
Dynamic Probabilistic Input Output Automata

PIERRE CIVIT, Sorbonne Université, CNRS, LIP6, France

MARIA POTOP-BUTUCARU, Sorbonne Université, CNRS, LIP6, France

We present probabilistic dynamic I/O automata, a framework to model dynamic probabilistic systems. Our work extends dynamic I/O

Automata formalism of Attie & Lynch [1] to probabilistic setting. The original dynamic I/O Automata formalism included operators

for parallel composition, action hiding, action renaming, automaton creation, and behavioral sub-typing by means of trace inclusion.

They can model mobility by using signature modification. They are also hierarchical: a dynamically changing system of interacting

automata is itself modeled as a single automaton. Our work extends to probabilistic settings all these features. Furthermore, we prove

necessary and sufficient conditions to obtain the implementation monotonicity with respect to automata creation and destruction. Our

construction uses a novel proof technique based on homomorphism that can be of independent interest. Our work lays down the

foundations for extending composable secure-emulation of Canetti et al. [4] to dynamic settings, an important tool towards the formal

verification of protocols combining probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, secure

distributed computation, cybersecure distributed protocols etc).

1 INTRODUCTION

Distributed computing area faces today important challenges coming from modern applications such as peer-to-peer

networks, cooperative robotics, dynamic sensor networks, adhoc networks and more recently, cryptocurrencies and

blockchains which have a tremendous impact in our society. These newly emerging fields of distributed systems are

characterized by an extreme dynamism in terms of structure, content and load. Moreover, they have to offer strong

guaranties over large scale networks which is usually impossible in deterministic settings. Therefore, most of these

systems use probabilistic algorithms and randomized techniques in order to offer scalability features. However, the

vulnerabilities of these systems may be exploited with the aim to provoke an unforeseen execution that diverges from

the understanding or intuition of the developers. Therefore, formal validation and verification of these systems has to

be realized before their industrial deployment.

The formalisation of distributed systems has been pioneered by Lynch and Tuttle [6]. They proposed the formalism

of Input/Output Automata to model deterministic distributed system. Later, this formalism is extended by Segala in [8]

with Markov decision processes [7]. In order to model randomized distributed systems Segala proposes Probabilistic

Input/Output Automata. In this model each process in the system is an automaton with probabilistic transitions. The

probabilistic protocol is the parallel composition of the automata modeling each participant.

The modelisation of dynamic behavior in distributed systems has been addressed by Attie & Lynch in [1] where they

propose Dynamic Input Output Automata formalism. This formalism extends the Input/Output Automata with the ability

to change their signature dynamically (i.e. the set of actions in which the automaton can participate) and to create other

I/O automata or destroy existing I/O automata. The formalism introduced in [1] does not cover the case of probabilistic

distributed systems and therefore cannot be used in the verification of recent blockchains such as Algorand [5].

In order to respond to the need of formalisation in secure distributed systems, Canetti & al. proposed in [2] task-

structured probabilistic Input/Output automata (TPIOA) specifically designed for the analysis of cryptographic protocols.

Task-structured probabilistic Input/Output automata are Probabilistic Input/Output automata extended with tasks that

are equivalence classes on the set of actions. The task-structure allows a generalisation of "off-line scheduling" where the

non-determinism of the system is resolved in advance by a task-scheduler, i. e. a sequence of tasks chosen in advance that

trigger the actions among the enabled ones. They define the parallel composition for this type of automata. Inspired by

1

Pierre Civit and Maria Potop-Butucaru

the literature in security area they also define the notion of implementation for TPIOA. Informally, the implementation

of a Task-structured probabilistic Input/Output automata should look "similar" to the specification whatever will be the

external environment of execution. Furthermore, they provide compositional results for the implementation relation.

Even thought the formalism proposed in [2] has been already used in the verification of various cryptographic protocols

this formalism does not capture the dynamicity of probabilistic dynamic systems such as peer-to-peer networks or

blockchains systems where the set of participants dynamically changes.

Our contribution. In order to cope with dynamicity and probabilistic nature of modern distributed systems we

propose an extension of the two formalisms introduced in [1] and [2]. Our extension uses a refined definition of

probabilistic configuration automata in order to cope with dynamic actions. The main result of our formalism is as

follows: the implementation of probabilistic configuration automata is monotonic to automata creation and destruction.

That is, if systems 𝑋A and 𝑋B differ only in that 𝑋A dynamically creates and destroys automatonA instead of creating

and destroying automaton B as 𝑋B does, and if A implements B (in the sense they cannot be distinguished by any

external observer), then 𝑋A implements 𝑋B . This result enables a design and refinement methodology based solely

on the notion of externally visible behavior and permits the refinement of components and subsystems in isolation

from the rest of the system. In our construction we exhibit the need of considering only creation-oblivious schedulers in

the implementation relation, i. e. a scheduler that, upon the (dynamic) creation of a sub-automaton A, does not take

into account the previous internal actions of A to output (randomly) a transition. Surprisingly, the task-schedulers

introduced by Canetti & al. [2] are not creation-oblivious. Interestingly, an important contribution of the paper of

independent interest is the proof technique we used in order to obtain our results. Differently from [1] and [2] which

build their constructions mainly on induction techniques, we developed an elegant homomorphism based technique

which aim to render the proofs modular. This proof technique can be easily adapted in order to further extend our

framework with cryptography and time.

It should be noted that our work is an intermediate step before extending composable secure-emulation [4] to dynamic

settings. This extension is necessary for formal verification of secure dynamic distributed systems (e.g. blockchain

systems).

Paper organization. The paper is organized as follow. Section 3 is dedicated to a brief introduction of the notion

of probabilistic measure and recalls notations used in defining Signature I/O automata of [1]. Section 4 builds on the

frameworks proposed in [1] and [2] in order to lay down the preliminaries of our formalism. More specifically, we

introduce the definitions of probabilistic signed I/O automata and define their composition and implementation. In

Section 5 we extend the definition of configuration automata proposed in [1] to probabilistic configuration automata

then we define the composition of probabilistic configuration automata and prove its closeness. The key result of our

formalisation, the monotonicity of PSIOA implementations with respect to creation and destruction, is presented in the

end of Section 6 and demonstrated in the remaining sections, up to Section 11). Section 12 explains why the off-line

scheduler introduced by Canetti & al. [4] is not creation-oblivious and therefore cannot be used to obtain our key result.

2 WARM UP

In this section we describe the paper in the a very informal way. We aim to give some intuitions on the role of each

section. The section 3 gives some preliminaries on probability and measure.

2

Dynamic Probabilistic Input Output Automata

2.1 Probabilistic Signature Input/Output Automata (PSIOA)

The section 4 defines the notion of probabilistic signature Input/Output automata (PSIOA). A PSIOAA is an automaton

that can move from one state to another through actions. The set of states of A is then denoted 𝑠𝑡𝑎𝑡𝑒𝑠 (A), while we
note 𝑠𝑡𝑎𝑟𝑡 (A) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) the unique start state of A. At each state 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) some actions can be triggered

in its signature 𝑠𝑖𝑔(A)(𝑞). Such an action leads to a new state with a certain probability. The measure of probability

triggered by an action 𝑎 in a state 𝑞 is denoted [(A,𝑞,𝑎) . The model aims to allow the composition (noted A1 | |...| |A𝑛)
of several automata to capture the idea of an interaction between them. That is why a signature is composed by three

categories of actions: the input actions, the output actions and the internal actions. In practice the input actions of

an automaton potentially aim to be the ouput action of another automaton and vice-versa. Hence an automaton can

influence another one through a shared action. The comportment of the entire system is formalised by the automaton

issued from the compostion of the automata of the system.

Fig. 1. A representation of two automata 𝑈 and 𝑉 . In the top line, we see the PSIOA 𝑈 in a state 𝑞1

𝑈
, s. t.

𝑠𝑖𝑔 (𝑈) (𝑞1

𝑈
) = (𝑜𝑢𝑡 (𝑈) (𝑞1

𝑈
), 𝑖𝑛 (𝑈) (𝑞1

𝑈
), 𝑖𝑛𝑡 (𝑈) (𝑞1

𝑈
)) = ({𝑏, 𝑐 }, {𝑑 }, {𝑔}) , the PSIOA 𝑉 in a state 𝑞1

𝑉
, s. t. 𝑠𝑖𝑔 (𝑉) (𝑞1

𝑉
) =

(𝑜𝑢𝑡 (𝑉) (𝑞1

𝑉
), 𝑖𝑛 (𝑉) (𝑞1

𝑉
), 𝑖𝑛𝑡 (𝑉) (𝑞1

𝑉
)) = ({𝑑, 𝑒 }, {𝑐, 𝑓 }, {ℎ}) and the result of their composition, the PSIOA 𝑈 | |𝑉

in a state (𝑞1

𝑈
, 𝑞1

𝑉
) , s. t. 𝑠𝑖𝑔 (𝑈 | |𝑉) ((𝑞1

𝑈
, 𝑞1

𝑉
)) = (𝑜𝑢𝑡 (𝑈 | |𝑉) ((𝑞1

𝑈
, 𝑞1

𝑉
)), 𝑖𝑛 (𝑈 | |𝑉) ((𝑞1

𝑈
, 𝑞1

𝑉
)), 𝑖𝑛𝑡 (𝑈 | |𝑉) ((𝑞1

𝑈
, 𝑞1

𝑉
) =

({𝑏, 𝑐,𝑑, 𝑒 }, {𝑓 }, {𝑔,ℎ}) . In the second line we see the same PSIOA but in different states. We see the PSIOA 𝑈 in a state
𝑞2

𝑈
, s. t. 𝑠𝑖𝑔 (𝑈) (𝑞2

𝑈
) = (𝑜𝑢𝑡 (𝑈) (𝑞2

𝑈
), 𝑖𝑛 (𝑈) (𝑞2

𝑈
), 𝑖𝑛𝑡 (𝑈) (𝑞2

𝑈
)) = ({𝑏 }, {𝑎, 𝑗 }, {𝑔}) , the PSIOA 𝑉 in a state 𝑞2

𝑉
, s. t.

𝑠𝑖𝑔 (𝑉) (𝑞2

𝑉
) = (𝑜𝑢𝑡 (𝑉) (𝑞2

𝑉
), 𝑖𝑛 (𝑉) (𝑞2

𝑉
), 𝑖𝑛𝑡 (𝑉) (𝑞2

𝑉
)) = ({𝑒, 𝑗 }, {𝑐 }, {ℎ, 𝑖 }) and the result of their composition, the PSIOA

𝑈 | |𝑉 in a state (𝑞2

𝑈
, 𝑞2

𝑉
) , s. t. 𝑠𝑖𝑔 (𝑈 | |𝑉) ((𝑞2

𝑈
, 𝑞2

𝑉
)) = (𝑜𝑢𝑡 (𝑈 | |𝑉) ((𝑞2

𝑈
, 𝑞2

𝑉
)), 𝑖𝑛 (𝑈 | |𝑉) ((𝑞2

𝑈
, 𝑞2

𝑉
)), 𝑖𝑛𝑡 (𝑈 | |𝑉) ((𝑞2

𝑈
, 𝑞2

𝑉
) =

({𝑏, 𝑒, 𝑗 }, {𝑎, 𝑐 }, {𝑔,ℎ, 𝑖 }) .

After this, we can speak about an execution of an automaton, which is an alternating sequence of states and actions.

We can also speak about a trace of an automaton, which is the projection of an execution on the external actions

uniquely. This allows us to speak about external behaviour of a system, that is, what can we observe from an outside

point of view.

2.2 Scheduler

We remarked in the example of figure 2 that an inherent non-determinism has to be solved to be able to define a

measure of probability on the executions, and so on the traces. This is the role of the scheduler which is a function

3

Pierre Civit and Maria Potop-Butucaru

Fig. 2. The figure represents a tree of possible executions for a PSIOA A. The red dots (𝑞0, 𝑞1,., 𝑞2,., 𝑞3,.) represents some states of
the PSIOA. The PSIOA can move from on state to another through actions (𝑎,𝑏, 𝑐,𝑑, 𝑒, 𝑓 , ...) represented with colored solid arrows.
Such an action 𝑎𝑐𝑡 , triggered from a specif state 𝑞 does not lead directly to another state 𝑞′ but to a probabilistic distribution
on states [(A,𝑞,𝑎𝑐𝑡) represented by a white dot and as many dashed black arrows as states in the support of [(A,𝑞,𝑎𝑐𝑡) , i. e. the
subset of states with non-zero probability for [(A,𝑞,𝑎𝑐𝑡) . For example, the PSIOA A can be in state 𝑞0, trigger the action 𝑎 that
leads him to [(A,𝑞,𝑎) and hence to 𝑞1,𝑢 with probability 1/4 and to 𝑞1,𝑣 with probability 3/4. Some executions are 𝑞0, 𝑎, 𝑞1,𝑣 ;
𝑞0, 𝑎, 𝑞1,𝑣, 𝑏, 𝑞2,𝑤 ; 𝑞0, 𝑎, 𝑞1,𝑣, 𝑏, 𝑞2,𝑤 ; 𝑞0, 𝑎, 𝑞1,𝑣, 𝑏, 𝑞2,𝑤 , 𝑐, 𝑞3,𝑤 ; 𝑞0, 𝑎, 𝑞1,𝑣, 𝑏, 𝑞2,𝑤 , 𝑐, 𝑞3,𝑤 ; 𝑞0, 𝑎, 𝑞1,𝑣, 𝑏, 𝑞2,𝑤 , 𝑐, 𝑞3,𝑤 . Let assume that
𝑏 and 𝑏′ are internal actions. The set of traces is then {𝑎;𝑎, 𝑐 ;𝑎, 𝑐′;𝑑 ;𝑑, 𝑒 ;𝑑, 𝑓 }. Typically 𝑎, 𝑐 = 𝑡𝑟𝑎𝑐𝑒 (𝑞0, 𝑎, 𝑞1,𝑣, 𝑏, 𝑞2,𝑤 , 𝑐, 𝑞3,𝑣) We
can already remark that a non-determinism is appearing since nothing states for the moment how two choose an action. How to
know which action to take at state 𝑞0 among 𝑎 and 𝑑 . This non-determinism will be solved by the scheduler, introduced later.

𝜎 : 𝐹𝑟𝑎𝑔𝑠∗ (A) → 𝑆𝑢𝑏𝐷𝑖𝑠𝑐 (𝑑𝑡𝑟𝑎𝑛𝑠 (A)) that (consistently) maps an execution fragment to a discrete sub-probability

distributions on set of discrete transitions of the concerned PSIOA A. Loosely speaking, the scheduler 𝜎 decides

(probabilistically) which transition to take after each finite execution fragment 𝛼 . Since this decision is a discrete sub-

probability measure, it may be the case that 𝜎 chooses to halt after 𝛼 with non-zero probability: 1−𝜎 (𝛼) (𝑑𝑡𝑟𝑎𝑛𝑠 (A)) > 0.

A scheduler 𝜎 and a probabilistic distribution ` on the set of finite execution fragments 𝐹𝑟𝑎𝑔𝑠∗ (A) generate a measure

𝜖𝜎,` on the sigma-field F𝐸𝑥𝑒𝑐𝑠 (A) generated by cones of execution fragments (of the form𝐶𝛼𝑥 = {𝛼𝑧 ∈ 𝐹𝑟𝑎𝑔𝑠 (A)|𝛼𝑧 =
𝛼𝑥⌢𝛼𝑦 |𝛼𝑦 ∈ 𝐹𝑟𝑎𝑔𝑠 (A)}), and so a measure on the measurable space (𝐺, F𝐺) for any measurable function 𝑓 from

(𝐸𝑥𝑒𝑐𝑠 (A), F𝐸𝑥𝑒𝑐𝑠 (A)) to (𝐺, F𝐺). Hence, when a scheduler is made explicit, we can state the probability that a cone of

execution is reached and that a property holds. By default, the probabilistic distribution ` on the set of finite execution

fragments 𝐹𝑟𝑎𝑔𝑠∗ (A) is 𝛿𝑠𝑡𝑎𝑟𝑡 (A) , i. e. the Dirac distribution that has a measure of 1 for the start state of the concerned

automaton A. We denote by 𝜖𝜎 = 𝜖𝜎,𝛿𝑠𝑡𝑎𝑟𝑡 (A) : 𝐸𝑥𝑒𝑐𝑠 (A) :→ [0, 1] the execution distribution generated by the

scheduler 𝜎 and 𝛿𝑠𝑡𝑎𝑟𝑡 (A) .

4

Dynamic Probabilistic Input Output Automata

2.3 Environment, external behavior, implementation

Now it is possible to define the crucial concept of implementation that captures the idea that an automatonA "mimics"

another automaton B. To do so, we define an environment E which takes on the role of a "distinguisher" for A and B.
In general, an environment of an automaton A is just an automaton compatible with A but some additional minor

technical properties can be assumed. The set of environments of the automaton A is denoted 𝑒𝑛𝑣 (A). The information

used by an environment to attempt a distinction between two automataA and B s. t. E ∈ 𝑒𝑛𝑣 (A) ∩ 𝑒𝑛𝑣 (B) is captured
by a function 𝑓(.,.) that we call insight function. In the literature, we very often deal with 𝑓(E,A) = 𝑡𝑟𝑎𝑐𝑒 (E,A) but in

our case, the theorem of implementation monotonicity (stated later) holds for a slightly different function that we call

𝑝𝑟𝑖𝑛𝑡 (E,A) which takes into account the entire execution of the environment itself. The philosophy of the approach

remains nevertheless the same.

For any insight function 𝑓(.,.) , we denote by 𝑓 -𝑑𝑖𝑠𝑡E,A (𝜎) the image measure of 𝜖𝜎 under 𝑓(E,A) . From here,

this is classic to define the 𝑓 -external behaviour of A, denoted 𝐸𝑥𝑡𝐵𝑒ℎ
𝑓

A : E ∈ 𝑒𝑛𝑣 (A) ↦→ {𝑓 -𝑑𝑖𝑠𝑡A| |E (𝜎) |𝜎 ∈
𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E||A)}. Such an object capture all the possible measures of probability on the external interaction of

the concerned automaton A and an arbitrary environment E. Finally we can say that A 𝑓 -implements B if ∀E ∈
𝑒𝑛𝑣 (A)∩𝑒𝑛𝑣 (B), 𝐸𝑥𝑡𝐵𝑒ℎ𝑓A (E) ⊆ 𝐸𝑥𝑡𝐵𝑒ℎ

𝑓

B (E), i. e. for any "distinguisher" E forA and B, for any possible distribution
𝑓 -𝑑𝑖𝑠𝑡 (E,A) (𝜎) of the interaction between E and A generated by a scheduler 𝜎 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E||A), there exists a
scheduler 𝜎 ′ ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E||B) s. t. the distribution 𝑓 -𝑑𝑖𝑠𝑡 (E,B) (𝜎 ′) of the interaction between E and B generated

by 𝜎 ′ is the same, i. e. for every external perception Z ∈ 𝑟𝑎𝑛𝑔𝑒 (𝑓(E | |A)) ∪ 𝑟𝑎𝑛𝑔𝑒 (𝑓(E | |B)), 𝑓 -𝑑𝑖𝑠𝑡E | |A (𝜎) (Z) = 𝑓 -

𝑑𝑖𝑠𝑡E | |B (𝜎 ′) (Z), noted 𝑓 -𝑑𝑖𝑠𝑡E | |A (𝜎) ≡ 𝑓 -𝑑𝑖𝑠𝑡E | |B (𝜎 ′). This a way to formalise that there is no way to distinguish A
from B. (see figure 3).

However, as already mentioned in [8], the correctness of an algorithm may be based on some specific assumptions on

the scheduling policy that is used. Thus, in general, we are interested only in a subset of 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E||A). A function

that maps any automaton𝑊 to a subset of 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (𝑊) is called a scheduler schema. Among the most noteworthy

examples are the fair schedulers, the off-line, a.k.a. oblivious schedulers, defined in opposition with the online-schedulers.

So, we note 𝐸𝑥𝑡𝐵𝑒ℎ
𝑓 ,𝑆𝑐ℎ

A : E ∈ 𝑒𝑛𝑣 (A) ↦→ {𝑓 -𝑑𝑖𝑠𝑡A| |E (𝜎) |𝜎 ∈ 𝑆𝑐ℎ(E||A)} where 𝑆𝑐ℎ is a scheduler schema and

we say that A 𝑓 -implements B according to a scheduler schema 𝑆𝑐ℎ if ∀E ∈ 𝑒𝑛𝑣 (A) ∩ 𝑒𝑛𝑣 (B), 𝐸𝑥𝑡𝐵𝑒ℎ𝑓 ,𝑆𝑐ℎA (E) ⊆
𝐸𝑥𝑡𝐵𝑒ℎ

𝑓 ,𝑆𝑐ℎ

B (E) . In the remaining, we will have a great interest for two certain classes of oblivious schedulers, i. e. i)

the creation-oblivious scheduler (introduced later) and ii) the task-scheduler: an off-line scheduler already introduced

in [2], which is relevant for cryptographic analysis. The previous notions can be adapted with a particular class of

scheduler schema.

2.4 Probabilistic Configuration Automata (PCA)

The section 5 introduces the notion of probabilistic configuration automata (PCA). (see figure 4). A PCA is very closed

to a PSIOA, but each state is mapped to a configuration 𝐶 = (A, S) which is a pair constituted by a set A of PSIOA and

the current states of each member of the set (with a mapping function S : A ∈ A ↦→ 𝑞A ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A)). The idea is that
the composition of the attached set can change during the execution of a PCA, which allows us to formalise the notion

of dynamicity, that is the potential creation and potential destruction of a PSIOA in a dynamic system. Some particular

precautions have to be taken to make it consistent.

5

Pierre Civit and Maria Potop-Butucaru

Fig. 3. An environment E, which is nothing more than a PSIOA compatible with both A and B, tries to distinguish A from B. We
say that A implements B if for every environment E, E is unable to distinguish A from B. To formalise it a little bit more, but not
totally, we say that A implements B if for every environment E ∈ 𝑒𝑛𝑣 (A) ∩ 𝑒𝑛𝑣 (B) , for every scheduler 𝜎 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E | |A)
applied to E | |A it exists a scheduler 𝜎′ ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E | |B) applied to E | |B s. t. 𝑡𝑑𝑖𝑠𝑡E||A (𝜎) ≡ 𝑡𝑑𝑖𝑠𝑡E||B (𝜎′) , i. e. for every trace
𝛽 ∈ 𝑡𝑟𝑎𝑐𝑒 (E | |A) ∪ 𝑡𝑟𝑎𝑐𝑒 (E | |B) , 𝑡𝑑𝑖𝑠𝑡E||A (𝜎) (𝛽) = 𝑡𝑑𝑖𝑠𝑡E||B (𝜎′) (𝛽) .

2.5 Road to monotonicity

The rest of the paper is dedicated to the proof of implementation monotonicity. We show that, under certain technical

conditions, automaton creation is monotonic with respect to external behavior inclusion, i. e. if a system 𝑋 creates

automatonA instead of (previously) creating automaton B and the external behaviors ofA are a subset of the external

behaviors of B, then the set of external behaviors of the overall system is possibly reduced, but not increased. Such an

external behavior inclusion result enable a design and refinement methodology based solely on the notion of externally

visible behavior, and which is therefore independent of specific methods of establishing external behavior inclusion.

It permits the refinement of components and subsystems in isolation from the entire system. To do so, we develop

different mathematical tools.

2.5.1 Execution-matching. First, we define the notion of executions-matching (see figure 5) to capture the idea that

two automata have the same comportment along some corresponding executions. Basically an execution-matching

from a PSIOA A to a PSIOA B is a morphism 𝑓 𝑒𝑥 : 𝐸𝑥𝑒𝑐𝑠 ′A → 𝐸𝑥𝑒𝑐𝑠 (B) where 𝐸𝑥𝑒𝑐𝑠 ′A ⊆ 𝐸𝑥𝑒𝑐𝑠 (A) . This morphism

preserves some properties along the pair of matched executions: signature, transition, ... in such a way that for every

pair (𝛼, 𝛼 ′) ∈ 𝐸𝑥𝑒𝑐𝑠 (A) × 𝐸𝑥𝑒𝑐𝑠 (B) s. t. 𝛼 ′ = 𝑓 𝑒𝑥 (𝛼), 𝜖𝜎 (𝛼) = 𝜖𝜎′ (𝛼 ′) for every pair of scheduler (𝜎, 𝜎 ′) (so-called
alter ego) that are "very similar" in the sense they take into account only the "structure" of the argument to return

a sub-probability distribution, i. e. 𝛼 ′ = 𝑓 𝑒𝑥 (𝛼) implies 𝜎 (𝛼) = 𝜎 ′(𝛼 ′). When the executions-matching is a bijection

function from 𝐸𝑥𝑒𝑐𝑠 (A) to 𝐸𝑥𝑒𝑐𝑠 (B), we say A and B are semantically-equivalent (they differ only syntactically).

6

Dynamic Probabilistic Input Output Automata

Fig. 4. The figure represents an execution fragment (𝑞1

𝑋
, 𝑐, 𝑞2

𝑋
, ℎ, 𝑞3

𝑋
, 𝑏, 𝑞4

𝑋
) of a PCA 𝑋 . In the left column, we see different

states 𝑞1

𝑋
, 𝑞2

𝑋
, 𝑞3

𝑋
and 𝑞4

𝑋
of the PCA 𝑋 , represented with white diamonds (⋄). Each of these states 𝑞𝑖

𝑋
is mapped through the

mapping 𝑐𝑜𝑛𝑓 𝑖𝑔 (𝑋) (represented with right dotted arrows) to a configuration 𝐶𝑖
𝑋
, represented with a white triangle (▷). For

example the state 𝑞1

𝑋
is mapped with the configuration 𝐶1

𝑋
= (A1, S1) with A1 = {𝑈 ,𝑉 }, S1 (𝑈) = 𝑞1

𝑈
and S1 (𝑉) = 𝑞1

𝑉
. The

signature of the PCA 𝑋 at state 𝑞𝑖
𝑋

is the one of the composition of automata, in their current states in the attached configuration
𝐶𝑖
𝑋
, modulo some external actions ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞𝑖

𝑋
) for 𝐶𝑖

𝑋
that are hidden and become internal for 𝑋 . For example,

the configuration 𝐶1

𝑋
has a signature 𝑠𝑖𝑔 (𝐶1

𝑋
) = (𝑜𝑢𝑡 (𝐶1

𝑋
), 𝑖𝑛 (𝐶1

𝑋
), 𝑖𝑛𝑡 (𝐶1

𝑋
)) = ({𝑏, 𝑒, 𝑐, 𝑑 }, {𝑎, 𝑓 }, {𝑔,ℎ}) , while the signature

of 𝑋 at corresponding state is 𝑠𝑖𝑔 (𝑋) (𝑞1

𝑋
) = (𝑜𝑢𝑡 (𝑋) (𝑞1

𝑋
), 𝑖𝑛 (𝑋) (𝑞1

𝑋
), 𝑖𝑛𝑡 (𝑋) (𝐶1

𝑋
)) = ({𝑏, 𝑒, 𝑐 }, {𝑎, 𝑓 }, {𝑔,ℎ,𝑑 }) since the

unique action 𝑑 ∈ ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞1

𝑋
) is hidden and hence becomes an internal action. We can define discrete transitions

for configurations in a similar way as what we do for PSIOA, but adding some tools (formally defined in section 5) to allow the
creation and the destruction of automata. For example, the automaton 𝑉 is destroyed during the step (𝑞2

𝑋
, ℎ, 𝑞3

𝑋
) , while𝑊 is

created during the step (𝑞3

𝑋
, 𝑏, 𝑞4

𝑋
) which is made explicit by the fact that 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞3

𝑋
) (𝑏) = {𝑋 } where 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) is a

mapping function defined for any PCA𝑋 . Some intuitive consistency rules have to be respected by pair of "corresponding transitions"
((𝑞𝑖

𝑋
, 𝑎𝑐𝑡, [(𝑋,𝑞𝑖

𝑋
,𝑎𝑐𝑡)) ; (𝐶

𝑖
𝑋
, 𝑎𝑐𝑡, [(𝐶𝑖

𝑋
,𝑞𝑖
𝑋
,𝑎𝑐𝑡))) represented by pair of parallel downward arrows (one from two diamonds ⋄ and

one from two triangles ▷) . For example, the probability [(𝑋,𝑞1

𝑋
,𝑐) (𝑞

2

𝑋
) of reaching 𝑞2

𝑋
by triggering 𝑐 from 𝑞1

𝑋
is equal to the

probability [(𝐶1

𝑋
,𝑞1

𝑋
,𝑎𝑐𝑡) (𝐶

2

𝑋
) of reaching 𝐶2

𝑋
by triggering 𝑐 from 𝐶1

𝑋
. Moreover, a configuration transition has to respect some

of other consistency rules with respect to the sub-automata that compose the configuration. Typically, the destruction of 𝑉 in
step (𝐶2

𝑋
, ℎ,𝐶3

𝑋
) comes from the fact that the action ℎ triggered from state 𝑞2

𝑉
of sub-automaton𝑉 lead to a probabilistic states

distribution [(𝑉 ,𝑞2

𝑉
,ℎ) equal to 𝛿𝑞𝜙

𝑉

which is a Dirac distribution for a special state 𝑞𝜙
𝑉
with 𝑠𝑖𝑔 (𝑉) (𝑞𝜙

𝑉
) = (∅, ∅, ∅) that means𝑉

"has been destroyed".

7

Pierre Civit and Maria Potop-Butucaru

Fig. 5. The figure represents the respective executions tree of two automata A and B with some strong similarities. The states of
A (resp. B) are represented with red (resp. blue) dots. The actions are represented with solid arrows. An action leads to a discrete
probability distribution on states [, represented with a white dot and dashed arrows reaching the different states of the support of
[. In section 7, we define these strong similarities with what we call an executions-matching (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) where 𝑓 : 𝑠𝑡𝑎𝑡𝑒𝑠′A →
𝑠𝑡𝑎𝑡𝑒𝑠 (B) , 𝑓 𝑡𝑟 : 𝑑𝑡𝑟𝑎𝑛𝑠′A → 𝑑𝑡𝑟𝑎𝑛𝑠 (B) , 𝑓 𝑒𝑥 : 𝐸𝑥𝑒𝑐𝑠′A → 𝐸𝑥𝑒𝑐𝑠 (B) with 𝑠𝑡𝑎𝑡𝑒𝑠′A ⊆ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) , 𝑑𝑡𝑟𝑎𝑛𝑠

′
A ⊆ 𝑑𝑡𝑟𝑎𝑛𝑠 (A) ,

𝐸𝑥𝑒𝑐𝑠′A ⊆ 𝐸𝑥𝑒𝑐𝑠 (A) . The mappings 𝑓 , 𝑓 𝑡𝑟 and 𝑓 𝑒𝑥 preserves the important properties: signature for corresponding states, name
of the action and measure of probability of corresponding states for corresponding transitions, etc. In the example the similarities
exist until the states 𝑞6, 𝑞8 and 𝑞9, hence we have 𝑠𝑡𝑎𝑡𝑒𝑠′A = {𝑞0, 𝑞1, ..., 𝑞9 } ⊊ 𝑄A . The states-matching 𝑓 is then defined s. t.
∀𝑘 ∈ [1, 9], 𝑓 (𝑞𝑘) = �̃�𝑘 . Thereafter, we define define 𝐴𝑐𝑡 = {𝑎,𝑏, 𝑐,𝑑, 𝑒, 𝑓 , ℎ} and 𝑓 𝑡𝑟𝑎𝑛𝑠 , s. t. ∀𝑘 ∈ [1, 9], ∀𝑎𝑐𝑡 ∈ 𝐴𝑐𝑡 , for every
transition (𝑞𝑘 , 𝑎𝑐𝑡, [(A,𝑞𝑘 ,𝑎𝑐𝑡)) , 𝑓 𝑡𝑟𝑎𝑛𝑠 ((𝑞𝑘 , 𝑎𝑐𝑡, [(A,𝑞𝑘 ,𝑎𝑐𝑡))) = (�̃�𝑘 , 𝑎𝑐𝑡, [(B,𝑞𝑘 ,𝑎𝑐𝑡)) . Each pair of mapped transition gives the

same probability to pair of mapped states, e. g. [(A,𝑞2,𝑑) (𝑞4) = [(B,�̃�2,𝑑) (�̃�4) . Then we can define 𝐸𝑥𝑒𝑐𝑠′A ⊂ 𝐸𝑥𝑒𝑐𝑠 (A) the set of
executions composed only with states in𝑄′A and actions in 𝐴𝑐𝑡 . Finally 𝑓 𝑒𝑥 : 𝛼 = 𝑞0𝑎1 ...𝑎𝑛𝑞𝑛 ∈ 𝐸𝑥𝑒𝑐𝑠′A ↦→ 𝑓 (𝑞0)𝑎1 ...𝑎𝑛 𝑓 (𝑞𝑛) is
an execution-matching. The Point is that if two schedulers 𝜎 and 𝜎′ only look at the preserved properties to output a measure of
probability on the actions to take, the attached measures of probability will be equal, i. e. 𝜖𝜎 (𝛼) = 𝜖𝜎′ (𝛼′)

2.5.2 A PCA 𝑋A deprived from a PSIOA A . Second, we define in section 8 the notion of a PCA 𝑋A deprived from

a PSIOA A noted (𝑋A \ {A}) . Such an automaton corresponds to the intuition of a similar automaton where A is

systematically removed from the configuration of the original PCA (see figure 6 and 7).

2.5.3 Reconstruction: (𝑋A \ {A})| | ˜A𝑠𝑤 . Thereafter we show in section 9 that under technical minor assumptions

𝑋A \ {A} and ˜A𝑠𝑤 are composable where
˜A𝑠𝑤 and A are semantically equivalent in the sense loosely introduced

in the section 2.5.1 . In fact
˜A𝑠𝑤 is the simpleton wrapper of A, that is a PCA that only owns A in its attached

configuration (see figure 8). Let us note that if A implements B, then ˜A𝑠𝑤 implements
˜B𝑠𝑤 .

8

Dynamic Probabilistic Input Output Automata

Fig. 6. Projection on PCA, part 1/2: The figure represents a PCA 𝑋 like in figure 4. A sub-automaton 𝑇 (in purple) appears in the
configurations attached to the states visited by 𝑋 . The PCA 𝑌 = 𝑋 \ {𝑇 } where the sub-automaton𝑇 is systematically removed is
represented in figure 7.

Then we show that there is an (incomplete) execution-matching from 𝑋A to (𝑋A \ {A})| | ˜A𝑠𝑤 (see figure 9). The

domain of this executions-matching is the set of executions where A is not (re-)created.

After this, we always try to reduce any reasoning on 𝑋A (resp. 𝑋B) on a reasoning on (𝑋A \ {A})| | ˜A𝑠𝑤 (resp.

(𝑋B \ {B})| | ˜B𝑠𝑤).

2.5.4 Corresponding PCA. We show in section 10 that under certain reasonable technical assumptions (captured in

the definition of corresponding PCA w. r. t. A, B) that (𝑋A \ {A}) and (𝑋B \ {B}) are semantically-equivalent. We

can note 𝑌 an arbitrary PCA semantically-equivalent to (𝑋A \ {A}) and (𝑋B \ {B}) . Finally, a reasoning on E||𝑋A
(resp. E||𝑋B) can be reduced to a reasoning on (E||𝑌) | | ˜A𝑠𝑤 = E ′ | | ˜A𝑠𝑤 (resp. E ′ | | ˜B𝑠𝑤) with E ′ = E||𝑌 . Since ˜A𝑠𝑤

implements
˜B𝑠𝑤 , we have already some results on E ′ | | ˜A𝑠𝑤 and E ′ | | ˜B𝑠𝑤 and so on E||𝑋A and E||𝑋B but only in a

subset of executions (as long as neither A nor B is (re-)created, their comportment are the same.). This reduction is

represented in the figure 10.

Cut-paste execution fragments with A (resp. B) creation at the endpoints. The reduction roughly described in figure

10 holds only for executions fragments that do not create the automata A and B after their destruction (or at very last

action). Some technical precautions have to be taken to be allowed to paste these fragments together to finally say that

9

Pierre Civit and Maria Potop-Butucaru

Fig. 7. Projection on PCA, part 2/2: the figure represents the PCA 𝑌 = 𝑋 \ {𝑇 } while the original PCA 𝑋 is represented in figure 6.
We can see that the sub-automaton𝑇 (in purple in figure 6) has been systematically removed from the configurations attached to the
states visited by 𝑌 .

A implements B implies 𝑋A implements 𝑋B . In fact, such a pasting is generally not possible for a fully information

online scheduler. This observation motivated us to introduce the creation-oblivious scheduler that outputs (randomly)

a transition without taking into account the internal actions of a sub-automaton A preceding its last destruction.

Surprisingly, the fully-offline task-scheduler introduced in [2] (slightly modified to be adapted to dynamic setting) is

not creation-oblivious and so does not verify monotonicity.

3 PRELIMINARIES ON PROBABILITY AND MEASURE

We assume our reader is comfortable with basic notions of probability theory, such as 𝜎-fields and (discrete) probability

measures. A measurable space is denoted by (𝑆, F𝑠), where 𝑆 is a set and F𝑠 is a 𝜎-algebra over 𝑆 that is F𝑠 ⊆ P(𝑆),
is closed under countable union and complementation and its members are called measurable sets (P(𝑆) denotes the
power set of 𝑆). A measure over (𝑆, F𝑠) is a function [: F𝑠 → R≥0

, such that [(∅) = 0 and for every countable

collection of disjoint sets {𝑆𝑖 }𝑖∈𝐼 in F𝑠 , [(
⋃
𝑖∈𝐼 𝑆𝑖) = Σ𝑖∈𝐼[(𝑆𝑖). A probability measure (resp. sub-probability measure)

over (𝑆, F𝑠) is a measure [such that [(𝑆) = 1 (resp. [(𝑆) ≤ 1). A measure space is denoted by (𝑆, F𝑠 , [) where [is a

measure on (𝑆, F𝑠).
10

Dynamic Probabilistic Input Output Automata

Fig. 8. The figure represents the simpleton wrapper ˜A𝑠𝑤 of an automaton A. The automaton ˜A𝑠𝑤 is a PCA that only encapsulates
one unique sub-automaton which is A. We can confuse A and ˜A𝑠𝑤 without impact. Intuitively, we can see ˜A𝑠𝑤 as a wrapper of A
that does not provide anything.

The product measure space (𝑆1, F𝑠1
, [1) ⊗ (𝑆2, F𝑠2

, [2) is the measure space (𝑆1 × 𝑆2, F𝑠1
⊗ F𝑠2

, [1 ⊗ [2), where
F𝑠1
⊗ F𝑠2

is the smallest 𝜎-algebra generated by sets of the form {𝐴 × 𝐵 |𝐴 ∈ F𝑠1
, 𝐵 ∈ F𝑠2

} and [1 ⊗ [2 is the unique

measure s. t. for every 𝐶1 ∈ F𝑠1
,𝐶2 ∈ F𝑠2

, [1 ⊗ [2 (𝐶1 ×𝐶2) = [1 (𝐶1) · [2 (𝐶2). If 𝑆 is countable, we note P(𝑆) = 2
𝑆
. If

𝑆1 and 𝑆2 are countable, we have 2
𝑆1 ⊗ 2

𝑆2 = 2
𝑆1×𝑆2

.

A discrete probability measure on a set 𝑆 is a probability measure [on (𝑆, 2𝑆), such that, for each 𝐶 ⊂ 𝑆, [(𝐶) =∑
𝑐∈𝐶 [({𝑐}). We define 𝐷𝑖𝑠𝑐 (𝑆) and 𝑆𝑢𝑏𝐷𝑖𝑠𝑐 (𝑆) to be respectively, the set of discrete probability and sub-probability

measures on 𝑆 . In the sequel, we often omit the set notation when we denote the measure of a singleton set. For a

discrete probability measure [on a set 𝑆 , 𝑠𝑢𝑝𝑝 ([) denotes the support of [, that is, the set of elements 𝑠 ∈ 𝑋 such that

[(𝑠) ≠ 0. Given set 𝑆 and a subset 𝐶 ⊂ 𝑆 , the Dirac measure 𝛿𝐶 is the discrete probability measure on 𝑆 that assigns

probability 1 to 𝐶 . For each element 𝑠 ∈ 𝑆 , we note 𝛿𝑠 for 𝛿 {𝑠 } .
If {𝑚𝑖 }𝑖∈𝐼 is a countable family of measures on (𝑆, F𝑠), and {𝑝𝑖 }𝑖∈𝐼 is a family of non-negative values, then the

expression

∑
𝑖∈𝐼 𝑝𝑖𝑚𝑖 denotes a measure𝑚 on (𝑆, F𝑠) such that, for each 𝐶 ∈ F𝑠 ,𝑚(𝐶) =

∑
𝑖∈𝐼 𝑚𝑖 𝑓𝑖 (𝐶). A function

𝑓 : 𝑋 → 𝑌 is said to be measurable from (𝑋, F𝑋) → (𝑌, F𝑌) if the inverse image of each element of F𝑌 is an element

11

Pierre Civit and Maria Potop-Butucaru

Fig. 9. The figure shows the similarities between two PCA𝑋 and𝑍 = (𝑋 \ {𝑉 }) | |�̃� 𝑠𝑤 represented in the top line. The two components
of 𝑍 , i. e. (𝑋 \ {𝑉 }) and �̃� 𝑠𝑤 are represented in the bottom line like in figure 7 and 8. These similarities are captured by the notions
of executions-matching and hold as long as the the sub-automaton𝑉 is not created after a destruction. The idea is to reduce any
reasoning on 𝑋 to a reasoning on (𝑋 \ {𝑉 }) | |�̃� 𝑠𝑤 .

of F𝑋 , that is, for each 𝐶 ∈ F𝑌 , 𝑓 −1 (𝐶) ∈ F𝑋 . In such a case, given a measure [on (𝑋, F𝑋), the function 𝑓 ([) defined
on F𝑌 by 𝑓 ([) (𝐶) = [(𝑓 −1 (𝐶)) for each 𝐶 ∈ 𝑌 is a measure on (𝑌, F𝑌) and is called the image measure of [under 𝑓 .

12

Dynamic Probabilistic Input Output Automata

Fig. 10. The figure represents successive steps to reduce the problem of an environment E that tries to distinguish two PCA 𝑋A and
𝑋B (represented at first column) to a problem of an environment ED that tries to distinguish the automata A and B (represented at
last column). The second column just remarks that the only difference between 𝑋A and 𝑋B is that A supplants B in 𝑋A . The third
column consist in the steps of deprivation (see section 2.5.2) and reconstruction (see section 2.5.3). The fourth column rearrange the
parenthesis by associativity of the parallel composition to highlight EA = E | | (𝑋A \ {A}) and EB = E | | (𝑋B \ {B}) as respective
environments of ˜A𝑠𝑤 and ˜B𝑠𝑤 . In last column, we remark that EA and EB are semantically equivalent so there it is like we deal
with a common environment EC for both ˜A𝑠𝑤 and ˜A𝑠𝑤 . If we consider only the psioa components, the problem is reduced to a
common environment ED that tries to distinguish the automata A and B. The reasoning holds only as long as the automata A and
B are not created after their destructions.

4 PROBABILISTIC SIGNATURE INPUT/OUTPUT AUTOMATA (PSIOA)

This section aims to introduce the first brick of our formalism, i. e. the probabilistic signature input/output automata

(PSIOA). A PSIOA is the result of the generalization of probabilistic input/output automata (PIOA) [8] and signature

input/output automata (SIOA) [1]. A PSIOA is thus an automaton that can randomly move from one state to another in

response to some actions. The set of possible actions is the signature of the automaton and is partitioned into input,

output and internal actions. An action can often be both the input of one automaton and the output of another one to

captures the idea that the behavior of an automaton can influence the behavior of another one. As for the SIOA [1],

the signature of a PSIOA can change according to the current state of the automaton, which allows us to formalise

dynamicity later. The figure 11 gives a first intuition of what is a PSIOA.

4.1 Action Signature

We use the signature approach from [1].

13

Pierre Civit and Maria Potop-Butucaru

Fig. 11. A representation of two automata 𝑈 and 𝑉 . In the top line, we see the PSIOA 𝑈 in a state 𝑞1

𝑈
, s. t.

𝑠𝑖𝑔 (𝑈) (𝑞1

𝑈
) = (𝑜𝑢𝑡 (𝑈) (𝑞1

𝑈
), 𝑖𝑛 (𝑈) (𝑞1

𝑈
), 𝑖𝑛𝑡 (𝑈) (𝑞1

𝑈
)) = ({𝑏, 𝑐 }, {𝑑 }, {𝑔}) , the PSIOA 𝑉 in a state 𝑞1

𝑉
, s. t. 𝑠𝑖𝑔 (𝑉) (𝑞1

𝑉
) =

(𝑜𝑢𝑡 (𝑉) (𝑞1

𝑉
), 𝑖𝑛 (𝑉) (𝑞1

𝑉
), 𝑖𝑛𝑡 (𝑉) (𝑞1

𝑉
)) = ({𝑑, 𝑒 }, {𝑐, 𝑓 }, {ℎ}) and the result of their composition, the PSIOA 𝑈 | |𝑉

in a state (𝑞1

𝑈
, 𝑞1

𝑉
) , s. t. 𝑠𝑖𝑔 (𝑈 | |𝑉) ((𝑞1

𝑈
, 𝑞1

𝑉
)) = (𝑜𝑢𝑡 (𝑈 | |𝑉) ((𝑞1

𝑈
, 𝑞1

𝑉
)), 𝑖𝑛 (𝑈 | |𝑉) ((𝑞1

𝑈
, 𝑞1

𝑉
)), 𝑖𝑛𝑡 (𝑈 | |𝑉) ((𝑞1

𝑈
, 𝑞1

𝑉
) =

({𝑏, 𝑐,𝑑, 𝑒 }, {𝑓 }, {𝑔,ℎ}) . In the second line we see the same PSIOA but in different states. We see the PSIOA 𝑈 in a state
𝑞2

𝑈
, s. t. 𝑠𝑖𝑔 (𝑈) (𝑞2

𝑈
) = (𝑜𝑢𝑡 (𝑈) (𝑞2

𝑈
), 𝑖𝑛 (𝑈) (𝑞2

𝑈
), 𝑖𝑛𝑡 (𝑈) (𝑞2

𝑈
)) = ({𝑏 }, {𝑎, 𝑗 }, {𝑔}) , the PSIOA 𝑉 in a state 𝑞2

𝑉
, s. t.

𝑠𝑖𝑔 (𝑉) (𝑞2

𝑉
) = (𝑜𝑢𝑡 (𝑉) (𝑞2

𝑉
), 𝑖𝑛 (𝑉) (𝑞2

𝑉
), 𝑖𝑛𝑡 (𝑉) (𝑞2

𝑉
)) = ({𝑒, 𝑗 }, {𝑐 }, {ℎ, 𝑖 }) and the result of their composition, the PSIOA

𝑈 | |𝑉 in a state (𝑞2

𝑈
, 𝑞2

𝑉
) , s. t. 𝑠𝑖𝑔 (𝑈 | |𝑉) ((𝑞2

𝑈
, 𝑞2

𝑉
)) = (𝑜𝑢𝑡 (𝑈 | |𝑉) ((𝑞2

𝑈
, 𝑞2

𝑉
)), 𝑖𝑛 (𝑈 | |𝑉) ((𝑞2

𝑈
, 𝑞2

𝑉
)), 𝑖𝑛𝑡 (𝑈 | |𝑉) ((𝑞2

𝑈
, 𝑞2

𝑉
) =

({𝑏, 𝑒, 𝑗 }, {𝑎, 𝑐 }, {𝑔,ℎ, 𝑖 }) .

We assume the existence of a countable set 𝐴𝑢𝑡𝑖𝑑𝑠 of unique probabilistic signature input/output automata (PSIOA)

identifiers, an underlying universal set 𝐴𝑢𝑡𝑠 of PSIOA, and a mapping 𝑎𝑢𝑡 : 𝐴𝑢𝑡𝑖𝑑𝑠 → 𝐴𝑢𝑡𝑠 . 𝑎𝑢𝑡 (A) is the PSIOA with

identifier A. We use "the automaton A" to mean "the PSIOA with identifier A". We use the letters A,B, possibly
subscripted or primed, for PSIOA identifiers. The executable actions of a PSIOA A are drawn from a signature

𝑠𝑖𝑔(A)(𝑞) = (𝑖𝑛(A)(𝑞), 𝑜𝑢𝑡 (A)(𝑞), 𝑖𝑛𝑡 (A)(𝑞)), called the state signature, which is a function of the current state 𝑞 of

A.

𝑖𝑛(A)(𝑞), 𝑜𝑢𝑡 (A)(𝑞), 𝑖𝑛𝑡 (A)(𝑞) are pairwise disjoint sets of input, output, and internal actions, respectively. We

define 𝑒𝑥𝑡 (A)(𝑞), the external signature of A in state 𝑞, to be 𝑒𝑥𝑡 (A)(𝑞) = (𝑖𝑛(A)(𝑞), 𝑜𝑢𝑡 (A)(𝑞)).
We define 𝑙𝑜𝑐𝑎𝑙 (A)(𝑞), the local signature of A in state 𝑞, to be 𝑙𝑜𝑐𝑎𝑙 (A)(𝑞) = (𝑜𝑢𝑡 (A)(𝑞), 𝑖𝑛𝑡 (A)(𝑞)). For any

signature component, generally, the .̂ operator yields the union of sets of actions within the signature, e.g., 𝑠𝑖𝑔(A) : 𝑞 ∈
𝑄 ↦→ 𝑠𝑖𝑔(A)(𝑞) = 𝑖𝑛(A)(𝑞) ∪ 𝑜𝑢𝑡 (A)(𝑞) ∪ 𝑖𝑛𝑡 (A)(𝑞). Also we define 𝑎𝑐𝑡𝑠 (A) = ⋃

𝑞∈𝑄 𝑠𝑖𝑔(A)(𝑞), that is 𝑎𝑐𝑡𝑠 (A) is
the "universal" set of all actions that 𝐴 could possibly trigger, in any state. In the same way𝑈 𝐼 (A) = ⋃

𝑞∈𝑄 𝑖𝑛(A)(𝑞),
𝑈𝑂 (A) = ⋃

𝑞∈𝑄 𝑜𝑢𝑡 (A)(𝑞),𝑈𝐻 (A) =
⋃
𝑞∈𝑄 𝑖𝑛𝑡 (A)(𝑞),𝑈𝐿(A) =

⋃
𝑞∈𝑄 �𝑙𝑜𝑐𝑎𝑙 (A)(𝑞),𝑈𝐸 (A) = ⋃

𝑞∈𝑄 𝑒𝑥𝑡 (A)(𝑞).

4.2 PSIOA

We combine the SIOA of [1] with the PIOA of [8]:

Definition 4.1 (PSIOA). A PSIOA A = (𝑄A , 𝑞A , 𝑠𝑖𝑔(A), 𝐷A), where:

• 𝑄A (a.k.a. 𝑠𝑡𝑎𝑡𝑒𝑠 (A)) is a countable set of states, (𝑄A , 2𝑄A) is a measurable space called the state space,

• 𝑞A (a. k. a. 𝑠𝑡𝑎𝑟𝑡 (A)) is the unique start state.
14

Dynamic Probabilistic Input Output Automata

• 𝑠𝑖𝑔(A) : 𝑞 ∈ 𝑄A ↦→ 𝑠𝑖𝑔(A)(𝑞) = (𝑖𝑛(𝐴) (𝑞), 𝑜𝑢𝑡 (𝐴) (𝑞), 𝑖𝑛𝑡 (𝐴) (𝑞)) is the signature function that maps each

state to a triplet of mutually disjoint countable set of actions, respectively called input, output and internal

actions.

• 𝐷A ⊂ 𝑄A × 𝑎𝑐𝑡𝑠 (A) × 𝐷𝑖𝑠𝑐 (𝑄A) (𝐷A a. k. a. 𝑑𝑡𝑟𝑎𝑛𝑠 (A)) is the set of probabilistic discrete transitions where
∀(𝑞, 𝑎, [) ∈ 𝐷A : 𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞). If (𝑞, 𝑎, [) is an element of 𝐷A , we write 𝑞

𝑎→ [and action 𝑎 is said to be

enabled at 𝑞.

In addition A must satisfy the following conditions
1
:

• E1 (action enabling) ∀𝑞 ∈ 𝑄A : ∀𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞), ∃[∈ 𝐷𝑖𝑠𝑐 (𝑄A) : (𝑞, 𝑎, [) ∈ 𝐷A .
• T1 (Transition determinism): For every 𝑞 ∈ 𝑄A and 𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞) there is at most one [(A,𝑞,𝑎) ∈ 𝐷𝑖𝑠𝑐 (𝑄A),

such that (𝑞, 𝑎, [(A,𝑞,𝑎))) ∈ 𝐷A .

Notation. For every PSIOA A ≜ (𝑄A , 𝑞A , 𝑠𝑖𝑔(A), 𝐷A), we note 𝑠𝑡𝑎𝑡𝑒𝑠 (A) ≜ 𝑄A , 𝑠𝑡𝑎𝑟𝑡 (A) ≜ 𝑞A , 𝑑𝑡𝑟𝑎𝑛𝑠 (A) ≜
𝐷A . We also note 𝑠𝑡𝑒𝑝𝑠 (A) ≜ {(𝑞, 𝑎, 𝑞′) ∈ 𝑄A × 𝑎𝑐𝑡𝑠 (A) ×𝑄A |∃(𝑞, 𝑎, [) ∈ 𝐷A , 𝑞′ ∈ 𝑠𝑢𝑝𝑝 ([)}.

4.3 Execution, Trace

We use the classic notions of execution and trace from [8] to speak about the comportment of a PSIOA.

Definition 4.2 (fragment, execution and trace of PSIOA). An execution fragment of a PSIOAA = (𝑄A , 𝑞A , 𝑠𝑖𝑔(A), 𝐷A)
is a finite or infinite sequence 𝛼 = 𝑞0𝑎1𝑞1𝑎2 ... of alternating states and actions, such that:

(1) If 𝛼 is finite, it ends with a state.

(2) For every non-final state 𝑞𝑖 , (𝑞𝑖 , 𝑎𝑖 , 𝑞𝑖+1) ∈ 𝑠𝑡𝑒𝑝𝑠 (A)

We write 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼) for 𝑞0
(the first state of 𝛼), and if 𝛼 is finite, we write 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼) for its last state. We note 𝑠𝑡𝑎𝑡𝑒𝑠 (𝛼)

(resp. 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝛼)) for the set of states (resp. actions) that compose 𝛼 . The length |𝛼 | of a finite execution fragment

𝛼 is the number of transitions along 𝛼 . The length of an infinite execution fragment 𝛼 is infinite, (|𝛼 | = 𝜔). If We

use 𝐹𝑟𝑎𝑔𝑠 (A) (resp., 𝐹𝑟𝑎𝑔𝑠∗ (A)) to denote the set of all (resp., all finite) execution fragments of A. An execution

of A is an execution fragment 𝛼 with 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼) = 𝑞. 𝐸𝑥𝑒𝑐𝑠 (A) (resp., 𝐸𝑥𝑒𝑐𝑠∗ (A)) denotes the set of all (resp., all
finite) executions of A. The trace of an execution fragment 𝛼 , written 𝑡𝑟𝑎𝑐𝑒 (𝛼), is the restriction of 𝛼 to the external

actions of A. We say that 𝛽 is a trace of A if there is 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (A) with 𝛽 = 𝑡𝑟𝑎𝑐𝑒 (𝛼). 𝑇𝑟𝑎𝑐𝑒𝑠 (A) (resp., 𝑇𝑟𝑎𝑐𝑒𝑠∗ (A))
denotes the set of all (resp., all finite) traces of A. We define a concatenation operator⌢ for execution fragments as

follows. If 𝛼 = 𝑞0𝑎1𝑞1 ...𝑎𝑛𝑞𝑛 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A) and 𝛼 ′ = 𝑠0𝑏1𝑠1 ... ∈ 𝐹𝑟𝑎𝑔𝑠 (A), we define 𝛼⌢𝛼 ′ = 𝑞0𝑎1𝑞1 ...𝑎𝑛𝑠0𝑏1𝑠1 ... only

if 𝑠0 = 𝑞𝑛 , otherwise 𝛼⌢𝛼 ′ is undefined. Hence the notation 𝛼⌢𝑠0𝑏1𝑠1 ... implicitly means 𝑠0 = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼). We also note

𝛼⌢ (𝑏1, 𝑠1) to states 𝛼⌢𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼)𝑏1𝑠1
. Let 𝛼, 𝛼 ′ ∈ 𝐹𝑟𝑎𝑔𝑠 (A), then 𝛼 is a proper prefix of 𝛼 ′ iff ∃𝛼 ′′ ∈ 𝐹𝑟𝑎𝑔𝑠 (A) such

that 𝛼 ′ = 𝛼⌢𝛼 ′′ with 𝛼 ≠ 𝛼 ′. In that case, we note 𝛼 < 𝛼 ′. We note 𝛼 ≤ 𝛼 ′ if 𝛼 < 𝛼 ′ or 𝛼 = 𝛼 ′ and say that 𝛼 is a prefix

of 𝛼 ′. We also overload⌢ and use it for concatenating traces in the obvious manner.

Definition 4.3 (reachable state). Let A = (𝑄A , 𝑞A , 𝑠𝑖𝑔(A), 𝐷A) be a PSIOA. A state 𝑞 ∈ 𝑄A is said reachable if it

exists a finite execution that ends with 𝑞. We note 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (A) the set of reachable states ofA. We also note for every

𝑠 ∈ N, 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒≤𝑠 (A) = {𝑞∗ ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (A)|∃𝑧 ≤ 𝑠, ∃𝛼 = 𝑞0𝑎1𝑞1 ...𝑞𝑧−1𝑎𝑧𝑞∗}. This is the set of states reachable in

1
The conjunction of conditions E1 and T1 could allow us to model DA as a partial function from𝑄A × 𝑎𝑐𝑡𝑠 (A) to 𝐷𝑖𝑠𝑐 (𝑄A) . However, we keep this

presentation to stay as close as possible to the usual notation of the literature. For the same reasons, we use both A ≜ (𝑄A , 𝑞A , 𝑠𝑖𝑔 (A), 𝐷A) and
A ≜ (𝑠𝑡𝑎𝑡𝑒𝑠 (A), 𝑠𝑡𝑎𝑟𝑡 (A), 𝑠𝑖𝑔 (A), 𝑑𝑡𝑟𝑎𝑛𝑠 (A))

15

Pierre Civit and Maria Potop-Butucaru

less than 𝑠 actions. We also note for every 𝑠 ∈ N∗, 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝑠 (A) = 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒≤𝑠 (A) \ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒≤𝑠−1 (A). This is the
set of states reachable in 𝑠 actions but not less. By convention, 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒0 (A) = {𝑞A }.

The set of sets {𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝑠 (A)|𝑠 ∈ N} is clearly a partition of 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (A).

4.4 Compatibility and composition

Tha main aim of IO formalism is to compose several automata A = {A1, ...,A𝑛} and obtain some guarantees of the

system by composition of the guarantees of the different elements of the system. Some syntaxic rules have to be satisfied

before defining the composition operation.

Definition 4.4 (Compatible signatures). Let 𝑆 be a set of signatures. Then 𝑆 is compatible iff, ∀𝑠𝑖𝑔, 𝑠𝑖𝑔′ ∈ 𝑆 , where
𝑠𝑖𝑔 = (𝑖𝑛, 𝑜𝑢𝑡, 𝑖𝑛𝑡), 𝑠𝑖𝑔′ = (𝑖𝑛′, 𝑜𝑢𝑡 ′, 𝑖𝑛𝑡 ′) and 𝑠𝑖𝑔 ≠ 𝑠𝑖𝑔′, we have: 1. (𝑖𝑛 ∪ 𝑜𝑢𝑡 ∪ 𝑖𝑛𝑡) ∩ 𝑖𝑛𝑡 ′ = ∅, and 2. 𝑜𝑢𝑡 ∩ 𝑜𝑢𝑡 ′ = ∅.

Definition 4.5 (Composition of Signatures). Let Σ = (𝑖𝑛, 𝑜𝑢𝑡, 𝑖𝑛𝑡) and Σ′ = (𝑖𝑛′, 𝑜𝑢𝑡 ′, 𝑖𝑛𝑡 ′) be compatible signatures.

Then we define their composition Σ × Σ = (𝑖𝑛 ∪ 𝑖𝑛′ − (𝑜𝑢𝑡 ∪ 𝑜𝑢𝑡 ′), 𝑜𝑢𝑡 ∪ 𝑜𝑢𝑡 ′, 𝑖𝑛𝑡 ∪ 𝑖𝑛𝑡 ′)2.

Signature composition is clearly commutative and associative.

Now we can define the compatibility of several automata with the compatibility of their attached signatures. First

we define compatibility at a state, and discrete transition for a set of automata for a particular compatible state.

Definition 4.6 (partially compatible at a state). Let A = {A1, ...,A𝑛} be a set of PSIOA. A state of A is an element

𝑞 = (𝑞1, ..., 𝑞𝑛) ∈ 𝑄A = 𝑄A1
× ... × 𝑄A𝑛 . We say A1, ...,A𝑛 are partially-compatible at state 𝑞 (or A is partially-

compatible at state 𝑞) if {𝑠𝑖𝑔(A1) (𝑞1), ..., 𝑠𝑖𝑔(A𝑛) (𝑞𝑛)} is a set of compatible signatures. In this case we note 𝑠𝑖𝑔(A) (𝑞) =
𝑠𝑖𝑔(A1) (𝑞1)× ...×𝑠𝑖𝑔(A𝑛) (𝑞𝑛) as per definition 4.5 and we note [(A,𝑞,𝑎) ∈ 𝐷𝑖𝑠𝑐 (𝑄A), s. t. for every action 𝑎 ∈ 𝑠𝑖𝑔(A) (𝑞),
[(A,𝑞,𝑎) = [1 ⊗ ... ⊗ [𝑛 ∈ 𝐷𝑖𝑠𝑐 (𝑄A) that verifies for every 𝑗 ∈ [1, 𝑛] :

• If 𝑎 ∈ 𝑠𝑖𝑔(A 𝑗) (𝑞 𝑗), [𝑗 = [(A 𝑗 ,𝑞 𝑗 ,𝑎) .
• Otherwise, [𝑗 = 𝛿𝑞 𝑗 (where 𝛿𝑞 𝑗 the Dirac distribution with 𝑠𝑢𝑝𝑝 (𝛿𝑞 𝑗) = {𝑞 𝑗 } and 𝛿𝑞 𝑗 (𝑞 𝑗) = 1)

which means [(A,𝑞,𝑎) = 𝛿𝑞 if 𝑎 ∉ 𝑠𝑖𝑔(A) (𝑞).

We will say a set of automata is partially-compatible, if any reachable state is compatible. This motivates the two

following definitions.

Definition 4.7 (pseudo execution). Let A = {A1, ...,A𝑛} be a set of PSIOA. A pseudo execution fragment of A is a finite

or infinite sequence 𝛼 = 𝑞0𝑎1𝑞1𝑎2 ... of alternating states of A and actions, such that:

• If 𝛼 is finite, it ends with a state of A.
• For every non final state 𝑞𝑖 , A is partially-compatible at 𝑞𝑖 .

• For every action 𝑎𝑖 , 𝑎𝑖 ∈ 𝑠𝑖𝑔(A) (𝑞𝑖−1).
• For every state 𝑞𝑖 , with 𝑖 > 0, 𝑞𝑖 ∈ 𝑠𝑢𝑝𝑝 ([(A,𝑞𝑖−1,𝑎𝑖)).

A pseudo execution of A is a pseudo execution fragment of A with 𝑞0 = (𝑞A1
, ..., 𝑞A𝑛).

Definition 4.8 (reachable state). Let A = {A1, ...,A𝑛} be a set of PSIOA. A state 𝑞 of A is reachable if it exists a pseudo

execution 𝛼 of A ending on state 𝑞.

Now we are able to define compatibility for a set of PSIOA.

2
not to be confused with Cartesian product. We keep this notation to stay as close as possible to the literature.

16

Dynamic Probabilistic Input Output Automata

Fig. 12. The family transition is obtain by the transitions of the automata of the family.

Definition 4.9 (partially-compatible PSIOA). Let A = {A1, ...,A𝑛} be a set of PSIOA. The automata A1, ...,A𝑛 are

ℓ-partially-compatible with ℓ ∈ N, if no pseudo-execution 𝛼 of A with |𝛼 | ≤ ℓ ends on non-partially-compatible state

𝑞. The automata A1, ...,A𝑛 are partially-compatible if A is partially-compatible at each reachable state 𝑞, i. e. if A is

ℓ-partially-compatible for every ℓ ∈ N.

Finally, we can formally define our operation of composition. This is the central operation of any IOA formalism.

Definition 4.10 (partially-compatible PSIOA composition). If A = {A1, ...,A𝑛} is a partially-compatible set of PSIOA,

withA𝑖 = (𝑄A𝑖 , 𝑞A𝑖 , 𝑠𝑖𝑔(A𝑖), 𝐷A𝑖), then their partial-compositionA1 | |...| |A𝑛 , is defined to beA = (𝑄A , 𝑞A , 𝑠𝑖𝑔(A), 𝐷A),
where:

• 𝑄A = {𝑞 ∈ 𝑄A1
× ... ×𝑄A𝑛 |𝑞 is a reachable state of A}.

• 𝑞A = (𝑞A1
, ..., 𝑞A𝑛)

• 𝑠𝑖𝑔(A) : 𝑞 = (𝑞1, ..., 𝑞𝑛) ∈ 𝑄A ↦→ 𝑠𝑖𝑔(A)(𝑞) = 𝑠𝑖𝑔(A1) (𝑞1) × ... × 𝑠𝑖𝑔(A𝑛) (𝑞𝑛) as per definition 4.5.

• 𝐷A ⊂ 𝑄A × 𝑎𝑐𝑡𝑠 (A) × 𝐷𝑖𝑠𝑐 (𝑄A) is the set of triples (𝑞, 𝑎, [(A,𝑞,𝑎)) so that 𝑞 ∈ 𝑄A and 𝑎 ∈ 𝑠𝑖𝑔(A) (𝑞)

This formalism extends the one proposed in [1] where it is required that all (potentially non-reachable) states are

compatible. In addition to being slightly less restrictive, this notion of composability i) may facilitate the expression of

mobile agentsmoving from one system to another (see section 5) and ii) will allow the proof of theorem of implementation

monotonicity w.r.t. PSIOA creation (see section 6).

17

Pierre Civit and Maria Potop-Butucaru

Given a parallel composition A = A1 | |...| |A𝑛 of 𝑛 PSIOA, we define the projection of an execution fragments of A
onto one of theA𝑖 , 𝑖 ∈ [1 : 𝑛], in the usual way: the state components for all PSIOA other thanA𝑖 are removed, and so

are all actions in which A𝑖 does not participate.

Definition 4.11 (Execution projection for PSIOA). Let A = A1 | |...| |A𝑛 be a PSIOA. Let 𝛼 = 𝑞0𝑎1 ...𝑎𝑛𝑞𝑛 ... ∈ 𝐹𝑟𝑎𝑔𝑠 (A).
Then, ∀𝑖 ∈ [1 : 𝑛], we define 𝛼 ↾ A𝑖 to be the sequence resulting from:

(1) replacing each 𝑞 𝑗 = (𝑞 𝑗
1
, ..., 𝑞

𝑗
𝑛) by its i’th component 𝑞

𝑗
𝑖
and then

(2) removing all 𝑎 𝑗𝑞
𝑗
𝑖
s. t. 𝑎 𝑗 ∉ 𝑠𝑖𝑔(A𝑖) (𝑞 𝑗−1

𝑖
).

The idea behind execution projection is to retain only the state of A𝑖 , and only the actions which A𝑖 participates
in. It has been shown in [1] (theorem 4, page 11), that for every PSIOA A = A1 | |...| |A𝑛 , ∀𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (A), ∀𝑖 ∈ [1 : 𝑛],
𝛼 ↾ A𝑖 ∈ 𝐸𝑥𝑒𝑐𝑠 (A𝑖).

4.5 Scheduler: define a measure on executions and traces

An inherent non-determinism appears for composable input/output (I/O) automata. Indeed, after composition (or even

before), it is natural to obtain a state with several enabled actions. The most common case is the reception of two

concurrent messages in flight from two different processes. This non-determinism must be solved if we want to define

a probability measure on the automata executions and be able to say that a situation is likely to occur or not. To solve

the non-determinism, we use a scheduler that chooses an enabled action from a signature.

4.5.1 Scheduler: general definition. A scheduler is hence a function that takes an execution fragment as input and

outputs the probability distribution on the set of transitions that will be triggered. We reuse the formalism from [8]

with the syntax from [2].

Definition 4.12 (scheduler). A scheduler of a PSIOA A is a function

𝜎 : 𝐹𝑟𝑎𝑔𝑠∗ (A) → 𝑆𝑢𝑏𝐷𝑖𝑠𝑐 (𝑑𝑡𝑟𝑎𝑛𝑠 (A)) such that (𝑞, 𝑎, [) ∈ 𝑠𝑢𝑝𝑝 (𝜎 (𝛼)) implies𝑞 = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼). Here 𝑆𝑢𝑏𝐷𝑖𝑠𝑐 (𝑑𝑡𝑟𝑎𝑛𝑠 (A))
is the set of discrete sub-probability distributions on 𝑑𝑡𝑟𝑎𝑛𝑠 (A). Loosely speaking, 𝜎 decides (probabilistically) which

transition to take after each finite execution fragment 𝛼 . Since this decision is a discrete sub-probability measure, it may

be the case that 𝜎 chooses to halt after 𝛼 with non-zero probability: 1 − 𝜎 (𝛼) (𝑑𝑡𝑟𝑎𝑛𝑠 (𝛼)) > 0. We note 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (A)
the set of schedulers of A.

Definition 4.13 (measure 𝜖𝜎,𝛼 generated by a scheduler and a fragment). A scheduler 𝜎 and a finite execution fragment

𝛼 generate a measure 𝜖𝜎,𝛼 on the sigma-field F𝐸𝑥𝑒𝑐𝑠 (A) generated by cones of execution fragments, where each cone

𝐶𝛼′ is the set of execution fragments that have 𝛼 ′ as a prefix, i. e. 𝐶𝛼′ = {𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (A)|𝛼 ′ ≤ 𝛼} . The measure of a

cone 𝐶𝛼′ is defined recursively as follows:

𝜖𝜎,𝛼 (𝐶𝛼′) = :

0 if both 𝛼 ′ ≰ 𝛼 and 𝛼 ≰ 𝛼 ′

1 if 𝛼 ′ ≤ 𝛼
𝜖𝜎,𝛼 (𝐶𝛼′′) · 𝜎 (𝛼 ′′) ([(A,𝑞′,𝑎)) · [(A,𝑞′,𝑎) (𝑞) if 𝛼 ≤ 𝛼 ′′ and 𝛼 ′ = 𝛼′′⌢𝑞′𝑎𝑞

Standard measure theoretic arguments ensure that 𝜖𝜎,𝛼 is well-defined. We call the state 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼) the first state of
𝜖𝜎,𝛼 and denote it by 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝜖𝜎,𝛼). If 𝛼 consists of the start state 𝑠𝑡𝑎𝑟𝑡 (A) only, we call 𝜖𝜎,𝛼 a probabilistic execution of

A. Let ` be a discrete probability measure over 𝐹𝑟𝑎𝑔𝑠∗ (A). We denote by 𝜖𝜎,` the measure

∑
𝛼 ∈𝑠𝑢𝑝𝑝 (`) ` (𝛼) · 𝜖𝜎,𝛼 and

we say that 𝜖𝜎,` is generated by 𝜎 and `. We call the measure 𝜖𝜎,` a generalized probabilistic execution fragment of A.

