Dynamic Probabilistic Input Output Automata

PIERRE CIVIT, Sorbonne Université, CNRS, LIP6, France
MARIA POTOP-BUTUCARU, Sorbonne Université, CNRS, LIP6, France

We present probabilistic dynamic I/O automata, a framework to model dynamic probabilistic systems. Our work extends dynamic I/O
Automata formalism of Attie & Lynch [1] to probabilistic setting. The original dynamic I/O Automata formalism included operators
for parallel composition, action hiding, action renaming, automaton creation, and behavioral sub-typing by means of trace inclusion.
They can model mobility by using signature modification. They are also hierarchical: a dynamically changing system of interacting
automata is itself modeled as a single automaton. Our work extends to probabilistic settings all these features. Furthermore, we prove
necessary and sufficient conditions to obtain the implementation monotonicity with respect to automata creation and destruction. Our
construction uses a novel proof technique based on homomorphism that can be of independent interest. Our work lays down the
foundations for extending composable secure-emulation of Canetti et al. [4] to dynamic settings, an important tool towards the formal
verification of protocols combining probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, secure

distributed computation, cybersecure distributed protocols etc).

1 INTRODUCTION

Distributed computing area faces today important challenges coming from modern applications such as peer-to-peer
networks, cooperative robotics, dynamic sensor networks, adhoc networks and more recently, cryptocurrencies and
blockchains which have a tremendous impact in our society. These newly emerging fields of distributed systems are
characterized by an extreme dynamism in terms of structure, content and load. Moreover, they have to offer strong
guaranties over large scale networks which is usually impossible in deterministic settings. Therefore, most of these
systems use probabilistic algorithms and randomized techniques in order to offer scalability features. However, the
vulnerabilities of these systems may be exploited with the aim to provoke an unforeseen execution that diverges from
the understanding or intuition of the developers. Therefore, formal validation and verification of these systems has to
be realized before their industrial deployment.

The formalisation of distributed systems has been pioneered by Lynch and Tuttle [6]. They proposed the formalism
of Input/Output Automata to model deterministic distributed system. Later, this formalism is extended by Segala in [8]
with Markov decision processes [7]. In order to model randomized distributed systems Segala proposes Probabilistic
Input/Output Automata. In this model each process in the system is an automaton with probabilistic transitions. The
probabilistic protocol is the parallel composition of the automata modeling each participant.

The modelisation of dynamic behavior in distributed systems has been addressed by Attie & Lynch in [1] where they
propose Dynamic Input Output Automata formalism. This formalism extends the Input/Output Automata with the ability
to change their signature dynamically (i.e. the set of actions in which the automaton can participate) and to create other
I/O automata or destroy existing I/O automata. The formalism introduced in [1] does not cover the case of probabilistic
distributed systems and therefore cannot be used in the verification of recent blockchains such as Algorand [5].

In order to respond to the need of formalisation in secure distributed systems, Canetti & al. proposed in [2] task-
structured probabilistic Input/Output automata (TPIOA) specifically designed for the analysis of cryptographic protocols.
Task-structured probabilistic Input/Output automata are Probabilistic Input/Output automata extended with tasks that
are equivalence classes on the set of actions. The task-structure allows a generalisation of "off-line scheduling” where the
non-determinism of the system is resolved in advance by a task-scheduler, i. e. a sequence of tasks chosen in advance that

trigger the actions among the enabled ones. They define the parallel composition for this type of automata. Inspired by
1

Pierre Civit and Maria Potop-Butucaru

the literature in security area they also define the notion of implementation for TPIOA. Informally, the implementation
of a Task-structured probabilistic Input/Output automata should look "similar" to the specification whatever will be the
external environment of execution. Furthermore, they provide compositional results for the implementation relation.
Even thought the formalism proposed in [2] has been already used in the verification of various cryptographic protocols
this formalism does not capture the dynamicity of probabilistic dynamic systems such as peer-to-peer networks or
blockchains systems where the set of participants dynamically changes.

Our contribution. In order to cope with dynamicity and probabilistic nature of modern distributed systems we
propose an extension of the two formalisms introduced in [1] and [2]. Our extension uses a refined definition of
probabilistic configuration automata in order to cope with dynamic actions. The main result of our formalism is as
follows: the implementation of probabilistic configuration automata is monotonic to automata creation and destruction.
That is, if systems X ¢ and Xg differ only in that X # dynamically creates and destroys automaton A instead of creating
and destroying automaton 8 as Xg does, and if A implements B (in the sense they cannot be distinguished by any
external observer), then X 4 implements Xg. This result enables a design and refinement methodology based solely
on the notion of externally visible behavior and permits the refinement of components and subsystems in isolation
from the rest of the system. In our construction we exhibit the need of considering only creation-oblivious schedulers in
the implementation relation, i. e. a scheduler that, upon the (dynamic) creation of a sub-automaton A, does not take
into account the previous internal actions of A to output (randomly) a transition. Surprisingly, the task-schedulers
introduced by Canetti & al. [2] are not creation-oblivious. Interestingly, an important contribution of the paper of
independent interest is the proof technique we used in order to obtain our results. Differently from [1] and [2] which
build their constructions mainly on induction techniques, we developed an elegant homomorphism based technique
which aim to render the proofs modular. This proof technique can be easily adapted in order to further extend our
framework with cryptography and time.

It should be noted that our work is an intermediate step before extending composable secure-emulation [4] to dynamic
settings. This extension is necessary for formal verification of secure dynamic distributed systems (e.g. blockchain
systems).

Paper organization. The paper is organized as follow. Section 3 is dedicated to a brief introduction of the notion
of probabilistic measure and recalls notations used in defining Signature I/O automata of [1]. Section 4 builds on the
frameworks proposed in [1] and [2] in order to lay down the preliminaries of our formalism. More specifically, we
introduce the definitions of probabilistic signed I/O automata and define their composition and implementation. In
Section 5 we extend the definition of configuration automata proposed in [1] to probabilistic configuration automata
then we define the composition of probabilistic configuration automata and prove its closeness. The key result of our
formalisation, the monotonicity of PSIOA implementations with respect to creation and destruction, is presented in the
end of Section 6 and demonstrated in the remaining sections, up to Section 11). Section 12 explains why the off-line

scheduler introduced by Canetti & al. [4] is not creation-oblivious and therefore cannot be used to obtain our key result.

2 WARMUP

In this section we describe the paper in the a very informal way. We aim to give some intuitions on the role of each

section. The section 3 gives some preliminaries on probability and measure.

Dynamic Probabilistic Input Output Automata

2.1 Probabilistic Signature Input/Output Automata (PSIOA)

The section 4 defines the notion of probabilistic signature Input/Output automata (PSIOA). A PSIOA A is an automaton
that can move from one state to another through actions. The set of states of A is then denoted states(A), while we
note start(A) € states(A) the unique start state of A. At each state g € states(A) some actions can be triggered
in its signature sig(A)(q). Such an action leads to a new state with a certain probability. The measure of probability
triggered by an action a in a state g is denoted 77(#1,4,4)- The model aims to allow the composition (noted A||...||An)
of several automata to capture the idea of an interaction between them. That is why a signature is composed by three
categories of actions: the input actions, the output actions and the internal actions. In practice the input actions of
an automaton potentially aim to be the ouput action of another automaton and vice-versa. Hence an automaton can
influence another one through a shared action. The comportment of the entire system is formalised by the automaton

issued from the compostion of the automata of the system.

© v e uiy
— S o
int:g int: h int : g,h
b e b
P
¥
a C u) ¢ v e a8 unv €
> > —> >
int:g int: h,i ¢ int: g,h,l
<« O 9
b S—— b

!

Fig. 1. A representation of two automata U and V. In the top line, we see the PSIOA U in a state qb, s. t

sig(U)(q},) = (out(U)(qy,).in(U)(qy,). int(U)(qy,)) = ({b,c},{d}, {g}), the PSIOA V in a state q3,, s. t. sig(V)(qy,) =
(out(V)(q%/),in(V)(q%,),int(V)(q%,)) = ({d,e}, {c,f},{h}) and the result of their composition, the PSIOA U||V

in a state (q7,,qy), s t sig(UlIV)((q,q3)) = (out(UIIV)((qy, ¢3)), in(UIIV) ((qy, q3)), int (UNIV) (g, q3)
({b,c.d, e}, {f}. {9, h}). In the second line we see the same PSIOA but in different states. We see the PSIOA U in a state
q%], s. t. sig(U)(q%j) = (out(U)(q%J),in(U)(q%,),int(U)(q%J)) = ({b}.{a,j},{g}), the PSIOA V in a state q%,, s. t.
sig(V)(q%,) = (out(V) (q%,),in(V) (q%,),int(V)(q%/)) = ({e,j}, {c},{h i}) and the result of their composition, the PSIOA
U||V in a state (g%, q%), s. t. sig(U||V) (g%, 4%)) = (out(U[[V)((q%,4%)), in(U|IV) (g}, 4%)), int(UIIV)((¢%.4%) =
({b.e,j}.{a.cl. {g.h i}).

After this, we can speak about an execution of an automaton, which is an alternating sequence of states and actions.
We can also speak about a trace of an automaton, which is the projection of an execution on the external actions
uniquely. This allows us to speak about external behaviour of a system, that is, what can we observe from an outside

point of view.

2.2 Scheduler

We remarked in the example of figure 2 that an inherent non-determinism has to be solved to be able to define a

measure of probability on the executions, and so on the traces. This is the role of the scheduler which is a function
3

Pierre Civit and Maria Potop-Butucaru

3,\‘-_"\‘ b
= >y .
af 1, 2 N
[4 2 g rO-->@
:I- qz 8" qﬂj 1}
qtr .
d

1z qzly
' To-»e

Fig. 2. The figure represents a tree of possible executions for a PSIOA A. The red dots (q°, ', g**, ¢*') represents some states of
the PSIOA. The PSIOA can move from on state to another through actions (a, b, ¢, d, e, f, ...) represented with colored solid arrows.
Such an action act, triggered from a specif state g does not lead directly to another state g’ but to a probabilistic distribution
on states 77(71,q.act) represented by a white dot and as many dashed black arrows as states in the support of 7(7,g.act), i- € the
subset of states with non-zero probability for 1(7,q.acr)- For example, the PSIOA A can be in state q°, trigger the action a that
leads him to 77(#,4,4) and hence to g"* with probability 1/4 and to g1 with probability 3/4. Some executions are ¢°, a, g% ;
qO, a, ql,v, b, qZ,w ; qO’ a, ql,v, b, qZ,w ; qO, a, ql,v’ b, qZ,w’ c, q3,w ; qO, a, ql,u, b, qZ,w, c, q3,w ; qO’ a, ql,v, b, qZ,w’ c, q3,w. Let assume that
b and b’ are internal actions. The set of traces is then {a;a, c;a,c’;d;d, e; d, f }. Typically a, ¢ = trace(q’, a, ql’”, b, qz’w, c, q3’“) We
can already remark that a non-determinism is appearing since nothing states for the moment how two choose an action. How to
know which action to take at state ¢° among a and d. This non-determinism will be solved by the scheduler, introduced later.

o : Frags*(A) — SubDisc(dtrans(A)) that (consistently) maps an execution fragment to a discrete sub-probability
distributions on set of discrete transitions of the concerned PSIOA A. Loosely speaking, the scheduler o decides
(probabilistically) which transition to take after each finite execution fragment a. Since this decision is a discrete sub-
probability measure, it may be the case that o chooses to halt after @ with non-zero probability: 1-o(a)(dtrans(A)) > 0.

A scheduler ¢ and a probabilistic distribution y on the set of finite execution fragments Frags® (A) generate a measure
€0,y on the sigma-field Fpyecs(1) generated by cones of execution fragments (of the form Cpx = {a® € Frags(A)|a® =
a* " aYla¥ € Frags(A)}), and so a measure on the measurable space (G, ;) for any measurable function f from
(Execs(A), Fexees(a)) to (G,). Hence, when a scheduler is made explicit, we can state the probability that a cone of
execution is reached and that a property holds. By default, the probabilistic distribution p on the set of finite execution
fragments Frags® (A) is 8ssqr¢ (), i- €. the Dirac distribution that has a measure of 1 for the start state of the concerned

automaton A. We denote by €5 = €, : Execs(A) :— [0,1] the execution distribution generated by the

5start(l7()
scheduler o and 8s/4r¢ (1) -

Dynamic Probabilistic Input Output Automata

2.3 Environment, external behavior, implementation

Now it is possible to define the crucial concept of implementation that captures the idea that an automaton A "mimics"
another automaton 8. To do so, we define an environment & which takes on the role of a "distinguisher" for A and 8.
In general, an environment of an automaton (A is just an automaton compatible with A but some additional minor
technical properties can be assumed. The set of environments of the automaton A is denoted env(A). The information
used by an environment to attempt a distinction between two automata A and B s. t. & € env(A) Nenv(B) is captured
by a function f) that we call insight function. In the literature, we very often deal with f(g #) = trace g #) but in
our case, the theorem of implementation monotonicity (stated later) holds for a slightly different function that we call
print(g, a1y which takes into account the entire execution of the environment itself. The philosophy of the approach
remains nevertheless the same.

For any insight function f_), we denote by f-distg #(0) the image measure of €, under f(g 7). From here,
this is classic to define the f-external behaviour of A, denoted Ext‘Behi,;l 1 & € env(A) = {f-distg)g(o)lo €
schedulers(E||A)}. Such an object capture all the possible measures of probability on the external interaction of
the concerned automaton A and an arbitrary environment &. Finally we can say that A f-implements 8 if V& €
env(A)Nenv(B), ExtBeh; &) ¢ ExtBeh]z; (&), 1. e. for any "distinguisher" & for A and B, for any possible distribution
f-dist(g, 71)(0) of the interaction between & and A generated by a scheduler o € schedulers(E||A), there exists a
scheduler o’ € schedulers(E||B) s. t. the distribution f-dist(g gy (c’) of the interaction between & and B generated
by ¢’ is the same, i. e. for every external perception { € range(fig|z)) U range(fig 1)), f-distga(0)({) = f-
distg| (a’)({), noted f-distg| |z (o) = f-distg| (c’). This a way to formalise that there is no way to distinguish A
from B. (see figure 3).

However, as already mentioned in [8], the correctness of an algorithm may be based on some specific assumptions on
the scheduling policy that is used. Thus, in general, we are interested only in a subset of schedulers(E||A). A function
that maps any automaton W to a subset of schedulers(W) is called a scheduler schema. Among the most noteworthy
examples are the fair schedulers, the off-line, a.k.a. oblivious schedulers, defined in opposition with the online-schedulers.
So, we note ExtBehé’[SCh : & € env(A) — {f-distg)g(0)lo € Sch(E||A)} where Sch is a scheduler schema and
we say that A f-implements B according to a scheduler schema Sch if VE € env(A) N env(B), ExtBehfy’ISCh(S) c
ExtBeh],;’SCh(S) . In the remaining, we will have a great interest for two certain classes of oblivious schedulers, i. e. i)
the creation-oblivious scheduler (introduced later) and ii) the task-scheduler: an off-line scheduler already introduced
in [2], which is relevant for cryptographic analysis. The previous notions can be adapted with a particular class of

scheduler schema.

2.4 Probabilistic Configuration Automata (PCA)

The section 5 introduces the notion of probabilistic configuration automata (PCA). (see figure 4). A PCA is very closed
to a PSIOA, but each state is mapped to a configuration C = (A, S) which is a pair constituted by a set A of PSIOA and
the current states of each member of the set (with a mapping function S : A € A — g4 € states(A)). The idea is that
the composition of the attached set can change during the execution of a PCA, which allows us to formalise the notion
of dynamicity, that is the potential creation and potential destruction of a PSIOA in a dynamic system. Some particular

precautions have to be taken to make it consistent.

Pierre Civit and Maria Potop-Butucaru

£[|A £||B

Fig. 3. An environment &, which is nothing more than a PSIOA compatible with both A and 8, tries to distinguish A from B. We
say that A implements B if for every environment &, & is unable to distinguish A from B. To formalise it a little bit more, but not
totally, we say that A implements B if for every environment & € env(A) N env(B), for every scheduler o € schedulers(&E||A)
applied to &|| A it exists a scheduler o’ € schedulers(E||B) applied to &||B s. t. tdistg|# (o) = tdistg)g(0’), i. e. for every trace
B € trace(E||A) U trace(E||B), tdistg) (o) () = tdistgg(a’) ().

2.5 Road to monotonicity

The rest of the paper is dedicated to the proof of implementation monotonicity. We show that, under certain technical
conditions, automaton creation is monotonic with respect to external behavior inclusion, i. e. if a system X creates
automaton A instead of (previously) creating automaton B and the external behaviors of A are a subset of the external
behaviors of B, then the set of external behaviors of the overall system is possibly reduced, but not increased. Such an
external behavior inclusion result enable a design and refinement methodology based solely on the notion of externally
visible behavior, and which is therefore independent of specific methods of establishing external behavior inclusion.
It permits the refinement of components and subsystems in isolation from the entire system. To do so, we develop

different mathematical tools.

2.5.1 Execution-matching. First, we define the notion of executions-matching (see figure 5) to capture the idea that
two automata have the same comportment along some corresponding executions. Basically an execution-matching
from a PSIOA A to a PSIOA B is a morphism f* : Execs’ﬂ — Execs(8B) where Execs’ﬂ C Execs(A) . This morphism
preserves some properties along the pair of matched executions: signature, transition, ... in such a way that for every
pair (a, a’) € Execs(A) X Execs(B) s. t. &’ = f¢*(a), ex(a) = €5/ (a’) for every pair of scheduler (o, ¢”) (so-called
alter ego) that are "very similar" in the sense they take into account only the "structure" of the argument to return
a sub-probability distribution, i. e. &’ = f¢* () implies o(a) = 6’ (@’). When the executions-matching is a bijection
function from Execs(A) to Execs(B), we say A and B are semantically-equivalent (they differ only syntactically).
6

Dynamic Probabilistic Input Output Automata

config{ X) hidden — actions(X)
a ((x)° v e a unv e
> » —>
int: g,hd e g int:h int: g,h {d}
€] L Ofe— € 0
b ?} Tx 3 b r ld
t Xl c) el g e t
a X € i a (C u ‘) ¢ v e a unv e
> » —_— >
| int:ang R T — » T g P e | int:g.h {d}
— Ofe— | o) € Of— < oG
b — o o N d f b b
X) | Riler v k) = Jqf
i a u
—
é """ g int:g
& “—__ 0
e) M)
: a uw
¥ —
<& - int: 9,1 i}
;] 0
dx b

Fig. 4. The figure represents an execution fragment (q}(, c, qg(, h, qg(, b, q‘;() of a PCA X. In the left column, we see different
states q;(, qg(, qg(and qg{ of the PCA X, represented with white diamonds (o). Each of these states qé(is mapped through the
mapping config(X) (represented with right dotted arrows) to a configuration C5,, represented with a white triangle (>). For
example the state qé(is mapped with the configuration C)l(= (AL SY) with Al = {U,V},S}(U) = qb and S1(V) = q%,. The
signature of the PCA X at state g/ is the one of the composition of automata, in their current states in the attached configuration
C%, modulo some external actions hidden-actions(X)(qy) for Cy that are hidden and become internal for X. For example,
the configuration C)l(has a signature sig(C)l() = (out(C)l(), in(C;(), int(C)l()) = ({b,e,c,d},{a [} {9 h}), while the signature
of X at corresponding state is sig(X) (q;{) = (out(X) (q;(), in(X) (q;{), int(X) (C;()) = ({b,e,c}, {a, f},{g h d}) since the
unique action d € hidden-actions(X) (qﬁ() is hidden and hence becomes an internal action. We can define discrete transitions
for configurations in a similar way as what we do for PSIOA, but adding some tools (formally defined in section 5) to allow the
creation and the destruction of automata. For example, the automaton V is destroyed during the step (qg(, h, qi(), while W is
created during the step (qg(, b, qﬁ() which is made explicit by the fact that created(X) (qg() (b) = {X} where created(X) is a
mapping function defined for any PCA X. Some intuitive consistency rules have to be respected by pair of "corresponding transitions"
((qé(, act, U(X,q;(,act)); (CL,, act, ”(C;'(,qé(,act))) represented by pair of parallel downward arrows (one from two diamonds ¢ and

one from two triangles >) . For example, the probability T(X,qk.) (qg() of reaching qg(by triggering ¢ from qi(is equal to the
probability 1(Clqlact) (Ci) of reaching Cg{ by triggering ¢ from C)l(. Moreover, a configuration transition has to respect some

of other consistency rules with respect to the sub-automata that compose the configuration. Typically, the destruction of V in
step (C%, h, Cg() comes from the fact that the action h triggered from state q%, of sub-automaton V lead to a probabilistic states

distribution R equal to 5q¢ which is a Dirac distribution for a special state q?; with sig(V) (q‘é) = (0,0, 0) that means V
4y ¢

"has been destroyed".

Pierre Civit and Maria Potop-Butucaru

| i
q) el
y e) 0).q“’ »Or *.qlz
B 'J\ h
! @O0
; 9
: q
d
b 4O-->@—>)
a e
&——o—e Ny 9 j
q 4 ‘o000 >8D——>0->0
c - 5 A 11 13
3 q q q q
a
qﬁ
P
H h
0>,
i’
a
b 10--—»?—»0\
a i
-1 e Ty T
q ' o0 @
¢ Cr--- 55 Gt
.3 q q
q

Fig. 5. The figure represents the respective executions tree of two automata A and B with some strong similarities. The states of

A (resp. B) are represented with red (resp. blue) dots. The actions are represented with solid arrows. An action leads to a discrete

probability distribution on states 1, represented with a white dot and dashed arrows reaching the different states of the support of
’

1. In section 7, we define these strong similarities with what we call an executions-matching (f, f*", f¢*) where f : statesl; —

states(B), fi" : dtrans’; — dtrans(8), f* : Execsly — Execs(B) with states’, C states(A), dtrans’, C dtrans(A),

Execs’; C Execs(A). The mappings f, £ and f°* preserves the important properties: signature for corresponding states, name
of the action and measure of probability of corresponding states for corresponding transitions, etc. In the example the similarities
exist until the states ¢°, g% and ¢°, hence we have states’, = {q°, 4" ...4°} € Qa . The states-matching f is then defined s. t.
Vk € [1, 9],f(qk) = qk. Thereafter, we define define Act = {a, b,c,d, e, f,h} and f779"S s t. Vk € [1,9], Vact € Act, for every
transition (qk,act,n(ﬂ’qk)act)), f”“"s((qk,act,t](,ﬂ’qk’act))) = (qk,act,q(ﬁqk’act)). Each pair of mapped transition gives the
same probability to pair of mapped states, e. g. N(AG.d) (¢*) = N(8,62,d) (¢%). Then we can define Execs’; C Execs(A) the set of
executions composed only with states in Q’; and actions in Act. Finally f¢* : o = q’a'...a"q" € Execs'y f(g®al...a"f(q") is
an execution-matching. The Point is that if two schedulers o and ¢’ only look at the preserved properties to output a measure of
probability on the actions to take, the attached measures of probability will be equal, i. e. €5 () = €57 ()

252 A PCA X4 deprived from a PSIOA A . Second, we define in section 8 the notion of a PCA X 4 deprived from
a PSIOA A noted (X # \ {A}) . Such an automaton corresponds to the intuition of a similar automaton where A is

systematically removed from the configuration of the original PCA (see figure 6 and 7).

2.5.3 Reconstruction: (X \ {A})| |ASY . Thereafter we show in section 9 that under technical minor assumptions
Xz \ {A} and ASY are composable where A" and A are semantically equivalent in the sense loosely introduced
in the section 2.5.1 . In fact A" is the simpleton wrapper of A, that is a PCA that only owns A in its attached
configuration (see figure 8). Let us note that if A implements B, then A" implements B°".

8

Dynamic Probabilistic Input Output Automata

hidden—

config(X)
| [actions(X)
a X e v e I)
3 . ¢
“int: gha, k. > wen |2 mee | {d, e}
«— o> Ole— Ole—
b x - Jm
Ly
Nx g0 el gt e
,—L. '
a > X H a > u] [v e 8 T D ¢
int : g,hd, k S— int:g M e T me | {d,e}
< . > . D) € O« Ole—
b % 8 b d e
£ e
LEF NC e) v iy = A
a X f e (T 3\ P
3
- int:g, k é """" > int : k
b OJ) e X f m
£ m
L N) ! @ = created(X)(q})(b) = {W}
a X t 2 u w € I I]
3 = > v > > :
gL Lk | » int:g int jO Inl.ko > 1i}
b o € 41; C{ b 9) i f m
£ m

Fig. 6. Projection on PCA, part 1/2: The figure represents a PCA X like in figure 4. A sub-automaton T (in purple) appears in the
configurations attached to the states visited by X. The PCA'Y = X \ {T'} where the sub-automaton T is systematically removed is
represented in figure 7.

Then we show that there is an (incomplete) execution-matching from X # to (X \ {AD||ASY (see figure 9). The
domain of this executions-matching is the set of executions where A is not (re-)created.

After this, we always try to reduce any reasoning on X # (resp. Xg) on a reasoning on (X \ {A})||ASY (resp.
(X \ {BDIIBY).

2.54 Corresponding PCA. We show in section 10 that under certain reasonable technical assumptions (captured in
the definition of corresponding PCA w. r. t. A, B) that (X # \ {A}) and (Xg \ {B}) are semantically-equivalent. We
can note Y an arbitrary PCA semantically-equivalent to (X # \ {A}) and (Xg \ {8B}) . Finally, a reasoning on &||X #
(resp. &||X g) can be reduced to a reasoning on (ENY)|ASY = &'|| AW (resp. &'||B5Y) with &' = &||Y. Since ASY
implements B5W_ we have already some results on &’| |ASY and &||B" and so on &||X 4 and &||Xg but only in a
subset of executions (as long as neither A nor B is (re-)created, their comportment are the same.). This reduction is

represented in the figure 10.

Cut-paste execution fragments with A (resp. B) creation at the endpoints. The reduction roughly described in figure

10 holds only for executions fragments that do not create the automata A and B after their destruction (or at very last

action). Some technical precautions have to be taken to be allowed to paste these fragments together to finally say that
9

Pierre Civit and Maria Potop-Butucaru

Y- X\ {1}
") hidden—
config(Y
¢ actions(Y')
a ¥ e ¥ e
> » | I
1 nt:gna g — = {d}
<« — 0 (f—— 0 (f__
b N— Ay
e Y gl) Thet gbc)
a Y a u] c v e
> ¥ > > » {d, e}
Int:ghd,e] 0 e » int:g int:h
] Ofe— o o) <« O—
R S— % L g
Ny) TNC3 gt b)
S
a4
My g) s g b
¥
& e @
a

Fig. 7. Projection on PCA, part 2/2: the figure represents the PCA'Y = X \ {T'} while the original PCA X is represented in figure 6.
We can see that the sub-automaton T (in purple in figure 6) has been systematically removed from the configurations attached to the
states visited by Y.

A implements B implies X # implements Xg. In fact, such a pasting is generally not possible for a fully information
online scheduler. This observation motivated us to introduce the creation-oblivious scheduler that outputs (randomly)
a transition without taking into account the internal actions of a sub-automaton A preceding its last destruction.
Surprisingly, the fully-offline task-scheduler introduced in [2] (slightly modified to be adapted to dynamic setting) is

not creation-oblivious and so does not verify monotonicity.

3 PRELIMINARIES ON PROBABILITY AND MEASURE

We assume our reader is comfortable with basic notions of probability theory, such as o-fields and (discrete) probability
measures. A measurable space is denoted by (S, ¥5), where S is a set and ¥ is a o-algebra over S that is s € P(S),
is closed under countable union and complementation and its members are called measurable sets (£ (S) denotes the
power set of S). A measure over (S, Fs) is a function 5 : F3 — R=°, such that 5(0) = 0 and for every countable
collection of disjoint sets {S; };cr in Fs, n(U;er Si) = Ziern(Si). A probability measure (resp. sub-probability measure)
over (S, Fs) is a measure n such that n(S) = 1 (resp. n(S) < 1). A measure space is denoted by (S, 75,) where n is a

measure on (S, Fs).

Dynamic Probabilistic Input Output Automata

i

g oo con figlA™)@ gre) = (A (A ped (3)
Vg gow ,Vu,c:,created(vfim)(@jw](m:t) =@

Vg gou , hidden — uﬂt!‘ml.‘!(,ﬂism)(-‘;‘(w] =0

psioa(A™) = Teny,(A)

oo)

A b = 503

G

Fig. 8. The figure represents the simpleton wrapper ASY of an automaton A. The automaton AS™ is a PCA that only encapsulates
one unique sub-automaton which is A. We can confuse A and A" without impact. Intuitively, we can see A" as a wrapper of A
that does not provide anything.

The product measure space (Si, Fs;, 1) ® (S2, Fs,, 2) is the measure space (S1 X S2, s, ® Fs,, 11 ® 112), where
Fs, ® Fs, is the smallest g-algebra generated by sets of the form {A X B|A € Fs,, B € F5,} and 11 ® 12 is the unique
measure s. t. for every C; € Fs,,C2 € Fs,, 11 ® 2(C1 X C2) = 11(C1) - n2(C2). If S is countable, we note P(S) = 25 1f
S1 and Sy are countable, we have 251 @ 252 = 251%Sz,

A discrete probability measure on a set S is a probability measure 7 on (S, 2%), such that, for each C c S, (C) =
Yieec N({c}). We define Disc(S) and SubDisc(S) to be respectively, the set of discrete probability and sub-probability
measures on S. In the sequel, we often omit the set notation when we denote the measure of a singleton set. For a
discrete probability measure 1 on a set S, supp(n) denotes the support of 7, that is, the set of elements s € X such that
1(s) # 0. Given set S and a subset C C S, the Dirac measure dc is the discrete probability measure on S that assigns
probability 1 to C. For each element s € S, we note Js for §.

If {m;};er is a countable family of measures on (S, ¥s), and {p;};es is a family of non-negative values, then the
expression };¢y pim; denotes a measure m on (S, ¥s) such that, for each C € F5,m(C) = Y ;cy mifi(C). A function
f:X — Y is said to be measurable from (X, Fx) — (Y, Fy) if the inverse image of each element of ¥y is an element

11

Pierre Civit and Maria Potop-Butucaru

X z
config(X) config(Z)
. a T Y [P e a
e - — > o
a5 b — nz (a) Z b
c c ° ¢
KW T g.0); M)
: 0 : H
L a0 o T e af ¥ vt e, R
------------- s) 0 wns) e o] Lo
int: g a
C% b . d Y (d Ci b d
h h h h
! ; =4
(X,) NG 3 b NVt k) = 'ng, M) i vt = O
a X <'> : a u a Y (7 3 H H a u
- ¥
-) > X int:g b : int:g
int:g, b @ [N 1350 e L J n gk Ci b
b b * b b
o Moy @ = ereated(X)(q})(5) = (W} Tl(z,q;,b); Ut ¢ = created(Z) (g3) (b) = {W}
: —\ w
a (X H a0) [W a ¥ v b L N
- = O — » m e | intigll i o m int:j
- int:g,ji n [: int:j N 9) Y (gh) Cy b i

¥ =X\ {V} v
config(Y) cmfig(vm)
c e
a n c _>
>
1
a a’, Ly a Cim d LIy
c c
Mrahe; NG abe :
L H c e
) ! ; - u
E)
int:g,b int:g 2
b . @ ey 2. ;
) =0
LI 8ez, vt) =9y V.t by = O
a Y : a u
o <v> _____) -
o @ =q fo: 2 Cne = (0,0)
b b
Ny Uchds @ = created(Y)(g})(b) = {W} O S0
N a0) (W cam s
- — [— > T . a<> 2 = (0,0)
int:g,ji g o - : Ty = Qe v = (0,
b v Y b i et

Fig.9. The figure shows the similarities between two PCAX and Z = (X\ {V})| |[Vsw represented in the top line. The two components
of Z,i.e. (X \ {V}) and V5™ are represented in the bottom line like in figure 7 and 8. These similarities are captured by the notions
of executions-matching and hold as long as the the sub-automaton V is not created after a destruction. The idea is to reduce any

reasoning on X to a reasoning on (X \ {V})| [Vsw.

of Fx, that is, for each C € Fy, f_l(C) € Fx. In such a case, given a measure 5 on (X, Fx), the function f(5) defined
on Fy by f(17)(C) = n(f~1(C)) for each C € Y is a measure on (Y, Fy) and is called the image measure of 5 under f.
12

Dynamic Probabilistic Input Output Automata

&l Xa &l Xa E|[Ya|lA™ EqllA™ épllA
£ £ & Ea=El[Y4 Ep = psioa(&e)
Ee=E4 =&
Xa Xa V4= X4\ {A} et
w w w
T g
A A A A
£l X5 &l Xp £||vs(1B™ &s||B™ &|IB
£ € € &5 = £l|Ys &p = psioa(£c)
X5 Xz Yy = X5 \ {B} Ee=Es=E4
w w w
I g
B B B B

Fig. 10. The figure represents successive steps to reduce the problem of an environment & that tries to distinguish two PCA X# and
Xg (represented at first column) to a problem of an environment &g that tries to distinguish the automata A and B (represented at
last column). The second column just remarks that the only difference between X4 and Xg is that A supplants B in X #. The third
column consist in the steps of deprivation (see section 2.5.2) and reconstruction (see section 2.5.3). The fourth column rearrange the
parenthesis by associativity of the parallel composition to highlight E4 = E||(Xa \ {A}) and Eg = E|[(Xg \ {B}) as respective
environments of ASY and 8", In last column, we remark that E4 and Eg are semantically equivalent so there it is like we deal
with a common environment &g for both ASY and AS™. If we consider only the psioa components, the problem is reduced to a
common environment Eq that tries to distinguish the automata A and B. The reasoning holds only as long as the automata A and
B are not created after their destructions.

