the so-called SUIT
manifest, Phase 2) and transfer to the device over the network via
a repository (e.g. a CoAP resource directory). The IoT device can
then fetch the update and the SUIT manifest from the repository
(Phase 3), proceed to verify the signature and the hash (Phase 4),
and upon successful verification, the new software is installed and
booted (Phase 5), otherwise the update is dropped.

Using the metadata and the cryptographic primitives as specified
by SUIT, the IoT device can mitigate attacks using software updates
as vector, such as:

• Tampered/Unauthorized Firmware Update Attacks: An
attacker may try to update the IoT device with a modified
and intentionally flawed firmware image. To counter this
threat, SUIT specifies the use of digital signatures on a hash
of the image binary and the metadata to ensure integrity of
both the firmware and its metadata.

• Firmware Update Replay Attacks: An attacker may try
to replay a valid, but old (known-to-be-flawed) firmware.
This threat is mitigated by using a sequence number used in
the metadata, which is increased with every new firmware
update.

• Firmware Update Mismatch Attacks: An attacker may
try replaying a firmware update that is authentic, but for an
incompatible device. To counter this threat, SUIT specifies
the inclusion of device-specific conditions, which can be ver-
ified before installing a firmware image, thereby preventing
the device from using an incompatible firmware image.

For a more complete documentation of attacks that are mitigated
with SUIT we refer readers to [49].

SUIT Cryptographic Tools. As depicted in Fig. 1, cryptographic
tools on which software updates in general and SUIT in particular
rely are a digital signature scheme and a hash function. On the
one hand, the digital signature authenticates the software update
binary. On the other hand, to make the signature verification less
cumbersome, the signature is not performed on the software update
binary itself, but on a hash of the software update binary. Thus,
this hash function is also a crucial cryptographic primitive in the
SUIT workflow. Fig. 1 depicts this workflow combining SHA-256
hashing and Ed25519 signatures.

3.2 Hash Functions with SUIT
The metadata of the update (specified by the SUIT Manifest [50])
includes a cryptographic hash of the sofware update binary. To be
considered secure, a cryptographic hash function 𝐻 : {0, 1}∗ →
{0, 1}𝑙 , where 𝑙 > 0, must have the following properties:

• Preimage resistance: Given a hash value ℎ, it should be in-
feasible to find any input𝑚 such that ℎ = 𝐻 (𝑚);

• Second preimage resistance: Given an input𝑚1, it should
be infeasible to find a different input𝑚2 such that 𝐻 (𝑚1) =
𝐻 (𝑚2);

• Collision resistance: It should be infeasible to find two dif-
ferent inputs𝑚1 and𝑚2 such that 𝐻 (𝑚1) = 𝐻 (𝑚2).

The SUIT standard specification [50] allows for the use of the
following hash functions:

• SHA-2: either 224-, 256-, 384-, or 512-bit output;
• SHA-3: either 224-, 256-, 384-, or 512-bit output.

Background on SHA-2. This algorithm is a well-known secure
hash function developed in the early 90’s and standardized in 2001
by NIST in [1]. SHA-2 is based on theMerkle-Damgård construction,
and executes several rounds of a compression function. SHA-2
presents 4 different digest sizes (i.e., output lengths): 224, 256, 384,
and 512 bits. SHA-2 is widely used in several applications, including
TLS, SSL, PGP, SSH, and many others. The main reason for this
is that it is a stable and secure function: The best known attacks
against SHA-2 break preimage resistance for 52 out of 64 rounds
(for SHA-256), and 57 out of 80 rounds (for SHA-512). For collision
resistance, the only attack is against 46 out of 64 rounds of SHA-256.

Background on SHA-3. This hash algorithm was standardized in
2015 by NIST in FIPS 202 [30]. SHA-3’s basic primitive is called
Keccak [18], which is built using the sponge construction (differing
from SHA-2’s Merlke–Damgård construction). This gives SHA-3 the
advantage of resisting known attacks on Merkle–Damgård hash
functions (like SHA-2). Like SHA-2, SHA-3 presents 4 different
digest sizes: 224, 256, 384, and 512 bits. Sponge-based functions can
“absorb” any amount of data, and then “squeeze” any amount of
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Figure 1: SUIT secure software update workflow.

output, thus providing an extendable output function (XOF) that
can be used for purposes beyond just hashing. The Keccak-based
XOF specified in FIPS 202 is called SHAKE.

3.2.1 Post-Quantum Considerations.
There are few quantum attacks against SHA-2 and SHA-3 in litera-
ture. Recently, [14] showed that it is possible to parallelize Grover’s
algorithm to find preimages of hash functions, and this attack ap-
plies to both Merkle–Damgård hashes (e.g. SHA-2) and Sponge-
based hashes (e.g. SHA-3). For collision resistance, the state-of-
the-art in quantum collision search does not drastically reduce the
complexity with respect to classical algorithms, as shown in [24].
On the other hand, classical attacks for SHA-2 might become a
reality, as shown in [29].