If every execution fragment in 𝑠𝑢𝑝𝑝 (`) consists of a single state, then we call 𝜖𝜎,` a probabilistic execution fragment of

A.

18

Dynamic Probabilistic Input Output Automata

Fig. 13. Non-deterministic execution: The scheduler allows us to solve the non-determinism, by triggering an action among the
enabled one. Typically after execution 𝛼 = 𝑞0 𝑑 𝑞1,𝑥 , the actions 𝑒 and 𝑓 are enabled and the probability to take one transition is
given by the scheduler 𝜎 that computes 𝜎 (𝛼) .

4.5.2 Scheduler Schema. Without restriction, a scheduler could become a too powerful adversary for practical appli-

cations. Hence, it is common to only consider a subset of schedulers, called a scheduler schema. Typically, a classic

limitation is often described by a scheduler with "partial online information". Some formalism has already been pro-

posed in [8] (section 5.6) to impose the scheduler that its choices are correlated for executions fragments in the same

equivalence class where both the equivalence relation and the correlation must to be defined. This idea has been reused

and simplified in [3] that defines equivalence classes on actions, called tasks. Then, a task-scheduler (a.k.a. "off-line"

scheduler) selects a sequence of tasks 𝑇1,𝑇2, ... in advance that it cannot modify during the execution of the automaton.

After each transition, the next task 𝑇𝑖 triggers an enabled action if there is no ambiguity and is ignored otherwise. One

of our main contribution, the theorem of implementation monotonicity w.r.t. PSIOA creation, is ensured only for a

certain scheduler schema, so-called creation-oblivious. However, we will see that the practical set of task-schedulers are

not creation-oblivious.

Definition 4.14 (scheduler schema). A scheduler schema is a function thatmaps any PSIOA𝑊 to a subset of 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (𝑊).

4.6 Implementation

In last subsection, we defined a measure of probability on executions with the help of a scheduler to solve non-

determinism. Now we can define the notion of implementation. The intuition behind this notion is the fact that any

environment E that would interact with bothA and B, would not be able to distinguishA from B. The classic use-case
is to formally show that a (potentially very sophisticated) algorithm implements a specification.

19

Pierre Civit and Maria Potop-Butucaru

For us, an environment is simply a partially-compatible automaton, but in practice, he will play the role of a

"distinguisher".

Definition 4.15 (Environment). A probabilistic environment for PSIOA A is a PSIOA E such that A and E are

partially-compatible. We note 𝑒𝑛𝑣 (A) the set of environments of A.

Now we define insight function which is a function that captures the insights that could be obtained by an external

observer to attempt a distinction.

Definition 4.16 (insight function). An insight-function is a function 𝑓(.,.) parametrized by a pair (E,A) of PSIOA
where E ∈ 𝑒𝑛𝑣 (A) so that for every PSIOA E, it exists a measurable space (𝐺E , F𝐺E), s. t. for every pair (A,B) of
PSIOA where E ∈ 𝑒𝑛𝑣 (A) ∩ 𝑒𝑛𝑣 (B), 𝑓(E,A) (resp. 𝑓(E,B)) is a measurable function from (𝐸𝑥𝑒𝑐𝑠 (E||A), F𝐸𝑥𝑒𝑐𝑠 (E | |A))
(resp. (𝐸𝑥𝑒𝑐𝑠 (E||B), F𝐸𝑥𝑒𝑐𝑠 (E | |B))) to (𝐺E , F𝐺E).

The point is that the arrival space (𝐺E , F𝐺E) is the same for the two functions 𝑓(E,A) and 𝑓(E,B) to enable a

comparison. Some examples of insight-functions are the trace function and the print function introduced later.

Since an insight-function 𝑓(.,.) is measurable, we can define the image measure of 𝜖𝜎,` under 𝑓(E,A) , i. e. the

probability to obtain a certain external perception under a certain scheduler 𝜎 and a certain probability distribution `

on the starting executions.

Definition 4.17 (𝑓 -𝑑𝑖𝑠𝑡). Let 𝑓(.,.) be an insight-function. Let (E,A) be a pair of PSIOA where E ∈ 𝑒𝑛𝑣 (A). Let `
be a probability measure on (𝐸𝑥𝑒𝑐𝑠 (E||A), F𝐸𝑥𝑒𝑐𝑠 (E | |A)), and 𝜎 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E||A). We define 𝑓 -𝑑𝑖𝑠𝑡 (E,A) (𝜎, `), to
be the image measure of 𝜖𝜎,` under 𝑓(E,A) (i. e. the function that maps any 𝐶 ∈ F𝐺E to 𝜖𝜎,` (𝑓 −1

(E,A) (𝐶))) . We note

𝑓 -𝑑𝑖𝑠𝑡 (E,A) (𝜎) for 𝑓 -𝑑𝑖𝑠𝑡 (E,A) (𝜎, 𝛿𝑠𝑡𝑎𝑟𝑡 (E,A)).

We can see next definition of 𝑓 -implementation as the incapacity of an environment to distinguish two automata if

it uses only information filtered by the insight function 𝑓 .

Definition 4.18 (𝑓 -implementation). Let 𝑓(.,.) be an insight-function. Let 𝑆𝑐ℎ be a scheduler schema. We say that A
𝑓 -implements B according to 𝑆𝑐ℎ, noted A ≤𝑓

𝑆𝑐ℎ
B, if ∀E ∈ 𝑒𝑛𝑣 (A) ∩ 𝑒𝑛𝑣 (B), ∀𝜎 ∈ 𝑆𝑐ℎ(E||A), ∃𝜎 ′ ∈ 𝑆𝑐ℎ(E||B),

𝑓 -𝑑𝑖𝑠𝑡 (E,A) (𝜎) = 𝑓 -𝑑𝑖𝑠𝑡 (E,B) (𝜎 ′).

We states a necessary and sufficient condition to obtain composability of 𝑓 -implementation.

Definition 4.19. Let 𝑓(.,.) be an insight-function. We say that 𝑓(.,.) is stable by composition if for every quadru-

plet of PSIOA (A1,A2,B, E), s. t. B is partially compatible with A1 and A2, E ∈ 𝑒𝑛𝑣 (B||A1) ∩ 𝑒𝑛𝑣 (B||A2),
for every (𝐶1,𝐶2) ∈ F𝐸𝑥𝑒𝑐𝑠 (E | |B | |A1) × F𝐸𝑥𝑒𝑐𝑠 (E | |B | |A2) , 𝑓(E | |B,A1) (𝐶1) = 𝑓(E | |B,A2) (𝐶2) =⇒ 𝑓(E,B | |A1) (𝐶1) =
𝑓(E,B | |A2) (𝐶2)

We can restate classic theorem of composability of implementation in a quite general form.

Theorem 4.20 (Implementation composability). Let 𝑓(.,.) be an insight-function stable by composition. Let 𝑆𝑐ℎ

be a scheduler schema. Let A1, A2, B be PSIOA, s.t. A1 ≤𝑓𝑆𝑐ℎ A2. If B is partially compatible with A1 and A2 then

B||A1 ≤𝑓𝑆𝑐ℎ B||A2.

Proof. If E is an environment for both B||A1 and B||A2, then E ′ = E||B is an environment for both A1 and A2.

By associativity of parallel composition, we have for every 𝑖 ∈ {1, 2}, (E||B)| |A𝑖 = E||(B||A𝑖). Since A1 ≤𝑓𝑆𝑆𝑐ℎ𝑒𝑚𝑎
20

Dynamic Probabilistic Input Output Automata

A2, for any scheduler 𝜎 ∈ 𝑆𝑐ℎ((E||B)| |A1), it exists a corresponding scheduler 𝜎 ′ ∈ 𝑆𝑐ℎ((E||B)| |A2), s. t. 𝑓 -
𝑑𝑖𝑠𝑡 (E | |B),A1

(𝜖𝜎) = 𝑓 -𝑑𝑖𝑠𝑡 (E | |B),A2
(𝜖𝜎′). Thus, by stability by composition, for any scheduler 𝜎 ∈ 𝑆𝑐ℎ(E||(B||A1)),

it exists a corresponding schedule 𝜎 ′ ∈ 𝑆𝑐ℎ(E||(B||A2)), s. t. 𝑓 -𝑑𝑖𝑠𝑡 (E,(B | |A1)) (𝜖𝜎) = 𝑓 -𝑑𝑖𝑠𝑡 (E,(B | |A2)) (𝜖𝜎′), that is
A1 | |B ≤𝑓𝑆𝑐ℎ A2 | |B. □

Now we introduce the insight function 𝑝𝑟𝑖𝑛𝑡 (E,A) that we will use for monotonicity of implementation w.r.t. PSIOA

creation.

Definition 4.21 (𝑝𝑟𝑖𝑛𝑡 (E,A)). Let A be a PSIOA and E ∈ 𝑒𝑛𝑣 (A) We note

𝑝𝑟𝑖𝑛𝑡 (E,A) :

{
𝐹𝑟𝑎𝑔𝑠 (E||A) → 𝐹𝑟𝑎𝑔𝑠 (E) × 𝑡𝑟𝑎𝑐𝑒 (A)
𝛼 ↦→ (𝛼 ↾ E, 𝑡𝑟𝑎𝑐𝑒 (𝛼))

We note 𝑃𝑟𝑖𝑛𝑡𝑠 (E,A) ≜ 𝑟𝑎𝑛𝑔𝑒 (𝑝𝑟𝑖𝑛𝑡 (E,A)) and ∀((𝑒, 𝛽), (𝑒 ′, 𝛽 ′)) ∈ 𝑃𝑟𝑖𝑛𝑡𝑠 (E,A)2, (𝑒, 𝛽) ≤ (𝑒 ′, 𝛽 ′) iff both 𝑒 ≤ 𝑒 ′

and 𝛽 ≤ 𝛽 ′. For every Z ∈ 𝑃𝑟𝑖𝑛𝑡𝑠 (E,A), we note 𝐶Z = {Z ′ ∈ 𝑃𝑟𝑖𝑛𝑡𝑠 (E,A) |Z ≤ Z ′} called a cone of prints. We note

F𝑃𝑟𝑖𝑛𝑡𝑠 (E,A) the 𝜎-field generated by the set of cones of prints.

Lemma 4.22 (print is an insight function stable by composition). LetA be a PSIOA and E ∈ 𝑒𝑛𝑣 (A). 𝑝𝑟𝑖𝑛𝑡 (E,A)
is an insight function stable by composition. a measurable function from F𝐸𝑥𝑒𝑐𝑠 (E | |A) to F𝑃𝑟𝑖𝑛𝑡𝑠 (E,A) .

Proof. (1) (measurability) We need to show that ∀𝐺 ∈ F𝑃𝑟𝑖𝑛𝑡𝑠 (E,A) , 𝑝𝑟𝑖𝑛𝑡−1

(E,A) (𝐺) ∈ F𝐹𝑟𝑎𝑔𝑠 (E | |A) .
We note 𝑓1 : 𝛼 ∈ 𝐹𝑟𝑎𝑔𝑠 (E||A) ↦→ 𝛼 ↾ E and 𝑓2 : 𝛼 ∈ 𝐹𝑟𝑎𝑔𝑠 (E||A) ↦→ 𝑡𝑟𝑎𝑐𝑒 (𝛼). We can already remark that

(*) ∀𝑖 ∈ {1, 2},∀(𝛼, 𝛼 ′) ∈ 𝐹𝑟𝑎𝑔𝑠2 (A), 𝛼 ≤ 𝛼 ′ =⇒ 𝑓𝑖 (𝛼) ≤ 𝑓𝑖 (𝛼 ′) and (**) ∀𝑖 ∈ {1, 2},∀(𝑦𝑖 , 𝛼 ′) ∈ 𝑟𝑎𝑛𝑔𝑒 (𝑓𝑖) ×
𝐹𝑟𝑎𝑔𝑠 (A), 𝑦𝑖 ≤ 𝑓𝑖 (𝛼 ′) =⇒ ∃(𝛼, 𝛼 ′′) ∈ 𝐹𝑟𝑎𝑔𝑠2 (A), 𝛼 ′ = 𝛼⌢𝛼 ′′ and 𝑓𝑖 (𝛼) = 𝑦𝑖 .
Let𝐺 ∈ F𝑃𝑟𝑖𝑛𝑡𝑠 (E,A) . By construction, it exists Z = (𝑒, 𝛽) ∈ 𝑃𝑟𝑖𝑛𝑡𝑠 (E,A) s. t.𝐺 = 𝐶Z . Let 𝐹 ≜ 𝑝𝑟𝑖𝑛𝑡

−1

(E,A) (𝐺) =
{𝛼 ′ ∈ 𝐹𝑟𝑎𝑔𝑠 (A)|Z ≤ 𝑝𝑟𝑖𝑛𝑡 (E,A) (𝛼 ′)} = 𝐹1 ∩ 𝐹2 with 𝐹1 = {𝛼 ′

1
∈ 𝐹𝑟𝑎𝑔𝑠 (A)|𝑒 ≤ 𝑓1 (𝛼 ′)} and 𝐹2 = {𝛼 ′

2
∈

𝐹𝑟𝑎𝑔𝑠 (A)|𝛽 ≤ 𝑓2 (𝛼 ′
2
)}. By (*) and (**), 𝐹1 =

⋃
𝛼1∈𝐹𝑟𝑎𝑔𝑠 (A),𝛼1↾E=𝑒 𝐶𝛼1

and 𝐹2 =
⋃
𝛼2∈𝐹𝑟𝑎𝑔𝑠 (A),𝑡𝑟𝑎𝑐𝑒 (𝛼2)=𝛽 . By

closeness of 𝜎-field under countable union, 𝐹1, 𝐹2 ∈ F𝐹𝑟𝑎𝑔𝑠 (E | |A) and by closeness of 𝜎-field under intersection

𝐹 ∈ F𝐹𝑟𝑎𝑔𝑠 (E | |A) which ends the proof.

(2) (stability by composition) Let (A1,A2,B, E) be a quadruplet of PSIOA, s. t.B is compatible withA1 andA2, E ∈
𝑒𝑛𝑣 (B||A1) ∩ 𝑒𝑛𝑣 (B||A2). Let (𝛼, 𝜋) ∈ 𝐸𝑥𝑒𝑐𝑠E | |B | |A1

× 𝐸𝑥𝑒𝑐𝑠E | |B | |A2
, clearly 𝛼 ↾ (E||B) = 𝜋 ↾ (E||B) =⇒

𝛼 ↾ E = 𝜋 ↾ E, while the trace component stay the same. Thus, for every (𝐶1,𝐶2) ∈ F𝐸𝑥𝑒𝑐𝑠 (E | |B | |A1) ×
F𝐸𝑥𝑒𝑐𝑠 (E | |B | |A2) , 𝑝𝑟𝑖𝑛𝑡 (E | |B,A1) (𝐶1) = 𝑝𝑟𝑖𝑛𝑡 (E | |B,A2) (𝐶2) =⇒ 𝑓(E,B | |A1) (𝐶1) = 𝑓(E,B | |A2) (𝐶2).

□

Thus, given an environment E of A probability measure ` on F𝐸𝑥𝑒𝑐𝑠 (E | |A) , and a scheduler 𝜎 of (E||A) we define
𝑝𝑑𝑖𝑠𝑡 (E,A) (𝜎, `) ≜ 𝑝𝑟𝑖𝑛𝑡-𝑑𝑖𝑠𝑡 (E,A) (𝜎, `), to be the image measure of 𝜖𝜎,` under 𝑝𝑟𝑖𝑛𝑡 (E,A) . We note 𝑝𝑑𝑖𝑠𝑡 (E,A) (𝜎)
for 𝑝𝑑𝑖𝑠𝑡 (E,A) (𝜎, 𝛿𝑠𝑡𝑎𝑟𝑡 (E,A)).

This choice that slightly differs from 𝑡𝑑𝑖𝑠𝑡 (E,A) (𝜎, `) = 𝑡𝑟𝑎𝑐𝑒-𝑑𝑖𝑠𝑡 (E,A) (𝜎, `) used in [4], is motivated by the

achievement of monotonicity of 𝑝𝑟𝑖𝑛𝑡-implementation w.r.t. PSIOA creation.

4.7 Hiding operator

We anticipate the definition of configuration automata by introducing the classic hiding operator. This operator "hide"

the output actions transforming them into internal actions

21

Pierre Civit and Maria Potop-Butucaru

Definition 4.23 (hiding on signature). Let 𝑠𝑖𝑔 = (𝑖𝑛, 𝑜𝑢𝑡, 𝑖𝑛𝑡) be a signature and 𝑎𝑐𝑡𝑠 a set of actions. We note

ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔, 𝑎𝑐𝑡𝑠) the signature 𝑠𝑖𝑔′ = (𝑖𝑛′, 𝑜𝑢𝑡 ′, 𝑖𝑛𝑡 ′) s. t.

• 𝑖𝑛′ = 𝑖𝑛
• 𝑜𝑢𝑡 ′ = 𝑜𝑢𝑡 \ 𝑎𝑐𝑡𝑠
• 𝑖𝑛𝑡 ′ = 𝑖𝑛𝑡 ∪ (𝑜𝑢𝑡 ∩ 𝑎𝑐𝑡𝑠)

Definition 4.24 (hiding on PSIOA). Let A = (𝑄A , 𝑞A , 𝑠𝑖𝑔(A), 𝐷A) be a PSIOA. Let ℎ a function mapping each

state 𝑞 ∈ 𝑄 to a set of output actions. We note ℎ𝑖𝑑𝑒 (A, ℎ) the PSIOA (𝑄,𝑞, 𝑠𝑖𝑔′(A), 𝐷), where 𝑠𝑖𝑔′(A) : 𝑞 ∈ 𝑄 ↦→
ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(A)(𝑞), ℎ(𝑞)).

Lemma 4.25 (hiding and composition are commutative). Let 𝑠𝑖𝑔𝑎 = (𝑖𝑛𝑎, 𝑜𝑢𝑡𝑎, 𝑖𝑛𝑡𝑎), 𝑠𝑖𝑔𝑏 = (𝑖𝑛𝑏 , 𝑜𝑢𝑡𝑏 , 𝑖𝑛𝑡𝑏) be
compatible signature and 𝑎𝑐𝑡𝑠𝑎 , 𝑎𝑐𝑡𝑠𝑏 some set of actions, s. t.

• (𝑎𝑐𝑡𝑠𝑎 ∩ 𝑜𝑢𝑡𝑎) ∩ 𝑠𝑖𝑔𝑏 = ∅ and
• (𝑎𝑐𝑡𝑠𝑏 ∩ 𝑜𝑢𝑡𝑏) ∩ 𝑠𝑖𝑔𝑏 = ∅,

then 𝑠𝑖𝑔′𝑎 ≜ ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔, 𝑎𝑐𝑡𝑎) ≜ (𝑖𝑛′𝑎, 𝑜𝑢𝑡 ′𝑎, 𝑖𝑛𝑡 ′𝑎) and 𝑠𝑖𝑔′𝑏 ≜ ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔𝑏 , 𝑎𝑐𝑡𝑏) ≜ (𝑖𝑛
′
𝑏
, 𝑜𝑢𝑡 ′

𝑏
, 𝑖𝑛𝑡 ′

𝑏
) are compatible. Further-

more, if

• 𝑜𝑢𝑡𝑏 ∩ 𝑎𝑐𝑡𝑠𝑎 = ∅ ,and
• 𝑜𝑢𝑡𝑎 ∩ 𝑎𝑐𝑡𝑠𝑏 = ∅

then 𝑠𝑖𝑔′𝑎 × 𝑠𝑖𝑔′𝑏 = ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔𝑎 × 𝑠𝑖𝑔𝑏 , 𝑎𝑐𝑡𝑎 ∪ 𝑎𝑐𝑡𝑏).

Proof. • compatibility: After hiding operation, we have:

– 𝑖𝑛′𝑎 = 𝑖𝑛𝑎 , 𝑖𝑛
′
𝑏
= 𝑖𝑛𝑏

– 𝑜𝑢𝑡 ′𝑎 = 𝑜𝑢𝑡𝑎 \ 𝑎𝑐𝑡𝑠𝑎 , 𝑜𝑢𝑡 ′𝑏 = 𝑜𝑢𝑡𝑏 \ 𝑎𝑐𝑡𝑠𝑏
– 𝑖𝑛𝑡 ′𝑎 = 𝑖𝑛𝑡𝑎 ∪ (𝑜𝑢𝑡𝑎 ∩ 𝑎𝑐𝑡𝑠𝑎), 𝑖𝑛𝑡 ′𝑏 = 𝑖𝑛𝑡𝑏 ∪ (𝑜𝑢𝑡𝑏 ∩ 𝑎𝑐𝑡𝑠𝑏)

Since 𝑜𝑢𝑡𝑎 ∩ 𝑜𝑢𝑡𝑏 = ∅, a fortiori 𝑜𝑢𝑡 ′𝑎 ∩ 𝑜𝑢𝑡 ′𝑏 = ∅. 𝑖𝑛𝑡𝑎 ∩ 𝑠𝑖𝑔𝑏 = ∅, thus if (𝑜𝑢𝑡𝑎 ∩ 𝑎𝑐𝑡𝑠𝑎) ∩ 𝑠𝑖𝑔𝑏 = ∅, then
𝑖𝑛𝑡 ′𝑎 ∩ 𝑠𝑖𝑔𝑏 = ∅ and with the symetric argument, 𝑖𝑛𝑡 ′

𝑏
∩ 𝑠𝑖𝑔𝑎 = ∅. Hence, 𝑠𝑖𝑔′𝑎 and 𝑠𝑖𝑔′

𝑏
are compatible.

• commutativity:

After composition of 𝑠𝑖𝑔′𝑐 = 𝑠𝑖𝑔
′
𝑎 × 𝑠𝑖𝑔′𝑏 operation, we have:

– 𝑜𝑢𝑡 ′𝑐 = 𝑜𝑢𝑡 ′𝑎 ∪ 𝑜𝑢𝑡 ′𝑏 = (𝑜𝑢𝑡𝑎 \ 𝑎𝑐𝑡𝑠𝑎) ∪ (𝑜𝑢𝑡𝑏 \ 𝑎𝑐𝑡𝑠𝑏). If 𝑜𝑢𝑡𝑏 ∩ 𝑎𝑐𝑡𝑠𝑎 = ∅ and 𝑜𝑢𝑡𝑎 ∩ 𝑎𝑐𝑡𝑠𝑏 = ∅, then
𝑜𝑢𝑡 ′𝑐 = (𝑜𝑢𝑡𝑎 ∪ 𝑜𝑢𝑡𝑏) \ (𝑎𝑐𝑡𝑠𝑎 ∪ 𝑎𝑐𝑡𝑠𝑏).

– 𝑖𝑛′𝑐 = 𝑖𝑛
′
𝑎 ∪ 𝑖𝑛′𝑏 \ 𝑜𝑢𝑡

′
𝑐 = 𝑖𝑛𝑎 ∪ 𝑖𝑛𝑏 \ 𝑜𝑢𝑡 ′𝑐

– 𝑖𝑛𝑡 ′𝑐 = 𝑖𝑛𝑡
′
𝑎 ∪𝑖𝑛𝑡 ′𝑏 = 𝑖𝑛𝑡𝑎 ∪ (𝑜𝑢𝑡𝑎 ∩𝑎𝑐𝑡𝑠𝑎)𝑖𝑛𝑡𝑏 ∪ (𝑜𝑢𝑡𝑏 ∩𝑎𝑐𝑡𝑠𝑏) = 𝑖𝑛𝑡𝑎 ∪𝑖𝑛𝑡𝑏 ∪ (𝑜𝑢𝑡𝑎 ∩𝑎𝑐𝑡𝑠𝑎) ∪ (𝑜𝑢𝑡𝑏 ∩𝑎𝑐𝑡𝑠𝑏).

If 𝑜𝑢𝑡𝑏 ∩ 𝑎𝑐𝑡𝑠𝑎 = ∅ and 𝑜𝑢𝑡𝑎 ∩ 𝑎𝑐𝑡𝑠𝑏 = ∅, then 𝑖𝑛𝑡 ′𝑐 = 𝑖𝑛𝑡𝑎 ∪ 𝑖𝑛𝑡𝑏 ∪ ((𝑜𝑢𝑡𝑎 ∪ 𝑜𝑢𝑡𝑏) ∩ (𝑎𝑐𝑡𝑠𝑎 ∪ 𝑎𝑐𝑡𝑠𝑏).
and after composition of 𝑠𝑖𝑔𝑑 = 𝑠𝑖𝑔𝑎 × 𝑠𝑖𝑔𝑏
– 𝑜𝑢𝑡𝑑 = 𝑜𝑢𝑡𝑎 ∪ 𝑜𝑢𝑡𝑏
– 𝑖𝑛𝑑 = 𝑖𝑛𝑎 ∪ 𝑖𝑛𝑏 \ 𝑜𝑢𝑡𝑑
– 𝑖𝑛𝑡𝑑 = 𝑖𝑛𝑡𝑎 ∪ 𝑖𝑛𝑡𝑏

Finally, after hiding operation 𝑠𝑖𝑔′
𝑑
= ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔𝑑 , 𝑎𝑐𝑡𝑠𝑎 ∪ 𝑎𝑐𝑡𝑠𝑏) we have :

– 𝑖𝑛′
𝑑
= 𝑖𝑛𝑑

– 𝑜𝑢𝑡 ′
𝑑
= 𝑜𝑢𝑡𝑑 \ 𝑎𝑐𝑡𝑠𝑎 ∪ 𝑎𝑐𝑡𝑠𝑏 = (𝑜𝑢𝑡𝑎 ∪ 𝑜𝑢𝑡𝑏) \ (𝑎𝑐𝑡𝑠𝑎 ∪ 𝑎𝑐𝑡𝑠𝑏)

– 𝑖𝑛𝑡 ′
𝑑
= 𝑖𝑛𝑡𝑑 ∪ (𝑜𝑢𝑡𝑑 ∩ (𝑎𝑐𝑡𝑠𝑎 ∪ 𝑎𝑐𝑡𝑠𝑏)) = (𝑖𝑛𝑡𝑎 ∪ 𝑖𝑛𝑡𝑏) ∪ (𝑜𝑢𝑡𝑑 ∩ (𝑎𝑐𝑡𝑠𝑎 ∪ 𝑎𝑐𝑡𝑠𝑏))

22

Dynamic Probabilistic Input Output Automata

Thus, if 𝑜𝑢𝑡𝑏 ∩ 𝑎𝑐𝑡𝑠𝑎 = ∅ and 𝑜𝑢𝑡𝑎 ∩ 𝑎𝑐𝑡𝑠𝑏 = ∅
– 𝑖𝑛′

𝑑
= 𝑖𝑛′𝑐

– 𝑜𝑢𝑡 ′
𝑑
= 𝑜𝑢𝑡 ′𝑐

– 𝑖𝑛𝑡 ′
𝑑
= 𝑖𝑛𝑡 ′𝑐

□

Remark 1. We can restrict hiding operation to set of actions included in the set of output actions of the signature

(𝑎𝑐𝑡 ⊆ 𝑜𝑢𝑡). In this case, since we alreay have 𝑜𝑢𝑡𝑎 ∩ 𝑜𝑢𝑡𝑏 = ∅ by compatibility, we immediatly have 𝑜𝑢𝑡𝑎 ∩ 𝑎𝑐𝑡𝑠𝑏 = ∅ and
𝑜𝑢𝑡𝑏 ∩ 𝑎𝑐𝑡𝑠𝑎 = ∅. Thus to obtain compatibility, we only need 𝑖𝑛𝑏 ∩ 𝑎𝑐𝑡𝑠𝑎 = ∅ and 𝑖𝑛𝑎 ∩ 𝑎𝑐𝑡𝑠𝑏 = ∅. Later, the compatibility

of PCA will implicitly assume this predicate (otherwise the PCA could not be compatible).

4.8 State renaming operator

We anticipate the definition of isomorphism between PSIOA that differs only syntactically.

Definition 4.26. (State renaming for PSIOA) Let A be a PSIOA with 𝑄A as set of states, let 𝑄A′ be another set of

states and let 𝑟𝑒𝑛 : 𝑄A → 𝑄A′ be a bijective mapping. Then 𝑟𝑒𝑛(A) (we abuse the notation) is the automaton given

by:

• 𝑠𝑡𝑎𝑟𝑡 (𝑟𝑒𝑛(A)) = 𝑟𝑒𝑛(𝑠𝑡𝑎𝑟𝑡 (A))
• 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑟𝑒𝑛(A)) = 𝑟𝑒𝑛(𝑠𝑡𝑎𝑡𝑒𝑠 (A))
• ∀𝑞A′ ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑟𝑒𝑛(A)), 𝑠𝑖𝑔(𝑟𝑒𝑛(A))(𝑞A′) = 𝑠𝑖𝑔(A)(𝑟𝑒𝑛−1 (𝑞A′))
• ∀𝑞A′ ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑟𝑒𝑛(A)),∀𝑎 ∈ 𝑠𝑖𝑔(𝑟𝑒𝑛(A))(𝑞A′), if (𝑟𝑒𝑛−1 (𝑞A′), 𝑎, [) ∈ 𝐷A , then (𝑞A′, 𝑎, [′) ∈ 𝐷𝑟𝑒𝑛 (A)

where [′ ∈ 𝐷𝑖𝑠𝑐 (𝑄A′, F𝑄A′) and for every 𝑞A′′ ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑟𝑒𝑛(A)), [′(𝑞A′′) = [(𝑟𝑒𝑛−1 (𝑞A′′)).

Definition 4.27. (State renaming for PSIOA execution) Let A and A ′ be two PSIOA s. t. A ′ = 𝑟𝑒𝑛(A ′). Let 𝛼 =

𝑞0𝑎1𝑞1 ... be an execution fragment of A. We note 𝑟𝑒𝑛(𝛼) the sequence 𝑟𝑒𝑛(𝑞0)𝑎1𝑟𝑒𝑛(𝑞1)

Lemma 4.28. Let A and A ′ be two PSIOA s. t. A ′ = 𝑟𝑒𝑛(A) with 𝑟𝑒𝑛 : 𝑠𝑡𝑎𝑡𝑒𝑠 (A) → 𝑠𝑡𝑎𝑡𝑒𝑠 (A ′) being a bijective

map. Let 𝛼 be an execution fragment of A. The sequence 𝑟𝑒𝑛(𝛼) is an execution fragment of A.

Proof. Let 𝑞 𝑗𝑎 𝑗+1𝑞 𝑗+1 be a subsequence of 𝛼 . 𝑟𝑒𝑛(𝑞 𝑗) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A ′) by definition, 𝑎 𝑗 ∈ 𝑠𝑖𝑔(A ′) (𝑟𝑒𝑛(𝑞 𝑗)) since
𝑠𝑖𝑔(A ′) (𝑟𝑒𝑛(𝑞 𝑗)) = 𝑠𝑖𝑔(A)(𝑞 𝑗), and [(A′,𝑟𝑒𝑛 (𝑞 𝑗),𝑎 𝑗+1) (𝑟𝑒𝑛(𝑞 𝑗+1)) = [(A,𝑞 𝑗 ,𝑎 𝑗+1) (𝑞 𝑗+1) > 0. □

5 PROBABILISTIC CONFIGURATION AUTOMATA

We combine the notion of configuration of [1] with the probabilistic setting of [8]. A configuration is a set of automata

attached with their current states. This will be a very useful tool to define dynamicity by mapping the state of

an automaton of a certain "layer" to a configuration of automata of lower layer, where the set of automata in the

configuration can dynamically change from on state of the automaton of the upper level to another one.

5.1 configuration

Definition 5.1 (Configuration). A configuration is a pair (A, S) where

• A = {A1, ...,A𝑛} is a finite set of PSIOA identifiers and

• S maps each A𝑘 ∈ A to an 𝑠𝑘 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A𝑘).
23

Pierre Civit and Maria Potop-Butucaru

In distributed computing, configuration usually refers to the union of states of all the automata of the "system".

Here, there is a subtlety, since it captures a set of some automata (A) in their current state (S), but the set of automata of

the systems will not be fixed in the time.

Definition 5.2 (Compatible configuration). A configuration (A, S), with A = {A1, ...,A𝑛}, is compatible iff the set A is

compatible at state (S(A1), ..., S(A𝑛)) as per definition 4.6

Definition 5.3 (Intrinsic attributes of a configuration). Let 𝐶 = (A, S) be a compatible configuration. Then we define

• 𝑎𝑢𝑡𝑠 (𝐶) = A represents the automata of the configuration,

• 𝑚𝑎𝑝 (𝐶) = S maps each automaton of the configuration with its current state,

• 𝑜𝑢𝑡 (𝐶) = ⋃
A∈A 𝑜𝑢𝑡 (A)(S(A)) represents the output actions of the configuration,

• 𝑖𝑛(𝐶) = (⋃A∈A 𝑖𝑛(A)(S(A))) − 𝑜𝑢𝑡 (𝐶) represents the input actions of the configuration,
• 𝑖𝑛𝑡 (𝐶) = ⋃

A∈A 𝑖𝑛𝑡 (A)(S(A)) represents the internal actions of the configuration,
• 𝑒𝑥𝑡 (𝐶) = 𝑖𝑛(𝐶) ∪ 𝑜𝑢𝑡 (𝐶) represents the external actions of the configuration,
• 𝑠𝑖𝑔(𝐶) = (𝑖𝑛(𝐶), 𝑜𝑢𝑡 (𝐶), 𝑖𝑛𝑡 (𝐶)) is called the intrinsic signature of the configuration,

• 𝑈𝑆 (𝐶) = (S(A1), ..., S(A𝑛)) represents the states of the set of automata of the configuration.

Here we define a reduced configuration as a configuration deprived of the automata that are in the very particular

state where their current signatures are the empty set. This mechanism will be used later to capture the idea of

destruction of an automaton.

Definition 5.4 (Reduced configuration). 𝑟𝑒𝑑𝑢𝑐𝑒 (𝐶) = (A′, S′), where A′ = {A|A ∈ A and 𝑠𝑖𝑔(A)(S(A)) ≠ ∅} and S′

is the restriction of S to A′, noted S ↾ A′ in the remaining.

A configuration 𝐶 is a reduced configuration iff 𝐶 = 𝑟𝑒𝑑𝑢𝑐𝑒 (𝐶).

5.2 Configuration transition

We will define some probabilistic transition from configurations to others where some automata can be destroyed or

created. To define it properly, we start by defining "preserving transition" where no automaton is neither created nor

destroyed and then we define above this definition the notion of configuration transition. These distributions belong to

the measurable set (𝑄𝑐𝑜𝑛𝑓 , 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓)) where 𝑄𝑐𝑜𝑛𝑓 denotes the (countable) set of configurations.

Lemma 5.5. The set 𝑄𝑐𝑜𝑛𝑓 of configurations is countable.

Proof. (1) {A ∈ P(𝐴𝑢𝑡𝑖𝑑𝑠) |A is finite } is countable, (2) ∀A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠, 𝑠𝑡𝑎𝑡𝑒𝑠 (A) is countable by definition 4.1 of

PSIOA and (3) the cartesian product of countable sets is a countable set. □

Definition 5.6 (Preserving distribution). A preserving distribution [𝑝 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓) s. t. it exists a set of automata A,
called automata support of [𝑝 , such that ∀(A′, S′) ∈ 𝑠𝑢𝑝𝑝 ([𝑝),A = A′.

We define a companion distribution as the natural distribution of the corresponding set of automata at the corre-

sponding current state. Since no creation or destruction occurs, these definitions can seem redundant, but this is only

an intermediate step to define properly the "dynamic" distribution.

Definition 5.7 (Companion distribution). Let 𝐶 = (A, S) be a compatible configuration with A = {A1, ...,A𝑛} and
S : A𝑖 ∈ A ↦→ 𝑞𝑖 ∈ 𝑄A𝑖 (with A partially-compatible at state 𝑞 = (𝑞1, ..., 𝑞𝑛) ∈ 𝑄A = 𝑄A1

× ... × 𝑄A𝑛). Let [𝑝 be a

24

Dynamic Probabilistic Input Output Automata

preserving distribution with A as automata support. The probabilistic distribution [(A,𝑞,𝑎) is a companion distribution

of [𝑝 if for every 𝑞′ = (𝑞′
1
, ..., 𝑞′𝑛) ∈ 𝑄A, for every S′′ : A𝑖 ∈ A ↦→ 𝑞′′

𝑖
∈ 𝑄A𝑖 ,

if for every configuration 𝐶 ′′, for every 𝑞′ ∈ 𝑄A,𝑈𝑆 (𝐶 ′′) = 𝑞′ =⇒ [(A,𝑞,𝑎) (𝑞′) = [𝑝 (𝐶 ′′).
that is the distribution [(A,𝑞,𝑎) corresponds exactly to the distribution [𝑝 .

This is "a" and not "the" companion distribution since [𝑝 does not explicit the start configuration. So [𝑝 can have

several companion distributions.

Fig. 14. A preserving distribution is matching its companion distribution.

Now, we can naturally define a preserving transition (𝐶, 𝑎, [𝑝) from a configuration 𝐶 via an action 𝑎 with a

companion transition of [𝑝 . It allows us to say what is the "static" probabilistic transition from a configuration 𝐶 via an

action 𝑎 if no creation or destruction occurs.

Definition 5.8 (preserving transition). Let 𝐶 = (A, S) be a compatible configuration, 𝑞 = 𝑈𝑆 (𝐶) and [𝑝 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓)
be a preserving transition with A𝑠 as automata support.

Then we say that (𝐶, 𝑎, [𝑝) is a preserving configuration transition, noted 𝐶
𝑎
⇀ [𝑝 if

• A𝑠 = A
• [(A,𝑞,𝑎) is a companion distribution of [𝑝

For every preserving configuration transition (𝐶, 𝑎, [𝑝), we note [((𝐶,𝑎),𝑝) = [𝑝 .

The preserving transition of a configuration corresponds to the transition of the composition of the corresponding

automata at their corresponding current states.

Now we are ready to define our "dynamic" transition, that allows a configuration to create or destroy some automata.

At first, we define reduced distribution that leads to reduced configurations only, where all the automata that reach a

state with an empty signature are destroyed.

Definition 5.9 (reduced distribution). A reduced distribution [𝑟 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓) is a probabilistic distribution verifying

that for every configuration 𝐶 ∈ 𝑠𝑢𝑝𝑝 ([𝑟), 𝐶 = 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 (𝐶).

Now, we generate reduced distribution with a preserving distribution that describes what happen to the automata

that already exist and a set of new automata that are created.

25

Pierre Civit and Maria Potop-Butucaru

Definition 5.10 (Generation of reduced distribution). Let [𝑝 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓) be a preserving distribution with A as

automata support. Let 𝜑 ⊂ 𝐴𝑢𝑡𝑖𝑑𝑠 , 𝜑 is finite. We say the reduced distribution [𝑟 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓) is generated by [𝑝 and

𝜑 if it exists a non-reduced distribution [𝑛𝑟 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓), s. t.

• (𝜑 is created with probability 1)

∀(A′′, S′′) ∈ 𝑠𝑢𝑝𝑝 ([𝑛𝑟), A′′ = A ∪ 𝜑 .
• (freshly created automata start at start state) ∀𝐶 ′′ = (A′′, S′′) ∈ 𝑠𝑢𝑝𝑝 ([𝑛𝑟), ∀A𝑖 ∈ 𝜑 \ A, S′′(A𝑖) = 𝑠𝑡𝑎𝑟𝑡 (A𝑖)
• (The non-reduced transition match the preserving transition)

∀(A′′, S′′) ∈ 𝑄𝑐𝑜𝑛𝑓 , s. t. A′′ = A ∪ 𝜑 and ∀A𝑖 ∈ 𝜑 \ A, S′′(A𝑖) = 𝑠𝑡𝑎𝑟𝑡 (A𝑖), [𝑛𝑟 ((A′′, S′′)) = [𝑝 (A, S′′⌈A))
where S′′⌈A) denotes the restriction of S′′ on A)
• (The reduced transition match the non-reduced transition)

∀𝑐 ′ ∈ 𝑄𝑐𝑜𝑛𝑓 , if 𝑐 ′ = 𝑟𝑒𝑑𝑢𝑐𝑒 (𝑐 ′), [𝑟 (𝑐 ′) = Σ (𝑐′′,𝑐′=𝑟𝑒𝑑𝑢𝑐𝑒 (𝑐′′))[𝑛𝑟 (𝑐 ′′), if 𝑐 ′ ≠ 𝑟𝑒𝑑𝑢𝑐𝑒 (𝑐 ′), then [𝑟 (𝑐 ′) = 0

Definition 5.11 (Intrinsic transition). Let (A, S) be arbitrary reduced compatible configuration, let [∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓),
and let 𝜑 ⊆ 𝐴𝑢𝑡𝑖𝑑𝑠 , 𝜑 ∩ A = ∅ and 𝜑 is finite. Then ⟨A, S⟩ 𝑎

=⇒𝜑 [if [is generated by [𝑝 and 𝜑 with (A, S) 𝑎⇀ [𝑝 .

Fig. 15. An intrinsic transition where A1 is destroyed deterministically and A4 is created deterministically.

The assumption of deterministic creation is not restrictive, nothing prevents from flipping a coin at state 𝑠0 to reach

𝑠1 with probability 𝑝 or 𝑠2 with probability 1 − 𝑝 and only create a new automaton in state 𝑠2 with probability 1, while

the action create is not enabled in state 𝑠1.

5.3 Probabilistic Configuration Automata

Here we define our probabilistic configuration automata. Just before that, we introduce a notation to represents

corresponding probability measures whose respective supports are linked by a bijection that preserves the measure.

Definition 5.12 ([
𝑓
↔ [′). Let 𝑄 and 𝑄 ′ be two countable sets. Let ([, [′) ∈ 𝐷𝑖𝑠𝑐 (𝑄) × 𝐷𝑖𝑠𝑐 (𝑄 ′). Let 𝑓 : 𝑄 → 𝑄 ′. We

note [
𝑓
↔ [′ if the following is verified:

26

Dynamic Probabilistic Input Output Automata

• the restriction
˜𝑓 of 𝑓 to 𝑠𝑢𝑝𝑝 ([) is a bijection from 𝑠𝑢𝑝𝑝 ([) to 𝑠𝑢𝑝𝑝 ([′)

• ∀𝑞 ∈ 𝑠𝑢𝑝𝑝 ([), [(𝑞) = [′(𝑓 (𝑞))

Lemma 5.13. [
𝑓
↔ [′ and [′

𝑔
↔ [′′ implies

• [ℎ↔ [′′ where the restriction ˜ℎ of ℎ on 𝑠𝑢𝑝𝑝 ([) verifies ˜ℎ = 𝑔 ◦ ˜𝑓 and

• [′ 𝑘↔ [where the restriction ˜𝑘 to 𝑠𝑢𝑝𝑝 ([′) verifies ˜𝑘 = ˜𝑓 −1

Proof. For the first item: The composition of two bijection is a bijection and the reverse function of a bijection

is a bijection. For the second item: In the first case, ∀𝑞 ∈ 𝑠𝑢𝑝𝑝 ([), [(𝑞) = [′(𝑓 (𝑞)) with 𝑓 (𝑞) ∈ 𝑠𝑢𝑝𝑝 ([′) which
means [′(𝑓 (𝑞)) = [′′(𝑔(𝑓 (𝑞))). In the second case ∀𝑞′ ∈ 𝑠𝑢𝑝𝑝 ([′), ∃!𝑞 ∈ 𝑠𝑢𝑝𝑝 ([), [(𝑞) = [′(𝑞′ = ˜𝑓 (𝑞)) and hence

∀𝑞′ ∈ 𝑠𝑢𝑝𝑝 ([′), [′(𝑞′) = [(𝑞 = ˜𝑓 −1 (𝑞′)). □

Now we are ready to define our probabilistic configuration automata. Such an automaton define a strong link with a

dynamic configuration.

Definition 5.14 (Probabilistic Configuration Automaton). A probabilistic configuration automaton (PCA) 𝐾 consists of

the following components:

• 1. A probabilistic signature I/O automaton 𝑝𝑠𝑖𝑜𝑎(𝐾). For brevity, we define 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾) = 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑝𝑠𝑖𝑜𝑎(𝐾)), 𝑠𝑡𝑎𝑟𝑡 (𝐾) =
𝑠𝑡𝑎𝑟𝑡 (𝑝𝑠𝑖𝑜𝑎(𝐾)), 𝑠𝑖𝑔(𝐾) = 𝑠𝑖𝑔(𝑝𝑠𝑖𝑜𝑎(𝐾)), 𝑠𝑡𝑒𝑝𝑠 (𝐾) = 𝑠𝑡𝑒𝑝𝑠 (𝑝𝑠𝑖𝑜𝑎(𝐾)), and likewise for all other (sub)components

and attributes of 𝑝𝑠𝑖𝑜𝑎(𝐾).
• 2. A configuration mapping 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) with domain 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾) and such that 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞𝐾) is a reduced

compatible configuration for all 𝑞𝐾 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾).
• 3. For each𝑞𝐾 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾), a mapping 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾) (𝑞𝐾) with domain 𝑠𝑖𝑔(𝐾) (𝑞𝐾) and such that∀𝑎 ∈ 𝑠𝑖𝑔(𝐾) (𝑞𝐾),
𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾) (𝑞𝐾) (𝑎) ⊆ 𝐴𝑢𝑡𝑖𝑑𝑠 with 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾) (𝑞𝐾) (𝑎) finite.
• 4. A hidden-actionsmappingℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝐾) with domain 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾) and such thatℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝐾) (𝑞𝐾) ⊆
𝑜𝑢𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞𝐾)).

and satisfies the following constraints

• 1. (start states preservation) If 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞𝐾) = (A, S), then ∀A𝑖 ∈ A, S(A𝑖) = 𝑞𝑖
• 2. (top/down transition preservation) If (𝑞𝐾 , 𝑎, [(𝐾,𝑞𝐾 ,𝑎)) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (𝐾) then it exists [′ ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓) s. t.

[(𝐾,𝑞𝐾 ,𝑎)
𝑓
←→ [′ with i) 𝑓 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) and ii) 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞𝐾)

𝑎
=⇒𝜑 [

′
, where 𝜑 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾) (𝑞𝐾) (𝑎)

• 3. (bottom/up transition preservation) If 𝑞𝐾 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾) and 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞𝐾)
𝑎
=⇒𝜑 [

′
for some action 𝑎, 𝜑 =

𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾) (𝑥) (𝑎), and reduced compatible probabilistic measure [′ ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓), then (𝑞𝐾 , 𝑎, [(𝐾,𝑞𝐾 ,𝑎)) ∈

𝑑𝑡𝑟𝑎𝑛𝑠 (𝐾), and [(𝐾,𝑞𝐾 ,𝑎)
𝑓
←→ [′ with 𝑓 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) .

• 4. (signature preservationmodulo hiding) For all𝑞𝐾 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾) , 𝑠𝑖𝑔(𝐾) (𝑞𝐾) = ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞𝐾)), ℎ𝑖𝑑𝑑𝑒𝑛-
𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑞𝐾)), which implies that

– (a) 𝑜𝑢𝑡 (𝐾) (𝑞𝐾) ⊆ 𝑜𝑢𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞𝐾)),
– (b) 𝑖𝑛(𝐾) (𝑞𝐾) = 𝑖𝑛(𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞𝐾)),
– (c) 𝑖𝑛𝑡 (𝐾) (𝑞𝐾) ⊇ 𝑖𝑛𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞𝐾)), and
– (d) 𝑜𝑢𝑡 (𝐾) (𝑞𝐾) ∪ 𝑖𝑛𝑡 (𝑋) (𝑞𝐾) = 𝑜𝑢𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞𝐾)) ∪ 𝑖𝑛𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞𝐾))

This definition, proposed in a deterministic fashion in [1], captures dynamicity of the system. Each state is linked

with a configuration. The set of automata of the configuration can change during an execution. A sub-automaton A
27

Pierre Civit and Maria Potop-Butucaru

is created from state 𝑞 by the action 𝑎 if A ∈ 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾) (𝑞) (𝑎). A sub-automaton A is destroyed if the non-reduced

attached configuration distribution lead to a configuration where A is in a state 𝑞
𝜙

A s. t. 𝑠𝑖𝑔(A)(𝑞𝜙A) = ∅. Then the

corresponding reduced configuration will not hold A. The last constraint states that the signature of a state 𝑞𝐾 of 𝐾

must be the same as the signature of its corresponding configuration 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞𝐾), except for the possible effects of
hiding operators, so that some outputs of 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞𝐾) may be internal actions of 𝐾 in state 𝑞𝐾 .

Fig. 16. A PCA life cycle.

Definition 5.15 (hiding on PCA). Let 𝑋 be a PCA. Let ℎ : 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) ↦→ ℎ(𝑞) ⊂ 𝑜𝑢𝑡 (𝑋) (𝑞) a function mapping

each state 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) to a set of output actions. We note ℎ𝑖𝑑𝑒 (𝑋,ℎ) the PCA 𝑋 ′ that differs from 𝑋 only on 𝑠𝑖𝑔(𝑋 ′)
and ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋 ′), where ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) = 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋 ′),

• 𝑠𝑖𝑔(𝑋 ′) (𝑞) = ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑋) (𝑞), ℎ(𝑞)) and
• ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋 ′) (𝑞) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞) ∪ ℎ(𝑞).

Additionally, we recursively define the current constitution of a PCA. To do so, we assume the existence of a subset

𝐴𝑢𝑡𝑖𝑑𝑠0 ⊂ 𝐴𝑢𝑡𝑖𝑑𝑠 that represents the "atomic entities" of our formalism. Any automaton is constructed with automata

in 𝐴𝑢𝑡𝑖𝑑𝑠0.

28

Dynamic Probabilistic Input Output Automata

Definition 5.16 (Constitution). For every A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 , we note 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(A) : 𝑠𝑡𝑎𝑡𝑒𝑠 (A) → P(𝐴𝑢𝑡𝑖𝑑𝑠0) s. t.

• ∀A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠0, ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A), 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(A)(𝑞) = {A}.
• ∀A = (A1, ...,A𝑛) ∈ (𝐴𝑢𝑡𝑖𝑑𝑠0)𝑛 , ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) with A = A1 | |...| |A𝑛 , 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(A)(𝑞) = A.
• the constitution of a PCA is defined recursively through its configuration, i.e. for every PCA 𝑋 , ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋),

if we note (A, S) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞), 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(𝑋) (𝑞) = ⋃
A∈A 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(A)(S(A)).

We note𝑈𝐴(𝐾) = ⋃
𝑞∈𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾) (𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(𝐾) (𝑞)).

5.4 Compatibility, composition

Again, we want to define composition operator for PCA to captures the fact the comportment of one PCA can influence

the comportment of another PCA. Some syntaxic rules have to be defined first.

Compatibility and union of configuration. We extends the formalism of configuration with the union operator. We do

not need a composition operator to prevent from think such an union is always compatible, which is not true.

Definition 5.17 (Union of configurations). Let𝐶1 = (A1, S1) and𝐶2 = (A2, S2) be configurations such that A1 ∩A2 = ∅.
Then, the union of𝐶1 and𝐶2, denoted𝐶1 ∪𝐶2, is the configuration𝐶 = (A, S) where A = A1 ∪A2 and S agrees with S1

on A1, and with S2 on A2. It is clear that configuration union is commutative and associative. Hence, we will freely use

the n-ary notation 𝐶1 ∪ ... ∪𝐶𝑛 (for any 𝑛 ≥ 1) whenever ∀𝑖, 𝑗 ∈ [1 : 𝑛], 𝑖 ≠ 𝑗, 𝑎𝑢𝑡𝑠 (𝐶𝑖) ∩ 𝑎𝑢𝑡𝑠 (𝐶 𝑗) = ∅.

Lemma 5.18. Let𝐶1 = (A1, S1) and𝐶2 = (A2, S2) be compatible configurations such that A1 ∩A2 = ∅. Let𝐶 = (A, S) =
𝐶1 ∪𝐶2 be a compatible configuration. Then 𝑠𝑖𝑔(𝐶) = 𝑠𝑖𝑔(𝐶1) × 𝑠𝑖𝑔(𝐶2)

Proof. • 𝑜𝑢𝑡 (𝐶) = ⋃
A𝑘 ∈A 𝑜𝑢𝑡 (A𝑘) (S(A𝑘)) = (

⋃
A𝑖 ∈A1

𝑜𝑢𝑡 (A𝑖) (S(A𝑖))) ∪ (
⋃
A 𝑗 ∈A2

𝑜𝑢𝑡 (A 𝑗) (S(A 𝑗))) =
(⋃A𝑖 ∈A1

𝑜𝑢𝑡 (A𝑖) (S1 (A𝑖))) ∪ (
⋃
A 𝑗 ∈A2

𝑜𝑢𝑡 (A 𝑗) (S2 (A 𝑗))) = 𝑜𝑢𝑡 (𝐶1) ∪ 𝑜𝑢𝑡 (𝐶2)
• 𝑖𝑛(𝐶) = ⋃

A𝑘 ∈A 𝑖𝑛(A𝑘) (S(A𝑘)) \𝑜𝑢𝑡 (𝐶) = (
⋃
A𝑖 ∈A1

𝑖𝑛(A𝑖) (S(A𝑖))) ∪ (
⋃
A 𝑗 ∈A2

𝑖𝑛(A 𝑗) (S(A 𝑗))) \𝑜𝑢𝑡 (𝐶) =
(⋃A𝑖 ∈A1

𝑖𝑛(A𝑖) (S1 (A𝑖))) ∪ (
⋃
A 𝑗 ∈A2

𝑖𝑛(A 𝑗) (S2 (A 𝑗))) \ 𝑜𝑢𝑡 (𝐶) = 𝑖𝑛(𝐶1) ∪ 𝑖𝑛(𝐶2) \ (𝑜𝑢𝑡 (𝐶1) ∪ 𝑜𝑢𝑡 (𝐶2))
• 𝑖𝑛𝑡 (𝐶) = ⋃

A𝑘 ∈A 𝑖𝑛𝑡 (A𝑘) (S(A𝑘)) = (
⋃
A𝑖 ∈A1

𝑖𝑛𝑡 (A𝑖) (S(A𝑖)))∪(
⋃
A 𝑗 ∈A2

𝑖𝑛𝑡 (A 𝑗) (S(A 𝑗))) = (
⋃
A𝑖 ∈A1

𝑖𝑛𝑡 (A𝑖) (S1 (A𝑖)))∪
(⋃A 𝑗 ∈A2

𝑖𝑛𝑡 (A 𝑗) (S2 (A 𝑗))) = 𝑖𝑛𝑡 (𝐶1) ∪ 𝑖𝑛𝑡 (𝐶2) Thus (𝑜𝑢𝑡 (𝐶), 𝑖𝑛(𝐶), 𝑖𝑛𝑡 (𝐶)) = (𝑜𝑢𝑡 (𝐶1) ∪ 𝑜𝑢𝑡 (𝐶2), 𝑖𝑛(𝐶1) ∪
𝑖𝑛(𝐶2) \ (𝑜𝑢𝑡 (𝐶1) ∪ 𝑜𝑢𝑡 (𝐶2)), 𝑖𝑛𝑡 (𝐶1) ∪ 𝑖𝑛𝑡 (𝐶2))

□

Definition 5.19 (PCA partially-compatible at a state). Let X = {𝑋1, ..., 𝑋𝑛} be a set of PCA. We note 𝑝𝑠𝑖𝑜𝑎(X) =
{𝑝𝑠𝑖𝑜𝑎(𝑋1), ..., 𝑝𝑠𝑖𝑜𝑎(𝑋𝑛)}. The PCA 𝑋1, ..., 𝑋𝑛 are partially-compatible at state 𝑞X = (𝑞𝑋1

, ..., 𝑞𝑋𝑛) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋1) × ... ×
𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋𝑛) iff:

(1) Sub-automaton exclusivity: ∀𝑖, 𝑗 ∈ [1 : 𝑛], 𝑖 ≠ 𝑗 : 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑖) (𝑞𝑋𝑖)) ∩ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 𝑗) (𝑞𝑋 𝑗)) = ∅.
(2) Compatible signatures {𝑠𝑖𝑔(𝑋1) (𝑞𝑋1

), ..., 𝑠𝑖𝑔(𝑋𝑛) (𝑞𝑋𝑛)} is a set of compatible signatures.

(3) Creation exclusivity: ∀𝑖, 𝑗 ∈ [1 : 𝑛], 𝑖 ≠ 𝑗 : ∀𝑎 ∈ 𝑠𝑖𝑔(𝑋𝑖) (𝑞𝑋𝑖) ∩ 𝑠𝑖𝑔(𝑋 𝑗) (𝑞𝑋 𝑗) : 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋𝑖) (𝑞𝑋𝑖) (𝑎) ∩
𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 𝑗) (𝑞𝑋 𝑗) (𝑎) = ∅.

(4) Constitution exclusivity: ∀𝑖, 𝑗 ∈ [1 : 𝑛], 𝑖 ≠ 𝑗 : 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(𝑋𝑖) (𝑞𝑋𝑖) ∩ 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(𝑋 𝑗) (𝑞𝑋 𝑗) = ∅

We can remark that if ∀𝑖, 𝑗 ∈ [1 : 𝑛], 𝑖 ≠ 𝑗 : 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑖) (𝑞𝑋𝑖)) ∩ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 𝑗) (𝑞𝑋 𝑗)) = ∅ and {𝑠𝑖𝑔(𝑋1) (𝑞𝑋1
),

..., 𝑠𝑖𝑔(𝑋𝑛) (𝑞𝑋𝑛)} is a set of compatible signatures, then 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋1) (𝑞𝑋1
)∪ ...∪𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑛) (𝑞𝑋𝑛) is a reduced compatible

configuration.

29

Pierre Civit and Maria Potop-Butucaru

If X is partially-compatible at state 𝑞X, for every action 𝑎 ∈ 𝑠𝑖𝑔(𝑝𝑠𝑖𝑜𝑎(X)) (𝑞X), we note [(X,𝑞X,𝑎) = [(𝑝𝑠𝑖𝑜𝑎 (X),𝑞X,𝑎)
and we extend this notation with [(X,𝑞X,𝑎) = 𝛿𝑞X if 𝑎 ∉ 𝑠𝑖𝑔(𝑝𝑠𝑖𝑜𝑎(X)) (𝑞X).

Definition 5.20 (pseudo execution). Let X = {𝑋1, ..., 𝑋𝑛} be a set of PCA. A pseudo execution fragment of X is a pseudo

execution fragment of 𝑝𝑠𝑖𝑜𝑎(X), s. t. for every non final state 𝑞𝑖 , X is partially-compatible at state 𝑞𝑖 (namely the

conditions (1) and (3) need to be satisfied)

A pseudo execution 𝛼 of X is a pseudo execution fragment of X with 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼) = (𝑞𝑋1
, ..., 𝑞𝑋𝑛).

Definition 5.21 (reachable state). Let X = {𝑋1, ..., 𝑋𝑛} be a set of PSIOA. A state 𝑞 of X is reachable if it exists a pseudo

execution 𝛼 of X ending on state 𝑞.

Now, we are able to define our composition operator.

Definition 5.22 (Composition of configuration automata). Let𝑋1, ..., 𝑋𝑛 , partially-compatible PCA. Then𝑋 = 𝑋1 | |...| |𝑋𝑛
is the state machine consisting of the following components:

(1) 𝑝𝑠𝑖𝑜𝑎(𝑋) = 𝑝𝑠𝑖𝑜𝑎(𝑋1) | |...| |𝑝𝑠𝑖𝑜𝑎(𝑋𝑛)
(2) A configuration mapping 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) given as follows. For each 𝑥 = (𝑥1, ..., 𝑥𝑛) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑥) =

𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋1) (𝑥1) ∪ ... ∪ 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑛) (𝑥𝑛).
(3) For each 𝑥 = (𝑥1, ..., 𝑥𝑛) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), a mapping 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑥) with domain 𝑠𝑖𝑔(𝑋) (𝑥) and given as follows.

For each 𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑥), 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑥) (𝑎) = ⋃
𝑎∈𝑠𝑖𝑔 (𝑋𝑖) (𝑥𝑖),𝑖∈[1:𝑛] 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋𝑖) (𝑥𝑖) (𝑎).

(4) A hidden-action mapping ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) with domain 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) and given as follows. For each 𝑥 =

(𝑥1, ..., 𝑥𝑛) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑥) =
⋃
𝑖∈[1:𝑛] ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑥𝑖)

Wedefine 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) = 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑝𝑠𝑖𝑜𝑎(𝑋)), 𝑠𝑡𝑎𝑟𝑡 (𝑋) = 𝑠𝑡𝑎𝑟𝑡 (𝑝𝑠𝑖𝑜𝑎(𝑋)), 𝑠𝑖𝑔(𝑋) = 𝑠𝑖𝑔(𝑝𝑠𝑖𝑜𝑎(𝑋)), 𝑠𝑡𝑒𝑝𝑠 (𝑋) = 𝑠𝑡𝑒𝑝𝑠 (𝑝𝑠𝑖𝑜𝑎(𝑋)),
and likewise for all other (sub)components and attributes of 𝑝𝑠𝑖𝑜𝑎(𝑋).

We want to show that the set of PCA is closed under composition. Before starting the proof, we introduce some tools.

Lemma 5.23 (Joint preserving probability distribution for union of configuration). Let {𝐶𝑘 = (A𝑘 , S𝑘)}𝑘∈[1:𝑛]
be a finite set of compatible configurations s. t. ∀𝑘, ℓ ∈ [1 : 𝑛],A𝑘 ∩ Aℓ = ∅. Let 𝐶 = (A, S) = ⋃

𝑘∈[1:𝑛] 𝐶𝑘 be a com-

patible configuration. Let 𝑎 ∈ 𝑠𝑖𝑔(𝐶). Let (I,J) be a partition of [1 : 𝑛] s. t. for every 𝑖 ∈ I, 𝑎 ∈ 𝑠𝑖𝑔(𝐶𝑖) and for every
𝑗 ∈ J , 𝑎 ∈ 𝑠𝑖𝑔(𝐶 𝑗). For every 𝑖 ∈ I, let [𝑖𝑝 be the unique preserving distributions that has [(A𝑖 ,𝑞𝑖 ,𝑎) as companion

distribution with 𝑞𝑖 = 𝑈𝑆 (𝐶𝑖). For every 𝑗 ∈ J , let [𝑗𝑝 = 𝛿𝐶 𝑗 . We note [𝑝 the unique preserving distributions that have

[(A,𝑞,𝑎) as companion distribution with 𝑞 = 𝑈𝑆 (𝐶).
Then, 𝐶

𝑎
⇀ [𝑝 , s. t. for every configuration 𝐶 ′ = (A, S′), for every (unique) finite set of configurations {𝐶 ′

𝑘
=

(A𝑘 , S′𝑘)}𝑘∈[1:𝑛] verifying 𝐶 ′ =
⋃
𝑘∈[1:𝑛] 𝐶

′
𝑘
, we have [𝑝 (𝐶 ′) = ([1

𝑝 ⊗ ... ⊗ [𝑛𝑝) ((𝐶 ′1, ...,𝐶
′
𝑛)).

Proof. Since A =
⋃
𝑘∈[1:𝑛] A𝑘 and S agrees with S𝑘 on A ∈ A𝑘 for every 𝑘 ∈ [1 : 𝑛], we have [A,𝑞,𝑎 = [A1,𝑞1,𝑎 ⊗

... ⊗ [A𝑛,𝑞𝑛,𝑎 with the convention [A𝑗 ,𝑞 𝑗 ,𝑎 = 𝛿𝑞 𝑗 for every 𝑗 ∈ J . Furthermore, for every 𝑘 ∈ [1, 𝑛], [A𝑘 ,𝑞𝑘 ,𝑎 is a

companion distribution of [𝑘𝑝 , that is for every 𝐶
′
𝑘
, 𝑞′
𝑘
= 𝑈𝑆 (𝐶 ′

𝑘
), [𝑘𝑝 (𝐶 ′𝑘) = [A𝑘 ,𝑞𝑘 ,𝑎 (𝑞

′
𝑘
). Hence for every (𝐶 ′

1
, ...,𝐶 ′𝑛),

(𝑞′
1
= 𝑈𝑆 (𝐶 ′

1
), ..., 𝑞′𝑛 = 𝑈𝑆 (𝐶 ′𝑛)), [A,𝑞,𝑎 ((𝑞′1, ..., 𝑞

′
𝑛)) = ([A1,𝑞1,𝑎 ⊗ ...⊗[A𝑛,𝑞𝑛,𝑎) ((𝑞′1, ..., 𝑞

′
𝑛)) = ([1

𝑝 ⊗ ...⊗[𝑛𝑝 ((𝐶 ′1, ...,𝐶
′
𝑛))

(*). By definition of [𝑝 , for every 𝐶
′
, (𝑞′ = 𝑈𝑆 (𝐶 ′)), [A,𝑞,𝑎 (𝑞′) = [𝑝 (𝐶 ′). Since we deal with preserving distribution

and A =
⋃
𝑘∈[1:𝑛] A𝑘 , we have each element 𝑞′ = 𝑈𝑆 (𝐶 ′) ∈ 𝑄A is of the form (𝑞′

1
, ..., 𝑞′𝑛) with 𝑞′𝑘 ∈ 𝑄A𝑘 and verifies

𝐶 ′ = 𝐶1 ∪ ... ∪ 𝐶 ′𝑛 with 𝑎𝑢𝑡𝑠 (𝐶 ′
𝑘
) = A𝑘 and 𝑈𝑆 (𝐶 ′

𝑘
) = 𝑞′

𝑘
. (**) Hence we compose (*) and (**) to obtain for every

configuration 𝐶 ′ = (A, S′), for every finite set of configurations {𝐶 ′
𝑘
= (A𝑘 , S′𝑘)}𝑘∈[1:𝑛] , s. t. 𝐶

′ =
⋃
𝑘∈[1:𝑛] 𝐶

′
𝑘
, then

30

Dynamic Probabilistic Input Output Automata

[𝑝 (𝐶 ′) = ([1

𝑝 ⊗ ... ⊗ [𝑛𝑝) ((𝐶 ′1, ...,𝐶
′
𝑛)). Since 𝑎 ∈ 𝑠𝑖𝑔(𝐶) and the automata support of ([1

𝑝 ⊗ ... ⊗ [𝑛𝑝) is A =
⋃
𝑘∈[1:𝑛] A𝑘 ,

we can note 𝐶
𝑎
⇀ [𝑝

□

Definition 5.24 (merge, join). Let [̃ = ([1, ...[𝑛) ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓)𝑛 . We define

• 𝑗𝑜𝑖𝑛([̃) : (𝐶1, ...,𝐶𝑛) ∈ 𝑄𝑛𝑐𝑜𝑛𝑓 ↦→ ([1 ⊗ ... ⊗ [𝑛) (𝐶1, ...,𝐶𝑛) and
• 𝑚𝑒𝑟𝑔𝑒 ([̃) : 𝐶 ∈ 𝑄𝑐𝑜𝑛𝑓 ↦→

∑
(𝐶𝑘

1
,...,𝐶𝑘𝑛) ∈𝑄𝑛𝑐𝑜𝑛𝑓

𝑗𝑜𝑖𝑛([̃) ((𝐶𝑘
1
, ...,𝐶𝑘𝑛)) · ⊮(𝐶𝑘

1
∪...∪𝐶𝑘𝑛)=𝐶

Definition 5.25 (deter-dest, base). Let 𝐶𝑠 = (A𝑠 , S𝑠) be a configuration. For every A ∈ A𝑠 , we note 𝑞𝑠A = S𝑠 (A). Let
𝜑 ∈ P(𝐴𝑢𝑡𝑖𝑑𝑠). We define

• 𝑑𝑒𝑡𝑒𝑟 -𝑑𝑒𝑠𝑡 (𝐶𝑠 , 𝑎) = {A ∈ A𝑠 |𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞𝑠A) ∧ [A,𝑞𝑠A ,𝑎 = 𝛿
𝑞
𝜙

A
}.

• 𝑏𝑎𝑠𝑒 (𝐶𝑠 , 𝑎, 𝜑) = A𝑠 ∪ 𝜑 \ 𝑑𝑒𝑡𝑒𝑟 -𝑑𝑒𝑠𝑡 (𝐶𝑠 , 𝑎).

Lemma 5.26 (Merging). Let {𝐶𝑠
1
, ...,𝐶𝑠𝑛} be a set of compatible configuration with for every 𝑖 ∈ [1, 𝑛], 𝐶𝑠

𝑖
= (A𝑠

𝑖
, S𝑠
𝑖
).

Let 𝐶𝑠 = (A𝑠 , S𝑠) = ⋃
𝑖∈[1:𝑛] 𝐶

𝑠
𝑖
. For every A ∈ A𝑠 , we note 𝑞𝑠A = S𝑠 (A) Let 𝑎 ∈ 𝑠𝑖𝑔(𝐶𝑠). Let (I,J) be a partition of

[1, 𝑛] s. t. ∀𝑖 ∈ I, 𝑎 ∈ 𝑠𝑖𝑔(𝐶𝑠
𝑖
) and ∀𝑗 ∈ J , 𝑎 ∉ 𝑠𝑖𝑔(𝐶𝑠

𝑗
). Let (𝜑1, ..., 𝜑𝑛) ∈ P(𝐴𝑢𝑡𝑖𝑑𝑠)𝑛 , s. t. ∀𝑗 ∈ 𝐽 , 𝜑 𝑗 = ∅ and let us note

𝜑 =
⋃
𝑖∈I 𝜑𝑖 . For every 𝑖 ∈ I, we note [𝑖 s. t. 𝐶𝑠𝑖

𝑎
=⇒𝜑𝑖 [𝑖 For every 𝑗 ∈ J , we note [𝑗 s. t. [𝑗 = 𝛿𝐶𝑠

𝑗
.