4 PROBABILISTIC SIGNATURE INPUT/OUTPUT AUTOMATA (PSIOA)

This section aims to introduce the first brick of our formalism, i. e. the probabilistic signature input/output automata
(PSIOA). A PSIOA is the result of the generalization of probabilistic input/output automata (PIOA) [8] and signature
input/output automata (SIOA) [1]. A PSIOA is thus an automaton that can randomly move from one state to another in
response to some actions. The set of possible actions is the signature of the automaton and is partitioned into input,
output and internal actions. An action can often be both the input of one automaton and the output of another one to
captures the idea that the behavior of an automaton can influence the behavior of another one. As for the SIOA [1],
the signature of a PSIOA can change according to the current state of the automaton, which allows us to formalise

dynamicity later. The figure 11 gives a first intuition of what is a PSIOA.

4.1 Action Signature

We use the signature approach from [1].

Pierre Civit and Maria Potop-Butucaru

(u) ¢ v e uiv &
— —
int:g int:h int:g.h ¢
\ 0J5 2 O
b BN
C
¥
a C u) ¢ v e & unv €
= > . >
int:g int: h,i ¢ int: g,h,l
<« Q)< O b
b S—

Fig. 11. A representation of two automata U and V. In the top line, we see the PSIOA U in a state qb, s. t.

sig(U) (qb) = (out(U)(qb),in(U)(q;]),int(U)(q}])) = ({b,c}, {d}, {g}), the PSIOA V in a state q%,, s. t. sig(V)(q%,) =
(out(V)(q%,),in(V)(q%,),int(V)(q%,)) = ({d,e}, {c,f},{h}) and the result of their composition, the PSIOA U||V

in a state (q7,qy), s t sig(U[IV)((qy-q3) = (out(U|IV)((qg, i) in(UIIV) (g, 43)), int (UNIV) ((q3,. q3,) =
({b,c,d,e}, {f}, {9, h}). In the second line we see the same PSIOA but in different states. We see the PSIOA U in a state
q%], s. t. sig(U)(q%]) = (out(U)(q%I),in(U)(q%,),int(U)(q%])) = ({b}.{a, j},{g}), the PSIOA V in a state q%,, s. t.
sig(V)(q%,) = (out(V) (q%,),in(V) (q%,),int(V) (q%/)) = ({e,j}, {c},{h i}) and the result of their composition, the PSIOA
UlIV in a state (g7, %), s. t. sigUIV) (g}, 4%)) = (out(UIIV) (g}, 45)), in(UIIV)((gF,, 43)), int(UIIV) (¢}, 4%) =
({b.e.j}.{a cl.{g.h i}).

We assume the existence of a countable set Autids of unique probabilistic signature input/output automata (PSIOA)
identifiers, an underlying universal set Auts of PSIOA, and a mapping aut : Autids — Auts. aut(A) is the PSIOA with
identifier A. We use "the automaton A" to mean "the PSIOA with identifier A". We use the letters A, B, possibly
subscripted or primed, for PSIOA identifiers. The executable actions of a PSIOA A are drawn from a signature
sig(A)(q) = (in(A)(q), out(A)(q), int (A)(q)), called the state signature, which is a function of the current state ¢ of
A.

in(A)(q), out(A)(q), int(A)(q) are pairwise disjoint sets of input, output, and internal actions, respectively. We
define ext(A)(q), the external signature of A in state g, to be ext(A)(q) = (in(A)(q), out(A)(q)).

We define local(A)(q), the local signature of A in state g, to be local(A)(q) = (out(A)(q), int(A)(q)). For any
signature component, generally, the ~operator yields the union of sets of actions within the signature, e.g., sig(A) : q €
O s@(ﬂ) (q) = in(A)(q) U out(A)(q) U int(A)(q). Also we define acts(A) = Ugep s@(ﬂ) (q), that is acts(A) is
the "universal” set of all actions that A could possibly trigger, in any state. In the same way UI(A) = Ugep in(A)(q),
UO(A) = Ugeg out(A)(q), UH(A) = Ugeo int(A)(q), UL(A) = Ugeg local(A)(q), UE(A) = Ugeo ext(A) ().

4.2 PSIOA
We combine the SIOA of [1] with the PIOA of [8]:

Definition 4.1 (PSIOA). A PSIOA A = (Q &, G4, sig(A), D7), where:

e Q4 (aka. states(A)) is a countable set of states, (Q 4, 297) is a measurable space called the state space,
® g4 (a k. a. start(A)) is the unique start state.

Dynamic Probabilistic Input Output Automata

e sig(A) : q € Qg > sig(A)(q) = (in(A)(q), out(A)(q), int(A)(q)) is the signature function that maps each
state to a triplet of mutually disjoint countable set of actions, respectively called input, output and internal
actions.

e Dg C Qg Xacts(A) X Disc(Q#) (D a. k. a. dtrans(A)) is the set of probabilistic discrete transitions where
V(q.a,n) € Dg : a € s/i?](ﬂ) (q)-If (¢, a,n) is an element of D 4, we write g 5 n and action a is said to be
enabled at q.

In addition A must satisfy the following conditions!:

e E; (action enabling) Vg € Q4 : Va € s’ig(ﬂ)(q), 3dn € Disc(Qx) : (q,a,n) € Dg.
e T; (Transition determinism): For every q € Q4 and a € s’l?;(ﬂ)(q) there is at most one 1 7,4.4) € Disc(Qa),
such that (¢, a4, 1(7,4.0))) € Da-

Notation. For every PSIOA A £ (Q 4, G.#,sig(A), Dg), we note states(A) = Q g, start(A) £ g, dtrans(A) =
D 4. We also note steps(A) = {(q.a,q") € Oz X acts(A) X Qx|3(q,a.n) € Da,q’ € supp(n)}.

4.3 Execution, Trace

We use the classic notions of execution and trace from [8] to speak about the comportment of a PSIOA.

Definition 4.2 (fragment, execution and trace of PSIOA). An execution fragment of a PSIOA A = (Q &, § &, sig(A), D7)

is a finite or infinite sequence a = q®a'q'd®... of alternating states and actions, such that:

(1) If « is finite, it ends with a state.
(2) For every non-final state g;, (¢, @', ¢"*!) € steps(A)

We write fstate(e) for q° (the first state of @), and if « is finite, we write Istate() for its last state. We note states(a)
(resp. actions(a)) for the set of states (resp. actions) that compose @. The length || of a finite execution fragment
a is the number of transitions along a. The length of an infinite execution fragment « is infinite, (|a| = w). If We
use Frags(A) (resp., Frags®(A)) to denote the set of all (resp., all finite) execution fragments of A. An execution
of A is an execution fragment « with fstate(a) = q. Execs(A) (resp., Execs*(A)) denotes the set of all (resp., all
finite) executions of A. The trace of an execution fragment «, written trace(a), is the restriction of « to the external
actions of A. We say that f is a trace of A if there is a € Execs(A) with § = trace(a). Traces(A) (resp., Traces™ (A))
denotes the set of all (resp., all finite) traces of A. We define a concatenation operator —~ for execution fragments as
follows. If @ = q%a'q'...a"q" € Frags*(A) and o’ = s°b's'... € Frags\A), we define a "’ = q’a'q"...a"s°b's! ... only
if s% = ¢", otherwise " a’ is undefined. Hence the notation &~ s%b!s!... implicitly means s = Istate(a). We also note
a™ (b, s!) to states a " Istate(a)b's!. Let a, @’ € Frags(A), then « is a proper prefix of &’ iff 3a”’ € Frags(A) such
that @’ = @~ a” with @ # @’. In that case, we note « < a’. We note & < &’ if & < &’ or « = &’ and say that « is a prefix

of a’. We also overload —~ and use it for concatenating traces in the obvious manner.

Definition 4.3 (reachable state). Let A = (Q 7, .7, sig(A), D#) be a PSIOA. A state q € Q 4 is said reachable if it
exists a finite execution that ends with g. We note reachable(A) the set of reachable states of A. We also note for every

s € N, reachable<s(A) = {q* € reachable(A)|3z < s, Ja = ¢°alq'...q° 1a?q*}. This is the set of states reachable in

The conjunction of conditions E; and T; could allow us to model D as a partial function from Qg X acts(A) to Disc(Q.#). However, we keep this
presentation to stay as close as possible to the usual notation of the literature. For the same reasons, we use both A = (Q4, G4, sig(A), D#) and
A = (states(A), start(A), sig(A), dtrans(A))

15

Pierre Civit and Maria Potop-Butucaru

less than s actions. We also note for every s € N*, reachables(A) = reachable<s(A) \ reachable<s_1(A). This is the
set of states reachable in s actions but not less. By convention, reachabley(A) = {G#}-
The set of sets {reachables(A)|s € N} is clearly a partition of reachable(A).

4.4 Compatibility and composition

Tha main aim of IO formalism is to compose several automata A = {Aj, ..., A, } and obtain some guarantees of the
system by composition of the guarantees of the different elements of the system. Some syntaxic rules have to be satisfied

before defining the composition operation.

Definition 4.4 (Compatible signatures). Let S be a set of signatures. Then S is compatible iff, Vsig, sig’ € S, where
sig = (in, out, int), sig’ = (in’, out’, int’) and sig # sig’, we have: 1. (in U out U int) N int’ = 0, and 2. out N out’ = 0.

Definition 4.5 (Composition of Signatures). Let 3 = (in, out, int) and 3’ = (in’, out’, int’) be compatible signatures.

Then we define their composition X X % = (in U in’ — (out U out’), out U out’, int U int’)?.

Signature composition is clearly commutative and associative.
Now we can define the compatibility of several automata with the compatibility of their attached signatures. First

we define compatibility at a state, and discrete transition for a set of automata for a particular compatible state.

Definition 4.6 (partially compatible at a state). Let A = {Ay4, ..., An} be a set of PSIOA. A state of A is an element
q=1(q1,-.qn) € QA = Qa, X ... X Qq,. We say Ay,..., Ay are partially-compatible at state g (or A is partially-
compatible at state q) if {sig(A1)(q1), ..., sig(An)(gn)} is a set of compatible signatures. In this case we note sig(A)(q) =
sig(A1)(q1) X...Xsig(An)(qn) as per definition 4.5 and we note 1(a ¢,a) € Disc(Qa), s. t. for every actiona € sig(A)(q),
N(Aqa) =71 ® ... ® np € Disc(Qa) that verifies for every j € [1,n] :

o Ifa € sig(Aj)(q)). nj =N(A,.q;.a)
e Otherwise, n; = &g, (where J4; the Dirac distribution with supp(dg,) = {q;} and 4,(q;) = 1)

which means 1(a g.q) = 8¢ if a ¢ sz’?(A)(q).

We will say a set of automata is partially-compatible, if any reachable state is compatible. This motivates the two

following definitions.

Definition 4.7 (pseudo execution). Let A = {Aj, ..., An} be a set of PSIOA. A pseudo execution fragment of A is a finite

or infinite sequence & = q’alq'a®... of alternating states of A and actions, such that:

o If « is finite, it ends with a state of A.

e For every non final state ', A is partially-compatible at g'.
e For every action a’, a! € sig(A)(g'™).

e For every state ¢/, with i > 0, ¢’ € supp(N(a,qi-1,a))-

A pseudo execution of A is a pseudo execution fragment of A with ¢° = (Ga,,--9a,)-

Definition 4.8 (reachable state). Let A = {Aj, ..., Apn} be a set of PSIOA. A state g of A is reachable if it exists a pseudo

execution a of A ending on state g.

Now we are able to define compatibility for a set of PSIOA.

Znot to be confused with Cartesian product. We keep this notation to stay as close as possible to the literature.

16

Dynamic Probabilistic Input Output Automata

Ay p

a .
O—— M4 ;.0
T .

‘o

As ‘. A= (A, A, Ay)

a ’ \ ',
q}.—<7}l\43 et} Oa_(::.\nl-ﬁ.qlﬂ]
9 a=(q1,%,) "

oo
oo

Ag
5,;_!
o— >0
i3
a & sig(Ay)(gs)

Fig. 12. The family transition is obtain by the transitions of the automata of the family.

Definition 4.9 (partially-compatible PSIOA). Let A = {Ajy, ..., An} be a set of PSIOA. The automata Ay, ..., A, are
t-partially-compatible with ¢ € N, if no pseudo-execution a of A with |a| < ¢ ends on non-partially-compatible state
q. The automata Ay, ..., Ay, are partially-compatible if A is partially-compatible at each reachable state g, i. e. if A is
t-partially-compatible for every ¢ € N.

Finally, we can formally define our operation of composition. This is the central operation of any IOA formalism.

Definition 4.10 (partially-compatible PSIOA composition). If A = {A;, ..., A} is a partially-compatible set of PSIOA,
with A; = (Qa,, 41, $ig(A;), D 71,), then their partial-composition A1 ||...||Ap, is defined tobe A = (Q 4, .71, sig(A), Dg),
where:

e Oa={q€Qa, X..xQa,lqis areachable state of A}.

* 4a=(qa,--qa,)

e sig(A) :q=1(q1,.--qn) € Qx > sig(A)(q) = sig(A1)(q1) X ... X sig(Apn)(qn) as per definition 4.5.

® Dg C Qa Xacts(A) X Disc(Qa) is the set of triples (g, a,7(a,g,a)) S0 thatg € Qg and a € @(A) (q)

This formalism extends the one proposed in [1] where it is required that all (potentially non-reachable) states are
compatible. In addition to being slightly less restrictive, this notion of composability i) may facilitate the expression of
mobile agents moving from one system to another (see section 5) and ii) will allow the proof of theorem of implementation

monotonicity w.r.t. PSIOA creation (see section 6).

Pierre Civit and Maria Potop-Butucaru

Given a parallel composition A = Aq]]...||An of n PSIOA, we define the projection of an execution fragments of A
onto one of the Aj, i € [1: n], in the usual way: the state components for all PSIOA other than A; are removed, and so

are all actions in which A; does not participate.

Definition 4.11 (Execution projection for PSIOA). Let A = Ay||...|| Ay, be a PSIOA. Let a = ¢%al...a"q"... € Frags(A).
Then, Vi € [1: n], we define a | A; to be the sequence resulting from:
(1) replacing each ¢/ = (q{, v qfl) by its i’th component q{ and then
(2) removing all ajq{ s.t.al ¢ sz?(ﬂl)(q{_l)
The idea behind execution projection is to retain only the state of A;, and only the actions which A; participates
in. It has been shown in [1] (theorem 4, page 11), that for every PSIOA A = A1 ||...||An, Ya € Execs(A), Vi € [1: n],
a | A; € Execs(A;).

4.5 Scheduler: define a measure on executions and traces

An inherent non-determinism appears for composable input/output (I/O) automata. Indeed, after composition (or even
before), it is natural to obtain a state with several enabled actions. The most common case is the reception of two
concurrent messages in flight from two different processes. This non-determinism must be solved if we want to define
a probability measure on the automata executions and be able to say that a situation is likely to occur or not. To solve

the non-determinism, we use a scheduler that chooses an enabled action from a signature.

4.5.1 Scheduler: general definition. A scheduler is hence a function that takes an execution fragment as input and
outputs the probability distribution on the set of transitions that will be triggered. We reuse the formalism from [8]

with the syntax from [2].

Definition 4.12 (scheduler). A scheduler of a PSIOA A is a function

o : Frags*(A) — SubDisc(dtrans(A)) such that (q, a,n) € supp(o(a)) implies q = Istate(a). Here SubDisc(dtrans(A))
is the set of discrete sub-probability distributions on dtrans(A). Loosely speaking, o decides (probabilistically) which
transition to take after each finite execution fragment a. Since this decision is a discrete sub-probability measure, it may
be the case that o chooses to halt after ¢ with non-zero probability: 1 — () (dtrans(a)) > 0. We note schedulers(A)
the set of schedulers of A.

Definition 4.13 (measure €5, generated by a scheduler and a fragment). A scheduler ¢ and a finite execution fragment
a generate a measure €4, on the sigma-field Fzy.cs(1) generated by cones of execution fragments, where each cone
Cy is the set of execution fragments that have o’ as a prefix, i. e. Coy = {@ € Execs(A)|a’ < a} . The measure of a
cone C, is defined recursively as follows:
0 ifbotha’ £ eand a £ @’
€oa(Car) =14 1 ifa/ <a
€0,a(Cor) - U(a’/)(q(ﬂ,q’,a)) “N(Aqa) (9 ifa<a”anda’=ar ~q'aq
Standard measure theoretic arguments ensure that €4 ¢ is well-defined. We call the state fstate(a) the first state of
€0, and denote it by fstate(eq, o). If o consists of the start state start(A) only, we call €5 4 a probabilistic execution of
A. Let yt be a discrete probability measure over Frags*(A). We denote by €, the measure 3. csupp () H(@) - €0,x and
we say that e, is generated by o and p. We call the measure €, a generalized probabilistic execution fragment of A.
If every execution fragment in supp () consists of a single state, then we call €,;, a probabilistic execution fragment of
A.

Dynamic Probabilistic Input Output Automata

. L aore
[¥ - >

7" a0
qz.lr.' qi{.u-

1z qzly
' To-»e

Fig. 13. Non-deterministic execution: The scheduler allows us to solve the non-determinism, by triggering an action among the
enabled one. Typically after execution a = q° d ¢"*, the actions e and f are enabled and the probability to take one transition is
given by the scheduler o that computes o(a).

4.5.2 Scheduler Schema. Without restriction, a scheduler could become a too powerful adversary for practical appli-
cations. Hence, it is common to only consider a subset of schedulers, called a scheduler schema. Typically, a classic
limitation is often described by a scheduler with "partial online information". Some formalism has already been pro-
posed in [8] (section 5.6) to impose the scheduler that its choices are correlated for executions fragments in the same
equivalence class where both the equivalence relation and the correlation must to be defined. This idea has been reused
and simplified in [3] that defines equivalence classes on actions, called tasks. Then, a task-scheduler (a.k.a. "off-line"
scheduler) selects a sequence of tasks T, Tz, ... in advance that it cannot modify during the execution of the automaton.
After each transition, the next task T; triggers an enabled action if there is no ambiguity and is ignored otherwise. One
of our main contribution, the theorem of implementation monotonicity w.r.t. PSIOA creation, is ensured only for a
certain scheduler schema, so-called creation-oblivious. However, we will see that the practical set of task-schedulers are

not creation-oblivious.

Definition 4.14 (scheduler schema). A scheduler schemais a function that maps any PSIOA W to a subset of schedulers(W).

4.6 Implementation

In last subsection, we defined a measure of probability on executions with the help of a scheduler to solve non-
determinism. Now we can define the notion of implementation. The intuition behind this notion is the fact that any
environment & that would interact with both A and 8, would not be able to distinguish A from $. The classic use-case
is to formally show that a (potentially very sophisticated) algorithm implements a specification.

19

Pierre Civit and Maria Potop-Butucaru

For us, an environment is simply a partially-compatible automaton, but in practice, he will play the role of a

"distinguisher".

Definition 4.15 (Environment). A probabilistic environment for PSIOA A is a PSIOA & such that A and & are

partially-compatible. We note env(A) the set of environments of A.

Now we define insight function which is a function that captures the insights that could be obtained by an external

observer to attempt a distinction.

Definition 4.16 (insight function). An insight-function is a function fi) parametrized by a pair (&, A) of PSIOA
where & € env(A) so that for every PSIOA &, it exists a measurable space (Gg, FGg), s. t. for every pair (A, B) of
PSIOA where & € enuo(A) Nenv(B), f(g) (resp. f(g 8)) is a measurable function from (Execs(E||A), Fexecs(s|A))
(resp. (Execs(E|1B), Fexecs(s18))) to (Ge, Fag)-

The point is that the arrival space (Gg, FG,) is the same for the two functions f(g #) and f(g g) to enable a
comparison. Some examples of insight-functions are the trace function and the print function introduced later.

Since an insight-function f{_) is measurable, we can define the image measure of €5, under f(g), i. e. the
probability to obtain a certain external perception under a certain scheduler ¢ and a certain probability distribution y

on the starting executions.

Definition 4.17 (f-dist). Let f(_) be an insight-function. Let (&, A) be a pair of PSIOA where & € env(A). Let y
be a probability measure on (Execs(E||A), Frxecs(&||a))s and o € schedulers(E||A). We define f-dist(g a) (0, 1), to
be the image measure of €5, under f(g #) (i. e. the function that maps any C € ¥, to €5, (f(’s1) (C))) . We note

f-dist g a1 (0) for f-dist(g a) (0, Ssrare(8,71))-

We can see next definition of f-implementation as the incapacity of an environment to distinguish two automata if

it uses only information filtered by the insight function f.

Definition 4.18 (f -implementation). Let f(_) be an insight-function. Let Sch be a scheduler schema. We say that A
f-implements B according to Sch, noted A Sgch B, if VE € env(A) N env(B), Yo € Sch(E||A), 3o’ € Sch(E||B),
f—dist(&y{) (o) = f—dist(g’gg) (d”).

We states a necessary and sufficient condition to obtain composability of f-implementation.

Definition 4.19. Let f(_ be an insight-function. We say that f_) is stable by composition if for every quadru-
plet of PSIOA (Aj, Az, B,E), s. t. B is partially compatible with A; and Az, & € env(B||A1) N env(B||A2),
for every (C1,C2) € Fpxecs(&|81A1) X TExecs(E118117,)> f(£118,7,) (C1) = fle)18,.7,)(C2) = fig,8)14,) (C1) =
fie.8117,) (C2)

We can restate classic theorem of composability of implementation in a quite general form.

THEOREM 4.20 (IMPLEMENTATION COMPOSABILITY). Let f() be an insight-function stable by composition. Let Sch
be a scheduler schema. Let A1, Az, B be PSIOA, s.t. Ay Sf Ay If B is partially compatible with Ay and Ay then

Sch
817 <L, Bl|A.

Proor. If & is an environment for both B||A; and B||Ajy, then &' = E||B is an environment for both A; and Aj.

By associativity of parallel composition, we have for every i € {1, 2}, (&||B)||A; = E||(B||A;). Since Ay S£Sc‘hema
20

Dynamic Probabilistic Input Output Automata

Ay, for any scheduler ¢ € Sch((E]|B)|| A1), it exists a corresponding scheduler ¢’ € Sch((E]|B)||Az), s. t. f-
dist(g||8),4, (€5) = f-dist(g||8), A, (€s)- Thus, by stability by composition, for any scheduler o € Sch(&E|[(B]|A1)),
it exists a corresponding schedule o’ € Sch(E[|(B||A2)), s. t. f-dist(g (8| |a,)) (€5) = f-dist(g (8||a,)) (€5, that is
Al|B Sgch Az||B. O

Now we introduce the insight function print(g) that we will use for monotonicity of implementation w.r.t. PSIOA

creation.

Definition 4.21 (print(g #). Let A be a PSIOA and & € eno(A) We note
) Frags(E||A) — Frags(E) X trace(A)
prmt(&g{) :
— (a] & trace(a))
We note Prints(&E, A) £ range(print(g z)) and V((e, f), (¢', ') € Prints(&, A)?, (e, f) < (¢/, ') iff both e < e’
and B < p’. For every { € Prints(&, A), we note Cy = {{’ € Prints(g a)|{ < ¢’} called a cone of prints. We note

Fprints(s,a) the o-field generated by the set of cones of prints.

LEMMA 4.22 (PRINT IS AN INSIGHT FUNCTION STABLE BY COMPOSITION). Let A be a PSIOA and & € env(A). print(g a)

is an insight function stable by composition. a measurable function from Fgyecs(g(|A) 10 Fprines(&,4)-

PRrOOF. (1) (measurability) We need to show that VG € Fp,inss(8,) print(_é’ﬂ) (G) € Frrags(s||7)-

We note fi : a € Frags(E||A) — a | & and f; : a € Frags(E||A) +— trace(a). We can already remark that
(*) Vi € {1,2},¥(a,a’) € Frags®(A),a < a’ = fi(a) < fi(a’) and (**) Vi € {1,2},¥(y;,a’) € range(f;) x
Frags(A),y; < fi(a’) = a,a’’) € Frags*(A),a’ = a"a’ and fi(a) = y;.
Let G € Fprints(&,7)- By construction, it exists { = (e, f) € Prints(&E, A) s.t.G = Cr.Let F = print(_é’ﬂ) (G) =
{a’ € Frags(A)|{ < printg a7)(a’)} = F1 N F; with F; = {a] € Frags(A)le < fi(a')} and Fz = {a] €
Frags(A)|f < fa(ay)}. By () and ("), F1 = U, eFrags(A),a;1&=¢ Can and F2 = U, eFrags(A) trace(ay)=p- BY
closeness of o-field under countable union, Fy, Fa € Frya45(8||7) and by closeness of o-field under intersection
F € Frrags(g||a) which ends the proof.

(2) (stability by composition) Let (A1, Az, B, &) be a quadruplet of PSIOA, s. t. B is compatible with A; and Ay, & €
env(B||Ay) N env(B||Az). Let (a, w) € Execsg||g||a, X Execsg||8|| 4, cleatly a [(E|B) =7 1 (E]|B8) =
a [&= n I &, while the trace component stay the same. Thus, for every (C1,C2) € Frxecs(8(|8]1A;) ¥

FExees(8118]|Az)- PTint(g)|8,7,) (C1) = print(g||8,a,) (C2) = fig,8]|14,) (C1) = f(g,8]|4,) (C2)-

Thus, given an environment & of A probability measure y on Fgyecs(g)a)» and a scheduler o of (E[[A) we define
pdistg a) (0, 1) = print-dist g a)(0, i), to be the image measure of €5, under print g 7). We note pdist g a)(0)
for pdist(g, 71 (0, Sstare (8,71))-

This choice that slightly differs from tdist(g 7y (0,) = trace-dist(g a1)(o, p) used in [4], is motivated by the

achievement of monotonicity of print-implementation w.r.t. PSIOA creation.

4.7 Hiding operator

We anticipate the definition of configuration automata by introducing the classic hiding operator. This operator "hide"
the output actions transforming them into internal actions

21

Pierre Civit and Maria Potop-Butucaru

Definition 4.23 (hiding on signature). Let sig = (in,out,int) be a signature and acts a set of actions. We note
hide(sig, acts) the signature sig’ = (in’, out’, int’) s. t.
e in" =in
e out’ = out \ acts

e int’ = int U (out N acts)

Definition 4.24 (hiding on PSIOA). Let A = (Qa,4#,sig(A),D4) be a PSIOA. Let h a function mapping each
state ¢ € Q to a set of output actions. We note hide(A, h) the PSIOA (Q, g, sig’ (A), D), where sig’(A) : g € Q —
hide(sig(A)(q), h(q))-

LEMMA 4.25 (HIDING AND COMPOSITION ARE COMMUTATIVE). Let sig, = (ing, outy, inty), sigy = (iny, outy, inty,) be

compatible signature and acts ,, acts; some set of actions, s. t.

o (acts, Nouty) N s/i;b =0 and
o (actsy Noutp) N s’i?]b =0,

then sig, = hide(sig, act,) = (ing, outy, int;) and sig, = hide(sigy, act,) = (in,, out;, int;) are compatible. Further-
more, if
e outp Nacts, =0 ,and

e outy Nacts, =0

then sigy, X sig, = hide(siga X sigp, act,, U act,).

PRrOOF. e compatibility: After hiding operation, we have:
- inj, =ing, in;J =iny
- out; = outq \ acts,, out, = outy, \ acts,,
- int; = intg U (outg N acts,), intl’J = inty U (outy, N actsy)
Since outg N outy, = 0, a fortiori out), N outé = 0. intg N sig, = 0, thus if (out, N acts,) N sig, = 0, then
int N sig, = 0 and with the symetric argument, int, N sig, = 0. Hence, sig;, and sig; are compatible.
e commutativity:
After composition of sig; = sig; X sig; operation, we have:
- out; = outy Uout, = (outq \ acts,) U (outy, \ actsy). If outy, N acts, = @ and outq N acts;, = 0, then
out, = (outy Uouty) \ (acts, U actsy,).
- ing =ing Uiny \ out; = ing Uiny, \ out;
- int} = intgUint; = intq U (outq Nacts,)int, U (outy Nacts,,) = intg Uinty, U (outq Nacts,) U (outy Nactsy,).
If outy, N acts, = 0 and outy N acts;, = 0, then int, = int, U int, U ((out, U outy) N (acts, U actsy).
and after composition of sigy = sig, X sigp,
— outyg = outg U outy,
— ing =ing Uiny \ outy
— intg = intg Uinty,
Finally, after hiding operation sig, = hide(sigg, acts, U acts;) we have :
- in’, =iny

d

- out{’i = outg \ acts, U acts, = (outy U outy) \ (acts, U acts)

- int(’i = inty U (outy N (acts, U actsy)) = (intg U intp) U (outy N (acts, U actsy))
22

Dynamic Probabilistic Input Output Automata

Thus, if out, N acts, = 0 and out, N acts;, = 0

sl — i/
- in/ =ing
- out, = out;

. [’
- int) = int]

O

REMARK 1. We can restrict hiding operation to set of actions included in the set of output actions of the signature
(act C out). In this case, since we alreay have outq N outy, = O by compatibility, we immediatly have outy N acts, = 0 and
outy, N acts, = 0. Thus to obtain compatibility, we only need inp, N acts, = O and ing N acts, = (0. Later, the compatibility
of PCA will implicitly assume this predicate (otherwise the PCA could not be compatible).

4.8 State renaming operator

We anticipate the definition of isomorphism between PSIOA that differs only syntactically.

Definition 4.26. (State renaming for PSIOA) Let A be a PSIOA with Q # as set of states, let Q - be another set of
states and let ren : Q 4 — Q.4 be a bijective mapping. Then ren(A) (we abuse the notation) is the automaton given
by:

o start(ren(A)) = ren(start(A))

o states(ren(A)) = ren(states(A))

o Vqa € states(ren(A)), sig(ren(A))(qa) = sig(A) (ren™" (q))

o Vqa € states(ren(A)),Va € sig(ren(A))(qa), if (ren 1 (qa),a,7) € D, then (qa,a.n’) € Dren(a)
where n’ € Disc(Q.a, F0,,) and for every gz~ € states(ren(A)), n’(qar) = n(ren” (qz7)).

Definition 4.27. (State renaming for PSIOA execution) Let A and A’ be two PSIOA s. t. A’ = ren(A’). Let « =

q%alq'... be an execution fragment of A. We note ren(a) the sequence ren(q®)alren(q?)....

LEmMMA 4.28. Let A and A’ be two PSIOA s. t. A’ = ren(A) with ren : states(A) — states(A’) being a bijective
map. Let a be an execution fragment of A. The sequence ren() is an execution fragment of A.
J+1 j+1

PRroOF. Let ¢/a/*1¢/*! be a subsequence of a. ren(q’) € states(A’) by definition, a/ € sig(A’)(ren(¢’)) since

sig(A’)(ren(q)) = sig(A) (/). and (@ ren(g7), 1) (ren(@)) = 0z g1) (1) > 0. O

5 PROBABILISTIC CONFIGURATION AUTOMATA

We combine the notion of configuration of [1] with the probabilistic setting of [8]. A configuration is a set of automata
attached with their current states. This will be a very useful tool to define dynamicity by mapping the state of
an automaton of a certain "layer" to a configuration of automata of lower layer, where the set of automata in the

configuration can dynamically change from on state of the automaton of the upper level to another one.

5.1 configuration
Definition 5.1 (Configuration). A configuration is a pair (A, S) where

e A={A,.., Ay} is a finite set of PSIOA identifiers and
e S maps each Ay € A to an si € states(Ay).
23

Pierre Civit and Maria Potop-Butucaru

In distributed computing, configuration usually refers to the union of states of all the automata of the "system".
Here, there is a subtlety, since it captures a set of some automata (A) in their current state (S), but the set of automata of

the systems will not be fixed in the time.

Definition 5.2 (Compatible configuration). A configuration (A, S), with A = {Aj4, ..., Ay}, is compatible iff the set A is
compatible at state (S(Ajy), ..., S(Ay)) as per definition 4.6

Definition 5.3 (Intrinsic attributes of a configuration). Let C = (A, S) be a compatible configuration. Then we define

e auts(C) = A represents the automata of the configuration,

e map(C) = S maps each automaton of the configuration with its current state,

o out(C) =Jgea out(A)(S(A)) represents the output actions of the configuration,

e in(C) = (Usea in(A)(S(A))) — out(C) represents the input actions of the configuration,

e int(C) = Jgea int(A)(S(A)) represents the internal actions of the configuration,

e ext(C) = in(C) U out(C) represents the external actions of the configuration,

e sig(C) = (in(C), out(C), int(C)) is called the intrinsic signature of the configuration,

e US(C) = (S(A1), ...,S(Ay)) represents the states of the set of automata of the configuration.

Here we define a reduced configuration as a configuration deprived of the automata that are in the very particular
state where their current signatures are the empty set. This mechanism will be used later to capture the idea of

destruction of an automaton.

Definition 5.4 (Reduced configuration). reduce(C) = (A’,S’), where A’ = {A|A € A and sig(A)(S(A)) # 0} and S’
is the restriction of S to A’, noted S | A’ in the remaining.