3.2.2 Low-Power IoT Considerations.
Low-power systems should be able to run hash functions in the
smallest amount of time and using as little power as possible. Min-
imal memory (RAM and flash) usage are also desirable. In this
context, since we aim for 128-bit security, the two functions we
should consider for SUIT are SHA-256 and SHA3-256.

Table 1 shows the amount of flash memory taken up by RIOT’s
default implementation of SHA-256, and compares it with the foot-
print of two different SHA3-256 implementations: one optimized
for flash memory, and the other optimized for speed on an ARM
Cortex-M4 microcontroller (ARMv7M architectures). Next, Figure 2
shows the execution speed of hash operations using these different
implementations on an ARM Cortex M4 microcontroller. Finally,
Figure 3 compares the RAM (stack) memory used by these imple-
mentations. We observe that RAM usage is roughly equivalent
across the different implementations, but speed and flash can vary
widely for the SHA-3 implementations. Basically, SHA3-256 can
offer slightly faster execution compared to SHA-256, but at the
price of a 10× larger flash footprint. For a flash footprint similar
to SHA-256, the comparative speed of SHA3-256 diminishes drasti-
cally for larger inputs. For more detailed analysis, we refer readers
to a previous study [35] comparing different Keccak variants on
microcontrollers.

3.2.3 Conclusions on SUIT Hash Functions for Post-Quantum.
Based on our analysis, there are no direct post-quantum aspects
to consider here. Rather, the decision of which hash function to
use should be driven by low-power criteria, and by other indirect
post-quantum aspects detailed below.

Figure 2: Execution speed of SHA2 and SHA3, versus input
size in bytes, on an ARM Cortex-M4 microcontroller.

Figure 3: RAM (stack) usage of SHA2 and SHA3 on an ARM
Cortex-M4 microcontroller.

Table 1: ROM (flash memory) footprint of SHA2 and SHA3
on an ARM Cortex-M4 microcontroller.

SHA-256 1008 bytes
SHA3-256 compact 1692 bytes
SHA3-256 fast-ARMv7M 11548 bytes

Let’s distinguish broad categories for low-power IoT software
updates:

(1) Software module update (~5kB)
(2) Small firmware update without crypto (~50kB)
(3) Small firmware update with crypto (~50kB)
(4) Large firmware update (~250kB)
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In cases (1) and (2), the updated software does not include the hash
function implementation (the cryptographic tools are external, e.g.,
in a bootloader). In such cases, the flash memory footprint overhead
for the hash function in use is of no concern, and SHA3-256 (opti-
mized for speed) is the best choice. In cases (2) and (3), however,
the updated software includes the cryptographic tools and the hash
function code; thus, a tradeoff appears. For small firmware updates,
a 10 kB flash overhead represents a significant 25% bump in what
needs to be stored on the device and transmitted over the network.
As updates are infrequent, execution speed may be considered less
of a priority, and thus both SHA-256 and flash-optimized SHA3-256
are valid options. For larger updates, the storage and transfer over-
head is negligible, so speed-optimized SHA3-256 is the best option
again.

Let us now consider a complementary perspective: We observe
that most of the quantum-resistant digital signature schemes use
SHA-3 in their constructions. In fact, the NIST competition can-
didates for the upcoming post-quantum signature standard are
required to be SHA-3/SHAKE compatible, because that is the cur-
rent US standard. In this respect, as code footprint on IoT devices is
very limited, factorization is typically desirable: There is an oppor-
tunity to implement a single hash function (used both for hashing
and for signing) in order to use less flash memory.

For these reasons, we SHA3-256 is the primary choice in our
case-study.

3.3 Digital Signatures with SUIT
The SUIT architecture relies on the software update distributor
(i.e., the authorized maintainer in Figure 1) issuing a long-term
public-private key pair, and the public key being pre-installed on
the IoT device(s) to be updated, during the commissioning (Phase
0) shown in Fig. 1). This key pair is used to generate and verify a
digital signature on the IoT software update. Digital signature use in
SUIT is specified in the COSE standard [55], which defines how to
sign and encrypt compact (CBOR) binary serialized objects. COSE
standardizes the use of elliptic-curve digital signature schemes
using the following state-of-the-art elliptic curves:

• Curve25519 (Ed25519), Curve448 (Ed448);
• NIST P-256, P-384, P-521.

These elliptic-curve schemes are desirable as they offer very
small public (and private) keys at 32 bytes each and 64-byte sig-
natures. To give some concrete perspective, Figure 4 shows the
memory footprint of SUIT and related software components when
using Ed25519, compared to the whole software embedded on the
IoT device. For this measurement we used the available open-source
RIOT implementation, which we build for, and run on a popular
low-power IoT board based on an ARM Cortex-M4 microcontroller
(the Nordic nRF52840 Development Kit). The flash memory foot-
print of this firmware is 52.5 kB and the RAM (stack) usage is 16.3
kB.