Let [̃ = ([1, ..., [𝑛). Let [𝑗𝑜𝑖𝑛 = 𝑗𝑜𝑖𝑛([̃), [𝑚𝑒𝑟𝑔𝑒 =𝑚𝑒𝑟𝑔𝑒 ([̃) and let assume, for every 𝐶 𝑓 ∈ 𝑠𝑢𝑝𝑝 ([𝑚𝑒𝑟𝑔𝑒)), either (*)
𝐶 𝑓 is compatible or (**) ∀𝑘, ℓ ∈ [1 : 𝑛], 𝑏𝑎𝑠𝑒 (𝐶𝑠

𝑘
, 𝑎, 𝜑𝑘) ∩ 𝑏𝑎𝑠𝑒 (𝐶𝑠ℓ , 𝑎, 𝜑ℓ) = ∅. Then, it means

(1) ∀𝐶 𝑓 ∈ 𝑠𝑢𝑝𝑝 ([𝑚𝑒𝑟𝑔𝑒), it exists a unique (𝐶 𝑓
1
, ...,𝐶

𝑓
𝑛) s. t. 1)𝐶 𝑓 = 𝐶

𝑓

1
∪ ... ∪𝐶 𝑓𝑛 and 2) ∀𝑘 ∈ [1, 𝑛],𝐶 𝑓

𝑘
∈ 𝑠𝑢𝑝𝑝 ([𝑘).

We note 𝐶 𝑓 .𝑠𝑝𝑙𝑖𝑡 ([̃) this unique (𝐶 𝑓
1
, ...,𝐶

𝑓
𝑛).

(2) 𝑔[̃ : 𝐶 ∈ 𝑠𝑢𝑝𝑝 (𝑚𝑒𝑟𝑔𝑒 ([̃)) ↦→ 𝐶.𝑠𝑝𝑙𝑖𝑡 ([̃) ∈ 𝑠𝑢𝑝𝑝 ([1) × ... × 𝑠𝑢𝑝𝑝 ([𝑛) is a bijection.
(3) Then𝑚𝑒𝑟𝑔𝑒 ([̃) (𝐶) = 𝑗𝑜𝑖𝑛([̃) (𝐶.𝑠𝑝𝑙𝑖𝑡 ([̃))

(4) 𝑚𝑒𝑟𝑔𝑒 ([̃)
𝑔[̃

↔ 𝑗𝑜𝑖𝑛([̃)
(5) 𝐶𝑠

𝑎
=⇒𝜑 𝑚𝑒𝑟𝑔𝑒 ([̃)

Proof. First we show that (*) implies (**). By contradiction. Let assumeA ∈ 𝑏𝑎𝑠𝑒 (𝐶𝑠
𝑘
, 𝑎, 𝜑𝑘)∩𝑏𝑎𝑠𝑒 (𝐶𝑠ℓ , 𝑎, 𝜑ℓ). Since𝐶

𝑠

is compatible,A ∉ A𝑠
𝑘
∩A𝑠

ℓ
. By definition of the base it exists𝐶

𝑓

𝑘
,𝐶
𝑓

ℓ
∈ 𝑠𝑢𝑝𝑝 ([𝑘) × 𝑠𝑢𝑝𝑝 ([ℓ),A ∈ 𝑎𝑢𝑡𝑠 (𝐶

𝑓

𝑘
) ∩𝑎𝑢𝑡𝑠 (𝐶 𝑓

ℓ
)

and 𝐶
𝑓

𝑘
∪𝐶 𝑓

ℓ
is not compatible. So it exists (𝐶 𝑓

1
, ...,𝐶

𝑓
𝑛) ∈ 𝑠𝑢𝑝𝑝 ([1 ⊗ ... ⊗ [𝑛) s. t. (𝐶 𝑓

1
∪ ... ∪𝐶 𝑓𝑛) is not compatible.

(1) The uniqueness comes from (**). Indeed, let imagine two candidates (𝐶 𝑓
1
, ...,𝐶

𝑓
𝑛) and (𝐶

𝑓 ′
1
, ...,𝐶

𝑓 ′
𝑛) if A ∈

𝑎𝑢𝑡𝑠 (𝐶 𝑓
𝑘
), then A ∈ 𝑎𝑢𝑡𝑠 (𝐶𝑘) but A ∉ 𝑏𝑎𝑠𝑒 (𝐶𝑠 ′

𝑘′
) for any 𝑘 ′ ≠ 𝑘 and so A ∈ 𝑎𝑢𝑡𝑠 (𝐶 𝑓 ′

𝑘
) and so 𝑎𝑢𝑡𝑠 (𝐶 𝑓

𝑘
) =

𝑎𝑢𝑡𝑠 (𝐶 𝑓 ′
𝑖
) for every 𝑘 ∈ [1, 𝑛]. Now we need to have 𝑚𝑎𝑝 (𝐶 𝑓

𝑘
) = 𝑚𝑎𝑝 (𝐶 𝑓 ′

𝑖
) for every 𝑘 ∈ [1, 𝑛] to obtain

𝐶 𝑓 = 𝐶
𝑓

1
∪ ... ∪𝐶 𝑓𝑛 = 𝐶

𝑓 ′

1
∪ ... ∪𝐶 𝑓

′
𝑛 . The existence is by construction of 𝑗𝑜𝑖𝑛.

(2) The bijection comes from the existence and the uniqueness of pre-image

(3) By previous item 1, the sum of merge has only one element which consists of 𝑗𝑜𝑖𝑛([̃) (𝐶.𝑠𝑝𝑙𝑖𝑡 ([̃))
(4) By previous two items 1 and 2, that gives the definition

(5) [′
𝑘
is generated by 𝜑𝑘 and preserving distribution [

′𝑝
𝑘

where A𝑝
𝑘
is the automata support of [

′𝑝
𝑘
. By compatibility

of 𝐶𝑠 , for every 𝑘, ℓ ∈ [1, 𝑛], 𝑘 ≠ ℓ , A𝑝
𝑘
∩ A𝑝

ℓ
= ∅. Hence, we can apply lemma 5.23 and we have 𝐶𝑠

𝑎
⇀

𝑚𝑒𝑟𝑔𝑒 (([′𝑝
1
, ..., [

′𝑝
𝑛)). Moreover𝑚𝑒𝑟𝑔𝑒 (([′

1
, ..., [′𝑛)) is generated by𝑚𝑒𝑟𝑔𝑒 (([′𝑝

1
, ..., [

′𝑝
𝑛)) and 𝜑 since each [

′𝑝
𝑘

is

generated by [′
𝑘
and 𝜑𝑘 . Then 𝐶

𝑠 𝑎
=⇒𝜑 𝑚𝑒𝑟𝑔𝑒 (([′

1
, ..., [′𝑛))
31

Pierre Civit and Maria Potop-Butucaru

□

Lemma 5.27 (

𝑓
↔ preservation for joint probability). Let [̃ ′ = ([′

1
, ..., [′𝑛). Let ([1, ..., [𝑛) and (𝑓1, ..., 𝑓𝑛) s. t.

∀𝑖 ∈ [1, 𝑛], [𝑖
𝑓𝑖↔ [′

𝑖
.

Then [1 ⊗ ... ⊗ [𝑛
𝑓
↔ [′

1
⊗ ... ⊗ [′𝑛 With 𝑓 : 𝑥 = (𝑥1, ..., 𝑥𝑛) ↦→ 𝑦 = (𝑓1 (𝑥1), ..., 𝑓𝑛 (𝑥𝑛)).

Proof. 𝑓 is still a bijection and ([1 ⊗ ... ⊗ [𝑛) (𝑧1, ..., 𝑧𝑛) = [1 (𝑧1) · ...[𝑛 (𝑧𝑛) = [′
1
(𝑓1 (𝑧1)) · ...[′𝑛 (𝑓𝑛 (𝑧𝑛)) = ([1 ⊗

... ⊗ [𝑛) (𝑓1 (𝑧1), ..., 𝑓𝑛 (𝑧𝑛)) = ([1 ⊗ ... ⊗ [𝑛) (𝑓 (𝑧1, ..., 𝑧𝑛)) □

Now we are ready for the theorem that claims that a composition of PCA is a PCA.

Theorem 5.28 (PCA closeness under composition). Let𝑋1, ..., 𝑋𝑛 , be partially-compatible PCA. Then𝑋 = 𝑋1 | |...| |𝑋𝑛
is a PCA.

Proof. We need to show that 𝑋 verifies all the constraints of definition 5.14.

• (Constraint) 1: The demonstration is basically the same as the one in [1], section 5.1, proposition 21, p 32-33.

Let 𝑞𝑋 and (A, S) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋). By the composition of psioa, then 𝑞𝑋 = (𝑞𝑋1
, ..., 𝑞𝑋𝑛). By definition,

𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋1) (𝑞𝑋1
) ∪ ... ∪ 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑛) (𝑞𝑋𝑛). Since for every 𝑗 ∈ [1 : 𝑛], 𝑋 𝑗 is a configuration

automaton, we apply constraint 1 to 𝑋 𝑗 to conclude S(Aℓ) = 𝑞Aℓ for every Aℓ ∈ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 𝑗) (𝑞𝑋 𝑗). Since
(𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋1) (𝑞𝑋1

), ..., 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑛) (𝑞𝑋𝑛)) is a partition ofA by definition of composition, S(Aℓ) = 𝑞Aℓ
for every Aℓ ∈ A which ensures 𝑋 verifies constraint 1.

• (Constraint 2) Let (𝑞, 𝑎, [𝑋,𝑞,𝑎) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑋). We will establish ∃[′ ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓) s. t. [𝑋,𝑞,𝑎
𝑓
↔ [′ where

𝑓 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) and 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞) 𝑎
=⇒𝜑 [

′
with 𝜑 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞) (𝑎).

For brevity, letA𝑖 = 𝑝𝑠𝑖𝑜𝑎(𝑋𝑖) for 𝑖 ∈ [1 : 𝑛]. By definition of pca-compositon 5.22, 𝑝𝑠𝑖𝑜𝑎(𝑋) = 𝑝𝑠𝑖𝑜𝑎(𝑋1) | |...| |𝑝𝑠𝑖𝑜𝑎(𝑋𝑛) =
𝑃1 | |...| |𝑃𝑛 . We note P = (𝑃1, ..., 𝑃𝑛) and then by definition of psioa-composition 4.10, 𝑞 = (𝑞1, ..., 𝑞𝑛) ∈
𝑄𝑃1
× ... × 𝑄𝑃𝑛 , while 𝑎 ∈

⋃
𝑖∈[1:𝑛] 𝑠𝑖𝑔(𝑃𝑖) (𝑞𝑖) and [𝑋,𝑞,𝑎 = [𝑃1,𝑞1,𝑎 ⊗ ... ⊗ [𝑃𝑛,𝑞𝑛,𝑎 with the convention

[𝑃𝑖 ,𝑞𝑖 ,𝑎 = 𝛿𝑞𝑖 if 𝑎 ∉ 𝑠𝑖𝑔(𝑃𝑖) (𝑞𝑖).
Let (I,J) be a partition [1 : 𝑛] s. t.
For every 𝑖 ∈ I, 𝑎 ∈ 𝑠𝑖𝑔(𝑃𝑖) (𝑞𝑖) , and then by PCA top/down transition preservation, it exists [′

𝑖
∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓)

s. t. [𝑋𝑖 ,𝑞𝑖 ,𝑎 = [𝑃𝑖 ,𝑞𝑖 ,𝑎
𝑓𝑖↔ [′

𝑖
with 𝑓𝑖 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑖) and 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑖) (𝑞𝑖)

𝑎
=⇒𝜑𝑖 [

′
𝑖
with 𝜑𝑖 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋𝑖) (𝑞𝑖) (𝑎).

For every 𝑗 ∈ J , 𝑎 ∉ 𝑠𝑖𝑔(𝑃𝑖) (𝑞𝑖) , then we note 𝜑 𝑗 = ∅ and [′𝑗 = 𝛿𝑐𝑜𝑛𝑓 𝑖𝑔 (𝑋 𝑗) (𝑞 𝑗) that verifies 𝛿𝑞 𝑗
𝑓𝑗↔ [′

𝑗
with

𝑓𝑗 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 𝑗).
We note [̃ ′ = ([′

1
, ..., [′𝑛) We note [′ = 𝑗𝑜𝑖𝑛([̃ ′) = [′

1
⊗ ... ⊗ [′𝑛 and 𝜑 =

⋃
𝑖∈[1:𝑛] 𝜑𝑖 . By definition of PCA-

composition, 𝜑 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞) (𝑎).

We have [𝑋,𝑞,𝑎
𝑓
↔ [′ with 𝑓 : 𝑞 = (𝑞1, ..., 𝑞𝑛) ↦→ (𝑓1 (𝑞1), ..., 𝑓𝑛 (𝑞𝑛)) by lemma 5.27.

Moreover𝑚𝑒𝑟𝑔𝑒 ([̃ ′)
𝑔[̃

↔ 𝑗𝑜𝑖𝑛([̃ ′) with 𝑔[̃ : 𝐶 ∈ 𝑠𝑢𝑝𝑝 (𝑚𝑒𝑟𝑔𝑒 ([̃)) ↦→ 𝐶.𝑠𝑝𝑙𝑖𝑡 ([̃) ∈ 𝑠𝑢𝑝𝑝 ([1) × ... × 𝑠𝑢𝑝𝑝 ([𝑛) by
lemma 5.26, item 4.

So [𝑋,𝑞,𝑎
ℎ↔𝑚𝑒𝑟𝑔𝑒 ([̃ ′) with ℎ = (𝑔[̃)−1 ◦ 𝑓 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋).

Moreover we have 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞) 𝑎
=⇒𝜑 𝑚𝑒𝑟𝑔𝑒 ([̃ ′) by lemma 5.26, item 5.

• (Constraint 3) Let 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒 (𝑋),𝐶 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞), 𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞), 𝜑 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞) (𝑎) that verify𝐶 𝑎
=⇒𝜑 [

′
.

We need to show that it exists (𝑞, 𝑎, [(𝑋,𝑞,𝑎)) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑋) s. t. [(𝑋,𝑞,𝑎)
𝑓
↔ [′ with 𝑓 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋).

32

Dynamic Probabilistic Input Output Automata

For brevity, letA𝑖 = 𝑝𝑠𝑖𝑜𝑎(𝑋𝑖) for 𝑖 ∈ [1 : 𝑛]. By definition of pca-compositon 5.22 𝑝𝑠𝑖𝑜𝑎(𝑋) = 𝑝𝑠𝑖𝑜𝑎(𝑋1) | |...| |𝑝𝑠𝑖𝑜𝑎(𝑋𝑛) =
𝑃1 | |...| |𝑃𝑛 . We note P = (𝑃1, ..., 𝑃𝑛) and then by definition of psioa-composition, 𝑞 = (𝑞1, ..., 𝑞𝑛) ∈ 𝑄𝑃1

× ...×𝑄𝑃𝑛 ,
while 𝑎 ∈ ⋃𝑖∈[1:𝑛] 𝑠𝑖𝑔(𝑃𝑖) (𝑞𝑖).
Let (I,J) be a partition [1 : 𝑛] s. t.
For every 𝑖 ∈ I, 𝑎 ∈ 𝑠𝑖𝑔(𝑃𝑖) (𝑞𝑖). We note 𝜑𝑖 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋𝑖) (𝑞𝑖) (𝑎).For every 𝑗 ∈ J , 𝑎 ∉ 𝑠𝑖𝑔(𝑃𝑖) (𝑞𝑖) , then we

note 𝜑 𝑗 = ∅ and [′𝑗 = 𝛿𝑐𝑜𝑛𝑓 𝑖𝑔 (𝑋 𝑗) (𝑞 𝑗) that verifies 𝛿𝑞 𝑗
𝑓𝑗↔ [′

𝑗
with 𝑓𝑗 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 𝑗).

We note 𝜑 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞) (𝑎). By pca-composition definition, 𝜑 =
⋃
𝑘∈[1:𝑛] 𝜑𝑘 . For every 𝑘 ∈ [1 : 𝑛], we note

𝐶𝑘 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑘) (𝑞𝑘) and for every 𝑖 ∈ I, [′
𝑖
∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓) s. t. 𝐶𝑖

𝑎
=⇒𝜑𝑖 [

′
𝑖
. We note [̃ ′ = ([′

1
, ..., [′𝑛)

By constraint 3 (bottom/up transition preservation), for every 𝑖 ∈ I, it exists (𝑞𝑖 , 𝑎, [𝑋𝑖 ,𝑞𝑖 ,𝑎) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑋𝑖) s. t.

[𝑋𝑖 ,𝑞𝑖 ,𝑎
𝑓𝑖↔ [′

𝑖
with 𝑓𝑖 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑖). by lemma 5.27, [𝑋,𝑞,𝑎 = [𝑋1,𝑞1,𝑎 ⊗ ... ⊗ [𝑋𝑛,𝑞𝑛,𝑎

𝑓
↔ [′

1
⊗ ... ⊗ [′𝑛 = 𝑗𝑜𝑖𝑛([̃ ′)

with the convention [𝑋 𝑗 ,𝑞 𝑗 ,𝑎 = 𝛿𝑞 𝑗 for 𝑗 ∈ J and 𝑓 : 𝑞 = (𝑞1, ..., 𝑞𝑛) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) ↦→ (𝑓1 (𝑞1), ..., 𝑓𝑛 (𝑞𝑛)).
By partially-compatiblity, for every 𝐶 𝑓 ∈ 𝑠𝑢𝑝𝑝 (𝑚𝑒𝑟𝑔𝑒 ([̃ ′)), 𝐶 𝑓 is compatible. Hence we can apply lemma 5.26,

item 5, which gives𝑚𝑒𝑟𝑔𝑒 ([̃ ′)
𝑔
↔ 𝑗𝑜𝑖𝑛([̃ ′) with 𝑔 : 𝐶 ∈ 𝑠𝑢𝑝𝑝 (𝑚𝑒𝑟𝑔𝑒 ([̃ ′)) ↦→ 𝐶.𝑠𝑝𝑙𝑖𝑡 ([̃).

Hence [𝑋,𝑞,𝑎
ℎ↔𝑚𝑒𝑟𝑔𝑒 ([̃ ′) with ℎ = 𝑔−1 ◦ 𝑓 , that is [𝑋,𝑞,𝑎

ℎ′↔ [′ with ℎ′ = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) and the restriction of ℎ′

on 𝑠𝑢𝑝𝑝 ([𝑋,𝑞,𝑎) is ℎ.
• (Constraint 4).

For every 𝑖 ∈ [1, 𝑛], we note ℎ𝑋𝑖 = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋𝑖) (𝑞𝑋𝑖) and ℎ =
⋃
𝑖∈[1,𝑛] ℎ𝑋𝑖 . Since 𝑋1, ..., 𝑋𝑛 are

partially-compatible in state 𝑞𝑋 = (𝑞𝑋1
, ..., 𝑞𝑋𝑛), we have both {𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑖) (𝑞𝑋𝑖) |𝑖 ∈ [1, 𝑛]} compatible and

∀𝑖, 𝑗 ∈ [1, 𝑛], 𝑖𝑛(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑖) (𝑞𝑋𝑖)) ∩ ℎ𝑋 𝑗 = ∅. By compatibility, ∀𝑖, 𝑗 ∈ [1, 𝑛], 𝑖 ≠ 𝑗, 𝑜𝑢𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑖) (𝑞𝑋𝑖)) ∩
𝑜𝑢𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 𝑗) (𝑞𝑋 𝑗)) = 𝑖𝑛𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑖) (𝑞𝑋𝑖))∩𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 𝑗) (𝑞𝑋 𝑗)) = ∅, which finally gives∀𝑖, 𝑗 ∈ [1, 𝑛], 𝑖 ≠
𝑗 , 𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑖) (𝑞𝑋𝑖)) ∩ ℎ𝑋 𝑗 = ∅.
Hence, we can apply lemma 4.25 of commutativity between hiding and composition to obtainℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋1) (𝑞𝑋1

))×
....×𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑛) (𝑞𝑋𝑛)), ℎ𝑋1

∪...∪ℎ𝑋𝑛) = ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋1) (𝑞𝑋1
)), ℎ𝑋1

)×...×ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑛) (𝑞𝑋𝑛)), ℎ𝑋𝑛)
where × has to be understood in the sense of definition 4.5 of signature composition.

That is 𝑠𝑖𝑔(𝑝𝑠𝑖𝑜𝑎(𝑋)) (𝑞𝑋) = 𝑠𝑖𝑔(𝑝𝑠𝑖𝑜𝑎(𝑋1)) (𝑞𝑋1
)) × × 𝑠𝑖𝑔(𝑝𝑠𝑖𝑜𝑎(𝑋𝑛)) (𝑞𝑋𝑛)), as per definition 4.5, with

𝑠𝑖𝑔(𝑝𝑠𝑖𝑜𝑎(𝑋)) (𝑞𝑋) = ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑥)), ℎ). Furthermore ℎ ⊂ 𝑜𝑢𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)), since ∀𝑖 ∈ [1, 𝑛],
ℎ𝑋𝑖 ⊂ 𝑜𝑢𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋𝑖) (𝑞𝑋𝑖)). This terminates the proof.

□

6 INTRODUCTION ON PCA CORRESPONDINGW.R.T. PSIOA A, B TO INTRODUCE MONOTONICITY

In this section we take an interest in PCA 𝑋A and 𝑋B that differ only on the fact that B supplants A in 𝑋B . This

definition is a key step to formally define monotonicity of a property.

If a property 𝑃 is a binary relation on automata, a brave property would verify monotonicity, i. e. if 1) (A,B) ∈ 𝑃 ,
and 2) 𝑋A and 𝑋B are PCA that differ only on the fact that B supplantsA in 𝑋B , then 3) (𝑋A , 𝑋B) ∈ 𝑃 . Monotonicity

of implementation w.r.t. PSIOA creation is the main contribution of the paper.

6.1 Naive correspondence between two PCA

We formalize the idea that two configurations are identical except that the automaton B supplants A but with the

same external signature. The following definition comes from [1].

33

Pierre Civit and Maria Potop-Butucaru

Definition 6.1 (◁AB-corresponding configurations). (see figure 30) Let Φ ⊆ 𝐴𝑢𝑡𝑖𝑑𝑠 , and A,B be PSIOA identifiers.

Then we define Φ[B/A] = (Φ \ A) ∪ {B} if A ∈ Φ, and Φ[B/A] = Φ if A ∉ Φ. Let 𝐶, 𝐷 be configurations. We define

𝐶 ◁AB 𝐷 iff (1) 𝑎𝑢𝑡𝑠 (𝐷) = 𝑎𝑢𝑡𝑠 (𝐶) [B/A], (2) for every A ′ ∉ 𝑎𝑢𝑡𝑠 (𝐶) \ {A} : 𝑚𝑎𝑝 (𝐷) (A ′) = 𝑚𝑎𝑝 (𝐶) (A ′), and (3)

𝑒𝑥𝑡 (A)(𝑠) = 𝑒𝑥𝑡 (B)(𝑡) where 𝑠 = 𝑚𝑎𝑝 (𝐶) (A), 𝑡 = 𝑚𝑎𝑝 (𝐷) (B). That is, in ◁AB-corresponding configurations, the

SIOA other thanA,B must be the same, and must be in the same state.A and B must have the same external signature.

In the sequel, when we write Ψ = Φ[B/A], we always assume that B ∉ Φ and A ∉ Ψ.

Fig. 17. ◁AB corresponding-configuration

Remark 2. It is possible to have two configurations 𝐶 , 𝐷 s. t. 𝐶 ◁AA 𝐷 . That would mean that 𝐶 and 𝐷 only differ on

the state of A (𝑠 or 𝑡) that has even the same external signature in both cases 𝑒𝑥𝑡 (A)(𝑠) = 𝑒𝑥𝑡 (A)(𝑡), while we would
have 𝑖𝑛𝑡 (A)(𝑠) ≠ 𝑖𝑛𝑡 (A)(𝑡).

Now, we formalise the fact that two PCA create some PSIOA in the same manner, excepting for B that supplants A.

Here again, this definition comes from [1].

Definition 6.2 (Creation corresponding configuration automata). Let 𝑋,𝑌 be configuration automata and A,B be

PSIOA. We say that 𝑋,𝑌 are creation-corresponding w.r.t. A,B iff

(1) 𝑋 never creates B and 𝑌 never creates A.

(2) Let 𝛽 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠∗ (𝑋) ∩ 𝑡𝑟𝑎𝑐𝑒𝑠∗ (𝑌) a finite trace of both 𝑋 and 𝑌 , and let 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠∗ (𝑋), 𝜋 ∈ 𝐸𝑥𝑒𝑐𝑠∗ (𝑌) a
finite execution of both 𝑋 and 𝑌 be such that 𝑡𝑟𝑎𝑐𝑒A (𝛼) = 𝑡𝑟𝑎𝑐𝑒A (𝜋) = 𝛽 . Let 𝑥 = 𝑙𝑎𝑠𝑡 (𝛼), 𝑦 = 𝑙𝑎𝑠𝑡 (𝜋),
i.e., x, y are the last states along 𝛼, 𝜋 , respectively. Then ∀𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑥) ∩ 𝑠𝑖𝑔(𝑌) (𝑦) : 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑦) (𝑎) =
𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑥) (𝑎) [B/A].

In the same way than in definition 6.2, we formalise the fact that two PCA hide some output actions in the same

manner. Here again, this definition is inspired by [1].

Definition 6.3 (Hiding corresponding configuration automata). Let 𝑋,𝑌 be configuration automata andA,B be PSIOA.

We say that 𝑋,𝑌 are hiding-corresponding w.r.t. A,B iff

(1) 𝑋 never creates B and 𝑌 never creates A.

(2) Let 𝛽 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠∗ (𝑋) ∩𝑡𝑟𝑎𝑐𝑒𝑠∗ (𝑌), and let 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠∗ (𝑋), 𝜋 ∈ 𝐸𝑥𝑒𝑐𝑠∗ (𝑌) be such that 𝑡𝑟𝑎𝑐𝑒A (𝛼) = 𝑡𝑟𝑎𝑐𝑒A (𝜋) =
𝛽 . Let 𝑥 = 𝑙𝑎𝑠𝑡 (𝛼), 𝑦 = 𝑙𝑎𝑠𝑡 (𝜋), i.e., x, y are the last states along 𝛼, 𝜋 , respectively. Then ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌) (𝑦) =
ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑥).

34

Dynamic Probabilistic Input Output Automata

Now we define the notion of A-exclusive action which corresponds to an action which is is the signature of A
only. This definition is motivated by the fact that monotonicity induces that A-exclusive (resp. B-exclusive) actions do
not create automata. Indeed, otherwise two internal action 𝑎 and 𝑎′ of A and B respectively could create different

automata C and D and break the correspondence.

Definition 6.4 (A-exclusive action). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 , 𝑋 be a PCA. Let 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), (A, S) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞), 𝑎𝑐𝑡 ∈
𝑠𝑖𝑔(𝑋) (𝑞). We say that 𝑎𝑐𝑡 isA-exclusive if for everyA ′ ∈ A\{A}, 𝑎𝑐𝑡 ∉ 𝑠𝑖𝑔(A ′) (S(A ′)) (and so 𝑎𝑐𝑡 ∈ 𝑠𝑖𝑔(A)(S(A))
only).

The previous definitions 6.1, 6.2, 6.3 and 6.4 allow us to define a first (naive) definition of PCA corresponding w. r. t.

A, B.

Definition 6.5 (naively corresponding w. r. t. A, B). Let A,B ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 , XA and XB be PCA we say that XA and XB
are naively corresponding w. r. t. A, B, if they verify:

• 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋A) (𝑞𝑋A) ◁𝐴𝐵 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋B) (𝑞𝑋B).
• 𝑋A , 𝑋B are creation-corresponding w.r.t. A,B
• 𝑋A , 𝑋B are hiding-corresponding w.r.t. A,B
• (No creation from A and B)

– ∀𝑞𝑋A ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋A) , for every action 𝑎𝑐𝑡 A-exclusive, 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋A) (𝑞𝑋A) (𝑎𝑐𝑡) = ∅ and similarly

– ∀𝑞𝑋B ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋B), for every action 𝑎𝑐𝑡 ′ B-exclusive, 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋B) (𝑞𝑋B) (𝑎𝑐𝑡 ′) = ∅

The last definition 6.5 of (naive) correspondence w. r. t. A, B allows us to define a first (naive) definition 6.6 of

monotonic relation.

Definition 6.6 (Naively monotonic relationship). Let 𝑅 be a binary relation on PSIOA. We say that 𝑅 is naively

monotonic if for every pair of PSIOA (A,B) ∈ 𝑅, for every pair of PCA 𝑋A and XB that are naively corresponding w.

r. t. A, B, (𝑝𝑠𝑖𝑜𝑎(𝑋A), 𝑝𝑠𝑖𝑜𝑎(𝑋B)) ∈ 𝑅

.

However, the relations of 𝑝𝑟𝑖𝑛𝑡-implementation introduced in subsection 4.6 is notmonotonic without some additional

technical assumptions presented in next subsection 6.2. Roughly speaking, it allows to 1) define a PCA 𝑌 = 𝑋 \ {A}
that corresponds to 𝑋 "deprived" fromA and 2) define the composition between 𝑌 andA, 3) avoiding some ambiguities

during the construction. In the first instance, the reader should skip the next subsection 6.2 on conservatism and keep

in mind the intuition only. This sub-section 6.2 can be used to know the assumptions of the theorems of monotonicity

and use them as black-boxes. The assumptions will be re-called during the proof.

6.2 Conservatism: the additional assumption for relevant definition of correspondence w. r. t. A,B

This subsection aims to define the notion of A-conservative PCA.

Some definitions relative to configurations. In the remaining, it will often be useful to reason on the configurations.

This is why we introduce some definitions that will be used again and again in the demonstrations.

The next definition captures the idea that two states of a certain layer represents the same situation for the bottom

layer.

35

Pierre Civit and Maria Potop-Butucaru

Definition 6.7 (configuration-equivalence between two states). Let 𝐾,𝐾 ′ be PCA and (𝑞, 𝑞′) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾) × 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾 ′).
We say that 𝑞 and 𝑞′ are config-equivalent, noted 𝑞𝑅𝑐𝑜𝑛𝑓 𝑞′, if 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾 ′) (𝑞′). Furthermore, if

• 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾 ′) (𝑞′),
• ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝐾) (𝑞) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝐾 ′) (𝑞′) and
• ∀𝑎 ∈ 𝑠𝑖𝑔(𝐾) (𝑞) = 𝑠𝑖𝑔(𝐾 ′) (𝑞′), 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾) (𝑞) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾 ′) (𝑞′) (𝑎),

we say that 𝑞 and 𝑞′ are strictly-equivalent, noted 𝑞𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞′ .

Now, we define a special subset of PCA that do not tolerate different configuration-equivalent states.

Definition 6.8 (Configuration-conflict-free PCA). Let 𝐾 be a PCA. We say 𝐾 is configuration-conflict-free, if for every

𝑞, 𝑞′ ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾) s. t. 𝑞𝑅𝑐𝑜𝑛𝑓 𝑞′, then 𝑞 = 𝑞′. The current state of a configuration-conflict-free PCA can be defined by its

current attached configuration.

For some elaborate definitions, we found useful to introduce the set of potential output actions ofA in a configuration

𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞) coming from a state 𝑞 of a PCA 𝑋 :

Definition 6.9 (potential ouput). Let A ∈ 𝑎𝑢𝑡𝑖𝑑𝑠 . Let 𝑋 be a PCA. Let 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋). We note 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋) (𝑞) (A) the
set of potential output actions of A in 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞) that is

• 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋) (𝑞) (A) = ∅ if A ∉ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞))
• 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋) (𝑞) (A) = 𝑜𝑢𝑡 (A)(𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞)) (A)) if A ∈ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞))

Here, we define a configuration 𝐶 deprived from an automaton A in the most natural way.

Definition 6.10 (𝐶 \ {A} Configuration deprived from an automaton). 𝐶 = (A, S).𝐶 \ {A} = (A′, S′) with A′ = A\ {A}
and S′ the restriction of S on A′

The two last definitions 6.9 and 6.10 allows us to define in compact way a new relation between states that captures

the idea that two states 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) and 𝑞′ ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌) are equivalent modulo a difference uniquely due to the

presence of automaton A in 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞) and 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞′).

Definition 6.11 (𝑅\{A} relationship (equivalent if we forget A)). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let 𝑆 = {𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) |𝑋 is a PCA }
the set of states of any PCA. We defined the equivalence relation 𝑅

\{A}
𝑐𝑜𝑛𝑓

and 𝑅
\{A}
𝑐𝑜𝑛𝑓

on 𝑆 defined by ∀𝑋,𝑌 PCA,

∀(𝑞𝑋 , 𝑞𝑌) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) × 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌) :

• 𝑞𝑋𝑅\{A}𝑐𝑜𝑛𝑓
𝑞𝑌 ⇐⇒ 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) \ {𝐴} = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌) \ {𝐴}

• 𝑞𝑋𝑅\{A}𝑠𝑡𝑟𝑖𝑐𝑡
𝑞𝑌 ⇐⇒ the conjonction of the 3 following properties:

– 𝑞𝑋𝑅
\{A}
𝑐𝑜𝑛𝑓

𝑞𝑌

– ∀𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑋) ∩ 𝑠𝑖𝑔(𝑌) (𝑞𝑌), 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎) \ {A} = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) \ {A}
– ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞𝑋) \ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋) (𝑞𝑋) (A) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌) (𝑞𝑌) \ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑌) (𝑞𝑌) (A)

Here, we recall the definition 6.4 of A-exclusive action:

Definition 6.12 (A-exclusive action in a PCA state (recall)). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let 𝑋 be a PCA. Let 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋),
(A, S) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋), 𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑋).

We say that 𝑎 is A-exclusive in 𝑞𝑋 if ∀B ∈ A \ {A}, 𝑎 ∉ 𝑠𝑖𝑔(B)(S(B)) (and so 𝑎 ∈ 𝑠𝑖𝑔(A)(S(A)) uniquely
necessarily).

36

Dynamic Probabilistic Input Output Automata

A-fair and A-conservative: necessary assumptions to authorize the construction used in the proof. Now, we are ready

to define A-fairness and then A-conservatism.

A A-fair PCA is a PCA s. t. we can deduce its current properties from its current configuration deprived of A. This

assumption will allow us to define 𝑌 = 𝑋 \ {A} in the proof of monotonicity.

Definition 6.13 (A-fair PCA). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let 𝑋 be a PCA. We say that 𝑋 is A-fair if

• (configuration-conflict-free) 𝑋 is configuration-conflict-free.

• (no conflict for projection) ∀𝑞𝑋 , 𝑞′𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), s. t. 𝑞𝑋𝑅
\{A}
𝑐𝑜𝑛𝑓

𝑞′
𝑋
then 𝑞𝑋𝑅

\{A}
𝑠𝑡𝑟𝑖𝑐𝑡

𝑞′
𝑋
.

• (no exclusive creation by A) ∀𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), ∀𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑋) A-exclusive in 𝑞𝑋 , 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) = ∅

This definition 6.13 allows the next definition 6.14 to be well-defined. A A-conservative PCA is a A-fair PCA that

does not hide any output action that could be an external action of A. This assumption will allow us to define the

composition between A and 𝑌 = 𝑋 \ {A} in the proof of monotonicity.

Definition 6.14 (A-conservative PCA). Let 𝑋 be a PCA, A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . We say that 𝑋 is A-conservative if it is A-fair

and for every state 𝑞𝑋 , 𝐶𝑋 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) s. t. A ∈ 𝑎𝑢𝑡 (𝐶𝑋) and𝑚𝑎𝑝 (𝐶𝑋) (A) ≜ 𝑞A , ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞𝑋) ∩
𝑒𝑥𝑡 (A)(𝑞A) = ∅.

6.3 Corresponding w. r. t. A, B

We are closed to state all the technical assumptions to achieve monotonicity of 𝑝𝑟𝑖𝑛𝑡-implementation w.r.t. PSIOA

creation. We introduce one last assumption so-called creation-explicitness, used in section 11 to reduce implementation

of 𝑋B by 𝑋A to implementation of B by A.

Intuitively, a PCA is A-creation-explicit if the creation of a sub-automaton A is equivalent to the triggering of an

action in a dedicated set. This property will allow to obtain the reduction of lemma 11.23.

Definition 6.15 (creation-explicit PCA). Let A be a PSIOA and 𝑋 be a PCA. We say that 𝑋 is A-creation-explicit

iff: it exists a set of actions, noted 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A), s. t. ∀𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), ∀𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑋), if we note

A𝑋 = 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)) and 𝜑𝑋 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎), thenA ∉ A𝑋 ∧A ∈ 𝜑𝑋 ⇐⇒ 𝑎 ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A).

Now we can define new (non naively) correspondence w. r. t. PSIOA A, B to define (non naively) monotonic

relationship.

Definition 6.16 (corresponding w. r. t. A, B). Let A,B ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 , XA and XB be PCA we say that XA and XB are

corresponding w. r. t. A, B, if 1) they are naively corresponding w. r. t. A, B, 2) they are A-conservative and B-
conservative respectively and 3) they areA-creation explicit and B-creation explicit with 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋A) (A) =
𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋B) (B) respectively i. e. they verify:

• 𝑋A is A-conservative and 𝑋B is B-conservative
• 𝑋A isA-creation explicit and𝑋B isB-creation explicit with 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋A) (A) = 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋B) (B)
• 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋A) (𝑞𝑋A) ◁𝐴𝐵 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋B) (𝑞𝑋B).
• 𝑋A , 𝑋B are creation-corresponding w.r.t. A,B
• 𝑋A , 𝑋B are hiding-corresponding w.r.t. A,B
• (No creation from A and B)

– ∀𝑞𝑋A ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋A) , for every action 𝑎𝑐𝑡 A-exclusive, 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋A) (𝑞𝑋A) (𝑎𝑐𝑡) = ∅ and similarly

37

Pierre Civit and Maria Potop-Butucaru

– ∀𝑞𝑋B ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋B), for every action 𝑎𝑐𝑡 ′ B-exclusive, 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋B) (𝑞𝑋B) (𝑎𝑐𝑡 ′) = ∅

Definition 6.17 (Monotonic relationship). Let 𝑅 be a binary relation on PSIOA. We say that 𝑅 is monotonic if

for every pair of PSIOA (A,B) ∈ 𝑅, for every pair of PCA 𝑋A and XB that are corresponding w. r. t. A, B,
(𝑝𝑠𝑖𝑜𝑎(𝑋A), 𝑝𝑠𝑖𝑜𝑎(𝑋B)) ∈ 𝑅.

We would like states the monotonicy of 𝑝𝑟𝑖𝑛𝑡-implementation, but it holds only for a certain class of schedulers,

so-called creation-oblivious introduced in next subsection 6.4

6.4 Creation-oblivious scheduler

Here we present a particular scheduler schema, that do not take into account previous internal actions of a particular

sub-automaton to output its probability over transitions to trigger.

We start by defining strict oblivious-schedulers that output the same transition with the same probability for pair of

execution fragments that differ only by prefixes in the same class of equivalence. This definition is inspired by the one

provided in the thesis of Segala, but is more restrictive since we require a strict equality instead of a correlation (section

5.6.2 in [8]).

Definition 6.18 (oblivious scheduler). Let �̃� be a PCA or a PSIOA, let �̃� ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (�̃�) and let ≡ be an equivalence

relation on 𝐹𝑟𝑎𝑔𝑠∗ (�̃�) verifying ∀𝛼1, 𝛼2 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (�̃�) s. t. 𝛼1 ≡ 𝛼2, 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼1) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼2) . We say that �̃� is

(≡)-strictly oblivious if ∀𝛼1, 𝛼2, 𝛼3 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (�̃�) s. t. 1) 𝛼1 ≡ 𝛼2 and 2) 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼3) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼2) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼1), then
�̃� (𝛼⌢

1
𝛼3) = �̃� (𝛼⌢

2
𝛼3).

Now we define the relation of equivalence that defines our subset of creation-oblivious schedulers. Intuitively, two

executions fragments ending on A creation are in the same equivalence class if they differ only in terms of internal

actions of A.

Definition 6.19 (𝛼 ≡𝑐𝑟A 𝛼 ′). Let A be a PSIOA, and �̃� be a PCA. For every 𝛼, 𝛼 ′ ∈ 𝐹𝑟𝑎𝑔𝑠∗ (�̃�), we say 𝛼 ≡𝑐𝑟A 𝛼 ′ iff:

(1) 𝛼, 𝛼 ′ both ends on A-creation.

(2) 𝛼 and𝛼 ′ differ only in theA-exclusive actions and the states ofA, i. e. ` (𝛼) = ` (𝛼 ′)where ` (𝛼 = 𝑞0𝑎1𝑞1 ...𝑎𝑛𝑞𝑛) ∈
𝐹𝑟𝑎𝑔𝑠∗ (�̃�) is defined as follows:

• remove the A-exclusive actions

• replace each state 𝑞𝑖 by its configuration 𝐶𝑜𝑛𝑓 𝑖𝑔(�̃�) (𝑞) = (A𝑖 , S𝑖)
• replace each configuration (A𝑖 , S𝑖) by (A𝑖 , S𝑖) \ {A}
• replace the (non-alternating) sequences of identical configurations (due to A-exclusiveness of removed

actions) by one unique configuration.

(3) 𝑡𝑟𝑎𝑐𝑒 (𝛼) = 𝑡𝑟𝑎𝑐𝑒 (𝛼 ′),
(4) 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼 ′)

We can remark that the items 4 can be deduced from 1 and 2 if 𝑋 is configuration-conflict-free.

Definition 6.20 (creation-oblivious scheduler). Let ˜A be a PSIOA, �̃� be a PCA, �̃� ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (�̃�). We say that �̃� is

A-creation oblivious if it is (≡𝑐𝑟A)-strictly oblivious.

We say that �̃� is creation-oblivious if it is A-creation oblivious for every sub-automaton A of �̃� (A ∈ ⋃
𝑞∈𝑠𝑡𝑎𝑡𝑒𝑠 (�̃�)

𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(�̃�) (𝑞))). We note 𝐶𝑟𝑂𝑏 the function that maps any PCA �̃� to the set of creation-oblivious schedulers of

�̃� .

38

Dynamic Probabilistic Input Output Automata

We have formally defined our notion of creation-oblivious scheduler. This will be a key property to ensure lemma

11.23 that allows to reduce the measure of a class of comportment as a function of measures of classes of shorter

comportment where no creation of A or B occurs excepting potentially at very last action. This reduction is more or

less necessary to obtain monotonicity of implementation relation:

Theorem 6.21 (≤𝑝𝑟𝑖𝑛𝑡
𝐶𝑟𝑂𝑏

is monotonic). Let A,B ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 , XA and XB be PCA corresponding w. r. t. A, B. If
A ≤𝑝𝑟𝑖𝑛𝑡

𝐶𝑟𝑂𝑏
B, then 𝑋A ≤

𝑝𝑟𝑖𝑛𝑡

𝐶𝑟𝑂𝑏
𝑋B

The remaining sections are dedicated to the proof of this theorem 6.21. We start by defining in section 7 a morphism

between executions of automata, so called executions-matching, that preserves structure and measure of probability

under alter ego schedulers. Next, we define in section 8 the notion of an automaton 𝑋A deprived from a PSIOAA, noted

𝑋A \{A}. Furthermore, we show in section 9 that there is an executions-matching from a PCA𝑋A to (𝑋A \{A})| | ˜A𝑠𝑤

where
˜A𝑠𝑤 is the simpleton wrapper of A, i. e. a PCA that only handle A. The section 11 uses the morphism of section

9 to reduce the implementation of 𝑋B by 𝑋A to the implementation of B by A and finally obtain the monotonicity

of implementation w.r.t. PSIOA creation. Finally section 12 explains why the task-scheduler introduced in [4] is not

creation-oblivious.

7 EXECUTIONS-MATCHING

In this section, we introduce some tools to formalise the fact that two automata have the same comportment for the same

scheduler. This section is composed by two sub-sections on PSIOA executions-matching and PCA executions-matching.

Basically, an executions-matching execution from an automaton A to another automaton B is a morphism 𝑓 𝑒𝑥 from

𝐸𝑥𝑒𝑐𝑠 (A) to 𝐸𝑥𝑒𝑐𝑠 (B) that is structure-preserving. In the remaining, we will often use an executions-matching to show

that a pair of executions (𝛼, 𝜋 = 𝑓 𝑒𝑥 (𝛼)) ∈ 𝐸𝑥𝑒𝑐𝑠 (A) × 𝐸𝑥𝑒𝑐𝑠 (B) have the same probability 𝜖𝜎 (𝛼) = 𝜖𝜎′ (𝜋) under a
pair of so-called alter-ego schedulers (𝜎, 𝜎 ′) ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (A) × 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (B) that have corresponding comportment

after corresponding executions fragment (𝛼 ′, 𝜋 ′ = 𝑓 𝑒𝑥 (𝛼 ′)) ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A) × 𝐹𝑟𝑎𝑔𝑠∗ (B).

7.1 PSIOA executions-matching and semantic equivalence

This first subsection is about PSIOA executions-matching.

matching execution. An executions-matching need a states-matching (see definition 7.1) and a transitions-matching

(see definition 7.3) to be defined itself.

Definition 7.1 (states-matching). LetA and B be two PSIOA with𝑄A = 𝑠𝑡𝑎𝑡𝑒𝑠 (A) and𝑄B = 𝑠𝑡𝑎𝑡𝑒𝑠 (B) as respective
sets of states, let 𝑄 ′A ⊂ 𝑄A and let 𝑓 : 𝑄 ′A → 𝑄B be a mapping that verifies:

• Starting state preservation: If 𝑞A ∈ 𝑄 ′A then 𝑓 (𝑞A) = 𝑞B (with (𝑞A , 𝑞B) = (𝑠𝑡𝑎𝑟𝑡 (A), 𝑠𝑡𝑎𝑟𝑡 (B)))
• Signature preservation (modulo an hiding operation): ∀(𝑞, 𝑞′) ∈ 𝑄 ′A × 𝑄B , s. t. 𝑞

′ = 𝑓 (𝑞), 𝑠𝑖𝑔(A)(𝑞) =

ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(B)(𝑞′), ℎ(𝑞′)) with ℎ(𝑞′) ⊆ 𝑜𝑢𝑡 (B)(𝑞′) (resp. with ℎ(𝑞′) = ∅, that is 𝑠𝑖𝑔(A)(𝑞) = 𝑠𝑖𝑔(B)(𝑞′)).

then we say that 𝑓 is a weak (resp. strong) states-matching from A to B. If 𝑄 ′A = 𝑄A , then we say that 𝑓 is a complete

(weak or strong) states-matching from A to B.

Before being able to define transitions-matching, some requirements have to be ensured. A set of transition that

would ensure these requirements would be called eligible to transitions-matching.
39

Pierre Civit and Maria Potop-Butucaru

Definition 7.2 (transitions set eligible to transitions matching). Let A and B be two PSIOA with 𝑄A = 𝑠𝑡𝑎𝑡𝑒𝑠 (A) and
𝑄B = 𝑠𝑡𝑎𝑡𝑒𝑠 (B) as respective sets of states, let 𝑄 ′A ⊂ 𝑄A and let 𝑓 : 𝑄 ′A → 𝑄B be a states-matching from A to B.
Let 𝐷 ′A ⊆ 𝐷A = 𝑑𝑡𝑟𝑎𝑛𝑠 (A) be a subset of transition. If 𝐷 ′A verifies that for every (𝑞, 𝑎, [(A,𝑞,𝑎)) ∈ 𝐷 ′A :

• Matched states preservation: 𝑞 ∈ 𝑄 ′A and

• Equitable corresponding distribution: ∀𝑞′′ ∈ 𝑠𝑢𝑝𝑝 ([(A,𝑞,𝑎)), 𝑞′′ ∈ 𝑄 ′A and [(A,𝑞,𝑎)
𝑓
←→ [(B,𝑓 (𝑞),𝑎) (i. e. the

restriction of 𝑓 , ˜𝑓 : 𝑠𝑢𝑝𝑝 ([(A,𝑞,𝑎)) → 𝑠𝑢𝑝𝑝 ([(B,𝑓 (𝑞),𝑎)) is bijective and ∀𝑞′′ ∈ 𝑠𝑢𝑝𝑝 ([(A,𝑞,𝑎)), [(A,𝑞,𝑎) (𝑞′′) =
[(B,𝑓 (𝑞),𝑎) (𝑓 (𝑞′′))).

then we say that 𝐷 ′A is eligible to transitions-matching domain from 𝑓 . We omit to mention the states-matching 𝑓 when

this is clear in the context.

Now, we are able to define a transitions-matching, which is a property-preserving mapping from a set of transitions

𝐷 ′A ⊆ 𝑑𝑡𝑟𝑎𝑛𝑠 (A) to another set of transitions 𝐷 ′B ⊆ 𝑑𝑡𝑟𝑎𝑛𝑠 (B).

Definition 7.3 (transitions-matching). Let A and B be two PSIOA with 𝑄A = 𝑠𝑡𝑎𝑡𝑒𝑠 (A) and 𝑄B = 𝑠𝑡𝑎𝑡𝑒𝑠 (B) as
respective sets of states, let 𝑄 ′A ⊂ 𝑄A and let 𝑓 : 𝑄 ′A → 𝑄B be a states-matching from A to B. Let 𝐷 ′A ⊆ 𝐷A be a

subset of transition eligible to transitions-matching domain from 𝑓 .

We define the transitions-matching (𝑓 , 𝑓 𝑡𝑟) from A to B induced by the states-matching 𝑓 and the subset of transition

𝐷 ′A s. t. 𝑓 𝑡𝑟 : 𝐷 ′A → 𝐷B is defined by 𝑓 𝑡𝑟 ((𝑞, 𝑎, [(A,𝑞,𝑎))) = (𝑓 (𝑞), 𝑎, [(B,𝑓 (𝑞),𝑎)) . If 𝑓 is complete and 𝐷 ′A = 𝐷A ,

(𝑓 , 𝑓 𝑡𝑟) is said to be a complete transitions-matching. If 𝑓 is weak (resp. strong) (𝑓 , 𝑓 𝑡𝑟) is said to be a weak (resp. strong)
transitions-matching. If 𝑓 is clear in the context, with a slight abuse of notation, we say that 𝑓 𝑡𝑟 is a transitions-matching.

The function 𝑓 𝑡𝑟 need to verify some constraints imposed by 𝑓 , but if the set 𝐷 ′A of concerned transitions is

correctly-chosen to ensure the 2 properties of definition 7.2, then such a transitions-matching is unique.

Now, we can easily define an executions-matching with a transitions-matching, which is a property-preserving

mapping from a set of execution fragments 𝐹 ′A ⊆ 𝐹𝑟𝑎𝑔𝑠 (A) to another set of execution fragments 𝐹 ′B ⊆ 𝐹𝑟𝑎𝑔𝑠 (B).

Definition 7.4 (executions-matching). Let A and B be two PSIOA. Let (𝑓 , 𝑓 𝑡𝑟) be a transitions-matching from

A to B. Let 𝐹 ′A = {𝛼 ≜ 𝑞0𝑎1𝑞1 ...𝑎𝑛𝑞𝑛 ... ∈ 𝐹𝑟𝑎𝑔𝑠 (A)|∀𝑖 ∈ [0 : |𝛼 | − 1], (𝑞𝑖 , 𝑎𝑖+1, [(A,𝑞𝑖 ,𝑎𝑖+1)) ∈ 𝑑𝑜𝑚(𝑓 𝑡𝑟)}. Let
𝑓 𝑒𝑥 : 𝐹 ′A → 𝐹𝑟𝑎𝑔𝑠 (B), built from (𝑓 , 𝑓 𝑡𝑟) s. t. ∀𝛼 = 𝑞0

A𝑎
1𝑞1

A ...𝑎
𝑛𝑞𝑛A ... ∈ 𝐹

′
A , 𝑓

𝑒𝑥 (𝛼) = 𝑓 (𝑞0

A)𝑎
1 𝑓 (𝑞1

A)...𝑎
𝑛 𝑓 (𝑞𝑛A) ...

We say that (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) is an executions-matching from A to B. Furthermore, if (𝑓 , 𝑓 𝑡𝑟) is complete and 𝐹 ′A =

𝐹𝑟𝑎𝑔𝑠 (A), (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) is said to be a complete executions-matching. If (𝑓 , 𝑓 𝑡𝑟) is weak (resp. strong) (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥)
is said to be a weak (resp. strong) executions-matching. When (𝑓 , 𝑓 𝑡𝑟) is clear in the context, with a slight abuse of

notation, we say that 𝑓 𝑒𝑥 is an executions-matching.

The function 𝑓 𝑒𝑥 is completely defined by (𝑓 , 𝑓 𝑡𝑟), hence we call (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) the executions-matching induced

by the transition matching (𝑓 , 𝑓 𝑡𝑟) or the executions-matching induced by the states-matching 𝑓 and the subset of

transitions 𝑑𝑜𝑚(𝑓 𝑡𝑟).
The construction of 𝑓 𝑒𝑥 allows us to see two executions mapped by an executions-mapping as a sequence of pairs of

transitions mapped by the attached transitions-matching. This result is formalised in next lemma 7.5.

Lemma 7.5 (executions-matching seen as a seqence of transitions-matchings). Let A and B be two PSIOA.

Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be an executions-matching from A to B. Let 𝛼 = 𝑞0

A𝑎
1𝑞1

A ...𝑎
𝑛𝑞𝑛A ... ∈ 𝑑𝑜𝑚(𝑓

𝑒𝑥) and 𝜋 = 𝑓 𝑒𝑥 (𝛼) =
𝑞0

B𝑎
1𝑞1

B ...𝑎
𝑛𝑞𝑛B ... = 𝑓 (𝑞

0

A)𝑎
1 𝑓 (𝑞1

A) ...𝑎
𝑛 𝑓 (𝑞𝑛A).... Then for every 𝑖 ∈ [0 : |𝛼 |−1], (𝑞𝑖B , 𝑎

𝑖+1, [(B,𝑞𝑖B ,𝑎𝑖+1)
) = 𝑓 𝑡𝑟 ((𝑞𝑖A , 𝑎

𝑖+1, [(A,𝑞𝑖A ,𝑎𝑖)
))

40

Dynamic Probabilistic Input Output Automata

Proof. First, matched states preservation and action preservation are ensured by construction. By definition, for ev-

ery 𝑖 ∈ [0 : |𝛼 |−1], (𝑞𝑖A , 𝑎
𝑖+1, [(A,𝑞𝑖A ,𝑎𝑖+1)

) ∈ 𝑑𝑜𝑚(𝑓 𝑡𝑟). We note 𝑡𝑟 𝑖B ≜ 𝑓
𝑡𝑟 ((𝑞𝑖A , 𝑎

𝑖+1, [(A,𝑞𝑖A ,𝑎𝑖+1)
)). By definition, 𝑡𝑟 𝑖B

is of the form (𝑓 (𝑞𝑖A), 𝑎
𝑖+1, [). But a transition of this form is unique, which means 𝑡𝑟 𝑖B = (𝑓 (𝑞𝑖A), 𝑎

𝑖+1, [(B,𝑓 (𝑞𝑖A),𝑎𝑖+1)
)

which ends the proof. □

Matching executions

Fig. 18. Here we have𝑄′A = {𝑞0, 𝑞1, ..., 𝑞9 } ⊊ 𝑄A , we define the state-matching 𝑓 : 𝑄′A → 𝑄B s. t. ∀𝑘 ∈ [1, 9], 𝑓 (𝑞𝑘) = �̃�𝑘 , and
𝐷′A = {(𝑞0, 𝑎, [(A,𝑞0,𝑎)), (𝑞1, 𝑏, [(A,𝑞1,𝑏)), (𝑞1, 𝑐, [(A,𝑞1,𝑐)), (𝑞2, 𝑑, [(A,𝑞2,𝑑)), (𝑞4, 𝑒, [(A,𝑞4,𝑒)), (𝑞5, 𝑓 , [(A,𝑞5,𝑓)), (𝑞7, ℎ, [(A,𝑞7,ℎ)) }.
We can define the execution matching (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) induced by 𝑓 and 𝐷′A .

Now we overload the definition of executions-matching to be able to state the main result of this paragraph i. e.

theorem 7.9

Definition 7.6 (executions-matching overload: pre-execution-distribution). LetA and B be two PSIOA. Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥)
be an executions-matching from A to B.

Let (`, ` ′) ∈ 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (A)) ×𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (B)) s. t. `
𝑓 𝑒𝑥

↔ ` ′ (i.e. th restriction of 𝑓 𝑒𝑥 on 𝑠𝑢𝑝𝑝 (˜̀) is a bijection from

𝑠𝑢𝑝𝑝 (˜̀) to 𝑠𝑢𝑝𝑝 (`) and for every 𝛼 ∈ 𝑠𝑢𝑝𝑝 (`), ` ′(𝑓 𝑒𝑥 (𝛼)) = ` (𝛼)). Then we say that (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) is an executions-

matching from (A, `) to (B, ` ′).
41

Pierre Civit and Maria Potop-Butucaru

In practice, we will often use executions-matching from (A, 𝛿𝑞A) to (B, 𝛿𝑞B).

Continued executions-matching. Motivated by PSIOA creation that would break the states-matching from a PCA 𝑋A
to the PCA 𝑍A ≜ (𝑋 \ {A})| | ˜A𝑠𝑤 defined in section 9, we introduce the notion of continuation of executions-matching.

Definition 7.7 (Continued executions-matching). Let A and B be two PSIOA with 𝑄A = 𝑠𝑡𝑎𝑡𝑒𝑠 (A) and 𝑄B =

𝑠𝑡𝑎𝑡𝑒𝑠 (B) as respective sets of states and𝐷A = 𝑑𝑡𝑟𝑎𝑛𝑠 (A) and𝐷B = 𝑑𝑡𝑟𝑎𝑛𝑠 (B) as respective sets of discrete transitions.
Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be an executions-matching from A to B with 𝑑𝑜𝑚(𝑓) ≜ 𝑄 ′A ⊂ 𝑄A and 𝑑𝑜𝑚(𝑓 𝑡𝑟) ≜ 𝐷 ′A ⊂ 𝐷A .

Let 𝑓 + : 𝑄 ′′A → 𝑄B with 𝑄 ′′A ⊂ 𝑄A . Let 𝐷 ′′A ⊂ 𝑑𝑡𝑟𝑎𝑛𝑠 (A) be a subset of transitions verifying for every

(𝑞, 𝑎, [(A,𝑞,𝑎)) ∈ 𝐷 ′′A \ 𝐷
′
A :

• Matched states preservation: 𝑞 ∈ 𝑄 ′A
• Extension of equitable corresponding distribution:∀𝑞′′ ∈ 𝑠𝑢𝑝𝑝 ([(A,𝑞,𝑎)), 𝑞′′ ∈ 𝑄 ′′A and[(A,𝑞,𝑎)

𝑓 +
←→ [(B,𝑓 (𝑞),𝑎) ,

i. e. the restriction of 𝑓 + on 𝑠𝑢𝑝𝑝 ([(A,𝑞,𝑎)), ˜𝑓 + : 𝑠𝑢𝑝𝑝 ([(A,𝑞,𝑎)) → 𝑠𝑢𝑝𝑝 ([(B,𝑓 (𝑞),𝑎)) is bijective and ∀𝑞′′ ∈
𝑠𝑢𝑝𝑝 ([(A,𝑞,𝑎)), [(A,𝑞,𝑎) (𝑞′′) = [(B,𝑓 (𝑞),𝑎) (𝑓 + (𝑞′′))

We define the (𝑓 +, 𝐷 ′′A)-continuation of 𝑓 𝑡𝑟 as the function 𝑓 𝑡𝑟,+ : 𝐷 ′A ∪ 𝐷
′′
A → 𝐷B s. t. ∀(𝑞, 𝑎, [(A,𝑞,𝑎)) ∈ 𝐷 ′A ∪

𝐷 ′′A , 𝑓
𝑡𝑟,+ ((𝑞, 𝑎, [(A,𝑞,𝑎))) = (𝑓 (𝑞), 𝑎, [(B,𝑓 (𝑞),𝑎)).

Let 𝐹 ′′A = 𝑑𝑜𝑚(𝑓 𝑒𝑥) ∪ {𝛼⌢𝑞𝑎𝑞′ ∈ 𝐸𝑥𝑒𝑐𝑠∗ (A)|𝛼 ∈ 𝑑𝑜𝑚(𝑓 𝑒𝑥) ∧ (𝑞, 𝑎, [(A,𝑞,𝑎)) ∈ 𝐷 ′′A }. We define the (𝑓 𝑡𝑟,+)-
continuation of 𝑓 𝑒𝑥 as the function 𝑓 𝑒𝑥,+ : 𝐹 ′′A → 𝐹𝑟𝑎𝑔𝑠 (B) s. t. ∀𝛼 ∈ 𝑑𝑜𝑚(𝑓 𝑒𝑥), 𝑓 𝑒𝑥,+ (𝛼) = 𝑓 𝑒𝑥 (𝛼) and ∀𝛼 ′ =
𝛼⌢𝑞, 𝑎, 𝑞′ ∈ 𝐹 ′′A \ 𝑑𝑜𝑚(𝑓

𝑒𝑥), 𝑓 𝑒𝑥,+ (𝛼 ′) = 𝑓 𝑒𝑥 (𝛼)⌢ 𝑓 (𝑞), 𝑎, 𝑓 + (𝑞′).
Then, we say that ((𝑓 , 𝑓 +), 𝑓 𝑡𝑟,+, 𝑓 𝑒𝑥,+) is the (𝑓 +, 𝐷 ′′A)-continuation of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) which is a continuation of

(𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) and a continued executions-matching from A to. B.

Moreover, if (`, ` ′) ∈ 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (A)) × 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (B)) s. t. `
𝑓 𝑒𝑥,+
←→ ` ′ (i. e. the restriction

˜𝑓 𝑒𝑥,+ of 𝑓 𝑒𝑥,+ on

𝑠𝑢𝑝𝑝 (˜̀) is a bijection from 𝑠𝑢𝑝𝑝 (˜̀) to 𝑠𝑢𝑝𝑝 (`) and for every 𝛼 ∈ 𝑠𝑢𝑝𝑝 (`), ` ′(𝑓 𝑒𝑥,+ (𝛼)) = ` (𝛼)), then we say that

((𝑓 , 𝑓 +), 𝑓 𝑡𝑟,+, 𝑓 𝑒𝑥,+) is a continued executions-matching from (A, `) to (B, ` ′).

From executions-matching to probabilistic distribution preservation. We want to states that a (potentially-continued)

executions-matching preserves measure of probability of the corresponding executions.

To do so, we define alter egos schedulers to a certain executions-matching. Such pair of schedulers are very similar in

the sense that their outputs depends only on the semantic structure of the input, preserved by the executions-matching.

Definition 7.8 ((𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥)-alter egos schedulers). Let A and B be two PSIOA. Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be an executions-

matching from A to B. Let (�̃�, 𝜎) ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (A) × 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (B). We say that (�̃�, 𝜎) are (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥)-alter egos (or
𝑓 𝑒𝑥 -alter egos) if, and only if, for every (𝛼, 𝛼) ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A) × 𝐹𝑟𝑎𝑔𝑠∗ (B) s. t. 𝛼 = 𝑓 𝑒𝑥 (𝛼) (which means 𝑠𝑖𝑔(A)(𝑞) =
𝑠𝑖𝑔(B)(𝑞) ≜ 𝑠𝑖𝑔 with 𝑞 = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼) and 𝑞 = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼) by signature preservation property of the associated states-

matching), ∀𝑎 ∈ 𝑠𝑖𝑔, �̃� (𝛼) ((𝑞, 𝑎, [(A,�̃�,𝑎))) = 𝜎 (𝛼) ((𝑞, 𝑎, [(B,𝑞,𝑎))).

Let us remark that the previous definition implies that the probability of halting after corresponding executions

fragments (𝛼, 𝛼) is also the same.

Now we are ready to states an intuitive result that will be often used in the remaining.

Theorem 7.9 (Executions-matching preserves general probabilistic distribution). LetA and B be two PSIOA.

Let (˜̀, `) ∈ 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (A)) × 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (B)). Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be an executions-matching from (A, ˜̀) to (B, `) . Let
(�̃�, 𝜎) ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (A) × 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (B), s. t. (�̃�, 𝜎) are (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥)-alter egos. Let (𝛼, 𝛼) ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A) × 𝐹𝑟𝑎𝑔𝑠∗ (B) s.
t. 𝛼 = 𝑓 𝑒𝑥 (𝛼). Then 𝜖�̃�, ˜̀ (𝐶�̃�) = 𝜖𝜎,` (𝐶𝛼) and 𝜖�̃�, ˜̀ (𝛼) = 𝜖𝜎,` (𝛼).

42

Dynamic Probabilistic Input Output Automata

Proof. First, by definition 7.6 of executions-matching, 𝑓 𝑒𝑥 is a bijection from 𝑠𝑢𝑝𝑝 (˜̀) to 𝑠𝑢𝑝𝑝 (`) where ∀𝛼𝑜 ∈
𝑠𝑢𝑝𝑝 (˜̀), ` (𝑓 𝑒𝑥 (𝛼𝑜)) = ˜̀ (𝛼𝑜) (*). Second, by definition 4.13 ofmeasure generated by a scheduler, 𝜖𝜎,` (𝐶𝛼′) = Σ𝛼𝑜 ∈𝑠𝑢𝑝𝑝 (`) ` (𝛼𝑜)·
𝜖𝜎,𝛼𝑜 (𝐶𝛼′) and 𝜖�̃�, ˜̀ (𝐶�̃�′) = Σ�̃�𝑜 ∈𝑠𝑢𝑝𝑝 (˜̀) ˜̀ (𝛼𝑜) · 𝜖�̃�,�̃�𝑜 (𝐶�̃�′) (**). Hence, by combining (*) and (**), we only need to

show that for every (𝛼𝑜 , 𝛼𝑜) ∈ 𝑠𝑢𝑝𝑝 (˜̀) × 𝑠𝑢𝑝𝑝 (`) with 𝑓 𝑒𝑥 (𝛼𝑜) = 𝛼𝑜 , for every (𝛼 ′, 𝛼 ′) ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A) × 𝐹𝑟𝑎𝑔𝑠∗ (B)
with 𝑓 𝑒𝑥 (𝛼 ′) = 𝛼 ′, we have 𝜖𝜎,𝛼𝑜 (𝐶𝛼′) = 𝜖�̃�,�̃�𝑜 (𝐶�̃�′) that we show by induction on the size 𝑠 = |𝛼 | = |𝛼 |. We fix

(𝛼𝑜 , 𝛼𝑜) ∈ 𝑠𝑢𝑝𝑝 (˜̀) × 𝑠𝑢𝑝𝑝 (`) with 𝑓 𝑒𝑥 (𝛼𝑜) = 𝛼𝑜 .
Basis: 𝑠 = 0

Let 𝛼 ′ = 𝑞′ ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A), 𝛼 ′ = 𝑞′ ∈ 𝐹𝑟𝑎𝑔𝑠∗ (B) with 𝛼 ′ = 𝑓 𝑒𝑥 (𝛼 ′). We have |𝛼 ′ | = |𝛼 ′ | = 0. By definition 4.13 of

measure generated by a scheduler,

𝜖�̃�,�̃�𝑜 (𝐶�̃�′) = :

0 if both 𝛼 ′ ≰ 𝛼𝑜 and 𝛼𝑜 ≰ 𝛼

′

1 if 𝛼 ′ ≤ 𝛼𝑜
𝜖�̃�,�̃�𝑜 (𝐶�̃�) · �̃� (𝛼) ([(A,�̃�,𝑎)) · [(A,�̃�,𝑎) (𝑞′) if 𝛼𝑜 ≤ 𝛼 and 𝛼 ′ = 𝛼⌢𝑞𝑎𝑞′

and

𝜖𝜎,𝛼𝑜 (𝐶𝛼′) = :

0 if both 𝛼 ′ ≰ 𝛼𝑜 and 𝛼𝑜 ≰ 𝛼

′

1 if 𝛼 ′ ≤ 𝛼𝑜
𝜖𝜎,𝛼𝑜 (𝐶𝛼) · 𝜎 (𝛼) ([(B,𝑞,𝑎)) · [(B,𝑞,𝑎) (𝑞′) if 𝛼𝑜 ≤ 𝛼 and 𝛼 ′ = 𝛼⌢𝑞𝑎𝑞′

Since |𝛼 ′ | = |𝛼 ′ | = 0 the third case is never met. The second case can be written: 𝛼 ′ ≤ 𝛼𝑜 (resp. 𝛼 ′ ≤ 𝛼𝑜) iff

𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼𝑜) = 𝑞′ (resp. 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼𝑜) = 𝑞′). Hence, for every (𝛼𝑜 , 𝛼𝑜) s. t. 𝑓 𝑒𝑥 (𝛼𝑜) = 𝛼𝑜 , 𝜖�̃�,�̃�𝑜 (𝐶�̃�′) = 𝜖𝜎,𝛼𝑜 (𝐶 ′𝛼) which
ends the basis.

Induction: We assume the result to be true up to size 𝑠 and we show it implies the result is true for size 𝑠 + 1. Let

(𝛼 ′, 𝛼, 𝛼 ′, 𝛼) ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A)2×𝐹𝑟𝑎𝑔𝑠∗ (B)2 with 𝛼 ′ = 𝛼⌢𝑞𝑎𝑞′ and 𝛼 ′ = 𝛼⌢𝑞𝑎𝑞′ s. t. 𝛼 ′ = 𝑓 𝑒𝑥 (𝛼 ′) with |𝛼 ′ | = |𝛼 ′ | = 𝑠 +1.

We want to show that 𝜖�̃�, ˜̀ (𝐶�̃�′) = 𝜖𝜎,` (𝐶𝛼′). By definition 4.13 of measure generated by a scheduler,

𝜖�̃�,�̃�𝑜 (𝐶�̃�′) = :

0 if both 𝛼 ′ ≰ 𝛼𝑜 and 𝛼𝑜 ≰ 𝛼

′

1 if 𝛼 ′ ≤ 𝛼𝑜
𝜖�̃�,�̃�𝑜 (𝐶�̃�) · �̃� (𝛼) ([(A,�̃�,𝑎)) · [(A,�̃�,𝑎) (𝑞′) if 𝛼𝑜 ≤ 𝛼 and 𝛼 ′ = 𝛼⌢𝑞𝑎𝑞′

and

𝜖𝜎,𝛼𝑜 (𝐶𝛼′) = :

0 if both 𝛼 ′ ≰ 𝛼𝑜 and 𝛼𝑜 ≰ 𝛼

′

1 if 𝛼 ′ ≤ 𝛼𝑜
𝜖𝜎,𝛼𝑜 (𝐶𝛼) · 𝜎 (𝛼) ([(B,𝑞,𝑎)) · [(B,𝑞,𝑎) (𝑞′) if 𝛼𝑜 ≤ 𝛼 and 𝛼 ′ = 𝛼⌢𝑞𝑎𝑞′

Again, the executions-matching implies that i) both 𝛼 ′ ≰ 𝛼𝑜 and 𝛼𝑜 ≰ 𝛼 ′ ⇐⇒ both 𝛼 ′ ≰ 𝛼𝑜 and 𝛼𝑜 ≰ 𝛼 ′, ii)

𝛼 ≤ 𝛼𝑜 ⇐⇒ 𝛼 ≤ 𝛼𝑜 and iii) 𝛼𝑜 ≤ 𝛼 ⇐⇒ 𝛼𝑜 ≤ 𝛼 . Moreover, by induction assumption 𝜖�̃�,�̃�𝑜 (𝐶�̃�) = 𝜖𝜎,𝛼𝑜 (𝐶𝛼). Hence
we only need to show that �̃� (𝛼) ([(A,�̃�,𝑎)) · [(A,�̃�,𝑎) (𝑞′) = 𝜎 (𝛼) ([(B,𝑞,𝑎)) · [(B,𝑞,𝑎) (𝑞′) (***). By definition of alter-ego

schedulers, �̃� (𝛼) ([(A,�̃�,𝑎)) = 𝜎 (𝛼) ([(B,𝑞,𝑎)) (j). By definition of executions-matching, [(A,�̃�,𝑎) (𝑞′) = [(B,𝑞,𝑎) (𝑞′) (jj).
Thus (j) and (jj) implies (***) which allows us to terminate the induction to obtain 𝜖�̃�,�̃�𝑜 (𝐶�̃�′) = 𝜖𝜎,𝛼𝑜 (𝐶𝛼′).