A configuration C is a reduced configuration iff C = reduce(C).

5.2 Configuration transition

We will define some probabilistic transition from configurations to others where some automata can be destroyed or
created. To define it properly, we start by defining "preserving transition” where no automaton is neither created nor
destroyed and then we define above this definition the notion of configuration transition. These distributions belong to

the measurable set (Qconf, Disc(Qconf)) Where Qcopr denotes the (countable) set of configurations.
Lemma 5.5. The set Qcons of configurations is countable.

ProoF. (1) {A € P(Autids)|A is finite } is countable, (2) VA € Autids, states(A) is countable by definition 4.1 of

PSIOA and (3) the cartesian product of countable sets is a countable set. O

Definition 5.6 (Preserving distribution). A preserving distribution np € Disc(Qconf) . t. it exists a set of automata A,
called automata support of p, such that V(A’,S’) € supp(np), A=A’

We define a companion distribution as the natural distribution of the corresponding set of automata at the corre-
sponding current state. Since no creation or destruction occurs, these definitions can seem redundant, but this is only

an intermediate step to define properly the "dynamic" distribution.

Definition 5.7 (Companion distribution). Let C = (A, S) be a compatible configuration with A = {Aj, ..., Ap} and
S:A; € A q; € Qg, (With A partially-compatible at state ¢ = (q1,....,qn) € QA = Qa, X ... X Q7,,)- Let np be a
24

Dynamic Probabilistic Input Output Automata

preserving distribution with A as automata support. The probabilistic distribution 1(a 4,4) is @ companion distribution
of n, if for every ¢’ = (q1, ... qy,) € Qa, forevery 8" : A; € A q!’ € Q7,,

if for every configuration C”’, for every q’ € Qa, US(C”) = ¢ = n(a,q,0)(¢') = 1p(C”).

that is the distribution (4 4 4) corresponds exactly to the distribution .

This is "a" and not "the" companion distribution since 1, does not explicit the start configuration. So 7, can have

several companion distributions.

A = (A, As, Ay) o Js C; = (A,S))
o ruam

4= (q1,0295) "‘-.2“"<> xx ‘|:> (@ @ @ C;-(As)

Yoo | bH[eee a-as)

Fig. 14. A preserving distribution is matching its companion distribution.

Now, we can naturally define a preserving transition (C,a,7,) from a configuration C via an action a with a
companion transition of 1. It allows us to say what is the "static" probabilistic transition from a configuration C via an

action a if no creation or destruction occurs.

Definition 5.8 (preserving transition). Let C = (A, S) be a compatible configuration, g = US(C) and 1, € Disc(Qconf)
be a preserving transition with Ag as automata support.
Then we say that (C, a,1p) is a preserving configuration transition, noted C A np if
e A=A
® 7(A,q.a) is @ companion distribution of 17,

For every preserving configuration transition (C, a,7), we note 1((c,a),p) = 1p-

The preserving transition of a configuration corresponds to the transition of the composition of the corresponding
automata at their corresponding current states.

Now we are ready to define our "dynamic” transition, that allows a configuration to create or destroy some automata.

At first, we define reduced distribution that leads to reduced configurations only, where all the automata that reach a

state with an empty signature are destroyed.

Definition 5.9 (reduced distribution). A reduced distribution 1, € Disc(Qconf) is a probabilistic distribution verifying
that for every configuration C € supp(n;), C = reduced(C).

Now, we generate reduced distribution with a preserving distribution that describes what happen to the automata

that already exist and a set of new automata that are created.
25

Pierre Civit and Maria Potop-Butucaru

Definition 5.10 (Generation of reduced distribution). Let np € Disc(Qcons) be a preserving distribution with A as
automata support. Let ¢ C Autids, ¢ is finite. We say the reduced distribution 1, € Disc(Qconys) is generated by 1, and

¢ if it exists a non-reduced distribution npr € Disc(Qconf), 5. t.

o (¢ is created with probability 1)
VY(A”,S”) € supp(nr), A” = AU ¢.
o (freshly created automata start at start state) VC”' = (A”,S”") € supp(nnr), VA; € ¢ \ A, S (A;) = start(A;)
o (The non-reduced transition match the preserving transition)
V(A”,8") € Qconf, 8- t. A = AU p and VA; € ¢ \ A, S”(A;) = start(A;), nnr ((A”,8")) = np(A,S"TA))
where S”’[A) denotes the restriction of S’ on A)
o (The reduced transition match the non-reduced transition)
Ve’ € Qeong if ¢ = reduce(c’), nr(c’) = 3(en ¢ =reduce(cr)) nr (¢”), if ¢’ # reduce(c’), then nr(c’) = 0
Definition 5.11 (Intrinsic transition). Let (A, S) be arbitrary reduced compatible configuration, let € Disc(anf),
and let ¢ C Autids, ¢ N A = 0 and ¢ is finite. Then (A, S) =a>q, 1 if n is generated by 17, and ¢ with (A, S) A Np-

v ={A}

C=(AS
[:) Al = (A'lr-"q-ﬁ-.vqi]

Cr - (a',8)
[
A = (s, Ap, As) +
2
>

Cy— (A.S})

C =1

Fig. 15. An intrinsic transition where A; is destroyed deterministically and Ay is created deterministically.

The assumption of deterministic creation is not restrictive, nothing prevents from flipping a coin at state so to reach
s1 with probability p or s, with probability 1 — p and only create a new automaton in state s with probability 1, while

the action create is not enabled in state sy.

5.3 Probabilistic Configuration Automata

Here we define our probabilistic configuration automata. Just before that, we introduce a notation to represents

corresponding probability measures whose respective supports are linked by a bijection that preserves the measure.

Definition 5.12 (y L n’). Let Q and Q’ be two countable sets. Let (7,1”) € Disc(Q) X Disc(Q’). Let f : Q — Q. We

note 1 i> n’ if the following is verified:
26

Dynamic Probabilistic Input Output Automata

e the restriction f of f to supp(n) is a bijection from supp(n) to supp(n’)
* Vg € supp(n). n(q) =n’(f(q)

LEMMA 5.13. 77 <£> n’ andn’ A n’ implies
h ~ ~ ~
e 1 & 1’ where the restriction h of h on supp(n) verifiesh=go f and
k ~ ~ ~
o 1’ & 1 where the restriction k to supp(n’) verifiesk = f~!

Proor. For the first item: The composition of two bijection is a bijection and the reverse function of a bijection
is a bijection. For the second item: In the first case, Vq € supp(n),n(q) = n'(f(q)) with f(q) € supp(n’) which
means 1'(f(g)) = 1”(9(f(g))). In the second case Vg’ € supp(y’),3q € supp(n),n(q) = n'(¢’ = f(q)) and hence
Vg’ € supp(n’).n’(¢") = n(g = f~'(q)). o

Now we are ready to define our probabilistic configuration automata. Such an automaton define a strong link with a

dynamic configuration.

Definition 5.14 (Probabilistic Configuration Automaton). A probabilistic configuration automaton (PCA) K consists of
the following components:

e 1. A probabilistic signature I/O automaton psioa(K). For brevity, we define states(K) = states(psioa(K)), start(K) =
start(psioa(K)), sig(K) = sig(psioa(K)), steps(K) = steps(psioa(K)), and likewise for all other (sub)components
and attributes of psioa(K).

e 2. A configuration mapping config(K) with domain states(K) and such that config(K)(qx) is a reduced
compatible configuration for all gx € states(K).

e 3.Foreach gk € states(K), amapping created(K)(qx) with domain sig(K)(qx) and such that Va € sig(K)(gx),
created(K)(qx)(a) C Autids with created(K)(qx)(a) finite.

o 4. A hidden-actions mapping hidden-actions(K) with domain states(K) and such that hidden-actions(K)(qx)
out(config(K)(qx))-

and satisfies the following constraints

N

o 1. (start states preservation) If config(K)(gx) = (A, S), then VA; € A,S(A;) = qi
e 2. (top/down transition preservation) If (qk., 4, 7(k gx.,a)) € dtrans(K) then it exists n € Disc(Qconf) s.

as

1(K.qx.a) <L> n’ with i) f = config(K) and ii) config(K)(qx) =a>q, n’, where ¢ = created(K)(qx)(a)
e 3. (bottom/up transition preservation) If g € states(K) and config(K)(qx) :a>¢ n’ for some action a, ¢ =

created(K)(x)(a), and reduced compatible probabilistic measure ’ € Disc(Qconf), then (gk, @, 1(k,qx.a)) €

dtrans(K), and 1k q.a) <L> n’ with f = config(K) .
e 4. (signature preservation modulo hiding) For all qx € states(K) , sig(K)(qx) = hide(sig(config(K)(qx)), hidden-
actions(qg)), which implies that
- (@) out(K)(gx) < out(config(K)(qx)),
- (b) in(K) (gx) = in(config(K)(qx)),
- (@) int(K)(gx) 2 int(config(K)(qx)), and
- (& out(K)(gx) U int(X)(qx) = out (config(K)(qx)) U int(config(K)(gi))

This definition, proposed in a deterministic fashion in [1], captures dynamicity of the system. Each state is linked

with a configuration. The set of automata of the configuration can change during an execution. A sub-automaton A
27

Pierre Civit and Maria Potop-Butucaru

is created from state q by the action a if A € created(K)(q)(a). A sub-automaton A is destroyed if the non-reduced
attached configuration distribution lead to a configuration where A is in a state qq;(s. t. st?(.?[)(qq;() = 0. Then the
corresponding reduced configuration will not hold A. The last constraint states that the signature of a state gx of K
must be the same as the signature of its corresponding configuration config(K)(qx), except for the possible effects of

hiding operators, so that some outputs of config(K)(qx) may be internal actions of K in state gk

con fig(X)
a PT\ e a [u Y c v e a T €
= = —_— »
int:ghd | 7 O > int:g int:h nt:gh_ |
< o < T 1 1 < 0 O -« € 0 f
b r; qy Cx b\ Jod i ot b \W
d
t X gle) ek g el
a X € a [u] c v | e a uiv €
3 > ¢ . > N >
int:ghd |, 00 e > int:g int:h int:gh
<« Ofe— > S OJ :l Ole—— «—] Of<—
[g (e N d /] b T
X b et g by Mgt) = 5.,{,
a
S >
o ¢k b
WXl b e b | ! ¢ = created(X)(g) (b) = {W}
a 3 a u w a
v > — >
O >T> int:g int:]
L 4 0 < 9] «
b qx c b NS b

Fig. 16. A PCA life cycle.

Definition 5.15 (hiding on PCA). Let X be a PCA. Let h : g € states(X) — h(q) C out(X)(q) a function mapping
each state g € states(X) to a set of output actions. We note hide(X, h) the PCA X’ that differs from X only on sig(X")
and hidden-actions(X’), where Vq € states(X) = states(X’),

o sig(X’)(q) = hide(sig(X)(q), h(q)) and
o hidden-actions(X’)(q) = hidden-actions(X)(q) U h(q).

Additionally, we recursively define the current constitution of a PCA. To do so, we assume the existence of a subset
Autidsy C Autids that represents the "atomic entities" of our formalism. Any automaton is constructed with automata
in Autidsy.

28

hidden — actions(X)

{d}

{d}

Dynamic Probabilistic Input Output Automata

Definition 5.16 (Constitution). For every A € Autids, we note constitution(A) : states(A) — P (Autidsp) s. t.

o VA € Autidsy, Vq € states(A), constitution(A)(q) = {A}.

o VA = (A, ..., Ap) € (Autidsy)™, Vq € states(A) with A = Ap|...||Ap, constitution(A)(q) = A.

o the constitution of a PCA is defined recursively through its configuration, i.e. for every PCA X, Vq € states(X),
if we note (A, S) = config(X)(q), constitution(X)(q) = U gea constitution(A)(S(A)).

We note UA(K) = Ugestares (k) (constitution(K)(q)).

5.4 Compatibility, composition

Again, we want to define composition operator for PCA to captures the fact the comportment of one PCA can influence

the comportment of another PCA. Some syntaxic rules have to be defined first.

Compatibility and union of configuration. We extends the formalism of configuration with the union operator. We do

not need a composition operator to prevent from think such an union is always compatible, which is not true.

Definition 5.17 (Union of configurations). Let C; = (A1,S1) and Cz = (A, S2) be configurations such that A; N Ay = 0.
Then, the union of C; and Cz, denoted C; U Cy, is the configuration C = (A, S) where A = A; U Ay and S agrees with S;
on Aj, and with Sz on Aj. It is clear that configuration union is commutative and associative. Hence, we will freely use

the n-ary notation C; U ... U Cy, (for any n > 1) whenever Vi, j € [1: n],i # j, auts(C;) N auts(Cj) = 0.

LEMMA 5.18. Let C; = (A1, S1) and Ca = (A, S2) be compatible configurations such that Ay N Ay = 0. Let C = (A,S) =
C1 U Cy be a compatible configuration. Then sig(C) = sig(C1) X sig(Cz)

Proor. o out(C) = Ugyea out(A) (S(Ak)) = (Ua,ea, out(Ai)(S(Ai))) U (U, ea, out(A;)(S(A)))) =
(Ua,ea, out(Ai)(81(Ai)) U (Ua,ea, out(Aj)(S2(A;)))) = out(C1) U out(Cy)
¢ in(C) = Uaea in(Ar) (S(A)) \out(C) = (Ug,ea, in(A) (S(A:))) V(U a;ea, in(A;)(S(A;))) \out (C) =
(Ua,ea, in(Ai) (51(A))) U (Ua,ea, in(A))(S2(A;)))) \ out(C) = in(C1) Uin(Cz) \ (out(C1) U out(Cz))
e int(C) = Uayea int(Ar) (S(Ak)) = (Ua,ea, int(A)(S(AD)U(Ua,ea, int(Aj)(S(A)))) = (Ua,ea, int(Ai)(S1(Ai)))U
(U, ea, int(A;)(S2(A)))) = int(C1) U int(Cz) Thus (out(C), in(C), int(C)) = (out(Cy) U out(Cz),in(Cy) U
in(C2) \ (out(C1) Uout(Cy)),int(C1) U int(Cy))

Definition 5.19 (PCA partially-compatible at a state). Let X = {Xi, .., X} be a set of PCA. We note psioa(X)
{psioa(Xy), ..., psioa(Xy)}. The PCA Xj, ..., X, are partially-compatible at state gx = (qx,, ... qx,) € states(X1) X ...
states(Xp) iff:

X

(1) Sub-automaton exclusivity: Vi, j € [1: n],i # j : auts(config(X;)(qx;)) N auts(config(X;)(gx;)) = 0.
(2) Compatible signatures {sig(X1)(qx,), .. sig(Xn)(gx,)} is a set of compatible signatures.
(3) Creation exclusivity: Vi,j € [1 : n],i # j : Va € @(Xi)(qxi) N @(Xj)(qxj) : created(X;)(qx;)(a) N
created(Xj)(qu)(a) =0.
(4) Constitution exclusivity: Vi, j € [1: n],i # j : constitution(Xi)(qx;) N constitution(Xj)(qx;) =0
We can remark that if Vi, j € [1:n],i # j : auts(config(X;)(qx;)) N auts(config(X;)(qx;)) = 0 and {sig(X1)(qx,),
.. 5ig(Xn)(gx,,)} is a set of compatible signatures, then config(X1)(qx,)U...Uconfig(Xn)(qx,) is a reduced compatible

configuration.
29

Pierre Civit and Maria Potop-Butucaru

If X is partially-compatible at state gx, for every action a € sig(psioa(X))(gx), we note N(X.qx.a) = N(psioa(X).qx.a)
and we extend this notation with 1(x gy,a) = Sgx if @ ¢ s@(psioa(X))(qX).

Definition 5.20 (pseudo execution). Let X = {X1, ..., X} be a set of PCA. A pseudo execution fragment of X is a pseudo
execution fragment of psioa(X), s. t. for every non final state ¢, X is partially-compatible at state ¢’ (namely the
conditions (1) and (3) need to be satisfied)

A pseudo execution o of X is a pseudo execution fragment of X with fstate(a) = (Gx;, .- §x,,)-

Definition 5.21 (reachable state). Let X = {X1, ..., Xn } be a set of PSIOA. A state g of X is reachable if it exists a pseudo

execution « of X ending on state gq.
Now, we are able to define our composition operator.

Definition 5.22 (Composition of configuration automata). Let X, ..., Xy, partially-compatible PCA. Then X = Xi||...||Xn
is the state machine consisting of the following components:
(1) psioa(X) = psioa(X1)||...||psioa(Xn)
(2) A configuration mapping config(X) given as follows. For each x = (x1, ..., xp) € states(X), config(X)(x) =
config(X1)(x1) U ... U config(X,)(xn).
(3) For each x = (x1, ..., xp) € states(X), a mapping created(X)(x) with domain @(X) (x) and given as follows.
For each a € sig(X)(x), created(X)(x)(a) = Uaegl?](xi)(xi)ﬁ[lm created(X;)(x;)(a).
(4) A hidden-action mapping hidden-actions(X) with domain states(X) and given as follows. For each x =
(%1, ..., Xn) € states(X), hidden-actions(x) = Uje[1:n] hidden-actions(x;)
We define states(X) = states(psioa(X)), start(X) = start(psioa(X)), sig(X) = sig(psioa(X)), steps(X) = steps(psioa(X)),

and likewise for all other (sub)components and attributes of psioa(X).
We want to show that the set of PCA is closed under composition. Before starting the proof, we introduce some tools.

LEMMA 5.23 (JOINT PRESERVING PROBABILITY DISTRIBUTION FOR UNION OF CONFIGURATION). Let {Cy = (Ag, Si) tre[1:n]
be a finite set of compatible configurations s. t. Vk,£ € [1: n],Ax N Ap = 0. Let C = (A,S) = Uke[1:n] Ck be a com-
patible configuration. Let a € sig(C). Let (I, J) be a partition of [1: n] s. t. for everyi € I, a € 5ig(C;) and for every
j€ J,ac s’z?}(Cj). For every i € I, let q;, be the unique preserving distributions that has n(a, q;.a) as companion
distribution with q; = US(C;). For every j € 7, let r]}, = b¢;. We notenp the unique preserving distributions that have
N(A,q.a) 5 companion distribution with g = US(C).

Then, C = Np, . t. for every configuration C' = (A,S’), for every (unique) finite set of configurations {C; =
(A S ket verifying €' = Ugefn] Clo we have np(C') = (g} ® ... ® p) ((Cr o Ch)).

Proor. Since A = Uge[1:n] Ak and S agrees with S on A € Ay for every k € [1: n], we have na ga = 1A,,g1.a ®
- ® 1A, qn.a With the convention NA.qj.a = 8q; for every j € J. Furthermore, for every k € [1,n],na; g;.a is 2
companion distribution of q’;, that is for every C}, ql’C = US(C]’C), U];(C;C) = r]Ak,qk,a(ql’c). Hence for every (CJ,...Cy,),
(¢] = US(C)) @y = US(C)), Naqua (@ s G)) = (1 s ® - ® M) (0o s @) = (75 @ @HE((C s Ch)
(*). By definition of 1, for every C’, (¢ = US(C’)), na,q,a(q") = np(C’). Since we deal with preserving distribution
and A = Uge[1:n)] Ak, we have each element " = US(C’) € Q4 is of the form (g}, ..., g5) with g; € Qa, and verifies
C’ = C1 V..U, with auts(C]’c) = Ay and US(C]’C) = ql’c. (**) Hence we compose (*) and (**) to obtain for every
configuration C’ = (A, '), for every finite set of configurations {C; = (A, S;)}ke[1:n]> 8- t- C" = Uke[1:n] Gy then

30

Dynamic Probabilistic Input Output Automata

np(C’) = (r]}, ®..® 17;,’)((()', ...C})). Since a € 5ig(C) and the automata support of (r]}, ®...®1p) is A = Uke[1:n] Ak

we can note C — Mp

Definition 5.24 (merge, join). Let fj = (11, ...1n) € Disc(Qconf)™. We define

e join(#) : (Cy,...Cp) € Q?an — (1N ®...81n,)(Cy,...Cp) and

Definition 5.25 (deter-dest, base). Let C* = (A%, S®) be a configuration. For every A € A, we note qfﬂ =S5(A). Let
¢ € P(Autids). We define
e deter-dest(C%,a) = {A € A’la € sz/'?](.?()(qsﬁ) AN Ag.a= qu}.
o base(C%,a,¢) = A5 U ¢ \ deter-dest(C?, a).

LEMMA 5.26 (MERGING). Let {C}, ..., C},} be a set of compatible configuration with for every i € [1,n], C] = (A}, S3).
Let C° = (A%, S®) = Uje[1:n] C}- For every A € A®, we note qfﬂ = S%(A) Let a € sig(C*). Let (I,9) be a partition of
[L,n] s.t.Vie I,a€sig(Ci)andVje J,a¢ sig(C;). Let (@1, ... on) € P(Autids)"™ ,s. t.Vj € J,¢j = 0 and let us note
@ =Ujer ¢i. Foreveryi € I, we noten; s. t. C§ =a><,,i ni Forevery j € J, wenoten;j s. t.nj = 5Cj~

Letfj = (91, ..., nn). Let n7°" = join(fj), n™€"9€ = merge(j) and let assume, for every C/ € supp(n™e79€)), either (*)
cfis compatible or (**)Vk, ¢ € [1: n], base(C3, a, i) N base(C3, a, p¢) = 0. Then, it means

(1) YCI € supp(n™er9e), it exists a unique (C{, C{) s.t.1)cf = C{ U..u C{ and 2)Vk € [1, n],C{ € supp(ne)-
We note Cf.split(ﬁ) this unique (C{, s C{;).

2) 9’7 : C € supp(merge(7j)) — C.split() € supp(n1) X ... X supp(nyn) is a bijection.

(3) Then merge(#)(C) = join(7)(C.split(17))

() merge(i) & join(i)

(5) C* :a>¢ merge(1)

Proor. First we show that (*) implies (**). By contradiction. Let assume A € base(Cs, a, pr) Nbase(C3, a, ¢¢). Since C°
is compatible, A ¢ A} N Aj. By definition of the base it exists Cf, C{ € supp(ng) Xsupp(ne), A € auts(C{) n auts(C{)
and C{ U C{ is not compatible. So it exists (C{, v C{) € supp(m ® ...® np) s. t. (C{ v..u C{) is not compatible.

(1) The uniqueness comes from (**). Indeed, let imagine two candidates (C{, . C{:) and (Cf/, v C{:’) if A e
auts(C{), then A € auts(Cy) but A ¢ base(Clscf) for any k” # k and so A € auts(Ci’) and so auts(C{) =
auts(C{,) for every k € [1,n]. Now we need to have map(C]kc) = map(C{/) for every k € [1,n] to obtain
cf = C{ U..u C{ = le, U.u C{IN. The existence is by construction of join.

(2) The bijection comes from the existence and the uniqueness of pre-image

(3) By previous item 1, the sum of merge has only one element which consists of join(#) (C.split(7))

(4) By previous two items 1 and 2, that gives the definition

(5) Ul’c is generated by ¢ and preserving distribution ry,’cp where Ai is the automata support of ry;cp . By compatibility
of C%, for every k,¢ € [L,n],k # ¢, Ai N Af = (. Hence, we can apply lemma 5.23 and we have C* A
merge((r];p, n;p)). Moreover merge((n7,.... 1)) is generated by merge((nip, ry;lp)) and ¢ since each ’7,,:0 is

generated by 7, and ¢i. Then C° =a>4, merge((n],Ny))
31

Pierre Civit and Maria Potop-Butucaru

]

LEMMA 5.27 (i) PRESERVATION FOR JOINT PROBABILITY). Let i’ = (1],....,7,). Let (n1,....7n) and (fi, ... fn) s. t.
vie (Ll &y

f .
Thenn ® ... @ ny & 1y ® ... @ 0y, With f 2 x = (x1,..., Xn) = y = (fi(x1), ..., fu (xn)).

Proor. f is still a bijection and (71 ® ... ® 1) (21, ..., 2n) = N1(21) - ... (zn) = 11 (fi(z1) - . (fa(zn)) = (11 ©
o ®1n) (fi(21)s s fr(zn)) = (11 ® ... @ 1) (f (21, -+ 21)) o

Now we are ready for the theorem that claims that a composition of PCA is a PCA.

THEOREM 5.28 (PCA CLOSENESS UNDER COMPOSITION). Let X1, ..., Xy, be partially-compatible PCA. Then X = Xi||...||Xn
is a PCA.

Proor. We need to show that X verifies all the constraints of definition 5.14.

o (Constraint) 1: The demonstration is basically the same as the one in [1], section 5.1, proposition 21, p 32-33.
Let gx and (A,S) = config(X)(gx). By the composition of psioa, then §x = (gx;, .. Gx,)- By definition,
config(X)(gx) = config(X1)(gx,) U ... U config(Xn)(gx,). Since for every j € [1: n], X; is a configuration
automaton, we apply constraint 1 to X to conclude S(A¢) = 4., for every A € auts(config(X;)(gx;). Since
(auts(config(X1)(gx;), ..., auts(config(Xn)(gx,,)) is a partition of A by definition of composition, S(A¢) = ¢4,
for every A, € A which ensures X verifies constraint 1.

e (Constraint 2) Let (g, a,7x,q,a) € dtrans(X). We will establish 3n’ € Disc(Qconf) st Nx,qa <£> n’ where
f = config(X) and config(X)(q) =a>(,J n’ with ¢ = created(X)(q)(a).
For brevity, let A; = psioa(X;) fori € [1 : n]. By definition of pca-compositon 5.22, psioa(X) = psioa(X1)||...||psioa(Xn) =
Py||...||Pn. We note P = (P, ..., Py) and then by definition of psioa-composition 4.10, ¢ = (q1,...qn) €
QOp, X ... X Qp,, while a € Uje[1:n] s’i_\q(Pi)(q,-) and nx,qa = NP,qa ® - ® NP,.q,.a With the convention
NP.qia =9q; if a ¢ sig(P;) (qi)-
Let (7, J) be a partition [1: n] s. t.
For every i € T, a € sig(P;)(g;) , and then by PCA top/down transition preservation, it exists n; € Disc(Qconf)
s. . NX,.qia = NPigia <]i> ;7; with f; = config(X;) and config(X;)(gq;) =a>¢i r]lf with ¢; = created(X;)(qi)(a).
For every j € J, a ¢ sig(P;)(q;) , then we note ¢j =0 and 71;. = 5conf,»g(xj)(qj) that verifies ¢, ﬁ» 17;. with
fj = config(X;).
We note 7" = (17, ...,) We note " = join(i’) =] ® ... ® n, and ¢ = Uje[1:n] ¢i- By definition of PCA-
composition, ¢ = created(X)(q)(a).
We have 77x 4.4 <£> n’ with f : g =(q1, .. qn) — (fi(q1), ... fu(gn)) by lemma 5.27.
Moreover merge(7j”) <g—’7> join(ii’) with g : C € supp(merge(7)) — C.split(§i) € supp(n1) X ... X supp(nn) by
lemma 5.26, item 4.
So nx,q.a & merge(§i’) with h = (¢7)™ o f = config(X).
Moreover we have config(X)(q) =a>q, merge(7}’) by lemma 5.26, item 5.

o (Constraint 3) Let g € state(X), C = config(X)(q), a € sz"?(X)(q), ¢ = created(X)(q)(a) that verify C =a>¢ n.

We need to show that it exists (q, @, 11(x,q,a)) € dtrans(X) s. t. 7(x,q.a) <£ n’ with f = config(X).
32

Dynamic Probabilistic Input Output Automata

For brevity, let A; = psioa(X;) fori € [1 : n]. By definition of pca-compositon 5.22 psioa(X) = psioa(Xy)||...||psioa(X,) =
P1]|...||Pn. We note P = (P4, ..., Pp) and then by definition of psioa-composition, g = (q1, ..., qn) € Qp, X...XQp,,

while a € Use[1.n] 5i9(P1) (q1).

Let (7, J) be a partition [1 : n] s. t.

Foreveryie I,a € sz/'?](Pi)(qi). We note ¢; = created(X;)(qi)(a).For every j € J,a ¢ sz"?(Pi)(qi) , then we

note ¢; = 0 and r]}’. = Sconfig(X;)(q;) that verifies 5g, ﬁ) 17;. with fj = config(X;).

We note ¢ = created(X)(q)(a). By pca-composition definition, ¢ = Uke[1:n] ¢k For every k € [1: n], we note

Ck = config(Xy)(qx) and for every i € T,] € Disc(Qconf) - t. Ci :a>(pi n;. We note i’ = (17,n;,)

By constraint 3 (bottom/up transition preservation), for every i € I, it exists (i, & 11x;,q;,a) € dtrans(X;) s. t.

NXiqia <£> nj with fi = config(X;). by lemma 5.27, nx,q.a = 1x;,q1,a ® - © NX,.qm.a <£> n] ®...® 1y, = join(fj’)
with the convention nx; 4, 4 = 0q; for j € J and f : g = (q1,...qn) € states(X) — (fi(q1), - fu(qn))-
By partially-compatiblity, for every cf e supp(merge(77’)), cfis compatible. Hence we can apply lemma 5.26,
item 5, which gives merge(7’) KN join(f") with g : C € supp(merge(7’)) — C.split(7).
Hence 77x g, pit merge(ij’) with h = g1 o f, that is NX.q.a & n’ with b’ = config(X) and the restriction of h’
on supp(1x,q.a) is h.

o (Constraint 4).
For every i € [1,n], we note hx, = hidden-actions(X;)(qx;) and h = Uje[1,n] hx;. Since X, ..., Xy, are
partially-compatible in state gx = (gx;, .- 4x,,), we have both {config(X;)(qx,)|i € [1,n]} compatible and
Vi,j € [1,n],in(config(X;)(qx;)) N hxj = (. By compatibility, Vi, j € [1,n],i # j,out(config(X;)(gx;)) N
out(config(Xj)(qx;)) = int(config(Xi)(qx,))Nsig(config(X;)(gx;)) = 0, which finally gives Vi, j € [1,n],i #
J. sig(config(Xi)(qx,)) N hx, = 0.
Hence, we can apply lemma 4.25 of commutativity between hiding and composition to obtain hide(sig(config(X1)(gx,))x
..xsig(config(Xn)(gx,)), hx,U...Uhy,) = hide(sig(config(X1)(qx,)), hx,)X...xhide(sig(config(Xn)(qx,)), hx,)
where X has to be understood in the sense of definition 4.5 of signature composition.
That is sig(psioa(X))(qx) = sig(psioa(X1))(qx,)) X X sig(psioa(Xn))(qx,)), as per definition 4.5, with
sig(psioa(X))(qx) = hide(sig(config(X)(x)), h). Furthermore h C out(config(X)(gx)), since Vi € [1,n],
hx, c out(config(X;)(qx;)). This terminates the proof.

6 INTRODUCTION ON PCA CORRESPONDING W.RT. PSIOA A, 8 TO INTRODUCE MONOTONICITY

In this section we take an interest in PCA X # and Xg that differ only on the fact that 8 supplants A in Xg. This
definition is a key step to formally define monotonicity of a property.

If a property P is a binary relation on automata, a brave property would verify monotonicity, i. e. if 1) (A, B) € P,
and 2) X 4 and Xg are PCA that differ only on the fact that 8 supplants A in Xg, then 3) (X4, Xg) € P. Monotonicity

of implementation w.r.t. PSIOA creation is the main contribution of the paper.

6.1 Naive correspondence between two PCA

We formalize the idea that two configurations are identical except that the automaton 8 supplants A but with the

same external signature. The following definition comes from [1].

33

Pierre Civit and Maria Potop-Butucaru

Definition 6.1 (< g g-corresponding configurations). (see figure 30) Let ® C Autids, and A, B be PSIOA identifiers.
Then we define ®[B/A] = (& \ A) U {B} if A € @, and [B/A] = D if A ¢ ®. Let C, D be configurations. We define
C < g8 Diff (1) auts(D) = auts(C)[B/A], (2) for every A’ ¢ auts(C) \ {A} : map(D)(A’) = map(C)(A’), and (3)
ext(A)(s) = ext(B)(t) where s = map(C)(A), t = map(D)(B). That is, in <1 g g-corresponding configurations, the
SIOA other than (A, 8 must be the same, and must be in the same state. A and 8 must have the same external signature.
In the sequel, when we write ¥ = ®[B/A], we always assume that B ¢ ® and A ¢ V.

a " u Y ¢ v e (A ;
[od [= - int:g int:h int:k
d 2 f \ O m

a R c v e B)
D = T g > nt:n 3 int:n, 0 >
-« s 0j€— Ole——
b e \ J m

Fig. 17. <ag corresponding-configuration

REMARK 2. It is possible to have two configurations C, D s. t. C <. D. That would mean that C and D only differ on
the state of A (s or t) that has even the same external signature in both cases ext(A)(s) = ext(A)(t), while we would
have int(A)(s) # int(A)(1).

Now, we formalise the fact that two PCA create some PSIOA in the same manner, excepting for 8 that supplants A.

Here again, this definition comes from [1].

Definition 6.2 (Creation corresponding configuration automata). Let X,Y be configuration automata and A, B be
PSIOA. We say that X, Y are creation-corresponding w.r.t. A, B iff

(1) X never creates 8 and Y never creates A.

(2) Let B € traces™(X) N traces*(Y) a finite trace of both X and Y, and let @ € Execs*(X),7 € Execs*(Y) a
finite execution of both X and Y be such that trace4(a) = traceg(x) = p. Let x = last(a),y = last(x),
i.e., x, y are the last states along «, 7, respectively. Then Va € s’i_?](X) (x) N s’i?](Y)(y) : created(Y)(y)(a) =
created(X)(x)(a)[B/A].