In particular, we observe that in this typical pre-quantum config-
uration, out of a ≈ 50 kB total flash footprint, the crypto represents
a minor part of the footprint (under 15%). Furthermore, the SUIT
manifest itself can remain small, because the elliptic-curve signature
adds 15% to the size of the SUIT manifest metadata and less than

14%
32%

38%
16%

Crypto

Kernel
Network stack
OTA module

Figure 4: Flash memory compostion of SUIT-enabled RIOT
firmware with typical pre-quantum configuration using
Ed25519 signatures and SHA-256 hashing (total footprint
52.5 kB).

0.1% to the data that must be transferred over the network, counting
the manifest and the firmware binary as depicted in Table 2.

Table 2: SUIT firmware update network transfer cost, using
minimal metadata, Ed25519 signatures, SHA-256 hashing.

Network Payload
SUIT metadata 419 bytes
SUIT signature 64 bytes
OS firmware 52485 bytes

3.3.1 Post-Quantum Considerations.
Elliptic-curve schemes are advantageous because they provide high
security guarantees even though keys and signatures are very small.
However, the security of elliptic-curve signatures is guaranteed
by the hardness of the elliptic-curve Discrete Logarithm Problem,
which can be solved efficiently on large quantum computers using
Shor’s algorithm [15, 37, 57].

It is important to note that a breakthrough in quantum comput-
ing at a time𝑇 will not affect the security of elliptic-curve signatures
generated before 𝑇 , but it would certainly destroy the security of
any elliptic-curve signatures generated after 𝑇 . In our use case, the
distributor’s key pair has a very long planned lifetime, possibly
equal to that of the devices to be updated; securely updating the
key itself will be impossible, or at least undesirable. We therefore
need to build-in resistance to the quantum threat in anticipation of
such a development.

3.3.2 Low-Power IoT Considerations.
The range of post-quantum signature schemes considered as poten-
tial replacements for elliptic-curve signatures is wide and diverse,
and the idiosyncrasies that distinguish the various schemes are
exaggerated by the constraints of low-power IoT devices. How-
ever, all of these schemes have public key and signature sizes that
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are one or two orders of magnitude larger than the elliptic-curve
equivalents. Post-quantum signatures are therefore far from drop-
in replacements; they represent a significant research challenge for
microcontroller and IoT implementations.

Nevertheless, the IETF recently initiated the standardization of
alternative signature schemes with COSE/SUIT which aim to offer
quantum-resistant security levels, such as LMS [48]. In the next
sections, we survey alternative quantum-resistant schemes, and
give an experimental comparison of their performance against that
of state-of-the-art pre-quantum digital signature schemes as used
in SUIT.

4 POST-QUANTUM DIGITAL SIGNATURES
The signature schemes that we consider target at least NIST Level 1
for post-quantum security. This is the basic security level proposed
by NIST as part of its Post-Quantum Cryptography (PQC) Stan-
dardization Project [54]. Level 1 security includes both 128 bits of
classical security, and an equivalent level of security with respect to
some model of quantum computation. That is, an adversary should
require on the order of 2128 operations to gain any non-negligible ad-
vantage when attacking the scheme, even if this adversary benefits
from quantum computing power. For example, this is the amount
of required work for an adversary to have any chance of forging a
signature on a new message, under a given public key. This 128-bit
security level is now standard in mainstream internet applications
requiring long-term security.

4.1 Post-quantum signature paradigms
Post-quantum signatures, like other post-quantum protocols, form
natural families according to the sources of underlying hard prob-
lems that guarantee their security:

Hash-based signatures. Hash-based signatures are among the
oldest digital signature schemes. Their security is based on the
difficulty of inverting cryptographic hash functions. The security
assumptions have been well studied, which gives an academic ma-
turity to the problem. Important contemporary examples include
XMSS [38], LMS [48], and the NIST Round 3 alternatate candidate
SPHINCS+ [10]. Hash-based signatures tend to offer very fast veri-
fication, though this comes at the cost of very large signatures.

Lattice-based signatures. “Lattice-based” schemes are based on
hard problems in Euclidean lattices, and related problems like Learn-
ing With Errors (LWE). Contemporary examples of lattice-based
signatures include the NIST Round 3 finalists Dilithium [11], based
on the module-LWE problem, and Falcon [32], based on the NTRU
problem. These schemes offer fast signing and verification, at the
cost of relatively large signatures.