Finally, let 𝑠𝑖𝑔 = 𝑠𝑖𝑔(A)(𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼 ′)) = 𝑠𝑖𝑔(A)(𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼 ′)), then 𝜖�̃�,�̃�𝑜 (𝛼 ′) = 𝜖�̃�,�̃�𝑜 (𝐶�̃�′) · (1 − Σ𝑎∈𝑠𝑖𝑔�̃� (𝛼 ′) (𝑎)) =
𝜖𝜎,𝛼𝑜 (𝐶𝛼′) · (1 − Σ𝑎∈𝑠𝑖𝑔𝜎 (𝛼 ′) (𝑎)) = 𝜖𝜎,𝛼𝑜 (𝛼 ′), which ends the proof.

□

We restate the previous theorem with continued executions-matching.

Theorem 7.10 (Continued executions-matching preserves general probabilistic distribution). LetA and B
be two PSIOA. Let (˜̀, `) ∈ 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (A)) × 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (B)). Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be an executions-matching from (A, ˜̀)
to (B, `) . Let ((𝑓 , 𝑓 +), 𝑓 𝑡𝑟,+, 𝑓 𝑒𝑥,+) be a continuation of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥). Let (�̃�, 𝜎) ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (A) × 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (B), s. t.
(�̃�, 𝜎) are (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥)-alter egos. Let (𝛼, 𝛼) ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A) × 𝐹𝑟𝑎𝑔𝑠∗ (B) s. t. 𝛼 = 𝑓 𝑒𝑥,+ (𝛼). Then 𝜖�̃�, ˜̀ (𝐶�̃�) = 𝜖𝜎,` (𝐶𝛼).

43

Pierre Civit and Maria Potop-Butucaru

Proof. The proof is exactly the same than the one for theorem 7.9 □

Before dealing with composability of executions-matching, we prove two results about injectivity and surjectivity of

executions-matching in next lemma 7.11 and 7.12.

Lemma 7.11 (Injectivity of executions-matching). Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be an executions-matching from A to B and

((𝑓 , 𝑓 +), 𝑓 𝑡𝑟,+, 𝑓 𝑒𝑥,+) a continuation of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥).
Let ˜𝑓 𝑒𝑥,+ : 𝐹 ′′A ⊆ 𝑑𝑜𝑚(𝑓

𝑒𝑥,+) → 𝐹B ⊆ 𝑟𝑎𝑛𝑔𝑒 (𝑓 𝑒𝑥,+). Let ˜𝑓 : 𝑄 ′′A ⊆ 𝑑𝑜𝑚(𝑓) → 𝑠𝑡𝑎𝑡𝑒𝑠 (B) be the restriction of 𝑓 on a

set 𝑄 ′′A ⊆ 𝑑𝑜𝑚(𝑓).

(1) If i) ∀𝛼 ∈ 𝐹 ′′A , 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼) ∈ 𝑄
′′
A and ii) ˜𝑓 is injective, then ˜𝑓 𝑒𝑥,+ is injective.

(2) (Corollary) if 𝐹 ′′A ⊆ 𝐸𝑥𝑒𝑐𝑠 (A), 𝑓
𝑒𝑥,+ is injective.

Proof. (1) By induction on the size 𝑘 of the prefix: Basis: By i) 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼), 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼 ′) ∈ 𝑄 ′′A , by construction

of 𝑓 𝑒𝑥,+, 𝑓 (𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼)) = 𝑓 (𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼 ′)) = 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝜋) and by ii) 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼) = 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼 ′) Induction. We assume

the injectivity of
˜𝑓 𝑒𝑥,+ to be true for execution on size 𝑘 and we show this is also true for size 𝑘 + 1. Let

𝜋 = 𝑠0𝑏1𝑠1 ...𝑠𝑘𝑏𝑘+1𝑠𝑘+1 ∈ 𝐹 ′′B Let 𝛼 = 𝑞0𝑎1𝑞1 ...𝑞𝑘𝑎𝑘+1𝑞𝑘+1, 𝛼 ′ = 𝑞′0𝑎′1𝑞′1 ...𝑞′𝑘𝑎′𝑘+1𝑞′𝑘+1 ∈ 𝐹 ′′A s. t. 𝑓 (𝛼) =
𝑓 (𝛼 ′) = 𝜋 . By construction of 𝑓 𝑒𝑥,+, ∀𝑖 ∈ [1, 𝑛], 𝑏𝑖 = 𝑎𝑖 = 𝑎′𝑖 . By construction of 𝑓 𝑒𝑥,+, 𝑓 𝑒𝑥,+ (𝑞′0𝑎′1𝑞′1 ...𝑞′𝑘) =
𝑓 𝑒𝑥,+ (𝑞0𝑎1𝑞1 ...𝑞𝑘) = 𝑠0𝑎1𝑠1 ...𝑠𝑘 . By induction assumption 𝑞′0𝑎′1𝑞′1 ...𝑞′𝑘) = 𝑞0𝑎1𝑞1 ...𝑞𝑘 . By definition of

execution, 𝑠𝑘+1 ∈ 𝑠𝑢𝑝𝑝 ([(B,𝑠𝑘 ,𝑎𝑘+1)). By equitable corresponding distribution, If [(A,𝑞𝑘 ,𝑎𝑘+1) ∈ 𝑑𝑜𝑚(𝑓 𝑡𝑟),
the restriction of 𝑓 , ˜𝑓 : 𝑠𝑢𝑝𝑝 ([(A,𝑞𝑘 ,𝑎𝑘+1)) → 𝑠𝑢𝑝𝑝 ([(B,𝑠𝑘 ,𝑎𝑘+1)) is bijective and [(A,𝑞𝑘 ,𝑎𝑘+1) ∈ 𝑑𝑜𝑚(𝑓 𝑡𝑟,+) \
𝑑𝑜𝑚(𝑓 𝑡𝑟), the restriction of 𝑓 +, ˜𝑓 + : 𝑠𝑢𝑝𝑝 ([(A,𝑞𝑘 ,𝑎𝑘+1)) → 𝑠𝑢𝑝𝑝 ([(B,𝑠𝑘 ,𝑎𝑘+1)) is bijective so 𝑞𝑘+1 = 𝑞′𝑘+1 which

ends the proof.

(2) We have |𝑠𝑡𝑎𝑟𝑡 (A)| = 1. Hence the restriction of 𝑓 on 𝑠𝑡𝑎𝑟𝑡 (A) is necessarily injective (ii). Let 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (A).
By definition of execution, 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼) ∈ 𝑠𝑡𝑎𝑟𝑡 (A) (i). All the requirements of lemma 7.11, first item are met,

which ends the proof.

□

Lemma 7.12 (Surjectivity property preserved by continuation). Let A and B be two PSIOA. Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be
an executions-matching from A to B. Let ((𝑓 , 𝑓 +), 𝑓 𝑡𝑟,+, 𝑓 𝑒𝑥,+) be the (𝑓 +, 𝐷 ′′A)-continuation of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) (where by
definition 𝐷 ′′A \ 𝑑𝑜𝑚(𝑓

𝑡𝑟) respect the properties of matched states preservation and extension of equitable corresponding

distribution from definition 7.7). If the restriction ˜𝑓 𝑒𝑥 : 𝐸 ′A ⊆ 𝐸𝑥𝑒𝑐𝑠 (A) → 𝐸B ⊆ 𝐸𝑥𝑒𝑐𝑠 (B) is surjective, then ˜𝑓 𝑒𝑥,+ :

𝐸
′,+
A = {𝛼 ′ = 𝛼⌢𝑞A , 𝑎, 𝑞′A ∈ 𝐸𝑥𝑒𝑐𝑠 (A)|𝛼 ∈ 𝐸A , (𝑞A , 𝑎, [A,𝑞A ,𝑎) ∈ 𝑑𝑜𝑚(𝑓

𝑡𝑟,+)} → 𝐸+B = {𝜋 ′ = 𝜋⌢𝑞B , 𝑎, 𝑞′B ∈
𝐸𝑥𝑒𝑐𝑠 (B)|𝜋 ∈ 𝐸B , ∃𝛼 ∈ (𝑓 𝑒𝑥)−1 (𝜋) ∩ 𝐸 ′A , 𝑞A = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼), (𝑞A , 𝑎, [A,𝑞A ,𝑎) ∈ 𝑑𝑜𝑚(𝑓 𝑡𝑟,+)} is surjective.

Proof. Let 𝜋 ′ ∈ 𝐸B . We have 𝜋 ′ = 𝜋⌢𝑞B , 𝑎, 𝑞′B ∈ 𝐸𝑥𝑒𝑐𝑠 (B) s. t. 𝜋 ∈ 𝐸B and∃𝛼 ∈ (𝑓 𝑒𝑥)−1 (𝜋)∩𝐸 ′A , 𝑞A = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼)
and (𝑞A , 𝑎, [(A,𝑞A ,𝑎)) ∈ 𝑑𝑜𝑚(𝑓

𝑡𝑟,+). By (𝑞A , 𝑎, [A,𝑞A ,𝑎) ∈ 𝑑𝑜𝑚(𝑓 𝑡𝑟,+), if i) (𝑞A , 𝑎, [A,𝑞A ,𝑎) ∈ 𝑑𝑜𝑚(𝑓 𝑡𝑟,+) \ 𝑑𝑜𝑚(𝑓 𝑡𝑟)

[A,𝑞A ,𝑎
𝑓 +
←→ [B,𝑞B ,𝑎 and if ii) (𝑞A , 𝑎, [A,𝑞A ,𝑎) ∈ 𝑑𝑜𝑚(𝑓 𝑡𝑟) [A,𝑞A ,𝑎

𝑓
←→ [B,𝑞B ,𝑎 . In both cases, it exists 𝑞′A ∈

𝑠𝑢𝑝𝑝 ([A,𝑞A ,𝑎) s. t. 𝑓 𝑒𝑥,+ (𝛼 ′ = 𝛼⌢𝑞A , 𝑎, 𝑞′A) = 𝜋
′
with 𝛼 ′ ∈ 𝐸 ′,+A .

□

We finish this paragraph with the concept of semantic equivalence that describes a pair of PSIOA that differ only

syntactically.

Definition 7.13 (semantic equivalence). LetA and B be two PSIOA. We say thatA and B are semantically-equivalent

if it exists 𝑓 : 𝐸𝑥𝑒𝑐𝑠 (A) → 𝐸𝑥𝑒𝑐𝑠 (B) which is a complete bijective executions-matching from A to B.
44

Dynamic Probabilistic Input Output Automata

Composability of execution-matching relationship. Nowwe are looking for composability of executions-matching. First

we define natural extension of notions presented in previous paragraph for the automaton obtained after composition

with another automaton E.

Definition 7.14 (E-extension). Let A and B be two PSIOA with 𝑄A = 𝑠𝑡𝑎𝑡𝑒𝑠 (A) and 𝑄B = 𝑠𝑡𝑎𝑡𝑒𝑠 (B) as respective
sets of states and let E be partially-compatible with both A and B.

(1) Let 𝑄 ′A ⊂ 𝑄A . We call E-extension of 𝑄 ′A the set of states 𝑄 ′A | |E = {𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A||E) |𝑞 ↾ A ∈ 𝑄 ′A }
(2) Let 𝑓 : 𝑄 ′A ⊂ 𝑄A → 𝑄B . We call E-extension of 𝑓 the function 𝑔 : 𝑄 ′A | |E → 𝑠𝑡𝑎𝑡𝑒𝑠 (B) × 𝑠𝑡𝑎𝑡𝑒𝑠 (E) s. t.
∀(𝑞A , 𝑞E) ∈ 𝑄 ′A | |E , 𝑔((𝑞A , 𝑞E)) = (𝑓 (𝑞A), 𝑞E))

(3) Let𝐷 ′A ⊂ 𝐷A a subset of transitions.We call E-extension of𝐷 ′A the set𝐷 ′A | |E = {((𝑞A , 𝑞E), 𝑎, [((A,E),(𝑞A ,𝑞E),𝑎)) ∈
𝑑𝑡𝑟𝑎𝑛𝑠 (A||E) |𝑞A ∈ 𝑄 ′A and either (𝑞A , 𝑎, [(A,𝑞A ,𝑎)) ∈ 𝐷

′
A or the action 𝑎 is not enabled in 𝑞A }.

Now, we can start with the composability of states-matching.

Lemma 7.15 (Composability of states-matching). Let A and B be two PSIOA with 𝑄A = 𝑠𝑡𝑎𝑡𝑒𝑠 (A) and 𝑄B =

𝑠𝑡𝑎𝑡𝑒𝑠 (B) as respective sets of states. Let E be partially-compatible with A and B. Let 𝑓 : 𝑄 ′A ⊂ 𝑄A → 𝑄B be a

states-matching. Let 𝑔 be the E-extension of 𝑓 .

If 𝑟𝑎𝑛𝑔𝑒 (𝑔) ⊂ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E), then 𝑔 is a states-matching from A||E to B||E.

Proof. • Starting state preservation: if (𝑞A , 𝑞E) ∈ 𝑄A| |E then 𝑞A ∈ 𝑄 ′A which means 𝑓 (𝑞A) = 𝑞B , thus
𝑔((𝑞A , 𝑞E)) = (𝑞B , 𝑞E).
• Signature preservation (modulo an hiding operation): ∀((𝑞A , 𝑞E), (𝑞B , 𝑞E)) ∈ 𝑄 ′A | |E × 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E) with
(𝑞B , 𝑞E) = 𝑔((𝑞A , 𝑞E)), we have 𝑠𝑖𝑔(A)(𝑞A) = 𝑠𝑖𝑔(B)(𝑓 (𝑞A)) = ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(B)(𝑞B), ℎ(𝑞B)) with ℎ(𝑞B) ⊆
𝑜𝑢𝑡 (B)(𝑞B).
SinceA and E are partially-compatible, 𝑠𝑖𝑔(A)(𝑞A) = ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(B)(𝑞B), ℎ(𝑞B)) is compatible with 𝑠𝑖𝑔(E)(𝑞E)
which means a fortiori 𝑠𝑖𝑔(B)(𝑞B) is compatible with 𝑠𝑖𝑔(E)(𝑞E).
Namely∀𝑎𝑐𝑡 ∈ ℎ(𝑞B), 𝑎𝑐𝑡 ∉ 𝑖𝑛(E)(𝑞E). Hence 𝑠𝑖𝑔((A, E))((𝑞A), 𝑞E)) = ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔((B, E))((𝑞B , 𝑞E)), ℎ′((𝑞B , 𝑞E))
with ℎ′((𝑞B , 𝑞E)) = ℎ(𝑞B) ⊆ 𝑜𝑢𝑡 (B)(𝑞B) ⊆ 𝑜𝑢𝑡 (B||) ((𝑞B , 𝑞E)) which ends the proof.

□

The composability of states-matching is ensured under the condition 𝑟𝑎𝑛𝑔𝑒 (𝑔) ⊂ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E) where 𝑔 is the

E-extension of the original states-matching 𝑓 : 𝑄 ′A ⊆ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) → 𝑠𝑡𝑎𝑡𝑒𝑠 (B). In next lemma, we give a sufficient

condition to ensure 𝑟𝑎𝑛𝑔𝑒 (𝑔) ⊂ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E). This is the one that we will use in practice.

Definition 7.16 (reachable-by and states of execution (recall)). Let A be a PSIOA or a PCA. Let 𝐸 ′A ⊆ 𝐸𝑥𝑒𝑐𝑠 (A).
We note 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 − 𝑏𝑦 (𝐸A) = {𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A)|∃𝛼 ∈ 𝐸 ′A , 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼) = 𝑞}. Let 𝛼 = 𝑞0, 𝑎1, 𝑞1, ...𝑎𝑛, 𝑞𝑛, We note

𝑠𝑡𝑎𝑡𝑒𝑠 (𝛼) = ⋃
𝑖∈ |𝛼 | 𝑞

𝑖
.

Lemma 7.17 (A sufficient condition to obtain 𝑟𝑎𝑛𝑔𝑒 (𝑔) ⊂ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E)). Let A and B be two PSIOA with

𝑄A = 𝑠𝑡𝑎𝑡𝑒𝑠 (A) and 𝑄B = 𝑠𝑡𝑎𝑡𝑒𝑠 (B) as respective sets of states. Let E be partially-compatible with both A and B. Let
𝑓 : 𝑄 ′A ⊂ 𝑄A → 𝑄B be a states-matching. Let 𝑄 ′A | |E be the E-extension of 𝑄 ′A .

Let 𝑄 ′′A | |E ⊂ 𝑄
′
A | |E the set of states reachable by an execution that counts only states in 𝑄 ′A | |E , i. e.

• 𝐸 ′′A | |E = {𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (A||E) |𝑠𝑡𝑎𝑡𝑒𝑠 (𝛼) ⊆ 𝑄 ′A | |E }
• 𝑄 ′′A | |E = 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒-𝑏𝑦 (𝐸 ′′A | |E)

45

Pierre Civit and Maria Potop-Butucaru

Let 𝑓 ′′ the restriction of 𝑓 to set 𝑄 ′′A = {𝑞A = ((𝑞A , 𝑞E) ↾ A)|(𝑞A , 𝑞E) ∈ 𝑄 ′′A | |E }.
Then the E-extension of 𝑓 ′′, noted 𝑔′′ verifies 𝑟𝑎𝑛𝑔𝑒 (𝑔′′) ⊂ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E).

Proof. By induction on the minimum size of an execution 𝛼 = 𝑞0𝑎1 ...𝑞𝑛 with 𝑞∗ = 𝑞𝑛,∀𝑖 ∈ [0, 𝑛], 𝑞𝑖 ∈ 𝑄 ′A | |E . Basis
(|𝛼 | = 0 =⇒ 𝛼 = 𝑞A): we consider 𝑞∗ = 𝑞A . We have 𝑔((𝑞A , 𝑞E)) = (𝑓 (𝑞A), 𝑞E) = (𝑞B , 𝑞E) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E).

We assume this is true for 𝛼 with 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼) = 𝑞 and we show this is also true for 𝛼 ′ = 𝛼⌢𝑞𝑎𝑞′. By induction

hypothesis 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E). Since 𝑞′ ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A||E), A and E are compatible at state (𝑞′A , 𝑞
′
E), that is 𝑠𝑖𝑔(A)(𝑞

′
A)

and 𝑠𝑖𝑔(E)(𝑞′E) are compatible, which means that a fortiori, (𝑠𝑖𝑔(B)(𝑓 ′′(𝑞′A)) and 𝑠𝑖𝑔(E)(𝑞
′
E) are compatible and so

B and E are compatible at state (𝑓 ′′(𝑞′A), 𝑞
′
E) = 𝑔

′′(𝑞′). Hence 𝑔′′(𝑞′) is a reachable compatible state of (B, E) which
means this is a state of B||E.

□

Now, we can continue with the composability of transitions-matching.

Lemma 7.18 (Composability of eligibility for transitions-matching). Let A and B be two PSIOA with 𝑄A =

𝑠𝑡𝑎𝑡𝑒𝑠 (A) and 𝑄B = 𝑠𝑡𝑎𝑡𝑒𝑠 (B) as respective sets of states. Let E be partially-compatible with A and B. Let 𝑓 : 𝑄 ′A ⊂
𝑄A → 𝑄B be a states-matching and 𝐷 ′A a subset of transitions eligible to transitions-matching domain from 𝑓 . Let 𝑔 be

the E-extension of 𝑓 and 𝐷 ′A | |E the E-extension of 𝐷A .

If 𝑟𝑎𝑛𝑔𝑒 (𝑔) ⊂ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E), then 𝐷 ′A | |E is eligible to transitions-matching domain from 𝑔.

Proof. Let ((𝑞A , 𝑞E), 𝑎, [((A,E),(𝑞A ,𝑞E),𝑎)) ∈ 𝐷
′
A | |E .

By definition, 𝑞A ∈ 𝑄 ′A which means (𝑞A , 𝑞E) ∈ 𝑄 ′A | |E , so the matched states preservation is ensured. We still

need to ensure the equitable corresponding distribution.

• Let (𝑞′′A , 𝑞
′′
E) ∈ 𝑠𝑢𝑝𝑝 ([((A,E),(𝑞A ,𝑞E),𝑎)). If 𝑎 ∈ 𝑠𝑖𝑔(A)(𝑞A), then 𝑞

′′
A ∈ 𝑠𝑢𝑝𝑝 ([(A,𝑞A ,𝑎)) which means 𝑞′′A ∈

𝑄 ′A and hence (𝑞′′A , 𝑞
′′
E) ∈ 𝑄

′
A | |E . If 𝑎 ∉ 𝑠𝑖𝑔(A), [(A,𝑞A ,𝑎) = 𝛿𝑞A , which means 𝑞′′A = 𝑞A ∈ 𝑄 ′A and hence

(𝑞′′A , 𝑞
′′
E) ∈ 𝑄

′
A | |E . Thus for every (𝑞

′′
A , 𝑞

′′
E) ∈ 𝑠𝑢𝑝𝑝 ([((A,E),(𝑞A ,𝑞E),𝑎)), (𝑞

′′
A , 𝑞

′′
E) ∈ 𝑄

′
A | |E .

• [((A,E),(𝑞A ,𝑞E),𝑎) ((𝑞
′′
A , 𝑞

′′
E)) = [(A,𝑞A ,𝑎)⊗[(E,𝑞E ,𝑎) (𝑞

′′
A , 𝑞

′′
E) = [(A,𝑞A ,𝑎) (𝑞

′′
A)·[(E,𝑞E ,𝑎) (𝑞

′′
E) = [(B,𝑓 (𝑞A),𝑎) (𝑓 (𝑞

′′
A))·

[(E,𝑞E ,𝑎) (𝑞
′′
E) = [(B,𝑓 (𝑞A),𝑎) ⊗ [(E,𝑞E ,𝑎) (𝑓 (𝑞

′′
A), 𝑞

′′
E) = [((B,E),𝑔 (𝑞A ,𝑞E),𝑎) (𝑔(𝑞

′′
A , 𝑞

′′
E)) which ends the proof

of equitable corresponding distribution.

□

Definition 7.19 (E-extension of an execution-matching). Let A and B be two PSIOA with 𝑄A = 𝑠𝑡𝑎𝑡𝑒𝑠 (A) and
𝑄B = 𝑠𝑡𝑎𝑡𝑒𝑠 (B) as respective sets of states. Let E be partially-compatible with both A and B. Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be an
executions-matching from A to B. Let 𝑔 the E-extension of 𝑓 . If 𝑟𝑎𝑛𝑔𝑒 (𝑔) ⊂ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E), then

(1) we call the E-extension of 𝑓 𝑡𝑟 the function 𝑔𝑡𝑟 : (𝑞, 𝑎, [(A | |E,𝑞,𝑎)) ∈ 𝐷 ′A | |E ↦→ (𝑔(𝑞), 𝑎, [(B | |E,𝑔 (𝑞),𝑎)) where
𝐷 ′A | |E is the E-extension of the domain 𝑑𝑜𝑚(𝑓 𝑡𝑟) of 𝑓 𝑡𝑟 .

(2) we call the E-extension of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) the matching-execution (𝑔,𝑔𝑡𝑟 , 𝑔𝑒𝑥) from A||E to B||E induced by 𝑔

and 𝑑𝑜𝑚(𝑔𝑡𝑟).

Finally we can states the main result of this paragraph, i. e. theorem 7.20 of executions-matching composability.

Theorem 7.20 (Composability of executions-matching). LetA and B be two PSIOA. Let E be partially-compatible

with both A and B. Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be an execution-matching from A to B where 𝑔 represents the E-extension of 𝑓 . If

𝑟𝑎𝑛𝑔𝑒 (𝑔) ⊂ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E), then the E-extension of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) is a matching-execution (𝑔,𝑔𝑡𝑟 , 𝑔𝑒𝑥) from A||E to B||E
induced by 𝑔 and 𝑑𝑜𝑚(𝑔𝑡𝑟).

46

Dynamic Probabilistic Input Output Automata

Proof. We repeated the previous definition, while an executions-matching only need a states-matching 𝑔 and a set

𝑑𝑜𝑚(𝑔𝑡𝑟) of transitions eligible to transitions-matching domain from 𝑔 which is provided by construction. □

Here we give some properties preserved by E-extension of an executions-matching.

Lemma 7.21 (Some properties preserved by E-extension of an executions-matching). Let A (resp. B) be a

PSIOA with 𝑄A (resp. 𝑄B) as set of states. Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be an execution-matching from A to B.

(1) If 𝑓 is bijective and 𝑓 −1 is complete, then for every PSIOA E partially-compatible withA, E is partially-compatible

with B.
(2) Let E partially-compatible with both A and B, let 𝑔 be the E-extension of 𝑓 .

(a) If 𝑓 is bijective and 𝑓 −1 is complete, then 𝑟𝑎𝑛𝑔𝑒 (𝑔) = 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E) and so we can talk about the E-extension
of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥)

(b) If (𝑓 , 𝑓 𝑡𝑟) is a bijective complete transition-matching, (𝑔,𝑔𝑡𝑟) is a bijective complete transition-matching.

(And (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) and (𝑔,𝑔𝑡𝑟 , 𝑔𝑒𝑥) are bijective complete execution-matching.)

(c) If 𝑓 is strong, then 𝑔 is strong

(3) Let E partially-compatible with bothA and B, let 𝑔 be the E-extension of 𝑓 . Let assume 𝑟𝑎𝑛𝑔𝑒 (𝑔) ⊆ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E).
Let (𝑔,𝑔𝑡𝑟 , 𝑔𝑒𝑥) be the E-extension of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥)
(a) If the restriction ˜𝑓 𝑒𝑥 : 𝐸 ′A ⊆ 𝐸𝑥𝑒𝑐𝑠 (A) → 𝐸B ⊆ 𝐸𝑥𝑒𝑐𝑠 (B) is surjective, then 𝑔𝑒𝑥 : {𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (A||E) |𝛼 ↾
A ∈ 𝐸 ′A } → {𝜋 ∈ 𝐸𝑥𝑒𝑐𝑠 (B||E) |𝜋 ↾ B ∈ 𝐸B} is surjective

(b) If 𝑓 is strong, 𝑔 is strong.

Proof. (1) We need to show that every pseudo-execution of (B, E) ends on a compatible state. Let 𝜋 =

𝑞0𝑎1𝑞1 ...𝑎𝑛𝑞𝑛 be a finite pseudo-execution of (B, E).We note𝛼 = (𝑓 −1 (𝑞0

B), 𝑞
0

E)𝑎
1 (𝑓 −1 (𝑞1

B), 𝑞
1

E)...𝑎
𝑛 (𝑓 −1 (𝑞𝑛B), 𝑞

𝑛
E).

The proof is in two steps. First, we show by induction that𝛼 = (𝑓 −1 (𝑞0

B), 𝑞
0

E)𝑎
1 (𝑓 −1 (𝑞1

B), 𝑞
1

E) ...𝑎
𝑛 (𝑓 −1 (𝑞𝑛B), 𝑞

𝑛
E)

is an execution of A||E. Second, we deduce that it means (𝑓 −1 (𝑞𝑛B), 𝑞
𝑛
E) is a compatible state of (A, E) which

means that a fortiori, (𝑞𝑛B , 𝑞
𝑛
E) is a compatible state of (B, E) which ends the proof.

• First, we show by induction that 𝛼 is an execution of A||E. We have (𝑓 −1 (𝑞B), 𝑞E) = (𝑞A , 𝑞E) which
ends the basis.

Let assume (𝑓 −1 (𝑞0

B), 𝑞
0

E)𝑎
1 (𝑓 −1 (𝑞1

B), 𝑞
1

E) ...𝑎
𝑘 (𝑓 −1 (𝑞𝑘B), 𝑞

𝑘
E) is an execution ofA||E. Hence (𝑓

−1 (𝑞𝑘B), 𝑞
𝑘
E)

is a compatible state of (A, E) which means that a fortiori 𝑞𝑘 is a compatible state of (B, E) because of
signature preservation of 𝑓 .

For the same reason, 𝑠𝑖𝑔(B||E)(𝑞𝑘) = 𝑠𝑖𝑔(A, E)((𝑓 −1 (𝑞𝑘B), 𝑞
𝑘
E)), so 𝑎

𝑘+1 ∈ 𝑠𝑖𝑔(A, E)((𝑓 −1 (𝑞𝑘B), 𝑞
𝑘
E)).

Then we use the completeness of (𝑓 −1, (𝑓 𝑡𝑟)−1), to obtain the fact that either [(B,𝑞𝑘B ,𝑎𝑘+1)
∈ 𝑑𝑜𝑚((𝑓 𝑡𝑟)−1)

or 𝑎𝑘+1 ∉ �𝑠𝑖𝑔(B)(𝑞𝑘B) (and we recall the convention that in this second case [(B,𝑞𝑘B ,𝑎𝑘+1)
= 𝛿

𝑞𝑘B
). which

means either (𝑓 −1 (𝑞𝑘B), 𝑎
𝑘+1, [(A,𝑓 −1 (𝑞𝑘B),𝑎𝑘+1)

) is a transition ofA that ensures∀𝑞′′ ∈ 𝑠𝑢𝑝𝑝 ([(B,𝑞𝑘B ,𝑎𝑘+1)), 𝑓
−1 (𝑞′′) ∈

𝑠𝑢𝑝𝑝 ([(A,𝑓 −1 (𝑞𝑘B),𝑎𝑘+1)
) or 𝑎𝑘+1 ∉ �𝑠𝑖𝑔(A)(𝑓 −1 (𝑞𝑘B)) (and we recall the convention that in this second

case [(A,𝑓 −1 (𝑞𝑘B),𝑎𝑘+1)
= 𝛿

𝑓 −1 (𝑞𝑘B)
). Thus for every (𝑞′′, 𝑞′′′) ∈ 𝑠𝑢𝑝𝑝 ([(B,E),𝑞𝑘 ,𝑎𝑘+1)), (𝑓 −1 (𝑞′′), 𝑞′′′) =

𝑔−1 ((𝑞′′, 𝑞′′′)) ∈ 𝑠𝑢𝑝𝑝 ([(A,E),𝑔−1 (𝑞𝑘),𝑎𝑘+1)) namely for (𝑞′′, 𝑞′′′) = (𝑞𝑘+1B , 𝑞𝑘+1E). Hence, (𝑓
−1 (𝑞𝑘+1B), 𝑞

𝑘+1
E)

is reachable by (A, E)whichmeans (𝑓 −1 (𝑞0

B), 𝑞
0

E)𝑎
1 (𝑓 −1 (𝑞1

B), 𝑞
1

E)...𝑎
𝑘 (𝑓 −1 (𝑞𝑘B), 𝑞

𝑘
E)𝑎

𝑘 (𝑓 −1 (𝑞𝑘B), 𝑞
𝑘
E)𝑎

𝑘+1 (𝑓 −1 (𝑞𝑘+1B), 𝑞
𝑘+1
E)

is an execution of A||E. Thus by induction 𝛼 is an execution of A||E.
47

Pierre Civit and Maria Potop-Butucaru

• SinceA and E) are partially-compatible (𝑓 −1 (𝑞𝑛B), 𝑞
𝑛
E) is a state ofA||E, so (𝑓

−1 (𝑞𝑛B), 𝑞
𝑛
E) is a compatible

state of (A, E) which means (𝑞𝑘B), 𝑞
𝑘
E) is a fortiori a compatible state of (B, E) . Hence every reachable

state of (B, E) is compatible which means B and E) are partially compatible which ends the proof.

(2) (a) • Let (𝑞𝑛B , 𝑞
𝑛
E) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E). This state is reachable, sowe note 𝜋 = (𝑞0

B , 𝑞
0

E)𝑎
1 (𝑞1

B , 𝑞
1

E) ...𝑎
𝑛 (𝑞𝑛B , 𝑞

𝑛
E)

the execution of B||E. Thereafter, we note 𝛼 = (𝑓 −1 (𝑞0

B), 𝑞
0

E)𝑎
1 (𝑓 −1 (𝑞1

B), 𝑞
1

E)...𝑎
𝑛 (𝑓 −1 (𝑞𝑛B), 𝑞

𝑛
E).

We can show by induction that 𝛼 is an execution of A||E. The proof is exactly the same than in 1.

Hence𝛼 is an execution ofA||E whichmeans (𝑓 −1 (𝑞𝑛B), 𝑞
𝑛
E) is a state ofA||E and then𝑔((𝑓

−1 (𝑞𝑛B), 𝑞
𝑛
E)) =

(𝑞𝑛B , 𝑞
𝑛
E) to finally prove that it exists 𝑞

∗
s. t. 𝑔(𝑞∗) = (𝑞𝑛B , 𝑞

𝑛
E) which means 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E) ⊆ 𝑑𝑜𝑚(𝑔).

We can reuse the proof of 1. to show that if 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A||E), then 𝑔(𝑞) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E) which
means 𝑑𝑜𝑚(𝑔) ⊆ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E).
Hence 𝑑𝑜𝑚(𝑔) = 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E).

• We can apply the previous lemma 7.18 to obtain the eligibility of 𝐷A| |E .

(b) Let assume (𝑓 , 𝑓 𝑡𝑟) are bijective. The bijectivity of 𝑔 is immediate 𝑔(., .) = (𝑓 (.), 𝐼𝑑 (.)). The bijectivity of

𝑔𝑡𝑟 is also immediate since 𝑔𝑡𝑟 : [(A,𝑞A ,𝑎) ⊗ [(E,𝑞E ,𝑎) → 𝑓 𝑡𝑟 ([(A,𝑞A ,𝑎)) ⊗ [(E,𝑞E ,𝑎) with 𝑓
𝑡𝑟

bijective.

(c) Immediate, since in this case 𝑠𝑖𝑔(A)(𝑞A) = 𝑠𝑖𝑔(B)(𝑓 (𝑞A)) implies 𝑠𝑖𝑔(A||E)((𝑞A , 𝑞E)) = 𝑠𝑖𝑔(B||E)((𝑓 (𝑞A), 𝑞E)).
(3) (a) Let 𝜋 = ((𝑞0

B , 𝑞
0

E), 𝑎
1, (𝑞1

B , 𝑞
1

E), ..., 𝑎
𝑛, (𝑞𝑛B , 𝑞

𝑛
E)) ∈ 𝐸𝑥𝑒𝑐𝑠 (B||E) with 𝜋 ↾ B = 𝑞0

B , 𝑎
1, 𝑞1

B , ..., 𝑎
𝑚, 𝑞𝑚B ∈ 𝐸B ,

where the monotonic function 𝑘 : [0, 𝑛] → [0,𝑚], verifies ∀𝑖 ∈ [0, 𝑛], 𝑘 (𝑖) ∈ [0,𝑚], 𝑞𝑖B = 𝑞
𝑘 (𝑖)
B

By surjectivity of 𝑓 𝑒𝑥 we have 𝛼 = 𝑞0

A , 𝑎
1, 𝑞1

A , ..., 𝑎
𝑚, 𝑞𝑚A ∈ 𝐸 ′A s. t. 𝑓 𝑒𝑥 (𝛼) = 𝜋 ↾ B. We note

𝛼 = (𝑞0

A , 𝑞
0

E)𝑎
1 (𝑞1

A , 𝑞
1

E) ...𝑎
𝑛 (𝑞𝑛A , 𝑞

𝑛
E) where ∀𝑖 ∈ [0, 𝑛], 𝑞

𝑖
A = 𝑞

𝑘 (𝑖)
A . Hence, ∀𝑖 ∈ [0, 𝑛], 𝑔((𝑞𝑖A , 𝑞

𝑖
E)) =

(𝑞𝑖B , 𝑞
𝑖
E). Moreover, by signature preservation, ∀𝑖 ∈ [0, 𝑛 − 1], 𝑎𝑖+1 ∈ 𝑠𝑖𝑔(A)(𝑞𝑖A) ∪ 𝑠𝑖𝑔(E)(𝑞

𝑖
E). Further-

more, ∀𝑖 ∈ [0, 𝑛 − 1]. (𝑞𝑖+1A , 𝑞𝑖+1E) ∈ 𝑠𝑢𝑝𝑝 ([(A,𝑞𝑖A ,𝑎𝑖) ⊗ [(B,𝑞𝑖B ,𝑎𝑖)) since (𝑞
𝑖+1
B , 𝑞𝑖+1E) ∈ 𝑠𝑢𝑝𝑝 ([(B,𝑞𝑖B ,𝑎𝑖) ⊗

[(B,𝑞𝑖B ,𝑎𝑖)
), (𝑞𝑖B , 𝑎

𝑖 , [(B,𝑞𝑖B ,𝑎𝑖)
) = 𝑓 𝑡𝑟 (𝑞𝑖A , 𝑎

𝑖 , [(A,𝑞𝑖A ,𝑎𝑖)
) and 𝑞𝑖+1B = 𝑓 (𝑞𝑖+1A). Thus, 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (A||E). Fi-

nally, by signature preservation of 𝑓 , ∀𝑖 ∈ [1, 𝑛]𝑠𝑖𝑔(A)(𝑞A) = 𝑠𝑖𝑔(B)(𝑞B), which lead us to 𝛼 ↾ A = 𝛼 ∈
𝐸 ′A . So for every 𝜋 ∈ 𝐸𝑥𝑒𝑐𝑠 (B||E) with 𝜋 ↾ B ∈ 𝐸B , it exists 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (A||E) with 𝛼 ↾ A ∈ 𝐸 ′A which

ends the proof.

(b) Immediate by rules of composition of signature: ∀(𝑞A , 𝑞E) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A||E), ∀(𝑞B , 𝑞E) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E) if
𝑠𝑖𝑔(A)(𝑞A) = 𝑠𝑖𝑔(B)(𝑞B), then 𝑠𝑖𝑔(A||E)(𝑞A , 𝑞E) = 𝑠𝑖𝑔(B||E))(𝑞B , 𝑞E).

□

We are ready to states the composability of semantic equivalence.

Theorem 7.22 (composability of semantic eqivalence). Let A and B be PSIOA semantically-equivalent. Then for

every PSIOA E:

• E is partially-compatible with A ⇐⇒ E is partially-compatible with B
• if E is partially-compatible with both A and B, then A||E and B||E are semantically-equivalent PSIOA.

Proof. • The first item (E is partially-compatible with A ⇐⇒ E is partially-compatible with B) comes from

lemma 7.21, first item.

• The second item (if E is partially-compatible with both A and B, then A||E and B||E are semantically-

equivalent PSIOA) comes from lemma 7.21, second item.

□

48

Dynamic Probabilistic Input Output Automata

A weak complete bijective transition-matching implies a weak complete bijective execution-matching which means

the two automata are completely sementically equivalent modulo some hiding operation that implies that some PSIOA

are partially-compatible with one of the automaton and not with the other and that the traces are not necessarily the

same ones.

composition of continuation of executions-matching. Here we define E-extension of continued executions-matching

in the same way we defined E-extension of executions-matching just before.

Definition 7.23 (E-extension of continued executions-matching). Let A and B be two PSIOA. Let E be partially-

compatible with both A and B. Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be an executions-matching from A to B. Let ((𝑓 , 𝑓 +), 𝑓 𝑡𝑟,+, 𝑓 𝑒𝑥,+) be
the (𝑓 +, 𝐷 ′′A)-continuation of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) (where by definition 𝐷 ′′A \𝑑𝑜𝑚(𝑓

𝑡𝑟) respect the properties of matched states

preservation and extension of equitable corresponding distribution from definition 7.7). If the respective E-extension of

𝑓 and 𝑓 +, noted 𝑔 and 𝑔+, verifie 𝑟𝑎𝑛𝑔𝑒 (𝑔) ∪ 𝑟𝑎𝑛𝑔𝑒 (𝑔+) ⊆ (B||E), we define the E-extension of ((𝑓 , 𝑓 +), 𝑓 𝑡𝑟,+, 𝑓 𝑒𝑥,+)
as ((𝑔,𝑔+), 𝑔𝑡𝑟,+, 𝑔𝑒𝑥,+), where

• (𝑔,𝑔𝑡𝑟 , 𝑔𝑒𝑥) is the E-extension of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒)
• 𝑔𝑡𝑟,+ : (𝑞, 𝑎, [(A | |E),𝑞,𝑎) ∈ 𝐷 ′′A | |E ↦→ (𝑔(𝑞), 𝑎, [(A | |E),𝑔 (𝑞),𝑎) where 𝐷

′′
A | |E is the E-extension of 𝑑𝑜𝑚(𝑓 𝑡𝑟,+)

• ∀𝛼 ′ = 𝛼⌢𝑞, 𝑎, 𝑞′, with𝛼 ′ ∈ 𝑑𝑜𝑚(𝑔𝑒𝑥), if (𝑞, 𝑎, [(A | |E),𝑞,𝑎) ∈ 𝑑𝑜𝑚(𝑔𝑡𝑟) 𝑔𝑒𝑥,+ (𝛼) = 𝑔𝑒𝑥 (𝛼) and if (𝑞, 𝑎, [(A | |E),𝑞,𝑎) ∈
𝑑𝑜𝑚(𝑔𝑡𝑟,+) \ 𝑑𝑜𝑚(𝑔𝑡𝑟) 𝑔𝑒𝑥,+ (𝛼 ′) = 𝑔𝑒𝑥 (𝛼)⌢𝑔(𝑞), 𝑎, 𝑔+ (𝑞)

Lemma 7.24 (Commutativity of continuation and extension). Let A and B be two PSIOA. Let E be partially-

compatible with bothA and B. Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be an executions-matching fromA to B. Let ((𝑓 , 𝑓 +), 𝑓 𝑡𝑟,+, 𝑓 𝑒𝑥,+) be the
(𝑓 +, 𝐷 ′′A)-continuation of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) (where by definition 𝐷 ′′A respect the properties of matched states preservation and

extension of equitable corresponding distribution from definition 7.7). Let

• (𝑔,𝑔𝑡𝑟 , 𝑔𝑒𝑥) be the E-extension of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒) verifying 𝑟𝑎𝑛𝑔𝑒 (𝑔) ⊆ 𝑠𝑡𝑎𝑡𝑒𝑠 (B||E),
• 𝐷 ′′,(𝑐,𝑒)A | |E the E-extension of 𝑑𝑜𝑚(𝑓 𝑡𝑟,+), i. e. 𝐷 ′′,(𝑐,𝑒)A | |E = {((𝑞A , 𝑞E), 𝑎, [(A | |E,(𝑞A ,𝑞E),𝑎)) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (A||E) |𝑞A ∈
𝑑𝑜𝑚(𝑓) ∧ [(𝑞A , 𝑎, [(A,𝑞A ,𝑎)) ∈ 𝑑𝑜𝑚(𝑓

𝑡𝑟,+) ∨ 𝑎 ∉ 𝑠𝑖𝑔(A)(𝑞A)]}.
• 𝑔+(𝑐,𝑒) be the E-extension of 𝑓 +

Then

(1) 𝐷 ′′A | |E \ 𝑑𝑜𝑚(𝑔
𝑡𝑟) verifies matched states preservation and extension of equitable corresponding distribution.

(2) the (𝑔+(𝑐,𝑒) , (𝐷
′′,(𝑐,𝑒)
A | |E))-continuation of (𝑔,𝑔𝑡𝑟 , 𝑔𝑒𝑥), noted ((𝑔,𝑔+(𝑐,𝑒)), 𝑔

𝑡𝑟,+
(𝑐,𝑒) , 𝑔

𝑒𝑥,+
(𝑐,𝑒)) is equal to the E-extension of

((𝑓 , 𝑓 +), 𝑓 𝑡𝑟,+, 𝑓 𝑒𝑥,+), noted ((𝑔,𝑔+(𝑒,𝑐)), 𝑔
𝑡𝑟,+
(𝑒,𝑐) , 𝑔

𝑒𝑥,+
(𝑒,𝑐)).

We show that the operation of continuation and extension are in fact commutative.

Proof. We start by showing 𝐷
′′,(𝑐,𝑒)
A | |E \ 𝑑𝑜𝑚(𝑔

𝑡𝑟) verifies matched states preservation and extension of equi-

table corresponding distribution. By definition 7.7 of E-extension, 𝐷 ′′,(𝑐,𝑒)A | |E = {((𝑞A , 𝑞E), 𝑎, [(A | |E,(𝑞A ,𝑞E),𝑎)) ∈
𝑑𝑡𝑟𝑎𝑛𝑠 (A||E) |𝑞A ∈ 𝑑𝑜𝑚(𝑓)∧[(𝑞A , 𝑎, [(A,𝑞A ,𝑎)) ∈ 𝑑𝑜𝑚(𝑓

𝑡𝑟,+)∨𝑎 ∉ 𝑠𝑖𝑔(A)(𝑞A)]}, while𝑑𝑜𝑚(𝑔𝑡𝑟) = {((𝑞A , 𝑞E), 𝑎, [(A | |E,(𝑞A ,𝑞E),𝑎)) ∈
𝑑𝑡𝑟𝑎𝑛𝑠 (A||E) |𝑞A ∈ 𝑑𝑜𝑚(𝑓) ∧ [(𝑞A , 𝑎, [(A,𝑞A ,𝑎)) ∈ 𝑑𝑜𝑚(𝑓

𝑡𝑟) ∨ 𝑎 ∉ 𝑠𝑖𝑔(A)(𝑞A)]}.
Thus 𝐷

′′,(𝑐,𝑒)
A | |E \ 𝑑𝑜𝑚(𝑔

𝑡𝑟) = {((𝑞A , 𝑞E), 𝑎, [(A | |E,(𝑞A ,𝑞E),𝑎)) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (A||E) |𝑞A ∈ 𝑑𝑜𝑚(𝑓) ∧ [(𝑞A , 𝑎, [(A,𝑞A ,𝑎)) ∈
𝑑𝑜𝑚(𝑓 𝑡𝑟,+) \ 𝑑𝑜𝑚(𝑓 𝑡𝑟)]} (*)

Let 𝑡𝑟 = ((𝑞A , 𝑞E), 𝑎, [(A | |E),(𝑞A ,𝑞E),𝑎) ∈ 𝐷
′′,(𝑐,𝑒)
A | |E \ 𝑑𝑜𝑚(𝑔

𝑡𝑟), then

• Matched states preservation: By (*) 𝑞A ∈ 𝑑𝑜𝑚(𝑓) which leads immediately to (𝑞A , 𝑞E) ∈ 𝑑𝑜𝑚(𝑔)
49

Pierre Civit and Maria Potop-Butucaru

• Extension of equitable corresponding distribution:∀(𝑞′′A , 𝑞
′′
E) ∈ 𝑠𝑢𝑝𝑝 ([(A | |E,(𝑞A ,𝑞E),𝑎)), (𝑞

′′
A , 𝑞

′′
E) ∈ 𝑠𝑢𝑝𝑝 ([(A𝑞A ,𝑎)⊗

[(E,𝑞E ,𝑎)) with [(A𝑞A ,𝑎) ∈ 𝑑𝑜𝑚(𝑓
𝑡𝑟,+) \ 𝑑𝑜𝑚(𝑓 𝑡𝑟) by (*) which means 𝑞′′A ∈ 𝑑𝑜𝑚(𝑓

+) and [(A𝑞A ,𝑎) (𝑞
′′
A) =

[(B 𝑓 (𝑞A),𝑎) (𝑓
+ (𝑞′′A)) and so (𝑞′′A , 𝑞

′′
E) ∈ 𝑑𝑜𝑚(𝑔+) and [(A,𝑞A ,𝑎) ⊗ [(E,𝑞E ,𝑎) (𝑞

′′
A , 𝑞

′′
E) = [(A,𝑞A ,𝑎) (𝑞

′′
A) ·

[(E,𝑞E ,𝑎) (𝑞
′′
E) = [(B,𝑓 (𝑞A),𝑎) (𝑓

+ (𝑞′′A))·[(E,𝑞E ,𝑎) (𝑞
′′
E) = [(B,𝑓 (𝑞A),𝑎)⊗[(E,𝑞E ,𝑎) (𝑓

+ (𝑞′′A), 𝑞
′′
E) = [(B | |E,𝑔 (𝑞A ,𝑞E),𝑎) (𝑔

+ (𝑞′′A , 𝑞
′′
E))

We have shown that𝐷
′′,(𝑐,𝑒)
A | |E \𝑑𝑜𝑚(𝑔

𝑡𝑟) verifies matched states preservation and extension of equitable corresponding

distribution.

Now, we show the second point.

• By definition 7.7 of continuation, 𝑔+(𝑐,𝑒) = 𝑔
+
(𝑒,𝑐) .

• We prove 𝑑𝑜𝑚(𝑔𝑡𝑟,+(𝑐,𝑒)) = 𝑑𝑜𝑚(𝑔
𝑡𝑟,+
(𝑒,𝑐)) = 𝐷

′′,(𝑐,𝑒)
A | |E . By definition 7.7 of continuation, 𝑑𝑜𝑚(𝑔𝑡𝑟,+(𝑒,𝑐)) = 𝑑𝑜𝑚(𝑔

𝑡𝑟) ∪

𝐷
′′,(𝑐,𝑒)
A | |E = {((𝑞A , 𝑞E), 𝑎, [(A | |E,(𝑞A ,𝑞E),𝑎)) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (A||E) |𝑞A ∈ 𝑑𝑜𝑚(𝑓) ∧ [(𝑞A , 𝑎, [(A,𝑞A ,𝑎)) ∈ 𝑑𝑜𝑚(𝑓

𝑡𝑟) ∨
𝑎 ∉ 𝑠𝑖𝑔(A)(𝑞A)]} ∪ {((𝑞A , 𝑞E), 𝑎, [(A | |E,(𝑞A ,𝑞E),𝑎)) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (A||E) |𝑞A ∈ 𝑑𝑜𝑚(𝑓) ∧ [(𝑞A , 𝑎, [(A,𝑞A ,𝑎)) ∈
𝑑𝑜𝑚(𝑓 𝑡𝑟,+)∨𝑎 ∉ 𝑠𝑖𝑔(A)(𝑞A)]} = {((𝑞A , 𝑞E), 𝑎, [(A | |E,(𝑞A ,𝑞E),𝑎)) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (A||E) |𝑞A ∈ 𝑑𝑜𝑚(𝑓)∧[(𝑞A , 𝑎, [(A,𝑞A ,𝑎)) ∈
𝑑𝑜𝑚(𝑓 𝑡𝑟,+) ∨ 𝑎 ∉ 𝑠𝑖𝑔(A)(𝑞A)]} = 𝐷 ′′,(𝑐,𝑒)A | |E .

Parrallely, by definition 7.19 of E-extension,𝑑𝑜𝑚(𝑔𝑡𝑟,+(𝑐,𝑒)) = {((𝑞A , 𝑞E), 𝑎, [(A | |E,(𝑞A ,𝑞E),𝑎)) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (A||E) |𝑞A ∈

𝑑𝑜𝑚(𝑓) ∧ [(𝑞A , 𝑎, [(A,𝑞A ,𝑎)) ∈ 𝑑𝑜𝑚(𝑓
𝑡𝑟,+) ∨ 𝑎 ∉ 𝑠𝑖𝑔(A)(𝑞A)]} = 𝐷 ′′,(𝑐,𝑒)A | |E . Thus 𝑑𝑜𝑚(𝑔𝑡𝑟,+(𝑐,𝑒)) = 𝑑𝑜𝑚(𝑔

𝑡𝑟,+
(𝑒,𝑐)) =

𝐷
′′,(𝑐,𝑒)
A | |E .

• We prove 𝑔
𝑡𝑟,+
(𝑐,𝑒) = 𝑔

𝑡𝑟,+
(𝑒,𝑐) Let ((𝑞A , 𝑞E), 𝑎, [(A | |E,(𝑞A ,𝑞E),𝑎)) ∈ 𝐷

′′
A | |E .

By definition 7.19 of E-extension, 𝑔𝑡𝑟,+(𝑐,𝑒) (((𝑞A , 𝑞E), 𝑎, [(A | |E,(𝑞A ,𝑞E),𝑎))) = (𝑔(𝑞A , 𝑞E), 𝑎, [(A | |E,𝑔 (𝑞A ,𝑞E),𝑎))),
while by definition 7.7 of continuation,𝑔

𝑡𝑟,+
(𝑒,𝑐) (((𝑞A , 𝑞E), 𝑎, [(A | |E,(𝑞A ,𝑞E),𝑎))) = (𝑔(𝑞A , 𝑞E), 𝑎, [(A | |E,𝑔 (𝑞A ,𝑞E),𝑎))).

We can remark that properties of equitable corresponding distribution are not conflicting since 𝑑𝑜𝑚(𝑔𝑡𝑟,+𝑐,𝑒) \
𝑑𝑜𝑚(𝑔𝑡𝑟) = 𝑑𝑜𝑚(𝑔𝑡𝑟,+𝑒,𝑐) \ 𝑑𝑜𝑚(𝑔𝑡𝑟).
• 𝑔𝑒,+(𝑒,𝑐) and 𝑔

𝑒,+
(𝑐,𝑒) are entirely defined by ((𝑔,𝑔+(𝑒,𝑐)), (𝑔

𝑡𝑟 , 𝑔
𝑡𝑟,+
(𝑒,𝑐))) and ((𝑔,𝑔

+
(𝑐,𝑒)), (𝑔

𝑡𝑟 , 𝑔
𝑡𝑟,+
(𝑐,𝑒))) that are equal.

□

application for renaming and hiding. Before dealing with PCA-executions-matching, we state two intuitive theorems

of executions-matching after renaming and hiding operations.

Theorem 7.25. (strong complete bijective execution-matching after renaming) Let A and B be two PSIOA and 𝑟𝑒𝑛 :

𝑠𝑡𝑎𝑡𝑒𝑠 (A) → 𝑠𝑡𝑎𝑡𝑒𝑠 (B) s. t. B = 𝑟𝑒𝑛(A). (𝑟𝑒𝑛, 𝑟𝑒𝑛𝑡𝑟 , 𝑟𝑒𝑛𝑒𝑥) is a strong complete bijective execution-matching from A
to B with 𝑑𝑜𝑚(𝑟𝑒𝑛𝑡𝑟) = 𝐷A = 𝑑𝑡𝑟𝑎𝑛𝑠 (A).

Proof. By definition 𝑟𝑒𝑛 ensures starting state preservation and strong signature preservation. By definition 𝑟𝑒𝑛

is a complete bijection, which implies matched state preservation. The equitable corresponding distribution is also

ensured by definition of 𝑟𝑒𝑛. Hence, all the properties are ensured □

Theorem 7.26. (weak complete bijective executions-matching after hiding) LetA be a PSIOA. Letℎ defined on 𝑠𝑡𝑎𝑡𝑒𝑠 (A),
s. t. ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A), ℎ(𝑞) ⊆ 𝑜𝑢𝑡 (A)(𝑞). LetB = ℎ𝑖𝑑𝑖𝑛𝑔(A, ℎ). Let 𝐼𝑑 the identity function from 𝑠𝑡𝑎𝑡𝑒𝑠 (A) to 𝑠𝑡𝑎𝑡𝑒𝑠 (B) =
𝑠𝑡𝑎𝑡𝑒𝑠 (A). Then (𝐼𝑑, 𝐼𝑑𝑡𝑟 , 𝐼𝑑𝑒𝑥) is a weak complete bijective execution-matching from A to B.

Proof. By definition 𝐼𝑑 ensures starting state preservation and weak signature preservation. By definition 𝐼𝑑 is a

complete bijection, which implies matched state preservation. The equitable corresponding distribution is also ensured

by definition of ℎ𝑖𝑑𝑖𝑛𝑔. Hence, all the properties are ensured □

50

Dynamic Probabilistic Input Output Automata

7.2 PCA-matching execution

Here we extend the notion of executions-matching to PCA. In practice, we will build executions-matchings that preserve

the sequence of configurations visited by concerned executions. Hence, the definition of PCA states-matching is slightly

more restrictive to capture this notion of configuration equivalence (modulo action hiding operation), while the other

definitions are exactly the same ones.

matching execution.

Definition 7.27 (PCA states-matching). Let 𝑋 and 𝑌 be two PCA with 𝑄𝑋 = 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) and 𝑄𝑌 = 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌) as
respective sets of states, (𝑞𝑋 , 𝑞𝑌) = (𝑠𝑡𝑎𝑟𝑡 (𝑋), 𝑠𝑡𝑎𝑟𝑡 (𝑌)) and let 𝑓 : 𝑄 ′

𝑋
⊂ 𝑄𝑋 → 𝑄𝑌 be a mapping s. t. :

• Starting state preservation: If 𝑞𝑋 ∈ 𝑄 ′𝑋 , then 𝑓 (𝑞𝑋) = 𝑞𝑌 .
• Configuration preservation (modulo hiding): ∀(𝑞, 𝑞′) ∈ 𝑄 ′

𝑋
× 𝑄𝑌 , s. t. 𝑞′ = 𝑓 (𝑞), if 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞)) =

(A1, ...,A𝑛), then 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞′)) = (A ′
1
, ...,A ′𝑛) where ∀𝑖 ∈ [1 : 𝑛],A𝑖 = ℎ𝑖𝑑𝑒 (A ′𝑖 , ℎ𝑖) with ℎ𝑖 defined

on 𝑠𝑡𝑎𝑡𝑒𝑠 (A ′
𝑖
), s. t. ℎ𝑖 (𝑞A′

𝑖
) ⊆ 𝑜𝑢𝑡 (A ′

𝑖
) (𝑞A′

𝑖
) (resp. s. t. ℎ𝑖 (𝑞A′

𝑖
) = ∅, that is A𝑖 = A ′𝑖)

• Hiding preservation (modulo hiding): ∀(𝑞, 𝑞′) ∈ 𝑄 ′
𝑋
× 𝑄𝑌 , s. t. 𝑞′ = 𝑓 (𝑞), ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞) = ℎ𝑖𝑑𝑑𝑒𝑛-

𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌) (𝑞′) ∪ ℎ+ (𝑞′) where ℎ+ defined on 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌), s. t. ℎ+ (𝑞𝑌) ⊆ 𝑜𝑢𝑡 (𝑌) (𝑞𝑌) (resp. s. t. ℎ+ (𝑞𝑌) = ∅, that
is ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌) (𝑞′))

• Creation preservation ∀(𝑞, 𝑞′) ∈ 𝑄 ′
𝑋
× 𝑄𝑌 , s. t. 𝑞′ = 𝑓 (𝑞), ∀𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞) = 𝑠𝑖𝑔(𝑌) (𝑞′), 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞) (𝑎) =

𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞′) (𝑎).

then we say that 𝑓 is a weak (resp. strong) PCA states-matching from 𝑋 to 𝑌 . If 𝑄 ′
𝑋

= 𝑄𝑋 , then we say that 𝑓 is a

complete (weak or strong) PCA states-matching from 𝑋 to 𝑌 .

We naturally obtain that a PCA states-matching is a PSIOA states-matching:

Lemma 7.28 (A PCA states-matching is a PSIOA states-matching). If 𝑓 is a weak (resp. strong) PCA states-matching

from 𝑋 to 𝑌 , then 𝑓 is a PSIOA states-matching from 𝑝𝑠𝑖𝑜𝑎(𝑋) to 𝑝𝑠𝑖𝑜𝑎(𝑌) (in the sense of definition 7.1). (The converse is

not necessarily true.)

Proof. The signature preservation immediately comes from the configuration preservation and the hiding preserva-

tion. □

Now, all the definitions from definition 7.2 to definition 7.4 of previous subsections are the same that is:

Definition 7.29 (PCA transitions-matching and PCA executions-matching). Let 𝑋 and 𝑌 be two PCA with 𝑄𝑋 =

𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) and 𝑄𝑌 = 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌) as respective sets of states and let 𝑓 : 𝑄 ′
𝑋
⊂ 𝑄𝑋 → 𝑄𝑌 be a PCA states-matching from

𝑋 to 𝑌 .

• Let 𝐷 ′
𝑋
⊆ 𝐷𝑋 = 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑋) be a subset of transitions, 𝐷 ′

𝑋
is eligible to PCA transitions-matching domain from 𝑓

if it is eligible to PSIOA transitions-matching domain from 𝑓 according to definition 7.2.

• Let 𝐷 ′
𝑋
⊆ 𝐷𝑋 = 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑋) be a subset of transitions eligible to PCA transitions-matching domain from 𝑓 . We

define the PCA transitions-matching (𝑓 , 𝑓 𝑡𝑟) induced by the PCA states-matching 𝑓 and the subset of transitions

𝐷 ′
𝑋
as the PSIOA transitions-matching induced by the PSIOA states-matching 𝑓 and the subset of transitions

𝐷 ′
𝑋
according to definition 7.3.

51

Pierre Civit and Maria Potop-Butucaru

• Let 𝑓 𝑡𝑟 : 𝐷 ′
𝑋
⊆ 𝐷𝑋 = 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑋) → 𝐷𝑌 s. t. (𝑓 , 𝑓 𝑡𝑟) is a PCA transitions-matching, we define the PCA

executions-matching (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) induced by (𝑓 , 𝑓 𝑡𝑟) (resp. by 𝑓 and 𝑑𝑜𝑚(𝑓 𝑡𝑟)) as the PSIOA executions-

matching (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) induced by (𝑓 , 𝑓 𝑡𝑟) (resp. by 𝑓 and 𝑑𝑜𝑚(𝑓 𝑡𝑟)) according to definition 7.4. Furthermore, let

(`, ` ′) ∈ 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (𝑋))×𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (𝑌)) s. t. for every 𝛼 ′ ∈ 𝑠𝑢𝑝𝑝 (`), 𝛼 ′ ∈ 𝑑𝑜𝑚(𝑓 𝑒𝑥) and ` (𝛼) = ` ′(𝑓 𝑒𝑥 (𝛼 ′)).
then we say that (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) is a PCA executions-matching from (𝑋, `) to (𝑌, ` ′) according to definition 7.6.

• The (𝑓 +, 𝐷 ′′
𝑋
)-continuation of a PCA-executions-matching (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) is the (𝑓 +, 𝐷 ′′

𝑋
)- continuation of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥)

in the according to definition 7.7.

We restate the theorem 7.9 and 7.10 for PCA executions-matching:

Theorem 7.30 (PCA-execution-matching preserves probabilsitic distribution). Let 𝑋 and 𝑌 be two PCA

(`, ` ′) ∈ 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (𝑋)) × 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (𝑌)). Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be a PCA executions-matching from (𝑋, `) to (𝑌, ` ′) . Let
(�̃�, 𝜎) ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (A) × 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (B), s. t. (�̃�, 𝜎) are (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥)-alter egos. Let (𝛼, 𝜋) ∈ 𝑑𝑜𝑚(𝑓 𝑒𝑥) × 𝐹𝑟𝑎𝑔𝑠 (𝑌).
If 𝜋 = 𝑓 𝑒𝑥 (𝛼), then 𝜖�̃�, ˜̀ (𝐶�̃�) = 𝜖𝜎,` (𝐶𝛼) and 𝜖�̃�, ˜̀ (𝛼) = 𝜖𝜎,` (𝛼).

Proof. We just re-apply the theorem 7.9, since (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) is a PSIOA executions-matching from (𝑝𝑠𝑖𝑜𝑎(𝑋), `) to
(𝑝𝑠𝑖𝑜𝑎(𝑌), ` ′). □

Theorem 7.31 (Continued PCA executions-matching preserves general probabilistic distribution). Let

𝑋 and 𝑌 be two PCA (`, ` ′) ∈ 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (𝑋)) × 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (𝑌)). Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be a PCA executions-matching from

(𝑋, `) to (𝑌, ` ′) . Let ((𝑓 , 𝑓 +), 𝑓 𝑡𝑟,+, 𝑓 𝑒𝑥,+) be a continuation of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥). Let (�̃�, 𝜎) ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (A)×𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (B),
s. t. (�̃�, 𝜎) are (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥)-alter egos. Let (𝛼, 𝜋) ∈ 𝑑𝑜𝑚(𝑓 𝑒𝑥,+) × 𝐹𝑟𝑎𝑔𝑠 (𝑌).
If 𝜋 = 𝑓 𝑒𝑥,+ (𝛼), then 𝜖�̃�, ˜̀ (𝐶�̃�) = 𝜖𝜎,` (𝐶𝛼).

Proof. We just re-apply the theorem, 7.10 since ((𝑓 , 𝑓 +), 𝑓 𝑡𝑟,+, 𝑓 𝑒𝑥,+) is a continued PSIOA executions-matching

from (𝑝𝑠𝑖𝑜𝑎(𝑋), `) to (𝑝𝑠𝑖𝑜𝑎(𝑌), ` ′). □

Composability of execution-matching relationship. Nowwe are looking for composability of PCA executions-matching.

Here again the notions are the same than the ones for PSIOA excepting for states-matching and for partial-compatibility.

Hence we only need to show that i) the E-extension of a PCA states-matching is still a PCA states-matching (see lemma

7.32), ii) if 𝑓 : 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) → 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌) is a bijective PCA states-matching and 𝑓 −1
is complete, then for every PCA E

partial-compatible with 𝑋 , E is partial-compatible 𝑌 (see lemma 7.34).

Lemma 7.32 (Composability of PCA states-matching). Let 𝑋 and 𝑌 be two PCA with 𝑄𝑋 = 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) and
𝑄𝑌 = 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌) as respective sets of states. Let E be partially-compatible with both 𝑋 and 𝑌 . Let 𝑓 : 𝑄 ′

𝑋
⊂ 𝑄𝑋 → 𝑄𝑌 be a

PCA states-matching. Let 𝑔 be the E-extension of 𝑓 .

If 𝑟𝑎𝑛𝑔𝑒 (𝑔) ⊂ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌 | |E), then 𝑔 is a PCA states-matching from 𝑋 | |E to 𝑌 | |E.

Proof. • If (𝑞𝑋 , 𝑞E) ∈ 𝑄𝑋 | |E then 𝑞𝑋 ∈ 𝑄 ′𝑋 which means 𝑓 (𝑞𝑋) = 𝑞𝑌 , thus 𝑔((𝑞𝑋 , 𝑞E)) = (𝑞E , 𝑞E).
• ∀((𝑞𝑋 , 𝑞E), (𝑞𝑌 , 𝑞E)) ∈ 𝑄 ′𝑋 | |E × 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌 | |E) with (𝑞𝑌 , 𝑞E) = 𝑔((𝑞𝑋 , 𝑞E)), we have

– Configuration preservation (modulo hiding): if𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)) = (A1, ...,A𝑛), then𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)) =
(A ′

1
, ...,A ′𝑛) where ∀𝑖 ∈ [1 : 𝑛],A𝑖 = ℎ𝑖𝑑𝑒 (A ′

𝑖
, ℎ𝑖) with ℎ𝑖 defined on 𝑠𝑡𝑎𝑡𝑒𝑠 (A ′

𝑖
), s. t. ℎ𝑖 (𝑞A′

𝑖
) ⊆

𝑜𝑢𝑡 (A ′
𝑖
) (𝑞A′

𝑖
) (resp. s. t. ℎ𝑖 (𝑞A′

𝑖
) = ∅, that is A𝑖 = A ′

𝑖
). Hence if 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 | |E)((𝑞𝑋 , 𝑞E)) =

(A1, ...,A𝑛,B1, ...,B𝑚), then 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌 | |E)((𝑞𝑌 , 𝑞E)) = (A ′
1
, ...,A ′𝑛,B1, ...,B𝑚) where ∀𝑖 ∈ [1 :

𝑛],A𝑖 = ℎ𝑖𝑑𝑒 (A ′𝑖 , ℎ𝑖) with ℎ𝑖 defined on 𝑠𝑡𝑎𝑡𝑒𝑠 (A
′
𝑖
), s. t. ℎ𝑖 (𝑞A′

𝑖
) ⊆ 𝑜𝑢𝑡 (A ′

𝑖
) (𝑞A′

𝑖
) (resp. s. t. ℎ𝑖 (𝑞A′

𝑖
) = ∅,

that is A𝑖 = A ′𝑖).
52

Dynamic Probabilistic Input Output Automata

– Hidding preservation (modulo hiding): ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞𝑋) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌) (𝑞𝑌) ∪ ℎ+ (𝑞𝑌) where
ℎ+ defined on 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌), s. t. ℎ+ (𝑞𝑌) ⊆ 𝑜𝑢𝑡 (𝑌) (𝑞𝑌). Hence ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋 | |E)((𝑞𝑋 , 𝑞E)) = ℎ𝑖𝑑𝑑𝑒𝑛-

𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞𝑋) ∪ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (E)(𝑞E) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌) (𝑞𝑌) ∪ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (E)(𝑞E) ∪ℎ+ (𝑞𝑌) =
ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌 | |E)((𝑞𝑌 , 𝑞E)) ∪ ℎ+′((𝑞𝑌 , 𝑞E)) where ℎ+′ defined on 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌 | |E), s. t. ℎ+′((𝑞𝑌 , 𝑞E)) =
ℎ+ (𝑞𝑌) ⊆ 𝑜𝑢𝑡 (𝑌) (𝑞𝑌) ⊆ 𝑜𝑢𝑡 (𝑌 | |E)((𝑞𝑌 , 𝑞E)).

– Creation preservation ∀𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑋) = 𝑠𝑖𝑔(𝑌) (𝑞𝑌), 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎). Hence
∀𝑎 ∈ 𝑠𝑖𝑔(𝑋 | |E)((𝑞𝑋 , 𝑞E)) = 𝑠𝑖𝑔(𝑌 | |E)((𝑞𝑌 , 𝑞E)), either
∗ 𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑋) = 𝑠𝑖𝑔(𝑌) (𝑞𝑌) but𝑎 ∉ 𝑠𝑖𝑔(E)(𝑞E) and then 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 | |E)((𝑞𝑋 , 𝑞E)) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) =
𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌 | |E)((𝑞𝑌 , 𝑞E)) (𝑎)
∗ or 𝑎 ∉ 𝑠𝑖𝑔(𝑋) (𝑞𝑋) = 𝑠𝑖𝑔(𝑌) (𝑞𝑌) but 𝑎 ∈ 𝑠𝑖𝑔(E)(𝑞E) and then 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 | |E)((𝑞𝑋 , 𝑞E)) (𝑎) =

𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (E)(𝑞E) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌 | |E)((𝑞𝑌 , 𝑞E)) (𝑎)
∗ or 𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑋) = 𝑠𝑖𝑔(𝑌) (𝑞𝑌) and 𝑎 ∈ 𝑠𝑖𝑔(E)(𝑞E) and then 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 | |E)((𝑞𝑋 , 𝑞E)) (𝑎) =

𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎)∪𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (E)(𝑞E) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌)∪𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (E)(𝑞E) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌 | |E)((𝑞𝑌 , 𝑞E)) (𝑎)
Thus,∀𝑎 ∈ 𝑠𝑖𝑔(𝑋 | |E)((𝑞𝑋 , 𝑞E)) = 𝑠𝑖𝑔(𝑌 | |E)((𝑞𝑌 , 𝑞E)), 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋 | |E)((𝑞𝑋 , 𝑞E)) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌 | |E)((𝑞𝑌 , 𝑞E)) (𝑎).