In the same way than in definition 6.2, we formalise the fact that two PCA hide some output actions in the same

manner. Here again, this definition is inspired by [1].

Definition 6.3 (Hiding corresponding configuration automata). Let X, Y be configuration automata and A, B be PSIOA.
We say that X, Y are hiding-corresponding w.r.t. A, B iff

(1) X never creates B and Y never creates A.

(2) Let f € traces*(X)Ntraces®(Y),and let a € Execs*(X), = € Execs™(Y) be such that trace 4 («) = trace #(x) =
B. Let x = last(a), y = last(x), i.e., x, y are the last states along a, 7, respectively. Then hidden-actions(Y)(y) =
hidden-actions(X)(x).

34

Dynamic Probabilistic Input Output Automata

Now we define the notion of A-exclusive action which corresponds to an action which is is the signature of A
only. This definition is motivated by the fact that monotonicity induces that A-exclusive (resp. B-exclusive) actions do
not create automata. Indeed, otherwise two internal action a and a’ of A and B respectively could create different

automata C and D and break the correspondence.

Definition 6.4 (A-exclusive action). Let A € Autids, X be a PCA. Let q € states(X), (A,S) = config(X)(q), act €
5ig(X)(q). We say that act is A-exclusive if for every A’ € A\ {A}, act ¢ sig(A’)(S(A’)) (and so act € sig(A)(S(A))
only).

The previous definitions 6.1, 6.2, 6.3 and 6.4 allow us to define a first (naive) definition of PCA corresponding w. r. t.
A, B.

Definition 6.5 (naively corresponding w. r. t. A, B). Let A, B € Autids, X7z and Xg be PCA we say that X # and Xg

are naively corresponding w. r. t. A, B, if they verify:

config(Xa)(dx,) <aB config(Xg)(dxg)-
e X 4,Xg are creation-corresponding w.r.t. A, B
® X 4,Xg are hiding-corresponding w.r.t. A, B
(No creation from A and B)
- Vgx, € states(Xg) , for every action act A-exclusive, created(X #)(qx,)(act) = 0 and similarly

- Vgx, € states(Xg), for every action act’ B-exclusive, created(Xg)(qx,)(act’) =0

The last definition 6.5 of (naive) correspondence w. r. t. A, B allows us to define a first (naive) definition 6.6 of

monotonic relation.

Definition 6.6 (Naively monotonic relationship). Let R be a binary relation on PSIOA. We say that R is naively
monotonic if for every pair of PSIOA (A, B) € R, for every pair of PCA X # and Xg that are naively corresponding w.
r.t. A, B, (psioa(X z), psioa(Xg)) € R

However, the relations of print-implementation introduced in subsection 4.6 is not monotonic without some additional
technical assumptions presented in next subsection 6.2. Roughly speaking, it allows to 1) define a PCAY = X \ {A}
that corresponds to X "deprived" from A and 2) define the composition between Y and A, 3) avoiding some ambiguities
during the construction. In the first instance, the reader should skip the next subsection 6.2 on conservatism and keep
in mind the intuition only. This sub-section 6.2 can be used to know the assumptions of the theorems of monotonicity

and use them as black-boxes. The assumptions will be re-called during the proof.

6.2 Conservatism: the additional assumption for relevant definition of correspondence w.r. t. A, 8

This subsection aims to define the notion of A-conservative PCA.

Some definitions relative to configurations. In the remaining, it will often be useful to reason on the configurations.
This is why we introduce some definitions that will be used again and again in the demonstrations.
The next definition captures the idea that two states of a certain layer represents the same situation for the bottom

layer.
35

Pierre Civit and Maria Potop-Butucaru

Definition 6.7 (configuration-equivalence between two states). Let K, K’ be PCA and (q, q) € states(K) X states(K").
We say that q and q” are config-equivalent, noted qRoonrq’, if config(K)(q) = config(K’)(q’). Furthermore, if
o config(K)(q) = config(K’)(q’),
e hidden-actions(K)(q) = hidden-actions(K’)(q’) and
o Va e sig(K)(q) = sig(K’)(q'), created(K)(q)(a) = created(K’)(q')(a),

we say that q and q’ are strictly-equivalent, noted qRstrictq’ -
Now, we define a special subset of PCA that do not tolerate different configuration-equivalent states.

Definition 6.8 (Configuration-conflict-free PCA). Let K be a PCA. We say K is configuration-conflict-free, if for every
q.q’ € states(K) s. t. qunfq’, then g = q’. The current state of a configuration-conflict-free PCA can be defined by its

current attached configuration.

For some elaborate definitions, we found useful to introduce the set of potential output actions of ‘A in a configuration

config(X)(q) coming from a state q of a PCA X:

Definition 6.9 (potential ouput). Let A € autids. Let X be a PCA. Let q € states(X). We note pot-out(X)(q) (A) the
set of potential output actions of A in config(X)(q) that is
o pot-out(X)(q)(A) = 0if A ¢ auts(config(X)(q))
o pot-out(X)(q)(A) = out(A)(map(config(X)(q))(A)) if A € auts(config(X)(q))

Here, we define a configuration C deprived from an automaton A in the most natural way.

Definition 6.10 (C\ {A} Configuration deprived from an automaton). C = (A,S). C\{A} = (A’,S’) with A’ = A\ {A}

and S’ the restriction of S on A’

The two last definitions 6.9 and 6.10 allows us to define in compact way a new relation between states that captures
the idea that two states g € states(X) and q’ € states(Y) are equivalent modulo a difference uniquely due to the

presence of automaton A in config(X)(q) and config(Y)(q’).

Definition 6.11 R\ relationship (equivalent if we forget A)). Let A € Autids. Let S = {states(X)|X isa PCA }
the set of states of any PCA. We defined the equivalence relation R\ and RMAY 65 S defined by VX,Y PCA,
conf conf

V(gx,qy) € states(X) X states(Y) :

. qu\{y}}qY = config(X)(gx) \ {A} = config(Y)(gy) \ {A}

con
. qXR;t{r“?ciqy &= the conjonction of the 3 following properties:
A
R,
- Va € 5ig(X)(qx) N 5ig(Y)(qy), created(Y)(qy)(a) \ {A} = created(X)(qx)(a) \ {A}
— hidden-actions(X)(qx) \ pot-out(X)(gx)(A) = hidden-actions(Y)(qy) \ pot-out(Y)(qy)(A)

Here, we recall the definition 6.4 of A-exclusive action:

Definition 6.12 (A-exclusive action in a PCA state (recall)). Let A € Autids. Let X be a PCA. Let qx € states(X),
(A,8) = config(X)(qx), a € sig(X)(gx)-
We say that a is A-exclusive in gx if VB € A\ {A}, a ¢ 5ig(B)(S(B)) (and so a € sig(A)(S(A)) uniquely

necessarily).
36

Dynamic Probabilistic Input Output Automata

A-fair and A-conservative: necessary assumptions to authorize the construction used in the proof. Now, we are ready
to define A-fairness and then A-conservatism.
A A-fair PCA is a PCA s. t. we can deduce its current properties from its current configuration deprived of A. This

assumption will allow us to define Y = X \ {AA} in the proof of monotonicity.

Definition 6.13 (A-fair PCA). Let A € Autids. Let X be a PCA. We say that X is A-fair if

o (configuration-conflict-free) X is configuration-conflict-free.

A} , \{A} ,
Rconf qx then qXRstricth .

e (no exclusive creation by A) Vgx € states(X), Va € s@(X)(qX) A-exclusive in gy, created(X)(qx)(a) =0

e (no conflict for projection) Yqx:, g}, € states(X), s. t. gx

This definition 6.13 allows the next definition 6.14 to be well-defined. A A-conservative PCA is a A-fair PCA that
does not hide any output action that could be an external action of A. This assumption will allow us to define the

composition between A and Y = X \ {A} in the proof of monotonicity.

Definition 6.14 (A-conservative PCA). Let X be a PCA, A € Autids. We say that X is A-conservative if it is A-fair
and for every state qx, Cx = config(X)(gx) s. t. A € aut(Cx) and map(Cx)(A) £ q4, hidden-actions(X)(qx) N
A (gn) = 0.

6.3 Correspondingw.r.t. A, 8

We are closed to state all the technical assumptions to achieve monotonicity of print-implementation w.r.t. PSIOA
creation. We introduce one last assumption so-called creation-explicitness, used in section 11 to reduce implementation
of Xg by X ¢ to implementation of 8 by A.

Intuitively, a PCA is A-creation-explicit if the creation of a sub-automaton A is equivalent to the triggering of an

action in a dedicated set. This property will allow to obtain the reduction of lemma 11.23.

Definition 6.15 (creation-explicit PCA). Let A be a PSIOA and X be a PCA. We say that X is A-creation-explicit
iff: it exists a set of actions, noted creation-actions(X)(A), s. t. Vqx € states(X), Va € s’i;(X)(qX), if we note
Ax = auts(config(X)(qx)) and ¢x = created(X)(qx)(a), then A ¢ Ax ANA € px & a € creation-actions(X)(A).

Now we can define new (non naively) correspondence w. r. t. PSIOA A, B to define (non naively) monotonic

relationship.

Definition 6.16 (corresponding w. r. t. A, B). Let A, B € Autids, X7 and Xg be PCA we say that X # and Xg are
corresponding w. r. t. A, B, if 1) they are naively corresponding w. r. t. A, B, 2) they are A-conservative and B-
conservative respectively and 3) they are A-creation explicit and B-creation explicit with creation-actions(X #)(A) =
creation-actions(Xg)(8) respectively i. e. they verify:

o X 4 is A-conservative and Xg is B-conservative
o X g is A-creation explicit and X g is B-creation explicit with creation-actions(X) (A) = creation-actions(Xg)(B)

config(Xa)(Gx,) <ap config(Xg)(dx,)-
X a,Xg are creation-corresponding w.r.t. A, B

X a,Xg are hiding-corresponding w.r.t. A, B
(No creation from A and B)

- Vgx, € states(Xg) , for every action act A-exclusive, created(X #)(qx,)(act) = 0 and similarly
37

Pierre Civit and Maria Potop-Butucaru

- Vgx, € states(Xg), for every action act” B-exclusive, created(Xg)(qx,)(act’) = 0

Definition 6.17 (Monotonic relationship). Let R be a binary relation on PSIOA. We say that R is monotonic if
for every pair of PSIOA (A, B) € R, for every pair of PCA X4 and Xg that are corresponding w. r. t. A, B,
(psioa(X), psioa(Xg)) € R.

We would like states the monotonicy of print-implementation, but it holds only for a certain class of schedulers,

so-called creation-oblivious introduced in next subsection 6.4

6.4 Creation-oblivious scheduler

Here we present a particular scheduler schema, that do not take into account previous internal actions of a particular
sub-automaton to output its probability over transitions to trigger.

We start by defining strict oblivious-schedulers that output the same transition with the same probability for pair of
execution fragments that differ only by prefixes in the same class of equivalence. This definition is inspired by the one
provided in the thesis of Segala, but is more restrictive since we require a strict equality instead of a correlation (section
5.6.2 in [8]).

Definition 6.18 (oblivious scheduler). Let W be a PCA or a PSIOA, let 6 € schedulers(W) and let = be an equivalence
relation on Frags® (W) verifying Va1, &, € Frags®(W) s. t. &1 = do, Istate(a;) = Istate(az) . We say that & is
(=)-strictly oblivious if Yy, dz, @3 € Frags*(W) s.t. 1) a1 = ay and 2) fstate(as) = Istate(ds) = Istate(dy), then
G(a; as) = 6(ay as).

Now we define the relation of equivalence that defines our subset of creation-oblivious schedulers. Intuitively, two

executions fragments ending on A creation are in the same equivalence class if they differ only in terms of internal

actions of A.

Definition 6.19 (& =% &'). Let A be a PSIOA, and W be a PCA. For every @, &’ € Frags* (W), we say @ =7 a iff:
(1) @, a’ both ends on A-creation.
(2) @and @’ differ only in the A-exclusive actions and the states of A, i. e. (&) = p(a@’) where u(@ = §°a'§*...a"q") €
Frags* (W) is defined as follows:
e remove the A-exclusive actions
o replace each state §’ by its configuration Config(W)(§) = (A, §%)
e replace each configuration (A%, §') by (AL, S%) \ {A}
o replace the (non-alternating) sequences of identical configurations (due to A-exclusiveness of removed
actions) by one unique configuration.
(3) trace(a) = trace(a’),

(4) Istate(@) = Istate(a’)
We can remark that the items 4 can be deduced from 1 and 2 if X is configuration-conflict-free.

Definition 6.20 (creation-oblivious scheduler). Let A be a PSIOA, W be a PCA, & € schedulers(W). We say that ¢ is
A-creation oblivious if it is (Ecj’[)-stricﬂy oblivious.

We say that ¢ is creation-oblivious if it is A-creation oblivious for every sub-automaton A of W (A € Uqutates(W)
auts(config(W)(q))). We note CrOb the function that maps any PCA W to the set of creation-oblivious schedulers of
W.

38

Dynamic Probabilistic Input Output Automata

We have formally defined our notion of creation-oblivious scheduler. This will be a key property to ensure lemma
11.23 that allows to reduce the measure of a class of comportment as a function of measures of classes of shorter
comportment where no creation of A or B occurs excepting potentially at very last action. This reduction is more or

less necessary to obtain monotonicity of implementation relation:

THEOREM 6.21 (<prmt IS MONOTONIC). Let A, B € Autids, X4 and Xg be PCA corresponding w. r. t. A, B. If

—CrOb
AL B then X <P X
=crob = A =crop B

The remaining sections are dedicated to the proof of this theorem 6.21. We start by defining in section 7 a morphism
between executions of automata, so called executions-matching, that preserves structure and measure of probability
under alter ego schedulers. Next, we define in section 8 the notion of an automaton X # deprived from a PSIOA A, noted
X7 \{A}. Furthermore, we show in section 9 that there is an executions-matching from a PCA X 7 to (X7 \ {A})||AY
where ASY is the simpleton wrapper of A, i. e. a PCA that only handle A. The section 11 uses the morphism of section
9 to reduce the implementation of Xg by X # to the implementation of 8 by A and finally obtain the monotonicity
of implementation w.r.t. PSIOA creation. Finally section 12 explains why the task-scheduler introduced in [4] is not

creation-oblivious.

7 EXECUTIONS-MATCHING

In this section, we introduce some tools to formalise the fact that two automata have the same comportment for the same
scheduler. This section is composed by two sub-sections on PSIOA executions-matching and PCA executions-matching.
Basically, an executions-matching execution from an automaton A to another automaton 8 is a morphism f* from
Execs(A) to Execs(B) that is structure-preserving. In the remaining, we will often use an executions-matching to show
that a pair of executions (a, 7 = f**(a)) € Execs(A) X Execs(B) have the same probability €5 () = €5 () under a
pair of so-called alter-ego schedulers (o, 0”) € schedulers(A) x schedulers(B) that have corresponding comportment

after corresponding executions fragment (a’, 7’ = f¢*(a’)) € Frags*(A) X Frags* (B).

7.1 PSIOA executions-matching and semantic equivalence

This first subsection is about PSIOA executions-matching.

matching execution. An executions-matching need a states-matching (see definition 7.1) and a transitions-matching
(see definition 7.3) to be defined itself.

Definition 7.1 (states-matching). Let A and B be two PSIOA with Q 4 = states(A) and Qg = states(B) as respective
sets of states, let Q’ﬂ C Qg andlet f: Q’ﬂ — Qg be a mapping that verifies:

e Starting state preservation: If § # € Q;H then f(§#) = g (with (§a, @g) = (start(A), start(B)))
e Signature preservation (modulo an hiding operation): V(q,q’) € Q’ﬂ X Qg, s. t. ¢ = f(q), sig(A)(q) =
hide(sig(8B)(q’), h(¢")) with h(q") € out(B)(q’) (resp. with h(q") = 0, that is sig(A)(q) = sig(B)(q")).

then we say that f is a weak (resp. strong) states-matching from A to B.If Q;ZI = Q 4, then we say that f is a complete

(weak or strong) states-matching from A to B.

Before being able to define transitions-matching, some requirements have to be ensured. A set of transition that
would ensure these requirements would be called eligible to transitions-matching.
39

Pierre Civit and Maria Potop-Butucaru

Definition 7.2 (transitions set eligible to transitions matching). Let A and B be two PSIOA with Q # = states(A) and
Qg = states(B) as respective sets of states, let Qfﬂ CQgandlet f: Q’ﬂ — Qg be a states-matching from A to B.
Let D7y € D g = dtrans(A) be a subset of transition. If D7, verifies that for every (¢, a,1(7,4,0)) € Dy

e Matched states preservation: q € Q\/?l and

e Equitable corresponding distribution: Yq"’ € supp(n(a,q.a))- 9" € Q'z and n(a,q.a) N N(8.f(q).a) (i e the
restriction of f, f : supp((A,q.a)) — subP(N(8,f(q).) is bijective and ¥q"" € supp(n(7 g,0))> N(A.qa) (4 =

(8.5 (q.a) (F(@)))
then we say that ng is eligible to transitions-matching domain from f. We omit to mention the states-matching f when

this is clear in the context.

Now, we are able to define a transitions-matching, which is a property-preserving mapping from a set of transitions

Dfﬂ C dtrans(A) to another set of transitions D/, C dtrans(B).

Definition 7.3 (transitions-matching). Let A and B be two PSIOA with Q # = states(A) and Qg = states(B) as
respective sets of states, let 0", C Qz and let f : Q7; — Qg be a states-matching from A to B. Let D’y € D be a
subset of transition eligible to transitions-matching domain from f.

We define the transitions-matching (f, f'") from A to B induced by the states-matching f and the subset of transition
Diys.t. fir. D’y — Dg is defined by (g an(aqa)) = (f(@).an8f(q).a) - I f is complete and Dy = Dz,
(f, f7) is said to be a complete transitions-matching. If f is weak (resp. strong) (f, f7) is said to be a weak (resp. strong)

transitions-matching. If f is clear in the context, with a slight abuse of notation, we say that f*” is a transitions-matching.

The function f*" need to verify some constraints imposed by f, but if the set D’ﬂ of concerned transitions is
correctly-chosen to ensure the 2 properties of definition 7.2, then such a transitions-matching is unique.
Now, we can easily define an executions-matching with a transitions-matching, which is a property-preserving

mapping from a set of execution fragments F\,?i C Frags(A) to another set of execution fragments F/, C Frags(B).

Definition 7.4 (executions-matching). Let A and B be two PSIOA. Let (f, f!") be a transitions-matching from
A to B. Let F;l = {a 2 ¢%alq’..a*q"... € Frags(A)|Vi € [0 : |a| - 1], (¢}, @, N(Agia+t)) € dom(f'")}. Let
¢« Fly — Frags(8), built from (f. ff) s.t.Ya = qulalq}ﬂ...a”q"ﬂ... EFl, f(a) = f(q?ﬂ)alf(q}ﬂ)...a"f(q”ﬂ)...

We say that (f, f7, f¢) is an executions-matching from A to B. Furthermore, if (f, ") is complete and Ffﬂ =
Frags(A), (f, f7, f¢*) is said to be a complete executions-matching. If (f, f*") is weak (resp. strong) (f, fI7, f¢*)
is said to be a weak (resp. strong) executions-matching. When (f, f’") is clear in the context, with a slight abuse of

notation, we say that f¢* is an executions-matching.

The function f¢* is completely defined by (f, f"), hence we call (f, f7, f¢¥) the executions-matching induced
by the transition matching (£, f*") or the executions-matching induced by the states-matching f and the subset of
transitions dom(f*").

The construction of f¢* allows us to see two executions mapped by an executions-mapping as a sequence of pairs of

transitions mapped by the attached transitions-matching. This result is formalised in next lemma 7.5.

LEMMA 7.5 (EXECUTIONS-MATCHING SEEN AS A SEQUENCE OF TRANSITIONS-MATCHINGS). Let A and B be two PSIOA.
Let (f, f, f¢*) be an executions-matching from A to B. Let o = q(;qalq}ﬂ...a”q’;l... € dom(f%*) and = = f*(a) =
q%alqlg..a"q%... =f(q?,ﬂ)alf(q}ﬂ)...a"f(q”ﬂ).,.. Then for everyi € [0 : |a|—1], (q%,a”l,r](&q%’aiﬂ)) = f”((qfﬂ,a”l, n(ﬂ,qfﬂ,ai)))
40

Dynamic Probabilistic Input Output Automata

Proor. First, matched states preservation and action preservation are ensured by construction. By definition, for ev-
; . i i+l i a i i+l e i
eryi€ [0: |a]—1], (q’&z(,a“r ,ry(ﬂq%’am)) € dom(f'"). We note triB = f"((qfﬂ,a’+ ’”(&ll,qéq,ai“)))' By definition, trfB
. i 1 1 e i _ I i l
is of the form (f(q'). a'*l,n). But a transition of this form is unique, which means tri; = (f(d'n), atl, T](B’f(qf’?{),ai+l))

which ends the proof. O

Matching executions

10

s g
e ‘2;. —PO----P:C" ?'O--"".qlz

q
¥ o h
O >0
rr ? c"
: q
d ,,'
b 4O -»@—e
a q2
.“Z—}O--- »& g g i
q & o000 ->e »O 2@
c r--»@ 5 a 11 13
3 q q q q
q
it

q p
N b h
a'; ‘ i O }!g
B q"' iq
'
b 4O >8>
a . d -
OO0 N
q i o0l
c O <5 rd
.3 q q
q

Fig. 18. Here we have Q'ﬂ =1{q%q",...¢°} € Qa, we define the state-matching f : Q’ﬂ — Qg s.t.Vk € [1, 9],f(qk) = qk, and
D/y] = {(qo’ a, U(ﬁ,qo,a))’ (ql’ b> U(ﬂ,ql’b))> (qlx c, '](ﬂ,ql,c))) (qzx d’ U(ﬂ’qz)d))) (q4: e, U(ﬂ,q‘l’e))’ (qs’ f’ ”(ﬂ,q5,f))’ (q7’ h’ U(ﬂ)qﬂh)) }
We can define the execution matching (f, 7, £¢*) induced by f and Dy

Now we overload the definition of executions-matching to be able to state the main result of this paragraph i. e.
theorem 7.9

Definition 7.6 (executions-matching overload: pre-execution-distribution). Let A and B be two PSIOA. Let (f, f!7, f¢X)
be an executions-matching from A to B.

Let (y, p’) € Disc(Frags(A)) X Disc(Frags(8B)) s. t. J:j 1’ (i.e. th restriction of f¢* on supp(fi) is a bijection from
supp(ji) to supp(u) and for every a € supp(u), p’ (f¢*(«)) = p(a)). Then we say that (f, f*7, f¢*) is an executions-

matching from (A, p) to (B, 1').
41

Pierre Civit and Maria Potop-Butucaru

In practice, we will often use executions-matching from (A, §g,) to (8, §g,).

Continued executions-matching. Motivated by PSIOA creation that would break the states-matching from a PCA X 4

tothe PCAZ 4 = (X\{A})| | ASY defined in section 9, we introduce the notion of continuation of executions-matching.

Definition 7.7 (Continued executions-matching). Let A and B be two PSIOA with Q4 = states(A) and Qg =
states(B) as respective sets of states and D # = dtrans(A) and Dg = dtrans(B) as respective sets of discrete transitions.
Let (f, f'",) be an executions-matching from A to B with dom(f) £ Q4 € Qa and dom(f'r) = D’y cDa.

Let f* : Q7 — Qg with Q7 C Q. Let D’} C dtrans(A) be a subset of transitions verifying for every
(9. 4.1 (7,ga)) € Dz \ D'y

e Matched states preservation: q € Q}{

e Extension of equitable corresponding distribution: Yq"" € supp(n(7,4.0))- 9" € Q' andn(a,q.a) <f—+> (B, (g).a)>
i. e. the restriction of f* on supp(1(A,q.a))s ft: supp((Aa,qa)) = Supp(N(8,f(q),a)) is bijective and Vq"' €
supp(N(aq.a))> N(Aqa) (@) =1(8.f(g).a) (")
We define the (f+,D;{)—continuation of fT as the function "+ : D, UD; — Dgs. t.¥(qan(agqa) € DigV
Dip. f"* (g an(aqa)) = (F(Q. an(8f(q).a)-

Let F% = dom(f**) U {a"qaq’" € Execs*(A)|la € dom(f**) A (¢, a.n(A,qa) € D;(}. We define the (f"*)-
continuation of f¢* as the function f** : F% — Frags(B) s. t. Ya € dom(f¥), f**(a) = f**(a) and Vo' =
@ gaq € Fi\ dom(f5), fE5 (@) = [(@)™ f(g),a [*(g).

Then, we say that ((f, f1), f"*, f¢%%) is the (f*, D’%)-continuation of (f, f'", f¢*) which is a continuation of

A
(f, 17,) and a continued executions-matching from A to. B.

ex,+

Moreover, if (u, p’) € Disc(Frags(A)) X Disc(Frags(B)) s. t. p f—) y’ (i. e. the restriction fex’+ of f¢%* on
supp(fi) is a bijection from supp(ji) to supp(u) and for every a € supp(p), p’(f¢**(«)) = p(a)), then we say that
((f, f5), fIr*, £¢%%) is a continued executions-matching from (A, p) to (B, p’).

From executions-matching to probabilistic distribution preservation. We want to states that a (potentially-continued)
executions-matching preserves measure of probability of the corresponding executions.
To do so, we define alter egos schedulers to a certain executions-matching. Such pair of schedulers are very similar in

the sense that their outputs depends only on the semantic structure of the input, preserved by the executions-matching.

Definition 7.8 ((f, f'7, £¢*)-alter egos schedulers). Let A and B be two PSIOA. Let (f, f!", f¢¥) be an executions-
matching from A to B. Let (5, o) € schedulers(A) x schedulers(B). We say that (&, o) are (f, f", f¢X)-alter egos (or
f€* -alter egos) if, and only if, for every (&, @) € Frags*(A) X Frags*(B) s. t. a = f¢*(&) (which means s/i?;(.?l)(cj) =
sig(B)(q) % sig with § = Istate(&) and q = Istate() by signature preservation property of the associated states-
matching), Va € sig, 6(a)((q, a.n(7,g.a) = 0(0)((q. a.N(8.g.0)))-

Let us remark that the previous definition implies that the probability of halting after corresponding executions
fragments (&,) is also the same.

Now we are ready to states an intuitive result that will be often used in the remaining.

THEOREM 7.9 (EXECUTIONS-MATCHING PRESERVES GENERAL PROBABILISTIC DISTRIBUTION). Let A and B be two PSIOA.
Let (ji,) € Disc(Frags(A)) X Disc(Frags(B)). Let (f, f'", f¢*) be an executions-matching from (A, i) to (B, y) . Let
(6,0) € schedulers(A) X schedulers(B), s. t. (5,) are (f, {17, f¢¥)-alter egos. Let (&, a) € Frags*(A) x Frags*(B) s.
t.a=f(a). Then €5 ;(Cz) = €5,u(Cq) and ez (&) = €5 p(a).

42

Dynamic Probabilistic Input Output Automata

Proor. First, by definition 7.6 of executions-matching, f¢* is a bijection from supp(fi) to supp(u) where Va, €
supp (f1), p(f** (do)) = fi(Go) (*). Second, by definition 4.13 of measure generated by a scheduler, €5, (Cor) = Zr, esupp () (o)
€00, (Car) and €5 5(Car) = g, esupp(ji) (o) - €5,4,(Ca) (). Hence, by combining (*) and (**), we only need to
show that for every (&, @) € supp(fi) X supp(p) with f¢*(a,) = ao, for every (a’,a’) € Frags*(A) x Frags*(B)

with f¢¥(&@’) = a’, we have €5,4,(Ca’) = €5,4,(Cq) that we show by induction on the size s = |@| = |a|. We fix
(Go, @0) € supp(j1) X supp(p) with f< (o) = ao.
Basis: s =0

Let @’ = ¢’ € Frags*(A), a’ = ¢’ € Frags*(B) with o’ = f¢*(@’). We have |@’| = |a’| = 0. By definition 4.13 of

measure generated by a scheduler,

0 if both @’ £ &, and @, £ &’
€54, (Car) =17 1 ifa’ < a and
€5.4,(Ca) - 6()(N(AGa) N(AGa) () ifdo <dandd’ =a™ Gaq’
0 ifbotha’ £ ap and ap £ o’
€00, (Cor) =19 1 ifa’ < ap
€o,a, (Ca) * 0-(0()(’7(8,q,a)) *N(8,q.0) (¢") ifay <aanda’ =a"qaq’
Since |@’| = |a’| = 0 the third case is never met. The second case can be written: @’ < @, (resp. @’ < a,) iff

fstate(do) = ¢’ (resp. fstate(ao) = q’). Hence, for every (do, @o) s. t. f(&) = o, €5,4,(Ca’) = €o,a, (Cf) Which
ends the basis.

Induction: We assume the result to be true up to size s and we show it implies the result is true for size s + 1. Let
(&', & a’',a) € Frags*(A)? x Frags* (B)% with @’ = @™ §ag’ and a’ = a " qgaq’ s.t. &’ = f¢(&’) with |&’| = |a’] = s+1.
We want to show that €5, ;(Cq’) = €5,,(Co). By definition 4.13 of measure generated by a scheduler,

0 ifbotha’ £ @pand @ £ &’

€4, Ca) =19 1 ifa’ < a, and
€6.4,(Ca) - 0()(N(AGa) N AGa) () ifdo <aandd’ =a™ Gaq’
0 if botha’ £ ap and ap £ o’

€50, (Cor) =29 1 ifa’ < ap

€50, (Ca) O—(a)(r](ﬂ,q,a)) *1N(8,q,a0) (CI') ifap <aanda’ = aAqaq/

Again, the executions-matching implies that i) both @’ £ &, and @, % @’ &< botha’ £ apand o, £ o/, ii)
@ < @ & a < & and iii) @y < @ &= a, < a. Moreover, by induction assumption €5 4 (Cz) = €5,a,(Cq). Hence
we only need to show that 6(@)(1(#,5,0)) * 1(A.G.a) G = o(a)(N(B.q.a) " 1(B.qa) (¢") (***). By definition of alter-ego
schedulers, (@) (1(#,6,0)) = (@) (1(8,q,a)) (§)- By definition of executions-matching, 1(7,5,q) () = 1(B.q.0) (q") Gj)-
Thus (j) and (jj) implies (***)

Finally, let sig = sig(A)(Istate(@’)) = sig(A)(Istate(a’)), then €54, (¢") = €5.4,(Car) - (1 — Zaesigs(@’)(a)) =
€o,a,(Car) - (1 = Zaesigo(a’)(a)) = €5,a, ('), which ends the proof.

which allows us to terminate the induction to obtain €5 4 (Ca') = €g,a, (Ca’)-

We restate the previous theorem with continued executions-matching.

THEOREM 7.10 (CONTINUED EXECUTIONS-MATCHING PRESERVES GENERAL PROBABILISTIC DISTRIBUTION). Let A and B
be two PSIOA. Let (fi, i) € Disc(Frags(A)) x Disc(Frags(8B)). Let (f, f'", f¢*) be an executions-matching from (A, ji)
to (B, p) . Let ((f, f1), Fi"F, £¢5F) be a continuation of (f, f7,). Let (&, 0) € schedulers(A) x schedulers(B), s. t.
(6,0) are (f, fi7, f¢X)-alter egos. Let (&, &) € Frags*(A) X Frags*(B) s. t. a = f¢*(&). Then €5,ji(Ca) = €o,u(Car).-

43

Pierre Civit and Maria Potop-Butucaru

Proor. The proof is exactly the same than the one for theorem 7.9 O

Before dealing with composability of executions-matching, we prove two results about injectivity and surjectivity of

executions-matching in next lemma 7.11 and 7.12.

LEMMA 7.11 (INJECTIVITY OF EXECUTIONS-MATCHING). Let (f, fi7, f¢¥) be an executions-matching from A to B and
((f, f5), fir+, £6%%) a continuation of (f, f*, f€X).
Let fex+ . F7% Cdom(f**") — Fg C range(fe**). Let f : Q'7 € dom(f) — states(B) be the restriction of f on a
set Q"2 € dom(f).
(1) Ifi)Va € F’j’{, fstate(a) € Q;I and ii)f is injective, then fex’+ is injective.
2) (Corollary) if F”” C Execs(A), 51 is injective.
VYEa

PRrOOF. (1) By induction on the size k of the prefix: Basis: By i) fstate(a), fstate(a’) € Q;{, by construction
of fe%+, f(fstate(a)) = f(fstate(a’)) = fstate(n) and by ii) fstate(a) = fstate(a’) Induction. We assume
the injectivity of f €%+ to be true for execution on size k and we show this is also true for size k + 1. Let
7 = sO0plst skpk+lgh+l ¢ Fg Leta = ¢ alql.. .gFd gkt o = g0’ g gk ek gk € FZs.t f(a) =
f(a’) = 7. By construction of f¢%* Vi € [1,n], b’ = a! = a’. By construction of X, feX+(q0q" ¢’ g'%) =
Feot(qPalqt..gF) = s%als!.. sk, By induction assumption ¢”%a’lg" ..q’*) = ¢%alq!..q*. By definition of

execution, sk*+1

€ Supp(l](B,sk,akn)). By equitable corresponding distribution, If N(Aqk,ak+)y € dom(f'"),
the restriction of f, f : supp(n(g g« gi1)) = supp(n(g gk gk+1)) is bijective and n(g gk ghr1) € dom(fr+)\
dom(f'"), the restriction 0ff+,f+ : supp(r](ﬂ’qk’akﬂ)) — supp(r](gjsk,akﬂ)) is bijective so qk+1 = q’k+1 which
ends the proof.