Multivariate signatures. The security of “multivariate” schemes
is based on the difficulty of solving certain low-degree polynomial
systems in many variables. Important contemporary examples of
multivariate signatures include the NIST Round 3 finalist Rain-
bow [26], and alternate candidate GeMSS [22]. Multivariate signa-
tures like Rainbow and GeMSS are interesting because they offer
extremely small signature sizes, though this comes at the cost of
extremely large public keys. However, recent analysis as in [19]
has brought their security levels into question.

Isogeny-based signatures. Isogeny-based cryptosystems are based
on the difficulty of computing unknown isogenies between elliptic
curves. They inherit small key sizes from conventional elliptic-curve
cryptography (ECC), which makes them interesting for microcon-
troller applications, but they also inherit (and increase) ECC’s bur-
den of heavy algebraic calculations. SIKE [39] is a NIST Round 3
alternate candidate for key establishment, but no isogeny-based
signatures were submitted to the NIST PQC project—for the simple
reason that no reasonable algorithms existed before the project
deadline. Recent proposals such as SQISign [31] offer small param-
eters that are attractive for microcontroller applications, albeit at
the cost of very slow runtimes. However, these signature schemes
have not yet been subjected to extensive security analysis, and
implementation work is still at an early stage.

Code-based signatures. Code-based cryptosystems are based on
the difficulty of hard problems from the theory of error-correcting
codes. The McEliece key exchange scheme [47] is among the oldest
of all public-key cryptosystems. Code-based signatures, on the other
hand, are much less well-established. While some recent proposals
such as Wave [27, 28] have interesting potential, their security
analysis and implementation work lags even further behind that of
isogeny-based signatures.

Zero-knowledge-based signatures. There is also a category of post-
quantum signatures using Zero-Knowledge (ZK) techniques, com-
bining algorithms from symmetric cryptography with a technique
known asMulti-Party Computation In The Head. The NIST Round 3
candidate Picnic [25] is an important example: It offers extremely
small key sizes, but at the cost of very large signatures.

Summary. Table 3 compares signature and key sizes, and matu-
rity of security analysis of various post-quantum signature scheme
proposals, summarizing the “pros” and “cons” of each paradigm
according to our requirements.

Table 3: Overview of post-quantum signature candidates
from different paradigms. “Security analysis” reflects the
maturity of analysis of the scheme: here we consider the
age of the scheme, recent attacks, and how well-studied the
underlying hard problem is. A tick or cross here is not an
assertion that the scheme is proven secure, or known to be
broken: it simply reflects our judgement on whether the
scheme is closer to, or further from readiness for deploy-
ment.

Paradigm Scheme Security Sizes (B)
Analysis Signature Public Key Private Key

Hash-Based LMS [48] ✓ 4 756 60 64
SPHINCS+-128f [10] ✓ 17 088 32 64

Lattice-Based Dilithium [11] ✓ 2 528 1 312 2 420
Falcon [32] ✓ 1 281 897 666

MQ-based RainbowI [26] ✗ 66 157 800 101 200
GeMSS [22] ✗ 417 416 14 520 48

Isogeny-based SQISign [31] ✗ 204 64 16

Code-based WAVE [27] ✗ 1625 ≈ 13 000 000 N/R

Zero-knowledge-based Picnic3-L1 [25] ✗ 13 802 34 17
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4.2 Selection of candidates
When choosing candidates for evaluation in our use case, we must
consider not only their key and signature sizes and their runtime
performance, but also their maturity with respect to security anal-
ysis. While the relatively compact parameters of some isogeny-
and code-based signature schemes may make them interesting for
future work targeting microcontrollers, at present these schemes
are far from theoretical maturity, let alone real-world deployabil-
ity. The true security level of the NIST multivariate and ZK-based
candidates is a subject of current debate, though their extremely
large keys and/or signatures would likely eliminate them from
consideration for our applications in any case.

The NIST PQC project has dominated research in post-quantum
cryptography in recent years. Its candidate cryptosystems are a
natural first port of call for credible post-quantum signature algo-
rithms, since they have had the benefit of concerted analysis from
the cryptographic community—especially the Round 3 proposals,
which are candidates for standardization in the coming years. How-
ever, these are not the only algorithms that we should consider.
For example, among hash-based signature schemes, we might com-
pare the older LMS scheme (which is not a NIST candidate) with
the newer SPHINCS+ scheme (which is a NIST Round 3 alternate).
LMS has smaller computational requirements, but the signer must
maintain some state between signatures; SPHINCS+ is a heavier
scheme, but it is stateless. Statelessness is an advantage for general
applications. In our use case, however, statefulness is natural (it
corresponds naturally to the version number on the software up-
date), and easier to maintain—so the lighter LMS is a more natural
choice.