□

We restate the theorem 7.20 of executions-matching composability.

Theorem 7.33 (Composability of PCA matching-execution). Let𝑋 and𝑌 be two PCA. Let E be partially-compatible

with both 𝑋 and 𝑌 . Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be a PCA executions-matching from 𝑋 to 𝑌 . Let 𝑔 be the E-extension of 𝑓 . If

𝑟𝑎𝑛𝑔𝑒 (𝑔) ⊂ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌 | |E), then the E-extension of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) is a PCA executions-matching (𝑔,𝑔𝑡𝑟 , 𝑔𝑒𝑥) from 𝑋 | |E to

𝑌 | |E induced by 𝑔 and 𝑑𝑜𝑚(𝑔𝑡𝑟).

Proof. This comes immediately from theorem 7.20. □

We extend the lemma 7.21 but we have to take a little precaution for the partial-compatibility since here the

configurations have to be pairwise compatible, not only the signatures.

Lemma 7.34 (Some properties preserved by E-extension of a PCA executions-matching). Let 𝑋 and 𝑌 be two

PCA. Let (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) be a PCA executions-matching from 𝑋 to 𝑌 .

(1) If 𝑓 is complete, then for every PSIOA E partially-compatible with 𝑋 , E is partially-compatible with 𝑌 .

(2) Let E partially-compatible with both 𝑋 and 𝑌 , let 𝑔 be the E-extension of 𝑓 .

(a) If 𝑓 is bijective and 𝑓 −1 is complete, then 𝑟𝑎𝑛𝑔𝑒 (𝑔) = 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌 | |E) and so we can talk about the E-extension
of (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥)

(b) If (𝑓 , 𝑓 𝑡𝑟) is a bijective complete transition-matching, (𝑔,𝑔𝑡𝑟) is a bijective complete transition-matching.

(And (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) and (𝑔,𝑔𝑡𝑟 , 𝑔𝑒𝑥) are bijective complete execution-matching.)

(c) If 𝑓 is strong, then 𝑔 is strong

Proof. (1) We need to show that every pseudo-execution of (𝑌, E) ends on a compatible state. Let 𝜋 =

𝑞0𝑎1𝑞1 ...𝑎𝑛𝑞𝑛 be a finite pseudo-execution of (𝑌, E).We note𝛼 = (𝑓 −1 (𝑞0

𝑌
), 𝑞0

E)𝑎
1 (𝑓 −1 (𝑞1

𝑌
), 𝑞1

E) ...𝑎
𝑛 (𝑓 −1 (𝑞𝑛

𝑌
), 𝑞𝑛E).

The proof is in two steps. First, we show by induction that 𝛼 = (𝑓 −1 (𝑞0

𝑌
), 𝑞0

E)𝑎
1 (𝑓 −1 (𝑞1

𝑌
), 𝑞1

E)...𝑎
𝑛 (𝑓 −1 (𝑞𝑛

𝑌
), 𝑞𝑛E)

is an execution of 𝑋 | |E. Second, we deduce that it means (𝑓 −1 (𝑞𝑛
𝑌
), 𝑞𝑛E) is a compatible state of (𝑋, E) which

means that a fortiori, (𝑞𝑛
𝑌
, 𝑞𝑛E) is a compatible state of (𝑌, E) which ends the proof.

53

Pierre Civit and Maria Potop-Butucaru

• First, we show by induction that 𝛼 is an execution of 𝑋 | |E. We have (𝑓 −1 (𝑞𝑌), 𝑞E) = (𝑞𝑋 , 𝑞E) which ends

the basis.

Let assume (𝑓 −1 (𝑞0

𝑌
), 𝑞0

E)𝑎
1 (𝑓 −1 (𝑞1

𝑌
), 𝑞1

E) ...𝑎
𝑘 (𝑓 −1 (𝑞𝑘

𝑌
), 𝑞𝑘E) is an execution of𝑋 | |E. Hence (𝑓

−1 (𝑞𝑘
𝑌
), 𝑞𝑘E)

is a compatible state of (𝑋, E) which means that a fortiori 𝑞𝑘 is a compatible state of (𝑌, E) because of
signature preservation of 𝑓 .

For the same reason, 𝑠𝑖𝑔(𝑌, E)(𝑞𝑘) = 𝑠𝑖𝑔(𝑋 | |E)((𝑓 −1 (𝑞𝑘
𝑌
), 𝑞𝑘E)), so 𝑎

𝑘+1 ∈ 𝑠𝑖𝑔(𝑋, E)((𝑓 −1 (𝑞𝑘
𝑌
), 𝑞𝑘E)). Then

we use the completeness of (𝑓 −1, (𝑓 𝑡𝑟)−1), to obtain the fact that either [(𝑌,𝑞𝑘
𝑌
,𝑎𝑘+1) ∈ 𝑑𝑜𝑚((𝑓

𝑡𝑟)−1) or

𝑎𝑘+1 ∉ �𝑠𝑖𝑔(𝑌) (𝑞𝑘
𝑌
) (andwe recall the convention that in this second case[(𝑌,𝑞𝑘

𝑌
,𝑎𝑘+1) = 𝛿𝑞𝑘

𝑌
). whichmeans ei-

ther (𝑓 −1 (𝑞𝑘
𝑌
), 𝑎𝑘+1, [(𝑋,𝑓 −1 (𝑞𝑘

𝑌
),𝑎𝑘+1)) is a transition of𝑋 that ensures∀𝑞′′ ∈ 𝑠𝑢𝑝𝑝 ([(𝑌,𝑞𝑘

𝑌
,𝑎𝑘+1)), 𝑓

−1 (𝑞′′) ∈

𝑠𝑢𝑝𝑝 ([(𝑋,𝑓 −1 (𝑞𝑘
𝑌
),𝑎𝑘+1)) or 𝑎

𝑘+1 ∉ �𝑠𝑖𝑔(𝑋) (𝑓 −1 (𝑞𝑘
𝑌
)) (and we recall the convention that in this second

case [(𝑋,𝑓 −1 (𝑞𝑘
𝑌
),𝑎𝑘+1) = 𝛿

𝑓 −1 (𝑞𝑘
𝑌
)). Thus for every (𝑞

′′, 𝑞′′′) ∈ 𝑠𝑢𝑝𝑝 ([(𝑌,E),𝑞𝑘 ,𝑎𝑘+1)), (𝑓 −1 (𝑞′′), 𝑞′′′) =
𝑔−1 ((𝑞′′, 𝑞′′′)) ∈ 𝑠𝑢𝑝𝑝 ([(𝑋,E),𝑔−1 (𝑞𝑘),𝑎𝑘+1)) namely for (𝑞′′, 𝑞′′′) = (𝑞𝑘+1

𝑌
, 𝑞𝑘+1E). Hence, (𝑓

−1 (𝑞𝑘+1
𝑌
), 𝑞𝑘+1E)

is reachable by (𝑋, E)whichmeans (𝑓 −1 (𝑞0

𝑌
), 𝑞0

E)𝑎
1 (𝑓 −1 (𝑞1

𝑌
), 𝑞1

E) ...𝑎
𝑘 (𝑓 −1 (𝑞𝑘

𝑌
), 𝑞𝑘E)𝑎

𝑘 (𝑓 −1 (𝑞𝑘
𝑌
), 𝑞𝑘E)𝑎

𝑘+1 (𝑓 −1 (𝑞𝑘+1
𝑌
), 𝑞𝑘+1E)

is an execution of 𝑋 | |E. Thus by induction 𝛼 is an execution of 𝑋 | |E.
• Since 𝑋 and E are partially-compatible (𝑓 −1 (𝑞𝑛

𝑌
), 𝑞𝑛E) is a state of 𝑋 | |E, so (𝑓

−1 (𝑞𝑛
𝑌
), 𝑞𝑛E) is a compatible

state of (𝑋, E) which means (𝑞𝑘
𝑌
, 𝑞𝑘E) is a fortiori a compatible state of (𝑌, E) . Hence every reachable state

of (𝑌, E) is compatible which means 𝑌 and E are partially compatible which ends the proof.

(2) This comes immediately from lemma 7.21 since (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) is a PSIOA executions-matching from 𝑝𝑠𝑖𝑜𝑎(𝑋) to
𝑝𝑠𝑖𝑜𝑎(𝑌) by construction.

□

Finally, we restate the semantic-equivalence.

A strong complete bijective transitions-matching implies a strong complete bijective executions-matching which

means the two automata are completely semantically equivalent.

Definition 7.35 (PCA semantic equivalence). Let 𝑋 an 𝑌 be two PCA. We say that 𝑋 and 𝑌 are semantically-equivalent

if it exists a complete bijective strong PCA executions-matching from 𝑋 to 𝑌

Theorem 7.36 (composability of semantic eqivalence). Let 𝑋 and 𝑌 be PCA semantically-equivalent. Then for

every PSIOA E:

• E is partially-compatible with 𝑋 ⇐⇒ E is partially-compatible with 𝑌

• if E is an environment for both 𝑋 and 𝑌 , then 𝑋 | |E and 𝑌 | |E are PCA semantically-equivalent.

Proof. • The first item comes from lemma 7.34, first item

• The second item comes from lemma 7.34, second item

□

A weak complete bijective PCA transitions-matching implies a weak complete bijective PCA executions-matching

which means the two automata are completely semantically equivalent modulo some hiding operation that implies that

some PSIOA are partially-compatible with one of the automaton and not with the other one and that the traces are not

necessarily the same ones.

54

Dynamic Probabilistic Input Output Automata

8 PROJECTION

This section aims to formalise the idea of a PCA 𝑋A considered without an internal PSIOA A. This PCA will be noted

𝑌A = 𝑋A \{A}. The reader can already take a look on the figures 26 and 27 to get an intuition on the desired result. This
is an important step in our reasoning since we will be able to formalise in which sense 𝑋A and 𝑝𝑠𝑖𝑜𝑎(𝑋A \ {A})| |A
are similar.

We first define some notions of projection on configurations on subsection 8.1. Then we define the notion of A-fair

PCA 𝑋 in subsection 8.2, which will be a sufficient condition to ensure that 𝑌 = 𝑋 \ {A} is still a PCA, namely that it

ensures the constraints of top/down and bottom/up transition preservation, which is proved in the last subsection 8.3.

8.1 Projection on Configurations

In this subsection, we want to define formally [′ ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓) that would be the result of [∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓) "deprived
of an automaton A". This is achieved in definition 8.4. This definition requires particular precautions and motivate the

next sequence of definitions, from definition 8.1 to 8.3

The next definition captures the idea of a state deprived of a PSIAO A.

Definition 8.1 (State projection). Let A = {A1, ...,A𝑛} be a set of PSIOA partially-compatible at state 𝑞 = (𝑞1, ..., 𝑞𝑛) ∈
𝑄A1

× ... ×𝑄A𝑛 . Let A𝑠 = {A𝑠1 , ...,A𝑠𝑛 } ⊂ A. We note :

• 𝑞 \ {A𝑘 } = (𝑞1, ..., 𝑞𝑘−1
, 𝑞𝑘+1, ..., 𝑞𝑛) if A𝑘 ∈ A and 𝑞 \ {A𝑘 } = 𝑞 otherwise.

• 𝑞 \ A𝑠 = (𝑞 \ {A𝑠𝑛 }) \ (A𝑠 \ {A𝑠𝑛 }) (recursive extension of the previous item).

• 𝑞 ↾ A𝑘 = 𝑞𝑘 if A𝑘 ∈ A only.

• 𝑞 ↾ A𝑠 = 𝑞 \ (A \ A𝑠) (recursive extension of the previous item).

Fig. 19. State projection

The next definition captures the idea of a family transition deprived of a PSIAO A.

Definition 8.2 (Family transition projection). (see figure 20 first for an intuition) Let A = {A1, ...,A𝑛} be a set of
PSIOA partially-compatible at state 𝑞 = (𝑞1, ..., 𝑞𝑛) ∈ 𝑄A1

× ... ×𝑄A𝑛 . Let A𝑠 = {A𝑠1 , ...,A𝑠𝑛 } ⊂ A.
Let 𝑞′ = 𝑞 \ A𝑠 and 𝑞′′ = 𝑞 ↾ A𝑠 if A𝑠 ⊂ A. Let A′ = A \ A𝑠 and A′′ = A𝑠 ⊂ A. Let 𝑎′ ∈ 𝑠𝑖𝑔(A′) (𝑞′) and

𝑎′′ ∈ 𝑠𝑖𝑔(A′′) (𝑞′′). We note

• [(A,𝑞,𝑎′) \ A𝑠 ≜ [(A′,𝑞′,𝑎′) and
• [(A,𝑞,𝑎′′) ↾ A𝑠 ≜ [(A′′,𝑞′′,𝑎′′) if A𝑠 ⊂ A.

Then we apply this notation to preserving distributions.

Definition 8.3 (preserving distribution projection). (see figure 21) Let [𝑝 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓) be a preserving distribution.
Let A = {A1, ...,A𝑛} its automata support (that is ∀(A′, S′) ∈ 𝑠𝑢𝑝𝑝 ([𝑝),A′ = A). Let 𝐻 be its set of companion

55

Pierre Civit and Maria Potop-Butucaru

Fig. 20. Family transition projection

distributions of [𝑝 (s. t. for every [∈ 𝐻 , [= [1 ⊗ ... ⊗ [𝑛 with [𝑖 ∈ 𝐷𝑖𝑠𝑐 (𝑄A𝑖)).Then [𝑝 \ A𝑠 is the preserving

distribution with A \ A𝑠 as automata support and 𝐻 ′ = {[\ A𝑠 |[∈ 𝐻 } as companion distribution set. If A𝑠 ⊂ A, then
[𝑝 ↾ A𝑠 is the preserving distribution with A ↾ A𝑠 as automata support and 𝐻 ′′ = {[↾ A𝑠 |[∈ 𝐻 } as companion

distribution set.

Now we are able to define intrinsic transition deprived of a PSIOA A.

Definition 8.4 (intrinsic transition projection). (see figure 22) Let[∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓) generated by𝜑 and[𝑝 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓).
We note [\ A𝑠 the probabilistic measure on configurations generated by 𝜑 \ A𝑠 and [𝑝 \ A𝑠 and we note [↾ A𝑠 the
probabilistic measure on configurations generated by 𝜑 ↾ A𝑠 and [𝑝 ↾ A𝑠 .

Then we can easily determine some results when projection is applied. The next lemma 8.5 and 8.6 will lead to lemma

8.7. All of this 3 lemma are some versions of law of total probability. The lemma 8.7 and 8.10 (obtained via lemma 8.8),

will allow the constructive definition 8.11 of PCA deprived of a (sub) PSIOA.

Lemma 8.5 (family distribution projection). (see figure 23) Let A = {A1, ...,A𝑛} be a finite set of automata. Let

A′ = A \ {A𝑘 }. Let [= [1 ⊗ ... ⊗ [𝑛 with [𝑖 ∈ 𝐷𝑖𝑠𝑐 (𝑄A𝑖) for every 𝑖 ∈ [1, 𝑛] . Let [′ = [\ {A𝑘 }.
For every 𝑞′ ∈ 𝑄A′ , [′(𝑞′) = Σ (𝑞∈𝑄A,𝑞\{A𝑘 }=𝑞′)[(𝑞)

Proof. This comes directly from the law of total probability.We have∀𝑞ℓ = (𝑞1, ..., 𝑞
ℓ
𝑘
, ..., 𝑞𝑛) ∈ 𝑄A, 𝑞

′ = (𝑞1, ..., 𝑞𝑘−1
, 𝑞𝑘+1, ..., 𝑞𝑛) ∈

𝑄A′ ,[(𝑞ℓ) = [′(𝑞′)·[𝑘 (𝑞ℓ𝑘). Hence
∑
𝑞ℓ
𝑘
∈𝑠𝑢𝑝𝑝 ([𝑘) [(𝑞

ℓ) = ∑
𝑞ℓ
𝑘
∈𝑠𝑢𝑝𝑝 ([𝑘) [

′(𝑞′)·[𝑘 (𝑞ℓ𝑘), which gives
∑
𝑞∈𝑠𝑢𝑝𝑝 ([),𝑞′=𝑞\{A𝑘 } [(𝑞) =

[′(𝑞′) ·∑𝑞ℓ
𝑘
∈𝑠𝑢𝑝𝑝 ([𝑘) [𝑘 (𝑞

ℓ
𝑘
) and finally

∑
𝑞∈𝑄A,𝑞′=𝑞\{A𝑘 } [(𝑞) = [

′(𝑞′).
□

Lemma 8.6 (preserving distribution projection). (see figure 24) Let [𝑝 be a preserving distribution with A =

{A1, ...,A𝑛} as automata support . Let 𝐶𝑌 be a configuration ([𝑝 \ {A𝑘 })(𝐶𝑌) = Σ (𝐶𝑋 ,𝐶𝑋 \{A𝑘 }=𝐶𝑌)[𝑝 (𝐶𝑋).
56

Dynamic Probabilistic Input Output Automata

Fig. 21. Preserving distribution projection

Fig. 22. intrinsic transition projection

Proof. We can apply lemma 8.5 for every pair ([, [\ {A𝑘 }) s. t. [is a companion distribution of [𝑝 (and [\ {A𝑘 }
is a companion distribution of [𝑝 \ {A𝑘 } by definition). Then we substitute in the sum of 8.5 every state 𝑞 by the

corresponding configuration. □

Lemma 8.7 (reduced distribution projection). Let [𝑝 be a preserving distribution with A = {A1, ...,A𝑛} as
automata support . Let [𝑟 be generated by 𝜑 and [𝑝 . Let 𝐶𝑌 be a configuration.

57

Pierre Civit and Maria Potop-Butucaru

Fig. 23. total probability law for family transition projection

Fig. 24. total probability law for preserving configuration distribution and its companion distribution

58

Dynamic Probabilistic Input Output Automata

([𝑟 \ {A𝑘 })(𝐶𝑌) = Σ (𝐶𝑋 ,𝐶𝑋 \{A𝑘 }=𝐶𝑌)[𝑟 (𝐶𝑋).

Proof. For a preserving transition, we get ([𝑝 \ {A𝑘 })(𝐶𝑌) = Σ (𝐶𝑋 ,𝐶𝑋 \{A𝑘 }=𝐶𝑌)[𝑝 (𝐶𝑋) for every configuration

𝐶𝑌 from lemma 8.6. By definition 5.10, it follows the same relation for the non-reduced transition which is matching

the preserving transition. It follows the same relation for the reduced transition which is matching the non-reduced

transition. □

The next lemma gives the intrinsic transition attached to a configuration after deprivation of a (sub) PSIOA.

Lemma 8.8 (projection on an intrinsic transition). Let 𝐶 be a configuration, 𝑃 an automaton, 𝑎 ∈ 𝑠𝑖𝑔(𝐶 \ 𝑃),
𝜑 ⊂ 𝐴𝑢𝑡𝑖𝑑𝑠 and [∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓), s. t.
𝐶

𝑎
=⇒𝜑 [𝑟 . Then , 𝐶 \ {𝑃} 𝑎

=⇒(𝜑\{𝑃 }) ([𝑟 \ {𝑃}).

Proof. We note 𝑎𝑢𝑡𝑠 (𝐶) = A = {A1, ...,A𝑛}, S = 𝑎𝑢𝑡𝑠 (𝐶) and A = A1 | |...| |A𝑛 . We note 𝑞 = (S(A1), ..., S(A𝑛)).
Since 𝑎 is enabled in 𝐶 \ {𝑃}, (𝑞 \ {𝑃}, 𝑎, [) is a transition of A (unique from 𝑞 and 𝑎 by transition determinism), while

(𝑞, 𝑎, [\ {𝑃}) is a transition ofA ′ the automaton issued from the composition of automata in A \ {𝑃}. This comes from

the definition of composition 4.10. Now [𝑟 is generated from 𝜑 and [𝑝 where [is a companion distribution of [𝑝 . In the

same way, [𝑟 \ {𝑃} is generated from 𝜑 \ {𝑃} and [𝑝 \ {𝑃} where [\ {𝑃} is a companion distribution of [𝑝 \ {𝑃}.
Thus, 𝐶 \ {𝑃} 𝑎

⇀ ([𝑝 \ {𝑃}) and then 𝐶 \ {𝑃} 𝑎
=⇒(𝜑\{𝑃 }) ([𝑟 \ {𝑃}).

□

In next subsection, this lemma 8.8 will lead to lemma 8.10 which will be a key lemma to allow the constructive

definition 8.11 of PCA deprived of a (sub) PSIOA.

8.2 A-fairness assumption, motivated by our definition of PCA deprived from an internal PSIOA: 𝑋 \ {A}

Here we recall in definition 8.9 the definition 6.13 of aA-fair PCA. Then we show lemma 8.10 (via 8.8) that will be used

in complement of lemma 8.7 to enable the constructive definition of 𝑋 \ {A}.

Definition 8.9 (A-fair PCA (recall)). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let 𝑋 be a PCA. We say that 𝑋 is A-fair if it verifies the

following constraints.

• (configuration-conflict-free) 𝑋 is configuration-conflict-free, that is ∀𝑞𝑋 , 𝑞′𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), s. t. 𝑞𝑋𝑅𝑐𝑜𝑛𝑓 𝑞
′
𝑋
(i. e.

𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞′𝑋)) then 𝑞𝑋 = 𝑞′
𝑋

• (no conflict for projection) ∀𝑞𝑋 , 𝑞′𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), s. t. 𝑞𝑋𝑅
\{A}
𝑐𝑜𝑛𝑓

𝑞′
𝑋
then 𝑞𝑋𝑅

{A}
𝑠𝑡𝑟𝑖𝑐𝑡

𝑞′
𝑋
. That is if 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) \

{𝐴} = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌) \ {𝐴}, then
– ∀𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑋) ∩ 𝑠𝑖𝑔(𝑌) (𝑞𝑌), 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎) \ {A} = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) \ {A}
– ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞𝑋) \ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋) (𝑞𝑋) (A) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌) (𝑞𝑌) \ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑌) (𝑞𝑌) (A) where

∗ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋) (𝑞) (A) = ∅ if A ∉ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞))
∗ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋) (𝑞) (A) = 𝑜𝑢𝑡 (A)(𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞)) (A)) if A ∈ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞))

• (no exclusive creation by A) ∀𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), ∀𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑋) A-exclusive in 𝑞𝑋 , 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) = ∅
where A-exclusive means ∀B ∈ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)), 𝑎 ∉ 𝑠𝑖𝑔(B)(𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)) (B)).

A A-fair PCA is a PCA s. t. we can deduce its current properties from its current configuration deprived of A. This

will allow the definition of 𝑋 \ {A}, where 𝑋 is a PCA, to be well-defined.

59

Pierre Civit and Maria Potop-Butucaru

Now we give the second key lemma (after lemma 8.7) to allow the definition 8.11 of PCA deprived of a (sub) PSIOA.

Basically, this lemma that if two states 𝑞𝑋 and 𝑞𝑌 are strictly equivalent modulo the deprivation of a (sub) automaton 𝑃 ,

noted 𝑞𝑋𝑅
\{𝑃 }
𝑠𝑡𝑟𝑖𝑐𝑡

𝑞𝑌 , then the intrinsic configurations issued from these states deprived of 𝑃 are equal.

Lemma 8.10 (eqality of intrinsic transition after deprivation of a sub-PSIOA). Let 𝑋,𝑌 be two PCA.

Let (𝑞𝑋 , 𝑞𝑌) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) × 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌) s. t. 𝑞𝑋𝑅\{𝑃 }𝑠𝑡𝑟𝑖𝑐𝑡
𝑞𝑌 . Let 𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑋) ∩ 𝑠𝑖𝑔(𝑌) (𝑞𝑌) \ (𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋) (𝑞𝑋) (𝑃) ∪ 𝑝𝑜𝑡-

𝑜𝑢𝑡 (𝑌) (𝑞𝑌) (𝑃)). We note𝐶𝑋 ≜ 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋),𝐶𝑌 ≜ 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌),𝜑𝑋 ≜ 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎),𝜑𝑌 ≜ 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎)
and [𝑋𝑟 and [𝑌𝑟 the unique reduced configuration distribution s. t.𝐶𝑋

𝑎
=⇒𝜑𝑋 [𝑋𝑟 and𝐶𝑌

𝑎
=⇒𝜑𝑌 [

𝑌
𝑟 . By definition of 𝑅

\{𝑃 }
𝑠𝑡𝑟𝑖𝑐𝑡

,

we have 𝐶𝑋 \ {𝑃} = 𝐶𝑌 \ {𝑃} ≜ 𝐶 and 𝜑𝑋 \ {𝑃} = 𝜑𝑌 \ {𝑃} = 𝜑 .
Moreover 𝐶

𝑎
=⇒𝜑 [𝑟 with [𝑋𝑟 \ {𝑃} = [𝑌𝑟 \ {𝑃} ≜ [𝑟

Proof. By lemma 8.8, we have both 𝐶
𝑎
=⇒𝜑 [

𝑋
𝑟 \ {𝑃} and 𝐶

𝑎
=⇒𝜑 [

𝑌
𝑟 \ {𝑃}. By unicity of intrinsic transition, we

have [𝑋𝑟 \ {𝑃} = [𝑌𝑟 \ {𝑃}. □

Definition 8.11 (𝑋 \ {𝑃}). (see figure 25 for the constructive definition and figures 26 and 27 for the desired result.)

Let 𝑃 ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let 𝑋 be a 𝑃-fair 𝑃𝐶𝐴, with 𝑝𝑠𝑖𝑜𝑎(𝑋) = (𝑄𝑋 , ¯𝑞𝑋 , 𝑠𝑖𝑔(𝑋), 𝐷𝑋). We note X \ {𝑃} the automaton Y

equipped with the same attributes than a PCA (psioa, config, hidden-actions, created), `𝑃𝑠 : 𝑄𝑋 → 𝑄𝑌 and `𝑃
𝑑

:

𝐷𝑋 \ {[(𝑋,𝑞𝑋 ,𝑎) |𝑎 is 𝑃-exclusive in 𝑞𝑋 } → 𝐷𝑌 that respect systematically the following rules:

• 𝑃-deprivation: ∀𝑞𝑌 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌), 𝑃 ∉ 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌), ∀𝑎 ∈ 𝑠𝑖𝑔(𝑌) (𝑞𝑌) (𝑎), 𝑃 ∉ 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎).
• `𝑃𝑠 -correspondence: ∀(𝑞𝑋 , 𝑞𝑌) ∈ 𝑄𝑋 ×𝑄𝑌 s. t. `𝑃𝑠 (𝑞𝑋) = 𝑞𝑌 , then 𝑞𝑋𝑅

\{𝑃 }
𝑠𝑡𝑟𝑖𝑐𝑡

𝑞𝑌 .

• `𝑃
𝑑
-correspondence:∀(𝑞𝑋 , 𝑞𝑌) ∈ 𝑄𝑋×𝑄𝑌 ,∀(𝑎𝑋 , 𝑎𝑌) ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑋)×𝑠𝑖𝑔(𝑌) (𝑞𝑌) s. t.[(𝑌,𝑞𝑌 ,𝑎𝑌) = `𝑃𝑑 ([(𝑋,𝑞𝑋 ,𝑎𝑋) ,

then (1) `𝑃𝑠 (𝑞𝑋) = 𝑞𝑌 , (2) 𝑎𝑋 = 𝑎𝑌 and (3) ∀𝑞′
𝑌
∈ 𝑄𝑌 , [(𝑌,𝑞𝑌 ,𝑎) (𝑞′𝑌) = Σ𝑞′

𝑋
∈𝑄𝑋 ,`𝑠 (𝑞′𝑋)=𝑞

′
𝑌
[(𝑋,𝑞𝑋 ,𝑎) (𝑞′𝑋).

and constructed (conjointly with the mapping `𝑃𝑠 and `𝑃
𝑑
) as follows:

• Partitioning: We partition 𝑄𝑋 in equivalence classes according to the equivalence relation 𝑅
\{𝑃 }
𝑐𝑜𝑛𝑓

that is we

obtain a partition (𝐶 𝑗) 𝑗 ∈𝐽 ⊂N s. t. ∀𝑗 ∈ 𝐽 , ∀𝑞𝑋 , 𝑞′𝑋 ∈ 𝐶 𝑗 , 𝑞𝑋𝑅
\{𝑃 }
𝑐𝑜𝑛𝑓

𝑞′
𝑋
and by 𝑃-fair assumption, 𝑞𝑋𝑅

\{𝑃 }
𝑠𝑡𝑟𝑖𝑐𝑡

𝑞′
𝑋

• 𝑄𝑌 , 𝑠𝑖𝑔(𝑌) and `𝑃𝑠 : ∀𝑗 ∈ 𝐽 , we construct 𝑞
𝑗

𝑌
∈ 𝑄𝑌 and conjointly extend `𝑃𝑠 s. t. ∀𝑞𝑋 ∈ 𝐶 𝑗 , `𝑃𝑠 (𝑞𝑋) = 𝑞

𝑗

𝑌
,

verifying the 𝑃-deprivation-rule and `𝑃𝑠 -correspondence rule, that is

– 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞 𝑗
𝑌
) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) \ {𝑃},

– ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌) (𝑞 𝑗
𝑌
) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞𝑋) \ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋) (𝑞𝑋) (𝑃),

– 𝑠𝑖𝑔(𝑌) (𝑞 𝑗
𝑌
) = ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞 𝑗

𝑌
)), ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌) (𝑞 𝑗

𝑌
))

– ∀𝑎 ∈ 𝑠𝑖𝑔(𝑌) (𝑞 𝑗
𝑌
), 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞 𝑗

𝑌
) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) \ {𝑃}.

– Furthermore 𝑞𝑌 = `𝑃𝑠 (𝑞𝑋).
• 𝐷𝑌 and `𝑃

𝑑
: ∀𝑞𝑌 ∈ 𝑄𝑌 , ∀𝑎 ∈ 𝑠𝑖𝑔(𝑌) (𝑞𝑌) (and so ∀𝑞𝑋 ∈ (`𝑃𝑠)−1 (𝑞𝑌), 𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑋)) we construct [(𝑌,𝑞𝑌 ,𝑎)

and conjointly extend `𝑃
𝑑
s. t. ∀𝑞𝑋 ∈ (`𝑃𝑠)−1 (𝑞𝑌), [(𝑌,𝑞𝑌 ,𝑎) = `𝑃𝑑 ([(𝑋,𝑞𝑋 ,𝑎)), verifying the `

𝑃
𝑑
-correspondence

rule. We show this construction is possible:

– We note 𝐶𝑌 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌), 𝜑𝑌 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎), [𝑌 the unique reduced configuration distribution

so that 𝐶𝑌
𝑎
=⇒𝜑𝑌 [𝑌 . Let (𝑞𝑖𝑋)𝑖∈𝐼 ⊂N = (`𝑃𝑠)−1 (𝑞𝑌). For every 𝑖 ∈ 𝐼 , we note note 𝐶𝑖𝑋 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑖

𝑋
),

𝜑𝑖
𝑋

= 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑖
𝑋
) (𝑎), [𝑖

𝑋
the unique reduced configuration distribution so that 𝐶𝑖

𝑋

𝑎
=⇒𝜑𝑖

𝑋
[𝑖
𝑋
. For

every 𝑖 ∈ 𝐼 , we have 𝐶𝑖
𝑋
\ {𝑃} = 𝐶𝑌 , 𝜑𝑖 \ {𝑃} = 𝜑𝑌 and [𝑖

𝑋
\ {𝑃} = [𝑌 by lemma 8.10.

– For every 𝑞𝑖
𝑋
∈ (`𝑃𝑠)−1 (𝑞𝑌), we partition 𝑠𝑢𝑝𝑝 ([(𝑋,𝑞𝑖

𝑋
,𝑎)) in equivalence classes according to the equiva-

lence relation 𝑅
\{𝑃 }
𝑐𝑜𝑛𝑓

that is we obtain a partition (𝐶 ′
𝑗
) 𝑗 ∈𝐽 ′⊂N s. t. ∀𝑗 ∈ 𝐽 ′, ∀𝑞′

𝑋
, 𝑞′′
𝑋
∈ 𝐶 ′

𝑗
, 𝑞′
𝑋
𝑅
\{𝑃 }
𝑐𝑜𝑛𝑓

𝑞′′
𝑋
and

60

Dynamic Probabilistic Input Output Automata

by 𝑃-fair assumption, 𝑞′
𝑋
𝑅
\{𝑃 }
𝑠𝑡𝑟𝑖𝑐𝑡

𝑞′′
𝑋
. For each 𝑗 ∈ 𝐽 ′, we extract an arbitrary 𝑞′

𝑋
∈ 𝐶 ′

𝑗
and 𝑞′

𝑌
= `𝑃𝑠 (𝑞′𝑋). We

fix [(𝑌,𝑞𝑌 ,𝑎) (𝑞′𝑌) = [𝑌 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞
′
𝑌
)).

Now by lemma 8.7, [𝑌 (𝐶 ′𝑌) =
∑
𝐶′
𝑋
,𝐶′
𝑌
=𝐶′

𝑋
\{𝑃 } [

𝑖
𝑋
(𝐶 ′
𝑋
). By constraint 3 of bottom/up transition preserva-

tion,

∑
𝐶′
𝑋
,𝐶′
𝑌
=𝐶′

𝑋
\{𝑃 } [

𝑖
𝑋
(𝐶 ′
𝑋
) = ∑

𝑞′
𝑋
,𝐶′
𝑌
=𝑐𝑜𝑛𝑓 𝑖𝑔 (𝑋) (𝑞′

𝑋
)\{𝑃 } [(𝑋,𝑞𝑖

𝑋
,𝑎) (𝑞′𝑋). By construction of 𝑄𝑌 under

`𝑃𝑠 -correspondence,
∑
𝑞′
𝑋
,𝐶′
𝑌
=𝑐𝑜𝑛𝑓 𝑖𝑔 (𝑋) (𝑞′

𝑋
)\{𝑃 } [(𝑋,𝑞𝑖

𝑋
,𝑎) (𝑞′𝑋) =

∑
𝑞′
𝑋
,𝑞′
𝑌
=`𝑃𝑠 (𝑞′𝑋)

[(𝑋,𝑞𝑖
𝑋
,𝑎) (𝑞′𝑋). Thus, the

`𝑃
𝑑
-correspondence constraint, i. e. [(𝑌,𝑞𝑌 ,𝑎) (𝑞′𝑌) =

∑
𝑞′
𝑋
,𝑞′
𝑌
=`𝑃𝑠 (𝑞′𝑋)

[(𝑋,𝑞𝑖
𝑋
,𝑎) (𝑞′𝑋) holds for all the possible

𝑞𝑖
𝑋
∈ (`𝑃𝑠)−1 (𝑞𝑌).

Fig. 25. constructive definition of𝑌 = 𝑋 \ {𝑃 }. First we construct �̃�0 which is the initial state of𝑌 . Then we partition 𝑠𝑢𝑝𝑝 ([(𝑋,𝑞0,𝑎)) =
{𝑞1𝑥𝑢 , 𝑞1𝑥𝑣 } ∪ {𝑞1𝑦𝑢 , 𝑞1𝑦𝑣 } s. t. 𝑞1𝑥𝑢𝑅

\{𝑃 }
𝑐𝑜𝑛𝑓

𝑞1𝑥𝑣 and 𝑞1𝑦𝑢𝑅
\{𝑃 }
𝑐𝑜𝑛𝑓

𝑞1𝑦𝑣 . Thereafter we construct ˜𝑞1𝑥 = `𝑠 (𝑞1𝑥𝑢) = `𝑠 (𝑞1𝑥𝑣) and
˜𝑞1𝑦 = `𝑠 (𝑞1𝑦𝑢) = `𝑠 (𝑞1𝑦𝑣) . Then, [(𝑌, ˜𝑞0,𝑎) is defined s. t. [(𝑌, ˜𝑞0,𝑎) (�̃�

1𝑥) = [(𝑋,𝑞0,𝑎) (𝑞1𝑥𝑢) +[(𝑋,𝑞0,𝑎) (𝑞1𝑥𝑣) and [(𝑌, ˜𝑞0,𝑎) (�̃�
1𝑦) =

[(𝑋,𝑞0,𝑎) (𝑞1𝑦𝑢) +[(𝑋,𝑞0,𝑎) (𝑞1𝑦𝑣) . We perform another time this procedure. by partitioning 𝑠𝑢𝑝𝑝 ([(𝑋,𝑞1𝑦𝑢 ,𝑎)) = {𝑞2𝑥𝑢 }∪ {𝑞2𝑦𝑢 } or
𝑠𝑢𝑝𝑝 ([(𝑋,𝑞1𝑦𝑣 ,𝑎)) = {𝑞2𝑥𝑣 , 𝑞2𝑥𝑤 }∪ {𝑞2𝑦𝑣 , 𝑞2𝑦𝑤 } arbitrarily. Indeed the obtai,ed result is the same: (i)𝑞1𝑦𝑢𝑅

\{𝑃 }
𝑐𝑜𝑛𝑓

𝑞1𝑦𝑣 since they are

both pre-image of �̃�1𝑦 by `𝑠 , which means (ii) 𝑞1𝑦𝑢𝑅
\{𝑃 }
𝑠𝑡𝑟𝑖𝑐𝑡

𝑞1𝑦𝑣 since 𝑋 is assumed to be 𝑃 -fair. If we note𝐶𝑢 = 𝑐𝑜𝑛𝑓 𝑖𝑔 (𝑋) (𝑞1𝑦𝑢) ,
𝐶𝑣 = 𝑐𝑜𝑛𝑓 𝑖𝑔 (𝑋) (𝑞1𝑦𝑣) , 𝜑𝑢 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞1𝑦𝑢) (𝑐) , 𝜑𝑣 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞1𝑦𝑣) (𝑐) , 𝐶𝑢

𝑐
=⇒𝜑𝑢 [𝑢 and 𝐶𝑣

𝑐
=⇒𝜑𝑣 [𝑣 we have j)

𝐶𝑢 \ {𝑃 } = 𝐶𝑣 \ {𝑃 }, jj)𝐶𝑢 \ {𝑃 }
𝑐
=⇒𝜑𝑢\{𝑃 } [𝑢 \ {𝑃 } and jjj)𝐶𝑣 \ {𝑃 }

𝑐
=⇒𝜑𝑣\{𝑃 } [𝑣 \ {𝑃 } which implies jv) [𝑢 \ {𝑃 } = [𝑣 \ {𝑃 }.

In the remaining, if we consider a PCA 𝑋 deprived of a PSIOA A we always implicitly assume that 𝑋 is A-fair.

61

Pierre Civit and Maria Potop-Butucaru

Fig. 26. Projection on PCA (part 1/2, the part 2/2 is in figure 27): the original PCA 𝑋

8.3 𝑌 = 𝑋 \ {A} is a PCA if 𝑋 is A-fair

Here we prove a sequence of lemma to show that 𝑌 = 𝑋 \ {𝑃} is indeed a PCA, by verifying all the constraints.

Prepare the top/down transition preservation. We show a useful lemma to show 𝑌 = 𝑋 \ {A} verifies the constraint 2
of top/down transition preservation.

Lemma 8.12 (corresponding transition after projection). Let A be a PSIOA. Let 𝑋 be a A-fair PCA. Let

𝑌 = 𝑋 \ {A}. Let (𝑞𝑋 , 𝑎, [𝑋) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑋) and 𝑎 ∈ 𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) \ {𝑃}).

Let [′
𝑋
∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓) the unique reduced configuration transition s. t. x0) [(𝑋,𝑞𝑋 ,𝑎)

𝑓
↔ [′

𝑋
with x1) 𝑓 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)

and x2) 𝐶𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)
𝑎
=⇒𝜑𝑋 [′

𝑋
where 𝜑𝑋 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎).

Let (𝑞𝑌 , 𝑎, [(𝑌,𝑞𝑌 ,𝑎)) with [(𝑌,𝑞𝑌 ,𝑎) = `𝑑 ([𝑋)), 𝑞𝑌 = `𝑠 (𝑞𝑋). Let [′𝑌 = [′
𝑋
\ {A} Then [′

𝑌
is a reduced configuration

transition that verifies y0) [(𝑌,𝑞𝑌 ,𝑎)
𝑓 ′
↔ [′

𝑌
with y1) 𝑓 ′ = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌) and y2) 𝐶𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)

𝑎
=⇒𝜑𝑌 [′

𝑌
where

𝜑𝑌 = 𝜑𝑋 \ {A} = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎).

Proof. We note (𝑄𝑋
𝑖
)𝑖∈I the partition of 𝑠𝑢𝑝𝑝 ([𝑋,𝑞𝑋 ,𝑎) s. t. ∀𝑖 ∈ I ∀𝑞′𝑋 , 𝑞

′′
𝑋
∈ 𝑄𝑋

𝑖
, 𝑞′
𝑋
𝑅
\{A}
𝑐𝑜𝑛𝑓

𝑞′′
𝑋
. ∀𝑖 ∈ I, we note

𝐶
\{A}
𝑖

= 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑞′
𝑋
) \ {A} for an arbitrary element 𝑞′

𝑋
∈ 𝑄𝑋

𝑖
and 𝐶𝑖 = {𝐶 ∈ 𝑠𝑢𝑝𝑝 ([′𝑋) |𝐶 \ A = 𝐶

\{A}
𝑖

}. Since x0)

[(𝑋,𝑞𝑋 ,𝑎)
𝑓
↔ [′

𝑋
with x1) 𝑓 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋), (𝐶𝑖)𝑖∈I is a partition of 𝑠𝑢𝑝𝑝 ([′

𝑋
).

62

Dynamic Probabilistic Input Output Automata

Fig. 27. Projection on PCA (part 2/2, the part 1/2 is in figure 26): the PCA 𝑌 = 𝑋 \ {𝑇 }

For every 𝑖 ∈ I, we note 𝑞𝑌
𝑖
= `𝑠 (𝑞′𝑋) for an arbitrary element 𝑞′

𝑋
∈ 𝑄𝑋

𝑖
. By `A𝑠 -correspondance, 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑞𝑌

𝑖
) =

𝐶
\{A}
𝑖

= 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑞′
𝑋
) \ {A}

By `A
𝑑
-correspondance,[𝑌,𝑞𝑦 ,𝑎 (𝑞′𝑦) = (`𝑑 ([(𝑋,𝑞𝑋 ,𝑎))) (𝑞′𝑌) = Σ𝑞′

𝑋
,`𝑠 (𝑞′𝑋)=𝑞

′
𝑌
[(𝑋,𝑞𝑋 ,𝑎) (𝑞′𝑋) = Σ𝑖∈𝐼Σ𝑞′

𝑋
∈𝑄𝑋

𝑖
,`𝑠 (𝑞′𝑋)=𝑞

′
𝑌
[(𝑋,𝑞𝑋 ,𝑎) (𝑞′𝑋).

By assumption x0) and x1),[(𝑋,𝑞𝑋 ,𝑎)
𝑓
↔ [′

𝑋
with 𝑓 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋), thus[𝑌,𝑞𝑦 ,𝑎 (𝑞′𝑦) = Σ𝑖∈IΣ𝑞′

𝑋
∈𝑄𝑋

𝑖
,`𝑠 (𝑞′𝑋)=𝑞

′
𝑌
[′
𝑋
(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞′

𝑋
)) =

Σ𝑖∈IΣ𝐶′
𝑋
∈𝐶𝑖 ,𝐶′𝑋 \A=𝑐𝑜𝑛𝑓 𝑖𝑔 (𝑞′

𝑌
)[
′
𝑋
(𝐶 ′
𝑋
) = Σ𝐶′

𝑋
,𝐶′
𝑋
\A=𝑐𝑜𝑛𝑓 𝑖𝑔 (𝑞′

𝑌
)[
′
𝑋
(𝐶 ′
𝑋
)

Therafter, we use the lemma 8.7 and get [𝑌,𝑞𝑦 ,𝑎 (𝑞′𝑌) = [
′
𝑌
(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞′

𝑌
)) with [′

𝑌
= [′

𝑋
\ {A}.

By definition of𝑌 ,𝐶𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌 = `𝑠 (𝑞𝑋)) = 𝐶𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)\{A}. Then, since 𝑎 ∈ 𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)\{A}), we
can apply lemma 8.8. Thus𝐶𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)

𝑎
=⇒𝜑𝑌 [

′
𝑌
with [′

𝑌
= [′

𝑋
\{A} and𝜑𝑌 = (𝜑𝑋 \{A}). By `A𝑠 -correspondance,

𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) \ {A}, thus 𝜑𝑌 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎).
Finally the restriction of 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) on 𝑠𝑢𝑝𝑝 ([𝑌,𝑞𝑌 ,𝑎) is a bijection. Indeed, we note 𝑓1 : 𝑞𝑌 ↦→ 𝑄𝑋

𝑖
s. t. {𝑞𝑌 } = `𝑠 (𝑄𝑋𝑖),

𝑓2 : 𝑄𝑋
𝑖
↦→ 𝐶𝑖 𝑓3 : 𝐶𝑖 ↦→ 𝐶

\A
𝑖

. By construction, 𝑓1 and 𝑓3 are bijection. By bijectivity of the restriction of 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) on
𝑠𝑢𝑝𝑝 ([𝑋,𝑞𝑋 ,𝑎), 𝑓2 is a bijection too. Moreover, the restriction 𝑓 ′ of 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) on 𝑠𝑢𝑝𝑝 ([𝑌,𝑞𝑌 ,𝑎) is 𝑓1 ◦ 𝑓2 ◦ 𝑓3 and hence

this is a bijection too.

□

We show a useful lemma to show 𝑌 = 𝑋 \ {A} verifies the constraint 3 of bottom/up transition preservation.

63

Pierre Civit and Maria Potop-Butucaru

Lemma 8.13 (existence of intrinsic transition). Let A𝑘 ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 , let 𝑋 be a A𝑘 -fair PCA, let 𝑌 = 𝑋 \ {A𝑘 } and
𝑞𝑌 ∈ 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑌).

If ∃[′
𝑌
∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓), 𝑎 ∈ 𝑠𝑖𝑔(𝐶𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)), 𝜑𝑌 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎) s. t. 𝐶𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)

𝑎
=⇒𝜑𝑌 [

′
𝑌
then

It exists ∃𝑞𝑋 ∈ 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑋), `𝑠 (𝑞𝑋) = 𝑞𝑌 , [′𝑋 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓), [
′
𝑌
= ([′

𝑋
\{A𝑘 }), 𝑎 ∈ 𝑠𝑖𝑔(𝐶𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)\{A𝑘 }), 𝜑𝑋 =

𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) s. t. 𝐶𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑥)
𝑎
=⇒𝜑𝑋 [′

𝑋
.

Proof. By construction of 𝑌 = 𝑋 \ {A𝑘 }, if 𝑞𝑌 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌), it exists 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), `𝑠 (𝑞𝑋) = 𝑞𝑌 , 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) \
{A𝑘 } = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌) and 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎)\{A𝑘 }.We note𝐶𝑋 = (A𝑋 , S𝑋) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)
and 𝐶𝑌 = (A𝑌 , S𝑌) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌) We treat two cases to show that [(𝐶𝑌 ,𝑎),𝑝 = [(𝐶𝑋 ,𝑎),𝑝 \ {A𝑘 }:

• case 1)A𝑘 ∈ A𝑋 with S𝑋 (A𝑘) = 𝑞𝑘 .We note (A𝑋 = A1, ...,A𝑘 , ...,A𝑛). Thus (A𝑌 = A1, ...,A𝑘−1
,A𝑘−1

, ...,A𝑛).
For every 𝑖 ∈ [1 : 𝑛], we note [𝑖 = [(A𝑖 ,𝑞𝑖 ,𝑎) if 𝑎 ∈ 𝑠𝑖𝑔(A𝑖) (𝑞𝑖) and [𝑖 = 𝛿𝑞𝑖 . By definition of companion distribu-

tion,𝐶𝑌
𝑎

↾ [(𝐶𝑌 ,𝑎),𝑝 and𝐶𝑋
𝑎

↾ [(𝐶𝑋 ,𝑎),𝑝 where[(𝐶𝑋 ,𝑎),𝑝 has the companion distribution[𝑋𝑝 = [1⊗...⊗[𝑘⊗...⊗[𝑛 ,
while [(𝐶𝑌 ,𝑎),𝑝 has the companion distribution [𝑌𝑝 = [𝑋𝑝 \ {A𝑘 } = [1 ⊗ ... ⊗ [𝑘−1 ⊗ [𝑘+1 ... ⊗ [𝑛 . Hence
[(𝐶𝑌 ,𝑎),𝑝 = [(𝐶𝑋 ,𝑎),𝑝 \ {A𝑘 }.
• case 2) A𝑘 ∉ A𝑋 . Immediate, since we have A𝑋 = A𝑌 and A𝑘 ∉ A𝑋 .

Let us note 𝜑𝑋 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) and 𝜑𝑌 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎) = 𝜑𝑋 \ {A𝑘 }. We note [′
𝑋
the reduced configu-

ration distribution generated by 𝜑𝑋 and [(𝐶𝑋 ,𝑎),𝑝 and by definition 5.11 of intrinsic transition, we have 𝐶𝑋
𝑎
=⇒𝜑𝑋 [′

𝑋
.

By definition 5.11 of intrinsic transition, 𝐶𝑌
𝑎
=⇒𝜑𝑌 [′

𝑌
with [′

𝑌
generated by [(𝐶𝑌 ,𝑎),𝑝 = [(𝐶𝑋 ,𝑎),𝑝 \ {A𝑘 } and

𝜑𝑌 = 𝜑𝑋 \ {A𝑘 }.
Thus, [′

𝑋
= [′

𝑌
\ {A𝑘 } by definition 8.4 of intrinsic transition projection, which ends the proof.

□

Now we are able to demonstrate that the PCA set is closed under deprivation.

Theorem 8.14 (X \ {𝑃} is a PCA). Let 𝑃 ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let X be a 𝑃-fair PCA, then Y = X \ {𝑃} is a PCA.

Proof. • (Constraint 1) By construction of 𝑌 , 𝑞𝑌 = `𝑃𝑠 (𝑞𝑋) and by `𝑠 -correspondence rule, 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌) =
𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) \ {𝑃}. Since the constraint 1 is respected by 𝑋 , it is a fortiori respected by 𝑌 .

• (Constraint 2) Let (𝑞𝑌 , 𝑎, [(𝑌,𝑞𝑌 ,𝑎)) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑌). By construction of 𝑌 , we know it exists (𝑞𝑋 , 𝑎, [(𝑋,𝑞𝑋 ,𝑎)) ∈
𝑑𝑡𝑟𝑎𝑛𝑠 (𝑋) with [(𝑌,𝑞𝑌 ,𝑎) = `𝑑 ([(𝑋,𝑞𝑋 ,𝑎)) and 𝑞𝑌 = `𝑠 (𝑞𝑋). Then, because of constraint 2 ensured by 𝑋 , we

obtain it exists a reduced configuration distribution [′
𝑋
∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓) s. t. x0) [(𝑋,𝑞𝑋 ,𝑎)

𝑓
↔ [′

𝑋
with x1)

𝑓 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) and x2) 𝐶𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)
𝑎
=⇒𝜑𝑋 [′

𝑋
where 𝜑𝑋 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎). We can apply lemma

8.12 to obtain that [′
𝑌
= [′

𝑋
\ {𝑃} is a reduced configuration transition that verifies y0) [(𝑌,𝑞𝑌 ,𝑎)

𝑓 ′
↔ [′

𝑌
with y1)

𝑓 ′ = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌) and y2) 𝐶𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)
𝑎
=⇒𝜑𝑌 [

′
𝑌
where 𝜑𝑌 = 𝜑𝑋 \ {𝑃} = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎).

This terminates the proof of constraint 2.

• (Constraint 3) Let 𝑞𝑌 ∈ 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑌), [′𝑌 ∈ 𝐷𝑖𝑠𝑐 (𝑄𝑐𝑜𝑛𝑓), 𝑎 ∈ 𝑠𝑖𝑔(𝐶𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)), 𝜑𝑌 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑦) (𝑎) s. t.
𝐶𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)

𝑎
=⇒ [′

𝑌

Because of lemma 8.13, it implies it exists 𝑞𝑋 ∈ 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑋), `𝑠 (𝑞𝑋) = 𝑞𝑌 , s. t. x2) 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)
𝑎
=⇒𝜑𝑋 [′

𝑋

with 𝜑𝑋 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑥) (𝑎), [′
𝑌
= [′

𝑋
\ {𝑃}, 𝜑𝑌 = 𝜑𝑋 \ {𝑃}.

64

Dynamic Probabilistic Input Output Automata

Because of constraint 3, it means (𝑞𝑋 , 𝑎, [𝑋,𝑞𝑋 ,𝑎) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑋) with x0) [(𝑋,𝑞𝑋 ,𝑎)
𝑓
↔ [′

𝑋
with x1) 𝑓 =

𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋). Since𝑞𝑌 = `𝑠 (𝑞𝑌) and𝑎 ∈ 𝑠𝑖𝑔(𝑌) (𝑞𝑌)), the construction of𝑑𝑡𝑟𝑎𝑛𝑠 (𝑌) implies (𝑞𝑌 , 𝑎, [(𝑌,𝑞𝑌 ,𝑎)) ∈
𝑑𝑡𝑟𝑎𝑛𝑠 (𝑌) with [(𝑌,𝑞𝑌 ,𝑎) = `𝑃𝑑 ([(𝑋,𝑞𝑋 ,𝑎)).
We can reapply lemma 8.12 to obtain that [′′

𝑌
= [′

𝑋
\ {𝑃} is a reduced configuration transition that verifies

y0) [(𝑌,𝑞𝑌 ,𝑎)
𝑓 ′
↔ [′′

𝑌
with y1) 𝑓 ′ = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌) and y2) 𝐶𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)

𝑎
=⇒𝜑𝑌 [

′′
𝑌
where 𝜑𝑌 = 𝜑𝑋 \ {𝑃} =

𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑞𝑌) (𝑎). Finally [′′𝑌 = [′
𝑌
= [′

𝑋
\ {𝑃}, which allows us to conclude that

For every 𝑞𝑌 ∈ 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑌), 𝑎 ∈ 𝑠𝑖𝑔(𝐶𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)), 𝜑𝑌 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑦) (𝑎) s. t. 𝐶𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)
𝑎
=⇒𝜑𝑌 [′

𝑌
,

with some reduced configuration distribution [′
𝑌
, then (𝑞𝑌 , 𝑎, [(𝑌,𝑞𝑌 ,𝑎)) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑌) with [(𝑌,𝑞𝑌 ,𝑎)

𝑓 ′
↔ [′

𝑌

where 𝑓 ′ = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)
This terminates the proof of constraint 3.

• (Constraint 4) Verified by construction (We recall that∀(𝑞𝑌 , 𝑞𝑋) ∈ 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑌)×𝑆𝑡𝑎𝑡𝑒𝑠 (𝑋), 𝑞𝑌 = `𝑃𝑠 (𝑞𝑋), 𝑠𝑖𝑔(𝑌) (𝑞𝑌) ≜
ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌), ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌) (𝑞𝑌)) where ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌) (𝑞𝑌) ≜ ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞𝑋) \
𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋) (𝑞𝑋) (𝑃).

□

9 RECONSTRUCTION

In the previous section, we have shown that 𝑌 = 𝑋 \ A is a PCA (as long as 𝑋 is A-fair). In this section we will

(1) introduce the concept of simpleton wrapper
˜A𝑠𝑤 that is a PCA that encapsulates A.

(2) prove that 𝑋 \ {A} and ˜A𝑠𝑤 are partially-compatible (see theorem 9.13)

(3) There is a strong executions-matching from 𝑋 to (𝑋 \ {A})| | ˜A𝑠𝑤 in a restricted set of executions of 𝑋 that do

not create A (see theorem 9.19). Hence it is always possible to transfer a reasoning on 𝑋 into a reasoning on

(𝑋 \ {A})| | ˜A𝑠𝑤 if no re-creation of A occurs.

(4) The operation of projection/deprivation and composition are commutative (see theorem 9.24).

9.1 Simpleton wrapper : �̃�𝑠𝑤

Here we introduce simpleton wrapper �̃�𝑠𝑤 , a PCA that only encapsulates �̃�𝑠𝑤

Definition 9.1 (Simpleton wrapper). (see figure 28) Let A be a PSIOA. We note
˜A𝑠𝑤 the simpleton wrapper of A as

the following PCA:

• It exists a bijection 𝑟𝑒𝑛𝑠𝑤 :

{
𝑄A → 𝑄

˜A𝑠𝑤
𝑞A ↦→ 𝑞

˜A𝑠𝑤 = 𝑟𝑒𝑛𝑠𝑤 (𝑞A)
s. t. 𝑝𝑠𝑖𝑜𝑎(˜A𝑠𝑤) = 𝑟𝑒𝑛𝑠𝑤 (A), that is 𝑝𝑠𝑖𝑜𝑎(˜A𝑠𝑤)

differs from A only syntactically.

• ∀𝑞
˜A𝑠𝑤 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (˜A𝑠𝑤), 𝑐𝑜𝑛𝑓 𝑖𝑔(˜A𝑠𝑤) (𝑞

˜A𝑠𝑤) = 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 ({A}, S : A ↦→ 𝑞A = 𝑟𝑒𝑛−1

𝑠𝑤 (𝑞A))
• ∀𝑞

˜A𝑠𝑤 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (˜A𝑠𝑤), ∀𝑎 ∈ 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑞𝑠𝑤
˜A
), ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (˜A𝑠𝑤) (𝑞

˜A𝑠𝑤) = ∅ and
𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (˜A𝑠𝑤) (𝑞

˜A𝑠𝑤) (𝑎) = ∅.

We can remark that when
˜A𝑠𝑤 enters in 𝑞

𝜙

˜A𝑠𝑤
= 𝑟𝑒𝑛𝑠𝑤 (𝑞𝜙A) where 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑞𝜙

˜A𝑠𝑤
) = ∅ , this matches the moment

where A enters in 𝑞
𝜙

A where 𝑠𝑖𝑔(A)(𝑞𝜙A) = ∅, s. t. the corresponding configuration is the empty one.

65

Pierre Civit and Maria Potop-Butucaru

Fig. 28. Simpleton wrapper

Lemma 9.2. LetA be a PSIOA. Let ˜A𝑠𝑤 its simpletonwrapper with 𝑝𝑠𝑖𝑜𝑎(˜A𝑠𝑤) = 𝑟𝑒𝑛𝑠𝑤 (A). Let ` ∈ 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (˜A𝑠𝑤)).
For every schedule 𝜌 , 𝑎𝑝𝑝𝑙𝑦

˜A𝑠𝑤 (𝑟𝑒𝑛𝑠𝑤 (`), 𝜌) (𝑟𝑒𝑛𝑠𝑤 (𝛼)) = 𝑎𝑝𝑝𝑙𝑦A (`, 𝜌) (𝛼).

Proof. The only point is that (i) ∀𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A), 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞)) = 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(A)(𝑞) and (ii) for

𝑞𝜙 s. t. 𝑠𝑖𝑔(A)(𝑞𝜙) = ∅, 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(𝑡𝑖𝑙𝑑𝑒A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞𝜙)) = ∅ which means that (*)𝑇 is enabled in 𝑞 iff𝑇 is enabled

in 𝑟𝑒𝑛𝑠𝑤 (𝑞) and that (**) 𝑎 is triggered by 𝑇 in state 𝑞 iff 𝑎 is triggered by 𝑇 in state 𝑟𝑒𝑛𝑠𝑤 (𝑞).
Thus we can apply theorem 7.25.

□

9.2 Partial-compatibility of (𝑋A \ {A}) and ˜A𝑠𝑤

In this subsection, we show that (𝑋A \ {A}) and ˜A𝑠𝑤 are partially-compatible and that (𝑋A \ {A})| | ˜A𝑠𝑤 mimics

𝑋A as long as no creation of A occurs (see figure 29).

66

Dynamic Probabilistic Input Output Automata

Fig. 29. Reconstruction of a PCA via Z = (𝑋,𝑋 \ {𝑉 })

Map 𝑋 and (𝑋 \ {A}, ˜A𝑠𝑤). We first introduce two functions to map 𝑋 and (𝑋 \ {A}, ˜A𝑠𝑤).

Definition 9.3 (`A𝑧 and `A𝑒 : mapping of reconstruction). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 , 𝑋 be a A-fair PCA, 𝑌 = 𝑋 \ A. Let
˜A𝑠𝑤

be the simpleton wrapper of A, where 𝑝𝑠𝑖𝑜𝑎(˜A𝑠𝑤) = 𝑟𝑒𝑛𝑠𝑤 (A). Let 𝑞𝜙A ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) the (assumed) unique state s. t.

𝑠𝑖𝑔(A)(𝑞𝜙A) = ∅. We note:

• The function𝑋 .`A𝑧 : 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) → 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌)×𝑠𝑡𝑎𝑡𝑒𝑠 (˜A𝑠𝑤) s. t.∀𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋),𝑋`A𝑧 (𝑞𝑋) = (𝑋 .`A𝑠 (𝑞𝑋), 𝑟𝑒𝑛𝑠𝑤 (𝑞A))
with 𝑞A =𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)) (A) if A ∈ (𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋))) and 𝑞A = 𝑞

𝜙

A otherwise.

67

Pierre Civit and Maria Potop-Butucaru

• The function 𝑋 .`A𝑒 that maps any alternating sequence 𝛼𝑋 = 𝑞0

𝑋
, 𝑎1, 𝑞1

𝑋
, 𝑎2 ... of states and actions of 𝑋 , to

`A𝑒 (𝛼𝑋) the alternating sequence 𝛼𝑍 = 𝑋 .`A𝑧 (𝑞0

𝑋
), 𝑎1, 𝑋 .`A𝑧 (𝑞1

𝑋
), 𝑎2,

The symbol
A

and 𝑋 . are omitted when this is clear in the context.

Now, we recall definition 6.14 of A-conservative PCA, an additional condition to allow the compatibility between

𝑋 \ A and
˜A𝑠𝑤 .

Definition 9.4 (A-conservative PCA (recall)). Let 𝑋 be a PCA, A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . We say that 𝑋 is A-conservative if it

is A-fair and for every state 𝑞𝑋 ∈ 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑋), 𝐶𝑋 = (A𝑋 , S𝑋) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) s. t. A ∈ A𝑋 and S𝑋 (A) ≜ 𝑞A ,

ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞𝑋) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑞𝑋) \ 𝑒𝑥𝑡 (A)(𝑞A).

A A-conservative PCA is a A-fair PCA that does not hide any output action that could be an external action of A.

Preservation of properties. Now we start a sequence of lemma (from lemma 9.5 to lemma 9.11) about properties

preserved after reconstruction to eventually show in theorem 9.13 that 𝑋 \ A and
˜A𝑠𝑤 are partially-compatible.

The next lemma shows that reconstruction preserves signature compatibility.

Lemma 9.5 (preservation of signature compatibility of configurations). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let X be a A-

conservative PCA, 𝑌 = 𝑋 \ A. Let 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), 𝐶𝑋 = (A𝑋 , S𝑋) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋). Let 𝑞𝑌 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌), 𝑞𝑌 = `𝑠 (𝑞𝑋).
Let 𝐶𝑌 = (A𝑌 , S𝑌) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌).

If A ∈ A𝑋 and 𝑞A = S𝑋 (A), then 𝑠𝑖𝑔(𝐶𝑌) and 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞A)) are compatible and 𝑠𝑖𝑔(𝐶𝑋) = 𝑠𝑖𝑔(𝐶𝑌) ×
𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞A)).

IfA ∉ A𝑋 , then 𝑠𝑖𝑔(𝐶𝑌) and 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞𝜙A)) are compatible and 𝑠𝑖𝑔(𝐶𝑋) = 𝑠𝑖𝑔(𝐶𝑌) ×𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞𝜙A)).

Proof. Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 Let 𝑋 and 𝑌 \ {A} be PCA. Let 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋). Let 𝐶𝑋 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋), A𝑋 = 𝑎𝑢𝑡𝑠 (𝐶𝑋)
and S𝑋 = 𝑚𝑎𝑝 (𝐶𝑋). Let 𝑞𝑌 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌), 𝑞𝑌 = `𝑠 (𝑞𝑋). Let 𝐶𝑌 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌), A𝑌 = 𝑎𝑢𝑡𝑠 (𝐶𝑌) and S𝑌 = 𝑚𝑎𝑝 (𝐶𝑌).
By definition of 𝑌 , 𝐶𝑌 = 𝐶𝑋 \ {A}.

Case 1: A ∈ A𝑋
Since 𝑋 is a PCA,𝐶𝑋 is a compatible configuration, thus ((A𝑌 , S𝑌) ∪ (A, 𝑞A)) is a compatible configuration. Finally

𝑠𝑖𝑔(𝐶𝑌) and 𝑠𝑖𝑔(A)(𝑞A) are compatible with 𝑠𝑖𝑔(A)(𝑞A) = 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞𝜙A)) .
By definition of intrinsinc attributes of a configuration, that are constructed with the attributes of the automaton

issued from the composition of the family of automata of the configuration, we have A𝑋 = A𝑌 ∪ {A} and 𝑠𝑖𝑔(𝐶𝑋) =
𝑠𝑖𝑔(𝐶𝑌) × 𝑠𝑖𝑔(A)(𝑞A), that is 𝑠𝑖𝑔(𝐶𝑋) = 𝑠𝑖𝑔(𝐶𝑌) × 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞A)).

Case 2: A ∉ A𝑋
Since 𝑋 is a PCA,𝐶𝑋 is a compatible configuration, thus𝐶𝑌 = 𝐶𝑋 is a compatible configuration. Finally 𝑠𝑖𝑔(𝐶𝑌) and

𝑠𝑖𝑔(A)(𝑞𝜙A) = (∅, ∅, ∅) = 𝑠𝑖𝑔(A)(𝑞A) = 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞𝜙A)) are compatible.

By definition of intrinsinc attributes of a configuration, that are constructedwith the attributes of the automaton issued

from the composition of the family of automata of the configuration (hereA𝑌 andA𝑋 = A𝑌), we have 𝑠𝑖𝑔(𝐶𝑋) = 𝑠𝑖𝑔(𝐶𝑌).
Furthermore, 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞𝜙A)) = 𝑠𝑖𝑔(A)(𝑞

𝜙

A) = (∅, ∅, ∅). Thus 𝑠𝑖𝑔(𝐶𝑋) = 𝑠𝑖𝑔(𝐶𝑌) × 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞𝜙A)) □

The next lemma shows that reconstruction preserves signature.

Lemma 9.6 (preservation of signature). LetA ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let𝑋 be aA-conservative PCA,A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 ,𝑌 = 𝑋 \{A}.
For every 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), we have 𝑠𝑖𝑔(𝑋) (𝑞𝑋) = 𝑠𝑖𝑔(𝑌) (𝑞𝑌)×𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞A)) with (𝑞𝑌 , 𝑟𝑒𝑛𝑠𝑤 (𝑞A)) = `A𝑧 (𝑞𝑋).

68

Dynamic Probabilistic Input Output Automata

Proof. The last lemma 9.5 tell us for every 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), we have 𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)) = 𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)) ×
𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞A))with (𝑞𝑌 , 𝑟𝑒𝑛𝑠𝑤 (𝑞A)) = `𝑧 (𝑞𝑋). Since𝑋 isA-conservative, we have (*) 𝑠𝑖𝑔(𝑋) (𝑞𝑋) = ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)), 𝑎𝑐𝑡𝑠)
where 𝑎𝑐𝑡𝑠 ⊆ (𝑜𝑢𝑡 (𝑋) (𝑞𝑋) \ (𝑒𝑥𝑡 (A)(𝑞A)). Hence 𝑠𝑖𝑔(𝑌) (𝑞𝑌) = ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)), 𝑎𝑐𝑡𝑠). Since (**) 𝑎𝑐𝑡𝑠 ∩
𝑒𝑥𝑡 (A)(𝑞A) = ∅ , 𝑠𝑖𝑔(𝑌) (𝑞𝑌) and 𝑠𝑖𝑔(A)(𝑞A) are also compatible.We have 𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)) = 𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌))×
𝑠𝑖𝑔(A)(𝑞A) = 𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌))×𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞A))which gives because of (*)ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)), 𝑎𝑐𝑡𝑠) =
ℎ𝑖𝑑𝑒 (𝑠𝑖𝑔(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)), 𝑎𝑐𝑡𝑠)×𝑠𝑖𝑔(A)(𝑞A), that is 𝑠𝑖𝑔(𝑋) (𝑞𝑋) = 𝑠𝑖𝑔(𝑌) (𝑞𝑌)×𝑠𝑖𝑔(A)(𝑞A) = 𝑠𝑖𝑔(𝑌) (𝑞𝑌)×𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞A)).

□

The next lemma shows that reconstruction preserves partial-compatibility at any reachable state.

Lemma 9.7 (preservation of partial-compatibility at any reachable state). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 , 𝑋 be a A-

conservative PCA, 𝑌 = 𝑋 \ {A}, Z = (𝑌, ˜A𝑠𝑤) Let 𝑞𝑍 = (𝑞𝑌 , 𝑞 ˜A𝑠𝑤) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌) × 𝑠𝑡𝑎𝑡𝑒𝑠 (˜A𝑠𝑤) and 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) s. t.
`A𝑧 (𝑞𝑋) = 𝑞𝑍 . Then Z is partially compatible at state 𝑞𝑍 (in the sense of definition 5.19).

Proof. Since 𝑋 is a A-conservative PCA, the previous lemma 9.6 ensures that 𝑠𝑖𝑔(𝑌) (𝑞𝑌) and 𝑠𝑖𝑔(A)(𝑞A) =
𝑠𝑖𝑔(˜A𝑠𝑤) (𝑟𝑒𝑛𝑠𝑤 (𝑞A)) are compatible, thus by definition Z is partially compatible at state 𝑞𝑍 . □

Here, we show that reconstruction preserves probabilistic distribution of corresponding transition, as long as no

creation of the concerned automaton occurs.