(2) We have |start(A)| = 1. Hence the restriction of f on start(A) is necessarily injective (ii). Let &« € Execs(A).
By definition of execution, fstate(a) € start(A) (i). All the requirements of lemma 7.11, first item are met,
which ends the proof.

[m]

LEMMA 7.12 (SURJECTIVITY PROPERTY PRESERVED BY CONTINUATION). Let A and B be two PSIOA. Let (f, f'", f¢*) be
an executions-matching from A to B. Let ((f, f1), f17F, f¢5F) be the (fT, D})-continuation of (f, fI", f€X) (where by
definition D;[\ dom(f*") respect the properties of~matched states preservati0n~and extension of equitable corresporzding
distribution from definition 7.7). If the restriction f¢* : Efﬂ C Execs(A) — Eg C Execs(B) is surjective, then fe5+ .
E; ={a’ = a7 qa,a,qy € Execs(A)|a € Eq, (qa,anaqz.a) € dom(fi"*)} — E% ={r" =17qg.aqy €
Execs(8B)|r € Eg,3a € ()1 () N E',, qa = Istate(a), (¢, NAqaa) € dom(fIT4)} is surjective.

Proor. Letn’ € Eg. Wehave ' = 77qg, a,q’B € Execs(B) s.t.w € Egand3a € (f)"1(n)NE,, g4 = Istate(a)

and (9.7, &, 1 (Agn.a) € dom(f*"). By (g, @, NA,g,a) € dom(f"F),if1) (g, @ N,g0,0) € dom(f7F) \ dom(f*T)
+

NAgaa < N8qga andif il) (qa,an7g4.4) € dom(f'") NAqa.a <L> 18,4g.a- In both cases, it exists q’ﬂ €

supp(Nagaa) st f5H (@ =a"qa,a,q'y) =" witha’ € E;‘{.
mi

We finish this paragraph with the concept of semantic equivalence that describes a pair of PSIOA that differ only
syntactically.

Definition 7.13 (semantic equivalence). Let A and B be two PSIOA. We say that A and B are semantically-equivalent

if it exists f : Execs(A) — Execs(B) which is a complete bijective executions-matching from A to B.
44

Dynamic Probabilistic Input Output Automata

Composability of execution-matching relationship. Now we are looking for composability of executions-matching. First
we define natural extension of notions presented in previous paragraph for the automaton obtained after composition

with another automaton &.

Definition 7.14 (E-extension). Let A and B be two PSIOA with Q 4 = states(A) and Qg = states(B) as respective
sets of states and let & be partially-compatible with both A and B.

(1) Let Q’ﬂ C Q4. We call E-extension of Qfﬂ the set of states Q;”rIHS ={q € states(A||E)|q | A € Q:‘}{}

(2) Let f : Q’ﬂ C Qq — Qg. We call E-extension of f the function g : ngms — states(B) X states(E) s. t.
V(qa.q8) € Qg 699, 98)) = (f(q9).98))

(3) Let D’&z[C D 4 asubset of transitions. We call E-extension ofD’ﬂ the set DI&"IIS ={((qa.98). 4. 1((A.8).(g.9¢).a)) €
dtrans(A||E)|q4 € Q’ﬂ and either (¢4, @ N(A,qa,a) € D’ﬂ or the action a is not enabled in ¢ # }.

Now, we can start with the composability of states-matching.

LEMMA 7.15 (COMPOSABILITY OF STATES-MATCHING). Let A and B be two PSIOA with Q # = states(A) and Qg =
states(B) as respective sets of states. Let & be partially-compatible with A and B. Let f : Qfﬂ C Qa — Qg bea
states-matching. Let g be the &-extension of f.

Ifrange(g) C states(8B||E), then g is a states-matching from A||E to B||E.

PROOF. e Starting state preservation: if (§.#,qg) € Qn/|g then g € Q’ﬂ which means f(§#) = §g, thus
9((qa. q8)) = (48, 98)-

e Signature preservation (modulo an hiding operation): V((q#,qg), (98, 98)) € QfﬂIIS X states(B||E) with
(98.98) = 9((qa,98)), we have sig(A)(qa) = sig(B)(f(qa)) = hide(sig(B)(qg), h(qgs)) with h(qg) €
out(8)(qg8)-

Since A and & are partially-compatible, sig(A)(q#) = hide(sig(B)(gs), h(qg)) is compatible with sig(E)(qg)
which means a fortiori sig(8)(qg) is compatible with sig(E)(gg).-
Namely Vact € h(gg), act ¢ in(E)(qs). Hence sig((A, E))((q.a), q8)) = hide(sig((B,E))((98,98)), h' ((98.98))

with A’ ((¢8. qg)) = h(qg) € out(B)(qg) € out(B||)((¢g8,qs)) which ends the proof.
m}

The composability of states-matching is ensured under the condition range(g) C states(B||E) where g is the
&E-extension of the original states-matching f : Q\’ﬂ C states(A) — states(B). In next lemma, we give a sufficient

condition to ensure range(g) C states(B||E). This is the one that we will use in practice.

Definition 7.16 (reachable-by and states of execution (recall)). Let A be a PSIOA or a PCA. Let E:ﬂ C Execs(A).
We note reachable — by(E) = {q € states(A)|3a € E/,,Istate(a) = q}. Let a« = ¢°,a',q',...a" q", We note
states(a) = Ujeja| 9"

LEMMA 7.17 (A SUFFICIENT CONDITION TO OBTAIN range(g) C states(8B||8)). Let A and B be two PSIOA with
Qa = states(A) and Qg = states(B) as respective sets of states. Let & be partially-compatible with both A and B. Let
f:Q% € Qa — Qg be a states-matching. Let Qlﬂll& be the &-extension of Q',.

Let Q;l\l& C QIﬂIIS the set of states reachable by an execution that counts only states in Q,?[HS’ ie

. E:‘ilil\s = {a € Execs(A||E)|states(a) C Q,&ZIHS}
. Q:,;’[HS = reachable-by(Ef,ff{HS)

45

Pierre Civit and Maria Potop-Butucaru

Let f"’ the restriction of f to set Q' = {qz = ((q.q&) I A)l(ga.9¢) € Q’&;IHS}'
Then the E-extension of f'’, noted g’ verifies range(g’’) C states(8B||E).

ProOF. By induction on the minimum size of an execution & = q°al...q" with ¢* = ¢",Vi € [0,n],¢' € Q,ﬂ| & Basis
(lal =0 = a = gx): we consider ¢* = §». We have g((34,qg)) = (f(Ga), Gg) = (48, qg) € states(B||E).

We assume this is true for ¢ with Istate(@) = g and we show this is also true for @’ = @ qaq’. By induction
hypothesis q € states(B||E). Since q’ € states(A||E), A and & are compatible at state (qfﬂ, q:g), that is sig(ﬂ)(qfﬂ)
and sig(8)(qy;) are compatible, which means that a fortiori, (sig(8) (f"(q:ﬂ)) and sig(&)(qy;) are compatible and so
B and & are compatible at state (f”(q:ﬂ), qs) = 9" (q’). Hence g” (q’) is a reachable compatible state of (8, &) which
means this is a state of B||&E.

[m]
Now, we can continue with the composability of transitions-matching.

LEMMA 7.18 (COMPOSABILITY OF ELIGIBILITY FOR TRANSITIONS-MATCHING). Let A and B be two PSIOA with Q # =
states(A) and Qg = states(B) as respective sets of states. Let & be partially-compatible with A and B. Let f : Qfﬂ c
Qa — Qg be a states-matching and Dfﬂ a subset of transitions eligible to transitions-matching domain from f. Let g be
the E-extension of f and D:ﬂl & the E-extension of D .

Ifrange(g) C states(B||E), then D'ﬂua is eligible to transitions-matching domain from g.

Proor. Let ((q#,9¢),a, N((AE).(qaqe).a)) € D,?IHS'

By definition, g4 € Q’ﬂ which means (¢4, qg) € Q;z(|| &> S0 the matched states preservation is ensured. We still

need to ensure the equitable corresponding distribution.

e Let (qf?’[,qg) € WPP('?((ﬂ,S),(qg,qg),a)) Ifae s@(ﬂ)(qﬂ), then q;{ € supp(q(ﬂ’qﬂ’a)) which means q;[€
Q'4 and hence (q77,q¢) € QfﬂIIS' If a ¢ sig(A), N(Aga.a) = Oqa> Which means ¢’7 = gz € Q’; and hence
(97 9%) € Q'y) g Thus for every (q'7.q%) € supp(n((A,8).(qage)) (T 98) € Qg5
7"y "o 7 "y _ 7
® N(A.8).(qnge)a) (Lg98)) = N(Aga.a)®N(Egs.a) (g 98) = N(Aqaa) (@) N(Eqe.a) (48) = 1(B.f(qa)a) F (@ 7))
N(&.qe.a)(dg) = 1(B.f(qa)a) ® N(E.qe.a) F(d'7):98) = 1((8.8).9(qn.qe).a) (9(q7: 4¢)) which ends the proof
of equitable corresponding distribution.

]

Definition 7.19 (&-extension of an execution-matching). Let A and B be two PSIOA with Q # = states(A) and
Qg = states(B) as respective sets of states. Let & be partially-compatible with both A and B. Let (£, f*", f¢*) be an
executions-matching from A to B. Let g the E-extension of f. If range(g) C states(B||E), then

(1) we call the E-extension of f'” the function ¢'" : (q, @, 77| |8,q.a) € Df7{||5 = (9(9), @, 1(8||6,9(g).a) Where
D,ﬂIIS is the &-extension of the domain dom(f'") of f".
(2) we call the E-extension of (f, £, £¢¥) the matching-execution (g, g'", g¢*) from A||E to B||E induced by ¢

and dom(g'").
Finally we can states the main result of this paragraph, i. e. theorem 7.20 of executions-matching composability.

THEOREM 7.20 (COMPOSABILITY OF EXECUTIONS-MATCHING). Let A and B be two PSIOA. Let & be partially-compatible
with both A and B. Let (f, f'7, f¢X) be an execution-matching from A to B where g represents the E-extension of f. If
range(g) C states(B||E), then the E-extension of (f, f*7, f¢X) is a matching-execution (g, g'", g¢*) from A||E to B||E
induced by g and dom(g'").

46

Dynamic Probabilistic Input Output Automata

ProOF. We repeated the previous definition, while an executions-matching only need a states-matching g and a set

dom(g'") of transitions eligible to transitions-matching domain from g which is provided by construction. O

Here we give some properties preserved by E-extension of an executions-matching.

LEMMA 7.21 (SOME PROPERTIES PRESERVED BY &-EXTENSION OF AN EXECUTIONS-MATCHING). Let A (resp. B) be a
PSIOA with Q # (resp. Qg) as set of states. Let (f, {7, f¢*) be an execution-matching from A to B.

(1) Iff is bijective and f~1 is complete, then for every PSIOA & partially-compatible with A, & is partially-compatible
with B.
(2) Let & partially-compatible with both A and B, let g be the &-extension of f.
(@) Iff is bijective and {1 is complete, then range(qg) = states(8B||E) and so we can talk about the &-extension
of (f. f*.)
() If (f, f'") is a bijective complete transition-matching, (g,g'") is a bijective complete transition-matching.
(And (f, f', %) and (g, g'", g°*) are bijective complete execution-matching.)
(c) Iff is strong, then g is strong
(3) Let & partially-compatible with both A and B, let g be the E-extension of . Let assume range(g) C states(B||E).
Let (g, g'", g°%) be the E-extension of (f, f'7, f¢X)
(a) Ifthe restriction fex : E'ﬂ C Execs(A) — Eg C Execs(B) is surjective, then 9% : {a € Execs(A||E)|a T
A e E’ﬂ} — {m € Execs(B||E)|n | B € Eg} is surjective
(b) If f is strong, g is strong.

PROOF. (1) We need to show that every pseudo-execution of (B,E) ends on a compatible state. Let 7 =
q%alq'...a" " be a finite pseudo-execution of (B, &). Wenote o = (! (q%), q%)a1 (f! (q%), q:g)...a" (f! (q’,lB), q’é).
The proof is in two steps. First, we show by induction that o = (f~1 (qOB), q%)a1 (f! (q%), q:g)...a" (f! (%) q%)
is an execution of A||E. Second, we deduce that it means (£ (q%), q’é) is a compatible state of (A, &) which
means that a fortiori, (¢,) is a compatible state of (8, &) which ends the proof.

e First, we show by induction that « is an execution of A||E. We have (f~1(Gg),ds) = (§a,Gg) which
ends the basis.
Letassume (f~! (qOB), q%)a1 (f! (qIB), qig).l.ak (f! (q%), q’é) is an execution of A||&. Hence (f (qu), qlé)
is a compatible state of (A, &) which means that a fortiori qk is a compatible state of (B, &) because of
signature preservation of f.
For the same reason, sig(8||8)(¢~F) = s’l?}(ﬂ,c‘})((f_l(q%), q’é)), so ak*1 e @(ﬂ»a)((f_l(qlég)s qlfg))-
Then we use the completeness of (£71, (f7)1), to obtain the fact that either N(8,¢5,ak+) € dom((f'")~1)
or a1 ¢ sig(B)(ql(c) (and we recall the convention that in this second case 1,4 k _x+1y = 8 k). which
B (B,QE;,“) qg
means either (f~! (q%), ak+1, N ft (q?ks)!akﬂ)) is a transition of A that ensures Vg’ € supp(q<83qg’ak+1)), f g e
supp(q(ﬂf_l(k) ak+1)) or ak*! ¢ sig(A)(f! (q%)) (and we recall the convention that in this second
Sy
case 1) g p-1(gk) ak+) = 5f‘1(q;§))' Thus for every (q”,q"") € suPP(U(B,S),qk,akﬂ)), (FUq").q") =
971 (q".q"") € supp(n(a g) g1 (g).ak+r)) namely for (g, ") = (¢, ¢&H). Hence, (f 1 (g%5™), ¢5™)
is reachable by (A, &) whichmeans (f 1 (¢%). ¢%)a' (f 1 (qk). q%)...a* (f 1 (g5). 45)a* (F71(dK). dK) a1 (F 71 (g5). 45)
is an execution of A||E. Thus by induction « is an execution of A||E.

47

Pierre Civit and Maria Potop-Butucaru

e Since A and &) are partially-compatible ({1 (q%), q'é) is a state of A||E, so (f1 (q%), q%) is a compatible
state of (A, &) which means (q%), qlé) is a fortiori a compatible state of (B, E) . Hence every reachable
state of (B, &) is compatible which means B and &) are partially compatible which ends the proof.

2) (a) o Let (q%, q’é) € states(B||E). This state is reachable, so we note 7 = (q%, q%)a1 (q%, qé)...a”(q%, q’é)
the execution of B||&. Thereafter, we note a = (f~! (q%), q%)a1 (f! (q}g), qé),..a”(f’l(q’z’;), qg),
We can show by induction that « is an execution of A||&. The proof is exactly the same than in 1.
Hence « is an execution of A||& which means (£~ (q%), q'é) is a state of A||E and then g((f~! (q%), q'é)) =
(q%, q'é) to finally prove that it exists ¢* s. t. g(¢*) = (q%, q'é) which means states(8B||E) < dom(g).
We can reuse the proof of 1. to show that if ¢ € states(A||E), then g(q) € states(B||E) which
means dom(g) C states(B||E).
Hence dom(g) = states(8B||&E).
e We can apply the previous lemma 7.18 to obtain the eligibility of D #|g-
(b) Let assume (f, f'7) are bijective. The bijectivity of g is immediate g(.,.) = (f(.),Id(.)). The bijectivity of
g'" is also immediate since g'" : N(Aqaa) ®N(Eqge.a) = ft’(q(ﬂ,qﬂ)a)) ® 1(8,qs.a) With £ bijective.
(c) Immediate, since in this case sig(A) (q.a) = sig(B)(f (9a)) implies sig(A||E) ((9.a, 98)) = sig(BIIE)((f(9:a). 98))-
(3) (@) Letw = ((4% q%).a", (q%. qE). ... a" (¢, q%)) € Execs(B|E) with 7 | B = 45, a", 4}, ...a™, §p € Eg,
where the monotonic function k : [0,n] — [0,m], verifies Vi € [0,n],k(i) € [0,m], qu = (j’;i)
By surjectivity of f¢* we have @ = cjoﬂ, al, cjlﬂ, e d™ @ € Egs t f(@) = 7 1 B. We note
a= (q?ﬂ,q%)al(q%,qé)...a"(q'&lz{,q’é) where Vi € [0, n],qiﬂ = q’;&"). Hence, Vi € [0, n],g((qiﬂ,q%)) =
(qu, q'é). Moreover, by signature preservation, Yi € [0,n — 1],a'*! € sz"?(ﬂ)(qi,ﬂ) u s@(&)(q%). Further-
more, Vi € [0,n—1]. (¢'5'.q%") € supp(r](ﬂq;"a,-) ® U(B,q%,ai)) since (¢i3',q4") € SMPP(U(B’qEB’ai) ®
ﬂ(gsqjig’ai)), (qu,ai,f](B!q%’ai)) = f"(qfﬂ,ai,n(ﬂ)q;{,ai)) and q’;l = f(qi;Il). Thus, a € Execs(A||E). Fi-
nally, by signature preservation of f, Vi € [1, n]sig(A)(qa) = sig(B)(qs), whichleadustoa | A=a €
Efﬂ So for every 7 € Execs(B||E) with 7 | B € Eg, it exists a € Execs(A||E) witha | A € E'ﬂ which
ends the proof.
(b) Immediate by rules of composition of signature: V(q#,qg) € states(A||E), V(qg,qg) € states(B||E) if
sig(A)(qa) = sig(B)(qg), then sig(A||E)(qa. 98) = sig(BlI€)) (g8, 98)-

We are ready to states the composability of semantic equivalence.

THEOREM 7.22 (COMPOSABILITY OF SEMANTIC EQUIVALENCE). Let A and B be PSIOA semantically-equivalent. Then for
every PSIOA &:

o & is partially-compatible with A <= & is partially-compatible with B
o if & is partially-compatible with both A and B, then A||E and B||E are semantically-equivalent PSIOA.

PROOF. o The first item (& is partially-compatible with A <= & is partially-compatible with 8) comes from
lemma 7.21, first item.
e The second item (if & is partially-compatible with both A and B, then A||E and B||E are semantically-

equivalent PSIOA) comes from lemma 7.21, second item.

48

Dynamic Probabilistic Input Output Automata

A weak complete bijective transition-matching implies a weak complete bijective execution-matching which means
the two automata are completely sementically equivalent modulo some hiding operation that implies that some PSIOA
are partially-compatible with one of the automaton and not with the other and that the traces are not necessarily the

same ones.

composition of continuation of executions-matching. Here we define &-extension of continued executions-matching

in the same way we defined &-extension of executions-matching just before.

Definition 7.23 (&-extension of continued executions-matching). Let A and B be two PSIOA. Let & be partially-
compatible with both A and B. Let (f, f'", £¢*) be an executions-matching from A to B. Let ((f, f), F1"F, f¢5*) be
the (f*, D7)-continuation of (f, £, £¢%) (where by definition D\ dom(f'") respect the properties of matched states
preservation and extension of equitable corresponding distribution from definition 7.7). If the respective &-extension of
f and f*, noted g and g*, verifie range(g) U range(g*) C (B||E), we define the E-extension of ((f, fF), £, f¢*7)

as ((g.9%).g'"", g*"), where
e (g,¢'", g?) is the E-extension of (f, ", f€)
* 9" (gana)e)qe) € Dijg P (9(9) an(A116).9(g).a) Where D o is the E-extension of dom(f'"")
e Vo' =a"qa,q ,witha’ € dom(g?),if (q, 4, 17| |8),q.a) € dom(g"") g°F (@) = g** (@) and if (q, @, 7 (71| |&),q.a) €
dom(g'™*) \ dom(g'") ¢°** (a’) = g°* (@) ~g(q). a.9" (q)

LEMMA 7.24 (COMMUTATIVITY OF CONTINUATION AND EXTENSION). Let A and B be two PSIOA. Let & be partially-
compatible with both A and B. Let (f, f", f*) be an executions-matching from A to B. Let ((f, f), £, f¢5F) be the
(ft, D%)-continuation of (f, fI", f¢X) (where by definition D;[respect the properties of matched states preservation and
extension of equitable corresponding distribution from definition 7.7). Let

o (9.g"",g%) be the &-extension of (f, f'", f¢) verifying range(g) C states(B||E),

. D;iflcg) the &-extension of dom(f'""%), i. e. D;{’?lcg) ={((qa,98), & n(A)|18,(ga.qe).a)) € dtrans(A||E)lqa €

dom(f) A (g, & 1(Agaa) € dom(f) V a ¢ sig(A)(qa)]}-
o gz'c’e) be the &-extension of f*

Then

(1) D & \ dom(g'") verifies matched states preservation and extension of equitable corresponding distribution.

(2) the (g?c,e), (D;E?lcg)))—continuation of (9, 9™, g°*), noted ((g, gzrc,e)),gizz),g?z’:)) is equal to the &-extension of

((Ff 5 f14 F5), moted ((9.97,) 9(rey 9ney)-

We show that the operation of continuation and extension are in fact commutative.

Proor. We start by showing D;I\(rse) \ dom(g'") verifies matched states preservation and extension of equi-
table corresponding distribution. By definition 7.7 of &-extension, D;?lc(’;) = {((qa.98). & n(A 1&,(qnge).a) €

dirans(AI|E)lqa € dom(fIA(q @ 1A gna) € dom(fT)Va g 5ig(A) (g1}, while dom(g'™) = {((q 98): @ N(AN (qnge)) €
dirans(A||E)lqa € dom(f) A (. a.N(Agsa) € dom(fT) V a & Sig(A)(qz)]}.

Thus D) \ dom(g'™) = {((q2.96). & 1|16, (qn.ge)0)) € dtrans(AlIE)lgn € dom(f) A [(q @M Agna) €
dom(£17+) \ dom(f™)]} ()

Let tr = (97, 98) & 1(A)|8),(qmqe)a) € D;iffg) \ dom(g""), then

e Matched states preservation: By (*) g# € dom(f) which leads immediately to (q#, qg) € dom(g)
49

Pierre Civit and Maria Potop-Butucaru

e Extension of equitable corresponding distribution: Y(q'z. q%.) € supp(n(ay|&.(qa.qe).a))> (U 45) € supp((aga.a)®
N(Ege.a) With N(7agaa) € dom(f™*) \ dom(f'") by (*) which means q'y € dom(f*) and n(ag.a)(q'q) =
N(Bf(gn)a) (fT(q'y)) and so (q'7,97) € dom(g®) and n(agaa) ® N(Egew (Tq98) = N(Agaa) (@g) -
N(&qs.a) (Ag) = N(8.f(qa)a) [T (@7) N(Eqs.a) (A8) = N(8.f(qa)a) @ (Eqea) (F@7):98) = 1(81169(gn.90)0 (9 (@7:92))
We have shown that D;{|(|Cse) \dom(g'") verifies matched states preservation and extension of equitable corresponding
distribution.

Now, we show the second point.
¢ By definition 7.7 of continuation, gzrc’e) = gzre’c).

IZ:)) = D;i?lcg). By definition 7.7 of continuation, dom(gzr?’,:)) = dom(g'") U
D//,(c,e)

ane = 1qa.98). a 1A (qaqe).a) € dirans(AlE)lga € dom(f) Al(qa, @ 1(Aga.a) € dom(f'")v
a ¢ sig(A)(q)1} U{((ga.96): & 1(A) |6, (qrge).a) € dtrans(AlE)lga € dom(f) A [(qa, @ N(Agna) €
dom(f'r*)va ¢ sig(A)(qa)]} ={((qa.98) & N(A| 16, (qnqe).a) € dtrans(AlE)|qa € dom(f)A[(qa.a.N(Agn.a) €
dom(f'"*) v a ¢ sig(A)(q)]} = Diplt.
Parrallely, by definition 7.19 of &-extension, dom(giz”:)) ={((q7.98). & 1(A||8,(qn.qe).0)) € dtrans(A||E)|qa €

dom(f) A (8,1 Agna) € dom(F7*) V a ¢ 5ig(A)qa)]} = Dly!) Thus dom(g{l"%)) = dom(g!"")) =
11,(c.e)
D

AllE
o We prove g% = () Let ((4.98). & 1] &, (qnae).0) € Dlpy
By definition 7.19 of &-extension, ng’;) (((qa,98) a.n(a18.(gaqe).0))) = (9(qa,98): & 1(A|18.9(qn.qe).0)))
while by definition 7.7 of continuation, gZ”; (((qa.98)- @ n(a| 1&,(qs1.q8),a)) =(9(qa.q8), an(a) 18,9(qg.98).a)).
We can remark that properties of equitable corresponding distribution are not conflicting since dom(gé,rf) \
dom(g'") = dom(gere") \ dom(g"").
. 9?:;) and gf’:e) are entirely defined by ((g, gzre,c)), (¢", gEZ’:))) and ((g, gzrc’e)), (g"", giz::))) that are equal.

e We prove dom(gz?z)) = dom(g

]

application for renaming and hiding. Before dealing with PCA-executions-matching, we state two intuitive theorems

of executions-matching after renaming and hiding operations.

THEOREM 7.25. (strong complete bijective execution-matching after renaming) Let A and B be two PSIOA andren :
states(A) — states(B) s. t. B = ren(A). (ren, ren'”, ren®) is a strong complete bijective execution-matching from A
to B with dom(ren'") = D # = dtrans(A).

Proor. By definition ren ensures starting state preservation and strong signature preservation. By definition ren
is a complete bijection, which implies matched state preservation. The equitable corresponding distribution is also

ensured by definition of ren. Hence, all the properties are ensured O

THEOREM 7.26. (weak complete bijective executions-matching after hiding) Let A be a PSIOA. Let h defined on states(A),
s. t.Vq € states(A), h(q) € out(A)(q). Let B = hiding(A, h). Let Id the identity function from states(A) tostates(B) =
states(A). Then (Id,1d"",1d%*) is a weak complete bijective execution-matching from A to B.

ProoF. By definition Id ensures starting state preservation and weak signature preservation. By definition Id is a
complete bijection, which implies matched state preservation. The equitable corresponding distribution is also ensured

by definition of hiding. Hence, all the properties are ensured O
50

Dynamic Probabilistic Input Output Automata

7.2 PCA-matching execution

Here we extend the notion of executions-matching to PCA. In practice, we will build executions-matchings that preserve
the sequence of configurations visited by concerned executions. Hence, the definition of PCA states-matching is slightly
more restrictive to capture this notion of configuration equivalence (modulo action hiding operation), while the other

definitions are exactly the same ones.
matching execution.

Definition 7.27 (PCA states-matching). Let X and Y be two PCA with Qx = states(X) and Qy = states(Y) as
respective sets of states, (gx, qy) = (start(X),start(Y)) and let f : Qf € Qx — Qy be a mapping s. t. :

e Starting state preservation: If gx € Q. then f(gx) = Gy.

e Configuration preservation (modulo hiding): V(q,q") € Q% X Qy, s. t. ¢" = f(q), if auts(config(X)(q)) =
(A1, ..., Ap), then auts(config(Y)(q")) = (A7, ..., Ay) where Vi € [1: n], A; = hide(A], h;) with h; defined
on states(A]), s. t. hi(q;/z(;_) c out(ﬂg)(qﬂ;) (resp. s. t. h,-(qy(;) = 0, that is A; = A))

e Hiding preservation (modulo hiding): ¥(q,q") € Q% X Qy, s. t. ¢’ = f(q), hidden-actions(X)(q) = hidden-
actions(Y)(q’) U h*(q’) where h* defined on states(Y), s. t. h*(qy) C out(Y)(qy) (resp. s. t. h*(qy) = 0, that
is hidden-actions(X)(q) = hidden-actions(Y)(q’))

e Creation preservation V(q,q") € Q3 X Qy,s.t. q" = f(q). Va € sig(X)(q) = sig(Y)(q’), created(X)(q)(a) =
created(Y)(q’)(a).

then we say that f is a weak (resp. strong) PCA states-matching from X to Y. If Qf = Qx, then we say that f is a
complete (weak or strong) PCA states-matching from X to Y.

We naturally obtain that a PCA states-matching is a PSIOA states-matching:

LEMMA 7.28 (A PCA STATES-MATCHING IS A PSIOA STATES-MATCHING). If f is a weak (resp. strong) PCA states-matching
from X toY, then f is a PSIOA states-matching from psioa(X) to psioa(Y) (in the sense of definition 7.1). (The converse is

not necessarily true.)

Proor. The signature preservation immediately comes from the configuration preservation and the hiding preserva-

tion. [m}

Now, all the definitions from definition 7.2 to definition 7.4 of previous subsections are the same that is:

Definition 7.29 (PCA transitions-matching and PCA executions-matching). Let X and Y be two PCA with Qx =
states(X) and Qy = states(Y) as respective sets of states and let f : O} C Qx — Qy be a PCA states-matching from
XtoY.

e Let Dj, C Dy = dtrans(X) be a subset of transitions, D} is eligible to PCA transitions-matching domain from f
if it is eligible to PSIOA transitions-matching domain from f according to definition 7.2.

e Let Dj, C Dx = dtrans(X) be a subset of transitions eligible to PCA transitions-matching domain from f. We
define the PCA transitions-matching (f, ") induced by the PCA states-matching f and the subset of transitions
Dy, as the PSIOA transitions-matching induced by the PSIOA states-matching f and the subset of transitions
Dy, according to definition 7.3.

51

Pierre Civit and Maria Potop-Butucaru

o Let f17 : Dy € Dx = dtrans(X) — Dy s. t. (f, f') is a PCA transitions-matching, we define the PCA
executions-matching (f, f", f¢*) induced by (f, f'") (resp. by f and dom(f*")) as the PSIOA executions-
matching (f, f7, £¢*) induced by (£, f*") (resp. by f and dom(f*")) according to definition 7.4. Furthermore, let
(1, p") € Disc(Frags(X))xDisc(Frags(Y)) s.t. for every &’ € supp(u), &’ € dom(f¢*) and p(a) = p’ (f*(a’)).
then we say that (f, f*, f¢*) is a PCA executions-matching from (X, i) to (Y, ') according to definition 7.6.

e The (f*, DY)-continuation of a PCA-executions-matching (f, I, £¢%) is the (f, DY)~ continuation of (f, fIr, fo%)

in the according to definition 7.7.
We restate the theorem 7.9 and 7.10 for PCA executions-matching:

THEOREM 7.30 (PCA-EXECUTION-MATCHING PRESERVES PROBABILSITIC DISTRIBUTION). Let X and Y be two PCA
(i, ') € Disc(Frags(X)) x Disc(Frags(Y)). Let (f, f'", f¢*) be a PCA executions-matching from (X, u) to (Y, p’) . Let
(6, 0) € schedulers(A) X schedulers(B), s. t. (G,0) are (f, f7, f¥)-alter egos. Let (a, 7) € dom(f*) X Frags(Y).
Ifr = f(a), then e&’ﬁ(C&) = €5,u(Cq) and 65_,/;(07) = espu().

PrOOF. We just re-apply the theorem 7.9, since (f, f", f¢*) is a PSIOA executions-matching from (psioa(X), 1) to
(psioa(Y), 1'). O

THEOREM 7.31 (CONTINUED PCA EXECUTIONS-MATCHING PRESERVES GENERAL PROBABILISTIC DISTRIBUTION). Let
X and Y be two PCA (p, i) € Disc(Frags(X)) X Disc(Frags(Y)). Let (f, f'7, f¢X) be a PCA executions-matching from
(X, p) to (Y, gy . Let ((f, f+), fI7F, £6%%) be a continuation of (f, f'7, £¢%). Let (6, o) € schedulers(A)xschedulers(B),
s. t. (6,0) are (f, f'7, f¢¥)-alter egos. Let (o,) € dom(f®) x Frags(Y).
Ifn = f***(a), then €5,i1(Cq) = €0,u(Ca).

ProoF. We just re-apply the theorem, 7.10 since ((f, f*), fi"*, f¢*7%) is a continued PSIOA executions-matching
from (psioa(X), p) to (psioa(Y), u’). O

Composability of execution-matching relationship. Now we are looking for composability of PCA executions-matching.
Here again the notions are the same than the ones for PSIOA excepting for states-matching and for partial-compatibility.
Hence we only need to show that i) the S-extension of a PCA states-matching is still a PCA states-matching (see lemma
7.32), ii) if f : states(X) — states(Y) is a bijective PCA states-matching and f~! is complete, then for every PCA &
partial-compatible with X, & is partial-compatible Y (see lemma 7.34).

LEMMA 7.32 (COMPOSABILITY OF PCA STATES-MATCHING). Let X and Y be two PCA with Qx = states(X) and
Qy = states(Y) as respective sets of states. Let & be partially-compatible with both X and Y. Let f : Q% € Qx — Qy bea
PCA states-matching. Let g be the &-extension of f.

Ifrange(g) C states(Y||E), then g is a PCA states-matching from X||E to Y||E.