Post-quantum choices. For the reasons above, we chose to fo-
cus our efforts on three post-quantum signature algorithms: LMS,
Dilithium, and Falcon, representing the hash-based and lattice-
based categories. LMS has 60-byte public keys and 4756-byte signa-
tures. Dilithium III, targeting NIST security level 2, has 1312-byte
public keys and 2420-byte signatures. Falcon-512, targeting NIST
security level 1, has 897-byte public keys and 666-byte signatures.

Pre-quantum choices. To make a meaningful comparison with
pre-quantum algorithms, we selected two elliptic-curve schemes:
the state-of-the-art Ed25519 [17, 40] scheme, and the historic stan-
dard ECDSA based on the secp256 curve [52]. These schemes offer
particularly small public keys and signatures—just 32 and 64 bytes,
respectively—with an acceptable runtime and memory footprint
for applications targeting microcontroller platforms.

5 BENCHMARKS
5.1 Hardware Testbed Setup
We carried out our measurements on popular, commercial, off-the-
shelf IoT hardware. Our chosen platforms are representative of the
landscape of modern 32-bit microcontroller architectures, including
ARM Cortex-M, Espressif ESP32 and RISC-V:

• a Nordic nRF52840 Development Kit, which provides a typ-
ical microcontroller (ARM Cortex-M4) running at 64MHz,
with 256 kB RAM, 1MB flash, and a 2.4 GHz radio transceiver
compatible with both IEEE 802.15.4 and Bluetooth Low-
Energy.

• aWROOM-32 board (ESP32modulewith the ESP32-D0WDQ6
chip on board), which provides two low-power Xtensa® 32-
bit LX6 microprocessors with integrated Wi-Fi and Blue-
tooth, operating at 80MHz, with 520 kB RAM, 448 kB ROM
and 16 kB RTC SRAM.

• a Sipeed LonganNanoGD32VF103CBT6Development Board,
which provides a RISC-V 32-bit core running at 72MHzwith
32 kB RAM and 128 kB flash.

IoT-Lab [8] provides some of the hardware for reproducibility on
open access testbeds.

5.2 Software Setup
We used RIOT [7] as a base for our benchmarks.

Pre-quantum implementations. We used three different libraries,
all currently supported in RIOT.

Ed25519: For Ed25519, we used two libraries: C25519 (pro-
vided in [3]) and Monocypher [60]. The C25519 implemen-
tation contains constant-time finite-field arithmetic based on
public-domain implementations of Bernstein’s Curve25519
key exchange [16]. The Monocypher library also provides an
implementation of Bernstein’s Curve25519 and the Ed25519
signature scheme. One difference between the Monocypher
and C25519 implementations is that Monocypher uses pre-
computed tables to speed up the computation of elliptic
curve points. The precomputations are used in the “window
method” for scalar multiplication. While this is known to
speed up computations, it also has its drawbacks, as pointed
out in [46].

ECDSA: For ECDSA, we used the Intel’sTinycrypt library [4],
which is designed for embedded devices. The main goal of
this library is to provide cryptographic standards for con-
strained devices. ECDSA differs from Ed25519 both in some
specific details of the signature algorithm and in using the
NIST standard p256 curve instead of Curve25519.

Post-quantum implementations. We re-used publicly available
code after making some small modifications to fit the hardware
requirements.

LMS: For LMS, we used the Cisco implementation [5], remov-
ing calls to malloc since it can lead to memory fragmenta-
tion [? ], and in such low level can be dangerous and slow1.
This change might lead to some small improvements in per-
formance, since the kernel already knows the address at
compile-time rather than only at runtime. For our bench-
mark, we used the smallest parameters proposed in [48, Sec-
tion 5]: that is, SHA-2 with 256-bit output for the hash func-
tion (since we tried to keep the code as close as possible
to [5]) with tree height 5, and 32 bytes associated with each
node. For the LMOTS, we use 32 bytes and 4 bits of width
for Winternitz coefficients. We remove the OpenSSL call
from the original code and change for a implementation of
SHA256 provided in their repository [5]. Furthermore, we
are using HSS with 2 layers. These parameters satisfy the

1More details about dynamic allocation in embedded devices are available from https:
//github.com/RIOT-OS/RIOT/blob/master/CODING_CONVENTIONS.md
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life cycle of updates: in particular, the key lifetime will never
be surpassed by the amount of updates.

Dilithium: Our Dilithium implementation was based on the
PQClean implementation [6]. As the Dilithium specifica-
tion [11, Sec. 3.1] states, the first step in signing and verifying
is to expand a random seed given in the public key into a
large matrix. For our benchmarks, we prepared two versions
of Dilithium:
• Dynamic Dilithium is the basic PQClean implementa-
tion.

• Static Dilithium is a modification of the PQClean imple-
mentation where the matrix is precomputed and stored in
the flash memory.

Precomputing and storing the matrix makes signing and
verification both faster, though it also (by definition) requires
more flash and reduces flexibility, since signatures can only
be verified against the flashed key.