Lemma 9.8 (homomorphic transition without creation). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 , 𝑋 be a A-conservative PCA, 𝑌 =

𝑋 \ {A}, Z = (𝑌, ˜A𝑠𝑤). Let 𝑞𝑍 = (𝑞𝑌 , 𝑞 ˜A𝑠𝑤) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌) × 𝑠𝑡𝑎𝑡𝑒𝑠 (˜A𝑠𝑤) and 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) s. t. (i) `𝑧 (𝑞𝑋) = 𝑞𝑍 . Let
𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑥) = 𝑠𝑖𝑔(𝑌) (𝑦) × 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑞

˜A𝑠𝑤) , verifying (ii: No creation from A) If 𝑎 is A-exclusive in state 𝑞𝑋 ,then

𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑥) (𝑎) = ∅,

• If A is not created by 𝑎, i. e. if either

– A ∈ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑥)), or
– A ∉ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑥)) and A ∉ 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑥) (𝑎) (𝑋 does not create A with probability 1)

Then [(𝑋,𝑞𝑋 ,𝑎)
`𝑧↔ [(Z,𝑞𝑍 ,𝑎)

• If A is created by 𝑎 i. e. A ∉ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑥)) and A ∈ 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑥) (𝑎) (𝑋 creates A with probability 1)

Then [(𝑋,𝑞𝑋 ,𝑎)
𝑓 𝜙

↔ [(Z,𝑞𝑍 ,𝑎) where 𝑓
𝜙

: 𝑞′
𝑋
∈ 𝑠𝑢𝑝𝑝 ([(𝑋,𝑞𝑋 ,𝑎)) ↦→ (𝑋 .`

A
𝑠 (𝑞′𝑋), 𝑞

𝜙

˜A𝑠𝑤
).

Proof. By lemma 9.6, we have 𝑠𝑖𝑔(𝑋) (𝑞𝑋) = 𝑠𝑖𝑔(𝑌) (𝑞𝑌) × 𝑠𝑖𝑔(A)(𝑞A) = 𝑠𝑖𝑔(𝑌) (𝑞𝑌) × 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑞
˜A𝑠𝑤 =

𝑟𝑒𝑛𝑠𝑤 (𝑞A)).
We note𝐶𝑋 = (A𝑋 , S𝑋) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋),𝐶𝑌 = (A𝑌 , S𝑌) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌),𝐶 ˜A𝑠𝑤 = (A

˜A𝑠𝑤 , S ˜A𝑠𝑤) = 𝑐𝑜𝑛𝑓 𝑖𝑔(˜A𝑠𝑤) (𝑞
˜A𝑠𝑤).

By construction of `𝑧 , 𝐶𝑋 = 𝐶𝑌 ∪𝐶 ˜A𝑠𝑤 with 𝐶𝑌 and 𝐶
˜A𝑠𝑤 compatible configuration (1).

We note 𝜑𝑋 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎), 𝜑𝑌 = 𝜑𝑋 \ {A}, 𝜑 ˜A𝑠𝑤 = ∅, 𝜑𝑍 = 𝜑𝑋 ∪ 𝜑 ˜A𝑠𝑤 . If 𝑎 is A-exclusive in state 𝑞𝑋 ,

then 𝜑𝑋 = 𝜑𝑌 = ∅.

• If A is not created by 𝑎, then 𝜑𝑋 = 𝜑𝑍 ,

• If A is created by 𝑎, then 𝜑𝑋 = 𝜑𝑍 ∪ {A} and 𝜑𝑍 = 𝜑𝑋 \ {A}

Since𝑋 is a PCA and (𝑞𝑋 , 𝑎, [(𝑋,𝑞𝑋 ,𝑎)) ∈ 𝐷𝑋 , the constraint 2 of top/down transition preservation says that it exists a

unique reduced configuration distribution [′
𝑋
s. t. [(𝑋,𝑞𝑋 ,𝑎)

𝑓 𝑋

↔ [′
𝑋
with 𝑓 𝑋 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) and 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) =⇒𝜑𝑋 [′

𝑋

(2).

69

Pierre Civit and Maria Potop-Butucaru

For 𝑌 (resp.
˜A𝑠𝑤) we note [𝑌 = [(𝑌,𝑞𝑌 ,𝑎) if 𝑎 ∈ 𝑠𝑖𝑔(𝑌) (𝑞𝑌) and [𝑌 = 𝛿𝑞𝑌 otherwise (resp. [

˜A𝑠𝑤 = [(˜A𝑠𝑤 ,𝑞 ˜A𝑠𝑤 ,𝑎)
if

𝑎 ∈ 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑞
˜A𝑠𝑤) and [˜A𝑠𝑤 = 𝛿𝑞 ˜A𝑠𝑤 otherwise).

Since 𝑌 and
˜A𝑠𝑤 are PCA, either because of the constraint 2 of top/down transition preservation or because 𝑎 is not

action of the signature, it exists a unique reduced configuration distribution [′
𝑌
s. t. [𝑌

𝑓 𝑌

↔ [′
𝑌
with 𝑓 𝑌 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) and

𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌) =⇒𝜑𝑌 [
′
𝑌
(resp.[′

˜A𝑠𝑤
s. t.[

˜A𝑠𝑤
𝑓

˜A𝑠𝑤

↔ [′
˜A𝑠𝑤

with 𝑓
˜A𝑠𝑤 = 𝑐𝑜𝑛𝑓 𝑖𝑔(˜A𝑠𝑤) and 𝑐𝑜𝑛𝑓 𝑖𝑔(˜A𝑠𝑤) (𝑞

˜A𝑠𝑤) =⇒𝜑 ˜A𝑠𝑤

[′
˜A𝑠𝑤

) (3).

By construction∀(𝑞′
𝑌
, 𝑞′

˜A𝑠𝑤
) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌)×𝑠𝑡𝑎𝑡𝑒𝑠 (˜A𝑠𝑤), 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(𝑌) (𝑞′

𝑌
)∩𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(˜A𝑠𝑤) (𝑞′

˜A𝑠𝑤
) = ∅ (and

so 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞′
𝑌
)) ∩𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(˜A𝑠𝑤) (𝑞′

˜A𝑠𝑤
)) = ∅) which means (**) 𝑏𝑎𝑠𝑒 (𝐶𝑌 , 𝑎, 𝜑𝑌) ∩𝑏𝑎𝑠𝑒 (𝐶 ˜A𝑠𝑤 , 𝑎, 𝜑 ˜A𝑠𝑤) =

∅.
The conjonction of (1), (2), (3) and (**) allows us to apply the lemma 5.26. This means

• by item 4 of lemma 5.26:𝑚𝑒𝑟𝑔𝑒 (([′
˜A𝑠𝑤
, [′
𝑌
))

𝑓 𝑠

↔ 𝑗𝑜𝑖𝑛(([′
˜A𝑠𝑤
, [′
𝑌
)) with 𝑓 𝑠 : 𝐶 ′

𝑍
↦→ (𝐶 ′

𝑌
,𝐶 ′

˜A𝑠𝑤
) s. t. i) 𝐶 ′

𝑍
=

𝐶 ′
𝑌
∪𝐶 ′

˜A𝑠𝑤
, ii) A ∉ 𝐶 ′

𝑌
and iii) ∀B ≠ A, B ∉ 𝐶 ′

˜A𝑠𝑤
(4)

• by item 5 of lemma 5.26: 𝐶𝑋
𝑎
=⇒𝜑𝑍 𝑚𝑒𝑟𝑔𝑒 (([′ ˜A𝑠𝑤 , [

′
𝑌
)) (5)

Furthermore [Z,𝑞𝑍 ,𝑎 = [𝑌 ⊗ [˜A𝑠𝑤 . So by (3), [Z,𝑞𝑍 ,𝑎
𝑓 𝑍

←→ 𝑗𝑜𝑖𝑛(([′
˜A𝑠𝑤
, [′
𝑌
)) (***) with 𝑓 𝑍 : 𝑞′

𝑍
= (𝑞′

𝑌
, 𝑞′

˜A𝑠𝑤
) ↦→

(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞′
˜A𝑠𝑤
), 𝑐𝑜𝑛𝑓 𝑖𝑔(˜A𝑠𝑤) (𝑞′

˜A𝑠𝑤
)).

Now we deal have to separate the treatment of the two cases:

• If A is not created by 𝑎, since 𝜑𝑍 = 𝜑𝑋 , because of (5) and (2),𝑚𝑒𝑟𝑔𝑒 (([′
˜A𝑠𝑤
, [′
𝑌
)) = [′

𝑋
and because of (2)

[(𝑋,𝑞𝑋 ,𝑎)
𝑓 𝑋

↔ 𝑚𝑒𝑟𝑔𝑒 (([′
˜A𝑠𝑤
, [′
𝑌
)) (6). Because of (6) and (4), [(𝑋,𝑞𝑋 ,𝑎)

𝑔
←→ 𝑗𝑜𝑖𝑛(([′

˜A𝑠𝑤
, [′
𝑌
)) with 𝑔 = 𝑓 𝑠 ◦ 𝑓 𝑋 .

Hence, if A is not created by 𝑎 [(𝑋,𝑞𝑋 ,𝑎)
ℎ←→ [(Z,𝑞𝑍 ,𝑎) with ℎ = (𝑓 𝑍)−1 ◦ 𝑓 𝑠 ◦ 𝑓 𝑋 = `𝑧 which ends the proof

for this case.

• If A is created by 𝑎, we have both

– 𝐶𝑋
𝑎
=⇒𝜑𝑍 𝑚𝑒𝑟𝑔𝑒 (([′ ˜A𝑠𝑤 , [

′
𝑌
))

– 𝐶𝑋
𝑎
=⇒𝜑𝑍∪{A} [

′
𝑋

which means 𝐶𝑋
𝑎
⇀ [′𝑝 with

– 𝑚𝑒𝑟𝑔𝑒 (([′
˜A𝑠𝑤
, [′
𝑌
)) generated by [′𝑝 and 𝜑𝑍 and

– [′
𝑋
generated by [′𝑝 and 𝜑𝑍 ∪ {A}.

Thus [′
𝑋

𝑔𝜙

←→𝑚𝑒𝑟𝑔𝑒 (([′
˜A𝑠𝑤
, [′
𝑌
)) with 𝑔𝜙 : 𝐶 ′

𝑋
= 𝐶 ′

𝑌
∪𝐶

˜A𝑠𝑤 ↦→ 𝐶 ′
𝑌
. where 𝐶

˜A𝑠𝑤 ({A}, S
′

˜A𝑠𝑤
: A ↦→ 𝑞

˜A𝑠𝑤).
To summerize, we have:

– [(𝑋,𝑞𝑋 ,𝑎)
𝑓 𝑋

←→ [′
𝑋

– [′
𝑋

𝑔𝜙

←→𝑚𝑒𝑟𝑔𝑒 (([′
˜A𝑠𝑤
, [′
𝑌
))

– 𝑚𝑒𝑟𝑔𝑒 (([′
˜A𝑠𝑤
, [′
𝑌
))

𝑓 𝑠

←→ 𝑗𝑜𝑖𝑛(([′
˜A𝑠𝑤
, [′
𝑌
))

– [(Z,𝑞𝑧 ,𝑎)
𝑓 𝑍

←→ 𝑗𝑜𝑖𝑛(([′
˜A𝑠𝑤
, [′
𝑌
))

Hence [(𝑋,𝑞𝑋 ,𝑎)
ℎ←→ [(Z,𝑞𝑍 ,𝑎) with 𝑓

𝜙 = (𝑓 𝑍)−1 ◦ 𝑓 𝑠 ◦ 𝑔𝜙 ◦ 𝑓 𝑋 , i. e.
𝑓 𝜙 : 𝑞′

𝑋
∈ 𝑠𝑢𝑝𝑝 ([(𝑋,𝑞𝑋 ,𝑎)) ↦→ (𝑋 .`

A
𝑠 (𝑞′𝑋), 𝑞

𝜙

˜A𝑠𝑤
), which ends the proof for this case.

70

Dynamic Probabilistic Input Output Automata

□

The second case where A is created will not be used before section 11.

We take advantage of the lemma 9.11 used for theorem 9.13 to introduce the notion of twin PCA and extends directly

the lemma 9.11 and theorem 9.13 to twin PCA.

Definition 9.9 (𝑋𝑞𝑋→𝑞′𝑋). Let 𝑋 = (𝑄𝑋 , 𝑞𝑋 , 𝑠𝑖𝑔(𝑋), 𝐷𝑋) be a PSIOA and 𝑞′
𝑋
∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑋). We note 𝑋𝑞𝑋→𝑞′𝑋 the

PSIOA 𝑋 ′ = (𝑄𝑋 , 𝑞′𝑋 , 𝑠𝑖𝑔(𝑋), 𝐷𝑋).

Two PCA 𝑋 and 𝑋 ′ are A-twin if they differ only by their start state where one of them corresponds to A-creation.

Definition 9.10 (A-twin). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let 𝑋,𝑋 ′ be PCA. We say that 𝑋 ′ = 𝑋𝑞𝑋→𝑞𝑋 ′ is a A-twin of 𝑋 if it

differs from 𝑋 at most only by its start states 𝑞𝑋 ′ reachable by 𝑋 s. t. either 𝑋 ′ = 𝑋 or A ∈ 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ′) (𝑞𝑋 ′) and
𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ′) (𝑞𝑋 ′)) (A) = 𝑞A . If 𝑋 ′ is a A-twin of 𝑋 and 𝑌 = 𝑋 \ {A} and 𝑌 ′ = 𝑋 ′ \ {A}, we slightly abuse the

notation and say that 𝑌 ′ is a A-twin of 𝑌 ′.

Lemma 9.11 (partial surjectivity 1). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let 𝑋 be a PCA A-conservative and 𝑋 ′ a A-twin of 𝑋 . Let

𝑌 ′ = 𝑋 ′ \ {A}. Let 𝑌 ′ be a A-twin of 𝑌 . Let Z′ = (𝑌 ′, ˜A𝑠𝑤).
Let 𝛼 = 𝑞0, 𝑎1, ..., 𝑎𝑘 , 𝑞𝑘 be a pseudo execution of Z′. Let assume the presence of A in 𝛼 , i. e. ∀𝑠 ∈ [0, 𝑘 − 1], 𝑞𝑠

˜A𝑠𝑤
≠

𝑟𝑒𝑛𝑠𝑤 (𝑞𝜙A) .
Then it exists 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (𝑋 ′), s. t. 𝑋 ′.`A𝑒 (𝛼) = 𝛼 .

Proof. By induction on each prefix 𝛼𝑠 = 𝑞0, 𝑎1, ..., 𝑎𝑠 , 𝑞𝑠 with 𝑠 ≤ 𝑘 .
Basis: case 1) A ∈ 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ′) (𝑞𝑋 ′): We have `𝑧 (𝑞𝑋 ′) = (𝑞𝑌 ′, 𝑟𝑒𝑛𝑠𝑤 (𝑞A)). Hence `𝑒 (𝑞𝑋 ′) = (𝑞𝑌 ′, 𝑟𝑒𝑛𝑠𝑤 (𝑞A)).
case 2)A ∉ 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 ′) (𝑞𝑋 ′), (necessarily𝑋 = 𝑋 ′): `𝑧 (𝑞𝑋 ′) = (𝑞𝑌 ′, 𝑟𝑒𝑛𝑠𝑤 (𝑞

𝜙

A)). Hence `𝑒 (𝑞𝑋 ′) = (𝑞𝑌 ′, 𝑟𝑒𝑛𝑠𝑤 (𝑞
𝜙

A)).
Induction: we assume this is true for 𝑠 and we show it implies this true for 𝑠 + 1. We note 𝛼𝑠 s. t. `𝑒 (𝛼𝑠) = 𝛼𝑠 . We

also note 𝑞𝑠 = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼𝑠) and we have by induction assumption `𝑧 (𝑞𝑠) = 𝑞𝑠 = (𝑞𝑠𝑌 , 𝑞
𝑠
A). Because of preservation of

signature compatibility, 𝑠𝑖𝑔(𝑋) (𝑞𝑠)) = 𝑠𝑖𝑔(𝑌) (𝑞𝑠
𝑌
))×𝑠𝑖𝑔(𝑟𝑒𝑛𝑠𝑤 (A))(𝑞𝑠𝑟𝑒𝑛𝑠𝑤 (A))). Hence 𝑎

𝑠+1 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑠). Thereafter,
by construction of 𝑋 \ {A} it exists 𝑞𝑠+1 s. t. 𝑞𝑠+1 = `A𝑧 (𝑞𝑠+1). Finally, since no creation of and from A occurs by

assumption of presence of A, we can use lemma 9.8 of homomorphic transition which give [(𝑋,�̃�𝑠 ,𝑎𝑠+1)
`𝑧↔ [(Z,𝑞𝑠 ,𝑎𝑠+1)

which means 𝑞𝑠+1 ∈ 𝑠𝑢𝑝𝑝 ([(𝑋,�̃�𝑠 ,𝑎𝑠+1)) which ends the induction and so the proof. □

Before using lemma 9.11 and 9.7 to demonstrate theorem 9.13 of partial compatibility after reconstruction, we take

the opportunity to extend lemma 9.11:

Lemma 9.12 (partial surjectivity 2). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let 𝑋 be a PCA A-conservative. Let 𝑌 = 𝑋 \ A. Let 𝑌 ′ be a

A-twin of 𝑌 . LetZ = 𝑌 ′ | | ˜A𝑠𝑤 .
Let 𝛼 = 𝑞0, 𝑎1, ..., 𝑎𝑘 , 𝑞𝑘 be a an execution of Z. Let assume (a) 𝑞𝑠

˜A𝑠𝑤
≠ 𝑟𝑒𝑛𝑠𝑤 (𝑞𝜙A) for every 𝑠 ∈ [0, 𝑘

∗] (b) 𝑞𝑠
˜A𝑠𝑤

=

𝑞
𝜙

˜A𝑠𝑤
for every 𝑠 ∈ [𝑘∗ + 1, 𝑘] (c) for every 𝑠 ∈ [𝑘∗ + 1, 𝑘 − 1], for every 𝑞𝑠 , s. t. `𝑧 (𝑞𝑠) = 𝑞𝑠 , A ∉ 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑠) (𝑎𝑠+1).

Then it exists 𝛼 ∈ 𝐹𝑟𝑎𝑔𝑠 (𝑋), s. t. `𝑒 (𝛼) = 𝛼 . If 𝑌 ′ = 𝑌 , it exists 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (𝑋), s. t. `𝑒 (𝛼) = 𝛼 .

Proof. We already know this is true up to 𝑘∗ because of lemma 9.11. We perform the same induction than the one

of the previous lemma on partial surjectivity: We note 𝛼𝑠 s. t. `𝑒 (𝛼𝑠) = 𝛼𝑠 . We also note 𝑞𝑠 = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼𝑠) and we have

by induction assumption `𝑧 (𝑞𝑠) = 𝑞𝑠 = (𝑞𝑠𝑌 , 𝑞
𝑠
A). Because of preservation of signature compatibility, 𝑠𝑖𝑔(𝑋) (𝑞𝑠)) =

𝑠𝑖𝑔(𝑌) (𝑞𝑠
𝑌
)) × 𝑠𝑖𝑔(𝑟𝑒𝑛𝑠𝑤 (A))(𝑟𝑒𝑛𝑠𝑤 (𝑞𝑠A)). Hence 𝑎

𝑘+1 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑠). Now we use the assumption (𝑐), that says that
A ∉ 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑠) (𝑎𝑠+1) to be able to apply preservation of transition since no creation of A can occurs. □

71

Pierre Civit and Maria Potop-Butucaru

Now we can use lemma 9.11 and 9.7 to demonstrate theorem 9.13 of partial compatibility after reconstruction.

Theorem 9.13 (Partial-compatibility after resconstruction). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let 𝑋 be a PCA A-conservative

s. t. ∀𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), for every action 𝑎 A-exclusive in 𝑞𝑋 , 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) = ∅. Let 𝑋 ′ ba a A-twin of 𝑋 and

𝑌 ′ = 𝑋 ′ \ {A}. Then 𝑌 ′ and ˜A𝑠𝑤 are partially-compatible.

Proof. Let Z′ = (𝑌 ′, ˜A𝑠𝑤). Let 𝛼 be a pseudo-execution of Z′ with Let 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼) = 𝑞Z = (𝑞𝑌 ′, 𝑞 ˜A𝑠𝑤). Case 1)

𝑞
˜A𝑠𝑤 = 𝑞

𝜙

˜A𝑠𝑤
. The compatibility is immediate since 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑞𝜙

˜A𝑠𝑤
) = ∅. Case 2) 𝑞

˜A𝑠𝑤 ≠ 𝑞
𝜙

˜A𝑠𝑤
. Since (*) A cannot

be re-created after destruction by neither 𝑌 or
˜A𝑠𝑤 and (**) ∀𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), for every action 𝑎 A-exclusive in 𝑞𝑋 ,

𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) = ∅ we can use the previous lemma 9.11 to show it exists 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (𝑋 ′), s. t. `𝑒 (𝛼) = 𝛼 . Thus,
𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼) = `𝑧 (𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼)) which means Z′ is partially-compatible at 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼) by lemma 9.7. Hence Z is partially-

compatible at every reachable state, which means 𝑌 ′ and ˜A𝑠𝑤 are partially-compatible. We can legitimately noteZ′ =
𝑌 ′ | | ˜A𝑠𝑤 . □

Since Z′ = (𝑌 ′, ˜A𝑠𝑤) is partially-compatible, we can legitimately noteZ′ = 𝑌 ′ | | ˜A𝑠𝑤 , which will be the standard

notation in the remaining.

9.3 Execution-matching from 𝑋 to 𝑋 \ {A}|| ˜A𝑠𝑤

In this subsection, we show in theorem 9.19 that 𝑋 .`A𝑒 is a (incomplete) PCA executions-matching from 𝑋 to (𝑋 \
{A})| | ˜A𝑠𝑤 in a restricted set of executions of 𝑋 that do not create A.

We start by defining the restricted set of executions of 𝑋 that do not create A with definitions 9.14 and 9.15.

Definition 9.14 (executionwithout creation). LetA be a PSIOA. Let𝑋 be a PCA ,we note 𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ𝑜𝑢𝑡-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝑋) (A)
the set of executions of 𝑋 without creation of A, i. e. 𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ𝑜𝑢𝑡-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝑋) (A) = {𝛼 = 𝑞0𝑎1𝑞1 ...𝑎𝑘𝑞𝑘 ∈
𝐸𝑥𝑒𝑐𝑠 (𝑋) |∀𝑖 ∈ [0, |𝛼 |],A ∉ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑖)) =⇒ A ∉ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑖+1))}.

Definition 9.15 (reachable-by). Let 𝑋 be a PSIOA or a PCA. Let 𝐸𝑥𝑒𝑐𝑠 ′
𝑋
⊆ 𝐸𝑥𝑒𝑐𝑠 (𝑋). We note 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒-𝑏𝑦 (𝐸𝑥𝑒𝑐𝑠 ′

𝑋
)

the set of states of 𝑋 reachable by an execution of 𝐸𝑥𝑒𝑐𝑠 ′
𝑋
, i. e. 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒-𝑏𝑦 (𝐸𝑥𝑒𝑐𝑠 ′

𝑋
) = {𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) |∃𝛼 ∈

𝐸𝑥𝑒𝑐𝑠 ′
𝑋
, 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼) = 𝑞}

The next 2 lemma show that reconstruction preserves configuration and signature. They will be sufficient to show

that the restriction of `A𝑒 on 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒-𝑏𝑦 (𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ𝑜𝑢𝑡-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝑋) (A)) is a PCA executions-matching.

Lemma 9.16 (`𝑧 configuration preservation). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let 𝑋 be a A-conservatiee PCA, 𝑌 = 𝑋 \ A, 𝑍 =

𝑌 | |A𝑠𝑤 . Let 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), 𝑞𝑍 = (𝑞𝑌 , 𝑞 ˜A𝑠𝑤) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑍) s. t. `𝑧 (𝑞𝑋) = 𝑞𝑍 . Then 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑍) (𝑞𝑍).

Proof. By definition of composition of PCA, 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑍) (𝑞𝑍) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌) ∪ 𝑐𝑜𝑛𝑓 𝑖𝑔(˜A𝑠𝑤) (𝑞
˜A𝑠𝑤). (*)

Also, by `A𝑧 -correspondence, 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) \ A = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌) (**).
We deal with the two cases 𝑠𝑖𝑔(�̃�𝑠𝑤) (𝑞

˜A𝑠𝑤) = ∅ or 𝑠𝑖𝑔(�̃�
𝑠𝑤) (𝑞

˜A𝑠𝑤) ≠ ∅

• If 𝑠𝑖𝑔(�̃�𝑠𝑤) (𝑞
˜A𝑠𝑤) = ∅, then A ∉ 𝑎𝑢𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)) which means, that 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) \

A (1). Furthermore, 𝑐𝑜𝑛𝑓 𝑖𝑔(˜A𝑠𝑤) (𝑞
˜A𝑠𝑤) = (∅, ∅) (2) .Because of (**) and (1), 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌)

and because of (*) and (2), 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑍) (𝑞𝑍).
• If 𝑠𝑖𝑔(�̃�𝑠𝑤) (𝑞

˜A𝑠𝑤) ≠ ∅, thenA ∈ 𝑎𝑢𝑡 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)). We note𝐶A = 𝑐𝑜𝑛𝑓 𝑖𝑔(˜A𝑠𝑤) (𝑞
˜A𝑠𝑤) = ({A}, S : A ↦→

𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)) (A)). By (*), 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑍) (𝑞𝑍) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌) ∪𝐶A and by (**) 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌) (𝑞𝑌) ∪𝐶A =

𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) \ A ∪𝐶A = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋). Hence, 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑍) (𝑞𝑍)
72

Dynamic Probabilistic Input Output Automata

Thus in all cases, 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑍) (𝑞𝑍) which ends the proof.

□

Lemma 9.17 (`𝑧 signature-preservation). LetA ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let𝑋 be aA-conservatiee PCA, 𝑌 = 𝑋 \A, 𝑍 = 𝑌 | |A𝑠𝑤 .
Let 𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), 𝑞𝑍 = (𝑞𝑌 , 𝑞 ˜A𝑠𝑤) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑍) s. t. `𝑧 (𝑞𝑋) = 𝑞𝑍 . Then 𝑠𝑖𝑔(𝑋) (𝑞𝑋) = 𝑠𝑖𝑔(𝑍) (𝑞𝑍).

Proof. By lemma 9.6 of preservation of signature 𝑠𝑖𝑔(𝑋) (𝑞𝑋) = 𝑠𝑖𝑔(𝑌) (𝑞𝑌) × 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑞
˜A𝑠𝑤). By definition of

composition of PCA, 𝑠𝑖𝑔(𝑍) (𝑞𝑍) = 𝑠𝑖𝑔(𝑌) (𝑞𝑌) × 𝑠𝑖𝑔(˜A𝑠𝑤) (𝑞
˜A𝑠𝑤) which ends the proof. □

Now we can states our strong PCA executions-matching:

Definition 9.18. Let A be a PSIOA. Let 𝑋 be a A-conservative PCA. Let 𝑌 = 𝑋 \ {A} and 𝑍 = 𝑌 | | ˜A𝑠𝑤 .
We define (𝑋 . ˜̀A𝑧 , 𝑋 . ˜̀A𝑡𝑟 , 𝑋 . ˜̀

A
𝑒) (noted (˜̀A𝑧 , ˜̀

A
𝑡𝑟 , ˜̀

A
𝑒) when it is clear in the context) as follows:

• ˜̀
A
𝑧 the restriction of `A𝑧 on 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒-𝑏𝑦 (𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ𝑜𝑢𝑡-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝑋) (A)).

• 𝑓 𝑡𝑟 : (𝑞𝑋 , 𝑎, [(𝑋,𝑞𝑋 ,𝑎)) ∈ 𝐷 ′
𝑋
↦→ (˜̀A𝑧 (𝑞𝑋), 𝑎, [(𝑍, ˜̀A𝑧 (𝑞𝑋),𝑎)) where 𝐷

′
𝑋

= {(𝑞𝑋 , 𝑎, [(𝑋,𝑞𝑋 ,𝑎)) ∈ 𝐷𝑋 |𝑞𝑋 ∈
𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒-𝑏𝑦 (𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ𝑜𝑢𝑡-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝑋) (A)), (A ∉ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) =⇒ A ∉ 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎))}.
• ˜̀
A
𝑒 the restriction of `A𝑒 on 𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ𝑜𝑢𝑡-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝑋) (A).

Theorem 9.19 (execution-matching after reconstruction). Let A be a PSIOA. Let 𝑋 be a A-conservative

PCA. Let 𝑌 = 𝑋 \ {A}. The triplet (˜̀A𝑧 , ˜̀
A
𝑡𝑟 , ˜̀

A
𝑒) is a strong PCA executions-matching from 𝑋 to 𝑌 | | ˜A𝑠𝑤 if A ∈

𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋A) (𝑠𝑡𝑎𝑟𝑡 (𝑋A))) and from 𝑋 to 𝑌 | | ˜A𝑠𝑤
𝑞 ˜A𝑠𝑤→𝑞

𝜙

˜A𝑠𝑤
otherwise.

Proof. We note 𝑍 = 𝑌 | | ˜A𝑠𝑤 and 𝑍𝜙 = 𝑌 | | ˜A𝑠𝑤
𝑞 ˜A𝑠𝑤→𝑞

𝜙

˜A𝑠𝑤

• ˜̀
A
𝑧 is a strong PCA-state-matching since

– starting state preservation is ensured by construction:

∗ A ∈ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋A) (𝑠𝑡𝑎𝑟𝑡 (𝑋A))) : ˜̀
A
𝑧 (𝑞𝑋) = 𝑞𝑍

∗ A ∉ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋A) (𝑠𝑡𝑎𝑟𝑡 (𝑋A))) : ˜̀A𝑧 (𝑞𝑋) = 𝑞𝑍𝜙
– signature preservation is ensured ∀(𝑞𝑋 , 𝑞𝑍) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) × 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑍) s. t. 𝑞𝑍 = ˜̀

A
𝑧 (𝑞𝑋), 𝑠𝑖𝑔(𝑋) (𝑞𝑋) =

𝑠𝑖𝑔(𝑍) (𝑞𝑍) by lemma 9.17 of signature preservation of `𝑧 .

• 𝐷 ′
𝑋
≜ 𝑑𝑜𝑚(˜̀A𝑡𝑟) is eligible to PCA transition-matching (and thus (˜̀A𝑧 , ˜̀

A
𝑡𝑟) is a strong PCA-transition-matching)

since

– matched state preservation is ensured: ∀[(𝑋,𝑞𝑋 ,𝑎) ∈ 𝐷 ′𝑋 , 𝑞𝑋 ∈ 𝑑𝑜𝑚(˜̀
A
𝑧) by construction of 𝐷 ′

𝑋

– equitable corresponding distribution is ensured: ∀[(𝑋,𝑞𝑋 ,𝑎) ∈ 𝐷 ′𝑋 ,∀𝑞
′′ ∈ 𝑠𝑢𝑝𝑝 ([(𝑋,𝑞𝑋 ,𝑎)), [(𝑋,𝑞𝑋 ,𝑎) (𝑞′′) =

[(𝑍, ˜̀A𝑧 (𝑞𝑋),𝑎) (˜̀
A
𝑧 (𝑞′′)) by lemma 9.8 of homomorphic transition.

• (˜̀A𝑧 , ˜̀
A
𝑡𝑟 , ˜̀

A
𝑒) is the PCA-execution-matching induced by (˜̀A𝑧 , ˜̀

A
𝑡𝑟). and correctly verifies:

– For each state 𝑞 in an execution in 𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ𝑜𝑢𝑡-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝑋) (A), 𝑞 ∈ 𝑑𝑜𝑚(˜̀A𝑧).

Then, the triplet (˜̀A𝑧 , ˜̀
A
𝑡𝑟 , ˜̀

A
𝑒) is a strong PCA-execution-matching from𝑋 to𝑍 ifA ∈ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋A) (𝑠𝑡𝑎𝑟𝑡 (𝑋A)))

: ˜̀
A
𝑧 (𝑞𝑋) = 𝑞𝑍 and from 𝑋 to 𝑍𝜙 otherwise.

□

extension and continuation of (˜̀A𝑧 , ˜̀
A
𝑡𝑟 , ˜̀

A
𝑒). Now, we continue the executions-matching (˜̀A𝑧 , ˜̀

A
𝑡𝑟 , ˜̀

A
𝑒) to deal with

A creation at very last action.

73

Pierre Civit and Maria Potop-Butucaru

Definition 9.20 (Preparing continuation of PCA executions-matching from 𝑋 to 𝑍). Let A be a PSIOA. Let 𝑋 be a

A-conservative PCA. We define

• 𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ-𝑜𝑛𝑙𝑦-𝑜𝑛𝑒-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑡-𝑙𝑎𝑠𝑡-𝑎𝑐𝑡𝑖𝑜𝑛(𝑋) (A) = {𝛼 ′ = 𝛼⌢𝑞, 𝑎, 𝑞′ ∈ 𝐸𝑥𝑒𝑐𝑠 (𝑋) |𝛼 ∈ 𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ𝑜𝑢𝑡-

𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝑋) (A) ∧ 𝛼 ′ ∉ 𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ𝑜𝑢𝑡-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝑋) (A)}.
• ˜̀
A,+
𝑧 : 𝑞𝑋 ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒-𝑏𝑦 (𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ-𝑜𝑛𝑙𝑦-𝑜𝑛𝑒-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑡-𝑙𝑎𝑠𝑡-𝑎𝑐𝑡𝑖𝑜𝑛(𝑋) (A)) ↦→ (˜̀A𝑠 (𝑞𝑌A), 𝑞

𝜙

A).
• ˜̀
A,+
𝑡𝑟 : (𝑞𝑋 , 𝑎, [(𝑋,𝑞𝑋 ,𝑎)) ∈ 𝑑𝑜𝑚(˜̀

A
𝑡𝑟) ∪ 𝐷 ′′𝑋 ↦→ (˜̀

A
𝑧 (𝑞𝑋), 𝑎, [(𝑋, ˜̀A𝑧 (𝑞𝑋),𝑎)) where

𝐷 ′′
𝑋

= {(𝑞𝑋 , 𝑎, [(𝑋,𝑞𝑋 ,𝑎)) ∈ 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑋) |𝑞𝑋 ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒-𝑏𝑦 (𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ𝑜𝑢𝑡-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑡-𝑙𝑎𝑠𝑡-𝑎𝑐𝑡𝑖𝑜𝑛(𝑋) (A)) ∧
A ∉ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)) ∧ A ∈ 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎)}

We show that 𝑑𝑜𝑚(˜̀A,+𝑡𝑟) \ 𝑑𝑜𝑚(˜̀
A
𝑡𝑟) verifies the equitable corresponding property of definition 7.7.

Lemma 9.21 (Continuation of PCA transitions-matching from 𝑋 to 𝑍). Let A be a PSIOA. Let 𝑋 be a A-

conservative PCA. Let 𝑌 = 𝑋 \ {A} and 𝑍 = 𝑌 | | ˜A𝑠𝑤 .
∀(𝑞𝑋 , 𝑎, [(𝑋,𝑞𝑋 ,𝑎)) ∈ 𝑑𝑜𝑚(˜̀

A,+
𝑡𝑟) \ 𝑑𝑜𝑚(˜̀

A
𝑡𝑟), ∀𝑞′𝑋 ∈ 𝑠𝑢𝑝𝑝 ([(𝑋,𝑞𝑋 ,𝑎)), [(𝑋,𝑞𝑋 ,𝑎) (𝑞

′
𝑋
) = [(𝑍, ˜̀A𝑧 (𝑞𝑋),𝑎) (˜̀

A,+
𝑧 (𝑞′

𝑋
))

Proof. By configuration preservation,𝐶𝑜𝑛𝑓 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑍) (˜̀A𝑧 (𝑞𝑋)).We have𝐶𝑜𝑛𝑓
𝑎
⇀ [(𝐶𝑜𝑛𝑓 ,𝑎),𝑝 .

Moreover, by `𝑠 -correspondence rule,𝜑𝑋 \{A} = 𝜑𝑍 , with𝜑𝑋 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎) and𝜑𝑍 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑍) (˜̀A𝑧 (𝑞𝑋)) (𝑎).
Hence 𝐶𝑜𝑛𝑓

𝑎
=⇒𝜑𝑋 [′

𝑋
with [′

𝑋
generated by 𝜑𝑋 and [(𝐶𝑜𝑛𝑓 ,𝑎),𝑝 , while 𝐶𝑜𝑛𝑓

𝑎
=⇒𝜑𝑍 [

′
𝑍
with [′

𝑍
generated by 𝜑𝑍

and [(𝐶𝑜𝑛𝑓 ,𝑎),𝑝 .

Since A is created, for every 𝐶𝑜𝑛𝑓 ′
𝑍
= (A′

𝑍
, S′
𝑍
) with A ∉ A𝑍 , for every 𝐶𝑜𝑛𝑓 ′𝑋 = (A′

𝑋
, S′
𝑋
) with A′

𝑋
= A′

𝑍
∪ {A}

where S′
𝑋
(A) = 𝑞A and S′

𝑋
agrees with S′

𝑍
on A′

𝑍
, [′
𝑍
(𝐶𝑜𝑛𝑓 ′

𝑍
) = [′

𝑋
(𝐶𝑜𝑛𝑓 ′

𝑋
), while [′

𝑋
(𝐶𝑜𝑛𝑓 ′′

𝑋
) = 0 for every𝐶𝑜𝑛𝑓 ′′

𝑋
=

(A′′
𝑋
, S′′
𝑋
) s. t eitherA ∉ A′′

𝑋
orA ∈ A′′

𝑋
but S′′

𝑋
(A) ≠ 𝑞A . So [(𝑍, ˜̀A𝑧 (𝑞𝑋),𝑎) (˜̀

A,+
𝑧 (𝑞′

𝑋
)) = [′

𝑍
(𝑐𝑜𝑛𝑓 𝑖𝑔(𝑍) (˜̀A,+𝑧 (𝑞′

𝑋
))) =

[′
𝑋
((𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞′

𝑋
))) = [(𝑋,𝑞𝑋 ,𝑎) (𝑞′𝑋) which ends the proof.

□

Since 𝑑𝑜𝑚(˜̀A,+𝑡𝑟) \𝑑𝑜𝑚(˜̀
A
𝑡𝑟) verifies the equitable corresponding property of definition 7.7, we can define a continu-

ation of (˜̀A𝑧 , ˜̀
A
𝑡𝑟 , ˜̀

A
𝑒) that deal with A-creation at very last action.

Definition 9.22 (Continuation of PCA executions-matching from 𝑋 to 𝑍). LetA be a PSIOA. Let 𝑋 be aA-conservative

PCA. Let 𝑌 = 𝑋 \ {A} and 𝑍 = 𝑌 | | ˜A𝑠𝑤 . Let 𝐷 ′′
𝑋

= 𝑑𝑜𝑚(˜̀A,+𝑧) \ 𝑑𝑜𝑚(˜̀A𝑧). Since ∀(𝑞𝑋 , 𝑎, [(𝑋,𝑞𝑋 ,𝑎)) ∈ 𝐷 ′′𝑋 , ∀𝑞
′
𝑋
∈

𝑠𝑢𝑝𝑝 ([(𝑋,𝑞𝑋 ,𝑎)), [(𝑋,𝑞𝑋 ,𝑎) (𝑞′𝑋) = [𝑍, ˜̀A𝑧 (𝑞𝑋),𝑎) (˜̀
A,+
𝑧 (𝑞′

𝑋
)) by previous lemma 9.21, we can define:

((˜̀A𝑧 , ˜̀
A,+
𝑧), ˜̀

A,+
𝑡𝑟 , ˜̀

A,+
𝑒)) the (˜̀A,+𝑧 , 𝐷 ′′

𝑋
)-continuation of (˜̀A𝑧 , ˜̀

A
𝑡𝑟 , ˜̀

A
𝑒).

We terminate this subsection by showing the E-extension of our continued PCA executions-matching is always

well-defined.

Theorem 9.23 (extension of continued executions-matching after reconstruction). Let A be a PSIOA. Let

𝑋 be a A-conservative PCA. Let 𝑌 = 𝑋 \ {A} and 𝑍 = 𝑌 | | ˜A𝑠𝑤 . Let ˜E partially-compatible with both 𝑋 and 𝑍 . The
˜E-extension of ((𝑋 . ˜̀A𝑧 , 𝑋 . ˜̀A,+𝑧), 𝑋 . ˜̀A𝑡𝑟 , 𝑋 . ˜̀

A
𝑒), noted (((˜E||𝑋). ˜̀A𝑧 , (˜E||𝑋). ˜̀A,+𝑧), (˜E||𝑋). ˜̀A𝑡𝑟 , (˜E||𝑋). ˜̀A𝑒), is a strong

continued PCA executions-matching from ˜E||𝑋 to ˜E||𝑍 .

Proof. By definition of ˜̀
A,+
𝑧 and ˜̀

A
𝑧 , we have

• 𝐸
˜E | |𝑋 = 𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ𝑜𝑢𝑡-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛(˜E||𝑋) (A)

• 𝐸+
˜E | |𝑋

= 𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ-𝑜𝑛𝑙𝑦-𝑜𝑛𝑒-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑡-𝑙𝑎𝑠𝑡-𝑎𝑐𝑡𝑖𝑜𝑛(˜E||𝑋) (A)
74

Dynamic Probabilistic Input Output Automata

• 𝐸𝑋 = 𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ𝑜𝑢𝑡-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛(𝑋) (A)
• 𝐸+

𝑋
= 𝑒𝑥𝑒𝑐𝑠-𝑤𝑖𝑡ℎ-𝑜𝑛𝑙𝑦-𝑜𝑛𝑒-𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑡-𝑙𝑎𝑠𝑡-𝑎𝑐𝑡𝑖𝑜𝑛(𝑋) (A)

• �̃�
˜E | |𝑋 = 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒-𝑏𝑦 (𝐸

˜E | |𝑋)
• �̃�+

˜E | |𝑋
= 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒-𝑏𝑦 (𝐸+

˜E | |𝑋
)

• �̃�𝑋 = 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒-𝑏𝑦 (𝐸𝑋)
• �̃�+

𝑋
= 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒-𝑏𝑦 (𝐸+

𝑋
)

• 𝑑𝑜𝑚((˜E||𝑋). ˜̀A,+𝑧) = �̃�+
˜E | |𝑋

• 𝑑𝑜𝑚((˜E||𝑋). ˜̀A𝑧) = �̃� ˜E | |𝑋
• 𝑑𝑜𝑚(𝑋 . ˜̀A,+𝑧) = �̃�+

𝑋

• 𝑑𝑜𝑚(𝑋 . ˜̀A𝑧) = �̃�𝑋
This allow us to apply lemma 7.17 of "sufficient conditions to obtain range inclusion" to both (˜E||𝑋). ˜̀A,+𝑧 and

(˜E||𝑋). ˜̀A𝑧 which gives 𝑟𝑎𝑛𝑔𝑒 ((˜E||𝑋). ˜̀A,+𝑧) ⊆ 𝑠𝑡𝑎𝑡𝑒𝑠 (˜E||𝑍) and 𝑟𝑎𝑛𝑔𝑒 ((˜E||𝑋) . ˜̀A𝑧) ⊆ 𝑠𝑡𝑎𝑡𝑒𝑠 (˜E||𝑍) which allows us

to apply lemma 7.24.

The lemma 7.34 implies that the resulting executions-matching is a strong one.

□

9.4 Composition and projection are commutative

This section aims to show in theorem 9.24 that operation of projection/deprivation and composition are commutative.

Theorem 9.24 ((𝑋 | |E) \ {A} and (𝑋 \ {A})| |E are semantically eqivalent). LetA be a PSIOA. Let𝑋 be aA-fair

PCA partially-compatible with E that never countsA in its constitution with both𝑋, E and𝑋 | |E configuration-conflict-free.

The PCA (𝑋 | |E) \ {A} and (𝑋 \ {A})| |E are semantically equivalent.

Proof. We note 𝑊 = 𝑋 | |E, 𝑈 = (𝑋 | |E) \ {A}, 𝑉 = (𝑋 \ {A})| |E, `𝑋,A𝑠 = 𝑋 .`A𝑠 , `
𝑊,A
𝑠 = 𝑊 .`A𝑠 . To stay

simple, we note 𝐼𝑑 the identity function on any domain, that is we note 𝐼𝑑 for both 𝐼𝑑E : 𝑞E ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (E) ↦→ 𝑞E and

𝐼𝑑𝑈 : 𝑞𝑈 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑈) ↦→ 𝑞𝑈 .

The plan of the proof is the following one:

• We will construct two functions, 𝑖𝑠𝑜𝑈𝑉 : 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑈) → 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑉) and 𝑖𝑠𝑜𝑉𝑈 : 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑉) → 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑈), s. t.
𝑖𝑠𝑜𝑈𝑉 (𝑞𝑈) is the unique element of (`𝑋,A𝑠 , 𝐼𝑑) ((`𝑊,A

𝑠)−1 (𝑞𝑈)) and 𝑖𝑠𝑜𝑉𝑈 ((𝑞𝑌 , 𝑞E)) is the unique element of

`
𝑊,A
𝑠 ((`𝑋,A𝑠 , 𝐼𝑑)−1 ((𝑞𝑌 , 𝑞E))).

• Then we will show that 𝑖𝑠𝑜𝑈𝑉 and 𝑖𝑠𝑜𝑉𝑈 are two bijections s. t. 𝑖𝑠𝑜𝑉𝑈 = 𝑖𝑠𝑜−1

𝑈𝑉
.

• Thereafter we will show that for every (𝑞𝑈 , 𝑞𝑉), (𝑞′𝑈 , 𝑞
′
𝑉
) ∈ (𝑠𝑡𝑎𝑡𝑒𝑠 (𝑈) × 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑉)), s. t. 𝑞𝑉 = 𝑖𝑠𝑜𝑈𝑉 (𝑞𝑈) and

𝑞′
𝑉
= 𝑖𝑠𝑜𝑈𝑉 (𝑞′𝑈), then 𝑞𝑈 𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞𝑉 , 𝑞

′
𝑈
𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞

′
𝑉
and for every 𝑎 ∈ 𝑠𝑖𝑔(𝑈) (𝑞𝑈) = 𝑠𝑖𝑔(𝑉) (𝑞𝑉), [(𝑈 ,𝑞𝑈 ,𝑎) (𝑞′𝑈) =

[(𝑉 ,𝑞𝑉 ,𝑎) (𝑞′𝑉).
• Finally, it will allow us to construct a strong complete bijective execution-matching induced by 𝑖𝑠𝑜𝑈𝑉 and 𝐷𝑈

(the set of discrete transitions of 𝑈) in bijection with a strong complete bijective execution-matching induced

by 𝑖𝑠𝑜𝑉𝑈 and 𝐷𝑉 (the set of discrete transitions of 𝑉) .

First, we show that for every𝑞𝑊 = (𝑞𝑋 , 𝑞E) ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑊) ⊂ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋)×𝑠𝑡𝑎𝑡𝑒𝑠 (E), the state𝑞𝑉 ≜ (`𝑋,A𝑠 , 𝐼𝑑) (𝑞𝑊) =
(`𝑋,A𝑠 (𝑞𝑋), 𝑞E) is an element of 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑉) (*). We proceed by induction. Basis: (`𝑋,A𝑠 (𝑞𝑋), 𝑞E) is the initial state
of 𝑉 . Induction: Let 𝑞𝑊 ≜ (𝑞𝑋 , 𝑞E), 𝑞′𝑊 ≜ (𝑞′

𝑋
, 𝑞′E) ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑊), 𝑞𝑉 ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑉), 𝑎 ∈ 𝑠𝑖𝑔(𝑊) (𝑞𝑊) s. t.

𝑞′
𝑊
∈ 𝑠𝑢𝑝𝑝 ([(𝑊,𝑞𝑊 ,𝑎)), 𝑞𝑉 = (`𝑋,A𝑠 , 𝐼𝑑) (𝑞𝑊), and 𝑞′𝑉 = (`𝑋,A𝑠 , 𝐼𝑑) (𝑞′

𝑊
) . There is two cases:

75

Pierre Civit and Maria Potop-Butucaru

case 1) 𝑎 is A-exclusive in 𝑞𝑊 . In this case 𝑞𝑊 𝑅\{A}𝑞′
𝑊
, which means 𝑞′

𝑉
= 𝑞𝑉 and ends the proof

case 2) 𝑎 ∈ 𝑠𝑖𝑔(𝑉) (𝑞𝑉) ∩ 𝑠𝑖𝑔(𝑊) (𝑞𝑊)
We need to show that 𝑞′

𝑉
∈ 𝑠𝑢𝑝𝑝 ([(𝑉 ,𝑞𝑉 ,𝑎)). This is easy to show. Indeed, 𝑞′

𝑊
∈ 𝑠𝑢𝑝𝑝 ([(𝑊,𝑞𝑊 ,𝑎)) means (𝑞′

𝑋
, 𝑞′E) ∈

𝑠𝑢𝑝𝑝 ([(𝑋,𝑞𝑋 ,𝑎) ⊗ [(E,𝑞E ,𝑎)) (with the convention [(𝑋,𝑞𝑋 ,𝑎) = 𝛿𝑞𝑋 if 𝑎 ∉ 𝑠𝑖𝑔(𝑋) (𝑞𝑋)) and [(E,𝑞E ,𝑎) = 𝛿𝑞E if 𝑎 ∉

𝑠𝑖𝑔(E)(𝑞E))) which means 𝑞′
𝑋
∈ 𝑠𝑢𝑝𝑝 ([(𝑋,𝑞𝑋 ,𝑎)) and 𝑞′E ∈ 𝑠𝑢𝑝𝑝 ([(E,𝑞E ,𝑎)). So `

𝑋,A
𝑠 (𝑞′

𝑋
) ∈ 𝑠𝑢𝑝𝑝 ([(𝑌,`𝑋,A𝑠 (𝑞𝑋),𝑎))

whichmeans (`𝑋,A𝑠 (𝑞′
𝑋
), 𝑞′E) ∈ 𝑠𝑢𝑝𝑝 ([(𝑌,`𝑋,A𝑠 (𝑞𝑋),𝑎)⊗[(E,𝑞E ,𝑎)), that is (`

𝑋,A
𝑠 (𝑞′

𝑋
), 𝑞′E) ∈ 𝑠𝑢𝑝𝑝 ([((𝑌,E),(`𝑋,A𝑠 (𝑞𝑋),𝑞E),𝑎))[(E,𝑞E ,𝑎))

and thus 𝑞′
𝑉
∈ 𝑠𝑢𝑝𝑝 ([(𝑉 ,𝑞𝑉 ,𝑎)) so 𝑞′𝑉 ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑉) .

Second, we show that for every 𝑞𝑉 ≜ (𝑞𝑌 , 𝑞E) ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑉), it exists 𝑞𝑊 ≜ (𝑞𝑋 , 𝑞E) ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑊) s. t.
𝑞𝑉 = (`𝑋,A𝑠 , 𝐼𝑑) (𝑞𝑊) (**). The reasoning is the same, we proceed by induction. The basis is performed with start

state correspondance as before. Induction: Let 𝑞𝑉 ≜ (𝑞𝑌 , 𝑞E), 𝑞′𝑉 ≜ (𝑞
′
𝑌
, 𝑞′E) ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑉), 𝑞𝑊 ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑊), 𝑎 ∈

𝑠𝑖𝑔(𝑉) (𝑞𝑉) ∩ 𝑠𝑖𝑔(𝑊) (𝑞𝑊) s. t. 𝑞′𝑉 ∈ 𝑠𝑢𝑝𝑝 ([(𝑉 ,𝑞𝑉 ,𝑎)) with 𝑞𝑉 = (`𝑋,A𝑠 , 𝐼𝑑) (𝑞𝑊).
We need to show that it exists 𝑞′

𝑊
∈ 𝑠𝑢𝑝𝑝 ([(𝑊,𝑞𝑊 ,𝑎)) s. t. 𝑞′𝑉 = (`𝑋,A𝑠 , 𝐼𝑑) (𝑞′

𝑊
). This is easy to show be-

cause of `
𝑋,A
𝑑

-correspondance. For every 𝑞′
𝑉
≜ (𝑞′

𝑌
, 𝑞E) ∈ 𝑠𝑢𝑝𝑝 ([(𝑉 ,(𝑞𝑌 ,𝑞E),𝑎)) , 𝑞

′
𝑌
∈ 𝑠𝑢𝑝𝑝 ([(𝑌,𝑞𝑌 ,𝑎)). Because

of `
𝑋,A
𝑑

-correspondance, it exists 𝑞′
𝑋
∈ 𝑠𝑢𝑝𝑝 ([(𝑋,𝑞𝑋 ,𝑎)) with 𝑞′𝑌 = `

𝑋,A
𝑠 (𝑞′

𝑋
), thus it exists 𝑞′

𝑊
= (𝑞′

𝑋
, 𝑞′E) ∈

𝑠𝑢𝑝𝑝 ([(𝑊,(𝑞𝑋 ,𝑞E),𝑎)) s. t. 𝑞
′
𝑉
= (`𝑋,A𝑠 (𝑞′

𝑋
), 𝑞′E) which ends the proof of this second point.

Now we can construct 𝑖𝑠𝑜𝑈𝑉 and 𝑖𝑠𝑜𝑉𝑈 .

• 𝑖𝑠𝑜𝑈𝑉 : for every 𝑞𝑈 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑈), (`𝑊,A
𝑠)−1 (𝑞𝑈) ≠ ∅ by construction of𝑈 and for every 𝑞𝑊 ≜ (𝑞𝑋 , 𝑞E), 𝑞′𝑊 ≜

(𝑞′
𝑋
, 𝑞′E) ∈ (`

𝑊,A
𝑠)−1 (𝑞𝑈), 𝑞𝑊 𝑅

\{A}
𝑠𝑡𝑟𝑖𝑐𝑡

𝑞′
𝑊

[...],

whichmeans for every𝑞𝑊 ≜ (𝑞𝑋 , 𝑞E), 𝑞′𝑊 ≜ (𝑞
′
𝑋
, 𝑞′E) ∈ (`

𝑊,A
𝑠)−1 (𝑞𝑈), (`𝑋,A𝑠 , 𝐼𝑑) ((𝑞𝑋 , 𝑞E)) = (`𝑋,A𝑠 , 𝐼𝑑) ((𝑞′

𝑋
, 𝑞′E))

and so (`𝑋,A𝑠 , 𝐼𝑑) ((`𝑊,A
𝑠)−1 (𝑞𝑈)) = {𝑞𝑉 } where 𝑞𝑉 ≜ 𝑖𝑠𝑜𝑈𝑉 (𝑞𝑈) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑉) by (*).

• 𝑖𝑠𝑜𝑉𝑈 : for every 𝑞𝑉 ≜ (𝑞𝑌 , 𝑞E) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑉), (`𝑋,A𝑠 , 𝐼𝑑)−1 (𝑞𝑉) ≠ ∅ by (**). Furthermore for every 𝑞𝑊 ≜

(𝑞𝑋 , 𝑞E), 𝑞′𝑊 ≜ (𝑞
′
𝑋
, 𝑞E) ∈ (`𝑋,A𝑠 , 𝐼𝑑)−1 (𝑞𝑉),𝑞𝑋𝑅\{A}𝑠𝑡𝑟𝑖𝑐𝑡

𝑞′
𝑋
, whichmeans𝑞𝑊 𝑅

\{A}
𝑠𝑡𝑟𝑖𝑐𝑡

𝑞′
𝑊

and so `
𝑊,A
𝑠 ((`𝑋,A𝑠 , 𝐼𝑑)−1 (𝑞𝑉)) =

{𝑞𝑈 } where 𝑞𝑈 ≜ 𝑖𝑠𝑜𝑉𝑈 (𝑞𝑉) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑈)

Now we can show that 𝑖𝑠𝑜𝑈𝑉 is a bijection with 𝑖𝑠𝑜𝑉𝑈 = 𝑖𝑠𝑜−1

𝑉𝑈
.

• surjectivity of 𝑖𝑠𝑜𝑈𝑉 : Let 𝑞𝑉 = (𝑞𝑌 , 𝑞E) ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑉), we will show that it exists 𝑞𝑈 ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑈) s. t.
𝑖𝑠𝑜𝑈𝑉 (𝑞𝑈) = 𝑞𝑉 . Indeed, we already know that (*) it exists 𝑞𝑊 = (𝑞𝑋 , 𝑞E) ∈ (`𝑋,A𝑠 , 𝐼𝑑)−1 (𝑞𝑉) ∩𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑊).
Let 𝑞𝑈 = `

𝑊,A
𝑠 (𝑞𝑊). By construction of 𝑈 , we have 𝑞𝑈 ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑈) and 𝑞𝑊 ∈ (`𝑊,A

𝑠)−1 (𝑞𝑈) and
(`𝑋,A𝑠 , 𝐼𝑑) (𝑞𝑊) = 𝑞𝑉 which means 𝑖𝑠𝑜𝑈𝑉 (𝑞𝑈) = 𝑞𝑉 and ends this item.

• injectivity of 𝑖𝑠𝑜𝑈𝑉 : Let 𝑞𝑉 ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑉), Let 𝑞𝑈 , 𝑞′𝑈 ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑈) s. t. 𝑖𝑠𝑜𝑈𝑉 (𝑞𝑈) = 𝑖𝑠𝑜𝑈𝑉 (𝑞′𝑈) then
𝑞𝑈 = 𝑞′

𝑈
. Again for every 𝑞𝑊 , 𝑞

′
𝑊
∈ (`𝑋,A𝑠 , 𝐼𝑑)−1 (𝑞𝑉), 𝑞𝑊 𝑅

\A
𝑠𝑡𝑟𝑖𝑐𝑡

𝑞′
𝑊

and so `
𝑊,A
𝑠 (𝑞𝑊) = `𝑊,A

𝑠 (𝑞′
𝑊
). But for

every 𝑞𝑈 , 𝑞
′
𝑈
∈ 𝑖𝑠𝑜−1

𝑈𝑉
(𝑞𝑉), 𝑞𝑈 , 𝑞′𝑈 ∈ `

𝑊,A
𝑠 (`𝑋,A𝑠 , 𝐼𝑑)−1 (𝑞𝑉) which means 𝑞𝑈 = 𝑞′

𝑈
.

Let (i) 𝑞𝑉 = 𝑖𝑠𝑜𝑈𝑉 (𝑞𝑈) or (ii) 𝑞𝑈 = 𝑖𝑠𝑜𝑈𝑉 (𝑞𝑉) we will show that in both (i) and (ii) 𝑞𝑉 𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞𝑈 . By definition,

{𝑞𝑉 } = (`𝑋,A𝑠 , 𝐼𝑑) (`𝑊,A
𝑠)−1 (𝑞𝑈)).

In case (i) we note 𝑞𝑊 an arbitrary element of (`𝑊,A
𝑠)−1 (𝑞𝑈) ≠ ∅, while in case (ii) we note 𝑞𝑊 an arbitrary element

of (`𝑋,A𝑠 , 𝐼𝑑)−1 (𝑞𝑉) ≠ ∅ . In both cases, we have 1a) 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑊) (𝑞𝑊)\{A} = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑈) (𝑞𝑈) and 1b) 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑊) (𝑞𝑊)\
{A} = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑉) (𝑞𝑉), whichmeans 1c) 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑈) (𝑞𝑈) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑉) (𝑞𝑉). Thenwe have 2a)ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑊) (𝑞𝑊)\
𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑊) (𝑞𝑊) (A) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑈) (𝑞𝑈) \ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑊) (𝑞𝑊) (A) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑈) (𝑞𝑈) and 2b) ℎ𝑖𝑑𝑑𝑒𝑛-

𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑊) (𝑞𝑊) \ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑊) (𝑞𝑊) (A) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑉) (𝑞𝑉) \ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑊) (𝑞𝑊) (A) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑉) (𝑞𝑉),
76

Dynamic Probabilistic Input Output Automata

which means 2c) ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑈) (𝑞𝑈) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑉) (𝑞𝑉). Thereafter we have 3a) for every action 𝑎 ∈
𝑠𝑖𝑔(𝑊) (𝑞𝑊)∩𝑠𝑖𝑔(𝑈) (𝑞𝑈), 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑊) (𝑞𝑊) (𝑎)\{A} = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑈) (𝑞𝑈) (𝑎)\{A} = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑈) (𝑞𝑈) (𝑎) and 3b) for ev-
ery action 𝑎 ∈ 𝑠𝑖𝑔(𝑊) (𝑞𝑊)∩𝑠𝑖𝑔(𝑉) (𝑞𝑉), 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑊) (𝑞𝑊) (𝑎) \{A} = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑉) (𝑞𝑉) (𝑎) \{A} = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑉) (𝑞𝑉) (𝑎)
which means 3c) for every action 𝑎 ∈ 𝑠𝑖𝑔(𝑈) (𝑞𝑈) = 𝑠𝑖𝑔(𝑉) (𝑞𝑉), 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑈) (𝑞𝑈) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑉) (𝑞𝑉) (𝑎). The con-
jonction of 3a), 3b) and 3c) lead us to 𝑞𝑉 𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞𝑈 .

Now we can show that 𝑖𝑠𝑜𝑈𝑉 is the reverse function of 𝑖𝑠𝑜𝑉𝑈 : Let (𝑞𝑈 , 𝑞𝑉) ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑈) × 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑉) s. t.
𝑞𝑉 = 𝑖𝑠𝑜𝑈𝑉 (𝑞𝑈). We need to show that 𝑖𝑠𝑜𝑉𝑈 (𝑞𝑉) = 𝑞𝑈 . The point is that it exists a unique 𝑞′𝑈 ≜ 𝑖𝑠𝑜𝑉𝑈 (𝑞𝑉) and we

have 𝑞𝑉 𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞𝑈 and 𝑞𝑉 𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞
′
𝑈

which means 𝑞𝑈 𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞
′
𝑈

and so 𝑞𝑈 = 𝑞′
𝑈

by assumption of configuration-conflict-

free PCA. Hence 𝑖𝑠𝑜𝑈𝑉 = 𝑖𝑠𝑜−1

𝑉𝑈
.

The last point is to show that that for every (𝑞𝑈 , 𝑞𝑉), (𝑞′𝑈 , 𝑞
′
𝑉
) ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑈) × 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑉), s. t. 𝑞𝑉 = 𝑖𝑠𝑜𝑈𝑉 (𝑞𝑈)

and 𝑞′
𝑉

= 𝑖𝑠𝑜𝑈𝑉 (𝑞′𝑈), then 𝑞𝑈 𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞𝑉 , 𝑞
′
𝑈
𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞

′
𝑉
and for every 𝑎 ∈ 𝑠𝑖𝑔(𝑈) (𝑞𝑈) = 𝑠𝑖𝑔(𝑉) (𝑞𝑉), [(𝑈 ,𝑞𝑈 ,𝑎) (𝑞′𝑈) =

[(𝑉 ,𝑞𝑉 ,𝑎) (𝑞′𝑉).
For every 𝑎 ∈ 𝑠𝑖𝑔(𝑈) (𝑞𝑈) = 𝑠𝑖𝑔(𝑉) (𝑞𝑉) we have a unique[s. t.𝐶

𝑎
=⇒𝜑 [with𝐶 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑈) (𝑞𝑈) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑉) (𝑞𝑉)

and 𝜑 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑈) (𝑞𝑈) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑉) (𝑞𝑉) (𝑎). Hence for every configuration 𝐶 ′ ∈ 𝑠𝑢𝑝𝑝 ([), it exists a unique

pair (𝑞′
𝑈
, 𝑞′
𝑉
) ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑈) × 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑉) s. t.𝐶 ′ = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑈) (𝑞′

𝑈
) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑉) (𝑞′

𝑉
). Hence 𝑖𝑠𝑜𝑈𝑉 (𝑞′𝑈) = 𝑞

′
𝑉
and

furthermore [(𝑈 ,𝑞𝑈 ,𝑎) (𝑞′𝑈) = [(𝑉 ,𝑞𝑉 ,𝑎) (𝑞
′
𝑉
) = [(𝐶).

Everything is ready to construct the PCA-execution-matching, which is (j) the PCA-execution-matching induced by

𝑖𝑠𝑜𝑈𝑉 and 𝐷𝑈 (the set of discrete transition of𝑈) and (jj) the PCA-execution-matching induced by 𝑖𝑠𝑜𝑉𝑈 and 𝐷𝑉 (the

set of discrete transition of 𝑉)

□

10 PCA CORRESPONDINGW.R.T. PSIOA A, B

In the previous section we have shown that 𝑋A | |E and
˜A𝑠𝑤 | | (𝑋A \ {A}||E) are linked by a strong PCA executions-

matching as long as A is not re-created by 𝑋A . This also means that the probability distribution of 𝑋A | |E is preserved

by
˜A𝑠𝑤 | | (𝑋 \ {A}||E), as long as A is not re-created by 𝑋A . We can have the same reasoning to obtain a strong PCA

executions-matching from 𝑋B | |E and
˜B𝑠𝑤 | | (𝑋B \ {B}||E).

In this section we take an interest in PCA 𝑋A and 𝑋B that differ only on the fact that B supplants A in 𝑋B . Hence,

we recall the definitions of section 6. Then, we show that under slight assumptions, 𝑋A \ {A} and 𝑋B \ {B} are
semantically equivalent (see theorem 10.13).

Combined with the result of previous section we will realise that we can obtain a strong PCA executions-matching

from (*)𝑋A | |E to
˜A𝑠𝑤 | | (𝑌 | |E) and (**) from𝑋B | |E to

˜B𝑠𝑤 | | (𝑌 | |E) where𝑌 is semantically equivalent to both𝑋B \{B}
and𝑋A \ {A}. Hence if E ′ = E||𝑌 cannot distinguish

˜A𝑠𝑤 from
˜B𝑠𝑤 , we will be able to show that E cannot distinguish

𝑋A from 𝑋B which will be the subject of sections 11 to finally prove the monotonicity of 𝑝𝑟𝑖𝑛𝑡-implementation.

◁AB-correspondence between two configurations. We formalise the idea that two configurations are the same excepting

the fact that the automaton B supplants A but with the same external signature. The next definition comes from [1].

Definition 10.1 (◁AB-corresponding configurations). (see figure 30) Let Φ ⊆ 𝐴𝑢𝑡𝑖𝑑𝑠 , and A,B be PSIOA identifiers.

Then we define Φ[B/A] = (Φ \ A) ∪ {B} if A ∈ Φ, and Φ[B/A] = Φ if A ∉ Φ. Let 𝐶, 𝐷 be configurations. We define

𝐶 ◁AB 𝐷 iff (1) 𝑎𝑢𝑡𝑠 (𝐷) = 𝑎𝑢𝑡𝑠 (𝐶) [B/A], (2) for every A ′ ∉ 𝑎𝑢𝑡𝑠 (𝐶) \ {A} : 𝑚𝑎𝑝 (𝐷) (A ′) = 𝑚𝑎𝑝 (𝐶) (A ′), and (3)

𝑒𝑥𝑡 (A)(𝑠) = 𝑒𝑥𝑡 (B)(𝑡) where 𝑠 = 𝑚𝑎𝑝 (𝐶) (A), 𝑡 = 𝑚𝑎𝑝 (𝐷) (B). That is, in ◁AB-corresponding configurations, the

77

Pierre Civit and Maria Potop-Butucaru

SIOA other thanA,B must be the same, and must be in the same state.A and B must have the same external signature.

In the sequel, when we write Ψ = Φ[B/A], we always assume that B ∉ Φ and A ∉ Ψ.

Fig. 30. ◁AB corresponding-configuration

Next lemma states that ◁𝐴𝐵-corresponding configurations have the same external signature, which is quite intuitive

when we see the figure 30.

Proposition 1. Let 𝐶, 𝐷 be configurations such that 𝐶 ◁𝐴𝐵 𝐷 . Then 𝑒𝑥𝑡 (𝐶) = 𝑒𝑥𝑡 (𝐷).

Proof. The proof is in [1], section 6, p. 38. We write the proof here to be complete:

If A ∉ 𝐶 then 𝐶 = 𝐷 by definition , and we are done. Now suppose that A ∈ 𝐶 , so that 𝐶 = (A ∪ {A}, S) for
some set A of PSIOA identifiers s. t. A ∉ A, and let 𝑠 = S(A). Then, by definition 5.3 of attributes of configuration,

𝑜𝑢𝑡 (𝐶) = (⋃A𝑖 ∈A 𝑜𝑢𝑡 (A𝑖) (S(A𝑖))) ∪ 𝑜𝑢𝑡 (A)(𝑠). From 𝐶 ◁AB 𝐷 and definition , we have 𝐷 = (A ∪ {B}, S′), where
S′ agrees with S on all A𝑖 ∈ A, and 𝑡 = S′(B) such that 𝑒𝑥𝑡 (A)(𝑠) = 𝑒𝑥𝑡 (B)(𝑡). Hence 𝑜𝑢𝑡 (A)(𝑠) = 𝑜𝑢𝑡 (B)(𝑡) and
𝑖𝑛(A)(𝑠) = 𝑖𝑛(B)(𝑡). By definition 5.3 of configuration attributes, 𝑜𝑢𝑡 (𝐷) = (⋃A𝑖 ∈A 𝑜𝑢𝑡 (A𝑖) (S′(A𝑖))) ∪ 𝑜𝑢𝑡 (B)(𝑡).
Finally, 𝑜𝑢𝑡 (𝐶) = 𝑜𝑢𝑡 (𝐷) since S′ agrees with S on all A ∈ A and 𝑜𝑢𝑡 (A)(𝑠) = 𝑜𝑢𝑡 (B)(𝑡). We establish 𝑖𝑛(𝐶) = 𝑖𝑛(𝐷)
in the same manner, and omit the repetitive details. Hence 𝑒𝑥𝑡 (𝐶) = 𝑒𝑥𝑡 (𝐷). □

Remark 3. It is possible to have two configurations 𝐶 , 𝐷 s. t. 𝐶 ◁AA 𝐷 . That would mean that 𝐶 and 𝐷 only differ on

the state of A (𝑠 or 𝑡) that has even the same external signature in both cases 𝑒𝑥𝑡 (A)(𝑠) = 𝑒𝑥𝑡 (A)(𝑡), while we would
potentially have 𝑖𝑛𝑡 (A)(𝑠) ≠ 𝑖𝑛𝑡 (A)(𝑡).

The next lemma states that ◁𝐴𝐵-corresponding configurations are equals if we omit the automata A and B.

Lemma 10.2 (Same configuration). LetA,B ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let𝑋A ,𝑋B beA-fair andB-fair PCA respectively, where𝑋A
never contains B and𝑋B never containsA. Let𝑌A = 𝑋A \{A},𝑌B = 𝑋B \{B}. Let (𝑥𝑎, 𝑥𝑏) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋A) ×𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋B)
s. t. 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋A) (𝑥𝑎) ◁𝐴𝐵 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋B) (𝑥𝑏). Let 𝑦𝑎 = 𝑋A .`

A
𝑠 (𝑥𝑎), 𝑦𝑏 = 𝑋A .`

A
𝑠 (𝑥𝑏)

Then 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌𝐴) (𝑦𝑎) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌𝐵) (𝑦𝑏).

Proof. By projection, we have 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌A) (𝑦𝑎) ◁𝐴𝐵 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌B) (𝑦𝑏) with each configuration that does not contain

A nor B, thus for 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌A) (𝑦𝑎) and 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌B) (𝑦𝑏) contain the same set of automata ids (rule (1) of ◁𝐴𝐵) and map

each automaton of this set to the same state (rule (2) of ◁𝐴𝐵). □

78

Dynamic Probabilistic Input Output Automata

same comportment of two PCA modulo A, B. In this paragraph we formalise the fact that two PCA have the same

comportment, excepting for B that supplants A.

First, we formalise the fact that two PCA create some PSIOA in the same manner, excepting for B that supplants A.