PROOF. e If (gx.gs) € Qx||& then gx € Q% which means f(gx) = gy, thus g((4x. Gs)) = (qs.qe)-
* V((9x.9¢). (qv.98)) € Qx| X states(Y||E) with (gy. qg) = 9((gx.qg)), we have
— Configuration preservation (modulo hiding): if auts(config(X)(qx)) = (A1, ..., An), then auts(config(Y)(qy)) =
(A7, ... A,) where Vi € [1 : n],A; = hide(A], h;) with h; defined on states(A)), s. t. hi(qn;) <
out(ﬂlf)(qﬂ;) (resp. s. t. hi(qﬂ;) = 0, that is A; = A]). Hence if auts(config(X||€)((gx,qg)) =
(A, ooy Ap, Ba, ..., By), then auts(config(Y||E)((qy.qg8)) = (AL, ... A, B, ... Bm) where Vi € [1 :
n], A; = hide(A, h;) with h; defined on states(A)), s. t. hi(qﬂ;) C out(A;) (qﬂ;) (resp. s. t. hi(qﬂ;) =0,
that is A; = A).
52

Dynamic Probabilistic Input Output Automata

- Hidding preservation (modulo hiding): hidden-actions(X)(qx) = hidden-actions(Y)(qy) U h* (qy) where
h* defined on states(Y), s. t. h*(qy) € out(Y)(qy). Hence hidden-actions(X||E)((gx,qg)) = hidden-
actions(X)(qx) U hidden-actions(E)(qg) = hidden-actions(Y)(qy) U hidden-actions(E)(qg) YR (qy) =
hidden-actions(Y||E)((qy,qg)) U k' ((qy,qg)) where h*’ defined on states(Y[|E), s. t. h*'((qy, qg)) =
h*(gy) € out(Y)(qy) € out(Y1E)((gy.48))-
— Creation preservation Va € sz’?(X)(qX) = s/i_?](Y)(qy), created(X)(qx)(a) = created(Y)(qy)(a). Hence
Va € 5ig(X|1€)((qx. 9¢)) = 5ig(Y]|E)((qy. qe)), either
* a € sig(X)(qx) = sig(Y)(qy) buta ¢ sig(E)(qg) and then created(X||E)((gx. 9g)) (a) = created(X)(qx)(a) =
created(Y)(gy) = created(Y||E)((qy q¢)) ()
x ora ¢ sig(X)(gx) = sig(Y)(qy) but a € s5ig(§)(qg) and then created(X||E)((qx,qe))(a)
created(E)(qg)(a) = created(Y||E)((qy, qg))(a)
* ora € 5ig(X)(qx) = sig(Y)(qy) and a € 5ig(E)(qg) and then created(X||E)((gx.qs))(a)
created(X)(gx)(a)Ucreated(E)(qg)(a) = created(Y)(qy)Ucreated(E)(qg)(a) = created(Y||E)((qy. qs))(a)

Thus, Ya € sig(X||€)((gx, 98)) = sig(Y]IE)((qy. &), created(X||E)((qx. q&))(a) = created(Y]|E)((gy, g8))(a)-
o

We restate the theorem 7.20 of executions-matching composability.

THEOREM 7.33 (COMPOSABILITY OF PCA MATCHING-EXECUTION). Let X andY be two PCA. Let & be partially-compatible
with both X and Y. Let (f, f', f¢*) be a PCA executions-matching from X to Y. Let g be the E-extension of f. If
range(qg) C states(Y||E), then the E-extension of (f, fI, £f¢¥) is a PCA executions-matching (g, g'", g¢*) from X||E to
Y||E induced by g and dom(g'").

Proor. This comes immediately from theorem 7.20. O

We extend the lemma 7.21 but we have to take a little precaution for the partial-compatibility since here the

configurations have to be pairwise compatible, not only the signatures.

LEMMA 7.34 (SOME PROPERTIES PRESERVED BY &-EXTENSION OF A PCA EXECUTIONS-MATCHING). Let X and Y be two
PCA. Let (f, f'7, f¢*) be a PCA executions-matching from X to Y.

(1) If f is complete, then for every PSIOA & partially-compatible with X, & is partially-compatible with Y.
(2) Let & partially-compatible with both X and Y, let g be the E-extension of f.
(a) Iff is bijective and f! is complete, then range(g) = states(Y||E) and so we can talk about the &-extension
of (F. f17, F%)
() If (f. f'") is a bijective complete transition-matching, (g, g'") is a bijective complete transition-matching.
(And (f, f', %) and (g, g'", g°*) are bijective complete execution-matching.)
(c) If f is strong, then g is strong

PRrOOF. (1) We need to show that every pseudo-execution of (Y,&) ends on a compatible state. Let 7 =
q%alq'...a"q" be a finite pseudo-execution of (Y, &). We note o = (£ (q?,), q%)a1 (f! (q%,), qé)...a" (f! (q¥). q%)-
The proofis in two steps. First, we show by induction that & = (! (q(}),), q%)a1 (f! (q;), qé)...a" (f! (qy).9%)
is an execution of X||&. Second, we deduce that it means (! (9y),) is a compatible state of (X, &) which

means that a fortiori, (qy,) is a compatible state of (Y, &) which ends the proof.
53

Pierre Civit and Maria Potop-Butucaru

e First, we show by induction that « is an execution of X||&. We have (£f~1(Gy). Gg) = (gx. dg) which ends
the basis.
Let assume (f ! (q?,), q%)a1 (f! (q;), qé)...ak (f! (q’f,), q’é) is an execution of X||&. Hence (f ! (q];), q]é)
is a compatible state of (X, &) which means that a fortiori qk is a compatible state of (Y, &) because of
signature preservation of f.
For the same reason, sz/'_?](Y, 8)(qk) = s/i?](X| 1E)((f! (q]f/), q]é)), soaktl € s’i?(X, E)((f! (q]f/), q]é)). Then
we use the completeness of (f~1, (f!7)71), to obtain the fact that either T(v,gk.ak) € dom((f")™1) or
4y
aktl ¢ sig(Y) (qllj) (and we recall the convention that in this second case 1(y,qk ak+t) = 1) e). which means ei-
>y? Y
ther (£~ (q’;), ak+1, Mix,f1 (q;;),akﬂ)—)’is\atransition of X that ensures Yq'’ € supp(ry(y,q;;”akﬂ)), 1 (q") e
supp(n(xf_l(k) ak+1)) or adk*l ¢ sig(X)(f_l(qIf/)) (and we recall the convention that in this second
NaICR
case 1)(x p-1(gk) ak+) = 5f‘1(q’§))' Thus for every (¢”,q"") € supp(n(y,g),qk,aku)), (FUq").q"") =
971 (q".q"") € supp(n(x &) g1 (gk),ak+1y) namely for (q”,q"") = (g5, q5™). Hence, (' (¢5), ¢5™)
is reachable by (X, &) which means (£~ (¢9), q%)a' (f (g}, g%)--a* (' (q%). 45)a* (f 7 (¢5). g (£ (g™, g™
is an execution of X||&. Thus by induction « is an execution of X||E.
e Since X and & are partially-compatible (f~! (9%). q’s) is a state of X||&, so (f! (g¥), ¢’5) is a compatible
state of (X, &) which means (qk

Y
of (Y, &) is compatible which means Y and & are partially compatible which ends the proof.

, q]é) is a fortiori a compatible state of (Y, &) . Hence every reachable state

(2) This comes immediately from lemma 7.21 since (f, f*", f¢*) is a PSIOA executions-matching from psioa(X) to

psioa(Y) by construction.

Finally, we restate the semantic-equivalence.
A strong complete bijective transitions-matching implies a strong complete bijective executions-matching which

means the two automata are completely semantically equivalent.

Definition 7.35 (PCA semantic equivalence). Let X an Y be two PCA. We say that X and Y are semantically-equivalent

if it exists a complete bijective strong PCA executions-matching from X to Y

THEOREM 7.36 (COMPOSABILITY OF SEMANTIC EQUIVALENCE). Let X and Y be PCA semantically-equivalent. Then for
every PSIOA &:

e & is partially-compatible with X <= & is partially-compatible with Y
e if & is an environment for both X and Y, then X||& and Y||E are PCA semantically-equivalent.

ProOF. e The first item comes from lemma 7.34, first item

o The second item comes from lemma 7.34, second item

A weak complete bijective PCA transitions-matching implies a weak complete bijective PCA executions-matching
which means the two automata are completely semantically equivalent modulo some hiding operation that implies that
some PSIOA are partially-compatible with one of the automaton and not with the other one and that the traces are not
necessarily the same ones.

54

Dynamic Probabilistic Input Output Automata

8 PROJECTION

This section aims to formalise the idea of a PCA X # considered without an internal PSIOA ‘A. This PCA will be noted
Y4 = X7\ {A}. The reader can already take a look on the figures 26 and 27 to get an intuition on the desired result. This
is an important step in our reasoning since we will be able to formalise in which sense X # and psioa(X g \ {A})||A
are similar.

We first define some notions of projection on configurations on subsection 8.1. Then we define the notion of A-fair
PCA X in subsection 8.2, which will be a sufficient condition to ensure that Y = X \ {A} is still a PCA, namely that it

ensures the constraints of top/down and bottom/up transition preservation, which is proved in the last subsection 8.3.

8.1 Projection on Configurations

In this subsection, we want to define formally n” € Disc(Qcon) that would be the result of € Disc(Qconf) "deprived
of an automaton (A". This is achieved in definition 8.4. This definition requires particular precautions and motivate the
next sequence of definitions, from definition 8.1 to 8.3

The next definition captures the idea of a state deprived of a PSIAO A.

Definition 8.1 (State projection). Let A = {Aj, ..., An} be a set of PSIOA partially-compatible at state ¢ = (g1, ..., qn) €
Qa, X..XQaq,.Let A* = {Aq, .., Asn} C A. We note :

g\ {Ax} = (g1, -+ Qo—1> Q41> - qn) if A € A and q \ {A} = q otherwise.
g\ A®* =(q\ {Asn})\ (A% \ {Asn}) (recursive extension of the previous item).
q r ﬂk = qk if.?[k €A Ol’lly.

g I A% =g\ (A\ A®) (recursive extension of the previous item).

A= (A Ay, Ay, Ay As) A, = (Az, Ay)
= (g1, 2,43, q1. 05) gl A, = (g, q) g {A} = (a1, g3, 05)

Fig. 19. State projection

The next definition captures the idea of a family transition deprived of a PSIAO A.

Definition 8.2 (Family transition projection). (see figure 20 first for an intuition) Let A = {Aj, ..., An} be a set of
PSIOA partially-compatible at state g = (g1, ...qn) € Qa, X ... X Q7,. Let A = {Aq, ..., Asn} C A

Letqg’ = g\ A®andq” = q | ASifAS Cc A.Let A’ = A\ ASand A” = A® C A.Let a’ € sig(A’)(q’) and
@’ € sig(A”)(q""). We note

(] U(A,q,a/) \1&S = U(A’,q’,a') and
° U(A,q,a”) rAS e U(A/’,q”,a") if AS C A.

Then we apply this notation to preserving distributions.

Definition 8.3 (preserving distribution projection). (see figure 21) Let 7, € Disc(Qcon) be a preserving distribution.
Let A = {Ajy, ..., Ap} its automata support (that is V(A’,S’) € supp(np), A’ = A). Let H be its set of companion
55

Pierre Civit and Maria Potop-Butucaru

0
Ay A= (A, A, Ag)
A PP
O A
h \:’{t.‘-h.u‘; a) Oa—ﬁ;::ﬁ'\m-q.n]
‘. q= (Q’I 202y fifl) \“.‘\‘O EI
© (000
Ay o
.L::’;i.-ta.nh‘d'r
q2
‘e
Ay AN A} = (A, A)

v
i1

S o~ naam \ (42}

a & si, ; Y {As} = (g1.93)
sig(As)(as) g\ {42} = (g1, . El

Fig. 20. Family transition projection

distributions of n, (s. t. for every n € H, n = 11 ® ... ® n, with n; € Disc(Q,)).Then n, \ A® is the preserving
distribution with A \ AS as automata support and H = { \ A|p € H} as companion distribution set. If AS C A, then
np I A° is the preserving distribution with A | A® as automata support and H” = {5 ' A®|n € H} as companion

distribution set.
Now we are able to define intrinsic transition deprived of a PSIOA ‘A.

Definition 8.4 (intrinsic transition projection). (see figure 22) Let§ € Disc(Qconf) generated by ¢ and np € Disc(Qconf)-
We note 1 \ A® the probabilistic measure on configurations generated by ¢ \ A® and 17, \ A® and we note n [A® the

probabilistic measure on configurations generated by ¢ [A® and n, [A .

Then we can easily determine some results when projection is applied. The next lemma 8.5 and 8.6 will lead to lemma
8.7. All of this 3 lemma are some versions of law of total probability. The lemma 8.7 and 8.10 (obtained via lemma 8.8),
will allow the constructive definition 8.11 of PCA deprived of a (sub) PSIOA.

LEMMA 8.5 (FAMILY DISTRIBUTION PROJECTION). (see figure 23) Let A = {Aj, ..., An} be a finite set of automata. Let
A=A\ {A}. Letn =n1 ® ... ® ny, withn; € Disc(Qz,) foreveryi € [1,n] . Letn’ = n\ {Ag}.

Forevery q' € Qar, 1°(q") = Z(qeQa.q\ (A }=q) (D)

PRrOOF. This comes directly from the law of total probability. We have ¥q’ = (q1, ..., qi, s qn) € OAsq" = (q1, s Qh—15 Qs 15 -+ Gn) €
Q> 1(g") = n'(q") mi(q)- Hence X ye o) 10 = gt esupp(ne) 1 (@) 1ic(d1.), which gives Ygesupp (n),q=q\ (76} 1(@) =

’7'(61/) . qu‘; esupp(ni) Uk(qi) and finally ZqGQA,q’:q\{ﬂk} ’1(61) = U’(q/)-
O

LEMMA 8.6 (PRESERVING DISTRIBUTION PROJECTION). (see figure 24) Let np be a preserving distribution with A =

{AL, .., An} as automata support . Let Cy be a configuration (np \ {Ar})(Cy) = Z(cy,cx\{Ar }=Cy) Tp (Cx)-
56

Dynamic Probabilistic Input Output Automata

A= (Ay, Ao, Ar) FEX X pleee] g-@s)
joEes | eEes) a-as

o2
et Ny mee] | b Eee a-as)
oo > [eeel c-as)

A {As} = (A1, Ag)

o [0 o > [0 o] G-\ {4)s)
[0 @] o8 nagm \ {4} np\ {a}
| . i . \‘\‘
g { Az} = (g1, a) 1 EI “ EI €1 = (A\ {A:}.5))

Fig. 21. Preserving distribution projection

¢ = (AL Ash oA = {Ad}
A= (U, Ay, Ay, Ag) As = (o 4) A" = (A5, Aq)
¢ = (4',81) O = (A", 8))
A= (A, Az, Ay) “I> AYVA, = (A, A) ’P'

>
*

0p = (A",8)

C"ﬂh. 7

0 A,

e

¢y - (A",80)

O\A, =S, n\ A,

Fig. 22. intrinsic transition projection

Proor. We can apply lemma 8.5 for every pair (7,7 \ {A}) s. t. ny is a companion distribution of 7, (and 17 \ {A}
is a companion distribution of 7, \ {Ay} by definition). Then we substitute in the sum of 8.5 every state g by the

corresponding configuration. O

LEMMA 8.7 (REDUCED DISTRIBUTION PROJECTION). Let 17y be a preserving distribution with A = {Ay, ..., An} as

automata support . Let n, be generated by ¢ and ny. Let Cy be a configuration.
57

Pierre Civit and Maria Potop-Butucaru

A o A= (4LAA) 4
a .o . f,","
q(l:)—ﬂ:’flt-\‘tl-'h-“: <>“—t NiAqa)
9 06 q= (a1, q,8) ‘\‘40 [0 ® o] 0
0.6
Ay y 0.7
.Lj:’h_d.g_.;_,.u}
2]
‘9 03
As AN { Ao} = (Ay, Ag)

s

e— 0 1

@ Oa—‘::‘%mq‘ru Az}

a # sig(As)(gs) g {2} = (1 s)

Fig. 23. total probability law for family transition projection

A= (A, A Ay) @ m 0.28
; 0.4
ot na
= (g1, q2,9)
0.6
AN {Aa} = (A, 4y)
O Magn \ A2}
'\ A2} = (q1,43)

P [oee] ci=(as) o2

0.4
Jo @98 G-as) o
<o
[0l e o-as) o
: 0.6

b eee] ci-(as) ois

S [0 o] G-a\{aks) o4

S\)

b [0 o] G-(A\l4)S) oo

Fig. 24. total probability law for preserving configuration distribution and its companion distribution

58

Dynamic Probabilistic Input Output Automata

(nr \A{ARD (Cy) = Z(cx,x\ (AR }=Cy) 17 (Cx)-

Proor. For a preserving transition, we get (1p \ {Ax})(Cy) = Z(cy,cx\{Ar }=Cy)Tp (Cx) for every configuration
Cy from lemma 8.6. By definition 5.10, it follows the same relation for the non-reduced transition which is matching
the preserving transition. It follows the same relation for the reduced transition which is matching the non-reduced

transition. O
The next lemma gives the intrinsic transition attached to a configuration after deprivation of a (sub) PSIOA.

LEMMA 8.8 (PROJECTION ON AN INTRINSIC TRANSITION). Let C be a configuration, P an automaton, a € sig(C\ P),
@ C Autids and 1) € Disc(Qcong), 5 t.

c :a>tp nr. Then, C\ {P} =a>(¢\{p}) (nr \ {P}).

Proor. We note auts(C) = A = {Ajy, ... An}, S = auts(C) and A = Aq||...||Apn. We note g = (S(A1), ..., S(Ap)).
Since a is enabled in C \ {P}, (q \ {P}, a,n) is a transition of A (unique from q and a by transition determinism), while
(g,a,n\ {P}) is a transition of A’ the automaton issued from the composition of automata in A \ {P}. This comes from
the definition of composition 4.10. Now 7, is generated from ¢ and 1, where 7 is a companion distribution of 1. In the
same way, 7 \ {P} is generated from ¢ \ {P} and 5, \ {P} where n \ {P} is a companion distribution of 7, \ {P}.

Thus, C\ {P} = (np \ {P}) and then C\ {P} =\ (p)) (1 \ {P})-
[m}

In next subsection, this lemma 8.8 will lead to lemma 8.10 which will be a key lemma to allow the constructive
definition 8.11 of PCA deprived of a (sub) PSIOA.

8.2 A-fairness assumption, motivated by our definition of PCA deprived from an internal PSIOA: X \ {A}

Here we recall in definition 8.9 the definition 6.13 of a A-fair PCA. Then we show lemma 8.10 (via 8.8) that will be used

in complement of lemma 8.7 to enable the constructive definition of X \ {A}.

Definition 8.9 (A-fair PCA (recall)). Let A € Autids. Let X be a PCA. We say that X is A-fair if it verifies the

following constraints.

o (configuration-conflict-free) X is configuration-conflict-free, that is Vqy, q& € states(X), s. t. qxReon fq% (i.e.
config(X)(qx) = config(X)(qy)) then gx = g}
e (no conflict for projection) Vgx, g5 € states(X), s.t. qXRz
(A} = config(¥)(gy) \ {A}, then
- Va € 5ig(X)(qx) N57g(Y) (gy), created(Y)(gy)(a) \ {A} = created(X)(gx)(a) \ {A}
— hidden-actions(X)(qx) \ pot-out(X)(gx)(A) = hidden-actions(Y)(qy) \ pot-out(Y)(qy)(A) where
pot-out(X)(q)(A) = 0 if A ¢ auts(config(X)(q))
« pot-out(X)(q)(A) = out(A)(map(config(X)(q))(A)) if A € auts(config(X)(q))
o (no exclusive creation by A) Vgx € states(X), Va € ;i\g(X)(qX) A-exclusive in gx, created(X)(gx)(a) = 0
where A-exclusive means VB € auts(config(X)(qx)), a ¢ @(B)(map(config()()(qx))(B)).

{A}

onf dx then qu{ﬂ} % That is if config(X)(gx) \

stricth

A A-fair PCA is a PCA s. t. we can deduce its current properties from its current configuration deprived of A. This
will allow the definition of X \ {A}, where X is a PCA, to be well-defined.
59

Pierre Civit and Maria Potop-Butucaru

Now we give the second key lemma (after lemma 8.7) to allow the definition 8.11 of PCA deprived of a (sub) PSIOA.
Basically, this lemma that if two states qx and gy are strictly equivalent modulo the deprivation of a (sub) automaton P,

noted qXR\ (P}

trierdY > then the intrinsic configurations issued from these states deprived of P are equal.

LEMMA 8.10 (EQUALITY OF INTRINSIC TRANSITION AFTER DEPRIVATION OF A SUB-PSIOA). Let X,Y be two PCA.
P - -
Let (qx, qy) € states(X) X states(Y) s. t. qXR;t{riith' Let a € sig(X)(qx) Nsig(Y)(qy) \ (pot-out(X)(qx)(P) U pot-

out(Y)(qy)(P)). WenoteCx = config(X)(qx),Cy = config(Y)(qy),px = created(X)(qx)(a), py = created(Y)\({qY})(a)
R P

a a
and X andnY the unique reduced configuration distribution s. t. Cx =x nX and Cy =4y nY . By definition of iriets

we have Cx \ {P} = Cy \ {P} £ C and px \ {P} = oy \ {P} = 0.
Moreover C =a>,p nr with X \ {P} = pY \ {P} £ 1,

Proor. By lemma 8.8, we have both C :a>4, r]i(\ {P} and C =a>4, r]f \ {P}. By unicity of intrinsic transition, we
have ¥\ {P} = n¥ \ {P}. o

Definition 8.11 (X \ {P}). (see figure 25 for the constructive definition and figures 26 and 27 for the desired result.)
Let P € Autids. Let X be a P-fair PCA, with psioa(X) = (Qx, gx, sig(X), Dx). We note X \ {P} the automaton Y
equipped with the same attributes than a PCA (psioa, config, hidden-actions, created), uf : Qx — Qy and /15 :
Dx \ {n(x,qx.a)la is P-exclusive in gx } — Dy that respect systematically the following rules:

e P-deprivation: Yqy € states(Y), P ¢ config(Y)(qy), Va € s’i?](Y)(qy)(a),P ¢ created(Y)(qy)(a).
° ,uf-correspondence: V(gx,qy) € Ox X Qy s. t. /,zf(qx) = qy, then qXR;t{rI;gth‘
o ﬂg'correspondenCEZV(QX, qy) € OxxQy, Y(ax, ay) € sig(X)(gx)xsig(Y)(qy) s. L0 (y.qy.ay) = Pg(W(X,qx,ax)r
then (1) 4§ (gx) = qv. (2) ax = ay and (3) ¥g}, € Oy, N(v.gy.a) (4}) = Z¢) cOxs(io)=q, T(X.qx.a) (T)-
and constructed (conjointly with the mapping ,uf and yg) as follows:

e Partitioning: We partition Qx in equivalence classes according to the equivalence relation Rzif} that is we

obtain a partition (Cj)jejcn s- t. Vj € J, Yqx, 45 € Cj, qXRéo{i}q;(and by P-fair assumption, qXR;jﬁgth(

e Qy, sig(Y) and pf: Vj € J, we construct q{, € Qy and conjointly extend pu s. t. Vgx € Cj, 1P (gx) = q{,,
verifying the P-deprivation-rule and pf-correspondence rule, that is
- config(Y)(q}) = config(X)(qx) \ {P}.
hidden—actions(Y)(q{,) = hidden-actions(X)(gqx) \ pot-out(X)(qx)(P),
sig(Y) (q{,) = hide(sig(config(Y)(q{()), hidden—actions(Y)(q{())
- Va € 5ig(Y)(q)), created(Y)(¢),)(a) = created(X) (qx)(a) \ {P}.
— Furthermore gy = ,uf (Gx)-
e Dy and yif: Vgy € Qy, Va € sig(Y)(qy) (and so Vgx € (1)~ (qy), a € sig(X)(gx)) we construct 1(y,qy.a)
and conjointly extend ;15 s.t.Vgx € (yf)_l(qy), N(Y.qv.a) = yg(ry(xaqx’a)), verifying the yg-correspondence

rule. We show this construction is possible:

— We note Cy = config(Y)(qy), ¢y = created(Y)(qy)(a), ny the unique reduced configuration distribution
so that Cy =a>q,y ny. Let (q;'()ich = (yf)_1 (qy). For every i € I, we note note Cé(= config(X)(qé(),
qoé(= created(X) (qé()(a), r]é(the unique reduced configuration distribution so that Cé(:a>(p§(r]é(. For
every i € I, we have C5. \ {P} = Cy, ¢' \ {P} = ¢y and n}, \ {P} = ny by lemma 8.10.

— For every qé(e (12)Y(qy), we partition supp(ry(x’q&!a)) in equivalence classes according to the equiva-

lence relation RZ(ES]}C that is we obtain a partition (C})je]'cN s.t.VjeJ,Vgy.qy € C}, %Rzii}qg and

60

Dynamic Probabilistic Input Output Automata

R\P}

by P-fair assumption, g} Ry,

fix n(y qy,a) (ay) = ny(config(Y)(qy)).
Now by lemma 8.7, ny (Cy,) = Zc;(’clyzcs(\{})} q&(C;(). By constraint 3 of bottom/up transition preserva-

qy- For each j € J’, we extract an arbitrary ¢}, € CJ’. and g}, = pf(q;(). We

tion, ZC;(,C'Y:C;(\{P} T];((C‘;() = Zq’X,C;:config(X)(q/X)\{P} U(X,qi{,a) (q%) By construction of Qy under
P -correspondence, Zq;(,C’Y:config(X)(q;()\{P} (X g'.a) (95) = qu(,q’yauf(q;() q(X,q;-(m(qg(). Thus, the
ydp—correspondence constraint, i. e. 7(y,qy,a) (q5) = 2

ai € (1) (qy).

(@) X, gia) (q%) holds for all the possible
% s

GGy =ps

ql.r.,
; b T8
’r. ,".-.. 1z
q[' a J:f L q
X ®—(
Hd
o

=X\ {F} _.o—:—(ﬁ
q

Fig. 25. constructive definition of Y = X\ {P}. First we construct ¢° which is the initial state of Y. Then we partition supp((x,q0,a)) =
{g™*u, g™} U {q'¥,q'Y} s. t. ql"“Rzgrzpql"U and qu"szf;}}qu“. Thereafter we construct qu = ps(qg™) = ps(g*®) and
' = ps(q") = ps(q'¥2). Then, n , is defined s t.n 5 (§%) = Nixg0.a) (3) + 1 (xg0.0) (@7) and 1y, 5 (G1Y) =
Nxqha) (g'¥) +(x.q0.0) (q'¥?). We perform another time this procedure. by partitioning supp(ry(x’quu’a)) = {g*u}u{q*¥“} or
supp (1 x,qlvo,q)) = {g%*®, ¢ YU {q?Y2, g?Y™ } arbitrarily. Indeed the obtai,ed result is the same: (i) qu“Rzii)fquv since they are
both pre-image of G'¥ by s, which means (ii) qu”RN\qgi}ctquU since X is assumed to be P-fair. If we note C;, = config(X)(q'¥+),

Cyp = config(X)(q'¥?), ¢, = created(X)(q'¥#)(c), ¢, = created(X)(q'¥?)(c), Cy =C>q,u Ny and Cy —L»q,v o we have j)
Cu\ {P} = Co \ {P}.Jj) Cu \ {P} =, \(p} 1 \ {P} and jjj) Co \ {P} =>p\(p) 70 \ (P} which implies jv) 74 \ {P} = 0o \ {P}.

In the remaining, if we consider a PCA X deprived of a PSIOA A we always implicitly assume that X is A-fair.
61

Pierre Civit and Maria Potop-Butucaru

(x) hidden—
con fig(X
| [actions(X)
a X € a u ¢ f v Ye (1) ;
3 . > N ¢
Mintzgharw] = O »| int:g int:h P o T {d, &}
b O Iy o BN 05 I O, m
Ly
t Nx g0 el gt e
a X r -~ ~,
> - H 2 > v 1 ¢ f v & I £
int:ghdkl 0 O » int:g int:h ek | {d,e}
< e () —fi 2) - 0 = ; -«
b X Cx b d . 7 m
£ e
LEF NC e) v iy = A
a f X Yy f a u e 4 T ™
y - — = £
int:g, k <§ -------- | int:g ? int : k >
-« l——] ra— <
b [2) D) % [o b 0 f 0 m
£ m
L N) ! @ = created(X)(q})(b) = {W}
 x) ! a | u] w € | T
N y X - v > — — - Lb
int:g,l, ik) > int:g int:] | int: k o i}
b Q) e qiﬁ C{ b 0 i Q f m
£ m

Fig. 26. Projection on PCA (part 1/2, the part 2/2 is in figure 27): the original PCA X

83 Y =X\ {A}isaPCAif X is A-fair

Here we prove a sequence of lemma to show that Y = X \ {P} is indeed a PCA, by verifying all the constraints.

Prepare the top/down transition preservation. We show a useful lemma to show Y = X \ {{A} verifies the constraint 2

of top/down transition preservation.

LEMMA 8.12 (CORRESPONDING TRANSITION AFTER PROJECTION). Let A be a PSIOA. Let X be a A-fair PCA. Let
Y =X\ {A}. Let (qx, a, nx) € dtrans(X) and a € s’i?;(config(X)(qX) \ {P}).

Letn}, € Disc(Qcony) the unique reduced configuration transition s. t. X0) (X qx.a) L ny withx1) f = config(X)(qx)
and x2) Config(X)(gqx) :a>,px 1y where px = created(X)(qx)(a).

Let (qy, 4, 1(y,qy,a)) WithN(v,qy.a) = #a(1x)), gy = ps(qx). Let ny =y \ {A} Then ny, is a reduced configuration
transition that verifies y0) 1(y,qy,a) £> ny with y1) f* = config(Y)(qy) and y2) Config(Y)(qy) :a>(py ny where
¢y = ¢x \ {A} = created(Y)(qy)(a).

Proor. We note (Q,X)ief the partition of supp(nx,qx.a) s t- Vi € I Vg5, q5 € QIX, q&Rzif}}qg.

C}ml} = config(qy) \ {A} for an arbitrary element g3, € QIX and C; = {C € supp(ni)|C\ A = Cl.\{ﬂ}}. Since x0)

Vi € I, we note

fo, . . . o ’
N(X.qx.a) € Ny Withx1) f = config(X)(qx), (Ci)ier is a partition of supp(ny,).
62

Dynamic Probabilistic Input Output Automata

¥ =X\ {1}
hidden—
config(Y
¢ @ actions(Y')
a Y e a u [v e
> » — | I
| int:gna 4 | int:g int:h > {d}
‘ 3] . € 05 Ofe—
b N— Ay Cy b
e Y gl) Thet gbc)
a Y a u c v e
> T » d,e}
> > > — {d,
Int:ghd,e] 0 e » int:g int:h
<« [9] ‘_ﬁ | o) € O «—
Y S 4 C: b d f
Ny i) TNC3 gt b) v by = Jqf
2 Y a u
— — —>
int:g > int:g
b 8 4 ‘ ¢ b O
My g) s g b el = c‘reuted(l’](q;)(bj = {W}
a Y Y a u ‘] w
— >
int:g,)10 <> »| -— int:g Int:jo {i}
b 0 q‘l Cn‘ b %) i

Fig. 27. Projection on PCA (part 2/2, the part 1/2 is in figure 26): the PCAY = X \ {T}

For every i € I, we note qlY = us(qy) for an arbitrary element ¢}, € QlX By pi!-correspondance, config(qu) =
A .
7 = config(gi) \ (A)
BY#,“?-COffeSPODdanCe,UY,qy,a(CI'y) = (Hd('](X,qX,a)))(qgf) = Zq’X”us(q’X)=q’Y’7(X,qx,a) (qS() = Zielzqg(teX’”s(q’)():q/yﬂ(X,qX,a) (CI}()

By assumption x0) and x1), 1(X,qx.a) <£ q;(with f = config(X), thus ryy,qy,a(q;) = ZiE]Zq,XEQIX’”S(q,X):q,Yn;((config(X)(q;()) =
e 120 eCy,Cl\A=config(qy) Nx (Cx) = 2Cy i\ A=config(q,) Tx (Cx)

Therafter, we use the lemma 8.7 and get 1y ¢, a(qy) = 1y (config(Y)(qy)) with ny = ni \ {A}.

By definition of Y, Config(¥)(gy = ps (qx)) = Config(X)(gx)\{A}. Then, since a € sig(config(X)(qx)\ {A}), we
can apply lemma 8.8. Thus Config(Y)(qy) =u>(py ny with ng, = ni \{A} and py = (px \{A}). By ,us(ﬂ-correspondance,
created(Y)(qy)(a) = created(X)(qx)(a) \ {A}, thus gy = created(Y)(qy)(a).

Finally the restriction of config(Y) on supp(ny,qy,q) is a bijection. Indeed, we note fi : gy Qf(s.t.{qy} = ,Us(Q,X),
fo: QIX —Cif3:Ci C>“7{. By construction, fi and f3 are bijection. By bijectivity of the restriction of config(X) on
supp(nx,qx.a)» f2 is a bijection too. Moreover, the restriction f” of config(Y) on supp(ny,qy,a) is fi © f2 © f3 and hence
this is a bijection too.