Falcon: We used the the Falcon implementation provided by
PQClean [6], without any significant structural modifica-
tions.

5.3 Measurements

Table 4: Size of private/public keys and signatures for bench-
marked signature schemes.

Algorithm Private Key (B) Public Key (B) Signature (B)

Pre-quantum Ed25519 32 32 64
ECDSA p256 32 32 64

Post-quantum
Falcon 1281 897 666

Dilithium 2528 1312 2420
LMS (RFC8554) 64 60 4756

Table 5: Benchmark of pre/post-quantum signature schemes
using an ARM Cortex-M microcontroller (nRF52840 Dev.
Kit).

Sign Verify

Algorithm Flash Time Stack Time Stack
(B) (ms) (KiloTicks) (B) (ms) (KiloTicks) (B)

Pre-quantum
Ed25519 (C25519) 5106 845 54111 1180 1953 125012 1300

Ed25519 (Monocypher) 13852 17 1136 1420 40 2599 1936
ECDSA p256 (Tinycrypt) 6498 294 18871 1084 313 20037 1024

Post-quantum

Falcon 57613 1172 75020 42240 15 1004 4744
Dilithium (Dynamic) 11664 465 29788 51762 53 3407 36058

Dilithium (Static) 26672 135 8655 35240 23 1510 19504
LMS (RFC8554) 12864 9224 590354 13212 123 7908 1580

Table 4 gives the sizes (in bytes) of the private key, public key,
and signature for each of the schemes that we measured.

Tables 5, 6, and 7 present our benchmarking results on three
different architectures Cortex-M, ESP32 and RISC-V.

For ease of comparison, all of the tables follow the same format.
The upper and lower halves of each table describe the pre- and
post-quantum algorithms, respectively. For each scheme and imple-
mentation tested, we give the total flash memory (ROM) used by
the library; then, for the signing and verification operations we list
the running time in milliseconds as well as in (thousands of) “ticks”,

Table 6: Benchmark of pre/post-quantum signature schemes
using an Espressif ESP32 microcontroller (WROOM-32
board).

Sign Verify

Algorithm Flash Time Stack Time Stack
(B) (ms) (KiloTicks) (B) (ms) (KiloTicks) (B)

Pre-quantum
Ed25519 (C25519) 5608 921 73690 1312 2165 173205 1440

Ed25519 (Monocypher) 17238 21 1709 1536 60 4864 2160
ECDSA p256 (Tinycrypt) 6869 333 26696 1296 374 29948 1216

Post-quantum

Falcon 60358 1172 93824 42504 16 1322 4920
Dilithium (Dynamic) 12397 87 7036 51954 43 3508 36242

Dilithium (Static) 27197 121 9694 35412 21 1706 19620
LMS (RFC8554) 15177 7583 606674 13488 101 8141 1808

Table 7: Benchmark of pre/post-quantum signature schemes
using a RISC-V microcontroller (Sipeed Longan Nano board).

Sign Verify

Algorithm Flash Time Stack Time Stack
(B) (ms) (KiloTicks) (B) (ms) (KiloTicks) (B)

Pre-quantum
Ed25519 (C25519) 6024 956 68883 1312 2242 161475 1440

Ed25519 (Monocypher) 17328 16 1194 1376 41 3013 1920
ECDSA p256 (Tinycrypt) 7452 270 19489 1224 308 22192 1112

Post-quantum
Falcon 111221 — — — 13 975 4756

Dilithium (Dynamic) — — — — — — —
Dilithium (Static) 251482 — — — 17 1237 19572
LMS (RFC8554) 15889 9105 655614 13352 122 8808 1736

1 Flash only contains the verification algorithms.
2 Flash contains the verification algorithms and hard-coded keys.

which we computed from the hardware clock and time spent. We
also report the amount of stack memory required to successfully
run the operation.

In Table 5 we see that Monocypher’s Ed25519 is the fastest for
signing among all the candidates running on the Nordic board; but
Falcon is the fastest for signature verification, followed by Static
Dilithium.

Table 6 shows that Monocypher’s Ed25519 is also the fastest to
sign on the WROOM-32 board, while Falcon and Static Dilithium
offer the fastest signature verification.

Table 7 gives results on a RISC-V processor. Since the RISC-
V board has only 32 kB RAM, the Falcon and Dilithium signing
algorithms could not be run. For signature verification, we can see
that the post-quantum schemes are substantially faster than the
pre-quantum schemes.

6 THE IMPACT OF POST-QUANTUM IN
SUIT/COSE

With our empirical results from §5, we can now address the three
outstanding questions posed in the introduction of this paper (hav-
ing already addressed hash functions in §3.2.3).

6.1 The cost of post-quantum security
How do post-quantum security costs compare to typical pre-quantum
security costs? A toe-to-toe comparison between pre-quantum and
post-quantum algorithms must consider public key and signature
sizes, running time, and memory requirements.