Here again, this definition comes from [1].

Definition 10.3 (Creation corresponding configuration automata). Let 𝑋,𝑌 be configuration automata and A,B be

PSIOA. We say that 𝑋,𝑌 are creation-corresponding w.r.t. A,B iff

(1) 𝑋 never creates B and 𝑌 never creates A.

(2) Let 𝛽 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠∗ (𝑋) ∩ 𝑡𝑟𝑎𝑐𝑒𝑠∗ (𝑌) a finite trace of both 𝑋 and 𝑌 , and let 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠∗ (𝑋), 𝜋 ∈ 𝐸𝑥𝑒𝑐𝑠∗ (𝑌) a
finite execution of both 𝑋 and 𝑌 be such that 𝑡𝑟𝑎𝑐𝑒A (𝛼) = 𝑡𝑟𝑎𝑐𝑒A (𝜋) = 𝛽 . Let 𝑥 = 𝑙𝑎𝑠𝑡 (𝛼), 𝑦 = 𝑙𝑎𝑠𝑡 (𝜋),
i.e., x, y are the last states along 𝛼, 𝜋 , respectively. Then ∀𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑥) ∩ 𝑠𝑖𝑔(𝑌) (𝑦) : 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌) (𝑦) (𝑎) =
𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑥) (𝑎) [B/A].

Naturally [B/A]-corresponding sets of created automata are deprived ofA and B respectively, they becomes equal,

which is formalised in next lemma.

Lemma 10.4 (Same creation after projection). Let A,B ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let 𝑋A , 𝑋B be A-fair and B-fair PCA
respectively, where 𝑋A never contains B and 𝑋B never containsA (B ∉ 𝑈𝐴(𝑋A) andA ∉ 𝑈𝐴(𝑋B)). Let 𝑌A = 𝑋A \ A,

𝑌B = 𝑋B\B. Let (𝑥𝑎, 𝑥𝑏) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋A)×𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋B) and𝑎𝑐𝑡 ∈ 𝑠𝑖𝑔(𝑋A) (𝑥𝑎)∩𝑠𝑖𝑔(𝑋B) (𝑥𝑏) s. t. 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋B) (𝑥𝑏) (𝑎𝑐𝑡) =
𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋A) (𝑥𝑎) (𝑎𝑐𝑡) [B/A]. Let 𝑦𝑎 = 𝑋A .`

A
𝑠 (𝑥𝑎), 𝑦𝑏 = 𝑋B .`B𝑠 (𝑥𝑏)

Then 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌B) (𝑥𝑏) (𝑎𝑐𝑡) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌A) (𝑥𝑎) (𝑎𝑐𝑡)

Proof. By definition of PCAprojection, we have 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌B) (𝑥𝑏) (𝑎𝑐𝑡) = (𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋B) (𝑥𝑏) (𝑎𝑐𝑡))\B = (𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋A) (𝑥𝑎) (𝑎𝑐𝑡) [B/A])\
B = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋A) (𝑥𝑎) (𝑎𝑐𝑡) \ A = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑌A) (𝑥𝑎) (𝑎𝑐𝑡). □

Second, we formalise the fact that two PCA hide their actions in the same manner. The definition is strongly inspired

by [1].

Definition 10.5 (Hiding corresponding configuration automata). Let 𝑋,𝑌 be configuration automata and A,B be

PSIOA. We say that 𝑋,𝑌 are hiding-corresponding w.r.t. A,B iff

(1) 𝑋 never creates B and 𝑌 never creates A.

(2) Let 𝛽 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠∗ (𝑋) ∩𝑡𝑟𝑎𝑐𝑒𝑠∗ (𝑌), and let 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠∗ (𝑋), 𝜋 ∈ 𝐸𝑥𝑒𝑐𝑠∗ (𝑌) be such that 𝑡𝑟𝑎𝑐𝑒A (𝛼) = 𝑡𝑟𝑎𝑐𝑒A (𝜋) =
𝛽 . Let 𝑥 = 𝑙𝑎𝑠𝑡 (𝛼), 𝑦 = 𝑙𝑎𝑠𝑡 (𝜋), i.e., x, y are the last states along 𝛼, 𝜋 , respectively. Then ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌) (𝑦) =
ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (𝑥).

Naturally if hidden actions of ◁AB-corresponding states are equal, it remains true after respective deprivation of A
and B which is formalised in next lemma.

Lemma 10.6 (Same hidden-actions after projection). Let A,B ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . Let 𝑋A , 𝑋B be A-fair and B-fair PCA
respectively, where𝑋A never containsB and𝑋B never containsA (B ∉ 𝑈𝐴(𝑋A) andA ∉ 𝑈𝐴(𝑋B)). Let𝑌A = 𝑋A \{A},
𝑌B = 𝑋B \ {B}. Let (𝑥𝑎, 𝑥𝑏) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋A) × 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋B), 𝑦𝑎 = 𝑋A .`

A
𝑠 (𝑥𝑎), 𝑦𝑏 = 𝑋B .`B𝑠 (𝑥𝑏) s. t.

• 𝑥𝑎𝑅\{A}𝑐𝑜𝑛𝑓
𝑥𝑏 , i. e. 𝑦𝑎𝑅𝑐𝑜𝑛𝑓 𝑦𝑏

• ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋B) (𝑥𝑏) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋A) (𝑥𝑎)

Then ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌B) (𝑦𝑏) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌A) (𝑦𝑎)
79

Pierre Civit and Maria Potop-Butucaru

Proof. We note 𝐶𝑋A = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋A) (𝑥𝑎), 𝐶𝑋B = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋B) (𝑥𝑏), 𝐶𝑌A = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌A) (𝑦𝑎), 𝐶𝑌B = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑌B) (𝑦𝑏).
By assumption, 𝐶𝑋A \ {A} = 𝐶𝑌A = 𝐶𝑌B = 𝐶𝑋B \ {B}.

We note ℎ𝑋A = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋A) (𝑥𝑎), ℎ𝑋B = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋B) (𝑥𝑏), ℎ𝑌A = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌A) (𝑦𝑎), ℎ𝑌B =

ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌B) (𝑦𝑏). By assumption, ℎ𝑋A = ℎ𝑋B , while by construction, ℎ𝑌A = ℎ𝑋A \ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋A) (A) and
ℎ𝑌B = ℎ𝑋B \ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋B) (B).

Case 1: 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋A) (A)(𝑥𝑎) = 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋B) (B)(𝑥𝑏), the result is immediate, Case 2: 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋A) (A)(𝑥𝑎)∩ℎ𝑋A =

𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋B) (B)(𝑥𝑏) ∩ ℎ𝑋B = ∅, the result is immediate.

Case 3: Without loss of generality, we assume 𝑎𝑐𝑡 = 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋A) (A)(𝑥𝑎) ∩ ℎ𝑋A ≠ ∅. For every C ∈ 𝑎𝑢𝑡𝑠 (𝐶𝑌B),
C ∈ 𝑎𝑢𝑡𝑠 (𝐶𝑌A) since 𝐶𝑌A = 𝐶𝑌B and C ∈ 𝑎𝑢𝑡𝑠 (𝐶𝑋A) since 𝐶𝑌A = 𝐶𝑋A \ {A}. By compatibility of 𝐶𝑋A , 𝑝𝑜𝑡-

𝑜𝑢𝑡 (𝑋A) (A)(𝑥𝑎) ∩ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋A) (C)(𝑥𝑎) = ∅.
Case 3a) B ∉ 𝑎𝑢𝑡𝑠 (𝐶𝑋B), which means both i) 𝑎𝑐𝑡 ⊂ ℎ𝑋B , ii) 𝑎𝑐𝑡 ∩ 𝑜𝑢𝑡 (𝐶𝑋B) = ∅ and iii) ℎ𝑋B ⊂ 𝑜𝑢𝑡 (𝐶𝑋B) which is

impossible. Thus we only consider

Case 3b) B ∈ 𝑎𝑢𝑡𝑠 (𝐶𝑋B). Since j) for every C ∈ 𝑎𝑢𝑡𝑠 (𝐶𝑌B), 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋A) (A)(𝑥𝑎) ∩ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋A) (C)(𝑥𝑎) = ∅ and
jj) ℎ𝑋B ⊂ 𝑜𝑢𝑡 (𝐶𝑋B), we have 𝑎𝑐𝑡 ⊂ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋B) (B)(𝑥𝑏).

For symmetrical reason, we have both 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋A) (A)(𝑥𝑎)∩ℎ𝑋A ⊂ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋B) (B)(𝑥𝑏) and 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋B) (B)(𝑥𝑏)∩
ℎ𝑋B ⊂ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋A) (A)(𝑥𝐴), which means ℎ𝑋A \ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋B) (B)(𝑥𝑏) = ℎ𝑋B \ 𝑝𝑜𝑡-𝑜𝑢𝑡 (𝑋B) (B)(𝑥𝑏) and ends the

proof

□

Now we are ready to define corresponding PCA w. r. t. PSIOA A, B, that is two PCA 𝑋A and 𝑋B that differ only on

the fact that 𝐵 supplantsA in 𝑋B . Some additional assumptions are added to ensure monotonicity later. This definition

is still inspired by definitions of [1].

Definition 10.7 (corresponding w. r. t. A, B). Let A,B ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 , XA and XB be PCA we say that XA and XB are

corresponding w. r. t. A, B, if they verify:

• 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋A) (𝑞𝑋A) ◁𝐴𝐵 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋B) (𝑞𝑋B).
• 𝑋A never contains B (B ∉ 𝑈𝐴(𝑋A)), while 𝑋B never contains A (A ∉ 𝑈𝐴(𝑋B)).
• 𝑋A , 𝑋B are creation-corresponding w.r.t. A,B.
• 𝑋A , 𝑋B are hiding-corresponding w.r.t. A,B.
• XA (resp. XB) is a A-conservative (resp. B-conservative) PCA.
• (No exclusive creation from A and B)

– ∀𝑞𝑋A ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋A) , for every action 𝑎𝑐𝑡 A-exclusive, 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋A) (𝑞𝑋A) (𝑎𝑐𝑡) = ∅ and similarly

– ∀𝑞𝑋B ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋B), for every action 𝑎𝑐𝑡 ′ B-exclusive, 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋B) (𝑞𝑋B) (𝑎𝑐𝑡 ′) = ∅

equivalent transitions to obtain semantic equivalence after projection. In this last paragraph of the section, we show

that if two PCA 𝑋A 𝑋B are corresponding w. r. t. A and B, then there respective projection 𝑌A = 𝑋A \ {A} and
𝑌B = 𝑋B \ {B} are semantically equivalents. To do so, we use notions of equivalent transitions. the idea is to recursively

show that any corresponding executions of𝑌A and𝑌B lead to strictly equivalent transitions to finally build the complete

bijective PCA executions-matching from 𝑌A to 𝑌B .

We start by defining equivalent transitions.

Definition 10.8 (configuration-equivalence and strict-equivalence between two distributions). Let 𝐾,𝐾 ′ be PCA and

([, [′) ∈ 𝐷𝑖𝑠𝑐 (𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾)) × 𝐷𝑖𝑠𝑐 (𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾 ′)).
80

Dynamic Probabilistic Input Output Automata

• We say that [and [′ are config-equivalent, noted [
𝑓
←→
𝑐𝑜𝑛𝑓

[′, if it exists 𝑓 : 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾) −→ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾 ′) s. t.

[
𝑓
←→ [′ with ∀𝑞′′ ∈ 𝑠𝑢𝑝𝑝 ([), 𝑞′′𝑅𝑐𝑜𝑛𝑓 𝑓 (𝑞′′).

• If additionally,∀𝑞′′ ∈ 𝑠𝑢𝑝𝑝 ([),𝑞′′𝑅𝑠𝑡𝑟𝑖𝑐𝑡 𝑓 (𝑞′′), then we say that [and [′ are strictly-equivalent, noted [
𝑓
←→
𝑠𝑡𝑟𝑖𝑐𝑡

[′.

Basically, equivalent transitions are transitions where the states with non-zero probability to be reached are mapped

by a bijective function that preserves i) measure of probability and ii) configuration. A stricter version preserves also iii)

future created automata and hidden-actions.

The next lemma states that if we take two corresponding transitions from strict equivalent states, then we obtain

configuration equivalent transitions.

Lemma 10.9. (strictly-equivalent states implies config-equivalent transition) Let 𝐾,𝐾 ′ be PCA and (𝑞, 𝑞′) ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾) ×
𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾 ′) strictly-equivalent, i. e. 𝑞𝑅𝑠𝑡𝑟𝑖𝑐𝑖𝑡𝑞′. Let 𝑎 ∈ 𝑠𝑖𝑔(𝐾) (𝑞) = 𝑠𝑖𝑔(𝐾 ′) (𝑞′) and ((𝑞, 𝑎, [(𝐾,𝑞,𝑎)), (𝑞′, 𝑎, [(𝐾 ′,𝑞′,𝑎))) ∈
𝑑𝑡𝑟𝑎𝑛𝑠 (𝐾) × 𝑑𝑡𝑟𝑎𝑛𝑠 (𝐾 ′). Then [(𝐾,𝑞,𝑎) and [(𝐾 ′,𝑞′,𝑎) are config-equivalent, i. e. ∃𝑓 : 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾) → 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾 ′) s. t.

[
𝑓
←→
𝑐𝑜𝑛𝑓

[′.

Proof. This is the direct consequence of constraint 2 and 3 of definition 5.14 of PCA. We note 𝐶 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞) =
𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾 ′) (𝑞′) and 𝜑 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾) (𝑞) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾 ′) (𝑞′) (𝑎). By constraint 2, applied to 𝐾 , it exists [s. t.

[(𝐾,𝑞,𝑎)
𝑓 𝐾

←→ [with 𝑓 𝐾 = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) and 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞) 𝑎
=⇒𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾) (𝑞) (𝑎) [By constraint 2, applied to 𝐾 ′, it

exists [′ s. t. [(𝐾 ′,𝑞′,𝑎)
𝑓 𝐾′
←→ [′ with 𝑓 𝐾 ′ = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾 ′) and 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾 ′) (𝑞′) 𝑎

=⇒𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾 ′) (𝑞′) (𝑎) [
′
.

Since 𝑞𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞
′
, 𝐶 ≜ 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾 ′) (𝑞′) and 𝜑 ≜ 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾) (𝑞) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝐾 ′) (𝑞′) (𝑎).

Hence 𝐶
𝑎
=⇒𝜑 [and 𝐶

𝑎
=⇒𝜑 [

′
which means [= [′.

So [(𝐾,𝑞,𝑎)
𝑓
←→ [(𝐾 ′,𝑞′,𝑎) with ˜𝑓 = (˜𝑓 𝐾 ′)−1 ◦ ˜𝑓 𝐾 where

˜𝑓 (resp. ˜𝑓 𝐾 ′, resp. ˜𝑓 𝐾) is the restriction of 𝑓 (resp. 𝑓 𝐾 ′, resp.

𝑓 𝐾) on 𝑠𝑢𝑝𝑝 ([(𝐾,𝑞,𝑎)) (resp. 𝑠𝑢𝑝𝑝 ([(𝐾 ′,𝑞′,𝑎)), resp. 𝑠𝑢𝑝𝑝 ([(𝐾,𝑞,𝑎))).
Thus, for every (𝑞, 𝑞′) ∈ 𝑠𝑢𝑝𝑝 ([(𝐾,𝑞,𝑎)) × 𝑠𝑢𝑝𝑝 ([(𝐾 ′,𝑞′,𝑎)) s. t. 𝑞′ = 𝑓 (𝑞), 𝑓 𝐾 (𝑞) = 𝑓 𝐾 ′(𝑞′), that is 𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾) (𝑞) =

𝑐𝑜𝑛𝑓 𝑖𝑔(𝐾 ′) (𝑞′), i. e. 𝑞𝑅𝑐𝑜𝑛𝑓 𝑞′.

Hence [(𝐾,𝑞,𝑎)
𝑓
←→
𝑐𝑜𝑛𝑓

[(𝐾 ′,𝑞′,𝑎) which ends the proof.

□

Now we start a sequence of lemma (from lemma 10.10 to lemma 10.12) to finally show in theorem 10.13 that if 𝑋A
and 𝑋B are corresponding w. r. t. A, B then 𝑋A \ {A} and 𝑋B \ {B} are semantically-equivalent.

The next lemma shows that we can always construct an execution 𝛼𝑋 ∈ 𝐸𝑥𝑒𝑐𝑠 (𝑋) from an execution 𝛼𝑌 ∈ 𝐸𝑥𝑒𝑐𝑠 (𝑌)
with 𝑌 = 𝑋 \ {A} that preserves the trace.

Lemma 10.10 (𝐸𝑥𝑒𝑐𝑠 (𝑋 \ {A}) can be obtained by 𝐸𝑥𝑒𝑐𝑠 (𝑋)). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 , 𝑋 a A-fair PCA, 𝑌 = 𝑋 \ {A}.
Let 𝛼𝑌 = 𝑞0

𝑌
, 𝑎1, 𝑞1

𝑌
, ..., 𝑞𝑛

𝑌
∈ 𝐸𝑥𝑒𝑐𝑠 (𝑌). Then it exists, 𝛼𝑋 = 𝑞0

𝑋
, 𝑎1, 𝑞1

𝑋
, ..., 𝑞𝑛

𝑋
∈ 𝐸𝑥𝑒𝑐𝑠 (𝑋) s. t. ∀𝑖 ∈ [0, 𝑛], 𝑞𝑖

𝑌
=

`A𝑠 (𝑞𝑖𝑋).

Proof. By induction on the size 𝑠 = |𝛼𝑠
𝑌
| of prefix 𝛼𝑠

𝑌
= 𝑞0

𝑌
, 𝑎1, 𝑞1

𝑌
, ..., 𝑞𝑠

𝑌
.

Basis (|𝛼𝑠
𝑌
| = 0): By definition 8.11, 𝑞𝑌 = 𝑋 .`A𝑠 (𝑞𝑋)

Induction: let assume the proposition is true for prefix 𝛼𝑠
𝑌
= 𝑞0

𝑌
, 𝑎1, 𝑞1

𝑌
, ..., 𝑞𝑠

𝑌
with 𝑠 < |𝛼𝑌 |. We will show it is true

for 𝛼𝑠+1
𝑌

. We have 𝑞𝑠
𝑌
= 𝑋 .`A𝑠 (𝑞𝑠𝑋). By construction of 𝑑𝑡𝑟𝑎𝑛𝑠 (𝑌) provided by definition 8.11, it exists [(𝑋,𝑞𝑠

𝑋
,𝑎𝑠+1) ∈

81

Pierre Civit and Maria Potop-Butucaru

𝑑𝑡𝑟𝑎𝑛𝑠 (𝑋) s. t. 𝑋 .`A
𝑑
([(𝑋,𝑞𝑠

𝑋
,𝑎𝑠+1)) = [(𝑌,𝑞𝑠

𝑌
,𝑎𝑠+1) . By 𝑋 .`

A
𝑑
-correspondence of definition 8.11, [(𝑌,𝑞𝑠

𝑌
,𝑎𝑠+1) (𝑞𝑠+1𝑌

) =∑
𝑞′
𝑋
∈𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋),`𝑠 (𝑞′𝑋)=𝑞

𝑠+1
𝑌
[(𝑋,𝑞𝑠

𝑋
,𝑎𝑠+1) (𝑞′𝑋). By definition of an execution, 𝑞𝑠+1

𝑌
∈ 𝑠𝑢𝑝𝑝 ([(𝑌,𝑞𝑠

𝑌
,𝑎𝑠+1)), which means it ex-

ists 𝑞𝑠+1
𝑋
∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋) s. t. 1) `A𝑠 (𝑞𝑠+1𝑋

) = 𝑞𝑠+1
𝑌

and 2) 𝑞𝑠+1
𝑋
∈ 𝑠𝑢𝑝𝑝 ([(𝑋,𝑞𝑠

𝑋
,𝑎𝑠+1)). Thus, it exist 𝛼𝑠+1𝑋

= 𝑞0

𝑋
, 𝑎1, 𝑞1

𝑋
, ..., 𝑞𝑠+1

𝑋
∈

𝐸𝑥𝑒𝑐𝑠 (𝑋) s. t. ∀𝑖 ∈ [0, 𝑠 + 1], 𝑞𝑖
𝑌
= `A𝑠 (𝑞𝑖𝑋), which ends the induction and so the proof. □

The next lemma states that, after projection, two configuration-equivalent states obtain via executions with the same

trace are strictly equivalent.

Lemma 10.11 (After projection, configuration-eqivalence obtain after same trace implies strict eqiv-

alence). Let 𝑋A and 𝑋B be two PCA corresponding w. r. t. A, B. Let 𝑌A = 𝑋A \ {A} and 𝑌B = 𝑋B \ {B}. Let
(𝛼𝑌A , 𝜋𝑌B) ∈ 𝐸𝑥𝑒𝑐𝑠 (𝑌A) × 𝐸𝑥𝑒𝑐𝑠 (𝑌B) with 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼𝑌A) = 𝑞𝑌A and 𝑙𝑠𝑡𝑎𝑡𝑒 (𝜋𝑌B) = 𝑞𝑌B . If

• 𝑞𝑌A𝑅𝑐𝑜𝑛𝑓 𝑞𝑌B and

• 𝑡𝑟𝑎𝑐𝑒 (𝛼𝑌A) = 𝑡𝑟𝑎𝑐𝑒 (𝜋𝑌B) = 𝛽 ,

then 𝑞𝑌A𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞𝑌B

Proof. By lemma 10.10, it exists (𝛼𝑋A , �̃�𝑋B) ∈ 𝐸𝑥𝑒𝑐𝑠 (𝑋A) × 𝐸𝑥𝑒𝑐𝑠 (𝑋B) s. t. (i) 𝑡𝑟𝑎𝑐𝑒 (𝛼𝑋A) = 𝑡𝑟𝑎𝑐𝑒 (𝛼𝑌A) =

𝑡𝑟𝑎𝑐𝑒 (𝜋𝑌B) = 𝑡𝑟𝑎𝑐𝑒 (�̃�𝑋B) and (ii) 𝑞𝑌A = 𝑋A .`
A
𝑠 (𝑞𝑋A) and 𝑞𝑌B = 𝑋B .`B𝑠 (𝑞𝑋B) where 𝑞𝑋B = 𝑙𝑠𝑡𝑎𝑡𝑒 (�̃�𝑋B) and

𝑞𝑋A = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼𝑋A).
Since 𝑡𝑟𝑎𝑐𝑒 (𝛼𝑋A) = 𝑡𝑟𝑎𝑐𝑒 (�̃�𝑋B), we have j) ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋A) (𝑞𝑋A) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋B) (𝑞𝑋B) by hiding-

correspondence of definition 6.3 and jj)∀𝑎 ∈ 𝑠𝑖𝑔(𝑋A) (𝑞𝑋A)∩𝑠𝑖𝑔(𝑋B) (𝑞𝑋B), 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋A) (𝑞𝑋A) (𝑎) = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋B) (𝑞𝑋B) (𝑎).
By lemma 10.6 we have (*) ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌A) (𝑞𝑌A) = ℎ𝑖𝑑𝑑𝑒𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑌B) (𝑞𝑌B) , and by lemma 10.4 we have (**)

∀𝑎 ∈ 𝑠𝑖𝑔(𝑌A) (𝑞𝑌A) = 𝑠𝑖𝑔(𝑌B) (𝑞𝑌B).
If we combine the definition 𝑞𝑌A𝑅𝑐𝑜𝑛𝑓 𝑞𝑌B with (*) and (**), we obtain 𝑞𝑌A𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞𝑌B , which ends the proof.

□

Finally, the next lemma states that, after projection, two configuration-equivalent states obtain via executions with

the same trace lead necessarily to strictly equivalent transitions.

Lemma 10.12 (After projection, configuration-eqivalence obtain after same trace implies strict eqiva-

lent transitions). Let 𝑋A and 𝑋B be two PCA corresponding w. r. t. A, B. Let 𝑌A = 𝑋A \ {A} and 𝑌B = 𝑋B \ {B}.
Let (𝛼𝑌A , 𝜋𝑌B) ∈ 𝐸𝑥𝑒𝑐𝑠 (𝑌A) × 𝐸𝑥𝑒𝑐𝑠 (𝑌B) with 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼𝑌A) = 𝑞𝑌A and 𝑙𝑠𝑡𝑎𝑡𝑒 (𝜋𝑌B) = 𝑞𝑌B . If

• 𝑞𝑌A𝑅𝑐𝑜𝑛𝑓 𝑞𝑌B and

• 𝑡𝑟𝑎𝑐𝑒 (𝛼𝑌A) = 𝑡𝑟𝑎𝑐𝑒 (𝜋𝑌B) = 𝛽 ,

then for every𝑎 ∈ 𝑠𝑖𝑔(𝑌A) (𝑞𝑌A) = 𝑠𝑖𝑔(𝑌B) (𝑞𝑌B),[(𝑌A ,𝑞𝑌A ,𝑎) and[(𝑌B ,𝑞𝑌B ,𝑎) are strictly equivalent, i. e.∃𝑓 : 𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾) →

𝑠𝑡𝑎𝑡𝑒𝑠 (𝐾 ′) s. t. [
𝑓
←→
𝑠𝑡𝑟𝑖𝑐𝑡

[′

Proof. By previous lemma 10.11, 𝑞𝑌A and 𝑞𝑌B are strictly equivalent. Thus by previous lemma 10.9, it exists

𝑓 s. t. [(𝑌A ,𝑞𝑌A ,𝑎)
𝑓
←→
𝑐𝑜𝑛𝑓

[(𝑌B ,𝑞𝑌B ,𝑎) . Let two corresponding states (𝑞′
𝑌A
, 𝑞′
𝑌B
) ∈ 𝑠𝑢𝑝𝑝 ([(𝑌A ,𝑞𝑌A ,𝑎)) × [(𝑌B ,𝑞𝑌B ,𝑎) s. t.

𝑓 (𝑞′
𝑌A
) = 𝑞′

𝑌B
. We have 𝑞′

𝑌A
𝑅𝑐𝑜𝑛𝑓 𝑞

′
𝑌B

(*). Furthermore, since 𝑞𝑌A𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞𝑌B , 𝑠𝑖𝑔(𝑌A) (𝑞𝑌A) = 𝑠𝑖𝑔(𝑌B) (𝑞𝑌B), namely

𝑒𝑥𝑡 (𝑌A) (𝑞𝑌A) = 𝑒𝑥𝑡 (𝑌B) (𝑞𝑌B), which means 𝑡𝑟𝑎𝑐𝑒 (𝛼⌢
𝑌A
𝑞𝑌A𝑎𝑞

′
𝑌A
) = 𝑡𝑟𝑎𝑐𝑒 (𝜋⌢

𝑌B
𝑞𝑌B𝑎𝑞

′
𝑌B
). So we can reapply previous

lemma to obtain 𝑞′
𝑌A
𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞

′
𝑌B

which ends the proof.

□

82

Dynamic Probabilistic Input Output Automata

Now we can finally show that if 𝑋A and 𝑋B are corresponding w. r. t. A, B then 𝑋A \ {A} and 𝑋B \ {B} are
semantically-equivalent which was the main aim of this subsection.

Theorem 10.13 (𝑋A and 𝑋B corresponding w. r. t.A, B implies 𝑋A \ {A} and 𝑋B \ {B} semantically-eqiv-

alent). Let 𝑋A and 𝑋B be two PCA corresponding w. r. t. A, B. Let 𝑌A = 𝑋A \ {A} and 𝑌B = 𝑋B \ {B}.
The PCA 𝑌A and 𝑌B are semantically-equivalent.

Proof. We recursively construct a strong complete bijective PCA executions-matching (𝑓𝑠 , 𝑓 𝑡𝑟𝑎𝑛𝑠 , 𝑓 𝑒𝑥𝑠) where
𝑓𝑠 : 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒≤𝑠 (𝑌A) → 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒≤𝑠 (𝑌B) and 𝑓 𝑒𝑥𝑠 : {𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (𝑌A) | |𝛼 | ≤ 𝑠} → {𝜋 ∈ 𝐸𝑥𝑒𝑐𝑠 (𝑌B) | |𝜋 | ≤ 𝑠} s. t.
𝑓 𝑒𝑥𝑠 (𝛼) = 𝜋 implies 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼)𝑅𝑠𝑡𝑟𝑖𝑐𝑡 𝑙𝑠𝑡𝑎𝑡𝑒 (𝜋).

Basis: 𝑠 = 0, 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒≤0 (𝑌A) = {𝑞𝑋A }, while 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒≤0 (𝑌B) = {𝑞𝑋B }.
By definition 6.16 of corresponding automata 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋A) (𝑞𝑋A) ◁AB 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋B) (𝑞𝑋B), while (𝑞𝑌A , 𝑞𝑌B) =

(𝑋A .`A𝑠 (𝑞𝑋A), 𝑋B .`B𝑠 (𝑞𝑋B)) by definition 8.11 of PCA projection, which gives 𝑞𝑌A𝑅𝑐𝑜𝑛𝑓 𝑞𝑌B by lemma 10.2. More-

over 𝑡𝑟𝑎𝑐𝑒𝑌A (𝑞𝑌A) = 𝑡𝑟𝑎𝑐𝑒𝑌B (𝑞𝑌B) = _ (_ denotes the empty sequence). Thus we can apply lemma 10.11 to ob-

tain 𝑞𝑌A𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞𝑌B . We construct 𝑓0 (𝑞𝑌A) = 𝑞𝑌B , 𝑓 𝑒𝑥0
(𝑞𝑌A) = 𝑞𝑌B . Clearly 𝑓0 is a bijection from 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒0 (𝑌A) to

𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒0 (𝑌B), while 𝑓 𝑒𝑥0
is a bijection from 𝐸𝑥𝑒𝑐𝑠0 (𝑌A) to 𝐸𝑥𝑒𝑐𝑠0 (𝑌B)

Induction: We assume the result to be true for an integer 𝑠 ∈ N and we will show it is then true for 𝑠 + 1. Let

𝐸𝑥𝑒𝑐𝑠𝑠 (𝑌A) = {𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (𝑌A) | |𝛼 | = 𝑠} and 𝐸𝑥𝑒𝑐𝑠𝑠 (𝑌B) = {𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (𝑌B) | |𝜋 | = 𝑠}.
We can build 𝑓𝑠+1 (resp. 𝑓 𝑒𝑥

𝑠+1) s. t. ∀𝑞 ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒≤𝑠 , 𝑓𝑠+1 (𝑞) = 𝑓𝑠 (𝑞) (resp. s. t. ∀𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠≤𝑠 (𝑌A) 𝑓
𝑒𝑥
𝑠+1 (𝛼) = 𝑓

𝑒𝑥
𝑠 (𝛼))

and ∀𝑞 𝑗
𝑌A
∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝑠+1, 𝑓𝑠+1 (𝑞∗) (resp. ∀𝛼𝑎,𝑗 ∈ 𝐸𝑥𝑒𝑐𝑠𝑠 (𝑌A), 𝑓 𝑒𝑥𝑠+1 (𝛼

′)) is built as follows:
We note𝛼𝑎,𝑗 = 𝛼⌢

𝑌A
𝑞𝑌A𝑎𝑞

𝑗

𝑌A
(𝑞𝑌A = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼𝑌A)).We note 𝜋𝑌B = 𝑓 𝑒𝑥𝑠 (𝛼𝑌A). By induction assumption,𝑞𝑌A𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞𝑌B

with 𝑞𝑌A = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼𝑌A) and 𝑞𝑌B = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝜋𝑌B). Hence 𝑠𝑖𝑔(𝑌A) (𝑞𝑌A) = 𝑠𝑖𝑔(𝑌B) (𝑞𝑌B) and by previous lemma 10.12,

for every 𝑎 ∈ 𝑠𝑖𝑔(𝑌A) (𝑞𝑌A) = 𝑠𝑖𝑔(𝑌B) (𝑞𝑌B), ∃𝑔
𝑗
𝑎 , [(𝑌A ,𝑞𝑌A ,𝑎)

𝑔
𝑗
𝑎←→

𝑠𝑡𝑟𝑖𝑐𝑡
[(𝑌B ,𝑞𝑌B ,𝑎) .

Hence, we define 𝑓 𝑒𝑥
𝑠+1 : 𝛼𝑎,𝑗 = 𝛼⌢

𝑌A
𝑞𝑌A𝑎𝑞

𝑗

𝑌A
↦→ 𝑓 𝑒𝑥

𝑠+1 (𝛼𝑌A)
⌢ 𝑓𝑠 (𝑞𝑌A)𝑎𝑔

𝑗
𝑎 (𝑞

𝑗

𝑌A
), while 𝑓𝑠+1 is naturally defined via

𝑓 𝑒𝑥
𝑠+1, i. e. for every 𝑞

𝑗

𝑌A
∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝑠+1 (𝑌A), we note 𝛼𝑎,𝑗 ∈ 𝐸𝑥𝑒𝑐𝑠𝑠+1 (𝑌A) s. t. 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼𝑎,𝑗) = 𝑞 𝑗𝑌A and 𝑓𝑠+1 (𝑞 𝑗𝑌A) =

𝑔
𝑗
𝑎 (𝑞

𝑗

𝑌A
) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝑓 𝑒𝑥

𝑠+1 (𝛼
𝑎,𝑗)).

We finally define 𝑓 𝑒𝑥 : 𝑞0𝑎1 ...𝑎𝑛𝑞𝑛 ... ↦→ 𝑓0 (𝑞0)𝑎1 ...𝑎𝑛 𝑓𝑛 (𝑞𝑛), 𝑓 : 𝑞 ↦→ 𝑓𝑛 (𝑞) where 𝑞 = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝑞0𝑎1 ...𝑞𝑛) and
𝑓 𝑡𝑟 : (𝑞, 𝑎, [(𝑌A ,𝑞,𝑎)) ↦→ (𝑓 (𝑞), 𝑎, [(𝑌B ,𝑓 (𝑞),𝑎)).

Clearly (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) is strong since for every pair (𝑞𝑌A , 𝑞𝑌B), s. t. 𝑓 (𝑞𝑌A) = 𝑞𝑌B , 𝑞𝑌A𝑅𝑠𝑡𝑟𝑖𝑐𝑡𝑞𝑌B .
Moreover, (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) is complete since 𝑑𝑜𝑚(𝑓) = 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑌A) = 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑌A).
Finally, the bijectivity of 𝑓 𝑒𝑥 is given by the inductive bijective construction.

Hence (𝑓 , 𝑓 𝑡𝑟 , 𝑓 𝑒𝑥) is strong complete bijective PCA executions-matching from 𝑌A to 𝑌B which ends the proof.

□

11 TOP/DOWN CORRESPONDING CLASSES (BIS)

In previous section 10, we have shown in theorem 10.13 that if 𝑋A and 𝑋B are corresponding w. r. t. A and B (in the

sense of definition 6.16), then 𝑌A = 𝑋A \ {A} and 𝑌B = 𝑋B \ {B} are semantically equivalent. We can note 𝑌 an

arbitrary PCA semantically equivalent with both 𝑌A and 𝑌B .

In section 9, we have shown in theorem 9.19 that for every PCA E environment of both 𝑋A and 𝑋B , 𝑋A | |E and

˜A𝑠𝑤 | |𝑌A | |E (resp. 𝑋B | |E and
˜B𝑠𝑤 | |𝑌B | |E) are linked by a PCA executions-matching

83

Pierre Civit and Maria Potop-Butucaru

It is time to combine this two results to realise that for every PCA E environment of both 𝑋A and 𝑋B , 𝑋A | |E and

˜A𝑠𝑤 | |E ′ (resp. 𝑋B | |E and
˜B𝑠𝑤 | |E ′) are linked by a PCA executions-matching where E ′ = E||𝑌 .

Hence (*) if E ′ cannot distinguish ˜A𝑠𝑤 from
˜B𝑠𝑤 , we will be able to show that E cannot distinguish 𝑋A from 𝑋B .

In this section, we formalise (*) in theorem 11.25 of monotonicity of implementation relation. However, some

assumptions are required to reduce the implementation of 𝑋B by 𝑋A into implementation of B by A. These are all

minor technical assumptions except for one: our implementation relation concerns only a particular subset of schedulers

so-called creation-oblivious, i. e. in order to compute (potentially randomly) the next transition, they do not take into

account the internal actions of a sub-automaton preceding its last destruction.

11.1 Creation-oblivious scheduler

Here we recall the definition of creation-oblivious scheduler (already introduced in subsection 6.4), that does not take

into account previous internal actions of a particular sub-automaton to output its probability over transitions to trigger.

We start by defining strict oblivious-schedulers that output the same transition with the same probability for pair of

execution fragments that differ only by prefixes in the same class of equivalence. This definition is inspired by the one

provided in the thesis of Segala, but is more restrictive since we require a strict equality instead of a correlation (section

5.6.2 in [8]).

Definition 11.1 (strict oblivious scheduler (recall)). Let �̃� be a PCA or a PSIOA, let �̃� ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (�̃�) and let ≡ be an

equivalence relation on 𝐹𝑟𝑎𝑔𝑠∗ (�̃�) verifying ∀𝛼1, 𝛼2 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (�̃�) s. t. 𝛼1 ≡ 𝛼2, 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼1) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼2) . We say that

�̃� is (≡)-strictly oblivious if ∀𝛼1, 𝛼2, 𝛼3 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (�̃�) s. t. 1) 𝛼1 ≡ 𝛼2 and 2) 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼3) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼2) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼1), then
�̃� (𝛼⌢

1
𝛼3) = �̃� (𝛼⌢

2
𝛼3).

Now we define the relation of equivalence that defines our subset of creation-oblivious schedulers. Intuitively, two

executions fragments ending on A creation are in the same equivalence class if they differ only in terms of internal

actions of A.

Definition 11.2 (𝛼 ≡𝑐𝑟A 𝛼 ′ (recall)). Let ˜A be a PSIOA, �̃� be a PCA, ∀𝛼, 𝛼 ′ ∈ 𝐹𝑟𝑎𝑔𝑠∗ (�̃�), we say 𝛼 ≡𝑐𝑟A 𝛼 ′ iff:

(1) 𝛼, 𝛼 ′ both ends on A-creation.

(2) 𝛼 and𝛼 ′ differ only in theA-exclusive actions and the states ofA, i. e. ` (𝛼) = ` (𝛼 ′)where ` (𝛼 = 𝑞0𝑎1𝑞1 ...𝑎𝑛𝑞𝑛) ∈
𝐹𝑟𝑎𝑔𝑠∗ (�̃�) is defined as follows:

• remove the A-exclusive actions

• replace each state 𝑞𝑖 by its configuration 𝐶𝑜𝑛𝑓 𝑖𝑔(�̃�) (𝑞) = (A𝑖 , S𝑖)
• replace each configuration (A𝑖 , S𝑖) by (A𝑖 , S𝑖) \ {A}
• replace the (non-alternating) sequences of identical configurations (due to A-exclusiveness of removed

actions) by one unique configuration.

(3) 𝑡𝑟𝑎𝑐𝑒 (𝛼) = 𝑡𝑟𝑎𝑐𝑒 (𝛼 ′),
(4) 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼1) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼2)

We can remark that the items 4 can be deduced from 1 and 2 if 𝑋 is configuration-conflict-free. We can also remark

that if �̃� is a A-conservative PCA, we can replace ` (𝛼) = ` (𝛼 ′), by `A𝑒 (𝛼) ↾ (�̃� \ {A}) = `A𝑒 (𝛼 ′) ↾ (�̃� \ {A}) but
we want to be as general as possible for next definition of creation oblivious scheduler :

Definition 11.3 (creation-oblivious scheduler). Let ˜A be a PSIOA, �̃� be a PCA, �̃� ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (�̃�). We say that �̃� is

A-creation oblivious if it is (≡𝑐𝑟A)-strictly oblivious.

84

Dynamic Probabilistic Input Output Automata

We say that �̃� is creation-oblivious if it is A-creation oblivious for every sub-automaton A of �̃� (A ∈ ⋃
𝑞∈𝑠𝑡𝑎𝑡𝑒𝑠 (�̃�)

𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(�̃�) (𝑞))). We note 𝐶𝑟𝑂𝐵 the function that maps every PCA �̃� to the set of creation-oblivious schedulers

of �̃� . If𝑊 is not a PCA but a PSIOA, 𝐶𝑟𝑂𝐵(𝑊) = 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (𝑊).
If �̃� isA-conservative and �̃� isA-creation oblivious, we note 𝑜𝑏𝑙𝑖𝑣𝑖𝑜𝑢𝑠A,𝛽,𝑒 (�̃�) (and usually �̃� |A,𝛽,𝑒 when it is clear

in the context) the (unique by definition) scheduler s. t. for every 𝛼, 𝛼 ′ ∈ 𝐹𝑟𝑎𝑔𝑠∗ (�̃�) with i) 𝛼 is ending on A-creation

, ii) �̃� .`A𝑒 (𝛼) ↾ (�̃� \ {A}) = 𝑒 , iii) 𝑡𝑟𝑎𝑐𝑒 (𝛼) = 𝛽 and iv) 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼 ′) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼), then �̃� |A,𝛽,𝑒 (𝛼 ′) = �̃� (𝛼⌢𝛼 ′). Let us
note that 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼) is entirely defined with i) and ii). We remark that if such an execution fragment 𝛼 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (�̃�)
verifying i), ii) and iii) exists, then �̃� |A,𝛽,𝑒 = �̃� |�̃� , the sub-scheduler conditioned by �̃� and 𝛼 in the sense of definition

11.4 stated immediately below.

Definition 11.4 (conditioned scheduler). Let A be a PSIOA, 𝜎 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (A) and let 𝛼1 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A). We note

𝜎 |𝛼1
: {𝛼2 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A)|𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼2) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼1)} → 𝑆𝑢𝑏𝐷𝑖𝑠𝑐 (𝑑𝑡𝑟𝑎𝑛𝑠 (A)) the sub-scheduler conditioned by 𝜎 and 𝛼1

that verifies ∀𝛼2 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A), 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼2) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼1), 𝜎 |𝛼1
(𝛼2) = 𝜎 (𝛼⌢

1
𝛼2).

We take the opportunity to state a lemma of conditional probability that will be used later for lemma 11.24.

Lemma 11.5 (conditional measure law). Let A be a PSIOA, 𝜎 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (A) and let 𝛼1 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A) and 𝜎 |𝛼1

the sub-scheduler conditioned by 𝜎 and 𝛼1. Let 𝛼𝑜 , 𝛼2 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A), 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼2) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼1) ≜ 𝑞12. Then

𝜖𝜎,𝛼𝑜 (𝐶𝛼⌢
1
𝛼2
) = :

{
𝜖𝜎,𝛼𝑜 (𝐶𝛼1

) · 𝜖𝜎 |𝛼
1
,𝑞12
(𝐶𝛼2
) if 𝛼1 ≰ 𝛼𝑜

𝜖𝜎 |𝛼
1
,𝛼′𝑜 (𝐶𝛼2

) if 𝛼𝑜 = 𝛼⌢
1
𝛼 ′𝑜

Proof. We note 𝛼12 = 𝛼⌢
1
𝛼2.

(1) 𝛼1 ≰ 𝛼𝑜 :

(a) 𝛼1 ≰ 𝛼𝑜 and 𝛼𝑜 ≰ 𝛼1:

This implies 𝛼12 ≰ 𝛼𝑜 and 𝛼𝑜 ≰ 𝛼12 thus 𝜖𝜎,𝛼𝑜 (𝐶𝛼⌢
1
𝛼2
) = 𝜖𝜎,𝛼𝑜 (𝐶𝛼1

) = 0 which ends the proof.

(b) 𝛼𝑜 ≤ 𝛼1:

This implies 𝛼𝑜 ≤ 𝛼12 By induction on size 𝑠 of 𝛼2. Basis: 𝑠 = 0, i. e. 𝛼2 = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼1) = 𝑞12. Thus, we meet

the second case of definition of 𝜖𝜎 |𝛼
1
,𝑞12
(𝐶𝛼2
): 𝛼2 ≤ 𝑞12, which means 𝜖𝜎 |𝛼

1
,𝑞12
(𝐶𝛼2
) = 1 and terminates

the basis. Induction: We assume the result to be true up to size 𝑠 ∈ N and we want to show it is still true

for size 𝑠 + 1. Let 𝛼2 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A), 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼2) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼1) ≜ 𝑞12 with |𝛼2 | = 𝑠 + 1. We note 𝛼2 = 𝛼 ′⌢
2
𝑞′𝑎𝑞

and 𝛼 ′
12

= 𝛼⌢
1
𝛼 ′

2
. We have |𝛼 ′

2
| = 𝑠 and 𝛼𝑜 ≤ 𝛼 ′

12

By definition we have 𝜖𝜎 |𝛼
1
,𝑞12
(𝐶𝛼2
) = 𝜖𝜎 |𝛼

1
,𝑞12
(𝐶𝛼′

2

) · 𝜎 (𝛼 ′
2
) ([(A,𝑞′,𝑎)) · [(A,𝑞′,𝑎) (𝑞).

In Parallel, by definition: 𝜖𝜎,𝛼𝑜 (𝐶𝛼12
) = 𝜖𝜎,𝛼𝑜 (𝐶𝛼′

12

) · 𝜎 (𝛼 ′
12
) ([(A,𝑞′,𝑎)) · [(A,𝑞′,𝑎) (𝑞) and by induction

assumption, 𝜖𝜎,𝛼𝑜 (𝐶𝛼12
) = 𝜖𝜎,𝛼𝑜 (𝐶𝛼1

) ·𝜖𝜎 |𝛼
1
,𝑞12
(𝐶𝛼′

2

) ·𝜎 (𝛼 ′
12
) ([(A,𝑞′,𝑎)) ·[(A,𝑞′,𝑎) (𝑞) and so 𝜖𝜎,𝛼𝑜 (𝐶𝛼12

) =
𝜖𝜎,𝛼𝑜 (𝐶𝛼1

) · 𝜖𝜎 |𝛼
1
,𝑞12
(𝐶𝛼2
), which ends the induction and so the case.

(2) 𝛼𝑜 = 𝛼⌢
1
𝛼 ′𝑜 . By definition, 𝜖𝜎,𝛼𝑜 (𝐶𝛼1

) = 1

(a) both 𝛼12 ≰ 𝛼𝑜 and 𝛼𝑜 ≰ 𝛼12. This implies 𝛼2 ≰ 𝛼 ′𝑜 and 𝛼 ′𝑜 ≰ 𝛼2 Then, by definition, 𝜖𝜎,𝛼𝑜 (𝐶𝛼12
) =

𝜖𝜎 |𝛼
1
,𝛼′𝑜 (𝐶𝛼2

) = 0.

(b) 𝛼12 ≤ 𝛼𝑜 . This implies 𝛼2 ≤ 𝛼 ′𝑜 . Then, by definition, 𝜖𝜎,𝛼𝑜 (𝐶𝛼12
) = 𝜖𝜎 |𝛼

1
,𝛼′𝑜 (𝐶𝛼2

) = 1

(c) 𝛼𝑜 ≤ 𝛼12:

We proceed by induction on size 𝑠 of 𝛼2.

Basis: 𝑠 = 0, i. e. 𝛼2 = 𝑞12. Then by definition 𝜖𝜎,𝛼𝑜 (𝐶𝛼12
) = 𝜖𝜎,𝛼𝑜 (𝐶𝛼1

) = 1. Moreover 𝑞12 ≤ 𝛼 ′𝑜 which

means 𝜖𝜎 |𝛼
1
,𝛼′𝑜 (𝐶𝛼2

) = 1, which ends the basis.

85

Pierre Civit and Maria Potop-Butucaru

Induction:

We assume the result to be true up to size 𝑠 ∈ N and we want to show it is still true for size 𝑠 + 1. Let

𝛼2 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A), 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼2) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼1) ≜ 𝑞12 with |𝛼2 | = 𝑠 + 1. We note 𝛼2 = 𝛼 ′⌢
2
𝑞′𝑎𝑞 and 𝛼 ′

12
= 𝛼⌢

1
𝛼 ′

2
.

We have |𝛼 ′
2
| = 𝑠 and 𝛼𝑜 ≤ 𝛼 ′

12
.

By definition we have 𝜖𝜎 |𝛼
1
,𝛼′𝑜 (𝐶𝛼2

) = 𝜖𝜎 |𝛼
1
,𝛼′𝑜 (𝐶𝛼′2) · 𝜎 (𝛼

′
2
) ([(A,𝑞′,𝑎)) · [(A,𝑞′,𝑎) (𝑞).

In Parallel, by definition: 𝜖𝜎,𝛼𝑜 (𝐶𝛼12
) = 𝜖𝜎,𝛼𝑜 (𝐶𝛼′

12

) · 𝜎 (𝛼 ′
12
) ([(A,𝑞′,𝑎)) · [(A,𝑞′,𝑎) (𝑞) and by induction

assumption, 𝜖𝜎,𝛼𝑜 (𝐶𝛼12
) = 𝜖𝜎,𝛼𝑜 (𝐶𝛼1

) ·𝜖𝜎 |𝛼
1
,𝛼′𝑜 (𝐶𝛼′2) ·𝜎 (𝛼

′
12
) ([(A,𝑞′,𝑎)) ·[(A,𝑞′,𝑎) (𝑞) and so 𝜖𝜎,𝛼𝑜 (𝐶𝛼⌢

1
𝛼2
) =

𝜖𝜎,𝛼𝑜 (𝐶𝛼1
) · 𝜖𝜎 |𝛼

1
,𝛼′𝑜 (𝐶𝛼2

). Finally, since 𝜖𝜎,𝛼𝑜 (𝐶𝛼1
) = 1, we have 𝜖𝜎,𝛼𝑜 (𝐶𝛼12

) = 𝜖𝜎 |𝛼
1
,𝛼′𝑜 (𝐶𝛼2

) which ends

the induction, the case and so the proof.

□

We have formally defined our notion of creation-oblivious scheduler. This will be a key property to ensure lemma

11.23 that allows to reduce the measure of a class of comportment as a function of measures of classes of shorter

comportment where no creation of A or B occurs excepting potentially at very last action. This reduction is more or

less necessary to obtain monotonicity of implementation relation.

11.2 Creation made explicit

In this subsection, we recall notion of creation-explicitness (already introduced in subsection 6.2). This property will

allow us to obtain the reduction of lemma 11.23 mentioned in last paragraph.

Definition 11.6 (creation-explicit PCA). Let A be a PSIOA and 𝑋 be a PCA. We say that 𝑋 is A-creation-explicit

iff: it exists a set of actions, noted 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A), s. t. ∀𝑞𝑋 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋), ∀𝑎 ∈ 𝑠𝑖𝑔(𝑋) (𝑞𝑋), if we note

A𝑋 = 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑋)) and 𝜑𝑋 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 (𝑋) (𝑞𝑋) (𝑎), thenA ∉ A𝑋 ∧A ∈ 𝜑𝑋 ⇐⇒ 𝑎 ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A).

This property of creation-explicitness will clarify the condition to obtain surjectivity of ˜̀
A,+
𝑒 since it suffices to

consider this function with a restricted range where no action of 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) appears before last action.

Lemma 11.7 (Partial surjectivity with explicit creation). Let A be a PSIOA and 𝑋 be a A-conservative and

A-creation-explicit PCA. Let ˜E be partially-compatible with 𝑋 . Let 𝑌 = 𝑋 \ {A}. Let EA = ˜E||𝑌 . Let (((˜E||𝑋). ˜̀A𝑧 ,
(˜E||𝑋) . ˜̀A,+𝑧), (˜E||𝑋) . ˜̀A,+𝑡𝑟 , (˜E||𝑋) . ˜̀A,+𝑒) the ˜E-extension of ((𝑋 . ˜̀A𝑧 , 𝑋 . ˜̀A,+𝑧), 𝑋 . ˜̀A,+𝑡𝑟 , 𝑋 . ˜̀

A,+
𝑒). Let𝛼, 𝛼 ′ ∈ 𝐸𝑥𝑒𝑐𝑠 (EA | | ˜A𝑠𝑤)

s. t. 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) ∩ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝛼) = ∅
1) Then ∃𝛼 ∈ 𝑑𝑜𝑚(˜̀A𝑒) s. t. ˜̀

A,+
𝑒 (𝛼) = ˜̀

A
𝑒 (𝛼) = 𝛼 .

2) If 𝛼 ′ = 𝛼⌢𝑞, 𝑎!, 𝑞
′ with 𝑎! ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A), then ∃𝛼 ′ ∈ 𝑑𝑜𝑚(˜̀A,+𝑒) s. t. ˜̀

A,+
𝑒 (𝛼 ′) = 𝛼 ′.

Proof. We proof the results in the same order they are stated in the lemma:

(1) We note 𝛼 = 𝑞0, 𝑎1, ..., 𝑎𝑛, 𝑞𝑛 ... and we proof the result by induction on the prefix size 𝑠 . Basis: the result

trivially holds for any execution 𝛼 of size 0 by construction of 𝑋 \ {A} that requires 𝑋 .`A𝑠 (𝑠𝑡𝑎𝑟𝑡 (𝑋)) =
𝑠𝑡𝑎𝑟𝑡 (𝑋 \ {A}). We assume the result holds up to prefix size 𝑠 and we show it still holds for prefix size

𝑠 + 1. We note 𝛼𝑠 = 𝑞0, 𝑎1, ..., 𝑎𝑠 , 𝑞𝑠 and 𝛼𝑠 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋) s. t. ˜̀
A
𝑒 (𝛼𝑠) = 𝛼𝑠 . By lemma 9.17 of signature

preservation 𝑎𝑠+1 ∈ 𝑠𝑖𝑔(˜E||𝑋) (𝑞𝑠). Moreover, by assumption 𝑎𝑠+1 ∉ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) which means the

application of lemma 9.8 of homomorphic transitions lead us to [(˜E | |𝑋),�̃�𝑠 ,𝑎𝑠+1
`A𝑧←→ [(EA | | ˜A𝑠𝑤),𝑞𝑠 ,𝑎𝑠+1 . So it

exists 𝑞𝑠+1 ∈ 𝑠𝑢𝑝𝑝 ([(˜E | |𝑋),�̃�,𝑎!

) with `A𝑧 (𝑞) = 𝑞. So `A𝑒 (𝛼⌢𝑠 𝑞𝑠𝑎𝑠+1𝑞𝑠+1) = 𝛼𝑠+1. This ends the induction and so

the proof of 1. .

86

Dynamic Probabilistic Input Output Automata

(2) We apply 1. and note 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋) s. t. ˜̀
A
𝑒 (𝛼) = 𝛼 . By lemma 9.17 of signature preservation 𝑎! ∈

𝑠𝑖𝑔(˜E||𝑋) (𝑞) with 𝑞 = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼). Moreover, by lemma 9.8 of homomorphic transition, [(˜E | |𝑋),�̃�,𝑎!

`
A,+
𝑧←→

[(EA | | ˜A𝑠𝑤),𝑞,𝑎!

. So it exists 𝑞′ ∈ 𝑠𝑢𝑝𝑝 ([(˜E | |𝑋),�̃�,𝑎!

) with `A,+𝑧 (𝑞′) = 𝑞′. So `A,+𝑒 (𝛼⌢𝑞𝑎!𝑞
′) = 𝛼 ′ which ends

the proof.

□

Since we i) classify executions in some classes according to their projection on an environment and ii) are concerned by

the actions of the execution that createA, the next lemma will simplify this classification. It states that if the projection

𝑒 of an execution 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (EA | | ˜A𝑠𝑤) on the environment EA ends by an action 𝑎! ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A), then
the execution necessarily ends by 𝑎!.

Lemma 11.8 (environment projection ends on creation implies the execution itself ends on creation).

Let A be a PSIOA and 𝑋 be a A-conservative and A-creation-explicit PCA. Let ˜E be partially-compatible with 𝑋 . Let

𝑌 = 𝑋 \ {A}. Let EA = ˜E||𝑌 .
Let (((˜E||𝑋) . ˜̀A𝑧 , (˜E||𝑋) . ˜̀A,+𝑧), (˜E||𝑋) . ˜̀A,+𝑡𝑟 , (˜E||𝑋). ˜̀A,+𝑒) the ˜E-extension of

((𝑋 . ˜̀A𝑧 , 𝑋 . ˜̀A,+𝑧), 𝑋 . ˜̀A,+𝑡𝑟 , 𝑋 . ˜̀
A,+
𝑒).

Let 𝑎! ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) and 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (EA | | ˜A𝑠𝑤) s. t. 𝛼 ↾ EA = 𝑒 ′ = 𝑒⌢𝑞, 𝑎!, 𝑞
′ with 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-

𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) ∩ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑒) = ∅.
Then it exist 𝛼 ∈ 𝑑𝑜𝑚(˜̀A,+𝑒) s. t. ˜̀

A,+
𝑒 (𝛼) = 𝛼 .

Proof. We note 𝛼 = 𝛼1⌢𝑞1

ℓ
, 𝑎!, 𝑞

2⌢
𝑓
𝛼2

We have 𝑞1

ℓ
↾ ˜A𝑠𝑤 = 𝑞

𝜙

˜A𝑠𝑤
. Indeed let assume the contrary: 𝑞1

ℓ
↾ ˜A𝑠𝑤 ≠ 𝑞

𝜙

˜A𝑠𝑤
. Then 𝑞 ↾ ˜A𝑠𝑤 ≠ 𝑞

𝜙

˜A𝑠𝑤
for every

state 𝑞 ∈ 𝛼1
. Since 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) ∩ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑒) = ∅, 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) ∩ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝛼1) = ∅. Thus we

apply lemma 11.7 of partial surjectivity with explicit creation to obtain, it exists 𝛼1 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋) s. t. ˜̀
A,+
𝑒 (𝛼1) = 𝛼1

with both A ∈ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼1) ↾ 𝑋)) and 𝑎! ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) ∩ 𝑠𝑖𝑔(𝑋) (𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼1)) ↾ 𝑋) which
is impossible.

Since 𝑞1

ℓ
↾ ˜A𝑠𝑤 = 𝑞

𝜙

˜A𝑠𝑤
, 𝑞 ↾ ˜A𝑠𝑤 = 𝑞

𝜙

˜A𝑠𝑤
for every state 𝑞 ∈ 𝛼2

. Hence, 𝛼2 = 𝑞2

𝑓
to respect 𝛼 ↾ EA = 𝑒 ′, which

means 𝛼 = 𝛼1⌢𝑞1

ℓ
, 𝑎!, 𝑞

2

𝑓
.

Since 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) ∩𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑒) = ∅, 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) ∩𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝛼12) = ∅. Thus we apply lemma

11.7 of partial surjectivity with explicit creation to obtain ∃𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋) s. t. ˜̀
A,+
𝑒 (𝛼) = 𝛼 .

□

Here we recall the notion of print (already introduced in 4.6). This notion captures the perception of a system
˜E||𝑋

by the environment
˜E. This notion allows us to propose an intuitive definition of implementation that is monotonic w.

r. t. PSIOA creation.

Definition 11.9 (print = trace + environment projection). Let 𝐾 be a PSIOA (resp. a PCA). Let E be a PSIOA (resp. a

PCA) partially-compatible with𝐾 . We note 𝑝𝑟𝑖𝑛𝑡 (E,𝐾) : 𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (E||𝐾) ↦→ (𝑡𝑟𝑎𝑐𝑒E | |𝐾 (𝛼), 𝛼 ↾ E). For every Z = (𝛽, 𝑒)
where 𝛽 is a sequence of actions and 𝑒 an alternating sequence of states and action, we note𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (E||𝐾), 𝑝𝑟𝑖𝑛𝑡 (E,𝐾) , Z) =
{𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (E||𝐾) |𝑝𝑟𝑖𝑛𝑡 (E,𝐾) (𝛼) = Z }.

The next definition allows to aggregate print-based classification into a larger classification in order to prepare the

reduction of the implementation of a system 𝑋B by a system 𝑋A into the implementation of B by A.

87

Pierre Civit and Maria Potop-Butucaru

Definition 11.10 (aggregate print without creation). Let A be a PSIOA, let 𝑋 be a A-conservative and A-creation-

explicit PCA. Let
˜E be a PCA partially-compatible with𝑋 . Let𝑌 = 𝑋 \ {A}. For every Z = (𝛽, 𝑒) where 𝛽 is a sequence of

actions and 𝑒 = 𝑒 ′⌢𝑞′𝑎𝑞 an alternating sequence of states and actions with 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑒 ′) ∩ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) = ∅,
then we note 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋), 𝑝𝑟𝑖𝑛𝑡𝑝𝑟𝑜𝑥𝑦,A

(˜E,𝑋)
, Z) = {𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋) |𝑡𝑟𝑎𝑐𝑒 (𝛼) = 𝛽 ∧ (˜E||𝑋).`A,+𝑒 (𝛼) ↾ (˜E||𝑌) = 𝑒}.

Now we state the bijectivity of ˜̀
A,+
𝑒 (when no creation occurs) in terms of corresponding classes of external

perception.

Lemma 11.11 (˜̀
A,+
𝑒 is a bijection from

˜C to C). LetA be a PSIOA and𝑋 be aA-conservative andA-creation-explicit

PCA. Let ˜E be partially-compatible with𝑋 . Let𝑌 = 𝑋\{A}. LetEA = ˜E||𝑌 . Let (((˜E||𝑋). ˜̀A𝑧 , (˜E||𝑋). ˜̀A,+𝑧), (˜E||𝑋). ˜̀A,+𝑡𝑟 , (˜E||𝑋). ˜̀A,+𝑒)
the ˜E-extension of ((𝑋 . ˜̀A𝑧 , 𝑋 . ˜̀A,+𝑧), 𝑋 . ˜̀A,+𝑡𝑟 , 𝑋 . ˜̀

A,+
𝑒).

For every Z = (𝛽, 𝑒 ′ = 𝑒⌢𝑞, 𝑎, 𝑞′) where 𝛽 is a sequence of actions and 𝑒 ′ an alternating sequence of states and action

with 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) ∩ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑒) = ∅, (˜E||𝑋) . ˜̀A,+𝑒 is a bijection from ˜C to C, where

• ˜C = 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋), 𝑝𝑟𝑖𝑛𝑡𝑝𝑟𝑜𝑥𝑦,A(E,𝑋) , Z)
• C = 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (EA | | ˜A𝑠𝑤), 𝑝𝑟𝑖𝑛𝑡EA , ˜A𝑠𝑤 , Z)

Proof. • Injectivity is immediate by lemma 7.11, item (2).

• Surjectivity: Let 𝛼 ∈ C. By previous lemma 11.7, ∃𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋) s. t. ˜̀
A,+
𝑒 (𝛼) = 𝛼 . Finally, since ˜̀

A,+
𝑒 is a

strong executions-matching, the trace is preserved which means 𝑡𝑟𝑎𝑐𝑒 (𝛼) = 𝑡𝑟𝑎𝑐𝑒 (𝛼).
□

This bijectivity allows us to obtain the preservation of measure of probability for corresponding classes of external

perception.

Lemma 11.12 (eqiprobability of top/down corresponding cones). Let A be a PSIOA and 𝑋 be a A-conservative

andA-creation-explicit PCA. Let ˜E be partially-compatible with𝑋 . Let𝑌 = 𝑋\{A}. LetEA = ˜E||𝑌 . Let (((˜E||𝑋). ˜̀A𝑧 , (˜E||𝑋). ˜̀A,+𝑧), (˜E||𝑋). ˜̀A,+𝑡𝑟 , (˜E||𝑋). ˜̀A,+𝑒)
the ˜E-extension of ((𝑋 . ˜̀A𝑧 , 𝑋 . ˜̀A,+𝑧), 𝑋 . ˜̀A,+𝑡𝑟 , 𝑋 . ˜̀

A,+
𝑒).

Let Z = (𝛽, 𝑒 ′ = 𝑒⌢𝑞, 𝑎, 𝑞′) where 𝛽 is a sequence of actions and 𝑒 ′ an alternating sequence of states and action with

𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) ∩ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑒) = ∅,
Let 𝐶

˜C =
⋃
�̃� ∈ ˜C{𝛼

′ ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋) |𝛼 ⪯ 𝛼 ′} and 𝐶C =
⋃
𝛼 ∈C{𝛼 ′ ∈ 𝐸𝑥𝑒𝑐𝑠 (EA | | ˜A𝑠𝑤) |𝛼 ⪯ 𝛼 ′} with ˜C =

𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋), 𝑝𝑟𝑖𝑛𝑡𝑝𝑟𝑜𝑥𝑦,A(E,𝑋) , Z) and C = 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (EA | | ˜A𝑠𝑤), 𝑝𝑟𝑖𝑛𝑡EA , ˜A𝑠𝑤 , Z).
Then for every �̃� ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (˜E||𝑋), for 𝜎 (((˜E||𝑋) . ˜̀A𝑧 , (˜E||𝑋). ˜̀A,+𝑧), (˜E||𝑋). ˜̀A,+𝑡𝑟 , (˜E||𝑋). ˜̀A,+𝑒)-alter ego of �̃� ,
𝜖�̃�,𝛿�̄� (˜E||𝑋)

(𝐶
˜C) = 𝜖𝜎,𝛿�̄� (EA || ˜A𝑠𝑤)

(𝐶C)

Proof. By lemma 11.11, ˜̀
A,+
𝑒 is a bijection from

˜C to C. We note {(𝛼𝑖 , 𝛼𝑖)}𝑖∈𝐼 = ˜C×C the related pairs of executions

s. t. ˜̀
A,+
𝑒 (𝛼𝑖) = 𝛼𝑖 . We obtain 𝜖�̃�,𝛿�̄� (˜E||𝑋)

(𝐶
˜C) =

∑
𝑖∈𝐼 𝜖�̃�,𝛿�̄� (˜E||𝑋)

(𝛼𝑖) and 𝜖𝜎,𝛿�̄� (EA || ˜A𝑠𝑤)
(𝐶C) =

∑
𝑖∈𝐼 𝜖𝜎,𝛿�̄� (EA || ˜A𝑠𝑤)

(𝐶𝛼𝑖).
Thus it is enough to show that ∀𝑖 ∈ 𝐼 , 𝜖�̃�,𝛿�̄� (˜E||𝑋)

(𝐶�̃�𝑖) = 𝜖𝜎,𝛿�̄� (EA || ˜A𝑠𝑤)
(𝐶𝛼𝑖) which is given by theorem 7.10 that can

be applied since ˜̀
A,+
𝑒 is a continued executions-matching by theorem 9.23.

□

In next subsection, we want to extend this lemma 11.12 to any case with an arbitrary number of destructions and

creations of the sub-automaton A.

88

Dynamic Probabilistic Input Output Automata

11.3 Monotonicity

In this subsection, we want to reduce the computation of the probability measure of a class of executions to the

computation of several classes without creation (excepting at very last action) in order to apply lemma 11.12 and then

use the implementation of B by A.

We start by a sequence of definitions to identify easily an execution 𝛼 as the concatenations of several execution

fragments 𝛼𝑖 where each 𝛼𝑖 does not contain creation actions except for very last action.

Definition 11.13 (𝑛-building-vector for traces). Let 𝛽 be a sequence of actions . Let 𝑛 ∈ N∪ {∞}. A 𝑛-building-vector of
𝛽 is a (potentially infinite) vector

→
𝛽 = (𝛽1, ..., 𝛽𝑖 , ...) of |

→
𝛽 | = 𝑛 sequences of actions s. t. 𝛽1⌢ ...𝛽𝑖−1⌢𝛽𝑖⌢ ... = 𝛽 . We

note 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔-𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝛽, 𝑛) the set of 𝑛-building-vector of 𝛽 and

→
𝛽
𝑛
: 𝛽 to say

→
𝛽 ∈ 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔-𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝛽, 𝑛). We note

→
𝛽 [𝑖] = 𝛽𝑖 and

→
𝛽 [: 𝑖] = 𝛽1⌢ ...⌢𝛽𝑖−1

.

Definition 11.14 (𝑛-building-vector for executions). Let 𝑒 be an alternating sequence states and actions starting by

state and finishing by a state if 𝑒 is finite. Let 𝑛 ∈ N ∪ {∞}. A 𝑛-building-vector of 𝑒 is a (potentially infinite) vector

→
𝑒 =

(𝑒1, ..., 𝑒𝑖 , ...) of |→𝑒 | = 𝑛 alternating sequences of states and actions starting by state and finishing by a state (excepting

potentially the last one if it is infinite) s. t. 𝑒1⌢ ...𝑒𝑖−1⌢𝑒𝑖⌢ ... = 𝑒 (with ∀𝑖 ∈ [1, |→𝑒 | − 1], 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝑒𝑖+1) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝑒𝑖)).
We note 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔-𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝑒, 𝑛) the set of 𝑛-building-vector of 𝑒 and →𝑒 𝑛

: 𝑒 to say

→
𝑒 ∈ 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔-𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝑒, 𝑛). We note

𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔-𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝑒) = ⋃
𝑛∈N∪{∞} 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔-𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝑒, 𝑛) and

→
𝑒 : 𝑒 to say 𝑒 ∈ 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔-𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝑒). We note

→
𝑒 [𝑖] = 𝑒𝑖

and

→
𝑒 [: 𝑖] = 𝑒1⌢ ...⌢𝑒𝑖−1

.

Definition 11.15 (
→
𝑒 :

(𝑋,A)
𝑒). Let𝑊 and 𝑋 be two PCA s. t. 𝑋 is A-creation-explicit, 𝑒 ∈ 𝐹𝑟𝑎𝑔𝑠 (𝑊). We note

→
𝑒 :

(𝑋,A)
𝑒 (and

→
𝑒 :

A
𝑒 when 𝑋 is clear in the context) the (clearly unique) vector

→
𝑒 ∈ 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔-𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝑒) of execution

fragments s. t.

(1) ∀𝑖 ∈ [1, 𝑛], (𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (→𝑒 [𝑖]) \ 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(→𝑒 [𝑖])) ∩ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) = ∅ and
(2) ∀𝑖 ∈ [1, 𝑛 − 1], 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(→𝑒 [𝑖])) ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A).

We write

→
𝑒

𝑛
:

(𝑋,A)
or

→
𝑒
𝑛
:

A
to indicate that |→𝑒 | = 𝑛.

Definition 11.16 (A-decomposition). Let A be a PSIOA and 𝑋 be a PCA. Let 𝛼 = 𝑞0𝑎1 ...𝑎𝑛𝑞𝑛 ... ∈ 𝐹𝑟𝑎𝑔𝑠 (𝑋). We say

that

• 𝛼 is a A-open-portion iff 𝛼 does not create A, i. e. ∀𝑖 ∈ [1, |𝛼 |]A ∉ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑖−1)) =⇒ A ∉

𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑖)).
• 𝛼 is a A-closed-portion iff 𝛼 does not create A excepting at very last last action, i. e. ∀𝑖 ∈ [1, |𝛼 |]A ∉

𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑖−1)) ∧ A ∈ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑖)) ⇐⇒ 𝑖 = |𝛼 |.
• 𝛼 is a A-portion of 𝑋 if it is either a A-open-portion or a A-closed-portion.

We call A-decomposition of 𝛼 , note A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼), the unique vector (𝛼1, ..., 𝛼𝑛, ...) ∈ 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔-𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝛼) s.
t.

• ∀𝑖 ∈ [1, |A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼) | − 1], 𝛼𝑖 is a A-closed-portion of 𝑋 and

• if |A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼) | = 𝑛 ∈ N, 𝛼𝑖 is a A-portion of 𝑋 .