[m}

We show a useful lemma to show Y = X \ {A} verifies the constraint 3 of bottom/up transition preservation.
63

Pierre Civit and Maria Potop-Butucaru

LEMMA 8.13 (EXISTENCE OF INTRINSIC TRANSITION). Let Ay € Autids, let X be a Ay -fair PCA, let Y = X \ {Ay} and
qy € States(Y).

If 3y}, € Disc(Qeonf). a € sig(Config(Y)(qy)). py = created(Y)(qy)(a) s. t. Config(Y)(qy) =0y 1y then

Itexiss 3qx: € States(X), ps(ax) = qv, 1 € Disc(Qeong): 1 = (1 \ (A}, @ € 59(ConfigX) (ax)\ (A}, ox =
created(X)(gx)(a) s. t. Config(X)(x) :qu r]X.

ProoF. By construction of Y = X\ {A}, if qy € states(Y), it exists qx € states(X), us(qx) = qy, config(X)(qx) \

{Ak} = config(Y)(qy) and created(X)(qx)(a) = created(Y)(qy)(a)\{Ar}. We note Cx = (Ax, Sx) = config(X)(qx)
and Cy = (Ay, Sy) = config(Y)(qy) We treat two cases to show that 1(cy.a).p = (Cx.a),p \ 1Ak}

o case 1) Ay € Ax with Sx (Ag) = qx. Wenote (Ax = Ay, ..., A, ..., Ap). Thus (Ay = A, ooy, Ap_1, Ap—1s o An).
For everyl € [1: n], we note r] =N(Angia) fa € sig(A;)(gi) and ' = = &g By definition of companion distribu-
tion, Cy r N(Cy.a),p and Cx r 1(Cx.a),p Wheren(cy, a) p hasthe compamon distribution r]p =p'®..onfe..en",
while n(cy,q),p has the companion distribution '717 = ryp \{A} = n' ® ... @ "1 ® p**1.. ® ™. Hence
N(Cy.a)p = N(Cxa)p \ Ak}
e case 2) Ay ¢ Ax. Immediate, since we have Ax = Ay and Ay ¢ Ax.
Let us note ¢px = created(X)(qx)(a) and gy = created(Y)(qy)(a) = ¢x \ {Ar}. We note n;, the reduced configu-
ration distribution generated by ¢x and n(cy.q),» and by definition 5.11 of intrinsic transition, we have Cx :a>¢X -
By definition 5.11 of intrinsic transition, Cy =a>(py ny with nj, generated by n(cy.a)p = N(cx.a)p \ {Ak} and

oy = ox \ {Ar}-
Thus, 1%, = 1}, \ {Ax} by definition 8.4 of intrinsic transition projection, which ends the proof.

O
Now we are able to demonstrate that the PCA set is closed under deprivation.
THEOREM 8.14 (X \ {P} 1s APCA). Let P € Autids. Let X be a P-fair PCA, then Y = X \ {P} is a PCA.
PROOF. e (Constraint 1) By construction of Y, gy = uF (Gx) and by ps-correspondence rule, config(Y)(gy) =

config(X)(gx) \ {P}. Since the constraint 1 is respected by X, it is a fortiori respected by Y.

o (Constraint 2) Let (qy, a,7(y,qy,a)) € dtrans(Y). By construction of Y, we know it exists (gx, a 7(x,qx.a)) €
dtrans(X) with n(y gy.a) = Ha(1(x,qx,a)) @d gy = pis(gx). Then, because of constraint 2 ensured by X, we
obtain it exists a reduced configuration distribution 75 € Disc(Qcons) - t. X0) 1(x.gx.a) i) ny with x1)

f =config(X)(qx) and x2) Config(X)(qx) :a>¢x 1y Where gx = created(X)(qx)(a). We can apply lemma

8.12 to obtain that n{, = % \ {P} is a reduced configuration transition that verifies y0) N(Y.qv.a) L ny with y1)
a
f” = config(Y)(qy) and y2) Config(Y)(qy) =gy ny where py = ¢x \ {P} = created(Y)(qy)(a).
This terminates the proof of constraint 2.
e (Constraint 3) Let gy € States(Y),n} € Disc(Qconf) a € @(Config(Y)(qy)), oy = created(Y)(y)(a) s. t.
a
Config(Y)(qy) = ny
Because of lemma 8.13, it implies it exists gx € States(X), us(gx) = qy, s- t. x2) config(X)(gx) =a>¢X 77)’<

with gx = created(X)(x)(a), ny = n5 \ {P}, oy = ¢ox \ {P}.
64

Dynamic Probabilistic Input Output Automata

Because of constraint 3, it means (qx,a 1x,qx,a) € dtrans(X) with x0) n(x gx.a) i) ny with x1) f =
config(X)(qx).Sinceqy = pus(qy)anda € sz?(Y)(qy)),the construction of dtrans(Y) implies (qy, &, 1(v,qy,a)) €

dtrans(Y) with N(Y.qy.a) = ,ug(ry(x,qx’a)).
We can reapply lemma 8.12 to obtain that »

’”

v =1y \ {P} is a reduced configuration transition that verifies

f .) .
¥0) 1(v,gy.a) & ;7;’ with y1) f/ = config(Y)(qy) and y2) Config(Y)(qy) éq,y q;(’ where gy = ¢x \ {P} =

created(Y)(qy)(a). Finally n{/ = n{, = n% \ {P}, which allows us to conclude that

For every qy € States(Y),a € s?_?](Config(Y)(gy)), oy = created(Y)(y)(a) s. t. Config(Y)(qy) =a>(py r];,
with some reduced configuration distribution 7y, then (qy, @, 7(v,qy,)) € dtrans(Y) with 1¢y,4y.q) Z) ny
where " = config(Y)(qy)
This terminates the proof of constraint 3.

e (Constraint 4) Verified by construction (We recall that V(qy, gx) € States(Y)XxStates(X),qy = yf(qx), sig(Y)(qy) =
hide(sig(config(Y)(qy), hidden-actions(Y)(qy)) where hidden-actions(Y)(qy) = hidden-actions(X)(gx) \
pot-out(X)(gx)(P).

9 RECONSTRUCTION

In the previous section, we have shown that Y = X \ A is a PCA (as long as X is A-fair). In this section we will

(1) introduce the concept of simpleton wrapper AS" that is a PCA that encapsulates A.

(2) prove that X \ {A} and FASY are partially-compatible (see theorem 9.13)

(3) There is a strong executions-matching from X to (X \ {A})| | ASY in a restricted set of executions of X that do
not create A (see theorem 9.19). Hence it is always possible to transfer a reasoning on X into a reasoning on
(X \ {AD||AY if no re-creation of A occurs.

(4) The operation of projection/deprivation and composition are commutative (see theorem 9.24).

9.1 Simpleton wrapper : AS"

Here we introduce simpleton wrapper A", a PCA that only encapsulates A%

Definition 9.1 (Simpleton wrapper). (see figure 28) Let A be a PSIOA. We note A%Y the simpleton wrapper of A as
the following PCA:

Qa — Qgsw

qa P Ggsw =rensw(qa
differs from A only syntactically.

* Y i, € states(AY), config(A™)(§ o) = reduced({A},S : A qz = rengl(qa))
o VG o € states(F™), Va € @(ﬁSW)(qS?!IV), hidden-actions(A*™)(§ ;) = 0 and
created(ﬁsw)(Qﬁsx«)(a) =0.

e Itexists abijection reng,, : { s. t.psioa(ﬁsw) = rengy(A), that ispsioa(ﬁsw)

¢~
ﬂSW
where sig(A) (qg) = 0, s. t. the corresponding configuration is the empty one.

We can remark that when A" enters in §

¢
A

= rensw(qq;) where s’i?y(.ﬁsw)(q;w) = (), this matches the moment

where A enters in g

65

Pierre Civit and Maria Potop-Butucaru

i

¥ o, config(A™)@ g~) = (A, (A, 3 (3 =)
V:}A‘su-,Vuct,creuted(.ﬂim}{(}“iw){u,ct) =0

W g, hidden — u.ctima.q[ﬁm)(rj){w] =0 (reny (A) \

psioa(A™) = ren,, (A)

N /

a s Jisw N ¢ a { A Y\ ¢
- L
T it g S T — > 7 int:g .
] 0 ‘d_ 1 ot ¢ (9] ‘d
b S 94 i b S/
[[+
A G) THC e o)
: a A
v ’ —>
............... » > int:g
e Cta b 0
b b
s ! A s = ‘qu
T L
R — L
7 %

Fig. 28. Simpleton wrapper

LEMMA 9.2. Let A be a PSIOA. Let ASY its simpleton wrapper with psioa(AS™) = reng.,(A). Let j € Disc(Frags(AY)).
For every schedule p, apply z.., (rensw(p), p)(rensw(a)) = applya (p, p)().

Proor. The only point is that (i) Vg € states(A), constitution(ﬁsw)(rensw(q)) = constitution(A)(q) and (ii) for
q¢ s. t. sig(?()(q¢) =0, constitution(tildeﬂsw)(rensw(q¢)) = (which means that (*) T is enabled in ¢ iff T is enabled
in rensyw(q) and that (**) a is triggered by T in state q iff a is triggered by T in state rens,,(q).

Thus we can apply theorem 7.25.

9.2 Partial-compatibility of (X4 \ {A}) and AY
In this subsection, we show that (X \ {A}) and A" are partially-compatible and that (X \ {A})||AY mimics

X 7 as long as no creation of A occurs (see figure 29).
66

Dynamic Probabilistic Input Output Automata

. zZ
o fia() config(Z)
"""" o e e mn | ey 0 o
i %" g b we)
. . c c
. Nz,4%0) M3
°-V - M e S
——————— >
rrrrrrr ; o] g nten s | <] men |
d , 2
G e | e e G v ‘
. . h h s
X gk HCY MV.g.h) :'54:, ﬂ(z.gfz,h)g e T
NI B (2] [o =
[mise) o 4 mee) i @
. Y b b
LETR (G = created(X)(q%)(b) = {W} 2. ,0) Mci ¢ = ereated(Z) (gz) (1) = {W}
H 3 a .:. w
. i a0 wo | o afYy)} (v o ox —
S a— s e it G A W "G e e il
i@ o - 5 pz (ax) z b i

Y =X\ {V} 4
e
config(Y) config(V'")
c -]}“” e c n e
"""" b e b L | =
ay Cy T p m d d g e d
c c c [
Mxape)p O g U™ ghe] MOl)
Y c v e c e
——————— »
b m @& Ty m d % 2 d
h h
! i =0
iy 5 v h = Oy, S | 80 e = o
Y a v ; Y
Y) k (v) (V] Pl)
3 —
b b
Mg O ¢ = created(Y)(q)(b) = {W} . | 80y
. ; 2w [¥ X
S) o~ T i =00
4 . int:j e = qone Co = (0,)
ay Cy - v v

Fig. 29. Reconstruction of a PCAviaZ = (X, X \ {V})

Map X and (X \ {A}, FASW). We first introduce two functions to map X and (X \ {A}, FASW).

Definition 9.3 (uZ* and pg': mapping of reconstruction). Let A € Autids, X be a A-fair PCA, Y = X \ A. Let ASY

¢

‘7 € states(A) the (assumed) unique state s. t.

be the simpleton wrapper of A, where psioa(AS™) = reng,, (A). Let q
s@(ﬂ)(qq;l) = (. We note:

e The functionX.,uf{ : states(X) — states(Y)xstates(ASW) s.t. Vgx € states(X),X,ufl(qX) = (X.,u;ﬂ (gx),rensw(qa))

with g # = map(config(X)(qx))(A) if A € (auts(config(X)(gx))) and q# = q‘; otherwise.

67

Pierre Civit and Maria Potop-Butucaru

e The function X.p7! that maps any alternating sequence ax = qg(, al, q}(, a?... of states and actions of X, to

1 (ax) the alternating sequence az = Xt (qg(), at, Xyt (q}(), a, ...

The symbol “! and X. are omitted when this is clear in the context.

Now, we recall definition 6.14 of A-conservative PCA, an additional condition to allow the compatibility between
X \ A and FASW.

Definition 9.4 (A-conservative PCA (recall)). Let X be a PCA, A € Autids. We say that X is A-conservative if it
is A-fair and for every state qgx € States(X), Cx = (Ax,Sx) = config(X)(qx) s. t. A € Ax and Sx(A) = q«,
hidden-actions(X)(gx) = hidden-actions(X)(gx) \ ext(A)(q.7).

A A-conservative PCA is a A-fair PCA that does not hide any output action that could be an external action of A.

Preservation of properties. Now we start a sequence of lemma (from lemma 9.5 to lemma 9.11) about properties
preserved after reconstruction to eventually show in theorem 9.13 that X \ A and A*" are partially-compatible.

The next lemma shows that reconstruction preserves signature compatibility.

LEMMA 9.5 (PRESERVATION OF SIGNATURE COMPATIBILITY OF CONFIGURATIONS). Let A € Autids. Let X be a A-
conservative PCA, Y = X \ A. Let qx € states(X), Cx = (Ax,Sx) = config(X)(qx). Let qy € states(Y),qy = ps(gx)-
Let Cy = (Ay,Sy) = config(Y)(qy).

IfA € Ax and g7 = Sx(A), then sig(Cy) and sig(A*)(rensw(q.z)) are compatible and sig(Cx) = sig(Cy) X

sig(AY) (rensw(qn))-
IfA ¢ Ax, then sig(Cy) and sig(ﬁsw)(rensw(q?z[)) are compatible and sig(Cx) = sig(Cy) Xsig(ﬁsw)(rensw(qi()).

ProoOF. Let A € Autids Let X and Y \ {AA} be PCA. Let qx € states(X). Let Cx = config(X)(qx), Ax = auts(Cx)
and Sy = map(Cx). Let qy € states(Y),qy = ps(gx). Let Cy = config(Y)(qy), Ay = auts(Cy) and Sy = map(Cy).
By definition of Y, Cy = Cx \ {A}.

Case 1: A € Ay

Since X is a PCA, Cx is a compatible configuration, thus ((Ay, Sy) U (A, q#)) is a compatible configuration. Finally
sig(Cy) and sig(A)(q#) are compatible with sig(:A)(q#) = sig(jlsw)(rensw(qd;[)) .

By definition of intrinsinc attributes of a configuration, that are constructed with the attributes of the automaton
issued from the composition of the family of automata of the configuration, we have Ax = Ay U {A} and sig(Cx) =
sig(Cy) x sig(A)(g.), that is sig(Cx) = sig(Cy) X sig(A™) (rensu(g.)).

Case 2: A ¢ Ax

Since X is a PCA, Cx is a compatible configuration, thus Cy = Cx is a compatible configuration. Finally sig(Cy) and
sig(ﬂ)(q?;{) =(0,0,0) = sig(A)(qqn) = sig(ﬂsw)(rensw(qi{;[)) are compatible.

By definition of intrinsinc attributes of a configuration, that are constructed with the attributes of the automaton issued
from the composition of the family of automata of the configuration (here Ay and Ax = Ay), we have sig(Cx) = sig(Cy).
Furthermore, sig(flsw)(rensw(qg)) = sig(ﬂ)(qg) =(0,0,0). Thus sig(Cx) = sig(Cy) X sig(jlsw)(rensw(q?;{)) O

The next lemma shows that reconstruction preserves signature.

LEMMA 9.6 (PRESERVATION OF SIGNATURE). Let A € Autids. Let X be a A-conservative PCA, A € Autids,Y = X \{A}.

For every qx € states(X), we have sig(X)(gx) = sig(Y)(qy) xsig(A*Y) (rensw(qa)) with (qy, rensw(qa)) = p (gx)-
68

Dynamic Probabilistic Input Output Automata

Proor. The last lemma 9.5 tell us for every gx € states(X), we have sig(config(X)(gx)) = sig(config(Y)(qy)) X
sig(j[sw)(rensw(qg;)) with (qy, rensw(qa)) = puz(qx). Since X is A-conservative, we have (*) sig(X) (gx) = hide(sig(config(X)(gx)), acts)
where acts € (out(X)(qx) \ (ext(A)(qx)). Hence sig(Y)(qy) = hide(sig(config(Y)(qy)), acts). Since (**) acts N
ext(A)(qa) = 0,sig(Y)(qy) and sig(A)(q.#) are also compatible. We have sig(config(X)(qx)) = sig(config(Y)(qy))x
sig(A)(qa) = sig(config(Y)(qy))xsig(ﬂsw)(rensw(qy[)) which gives because of (*) hide(sig(config(X)(qx)), acts) =

hide(sig(config(Y)(qy)), acts)xsig(A)(qa), thatis sig(X)(gx) = sig(Y)(qy)xsig(A)(qa) = sig(Y)(qy)xsig(A*™)(rensw(qa))-
O

The next lemma shows that reconstruction preserves partial-compatibility at any reachable state.

LEMMA 9.7 (PRESERVATION OF PARTIAL-COMPATIBILITY AT ANY REACHABLE STATE). Let A € Autids, X be a A-
conservative PCA, Y = X\ {A}, Z = (Y, AY) Let qz = (qy, q jisw) € states(Y) X states(ASY) and qx € states(X) s. t.
174 (gx) = qz. Then Z is partially compatible at state g (in the sense of definition 5.19).

Proor. Since X is a A-conservative PCA, the previous lemma 9.6 ensures that sig(Y)(qy) and sig(A)(qan) =
sig(AS™)(reng,(qz)) are compatible, thus by definition Z is partially compatible at state g O

Here, we show that reconstruction preserves probabilistic distribution of corresponding transition, as long as no

creation of the concerned automaton occurs.

LEMMA 9.8 (HOMOMORPHIC TRANSITION WITHOUT CREATION). Let A € Autids, X be a A-conservative PCA, Y =
X\{A}, Z = (Y, AY). Letqz = (qy,q gsw) € states(Y) X states(ASY) and qx € states(X) s. t. (i) pz(qx) = qz. Let
a € sig(X)(x) = sig(Y)(y) x sig(A*W) (C]ﬁw) , verifying (ii: No creation from A) If a is A-exclusive in state qx ,then
created(X)(x)(a) =0,

o IfA is not created by a, i. e. if either
- A € auts(config(X)(x)), or
- A ¢ auts(config(X)(x)) and A & created(X)(x)(a) (X does not create A with probability 1)

Hz
Then n(x.gx.a) < N(Z,qz.0)
o IfA iscreated by a i. e. A ¢ auts(config(X)(x)) and A € created(X)(x)(a) (X creates A with probability 1)
(4

f
Then N(x.qx.a) © N(Z.gz.a) Where f9 : d € supp(n(x.gx.a) = X157 (d), @)

Proor. By lemma 9.6, we have sig(X)(qx) = sig(Y)(qy) X sig(A)(qa) = sig(Y)(qy) X sig(ﬁsw)(qyisw =
rensw(qa))-
We note Cx = (Ax,Sx) = config(X)(gx),Cy = (Ay,Sy) = config(¥Y)(qy), C jisw = (A gisw: S gisw) = config(A*™)(q jsw)-

By construction of yi;, Cx = Cy UC ;,, with Cy and C compatible configuration (1).

\ﬁsl\/
We note ¢x = created(X)(gx)(a), oy = ¢x \ {A}, @ gsw = 0,0z = ox U ¢ g4 If a is A-exclusive in state g,
then gx = py = 0.
e If A is not created by a, then ¢px = ¢z,

e If A is created by a, then ¢x = ¢z U {A} and 97 = ¢x \ {A}
Since X is a PCA and (qx, @, 71(x,qx,a)) € Dx, the constraint 2 of top/down transition preservation says that it exists a

>
unique reduced configuration distribution 175, s. t. 7(x,gx.a)]f—> n% with fX = config(X) and config(X)(qx) = ¢y n%

).

69

Pierre Civit and Maria Potop-Butucaru

ForY (~resp. AY) we note ny = 1(y,qy,a) if @ € sig(Y)(qy) and ny = &g, otherwise (resp. 5. = U S if
ace sig(ﬂsw)(q_ﬁsw) and 1 gs. = 8q 5 otherwise).
Since Y and A%Y are PCA, either because of the constraint 2 of top/down transition preservation or because a is not

Y
action of the signature, it exists a unique reduced configuration distribution 17, s. t. ny {_) ny with f Y = config(Y) and
ﬁSM’ - ~ .
config(Y)(qy) =gy ny (resp.ns s.tngew " < 17 withf A = config(AS™) and config(FA™)(q jisw) = e
1) O)

By construction ¥(q5,, qui) € states(Y) xstates(AY), constitution(Y) (qg,)ﬂconstitution(ﬁsw)(q/ﬁw) =0 (and

so auts(config(Y)(qy)) N auts(config(ASY)(q’ -..,)) = 0) which means (**) base(Cy, a, 9y) Nbase(C s> @ @ Fsw) =
0.
The conjonction of (1), (2), (3) and (**) allows us to apply the lemma 5.26. This means

A
ﬂw,rm) & join((n’.
CLUC, i) AgCyandii) VB # A, BEC. (4)

e by item 4 of lemma 5.26: merge((n’ . ,ny)) with £+ € (C’,C’ﬁsw) s.t.i)C, =

e by item 5 of lemma 5.26: Cx =a>q,z merge((n’._ .ny)) (5)

fZ P Hkk .
Furthermore 1z,,.a = 1Y ®] jsw- S0 by (3), 12.gz.a <— join((n’; . ny)) (™) with fZ : ¢, = (¢}, q";) —

5 ﬁsw
(config(Y)(g'y,,,).configlA™) (g7).

Now we deal have to separate the treatment of the two cases:

e If A is not created by a, since ¢z = ¢x, because of (5) and (2), merge((n’ .

Fsw ny)) = n% and because of (2)

= , , g ..., , .
N(X.qx.a) © merge((n7;.,.1y)) (6). Because of (6) and (4), 11(x gx.a) < Join((n'z, . ny)) withg = f* o .

h
Hence, if A is not created by a 1(x,qy,a) < N(2.qz.a) With h = (f%)~' o f5 o fX = yi, which ends the proof

for this case.
o If A is created by a, we have both

a
- Cx =g, merge((n’._ .ny))

Fisw
- Cx S0y

which means Cy — 1, with
- merge((n’.

k?{SW
- Ny generated by n;, and ¢z U {A}.

.Ny)) generated by n;, and ¢z and

P
g . A ~ _
Thus n§, «— merge((ry’ﬁsw, ny)) with g¢ 1Cy=CyUC + Cy. where C 4sw({AL §. A q Gisw)-
To summerize, we have:

fX
= N(xgx.a) < Ny

ﬁsw

’

AW

¢
g
ny «— merge((n’. .ny))

’ fb P ’ ’
JNy)) €= join((n’. .ny))

merge((q;zisw

fZ P ’ ’
= N(Zqza) < Jjoin((n S o’ Uy))
h . - :
Hence 1(x.qua) o Nzuqz.a) With £ = (F£) o ffogho (X e,
f¢ 1qy € supp(N(x,qx.a)) F (X.,u;ﬂ (gx) q¢~w), which ends the proof for this case.

70

Dynamic Probabilistic Input Output Automata

The second case where A is created will not be used before section 11.
We take advantage of the lemma 9.11 used for theorem 9.13 to introduce the notion of twin PCA and extends directly

the lemma 9.11 and theorem 9.13 to twin PCA.

Definition 9.9 (Xq’x—@;()' Let X = (Qx, qx. sig(X), Dx) be a PSIOA and qg(€ reachable(X). We note Xc?x—wj’x the
PSIOA X' = (Qx, g sig(X), Dx).

Two PCA X and X’ are A-twin if they differ only by their start state where one of them corresponds to A-creation.

Definition 9.10 (A-twin). Let A € Autids. Let X, X’ be PCA. We say that X’ = X5y g, is a A-twin of X if it
differs from X at most only by its start states gx- reachable by X s. t. either X’ = X or A € config(X’)(gx) and
map(config(X')(Gx))(A) =da. U X isa A-twinof X and Y = X \ {A} and Y’ = X’ \ {A}, we slightly abuse the
notation and say that Y’ is a A-twin of Y.

LEMMA 9.11 (PARTIAL SURJECTIVITY 1). Let A € Autids. Let X be a PCA A-conservative and X' a A-twin of X. Let
Y =X’ \ {A}. Let Y’ be a A-twin of Y. Let Z' = (Y, AS™).

Leta = qo, al, ..., ak, qk be a pseudo execution of Z’. Let assume the presence of A ina, i. e. Vs € [0,k — 1], q}(sw +
rensw(q(;) .

Then it exists & € Execs(X'), s. t. X' g\ (&) = a.

Proor. By induction on each prefix o® = qO, al, ... a, q° with s < k.

Basis: case 1) A € config(X")(gx’): We have pi;(gx’) = (Gy’, rensw(q#)). Hence pe(Gx7) = (qy’, rensw(Gz))-

case 2) A ¢ config(X')(dx), (necessarily X = X'): 1z (3x:) = (qy', renss(gy)). Hence ie (Gx) = (3 rensas ().

Induction: we assume this is true for s and we show it implies this true for s + 1. We note d;s s. t. e (@°) = a®. We
also note G* = Istate(a*) and we have by induction assumption yiz(§*) = ¢° = (qy. q;)- Because of preservation of
signature compatibility, sig(X) (%)) = sig(Y)(q3)) Xsig(rensw(?{))(qienw(ﬂ))). Hence a**! € sig(X)(g®). Thereafter,
by construction of X \ {A} it exists ¢**! s. t. ¢°*1 = pf'(§°*"). Finally, since no creation of and from A occurs by
assumption of presence of A, we can use lemma 9.8 of homomorphic transition which give n X,G5,a5) & 1(Z,g5,as*)

which means §5*! € supp(n(x,gs,as+1)) Which ends the induction and so the proof. O

Before using lemma 9.11 and 9.7 to demonstrate theorem 9.13 of partial compatibility after reconstruction, we take

the opportunity to extend lemma 9.11:

LEMMA 9.12 (PARTIAL SURJECTIVITY 2). Let A € Autids. Let X be a PCA A-conservative. Let Y = X \ A. Let Y’ be a
A-twin of Y. Let Z = Y || AV

Leta = ¢°,al, ..., a*, ¢* be a an execution of Z. Let assume (a) quzis * rensw(qf’;{) foreverys € [0,k*] (b)q*. =

ﬂsw
qi;;[sw foreverys € [k* + 1,k] (c) for everys € [k* + 1,k — 1], for every §°, s. t. uz(§°) = ¢°, A ¢ created(X)(§°) (a**1).
Then it exists @ € Frags(X), s. t. pe(@) = a. If Y’ =Y, it exists @ € Execs(X), s. t. pie (&) = a.

w

Proor. We already know this is true up to k* because of lemma 9.11. We perform the same induction than the one
of the previous lemma on partial surjectivity: We note @; s. t. pe (@°) = a°. We also note §° = Istate(@°) and we have
by induction assumption yiz(G*) = ¢° = (qy, ¢4)- Because of preservation of signature compatibility, sig(X)(g*)) =
sig(Y)(q3)) x sig(rensw(ﬂ))(rensw(qfﬂ)). Hence a¥*! € sig(X)(¢®). Now we use the assumption (c), that says that

A ¢ created(X)(§°)(a**1) to be able to apply preservation of transition since no creation of A can occurs. O
71

Pierre Civit and Maria Potop-Butucaru

Now we can use lemma 9.11 and 9.7 to demonstrate theorem 9.13 of partial compatibility after reconstruction.

THEOREM 9.13 (PARTIAL-COMPATIBILITY AFTER RESCONSTRUCTION). Let A € Autids. Let X be a PCA A-conservative
s. . Yqx € states(X), for every action a A-exclusive in qx, created(X)(qx)(a) = 0. Let X’ ba a A-twin of X and
Y = X'\ {A}. Then Y’ and A" are partially-compatible.

ProOF. Let Z' = (Y, ASY). Let « be a pseudo-execution of Z’ with Let Istate(a) = qz = (qy’, q 4sw)- Case 1)

q jsw = qq;iSWA The compatibility is immediate since sig(A") (qf’;sw

be re-created after destruction by neither Y or ASY and (**) Vgx € states(X), for every action a A-exclusive in gy,

) =0.Case 2) q 4 # q;sw. Since (*) A cannot

created(X)(gx)(a) = 0 we can use the previous lemma 9.11 to show it exists @ € Execs(X’), s. t. (@) = a. Thus,
Istate(a) = py(Istate(@)) which means Z’ is partially-compatible at Istate(a) by lemma 9.7. Hence Z is partially-
compatible at every reachable state, which means Y’ and AW are partially-compatible. We can legitimately note Z’ =
Y || ASY. o

Since Z' = (Y’, A®") is partially-compatible, we can legitimately note Z’ = Y’||A*", which will be the standard

notation in the remaining.

9.3 Execution-matching from X to X \ {ﬂ}||.?isw

In this subsection, we show in theorem 9.19 that X .yeﬂ is a (incomplete) PCA executions-matching from X to (X \
{AD||ASY in a restricted set of executions of X that do not create A.
We start by defining the restricted set of executions of X that do not create A with definitions 9.14 and 9.15.

Definition 9.14 (execution without creation). Let A be a PSIOA.Let X be aPCA , we note execs-without-creation(X)(A)
the set of executions of X without creation of A, i. e. execs-without-creation(X)(A) = {a = ¢’alq'...d¢* €

Execs(X)|Vi € [0,]a|], A ¢ auts(config(X)(q')) = A ¢ auts(config(X)(¢"*1))}.

Definition 9.15 (reachable-by). Let X be a PSIOA or a PCA. Let Execs}, C Execs(X). We note reachable-by(Execs};)
the set of states of X reachable by an execution of Execsy, i. e. reachable-by(Execsy,) = {q € states(X)|3a €

Execs},, Istate(a) = q}

The next 2 lemma show that reconstruction preserves configuration and signature. They will be sufficient to show

that the restriction of ,u,fzI on reachable-by(execs-without-creation(X)(A)) is a PCA executions-matching.

LEMMA 9.16 (i, CONFIGURATION PRESERVATION). Let A € Autids. Let X be a A-conservatiee PCA,Y =X \ A, Z =
Y||ASY. Let qx € states(X),qz = (qy, qﬁsw) € states(Z) s. t. pz(qx) = qz. Then config(X)(qx) = config(Z)(qz).

Proor. By definition of composition of PCA, config(Z)(qz) = config(Y)(qy) U config(ﬁsw)(ij[sw)A *)
Also, by p;ﬂ-correspondence, config(X)(qx) \ A = config(Y)(qy) (*).
We deal with the two cases @(ASW)(qﬁw) =0or @(ASW)(qﬁw) +0

. Ifs’i?y(fisw)(qﬁw) =0, then A ¢ aut(config(X)(qx)) which means, that config(X)(qx) = config(X)(gx) \
A (1). Furthermore, config(flsw)(qﬂsw) = (0,0) (2) .Because of (**) and (1), config(X)(qx) = config(Y)(qy)
and because of (*) and (2), config(X)(qx) = config(Z)(qz).

o Ifsig(AS™) (g gsw) # 0, then A € aut(config(X)(gx)). Wenote Cx = config(ﬁsw)(qﬁsw) =({ALS: A
map(config(X)(qx))(A)). By (*), config(Z)(qz) = config(Y)(qy) U Cx and by (**) config(Y)(qy) UCq =

config(X)(gx) \ AU Cqg = config(X)(qx). Hence, config(X)(qx) = config(Z)(qz)
72

Dynamic Probabilistic Input Output Automata

Thus in all cases, config(X)(gx) = config(Z)(qz) which ends the proof.
[m}

LEMMA 9.17 (i SIGNATURE-PRESERVATION). Let A € Autids. Let X be a A-conservatiee PCA,Y = X\ A, Z = Y||A*Y.
Let gx € states(X),qz = (qy, q 4sw) € states(Z) s. t. pz(qx) = qz. Then sig(X)(gx) = sig(Z)(qz).

Proor. By lemma 9.6 of preservation of signature sig(X)(gx) = sig(Y)(qy) X sig(ﬁsw)(qﬁsw). By definition of
composition of PCA, sig(Z)(qz) = sig(Y)(qy) X sig(ﬁsw)(Qﬁs‘V) which ends the proof. O

Now we can states our strong PCA executions-matching:

Definition 9.18. Let A be a PSIOA. Let X be a A-conservative PCA. Let Y = X \ {A} and Z = Y||AS™.
We define (X.ﬁf‘,X,ﬁﬁ,Xﬁgﬂ) (noted (ﬁf{ﬂfr‘ iZY) when it is clear in the context) as follows:

o ji7' the restriction of y' on reachable-by(execs-without-creation(X)(A)).
L4 ftr : (ara”Y(X,qx,a)) € DS(Land (ﬁzﬂ(QX)’aa’Y(Z’ﬁgl(qX))a)) where D),(= {(qX,asU(X,qX,a)) € Dxlgx €
reachable-by(execs-without-creation(X)(A)), (A ¢ auts(config(X)(qx) = A ¢ created(X)(gx)(a))}.

o 7' the restriction of yi/* on execs-without-creation(X)(A).