Table 4 shows that post-quantum algorithms always have larger
public key and signature sizes, generally by well over an order
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of magnitude. Compared with standard elliptic-curve signature
schemes, Falcon’s public keys are 28× larger and its signatures are
10.4× larger; Dilithium’s public keys are 41× larger than elliptic-
curve keys, and its signatures are 38× larger. LMS avoids this spec-
tacular growth in public key sizes, with keys only 1.875× larger
than elliptic-curve public keys; but its signatures are a massive
74.3× larger than elliptic-curve signatures.

Looking at running time, as we saw in §5, post-quantum signa-
tures have their advantages and disadvantages. Signature verifica-
tion is considerably faster across all the IoT devices that we tested.
Signing is generally slower. A comparison of the signing algorithms
in Table 5 shows that the fastest post-quantum algorithm runs in
135 ms, which is 7.94× slower than Ed25519 (Monocypher). But
the tables are turned when we compare signature verification algo-
rithms: The fastest pre-quantum algorithm runs in 40 ms, which is
2.65× slower than post-quantum Falcon. Efficient verification is a
required and valuable feature (in all scenarios), but in this setting,
it comes at the price of an increase in stack and flash memory.

Looking at memory requirements, we see that post-quantum
flash requirements can grow to over 11× the smallest pre-quantum
flash. Similarly, post-quantum algorithms impose a considerable
increase in stack memory.

Moving to post-quantum signatures therefore entails an increase
in memory resources (stack and flash) and bandwidth (for keys and
signatures). However, the verification algorithms are faster than
standard pre-quantum algorithms, which means a reduction both
in latency and in energy consumption. Ultimately, when choosing
between these signature schemes in practice, one must consider
the target IoT device, update frequency, and bandwidth usage.

6.2 The cost of post-quantum SUIT/COSE
What is the footprint of quantum-resistant security, relative to typical
low-power operating system footprints? To add quantum resistance
to SUIT/COSE following the workflow presented in Figure 1, we
change the cryptographic algorithms from Ed25519 and SHA256 to
Falcon, LMS, or Dilithium, and SHA3-256.

Impact on the SUIT Manifest. In practical terms, what changes in
the size of the manifest in Phase 2, is an increase according to the
signature size.

For example: Suppose we build a firmware update for RIOT, for
the nRF52840dk board (based on a Cortex-M4 microcontroller). The
protocol requires publishing the manifest containing the signed
hash of the image: That is, we need to publish both the image and
the SUIT metadata containing the signature. In §2 we had measured
that the SUIT manifest with pre-quantum Ed25519 (or ECDSA) is of
a total size of 419+ 64 = 483 B. Moving to post-quantum signatures,
this total becomes 419 + 666 = 1085 B for Falcon, 419 + 2420 = 2839
B for Dilithium, and 419+ 4756 = 5175 B for LMS. Comparing these
post-quantum sizes with the pre-quantum baseline, we see that
post-quantum signatures are ≈ 2.24× bigger with Falcon, ≈ 5.87×
bigger with Dilithium, and ≈ 9.84× bigger with LMS.

Impact on the SUIT Software Update Performance. In order to
grasp the whole picture, one must also consider the crucial aspect of
network transfer costs. Based on our results, we evaluate the cost of
the entire SUIT software update process in Table 8. We distinguish

two main cases, as we did in §3.2.3. In the first, the updated software
does not include the cryptographic libraries binary (i.e., these tools
are external, e.g., in a bootloader): this corresponds to the column
Transfer in Table 8. In the second, the updated software includes
the cryptographic libraries binary; the column Transfer w. crypto
corresponds to this case.

Aswe can observe in Table 8, the impact of switching to quantum-
resistance security level on the SUIT update process varies widely
in terms of network transfer costs, ranging from negligible increase
( 1%) to major impact (3× more), depending on the software update
use case.

6.3 Post-quantum signatures for IoT
What are the potential alternatives for post-quantum digital signature
schemes to secure IoT software updates? There are many possible
deployments of IoT, and several possible scenarios for IoT software
updates. The authorized maintainer is responsible for updating
the firmware, and it is safe to assume that the maintainer has a
PC, or equivalent powerful hardware. Hence, the computational
burden of signing is not the main concern here. On the other hand,
a constrained device will be responsible for signature verification
in Phases 3, 4, and 5, as Figure 1 shows.

Real-life challenges faced on embedded devices. As we show in
our study cases, the cryptography package does not run standalone
in the board: it must coexist with several other modules (including
kernel, network stack, and libraries), and the application itself.

One of the challenges that we faced in deploying the schemes
was sharing stack memory (and SRAM memory). For example, on
the RISC-V environment we used (recall Table 7) the total RAM
memory budget available was 32kB for the whole system—which
is very small, but not an uncommon budget. We could not run
Dilithium to sign or verify within these limits, because it consumed
all of the stack. In fact, we needed to adapt stack use for all of the
post-quantum algorithms we used.