Lemma 11.17 (

→
𝛼 :

(𝑋,A)
𝛼 means

→
𝛼 = A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼)). Let A be a PSIOA and 𝑋 be a A-creation-explicit PCA.

Let 𝛼 ∈ 𝐹𝑟𝑎𝑔𝑠 (𝑋). Let →𝛼 = A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼). Then →𝛼 𝑛
:

(𝑋,A)
𝛼 .

89

Pierre Civit and Maria Potop-Butucaru

Proof. By definition,

→
𝛼 ∈ 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔-𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝛼). Still by definition, ∀𝑖 ∈ [1, |A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼) | − 1], 𝛼𝑖 is a

A-closed-portion of 𝑋 , i. e. 𝛼𝑖 does not createA excepting at very last last action 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(𝛼𝑖). By definition of creation-

explicitness, the two item of definition 11.15 are verified for every 𝑖 ∈ [1, |A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼) | − 1]. Finally, by
definition, if |A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼) | = 𝑛 ∈ N, 𝛼𝑛 is a A-portion of 𝑋 , i. e. 𝛼𝑛 does not create A excepting potentially

at very last last action if 𝛼𝑛 is finite. Again, by definition of creation-explicitness, the first item of definition 11.15 is

verified.

□

After this sequence of definitions we can start our process of decomposition. First, we partition each class of

equivalence into an aggregation several "proxy classes" that will able the application of lemma 11.12 after their

decomposition.

Lemma 11.18 (Partitioning of class 𝐶𝛽,𝑒 into classes 𝐶

→
𝛽 ,
→
𝑒
). Let A be a PSIOA, let 𝑋 be a A-conservative PCA

and ˜E partially-compatible with𝑋 . Let 𝛽 be a sequence of actions, let 𝑒 an alternating sequence of states and actions starting

by a state and finishing by a state if finite and let ˜Z = (𝛽, 𝑒). Let

• ˜C ˜Z ≜ 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋), 𝑝𝑟𝑖𝑛𝑡 (˜E,𝑋) ,
˜Z) ≜ {𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋) |𝑝𝑟𝑖𝑛𝑡 (˜E,𝑋) (𝛼) = ˜Z }.

• ℭ
˜Z = { ˆC

→
𝑒 ,
→
𝛽 |𝑛 ∈ N ∪ {∞},

→
𝛽
𝑛
: 𝛽, 𝑒 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋 \ {A}), 𝑒 ↾ ˜E = 𝑒,

→
𝑒
𝑛
: 𝑒}, where

• ˆC
→
𝑒 ,
→
𝛽 = {𝛼 |→𝛼 = A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼),∀𝑖 ∈ [1, |→𝛼 |], 𝑡𝑟𝑎𝑐𝑒 (→𝛼 [𝑖]) =

→
𝛽 [𝑖], (˜E||𝑋) .`A𝑒 (

→
𝛼 [𝑖]) ↾ (˜E||𝑋 \ {A}) =

→
𝑒 [𝑖]}

Then ℭ
˜Z is a partition of ˜C ˜Z .

Proof. The proof is immediate by construction since the A-decomposition is unique. We first show that
˜C (𝛽,𝑒) =⋃

𝑛∈N∪{∞}
⋃
→
𝛽
𝑛
:𝛽

⋃
𝑒∈𝐸𝑥𝑒𝑐𝑠 (˜E | |𝑋\{A}),𝑒↾ ˜E=𝑒

⋃
→
𝑒
𝑛
:𝑒

ˆC
→
𝑒 ,
→
𝛽
.

By double inclusion:

• ⊆ Let 𝛼 ∈ ˜C (𝛽,𝑒) . We note

→
𝛼 = A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼). We note

→
𝛽 = 𝑡𝑟𝑎𝑐𝑒 (→𝛼),

→
𝑒 = 𝑡𝑟𝑎𝑐𝑒 (→𝛼) ↾ ˜E, →𝑒 =

(˜E||𝑋).`A𝑒 (
→
𝑒). By construction, we have

→
𝛽
𝑛
: 𝛽 and

→
𝑒
𝑛
: 𝑒 for some𝑛 ∈ N∪{∞}. Thus𝛼 ∈ ⋃𝑛∈N∪{∞}

⋃
→
𝛽
𝑛
:𝛽

⋃
𝑒∈𝐸𝑥𝑒𝑐𝑠 (˜E | |𝑋\{A}),𝑒↾ ˜E=𝑒

⋃
→
𝑒
𝑛
:𝑒

ˆC
→
𝑒 ,
→
𝛽
.

Hence
˜C (𝛽,𝑒) ⊆ ⋃

𝑛∈N∪{∞}
⋃
→
𝛽
𝑛
:𝛽

⋃
𝑒∈𝐸𝑥𝑒𝑐𝑠 (˜E | |𝑋\{A}),𝑒↾ ˜E=𝑒

⋃
→
𝑒
𝑛
:𝑒

ˆC
→
𝑒 ,
→
𝛽
.

• ⊇: Let 𝛼 ∈ ⋃
𝑛∈N∪{∞}

⋃
→
𝛽
𝑛
:𝛽

⋃
𝑒∈𝐸𝑥𝑒𝑐𝑠 (˜E | |𝑋\{A}),𝑒↾ ˜E=𝑒

⋃
→
𝑒
𝑛
:𝑒

ˆC
→
𝑒 ,
→
𝛽
. By construction, 𝑡𝑟𝑎𝑐𝑒 (𝛼) = 𝛽 and 𝛼 ↾

˜E = 𝑒 . Hence,
⋃
𝑛∈N∪{∞}

⋃
→
𝛽
𝑛
:𝛽

⋃
𝑒∈𝐸𝑥𝑒𝑐𝑠 (˜E | |𝑋\{A}),𝑒↾ ˜E=𝑒

⋃
→
𝑒
𝑛
:𝑒

ˆC
→
𝑒 ,
→
𝛽 ⊆ ˜C (𝛽,𝑒)

We show that ∀((
→
𝛽 ,
→
𝑒), (

→
𝛽
′
,
→
𝑒
′
)) s. t. (

→
𝛽 ,
→
𝑒) ≠ (

→
𝛽
′
,
→
𝑒
′
), ˆC

→
𝑒 ,
→
𝛽 ∩ ˆC

→
𝑒
′
,
→
𝛽
′

= ∅. Let (𝛼, 𝛼 ′) ∈ ˆC
→
𝑒 ,
→
𝛽 × ˆC

→
𝑒
′
,
→
𝛽
′

and

→
𝛼 = A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼) and →𝛼

′
= A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼 ′). If →𝛼 ≠

→
𝛼
′
, then necessarily 𝛼 ≠ 𝛼 . We proceed by

contradiction. Let assume

→
𝛼 =

→
𝛼
′
. We note 𝑛 = |→𝛼 | = |→𝛼

′
| with 𝑛 ∈ N ∪ {∞}. Then ∀𝑖 ∈ [1, 𝑛], 𝑡𝑟𝑎𝑐𝑒 (→𝛼 [𝑖]) =

𝑡𝑟𝑎𝑐𝑒 (→𝛼
′
[𝑖]) =

→
𝛽 [𝑖] =

→
𝛽
′
[𝑖] and (˜E||𝑋) .`A𝑒 (

→
𝛼 [𝑖]) ↾ EA = (˜E||𝑋) .`A𝑒 (

→
𝛼 [𝑖] ′) ↾ EA =

→
𝑒 [𝑖] = →𝑒

′
[𝑖]) which is not

possible since (
→
𝛽 ,
→
𝑒) ≠ (

→
𝛽
′
,
→
𝑒
′
). Thus→𝛼 ≠

→
𝛼 which means 𝛼 ≠ 𝛼 ′ and so ∀((

→
𝛽 ,
→
𝑒), (

→
𝛽
′
,
→
𝑒
′
)) s. t. (

→
𝛽 ,
→
𝑒) ≠ (

→
𝛽
′
,
→
𝑒
′
),

ˆC
→
𝑒 ,
→
𝛽 ∩ ˆC

→
𝑒
′
,
→
𝛽
′

= ∅.
□

90

Dynamic Probabilistic Input Output Automata

Now we use the A-creation explicitness to prove the lemma 11.19 and 11.20 in order to restate the previous lemma

11.18 into a simpler version to use, stated in lemma 11.21.

Lemma 11.19 (chunks ending on creation). Let A be a PSIOA, let 𝑋 be a A-conservative and A-creation-explicit

PCA and ˜E partially-compatible with 𝑋 . Let 𝛼 ∈ 𝐹𝑟𝑎𝑔𝑠 (˜E||𝑋) and 𝑒 ∈ 𝐹𝑟𝑎𝑔𝑠 (˜E||𝑋 \ {A}) s. t. (˜E||𝑋).`A,+𝑒 (𝛼) ↾
(˜E||𝑋 \ {A}) = 𝑒 .

Then

• 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(𝛼) = 𝑎! ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) =⇒ 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(𝑒) = 𝑎! ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A).
• if 𝛼 ∈ 𝑑𝑜𝑚(˜̀A,+𝑒),
𝑙𝑎𝑐𝑡𝑖𝑜𝑛(𝛼) = 𝑎! ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) ⇐= 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(𝑒) = 𝑎! ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A).

Proof. We prove the two implications in the same order.

• =⇒) Let assume 𝑎! ≜ 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(𝛼) ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A). Since 𝑋 is A-creation-explicit, we have 𝛼 =

𝛼 ′⌢𝑞′𝑎!𝑞 with A ∉ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞′)). Thus 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(𝑒) = 𝑎! ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A).
• ⇐=) Let assume 𝑎! ≜ 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(𝑒) ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A). Thus 𝑎! ∈ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝛼). Since 𝑋 is A-creation-

explicit, it implies 𝛼 = 𝛼1⌢𝑞1

ℓ
, 𝑎!, 𝑞

2⌢
𝑓
𝛼2

where A ∉ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞1

ℓ
)) and A ∈ 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞2

𝑓
)). But

𝛼 ∈ 𝑑𝑜𝑚((˜E||𝑋). ˜̀A,+𝑒), so 𝛼2 = 𝑞2

𝑓
and hence 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(𝛼) = 𝑎! ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A)

□

Lemma 11.20 (common states for pasting). Let A be a PSIOA, 𝑋 be a A-conservative and A-creation-explicit PCA

and ˜E partially-compatible with 𝑋 . Let 𝛽 be a sequence of actions, let 𝑒 be an alternating sequence of states and actions

starting by a state and finishing by a state. Let 𝑛 ∈ N∪ {∞},
→
𝛽
𝑛
: 𝛽 ,
→
𝑒
𝑛
: 𝑒 . Let ˆC

→
𝑒 ,
→
𝛽 = {𝛼 |→𝛼 = A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼),∀𝑖 ∈

[1, |→𝛼 |], 𝑡𝑟𝑎𝑐𝑒 (→𝛼 [𝑖]) =
→
𝛽 [𝑖], (˜E||𝑋) .`A𝑒 (

→
𝛼 [𝑖]) ↾ (˜E||𝑋 \ {A}) = →𝑒 [𝑖]}.

(1) If ˆC
→
𝑒 ,
→
𝛽 ≠ ∅, then

(a)

→
𝑒 :

(𝑋,A)
𝑒

(b) ∀𝛼, 𝛼 ′ ∈ ˆC
→
𝑒 ,
→
𝛽 , for

→
𝛼

𝑛
:

(𝑋,A)
𝛼 and

→
𝛼
′ 𝑛

:

(𝑋,A)
𝛼 ′, ∀𝑖 ∈ [1, 𝑛 − 1],

𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼 [𝑖])) = 𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼
′
[𝑖])) = 𝑓 𝑠𝑡𝑎𝑡𝑒 (→𝛼 [𝑖 + 1])) = 𝑓 𝑠𝑡𝑎𝑡𝑒 (→𝛼

′
[𝑖 + 1]))

(2) if
→
𝑒 ≠

→
𝑒
′
with

→
𝑒
′

:

(𝑋,A)
𝑒 , then ˆC

→
𝑒 ,
→
𝛽 = ∅.

Proof. (1) (a) Let𝛼 ∈ ˆC
→
𝑒 ,
→
𝛽
and

→
𝛼 = A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼). Since𝑋 isA-creation-explicit, we have

→
𝛼 :

(𝑋,A)
𝛼

by lemma 11.17. Thus, for every 𝑖 ∈ [1, 𝑛 − 1] we have both

→
𝛼 [𝑖] that ends on creation of A and

(˜E||𝑋) .`A𝑒 (
→
𝛼 [𝑖]) ↾ (˜E||𝑋 \ {A}) = →𝑒 [𝑖]. Thus, since 𝑋 is A-creation-explicit, we can apply previous

lemma 11.19 to obtain ∀𝑖 ∈ [1, 𝑛 − 1], 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(→𝑒 [𝑖]) ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) . Let 𝑖 ∈ N and 𝑒 ′
𝑖
a strict

prefix of

→
𝑒 [𝑖]. By construction of `

A,+
𝑒 , it exists a strict prefix of

→
𝛼 [𝑖], noted 𝛼 ′

𝑖
, s. t. (˜E||𝑋).`A𝑒 (𝛼 ′𝑖) ↾

(˜E||𝑋\{A}) = 𝑒 ′
𝑖
. By definition of

→
𝛼 :

(𝑋,A)
𝛼 , 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(𝛼 ′

𝑖
) ∉ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) . By contraposition of

lemma 11.19, 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(𝑒 ′
𝑖
) ∉ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A). Since the results holds for any strict prefix,→𝑒 :

(𝑋,A)
𝑒 .

(b) Let 𝛼, 𝛼 ′ ∈ ˆC
→
𝑒 ,
→
𝛽
, Let

→
𝛼 = A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼), →𝛼

′
= A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼 ′), let |→𝛼 | = |→𝛼

′
| = 𝑛 and

let 𝑖 ∈ [1, 𝑛 − 1]. By construction we have directly 𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼 [𝑖]) = 𝑓 𝑠𝑡𝑎𝑡𝑒 (→𝛼 [𝑖 + 1]) and 𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼
′
[𝑖]) =

91

Pierre Civit and Maria Potop-Butucaru

𝑓 𝑠𝑡𝑎𝑡𝑒 (→𝛼
′
[𝑖 + 1]). Moreover, we have both (1) (˜E||𝑋).`A𝑒 (

→
𝛼 [𝑖]) ↾ (˜E||𝑋 \ {A}) = (˜E||𝑋).`A𝑒 (

→
𝛼
′
[𝑖]) ↾

(˜E||𝑋\{A}) = →𝑒 [𝑖] and (2)𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼 [𝑖]))) (A) =𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼
′
[𝑖]))) (A) =

𝑞A . The property (1) implies (3) 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼 [𝑖])))\{A} = 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼
′
[𝑖])))\

{A} ≜ A′ and ∀B ∈ A′,𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼 [𝑖]))) (B) = 𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼
′
[𝑖]))) (B).

Thus by (2) and (3) we obtain (4) 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼 [𝑖]))) = 𝑎𝑢𝑡𝑠 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼
′
[𝑖]))) ≜

A and ∀B ∈ A,𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼 [𝑖]))) (B) = 𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼
′
[𝑖]))) (B). Since 𝑋 is

configuration-conflict-free, 𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼 [𝑖])) = 𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼
′
[𝑖])) which ends the proof.

(2) By contraposition of former item 1a.

□

Now we can simplify lemma 11.17. We can already guess in
ˆC
→
𝑒 ,
→
𝛽
the form of "proxy aggregated class" introduced in

definition 11.10.

Lemma 11.21 (Partitioning of class 𝐶𝛽,𝑒 into classes 𝐶

→
𝛽 ,
→
𝑒
ending on A creation). Let A be a PSIOA, let 𝑋 be

a A-conservative and A-creation-explicit PCA and ˜E partially-compatible with 𝑋 . Let EA = ˜E||(𝑋 \ {A}). Let 𝛽 be a
sequence of actions, let 𝑒 an alternating sequence of states and actions starting by a state and finishing by a state if finite

and let ˜Z = (𝛽, 𝑒). Let

• ˜C ˜Z ≜ 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋), 𝑝𝑟𝑖𝑛𝑡 (˜E,𝑋) ,
˜Z) ≜ {𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋) |𝑝𝑟𝑖𝑛𝑡 (˜E,𝑋) (𝛼) = ˜Z }.

• ˜ℭ
˜Z

𝐶𝑟𝐸𝑥
≜ { ˆC

→
𝑒 ,
→
𝛽 |∃𝑒 ∈ 𝐸𝑥𝑒𝑐𝑠 (EA), 𝑒 ↾ ˜E = 𝑒,

→
𝑒

𝑛
:

(𝑋,A)
𝑒,
→
𝛽
𝑛
: 𝛽} where

• ˆC
→
𝑒 ,
→
𝛽 = {𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋) |→𝛼 :

(𝑋,A)
𝛼, |→𝛼 | = |→𝑒 | = |

→
𝛽 |,∀𝑖 ∈ [1, |→𝛼 |], 𝑡𝑟𝑎𝑐𝑒 (→𝛼 [𝑖]) =

→
𝛽 [𝑖]∧ (˜E||𝑋) .`A𝑒 (

→
𝛼 [𝑖]) ↾

(˜E||𝑋 \ {A}) = →𝑒 [𝑖]}

Then, ˜ℭ
˜Z

𝐶𝑟𝐸𝑥
is a partition of ˜CZ .

Proof. By conjunction of lemma 11.17, lemma 11.18 and lemma 11.20, item 1a. □

In next paragraph, we will isolate "proxy aggregated class without creation" introduced in definition 11.10.

Decomposition. We start this paragraph, by showing that
ˆC
→
𝑒 ,
→
𝛽
is equal to the set of concatenated executions issued

to some fixed "proxy aggregated classes without creation" introduced in definition 11.10.

Lemma 11.22 (decomposition into simple classes). LetA be a PSIOA,𝑋 be aA-conservative andA-creation-explicit

a PCA and ˜E partially-compatible with 𝑋 . Let EA = ˜E||(𝑋 \ {A}). Let 𝛽 be a sequence of actions, let 𝑒 ∈ 𝐸𝑥𝑒𝑐𝑠 (EA). Let
𝑛 ∈ N ∪ {∞},

→
𝛽
𝑛
: 𝛽 ,
→
𝑒

𝑛
:

(𝑋,A)
𝑒 . Let

ˆC
→
𝑒 ,
→
𝛽 = {𝛼 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋) |→𝛼 :

(𝑋,A)
𝛼,∀𝑖 ∈ [1, |→𝛼 |], 𝑡𝑟𝑎𝑐𝑒 (→𝛼 [𝑖]) =

→
𝛽 [𝑖], (˜E||𝑋).`A𝑒 (

→
𝛼 [𝑖]) ↾ (˜E||𝑋 \ {A}) = →𝑒 [𝑖]}.

Then, ˆC
→
𝑒 ,
→
𝛽 =

𝑛⊗
𝑖

ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+ with

• ˆC𝑒𝑖 ,𝛽𝑖 ,+ = {𝛼𝑖 ∈ 𝐸𝑥𝑒𝑐𝑠 ((˜E𝑖 | |𝑋 𝑖)) ∩𝑑𝑜𝑚((˜E𝑖 | |𝑋 𝑖) . ˜̀A,+𝑒) |𝑡𝑟𝑎𝑐𝑒 (𝛼𝑖) = 𝛽𝑖 , (˜E𝑖 | |𝑋 𝑖) . ˜̀A,+𝑒 (𝛼𝑖) ↾ (˜E𝑖 | |𝑋 𝑖 \ {A}) =
𝑒𝑖 }
• ˜E1 = ˜E and ∀𝑖 ∈ [2, 𝑛], ˜E𝑖 = ˜E𝑞E→𝑞𝑖E with 𝑞

𝑖
E = 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝑒𝑖) ↾ ˜E, as per definition 9.9

92

Dynamic Probabilistic Input Output Automata

• 𝑋 1 = 𝑋 and ∀𝑖 ∈ [2, 𝑛], 𝑋 𝑖 = 𝑋𝑞𝑋→𝑞𝑖𝑋 (as per definition 9.9) with 𝑞𝑖
𝑋
the unique state (by configuration-conflict-

free property) s. t. 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞𝑖
𝑋
) = 𝐶𝑖

𝑌
∪ 𝐶𝑖A with 𝐶𝑖

𝑌
= 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋 \ {A})(𝑓 𝑠𝑡𝑎𝑡𝑒 (𝑒𝑖) ↾ (˜E||𝑋 \ {A})) and

𝐶𝑖A = ({A}, (A, 𝑞A)).

•
𝑛⊗
𝑖

C𝑖 = C1 ⊗ C2 ⊗ ... ⊗ C𝑛

• C1 ⊗ C2 = {𝛼⌢
1
𝛼2 |𝛼1 ∈ C1, 𝛼2 ∈ C2}

Proof. By double inclusion.

• ⊆) Let 𝛼 ∈ ˆC
→
𝑒 ,
→
𝛽
, i. e.

→
𝛼 = A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼) and ∀𝑖 ∈ [1, |→𝛼 |], 𝑡𝑟𝑎𝑐𝑒 (→𝛼 [𝑖]) =

→
𝛽 [𝑖], (˜E||𝑋) .`A𝑒 (

→
𝛼 [𝑖]) ↾

(˜E||𝑋 \ {A}) = →𝑒 [𝑖]. We need to show that ∀𝑖 ∈ [1, |→𝛼 |], →𝛼 [𝑖] ∈ ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+

. By construction due to A-

decomposition, ∀𝑖 ∈ [2, 𝑛], 𝑓 𝑠𝑡𝑎𝑡𝑒 (→𝛼 [𝑖]) = 𝑙𝑠𝑡𝑎𝑡𝑒 (→𝛼 [𝑖 − 1]) where →𝛼 [𝑖 − 1] ends on A-creation (1). Moreover,

∀𝑖 ∈ [1, 𝑛], (˜E||𝑋).`A,+𝑒 (→𝛼 [𝑖]) ↾ (˜E||𝑋 \ {A}) = →𝑒 [𝑖] (2). By (1) and (2), 𝑓 𝑠𝑡𝑎𝑡𝑒 (→𝛼 [𝑖]) = 𝑠𝑡𝑎𝑟𝑡 (˜E𝑖 | |𝑋 𝑖) where
˜E𝑖 and 𝑋 𝑖 are defined like in the lemma (3). By construction due to A-decomposition,

→
𝛼 [𝑖] does not create A

before its very last action (4), thus by (3) and (4)

→
𝛼 [𝑖] ∈ 𝑑𝑜𝑚((˜E𝑖 | |𝑋 𝑖) . ˜̀A,+𝑒) (5). Then ˆC

→
𝑒 ,
→
𝛽 ⊆

𝑛⊗
𝑖

ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+

• ⊇) Let (𝛼𝑖)𝑖∈[1,𝑛] s. t. ∀𝑖 ∈ [1, 𝑛], 𝛼𝑖 ∈ ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+

. We note

→
𝛼 = (𝛼1, 𝛼2, ..., 𝛼𝑖 , ...) with |

→
𝛼 | = 𝑛. By construction,

∀𝑖 ∈ [1, 𝑛 − 1], 𝑙𝑠𝑡𝑎𝑡𝑒 (→𝑒 [𝑖]) = 𝑓 𝑠𝑡𝑎𝑡𝑒 (→𝑒 [𝑖 + 1]) (6). Moreover ∀𝑖 ∈ [1, 𝑛 − 1], 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(→𝑒 [𝑖]) ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-
𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) so∀𝑖 ∈ [1, 𝑛−1], 𝑙𝑎𝑐𝑡𝑖𝑜𝑛(𝛼𝑖) ∈ 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋) (A) (7) by lemma 11.19. Thus,∀𝑖 ∈ [1, 𝑛−1],
𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(˜E||𝑋) (𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼𝑖))) (A)) = 𝑠𝑡𝑎𝑟𝑡 (A) (8). Since ∀𝑖 ∈ [1, 𝑛], (˜E𝑖 | |𝑋 𝑖) . ˜̀A,+𝑒 (𝛼𝑖) ↾ (˜E𝑖 | |𝑋 𝑖 \ {A}) =
→
𝑒 [𝑖], by (6), (8) and configuration-conflict-free property, we deduce that∀𝑖 ∈ [1, 𝑛−1], 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼𝑖) = 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼𝑖+1)
(9). Now, we note 𝛼 = 𝛼1⌢𝛼2⌢ ...𝛼𝑖⌢ s. t.

→
𝛼
𝑛
: 𝛼 . By assumption, ∀𝑖 ∈ [1, 𝑛], →𝛼 [𝑖] ∈ 𝑑𝑜𝑚((˜E||𝑋). ˜̀A,+𝑒), i. e.

A is not created before last action of 𝛼𝑖 which means

→
𝛼 = A-𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝛼) (10). Thus 𝛼 ∈ ˆC

→
𝑒 ,
→
𝛽
. Hence,

𝑛⊗
𝑖

ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+ ⊆ ˆC

→
𝑒 ,
→
𝛽
.

□

Now we can reduce the measure of the entire class of external perception into measures of some fixed "proxy

aggregated classes without creation" introduced in definition 11.10 to eventually apply the lemma 11.12. We start by an

immediate summation in lemma 11.23 before a slightly more subtle product in lemma 11.24

Lemma 11.23 (measure after partitioning and decomposition). Let A be a PSIOA, 𝑋 be a A-conservative and

A-creation-explicit PCA and ˜E partially-compatible with 𝑋 . Let EA = ˜E||𝑋 \ {A} Let 𝛽 be a sequence of actions, let 𝑒 be

an alternating sequence of states and actions starting by a state and finishing by a state. Let �̃� ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (˜E||𝑋).
𝜖�̃� (𝐶 ˜C𝛽,𝑒) =

∑
𝑒∈𝐸𝑥𝑒𝑐𝑠 (EA),𝑒↾ ˜E=𝑒,→𝑒 𝑛:

A
𝑒,

∑
→
𝛽
𝑛
:𝛽
𝜖�̃� (𝐶 𝑛⊗

𝑖

ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+
).

Proof. Immediate by lemma 11.18 and 11.22 □

Now we want to transform the term 𝜖�̃� (𝐶 𝑛⊗
𝑖

ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+
) as a function of some terms 𝜖�̃�𝑖 (𝐶

ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+
) where �̃�𝑖

must be defined. The critical point is that the occurrence of these events might not be independent with (*) a perfect-

information scheduler that chooses the measure of class
ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+

as a function of the concrete prefix in class

ˆC
→
𝑒 [𝑖−1],

→
𝛽 [𝑖−1],+

. This observation enforced us to weaken the implementation definition to make it monotonic w.r.t.

PSIOA creation by handling only creation-oblivious schedulers that cannot make the choice (*).

93

Pierre Civit and Maria Potop-Butucaru

Lemma 11.24 (measure after decomposition for oblivious creation scheduler). Let A be a PSIOA, 𝑋 be a

A-conservative, A-creation-explicit PCA and ˜E partially-compatible with 𝑋 .

Let
→
𝛽 be a vector of sequences of actions, let 𝑒 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋 \ {A}), and →𝑒 𝑛

:

(𝑋,A)
𝑒 . Let �̃� ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (˜E||𝑋) that is

A-creation-oblivious.

Then 𝜖�̃� (𝐶 𝑛⊗
𝑖

ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+
) =

𝑛
Π
𝑖
𝜖�̃�𝑖 (𝐶C

→
𝛽 [𝑖],→𝑒 [𝑖]

) with ∀𝑖 ∈ [1, 𝑛], �̃�𝑖 = 𝑜𝑏𝑙𝑖𝑣𝑖𝑜𝑢𝑠
A,
→
𝛽 [:𝑖],→𝑒 [:𝑖]

(�̃�).

Proof. We recall the remark of definition 11.3 of A-creation-oblivious scheduler for a A-conservative PCA that

raises the fact that if an execution fragment 𝛼 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (�̃�) verifying i) 𝛼 ends onA-creation, ii)�̃� .`
A,+
𝑒 (𝛼) = 𝑒 and iii)

𝑡𝑟𝑎𝑐𝑒 (𝛼) = 𝛽 exists, then �̃� |A,𝛽,𝑒 = �̃� |�̃� , the sub-scheduler conditioned by �̃� and 𝛼 in the sense of definition 11.4. Then we

simply apply lemma 11.5, which states that for every 𝛼 = 𝛼⌢𝑥 𝛼𝑦 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (˜E||𝑋), for �̃� |𝛼𝑥 the sub-scheduler conditioned

by �̃� ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (˜E||𝑋) and 𝛼𝑥 (in the sense of definition 11.4), for 𝜖�̃� generated by �̃� , 𝜖�̃� (𝐶𝛼) = 𝜖�̃� (𝐶𝛼𝑥) · 𝜖�̃� |𝛼𝑥 (𝐶𝛼𝑦)
with �̃� |𝛼𝑥 (𝛼𝑧) = �̃� (𝛼⌢𝑥 𝛼𝑧) for every 𝛼𝑧 with 𝑓 𝑠𝑡𝑎𝑡𝑒 (𝛼𝑧) = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼𝑥).

For every 𝛼 ∈
𝑛⊗
𝑖

ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+

, for

→
𝛼 = A-decomposition, 𝜖�̃� (𝐶𝛼) =

𝑛
Π
𝑖
𝜖�̃�
|→𝛼 [1:𝑖−1]

,𝑞𝑖 (𝐶→𝛼 [𝑖]) with
→
𝛼 [1 : 𝑖 − 1] =

𝛼1⌢ ...⌢𝛼𝑖−1
and 𝑞𝑖 = 𝑠𝑡𝑎𝑟𝑡 (˜E𝑖 | |𝑋 𝑖) where ˜E𝑖 | |𝑋 𝑖 is defined as in lemma 11.22.

By A-creation-oblivious property of �̃� , for every pair of vectors

→
𝛼 [1 : 𝑖 − 1],→𝛼

′
[1 : 𝑖 − 1] s. t. ∀𝑗 ∈ [1 : 𝑖 − 1],

𝑡𝑟𝑎𝑐𝑒 (→𝛼 [𝑗]) = 𝑡𝑟𝑎𝑐𝑒 (→𝛼
′
[𝑗]) = 𝛽 𝑗 and (˜E 𝑗 | |𝑋 𝑗) . ˜̀A,+𝑒 (→𝛼 [𝑗]) ↾ (˜E 𝑗 | |𝑋 𝑗) = (˜E 𝑗 | |𝑋 𝑗). ˜̀A,+𝑒 (→𝛼

′
[𝑗]) ↾ (˜E 𝑗 | |𝑋 𝑗) = 𝑒 𝑗 , for

every 𝜋 ∈ 𝑑𝑜𝑚((˜E𝑖 | |𝑋 𝑖). ˜̀A,+𝑒), �̃� |→𝛼 [1:𝑖−1] (𝜋) = �̃� |→𝛼 ′ [1:𝑖−1] . Hence, for every 𝑖 ∈ [1, 𝑛] we note �̃�
𝑖 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (˜E𝑖 | |𝑋 𝑖)

that matches �̃� |→𝛼 [1:𝑖−1] on 𝑑𝑜𝑚((
˜E𝑖 | |𝑋 𝑖). ˜̀A,+𝑒) for an arbitrary

→
𝛼 [1 : 𝑖 − 1]. This lead us to: ∀𝛼 ∈

𝑛⊗
𝑖

ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+

, for

→
𝛼 :

(𝑋,A)
𝛼 , 𝜖�̃� (𝐶𝛼) =

𝑛
Π
𝑖
𝜖�̃�𝑖 (𝐶→𝛼 [𝑖])

Thus 𝜖�̃� (𝐶 𝑛⊗
𝑖

ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+
) = ∑

→
𝛼 :

(𝑋,A)
𝛼, 𝛼 ∈

𝑛⊗
𝑖

ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+

𝑛
Π
𝑖
𝜖�̃�𝑖 (𝐶→𝛼 [𝑖]) and by lemma 11.22,

𝜖�̃� (𝐶 𝑛⊗
𝑖

ˆC
→
𝑒 [𝑖],

→
𝛽 [𝑖],+
) = ∑

𝛼1∈C
→
𝑒 [1],

→
𝛽 [1],+

...
∑
𝛼𝑛 ∈C

→
𝑒 [𝑖],

→
𝛽 [𝑖],+

𝑛
Π
𝑖
𝜖�̃�𝑖 (𝐶𝛼𝑖) =

𝑛
Π
𝑖
𝜖�̃�𝑖 (𝐶C

→
𝛽 [𝑖],→𝑒 [𝑖] ,+

)

□

Now thanks to lemma 11.23, 11.24 and 11.12 we are ready to prove the main theorem of this paper: the monotonicity

of implementation w.r.t. PSIOA destruction/creation.

Theorem 11.25 (monotonicity). Let A and B be two PSIOA, let 𝑋A be a A-conservative and A-creation-explicit

PCA, let 𝑋B be a B-conservative and B-creation-explicit PCA, s. t. 𝑋A and 𝑋B are corresponding w. r. t. A,B with

𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋A) (A) = 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛-𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑋B) (B) ≜ 𝐶𝑟𝐴𝑐𝑡𝑠 .
If A ≤𝑝𝑟𝑖𝑛𝑡

𝐶𝑟𝑂𝑏
B, then 𝑋A ≤

𝑝𝑟𝑖𝑛𝑡

𝐶𝑟𝑂𝑏
𝑋B .

Proof. Let
˜E ∈ 𝑒𝑛𝑣 (𝑋A) ∩ 𝑒𝑛𝑣 (𝑋B). Let 𝑌A = 𝑋A \ {A}, 𝑌B = 𝑋B \ {B}, EA = ˜E||𝑌A , EB = ˜E||𝑌B and E an

arbitrary PCA semantically equivalent to both EA and EB with E ∈ 𝑒𝑛𝑣 (˜A𝑠𝑤) ∩ 𝑒𝑛𝑣 (˜B𝑠𝑤) by theorem 10.13. We

note `AC the (complete, strong and bijective) PCA executions-matching from EA to E and `CB the (complete, strong

and bijective) PCA executions-matching from E to EB . We also note `×AC the (complete, strong and bijective) PCA

executions-matching from EA | |�̃�𝑠𝑤 to E||�̃�𝑠𝑤 and `×CB the (complete, strong and bijective) PCA executions-matching

from E||�̃�𝑠𝑤 to EB | |�̃�𝑠𝑤 .
94

Dynamic Probabilistic Input Output Automata

In the remaining we note (˜E||𝑋A)↓𝑒 the automaton (˜E||𝑋A)𝑞 (˜E||𝑋A)
→𝑞 (as per definition 9.9) where 𝑞 is the

unique state of
˜E||𝑋A s. t.𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(˜E||𝑋A) (𝑞)) (A) = 𝑞A and 𝑐𝑜𝑛𝑓 𝑖𝑔(˜E||𝑋A) (𝑞) \ {A} = 𝑐𝑜𝑛𝑓 𝑖𝑔(EA) (𝑙𝑠𝑡𝑎𝑡𝑒 (𝑒)).

Respectively, we note (˜E||𝑋B)↓𝑒 the automaton (˜E||𝑋B)𝑞 (˜E||𝑋B)
→𝑞 (as per definition 9.9) where 𝑞 is the unique state

of
˜E||𝑋B s. t.𝑚𝑎𝑝 (𝑐𝑜𝑛𝑓 𝑖𝑔(˜E||𝑋B) (𝑞)) (A) = 𝑞B and 𝑐𝑜𝑛𝑓 𝑖𝑔(˜E||𝑋B) (𝑞) \ {B} = 𝑐𝑜𝑛𝑓 𝑖𝑔(EB) (𝑙𝑠𝑡𝑎𝑡𝑒 (𝑒)). Finally, we

note
˜E𝑒 = ˜E𝑞E→𝑙𝑠𝑡𝑎𝑡𝑒 (𝑒) .

Let �̃� ∈ 𝐶𝑟𝑂𝐵(˜E||𝑋A). We need to show it exists �̃� ′ ∈ 𝐶𝑟𝑂𝐵(˜E||𝑋B) s. t. for every sequence of actions 𝛽 , for

every 𝑒 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E), for ˜Z = (𝛽, 𝑒), 𝜖�̃� (𝐶
˜C

˜Z

𝑋A

) = 𝜖�̃�′ (𝐶
˜C

˜Z

𝑋B

) where ˜C
˜Z

𝑋A
= 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋A), 𝑝𝑟𝑖𝑛𝑡 (˜E,𝑋A) ,

˜Z) and

˜C
˜Z

𝑋B
= 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋B), 𝑝𝑟𝑖𝑛𝑡 (˜E,𝑋B) ,

˜Z).
∀𝛽 ∈ 𝑡𝑟𝑎𝑐𝑒 (˜E||𝑋A) ∪ 𝑡𝑟𝑎𝑐𝑒 (˜E||𝑋B), ∀𝑒𝑎 ∈ 𝐸𝑥𝑒𝑐𝑠 (EA), we note 𝜎 |A,𝛽,𝑒𝑎 the ((˜E||𝑋A)↓𝑒

𝑎) . ˜̀A,+𝑒 alter-ego of

�̃� |A,𝛽,𝑒𝑎 . Let 𝑒 = `AC (𝑒𝑎) We note 𝜎𝑐|A,𝛽,𝑒 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟𝑠 (E
𝑒 | | ˜A𝑠𝑤) the `×AC alter-ego of 𝜎 |A,𝛽,𝑒𝑎

(*) Since A ≤𝐶𝑟𝑂𝑏 B, it exists 𝜎𝑑|B,𝛽,𝑒 ∈ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 (E
𝑒 | | ˜B𝑠𝑤) balanced with 𝜎𝑐|A,𝛽,𝑒 , i. e. for every sequence of

actions 𝛽 ′, for every 𝑒 ′ ∈ 𝐸𝑥𝑒𝑐𝑠 (E𝑒), 𝜎𝑐|A,𝛽,𝑒 (𝐶 ˇC (𝛽
′,𝑒′)

A
) = 𝜎𝑑|B,𝛽,𝑒 (𝐶 ˇC (𝛽

′,𝑒′)
B

) where:

• ˇC (𝛽
′,𝑒′)

(E,A) = 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (E
𝑒 | | ˜A𝑠𝑤), 𝑝𝑟𝑖𝑛𝑡 (E𝑒 , ˜A𝑠𝑤) , (𝛽

′, 𝑒 ′)) and

• ˇC (𝛽
′,𝑒′)

(E,B) = 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (E
𝑒 | | ˜B𝑠𝑤), 𝑝𝑟𝑖𝑛𝑡 (E𝑒 , ˜B𝑠𝑤) , (𝛽

′, 𝑒 ′))

.

Let 𝑒𝑏 = `CB (𝑒) We note 𝜎 ′|B,𝛽,𝑒𝑏 the `×CB alter-ego of 𝜎𝑑|B,𝛽,𝑒 .

We build �̃� ′ ∈ 𝐶𝑟𝑂𝐵(˜E||𝑋B) as follows:
∀𝛽 ∈ 𝑡𝑟𝑎𝑐𝑒 (˜E||𝑋A) ∪ 𝑡𝑟𝑎𝑐𝑒 (˜E||𝑋B), ∀𝑒𝑏 ∈ 𝐸𝑥𝑒𝑐𝑠 (EB), ∀�̃�, �̃� ′ ∈ 𝐹𝑟𝑎𝑔𝑠∗ (˜E||𝑋B) s.t. i) �̃� ends on B creation, ii)

(˜E||𝑋B) . ˜̀A𝑒 (�̃�) ↾ EB = 𝑒𝑏 , iii) 𝑡𝑟𝑎𝑐𝑒 (�̃�) = 𝛽 , iv) 𝑙𝑠𝑡𝑎𝑡𝑒 (�̃�) = 𝑓 𝑠𝑡𝑎𝑡𝑒 (�̃� ′), �̃� ′(�̃�⌢�̃� ′) = �̃� ′|B,𝛽,𝑒𝑏 (�̃�
′) s. t. �̃� ′|B,𝛽,𝑒𝑏 and

𝜎 ′|B,𝛽,𝑒𝑏 are ((˜E||𝑋B)𝑒
𝑏) . ˜̀B,+𝑒 alter-ego.

Now we show that �̃� and �̃� ′ are balanced:

Let
˜Z = (𝛽, 𝑒) ∈ 𝑝𝑟𝑖𝑛𝑡 (˜E, 𝑋A) ∪ 𝑝𝑟𝑖𝑛𝑡 (˜E, 𝑋B), i. e. 𝛽 ∈ 𝑡𝑟𝑎𝑐𝑒 (˜E||𝑋A) ∪ 𝑡𝑟𝑎𝑐𝑒 (˜E||𝑋B), and 𝑒 ∈ 𝐸𝑥𝑒𝑐𝑠 (˜E). Let

• ˜C (𝛽,𝑒)A = 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋A), 𝑝𝑟𝑖𝑛𝑡 (˜E,𝑋A) , (𝛽, 𝑒)) and

• ˜C (𝛽,𝑒)B = 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋B), 𝑝𝑟𝑖𝑛𝑡 (˜E,𝑋A) , (𝛽, 𝑒))

.

We need to show that 𝜖�̃� (𝐶 ˜C (𝛽,𝑒)A
) = 𝜖�̃�′ (𝐶 ˜C (𝛽,𝑒)B

):
We apply lemma 11.23 to obtain:

• 𝜖�̃� (𝐶 ˜C𝛽,𝑒A
) = ∑

𝑒𝑎 ∈𝐸𝑥𝑒𝑐𝑠 (EA),𝑒𝑎↾ ˜E=𝑒
∑
→
𝑒
𝑎 𝑛

:

A
𝑒𝑎

∑
→
𝛽
𝑛
:𝛽
𝜖�̃� (𝐶 𝑛⊗

𝑖

ˆC
→
𝑒
𝑎
[𝑖],
→
𝛽 [𝑖],+

A

).

• 𝜖�̃� (𝐶 ˜C𝛽,𝑒B
) = ∑

𝑒𝑏 ∈𝐸𝑥𝑒𝑐𝑠 (EB),𝑒𝑏↾ ˜E=𝑒
∑
→
𝑒
𝑏 𝑛

:

A
𝑒𝑏

∑
→
𝛽
𝑛
:𝛽
𝜖�̃�′ (𝐶 𝑛⊗

𝑖

ˆC
→
𝑒
𝑏
[𝑖],
→
𝛽 [𝑖],+

B

).

Since EA and EB are semantically equivalent, the sets {𝑒𝑎 ∈ 𝐸𝑥𝑒𝑐𝑠 (EA) |𝑒𝑎 ↾ ˜E = 𝑒} and {𝑒𝑏 ∈ 𝐸𝑥𝑒𝑐𝑠 (EB) |𝑒𝑏 ↾
˜E = 𝑒} are in bijection. Hence, it is enough to show that ∀(𝑒𝑎𝑐 , 𝑒𝑏𝑐) ∈ 𝐸𝑥𝑒𝑐𝑠 (EA) × 𝐸𝑥𝑒𝑐𝑠 (EB) with 𝑒𝑏𝑐 = `AC ◦
`CB (𝑒𝑎𝑐) and 𝑒𝑏𝑐 ↾ ˜E = 𝑒𝑎𝑐 ↾ ˜E = 𝑒 , for

→
𝑒
𝑎𝑐 𝑛

:

A
𝑒𝑎𝑐 ,

→
𝑒
𝑏𝑐 𝑛

:

A
𝑒𝑏𝑐 , for every

→
𝛽
𝑛
: 𝛽 , then 𝜖�̃� (𝐶 𝑛⊗

𝑖

ˆC
→
𝑒
𝑎𝑐
[𝑖],
→
𝛽 [𝑖],+

A

) =

𝜖�̃�′ (𝐶 𝑛⊗
𝑖

ˆC
→
𝑒
𝑏𝑐
[𝑖],
→
𝛽 [𝑖],+

B

).

95

Pierre Civit and Maria Potop-Butucaru

By definition, �̃� is A-creation-oblivious, and by construction, �̃� is B-creation-oblivious. This allows us to apply

lemma 11.24 to obtain:

• 𝜖�̃� (𝐶 𝑛⊗
𝑖

ˆC
→
𝑒
𝑎𝑐
[𝑖],
→
𝛽 [𝑖],+

A

) =
𝑛
Π
𝑖
𝜖�̃�𝑖 (𝐶

ˆC
→
𝛽 [𝑖],→𝑒

𝑎𝑐
[𝑖]

A

) with ∀𝑖 ∈ [1, 𝑛], �̃�𝑖 = 𝑜𝑏𝑙𝑖𝑣𝑖𝑜𝑢𝑠
A,
→
𝛽 [:𝑖],→𝑒

𝑎𝑐
[:𝑖]
(�̃�).

• 𝜖�̃� (𝐶 𝑛⊗
𝑖

ˆC
→
𝑒
𝑏𝑐
[𝑖],
→
𝛽 [𝑖],+

B

) =
𝑛
Π
𝑖
𝜖�̃�′𝑖 (𝐶

ˆC
→
𝛽 [𝑖],→𝑒

𝑎𝑐
[𝑖]

B

) with ∀𝑖 ∈ [1, 𝑛], �̃� ′𝑖 = 𝑜𝑏𝑙𝑖𝑣𝑖𝑜𝑢𝑠
B,
→
𝛽 [:𝑖],→𝑒

𝑏𝑐
[:𝑖]
(�̃� ′).

• where

→
𝑧 [: 𝑖] = →𝑧 [1]⌢ ...⌢

→
𝑧 [𝑖 − 1] for →𝑧 ∈ {

→
𝛽 ,
→
𝑒
𝑎𝑐
,
→
𝑒
𝑏𝑐
}

• ˆC
→
𝛽 [𝑖],→𝑒

𝑎𝑐
[𝑖]

A = 𝑐𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋A)↓
→
𝑒
𝑎𝑐
[:𝑖]) , 𝑝𝑟𝑖𝑛𝑡𝑝𝑟𝑜𝑥𝑦,A

(˜E,𝑋A)
, (
→
𝛽 [𝑖],→𝑒

𝑎𝑐
[𝑖]))

• ˆC
→
𝛽 [𝑖],→𝑒

𝑏𝑐
[𝑖]

B = 𝑐𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (˜E||𝑋B)↓
→
𝑒
𝑏𝑐
[:𝑖]) , 𝑝𝑟𝑖𝑛𝑡𝑝𝑟𝑜𝑥𝑦,B

(˜E,𝑋B)
, (
→
𝛽 [𝑖],→𝑒

𝑏𝑐
[𝑖]))

Thus it is enough to show that ∀𝑖 ∈ [1, 𝑛], 𝜖�̃�𝑖 (𝐶
ˆC
→
𝛽 [𝑖],→𝑒

𝑎𝑐
[𝑖]

A

) = 𝜖�̃�′𝑖 (𝐶
ˆC
→
𝛽 [𝑖],→𝑒

𝑏𝑐
[𝑖]

B

)). Let 𝑖 ∈ [1, 𝑛]

We can apply lemma 11.12 to obtain:

• 𝜖�̃�𝑖 (𝐶
ˆC
→
𝛽 [𝑖],→𝑒

𝑎𝑐
[𝑖]

A

) = 𝜖𝜎
|A,
→
𝛽 [:𝑖],→𝑒

𝑎𝑐
[:𝑖]
(ˇC (

→
𝛽 [𝑖],→𝑒

𝑎𝑐
[𝑖])

(EA ,A))

• 𝜖�̃�′𝑖 (𝐶
ˆC
→
𝛽 [𝑖],→𝑒

𝑏𝑐
[𝑖]

B

) = 𝜖𝜎′
|B,
→
𝛽 [:𝑖],→𝑒

𝑏𝑐
[:𝑖]
(ˇC (

→
𝛽 [𝑖],→𝑒

𝑏𝑐
[𝑖])

(EB ,B) .

where:

• ˇC (
→
𝛽 [𝑖],→𝑒

𝑎𝑐
[𝑖])

(EA ,A) = 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (E
→
𝑒
𝑎𝑐
[:𝑖]

A | | ˜A𝑠𝑤), 𝑝𝑟𝑖𝑛𝑡
(E
→
𝑒
𝑎𝑐
[:𝑖]

A , ˜A𝑠𝑤)
, (
→
𝛽 [𝑖],→𝑒

𝑎𝑐
[𝑖])) and

• ˇC (
→
𝛽 [𝑖],→𝑒

𝑏𝑐
[𝑖])

(EB ,B) = 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (E
→
𝑒
𝑏𝑐
[:𝑖]

B | | ˜B𝑠𝑤), 𝑝𝑟𝑖𝑛𝑡
(E
→
𝑒
𝑏𝑐
[:𝑖]

B , ˜B𝑠𝑤)
, (
→
𝛽 [𝑖],→𝑒

𝑏𝑐
[𝑖]))

• 𝜎
|A,
→
𝛽 [:𝑖],→𝑒

𝑎𝑐
[:𝑖]

is the ((˜E||𝑋A)↓
→
𝑒
𝑎𝑐
[:𝑖]) . ˜̀A,+𝑒 alter-ego of �̃�𝑖 .

• 𝜎 ′
|B,
→
𝛽 [:𝑖],→𝑒

𝑏𝑐
[:𝑖]

is the ((˜E||𝑋B)↓
→
𝑒
𝑏𝑐
[:𝑖]) . ˜̀B,+𝑒 alter-ego of �̃� ′𝑖 .

.

Hence it is sufficient to show that 𝜖𝜎
|A,
→
𝛽 [:𝑖],→𝑒

𝑎𝑐
[:𝑖]
(𝐶

ˇC (
→
𝛽 [𝑖],→𝑒

𝑎𝑐
[𝑖])

(EA ,A)

) = 𝜖𝜎′
|B,
→
𝛽 [:𝑖],→𝑒

𝑏𝑐
[:𝑖]
(𝐶

ˇC (
→
𝛽 [𝑖],→𝑒

𝑏𝑐
[𝑖])

(EB ,B)

).

Finally, we find again our construction (*):

• 𝜖𝜎
|A,
→
𝛽 [:𝑖],→𝑒

𝑎𝑐
[:𝑖]
(𝐶

ˇC (
→
𝛽 [𝑖],→𝑒

𝑎𝑐
[𝑖])

(EA ,A)

) = 𝜖𝜎𝑐
|A,
→
𝛽 [:𝑖],→𝑒 [:𝑖]

(𝐶
ˇC (
→
𝛽 [𝑖],→𝑒 [𝑖])
(E,A)

)

• 𝜖𝜎′
|B,
→
𝛽 [:𝑖],→𝑒

𝑏𝑐
[:𝑖]
(𝐶

ˇC (
→
𝛽 [𝑖],→𝑒

𝑏𝑐
[𝑖])

(EB ,B)

) = 𝜖
𝜎𝑑

|B,
→
𝛽 [:𝑖],→𝑒 [:𝑖]

(𝐶
ˇC (
→
𝛽 [𝑖],→𝑒 [𝑖])
(E,B)

)

• 𝜖𝜎𝑐
|A,
→
𝛽 [:𝑖],→𝑒 [:𝑖]

(𝐶
ˇC (
→
𝛽 [𝑖],→𝑒 [𝑖])
(E,A)

) = 𝜖
𝜎𝑑

|B,
→
𝛽 [:𝑖],→𝑒 [:𝑖]

(𝐶
ˇC (
→
𝛽 [𝑖],→𝑒 [𝑖])
(E,B)

)

where:

• →𝑒 is the vector of (𝐹𝑟𝑎𝑔𝑠∗ (E))𝑛 s. t. ∀𝑗 ∈ [1 : 𝑛], →𝑒 [𝑗] = `AC (
→
𝑒
𝑎𝑐
[𝑗]) = `−1

CB (
→
𝑒
𝑏𝑐
[𝑗]).

• ˇC (
→
𝛽 [𝑖],→𝑒 [𝑖])
(E,A) = 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (E

→
𝑒 [:𝑖]) | | ˜A𝑠𝑤), 𝑝𝑟𝑖𝑛𝑡

(E
→
𝑒 [:𝑖]) , ˜A𝑠𝑤)

, (
→
𝛽 [𝑖],→𝑒 [𝑖])) and

• ˇC (
→
𝛽 [𝑖],→𝑒 [𝑖])
(E,B) = 𝐶𝑙𝑎𝑠𝑠 (𝐸𝑥𝑒𝑐𝑠 (E

→
𝑒 [:𝑖]) | | ˜B𝑠𝑤), 𝑝𝑟𝑖𝑛𝑡

(E
→
𝑒 [:𝑖]) , ˜B𝑠𝑤)

, (
→
𝛽 [𝑖],→𝑒 [𝑖]))

.

96

Dynamic Probabilistic Input Output Automata

This lead us to 𝜖𝜎
|A,
→
𝛽 [:𝑖],→𝑒

𝑎𝑐
[:𝑖]
(𝐶

ˇC (
→
𝛽 [𝑖],→𝑒

𝑎𝑐
[𝑖])

(EA ,A)

) = 𝜖𝜎′
|B,
→
𝛽 [:𝑖],→𝑒

𝑏𝑐
[:𝑖]
(𝐶

ˇC (
→
𝛽 [𝑖],→𝑒

𝑏𝑐
[𝑖])

(EB ,B)

), which ends the proof.

□

12 TASK SCHEDULE

We have shown in previous section that ≤𝑝𝑟𝑖𝑛𝑡
𝐶𝑟𝑂𝑏

was a monotonic relationship. In this section, we explain why an easy

to use off-line scheduler introduced by Canetti & al. [4] is not creation-oblivious which suprisingly prevent us to obtain

monotonicity of implementation for scheduler schema.

12.1 Task-schedule

Here we present a subclass of fully off-line schedulers, called task-schedules. Before explaining what is a task-schedule,

we introduce the definition of task, adapted from [2] to the dynamic setting. In practice a task is invoked by the

scheduler to potentially trigger an action from a sub-component of the automaton. An automaton can be the result

of the composition of several automata, themselves the result of the composition of several automata and so on and

forth. We assume the existence of a subset 𝐴𝑢𝑡𝑖𝑑𝑠0 ⊂ 𝐴𝑢𝑡𝑖𝑑𝑠 that represents the "atomic entities" of our formalism.

Any automaton is the result of the composition of automata in 𝐴𝑢𝑡𝑖𝑑𝑠0.

Definition 12.1 (Constitution). For every A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 , we note

𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(A) :

{
𝑠𝑡𝑎𝑡𝑒𝑠 (A) → P(𝐴𝑢𝑡𝑖𝑑𝑠0) where P(𝐴𝑢𝑡𝑖𝑑𝑠0) denotes the power set of 𝐴𝑢𝑡𝑖𝑑𝑠0
𝑞 ↦→ 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(A)(𝑞)

For every A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠0, for every 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A), 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(A)(𝑞) = {A}.
For every A = (A1, ...,A𝑛) ∈ (𝐴𝑢𝑡𝑖𝑑𝑠0)𝑛 , for every 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) with A = A1 | |...| |A𝑛 , 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(A)(𝑞) = A.
The constitution of a PCA is defined recursively through it configuration. For every PCA 𝑋 , for every 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑋),

if we note (A, S) = 𝑐𝑜𝑛𝑓 𝑖𝑔(𝑋) (𝑞), 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(𝑋) (𝑞) = ⋃
A∈A 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(A)(S(A)).

Definition 12.2 (Task). A task 𝑇 is a pair (𝑖𝑑, 𝑎𝑐𝑡𝑖𝑜𝑛𝑠) where 𝑖𝑑 ∈ 𝐴𝑢𝑡𝑖𝑑𝑠0 and 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ⊂ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑎𝑢𝑡 (𝑖𝑑)) is a set of
action labels. Let 𝑇 = (𝑖𝑑, 𝑎𝑐𝑡𝑖𝑜𝑛𝑠), we note 𝑖𝑑 (𝑇) = 𝑖𝑑 and 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑇) = 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 .

Definition 12.3 (Enabled task). Let A ∈ 𝐴𝑢𝑡𝑖𝑑𝑠 . A task 𝑇 is said enabled in state 𝑞 ∈ 𝑠𝑡𝑎𝑡𝑒𝑠 (A) if :

• 𝑖𝑑 (𝑇) ∈ 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛(A)(𝑞)
• It exists a unique local action 𝑎 ∈ 𝑙𝑜𝑐 (A)(𝑞) ∩ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑇) (noted 𝑎 ∈ 𝑇 to simplify) enabled at state 𝑞 (that is it

exists [∈ 𝐷𝑖𝑠𝑐 (𝑄A) s. t. (𝑞, 𝑎, [) ∈ 𝐷A .

In this case we say that 𝑎 is triggered by 𝑇 at state 𝑞.

Now we are ready to define a task-schedule, which is a particular subclass of schedulers.

We are not dealing with a task-schedule of a specific automaton anymore, which differs from [2]. However the

restriction of our definition to "static" setting matches their definition.

Definition 12.4 (task-schedule). A task-schedule 𝜌 = 𝑇1,𝑇2,𝑇3, ... is a (finite or infinite) sequence of tasks.

Since our task-schedule is defined, we are ready to solve the non-determinism and define a probability on the

executions of a PSIOA. We use the measure of [2].

Definition 12.5. (task-based probability on executions: 𝑎𝑝𝑝𝑙𝑦A (`, 𝜌) : 𝐹𝑟𝑎𝑔𝑠 (A) → [0, 1]) Let A be a PSIOA. Given

` ∈ 𝐷𝑖𝑠𝑐 (𝐹𝑟𝑎𝑔𝑠 (A)) a discrete probability measure on the execution fragments and a task schedule 𝜌 , 𝑎𝑝𝑝𝑙𝑦 (`, 𝜌) is a
probability measure on 𝐹𝑟𝑎𝑔𝑠 (A). It is defined recursively as follows.

97

Pierre Civit and Maria Potop-Butucaru

(1) 𝑎𝑝𝑝𝑙𝑦A (`, _) := `. Here _ denotes the empty sequence.

(2) For every 𝑇 and 𝛼 ∈ 𝐹𝑟𝑎𝑔𝑠∗ (A), 𝑎𝑝𝑝𝑙𝑦 (`,𝑇) (𝛼) := 𝑝1 (𝛼) + 𝑝2 (𝛼), where:

• 𝑝1 (𝛼) =
{
` (𝛼 ′)[(A,𝑞′,𝑎) (𝑞) if 𝛼 = 𝛼 ′⌢ (𝑎, 𝑞), 𝑞′ = 𝑙𝑠𝑡𝑎𝑡𝑒 (𝛼 ′) and 𝑎 is triggered by 𝑇 enabled after 𝛼 ′

0 otherwise

• 𝑝2 (𝛼) =
{
` (𝛼) if 𝑇 is not enabled after 𝛼

0 otherwise

(3) 3. If 𝜌 is finite and of the form 𝜌 ′𝑇 , then 𝑎𝑝𝑝𝑙𝑦A (`, 𝜌) := 𝑎𝑝𝑝𝑙𝑦A (𝑎𝑝𝑝𝑙𝑦A (`, 𝜌 ′),𝑇).
(4) 4. If 𝜌 is infinite, let 𝜌𝑖 denote the length-𝑖 prefix of 𝜌 and let 𝑝𝑚𝑖 be 𝑎𝑝𝑝𝑙𝑦A (`, 𝜌𝑖). Then 𝑎𝑝𝑝𝑙𝑦A (`, 𝜌) :=

𝑙𝑖𝑚
𝑖→∞

𝑝𝑚𝑖 .

Proposition 2. Let A be a PSIOA, For each measure ` on 𝐹𝑟𝑎𝑔𝑠∗ (A) and task schedule 𝜌 , there is scheduler 𝜎 for A
such that 𝑎𝑝𝑝𝑙𝑦 (`, 𝜌) is the generalized probabilistic execution fragment 𝜖𝜎,` .

Proof. The result has been proven in [2], appendix B.4. □

Fig. 31. Non-deterministic execution: The scheduler allows us to solve the non-determinism, by triggering an action among the
enabled one. We give an example with an automaton A = (𝑄A , 𝑞A = 𝑞0, 𝑠𝑖𝑔 (A), 𝐷A) and the tasks𝑇𝑔,𝑇𝑜 ,𝑇𝑝 ,𝑇𝑏 (for green, orange,
pink, blue) with the respective actions {𝑎}, {𝑑 }, {𝑏,𝑏′ }, {𝑐, 𝑐′ }, and the tasks𝑇𝑔𝑜 ,𝑇𝑏𝑜 with the respective actions {𝑎,𝑑 }, {𝑐, 𝑐′, 𝑑 }.
At state 𝑞0, 𝑠𝑖𝑔 (A) (𝑞0) = (∅, {𝑎}, {𝑑 }) . Hence both 𝑎 and 𝑑 are enabled local action at 𝑞0, which means both𝑇𝑔 and𝑇𝑜 are enabled
at state 𝑞0, but𝑇𝑔𝑜 is not enabled at state 𝑞0 since it does not solve the non-determinism (𝑎 and 𝑑 are enabled local action at 𝑞0). At
state 𝑞1,𝑇𝑝 is enabled but neither𝑇𝑜 or𝑇𝑏 . We give some results: 𝑎𝑝𝑝𝑙𝑦 (𝛿𝑞0 ,𝑇𝑔) (𝑞0, 𝑎, 𝑞1,𝑣) = 1

𝑎𝑝𝑝𝑙𝑦 (𝛿𝑞0 ,𝑇𝑔𝑇𝑝) (𝑞0, 𝑎, 𝑞1,𝑣, 𝑏, 𝑞2,𝑤) = 𝑎𝑝𝑝𝑙𝑦 (𝑎𝑝𝑝𝑙𝑦 (𝛿𝑞0 ,𝑇𝑔),𝑇𝑝) (𝑞0, 𝑎, 𝑞1,𝑣, 𝑏, 𝑞2,𝑤) = 1/2
𝑎𝑝𝑝𝑙𝑦 (𝛿𝑞0 ,𝑇𝑔𝑇𝑝𝑇𝑏) (𝑞0, 𝑎, 𝑞1,𝑣, 𝑏, 𝑞2,𝑤 , 𝑐, 𝑞3,𝑤) = 𝑎𝑝𝑝𝑙𝑦 (𝑎𝑝𝑝𝑙𝑦 (𝛿𝑞0 ,𝑇𝑔𝑇𝑝),𝑇𝑏) (𝑞0, 𝑎, 𝑞1,𝑣, 𝑏, 𝑞2,𝑤 , 𝑐, 𝑞3,𝑤) = 3/8
𝑎𝑝𝑝𝑙𝑦 (𝛿𝑞0 ,𝑇𝑔𝑇𝑝𝑇𝑜𝑇𝑏) (𝑞0, 𝑎, 𝑞1,𝑣, 𝑏, 𝑞2,𝑤 , 𝑐, 𝑞3,𝑤) = 3/8, since𝑇𝑜 is not enabled at state 𝑞2,𝑤 .

98

Dynamic Probabilistic Input Output Automata

12.2 Why a task-scheduler is not creation-oblivious ?

Let imagine the following example. The class 𝐶𝑥 is composed of two executions 𝛼𝑥,1 and 𝛼𝑥,2, the class 𝐶𝑦 is

composed of two executions 𝛼𝑦,1 and 𝛼𝑦,2 and the class 𝐶𝑧 is composed of four executions 𝛼𝑧,11 = 𝛼𝑥,1⌢𝛼𝑦,1,

𝛼𝑧,12 = 𝛼𝑥,1⌢𝛼𝑦,2, 𝛼𝑧,21 = 𝛼𝑥,2⌢𝛼𝑦,1, 𝛼𝑧,22 = 𝛼𝑥,2⌢𝛼𝑦,2. Let 𝜌 = 𝜌1⌢𝜌2
be a task-schedule. We do not have

𝑎𝑝𝑝𝑙𝑦 (., 𝜌) (𝐶𝑧)) = 𝑎𝑝𝑝𝑙𝑦 (., 𝜌1) (𝐶𝑥) · 𝑎𝑝𝑝𝑙𝑦 (., 𝜌2) (𝐶𝑦) ! Indeed, the executions 𝛼𝑥,1 and 𝛼𝑥,2 can differ s. t. they do not

ignore the same tasks. Typically, 𝜌1
could be written 𝜌1 = 𝜌1,𝑎⌢𝜌1,𝑏

where the last action of 𝛼𝑥,1 is triggered by the last

task of 𝜌1,𝑎
and 𝜌1,𝑏

is "ignored by 𝛼𝑥,1. The issue comes if both 𝑎𝑝𝑝𝑙𝑦 (., 𝜌2) (𝐶𝑦) ≠ ∅ and 𝑎𝑝𝑝𝑙𝑦 (., 𝜌1,𝑏⌢𝜌2) (𝐶𝑦) ≠ ∅.
The point is that 𝐶𝑧 can be obtained with different cut-paste: cut-paste A: 𝜌1,𝑎

for 𝐶𝑥 and 𝜌1,𝑏⌢𝜌2
for 𝐶𝑦 ; cut-paste B:

𝜌1
for 𝐶𝑥 and 𝜌2

for 𝐶𝑦 .

13 CONCLUSION

We extended dynamic I/O Automata formalism of Attie & Lynch [1] to probabilistic settings in order to cope with

emergent distributed systems such as peer-to-peer networks, robot networks, adhoc networks or blockchains. Our

formalism includes operators for parallel composition, action hiding, action renaming, automaton creation and use a

refined definition of probabilistic configuration automata in order to cope with dynamic actions. The key result of our

framework is as follows: the implementation of probabilistic configuration automata is monotonic to automata creation

and destruction. That is, if systems 𝑋A and 𝑋B differ only in that 𝑋A dynamically creates and destroys automaton

A instead of creating and destroying automaton B as 𝑋B does, and if A implements B (in the sense they cannot be

distinguished by any external observer), then 𝑋A implements 𝑋B . This results is particularly interesting in the design

and refinement of components and subsystems in isolation. In our construction we exhibit the need of considering only

creation-oblivious schedulers in the implementation relation, i. e. a scheduler that, upon the (dynamic) creation of a

sub-automaton A, does not take into account the previous internal actions of A to output (randomly) a transition.

Interestingly and of independent interest, motivated by the monotonicity of execution w.r.t. to automata creation, we

introduce new proof techniques to deduce certain properties of a system 𝑋A from a sub-automaton 𝑋A dynamically

created and destroyed by 𝑋A . This proof technique is used to construct a homomorphism between the probabilistic

spaces of automata executions. Then we expose such homomorphism from a system 𝑋A to a new system resulting from

the composition of A and 𝑋A \ {A}. The latter corresponds intuitively to the system 𝑋A deprived of A. Furthermore,

the homomorphism is used to show that under certain minor technical assumptions, if𝑋A and𝑋B differ only in the fact

that 𝑋A dynamically creates and destroys the automatonA instead of creating and destroying the automaton B as 𝑋B
does, then 𝑋A \ {A} and 𝑋B \ {B} are semantically equivalent, i.e. they only differ syntactically. The homomorphism

is finally reused to establish the monotonicity of the implementation relation. Our technique can be used in extensions

of our formalism with time and cryptography notions.

As future work we plan to extend the composable secure-emulation of Canetti et al. [4] to dynamic settings. This

extension is necessary for formal verification of protocols combining probabilistic distributed systems and cryptography

in dynamic settings (e.g. blockchains, secure distributed computation, cybersecure distributed protocols etc).

REFERENCES
[1] Paul C. Attie and Nancy A. Lynch. 2016. Dynamic input/output automata: A formal and compositional model for dynamic systems. Inf. Comput. 249

(2016), 28–75. https://doi.org/10.1016/j.ic.2016.03.008

[2] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira, and Roberto Segala. 2018. Task-Structured Probabilistic {I/O}

Automata. J. Comput. System Sci. 94 (2018), 63—-97. https://doi.org/10.1016/j.jcss.2017.09.007

99

https://doi.org/10.1016/j.ic.2016.03.008
https://doi.org/10.1016/j.jcss.2017.09.007

Pierre Civit and Maria Potop-Butucaru

[3] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses D. Liskov, Nancy A. Lynch, Olivier Pereira, and Roberto Segala. 2005. Using Probabilistic I/O

Automata to Analyze an Oblivious Transfer Protocol. IACR Cryptol. ePrint Arch. (2005), 452. http://eprint.iacr.org/2005/452

[4] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Nancy A. Lynch, and Olivier Pereira. 2007. Compositional Security for Task-PIOAs. In 20th IEEE
Computer Security Foundations Symposium, CSF 2007, 6-8 July 2007, Venice, Italy. IEEE Computer Society, 125–139. https://doi.org/10.1109/CSF.2007.15

[5] Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci. 777 (2019), 155–183. https://doi.org/10.

1016/j.tcs.2019.02.001

[6] Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. 1988. A theory of atomic transactions. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 326 LNCS (1988), 41–71. https://doi.org/10.1007/3-540-50171-1_3

[7] Martin L. Puterman. 1994. Markov decision processes: discrete stochastic dynamic programming (1 ed.). John Wiley & Sons.

[8] Roberto Segala. 1995. Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. Dissertation. Massachusettes Institute of

technology.

100

http://eprint.iacr.org/2005/452
https://doi.org/10.1109/CSF.2007.15
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1007/3-540-50171-1_3

	Abstract
	1 Introduction
	2 Warm up
	2.1 Probabilistic Signature Input/Output Automata (PSIOA)
	2.2 Scheduler
	2.3 Environment, external behavior, implementation
	2.4 Probabilistic Configuration Automata (PCA)
	2.5 Road to monotonicity

	3 Preliminaries on probability and measure
	4 Probabilistic Signature Input/Output Automata (PSIOA)
	4.1 Action Signature
	4.2 PSIOA
	4.3 Execution, Trace
	4.4 Compatibility and composition
	4.5 Scheduler: define a measure on executions and traces
	4.6 Implementation
	4.7 Hiding operator
	4.8 State renaming operator

	5 Probabilistic Configuration Automata
	5.1 configuration
	5.2 Configuration transition
	5.3 Probabilistic Configuration Automata
	5.4 Compatibility, composition

	6 Introduction on PCA corresponding w.r.t. PSIOA A, B to introduce monotonicity
	6.1 Naive correspondence between two PCA
	6.2 Conservatism: the additional assumption for relevant definition of correspondence w. r. t. A, B
	6.3 Corresponding w. r. t. A, B
	6.4 Creation-oblivious scheduler

	7 Executions-matching
	7.1 PSIOA executions-matching and semantic equivalence
	7.2 PCA-matching execution

	8 Projection
	8.1 Projection on Configurations
	8.2 A-fairness assumption, motivated by our definition of PCA deprived from an internal PSIOA: X { A }
	8.3 Y = X { A } is a PCA if X is A-fair

	9 Reconstruction
	9.1 Simpleton wrapper : sw
	9.2 Partial-compatibility of (XA { A }) and sw
	9.3 Execution-matching from X to X { A } || sw
	9.4 Composition and projection are commutative

	10 PCA corresponding w.r.t. PSIOA A, B
	11 Top/Down corresponding classes (BIS)
	11.1 Creation-oblivious scheduler
	11.2 Creation made explicit
	11.3 Monotonicity

	12 Task schedule
	12.1 Task-schedule
	12.2 Why a task-scheduler is not creation-oblivious ?

	13 Conclusion
	References