Execution speed is another challenge. In cases where signature
verification takes a long time to perform, real-time applications may
be affected if special care is not taken. Typically, on low-power IoT
devices, there is no parallel computing happening. For instance, in
the RIOT operating system, a preemptive multithreading paradigm
is used, where a single thread is running at any given time. This
means that if signature verification takes a long time, and if the
thread it is running in has a high priority, the system is blocking
on this task until it completes. It is therefore necessary to carefully
tune the priority of the crypto verification thread in order to not
stop other tasks which might be functionally essential, especially if
signature verification execution speed is slow.

6.4 Usability of post-quantum signatures in real
world

Let us revisit the four prototypical software update categories from
§3.2.3, and consider the choice of postquantum signatures for each.

In Cases (1) and (2), the package contains the software update and
the signature. Hence, speed and signature size are more important
than flash size. In these cases, Falcon has an advantage over the
alternatives we considered (LMS and Dilithium).
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Table 8: Relative cost increase for SUIT with quantum resistance (on ARM Cortex M-4).

SUIT Flash Stack Transfer Transfer w. crypto
base w. Ed25519 / SHA256 52.4kB 16.3kB 47kB 53kB
with Falcon / SHA3-256 +120% +18% +1.1% +120%
with LMS / SHA3-256 +34% +1.2% +9% +43%
with Dilithium / SHA3-256 +30% +210% +4.3% +34%

Case (3) is more complicated, with flash playing a much more
crucial role. Since we must transfer the update with crypto over a
low-power network, the package size has a higher impact on energy
costs. As a point of reference, it takes 30s to 1mn to transfer 50kB on
a low-power IEEE802.15.4 radio link, depending on the radio link
quality and network load (assuming non-extreme cases). This is to
compare with plus-or-minus 2s of computation speed difference for
signature verification among the candidate cryptosystems. In this
case, as shown in Table 8, LMS presents the best tradeoff between
flash size, network transfer costs, verification time, and stack size.

In Case (4), the large network transfer costs overwhelm the other
costs, reducing the comparative advantages of one post-quantum
signature over another.

From a purely cryptographic point of view, given the maturity
of hash function cryptanalysis, LMS remains the safest choice. As
we briefly explained in §4.2, hash-based problems are quite mature,
and have received extensive cryptanalysis from the cryptographic
community. In comparison, the security of structured lattice-based
schemes like Falcon is less well-understood.

Nevertheless, compared to pre-quantum state of the art, LMS
imposes a significant increase in signature size and running time
for signing and verifying, which has a major impact on SUIT perfor-
mance; thus, despite its relative lack of maturity, the performance
characteristics of Falcon make it extremely tempting for applica-
tions with smaller updates.

Deployment of post-quantum security. On a positive note: even
though it necessitates increased data transfer, flash use and stack
use, post-quantum security can be deployed on today’s IoT hard-
ware (i.e. tomorrow’s legacy hardware). In a nutshell: we can up-
grade to quantum-resistant software update security on hetero-
geneous legacy IoT hardware without requiring vast changes in
portable C code.

It is clear that we will need to pay a price in the transition of pre-
quantum to post-quantum algorithms. However, operating systems
(for low powered devices such as RIOT) can already offer the tools
to verify quantum-resistant signatures.

7 CONCLUSION
We have made an experimental study of quantum-resistant cryp-
tography applied to securing software updates on low-power IoT
devices. Taking an open-source implementation of the IETF stan-
dard SUIT as concrete case study, we offer a direct comparison
of pre-quantum cryptographic schemes (signatures and hashing)
against post-quantum cryptographic schemes in the same environ-
ment and on the same hardware platforms. We evaluate the cost of
upgrading the security level from pre-quantum 128-bit security to

NIST Level 1 post-quantum security. To properly analyze the im-
pact of quantum-resistant cryptography schemes in IoT updates, we
surveyed and selected candidate schemes, and we compared their
performance using three low-power IoT platforms (ARM Cortex-M,
RISC-V, and ESP32) representative of the current landscape of 32-
bit microcontrollers. We show that quantum resistance is indeed
achievable today on these platforms, and we derive recommenda-
tions based on our performance analysis. We also characterize how
post-quantum digital signatures take a significant toll on the mem-
ory footprint and/or on network transfer costs in the IoT software
update process, compared to pre-quantum schemes.

Future work – The priority remains to stabilize the current
versions of post-quantum signatures, and then to push their imple-
mentations to common low-power embedded software platforms
such as RIOT. Meanwhile, NIST is still determining which candi-
date schemes might form a new post-quantum signature standard;
should new candidates be included in a new call, a new analysis
will become necessary.
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