THEOREM 9.19 (EXECUTION-MATCHING AFTER RECONSTRUCTION). Let A be a PSIOA. Let X be a A-conservative
PCA. Let Y = X \ {A}. The triplet (ﬁfﬁﬁﬁgﬂ) is a strong PCA executions-matching from X to Y||ASY if A €
auts(config(X #)(start(X4))) and from X to Y| |.7~[sw s Otherwise.

d7sw _)qj(sw

ProOF. We note Z = Y||ASY and Z¢ = Y||ASY

Qﬁsw —q

b

disw
. ﬁzﬂ is a strong PCA-state-matching since
— starting state preservation is ensured by construction:
* A € auts(config(Xa)(start(Xa))) : i (4x) = 4z
+ A ¢ auts(config(Xa)(start(Xa))) 17 (x) = 479
— signature preservation is ensured ¥(qx, qz) € states(X) x states(Z) s. t. gz = g (qx), sig(X)(gx) =
sig(Z)(qz) by lemma 9.17 of signature preservation of 1.
e D} = dom(ﬁﬁ) is eligible to PCA transition-matching (and thus (i7", ﬁﬁl) is a strong PCA-transition-matching)
since
- matched state preservation is ensured: V1 (x,gy,a) € D> qx € dom(jiZ") by construction of Dy,
- equitable corresponding distribution is ensured: ¥11(x,q,.a) € D% ¥q"" € supp((x,qx.a)) 1(X.qx.a) (@) =
(25 (qx).a) (iZ'(¢"")) by lemma 9.8 of homomorphic transition.
o (idh, ﬁ‘t(f;[, i1 is the PCA-execution-matching induced by (i, [I;Z,[) and correctly verifies:
— For each state g in an execution in execs-without-creation(X)(A), q € dom(ﬁf[).
Then, the triplet (ﬁzﬂ, ﬁtyr[, ﬁeﬂ) is a strong PCA-execution-matching from X to Z if A € auts(config(X #)(start(Xz)))

: i7Y(gx) = Gz and from X to 7% otherwise.
m]

extension and continuation of([z;ﬂ, ﬁzlﬁ;ﬂ) Now, we continue the executions-matching (ﬁ;ﬂﬁﬁ(i to deal with

A creation at very last action.
73

Pierre Civit and Maria Potop-Butucaru

Definition 9.20 (Preparing continuation of PCA executions-matching from X to Z). Let A be a PSIOA. Let X be a
A-conservative PCA. We define

e execs-with-only-one-creation-at-last-action(X)(A) = {a’ = a"q,a,q € Execs(X)|a € execs-without-

creation(X)(A) A a’ & execs-without-creation(X)(A)}.
. ﬁf“ : qx € reachable-by(execs-with-only-one-creation-at-last-action(X)(A)) — (ﬁ;ﬂ (qyq) qq;l).
~A, ~ ” ~
o B (G N gya) € dom(E) U DY = (EEH(GX), 6.1y 17 gy o)) Where
DY = {(qx, 4 n(x,qx.a)) € dtrans(X)|qx € reachable-by(execs-without-creation-at-last-action(X)(A)) A

A ¢ auts(config(X)(qx)) N A € created(X)(qx)(a)}
We show that dom(/]frI)\ dom(,[t;?r[) verifies the equitable corresponding property of definition 7.7.

LEMMA 9.21 (CONTINUATION OF PCA TRANSITIONS-MATCHING FROM X TO Z). Let A be a PSIOA. Let X be a A-
conservative PCA. Let Y = X \ {A} and Z = Y||ASY.

V(ax. @, 1(x.gx.0) € dom(jiy*) \ dom(), Vg € supp(N(x.gx.a))s NX.gr.a) (05) = Mz 58 gy B2 (2

ProoF. By configuration preservation, Conf = config(X)(qx) = config(Z)(jiJ'(qx)). We have Conf A N(Conf.a).p-
Moreover, by ps-correspondence rule, px \{A} = ¢z, with px = created(X)(qx)(a) and ¢z = created(Z) (ﬁ;ﬂ (gx))(a).

Hence Conf :a>¢,X n% with 5, generated by ¢x and 1(conf,q),p» While Conf :a>¢z n;, with n’, generated by ¢z
and 1(conf,a),p-

Since A is created, for every Conf; = (A7,,S7,) with A ¢ Az, for every Confy = (A}, S5) with AL = A7, U {A}
where 85 (A) = G# and S}, agrees with S/, on A7, n7,(Conf}) = 3, (Confy), while n§ (Confy’) = 0 for every Confy/ =
(A%, S¥) s. teither A ¢ AL or A € Ay but SY(A) # GA.So0 (28 (qx).a) (ﬁf”(q;()) = ny(config(Z) (ﬁf“'(qg())) =
15 ((config(X)(q5))) = 1(X.qx,a) (q%) which ends the proof.

O

Since dom([zfr{*) \ dom(ﬁfr[) verifies the equitable corresponding property of definition 7.7, we can define a continu-

ation of (i, ﬁtjr[, iZY) that deal with A-creation at very last action.

Definition 9.22 (Continuation of PCA executions-matching from X to Z). Let A be a PSIOA. Let X be a A-conservative
PCA.Let Y = X \ {A} and Z = Y||AY. Let D); = dom(ji*") \ dom(i"). Since V(qx. a.n(x gx,a) € D VY €
supp((x,qx,a))> 1(X,qx,a) (4%) = N2 (qx).a) (fi3 ’+(q3()) by previous lemma 9.21, we can define:

A A At A, A, - A A -
(@ @), i, 1) the (7, DY)-continuation of (i, 47, 7).

We terminate this subsection by showing the &-extension of our continued PCA executions-matching is always
well-defined.

THEOREM 9.23 (EXTENSION OF CONTINUED EXECUTIONS-MATCHING AFTER RECONSTRUCTION). Let A be a PSIOA. Let
X be a A-conservative PCA. Let Y = X \ {A} and Z = Y||AY. Let & partially-compatible with both X and Z. The
= . . _A, . , 5 . & _A, = . ~ . ,
E-extension of((X.yf{,X.yz +),X.,u;7r!,X.,uéﬂ), noted (((8||X).;157{, (&11X).a7"), (8||X).;1;7r1, (8||X),,ueﬂ), is a strong
continued PCA executions-matching from E||X to &E||Z.

Proor. By definition of ﬁ;ﬂ’+ and ﬁzﬂ, we have

= execs-without-creation(&||X)(A)

1.

&lIx

1.

. EIIX = execs-with-only-one-creation-at-last-action(é||X)(ﬂ)
74

Dynamic Probabilistic Input Output Automata

o Ex = execs-without-creation(X)(A)

.]::;r(= execs-with-only-one-creation-at-last-action(X)(A)
QéIIX = reachable—by(ﬁéllx)

. lelx = reachable—by(EgHX)

e Qx = reachable-by(Ex)

. QN;(= reachable—by(f?;()

o dom((EIP) i) = QF
o dom((|1X).f") =

o dom(X.fi"") = 0%

o dom(X.ji/") = Ox

Qénx

This allow us to apply lemma 7.17 of "sufficient conditions to obtain range inclusion” to both (El1X).ﬁzﬂ’+
(é||X)ﬁZﬂ which gives range((éHX).ﬁf{’Jr) C states(&]|Z) and range((éHX).ﬁzﬂ) C states(&]|Z) which allows us

to apply lemma 7.24.

and

The lemma 7.34 implies that the resulting executions-matching is a strong one.

9.4 Composition and projection are commutative

This section aims to show in theorem 9.24 that operation of projection/deprivation and composition are commutative.

THEOREM 9.24 ((X||E) \ {A} AND (X \ {A})||E ARE SEMANTICALLY EQUIVALENT). Let A be a PSIOA. Let X be a A-fair
PCA partially-compatible with & that never counts A in its constitution with both X, & and X||&E configuration-conflict-free.
The PCA (X||E) \ {A} and (X \ {A})||E are semantically equivalent.

Proor. We note W = X||&, U = (X||&) \ {A}, V = (X \ {AD|I&, 17 = xpA, yV7 = w . To stay
simple, we note Id the identity function on any domain, that is we note Id for both Idg : qg € states(E) — qg and
Idy : qu € states(U) - qyu.

The plan of the proof is the following one:

e We will construct two functions, isoyy : states(U) — states(V) and isoyy : states(V) — states(U), s. t.
isoyy (qu) is the unique element of (,ug(’ﬂ,ld)((p;/v"ﬂ)’l (qu)) and isoyy ((qy, gg)) is the unique element of
w17 (v, g8))).

e Then we will show that isoyy and isoyy are two bijections s. t. isoyy = iso(_]lv.

e Thereafter we will show that for every (qu. qv), (q(;, q;,) € (states(U) x states(V)), s. t. qy = isoyy (qu) and
qi, = isoyv (q};). then quRsrictqv.), Rstrictq}, and for every a € sig(U) (qu) = sig(V)(qv), N(u.qu.a) (q7) =
N(v,qv.a) (CI{/)

o Finally, it will allow us to construct a strong complete bijective execution-matching induced by isoyy and Dy
(the set of discrete transitions of U) in bijection with a strong complete bijective execution-matching induced

by isoyyr and Dy (the set of discrete transitions of V) .

First, we show that for every qw = (gx, qg) € reachable(W) C states(X)xstates(E), the state gy = (,uf’ﬂ,ld)(qw) =
(yf’ﬂ (gx), q&) is an element of reachable(V) (*). We proceed by induction. Basis: (,uf’ﬂ (Gx), 4g) is the initial state

A

of V. Induction: Let qw = (9x.98). 43y = (q%-qs) € reachable(W),qy € reachable(V),a € s/ig(W)(qW) s. t.

qiy € supp(N(w gy v = (17 1d) (qw). and g, = (47", 1d)(g7,) . There is two cases:
75

Pierre Civit and Maria Potop-Butucaru

case 1) a is A-exclusive in gy . In this case qWR\{ﬂ}qgv, which means g, = gv and ends the proof

case 2) a € sig(V) (qv) N sig(W) (qw)
We need to show that gy, € supp(1(v qy.q))- This is easy to show. Indeed, gy, € supp(1(w q,,,a)) means (qy. qg) €

supp(r](x,qx’a) ® q(g,qa,a)) (with the convention N(X.qx.a) = 5qx ifa ¢ s’i?;(X)(qX)) and N(Eqe.a) = 5% ifa ¢
Sig(g)(qa))) which means q;(€ supp(’](X,qX,a)) and q:&; € S"PP(’?(S,qg,a))~ So Hf,ﬂ (qg() € SUPP(T](Y’I@(JI (qx),a))

which means (Hf’ﬂ(f&l q:c;) € s“pp(”(y,ﬂfvﬂ(qx),a)®’7(8,q5,a))s thatis (Hf’ﬂ(%(), q/g) € s”pp(’?((y,g),(uf-ﬂ(qx),qa),a))ﬂ(&qg,a))
and thus gy, € supp(n(v,qy.a)) 50 gy, € reachable(V) .

A

Second, we show that for every qv = (qy.qg) € reachable(V), it exists qw = (qx,qg) € reachable(W) s. t.
qv = (yf’“ﬂ, Id)(qw) (**). The reasoning is the same, we proceed by induction. The basis is performed with start

A

state correspondance as before. Induction: Let gy = (qy.q¢&). 9y, = (g, ng) € reachable(V), qyw € reachable(W),a €

sig(V)(qv) Nsig(W)(qw) s. t. 4}, € supp(n(v,gy.a) With gy = (17, 1d) (qw).

We need to show that it exists g7, € supp(nw.qy.a)) S t gy, = (yf’ﬂ,ld)(qgv). This is easy to show be-
cause of y;("ﬂ—correspondance. For every qi, = (qy.98) € supp(N(v,(gy.qe).a) » Uy € SupP(1(v,qy.a))- Because
of pfj"ﬂ—correspondance, it exists q% € supp(n(x,gx.a)) With g3 = ,uf’ﬂ(q;(), thus it exists g7, = (q¢%.q5) €
supp(N(w,(gx.qe).a) S & 4y = (ﬂf’ﬂ(%(), qg) which ends the proof of this second point.

Now we can construct isogry and isoyg.

e isoyy: for every qy € states(U), (pl’v"ﬂ)_

W, A\~ A
(q;(’ q:g) € (s) 1(qU)’ qWR;t{riCi’q{/V

[,
which means for every qw 2 (qx.48). 4}y 2 (@5 q%) € (s (qu). (107 1d) ((gx. 98)) = (1> 1d) (- q5)
and so (157, 1d) (1)) (qu)) = {qv} where qv £ isoyy (qu) € states(V) by (*).

A

e isoyy: for every qv = (qy,qg) € states(V), (,uf"(ﬂ,ld)_l(qv) # 0 by (**). Furthermore for every qy =

N — A . A _
(4x.98)- 4}y = (d4-q8) € (7 1) (qv), qx RN g, which means gy R\ g7 and so ud 7 (187, 1d) ™ (qv) =

{qu} where qu = isoyy(qv) € states(U)

1(qu) # 0 by construction of U and for every qy 2 (¢x,q¢), qy =

Now we can show that isoyy is a bijection with isoyy = iso‘_,}J.

e surjectivity of isoyy: Let qv = (qy,qg) € reachable(V), we will show that it exists qu € reachable(U) s. t.
isoyv (qu) = qv. Indeed, we already know that (*) it exists gy = (qx,qg) € (yi(’ﬂ, Id)"Y(qy) Nreachable(W).
Let qy = yy"ﬂ (qw). By construction of U, we have qy € reachable(U) and qy € (,ul/v’ﬂ)_l(qU) and
(,ui(’ﬂ,ld)(qw) = qv which means isoyy (qu) = qv and ends this item.

e injectivity of isoyy: Let qy € reachable(V), Let qU,qij € reachable(U) s. t. isoyy (qu) = isoUV(q{J) then
qu = q,. Again for every qi. g}, € (157, 1d) 7 (qv), qw R .1}, and so ud 7 (qw) = "7 (q],,). But for
every qu. qf; € isog}, (gv). qu.qj; € ps” " ("7, 1d) " (qv) which means qu = qj;.

Let (i) gqv = isoyv(qu) or (ii) qu = isoyy(qyv) we will show that in both (i) and (ii) gy Rstricrqu- By definition,
{av} = (1 1) (17 (qu)).

In case (i) we note gy an arbitrary element of (yy’ﬂ)_l (qu) # 0, while in case (ii) we note gy an arbitrary element
of (pf’ﬂ, Id)~!(qy) # 0.Inboth cases, we have 1a) config(W)(qw) \{A} = config(U)(qy) and 1b) config(W)(qw)\
{A} = config(V)(qy), whichmeans 1c) config(U)(qu) = config(V)(qy). Then we have 2a) hidden-actions(W)(qw)\
pot-out(W)(qw)(A) = hidden-actions(U)(qu) \ pot-out(W)(qw)(A) = hidden-actions(U)(qy) and 2b) hidden-
actions(W)(qw) \ pot-out(W)(qw)(A) = hidden-actions(V)(qy) \ pot-out(W)(qw)(A) = hidden-actions(V)(qv),

76

Dynamic Probabilistic Input Output Automata

which means 2c¢) hidden-actions(U)(qy) = hidden-actions(V)(qy). Thereafter we have 3a) for every action a €
sig(W)(qw) Nsig(U)(qu), created(W)(qw)(a)\{A} = created(U)(qu)(a)\{A} = created(U)(qu)(a) and 3b) for ev-
ery action a € 5ig(W) (qw) N5g(V) (qv), created (W) (qw) (a)\{A} = created(V) (g) (a)\{A} = created(V)(gy)(a)
which means 3c) for every action a € s’ig(U) (qu) = s’i?;(V)(qV), created(U)(qu)(a) = created(V)(qv)(a). The con-
jonction of 3a), 3b) and 3c) lead us to qy Rstrictqu-

Now we can show that isoyy is the reverse function of isoyy: Let (qu, qv) € reachable(U) X reachable(V) s. t.
qv = isoyy (qu).- We need to show that isoy(qy) = qu. The point is that it exists a unique q{] £ isoyy(qy) and we
have qy Rstrictqu and qVRstrictq{] which means (JURstrictqf] and so qu = q{] by assumption of configuration-conflict-
free PCA. Hence isoyy = iso‘_,lU.

The last point is to show that that for every (qu, qv), (q{], q{,) € reachable(U) X reachable(V), s. t. qy = isoyv (qu)
and g, = isoyv(q(;), then quRstrictqv, q);Rstrictq}, and for every a € sig(U)(qu) = sig(V)(qv), 1(U.qu.a)(}) =
N(V.qv.a) (qy)-

Foreverya € sz"?(U)(qU) = s’i?(V)(qV) we have a unique 17 s.t.C é<p nwith C = config(U)(qu) = config(V)(qy)
and ¢ = created(U)(qu)(a) = created(V)(qy)(a). Hence for every configuration C’ € supp(n), it exists a unique
pair (g, qy,) € reachable(U) X reachable(V) s. t. C" = config(U)(q;;) = config(V)(qy,). Hence isoyy (q;;) = q;, and
furthermore 1(y.q.a) (97,) = 1(V.qv.a) (@},) = 1(C).

Everything is ready to construct the PCA-execution-matching, which is (j) the PCA-execution-matching induced by
isoyy and Dy (the set of discrete transition of U) and (jj) the PCA-execution-matching induced by isoyy and Dy (the

set of discrete transition of V)

10 PCA CORRESPONDING W.R.T. PSIOA A, B

In the previous section we have shown that X #||E and AV|(X4 \ {A}||E) are linked by a strong PCA executions-
matching as long as A is not re-created by X #. This also means that the probability distribution of X #||& is preserved
by FASV|(X\ {A}||E), as long as A is not re-created by X 5. We can have the same reasoning to obtain a strong PCA
executions-matching from Xg||E and BV||(Xg \ {B}|E).

In this section we take an interest in PCA X 4 and Xg that differ only on the fact that 8 supplants A in Xg. Hence,
we recall the definitions of section 6. Then, we show that under slight assumptions, X # \ {A} and Xg \ {B} are
semantically equivalent (see theorem 10.13).

Combined with the result of previous section we will realise that we can obtain a strong PCA executions-matching
from (*) X #]|E to FASW||(Y]|E) and (**) from Xg||&E to B5Y||(Y||E) where Y is semantically equivalent to both X g \ {8}
and X4 \ {A}. Hence if &’ = &||Y cannot distinguish FASY from BV, we will be able to show that & cannot distinguish

X 4 from Xg which will be the subject of sections 11 to finally prove the monotonicity of print-implementation.

<17 g-correspondence between two configurations. We formalise the idea that two configurations are the same excepting

the fact that the automaton 8B supplants A but with the same external signature. The next definition comes from [1].

Definition 10.1 (<4 g-corresponding configurations). (see figure 30) Let ® C Autids, and A, B be PSIOA identifiers.
Then we define ®[B/A] = (& \ A) U{B} if A € ¥, and [B/A] = if A ¢ ®. Let C, D be configurations. We define
C <gg Diff (1) auts(D) = auts(C)[B/A], (2) for every A’ ¢ auts(C) \ {A} : map(D)(A”’) = map(C)(A’), and (3)
ext(A)(s) = ext(B)(t) where s = map(C)(A), t = map(D)(B). That is, in <1 g g-corresponding configurations, the

77

Pierre Civit and Maria Potop-Butucaru

SIOA other than A, B must be the same, and must be in the same state. A and B must have the same external signature.

In the sequel, when we write ¥ = ®[B/A], we always assume that 8 ¢ ® and A ¢ ¥.

a"T\ [v € T £
c = ‘_’ |m:go: im:hO:: Ini:kO:
b W~/ d LA SRR
a (U) e v e fT"t ,
D [= 4_> int:g : int hD: int:n, o0 —>
b\ 0% r\ Oje<—

Fig. 30. <48 corresponding-configuration

Next lemma states that <i4p-corresponding configurations have the same external signature, which is quite intuitive

when we see the figure 30.
PRrOPOSITION 1. Let C, D be configurations such that C <ug D. Then ext(C) = ext(D).

Proor. The proof is in [1], section 6, p. 38. We write the proof here to be complete:

If A ¢ C then C = D by definition , and we are done. Now suppose that A € C, so that C = (AU {A},S) for
some set A of PSIOA identifiers s. t. A ¢ A, and let s = S(A). Then, by definition 5.3 of attributes of configuration,
out(C) = (U, ea out(A;)(S(A;))) U out(A)(s). From C <z g D and definition , we have D = (A U {8}, S’), where
S’ agrees with S on all A; € A, and t = §’(B) such that ext(A)(s) = ext(B)(t). Hence out (A)(s) = out(B)(¢) and
in(A)(s) = in(B)(t). By definition 5.3 of configuration attributes, out(D) = (U4, out(A;) (S’ (A;))) U out(B)(t).
Finally, out(C) = out(D) since S’ agrees with S on all A € A and out(A)(s) = out(B)(t). We establish in(C) = in(D)

in the same manner, and omit the repetitive details. Hence ext(C) = ext(D).]

REMARK 3. It is possible to have two configurations C, D s. t. C < .7 D. That would mean that C and D only differ on
the state of A (s ort) that has even the same external signature in both cases ext(A)(s) = ext(A)(t), while we would
potentially have int(A)(s) # int(A)(¢).

The next lemma states that <4 g-corresponding configurations are equals if we omit the automata A and 5.

LEMMA 10.2 (SAME CONFIGURATION). Let A, B € Autids. Let X #, Xg be A-fair and B-fair PCA respectively, where X ¢
never contains B and X g never contains A. Let Yq = X g \{A}, Yg = Xg \{B}. Let (x4, xp) € states(X g) Xstates(Xg)
s. t. config(Xa) (xa) <ap config(Xg) (xp)- Let ya = Xoa.p5" (xa), yp = X1 (xp)

Then config(Ya)(ya) = config(Ys)(yp).

ProoOF. By projection, we have config(Y#)(yq) <ap config(Yg)(yp) with each configuration that does not contain
A nor B, thus for config(Ya)(ys) and config(Yg)(yp) contain the same set of automata ids (rule (1) of <4p) and map
each automaton of this set to the same state (rule (2) of <i4p). O

78

Dynamic Probabilistic Input Output Automata

same comportment of two PCA modulo A, B. In this paragraph we formalise the fact that two PCA have the same
comportment, excepting for B that supplants A.
First, we formalise the fact that two PCA create some PSIOA in the same manner, excepting for 8 that supplants ‘A.

Here again, this definition comes from [1].

Definition 10.3 (Creation corresponding configuration automata). Let X,Y be configuration automata and A, B be
PSIOA. We say that X, Y are creation-corresponding w.r.t. A, B iff

(1) X never creates 8 and Y never creates A.

(2) Let B € traces™(X) N traces*(Y) a finite trace of both X and Y, and let @ € Execs*(X),7 € Execs*(Y) a
finite execution of both X and Y be such that trace z () = traceg(r) = p. Let x = last(a),y = last(r),
i.e, x, y are the last states along «, 7, respectively. Then Va € s’i?;(X) (x) N s’i?;(Y)(y) : created(Y)(y)(a) =
created(X)(x)(a)[B/A].

Naturally [8/A]-corresponding sets of created automata are deprived of A and B respectively, they becomes equal,

which is formalised in next lemma.

LEMMA 10.4 (SAME CREATION AFTER PROJECTION). Let A, B € Autids. Let X5, Xg be A-fair and B-fair PCA
respectively, where X ¢ never contains 8 and Xg never contains A (B ¢ UA(X7) and A ¢ UA(Xg)). LetYq = X7 \ A,
Yg = Xg\B. Let (x4, xp) € states(X g)Xstates(Xg) andact € sig(X#)(xq)Nsig(Xg)(xp) s. t.created(Xg) (xp) (act) =
created(X a)(xa) (act) [B/A]. Let ya = X5 (xa), yp = X5-p2 (xp)

Then created(Yg)(xp)(act) = created(Y.g)(xq)(act)

ProoF. By definition of PCA projection, we have created(Yg)(xp) (act) = (created(Xg)(xp)(act))\B = (created(X 7)(xq) (act)[B/A\
B = created(X 7)(xq)(act) \ A = created(Y z)(xq) (act). O

Second, we formalise the fact that two PCA hide their actions in the same manner. The definition is strongly inspired

by [1].

Definition 10.5 (Hiding corresponding configuration automata). Let X,Y be configuration automata and A, B be
PSIOA. We say that X, Y are hiding-corresponding w.r.t. A, B iff

(1) X never creates 8 and Y never creates A.

(2) Let € traces*(X)Ntraces*(Y), and let a € Execs*(X), = € Execs”(Y) be such that trace 4 («) = trace #(x) =
B. Let x = last(a), y = last(x), i.e., x, y are the last states along a, 7, respectively. Then hidden-actions(Y)(y) =
hidden-actions(X)(x).

Naturally if hidden actions of <z g-corresponding states are equal, it remains true after respective deprivation of A

and B which is formalised in next lemma.

LEMMA 10.6 (SAME HIDDEN-ACTIONS AFTER PROJECTION). Let A, B € Autids. Let X 7, X5 be A-fair and B-fair PCA
respectively, where X 4 never contains B and X g never contains A (B ¢ UA(X z) and A ¢ UA(Xg)). LetYg = X4 \{A},
Yg = Xg \ {B}. Let (x4, xp) € states(Xz) X states(Xg), yqg = Xﬂ.l,l;ﬂ (xa), yp = XB./JSB (xp) s t.

. xaRZj;:{c}xb, i e YaReonfyp
e hidden-actions(Xg)(xp) = hidden-actions(X #)(xq)
Then hidden-actions(Yg)(yp) = hidden-actions(Y#)(yq)
79

Pierre Civit and Maria Potop-Butucaru

Proor. We note Cx,; = config(Xqa)(xa), Cxyz = config(Xg)(xp), Cy, = config(Ya)(ya), Cyz = config(Yg)(yp).
By assumption, Cx,, \ {A} = Cy, = Cygz = Cx, \ {8}

We note hx, = hidden-actions(X#)(xq), hx, = hidden-actions(Xg)(xp), hy, = hidden-actions(Yz)(ya), hy, =
hidden-actions(Yg)(yp). By assumption, hx, = hx,, while by construction, hy, = hx, \ pot-out(X#)(A) and
hyg = hx, \ pot-out(Xg)(B).

Case 1: pot-out (X 7) (A)(xq) = pot-out(Xg)(B)(xp), the result is immediate, Case 2: pot-out(Xz)(A)(xq) Nhx, =
pot-out(Xg)(B)(xp) N hx, = 0, the result is immediate.

Case 3: Without loss of generality, we assume act = pot-out(Xz)(A)(xa) N hx, # 0. For every C € auts(Cyy),
C € auts(Cy,) since Cy, = Cy, and C € auts(Cx,) since Cy, = Cx, \ {A}. By compatibility of Cx,, pot-
out(X) (A) (xq) N pot-out(X)(C) (xa) = 0.

Case 3a) B ¢ auts(Cx,), which means both i) act C hxy, ii) act N out(Cx,) = 0 and iii) hx, C out(Cx,) which is
impossible. Thus we only consider

Case 3b) B € auts(Cxy). Since j) for every C € auts(Cy,), pot-out(Xz)(A)(xq) N pot-out(X7)(C)(xa) = 0 and
ji) hxg C out(Cxg), we have act C pot-out(Xg)(8B)(xp).

For symmetrical reason, we have both pot-out (X #) (A) (xa)Nhx, C pot-out(Xg)(B)(xp) and pot-out (Xg)(B)(xp)N
hx, C pot-out(Xz)(A)(xa), which means hy, \ pot-out(Xg)(B)(xp) = hx, \ pot-out(Xg)(B)(xp) and ends the
proof

O

Now we are ready to define corresponding PCA w. r. t. PSIOA A, B, that is two PCA X # and Xg that differ only on
the fact that B supplants A in Xg. Some additional assumptions are added to ensure monotonicity later. This definition

is still inspired by definitions of [1].

Definition 10.7 (corresponding w. r. t. A, B). Let A, B € Autids, Xz and Xg be PCA we say that X # and Xg are
corresponding w. r. t. A, B, if they verify:

config(Xa)(Gx,) <ap config(Xg)(gxz)-
e X 4 never contains B (8 ¢ UA(X #)), while Xg never contains A (A ¢ UA(Xg)).
e X 4,Xg are creation-corresponding w.r.t. A, B.

® X 4,Xg are hiding-corresponding w.r.t. A, B.

X (resp. Xg) is a A-conservative (resp. B-conservative) PCA.

(No exclusive creation from A and B)
- Vgx, € states(X) , for every action act A-exclusive, created(X #)(qx,)(act) = 0 and similarly
- Vgx, € states(Xg), for every action act’ B-exclusive, created(Xg)(qx,)(act’) =0

equivalent transitions to obtain semantic equivalence after projection. In this last paragraph of the section, we show
that if two PCA X # Xg are corresponding w. r. t. A and B, then there respective projection Yg = Xz \ {A} and
Yg = Xg \ {B} are semantically equivalents. To do so, we use notions of equivalent transitions. the idea is to recursively
show that any corresponding executions of Y. and Yg lead to strictly equivalent transitions to finally build the complete
bijective PCA executions-matching from Y4 to Yg.

We start by defining equivalent transitions.

Definition 10.8 (configuration-equivalence and strict-equivalence between two distributions). Let K, K’ be PCA and
(n,n’) € Disc(states(K)) X Disc(states(K")).
80

Dynamic Probabilistic Input Output Automata

e We say that and n’ are config-equivalent, noted n L)f n’, if it exists f : states(K) — states(K’) s. t.
con

n i n’ with Vq"” € supp(n), " Reonf f(q"')-

’

o Ifadditionally,Vq”' € supp(n), q"'Rstrict f(q’”’), then we say that n and n’ are strictly-equivalent, noted n <L> n.
strict

Basically, equivalent transitions are transitions where the states with non-zero probability to be reached are mapped
by a bijective function that preserves i) measure of probability and ii) configuration. A stricter version preserves also iii)
future created automata and hidden-actions.

The next lemma states that if we take two corresponding transitions from strict equivalent states, then we obtain

configuration equivalent transitions.

LEMMA 10.9. (strictly-equivalent states implies config-equivalent transition) Let K, K’ be PCA and (q,q’) € states(K) X
states(K’) strictly-equivalent, i. e. qRstricirq’. Let a € sig(K)(q) = sig(K’)(¢q’) and ((g, a, N(K.q.a))> (¢, a N(K.q.a)) €

dtrans(K) X dirans(K’). Then N(K.qa) and N(k"q.a) are config-equivalent, i. e. 3f : states(K) — states(K’) s. t.
fo

n m n.

Proor. This is the direct consequence of constraint 2 and 3 of definition 5.14 of PCA. We note C = config(K)(q) =
config(K’)(q’) and ¢ = created(K)(q)(a) = created(K’)(q’)(a). By constraint 2, applied to K, it exists 7 s. t.
1(K.q.a) <i> n with X = config(K) and config(K)(q) :a>created(K)(q)(a) n By constraint 2, applied to K’, it

. i . : ; a
exists n’ s. t. NK.q.a) < n’ with fK’ = config(K’) and config(K’)(q") =created(K') (q') (a) .

Since qRstrictq’, C = config(K)(q) = config(K’)(q’) and ¢ = created(K)(q)(a) = created(K’)(q")(a).

Hence C :a>q, nand C =a>q, n’ which means n = ’.

S0 1(K.q.a) <L> N(K'.q'\a) with f = (fK")~1 o fK where f (resp. fX”, resp. fX) is the restriction of f (resp. fX”, resp.
FX) on supp(n(k g.a)) (resp. supp(n(x.q.a))- esp. supp(n(k.q.a)))-

Thus, for every (¢.4') € supp((k.g.a) X Supp(N(k.qr.a)) s -4 = f(@, (@) = FX'(§"), that is config(K)(g) =
config(K’)(q’). 1. e. chonfq’~

Hence 1(x,¢,0) (coLnf) 1(K",¢,a) Which ends the proof.

m]

Now we start a sequence of lemma (from lemma 10.10 to lemma 10.12) to finally show in theorem 10.13 that if X #
and Xg are corresponding w. r. t. A, B then X # \ {A} and Xg \ {B} are semantically-equivalent.

The next lemma shows that we can always construct an execution @x € Execs(X) from an execution ay € Execs(Y)
with Y = X \ {A} that preserves the trace.

LEMMA 10.10 (Execs(X \ {AA}) cAN BE OBTAINED BY Execs(X)). Let A € Autids, X a A-fair PCA, Y = X \ {A}.

Let ay = qg)/, al,q;,..., q'; € Execs(Y). Then it exists, ax = qg(, al,Q}<,..., q;’(€ Execs(X) s. t. Vi € [0, n],q; =
1 (@)-

Proor. By induction on the size s = |a5,| of prefix aj, = q(}),, al, q%,, s Gy -

Basis (|} | = 0): By definition 8.11, gy = X.ysﬂ (gx)

Induction: let assume the proposition is true for prefix a3, = q(l)/, al, q;, - @y With s < |ay|. We will show it is true

s+1

for aj"". We have g}, = X.,u;ﬂ (g%)- By construction of dtrans(Y) provided by definition 8.11, it exists 1(X.q5.a51) €

81

Pierre Civit and Maria Potop-Butucaru

dtrans(X) s. t. X.y(‘;’I (U(X,q;,aﬁl)) = N(Y,q5.a5)- By X.yf—correspondence of definition 8.11, ry(y’q?,am)(q;“) =

qu estates(X) s (gh)=g3" T(X.q5.as) (q%)- By definition of an execution, q;“ € supp(r](quijaﬂl)), which means it ex-
ists g3! € states(X) s.t.1) ysy{(q?l) =gy and2) g3 € supp(r](x’q;’am)). Thus, it exist @3 ' = §%. a', Gy, ... G5 ' €
Execs(X) s. t.Vie [0,s+1], q; = ysﬂ (cj;(), which ends the induction and so the proof. O

The next lemma states that, after projection, two configuration-equivalent states obtain via executions with the same

trace are strictly equivalent.

LEMMA 10.11 (AFTER PROJECTION, CONFIGURATION-EQUIVALENCE OBTAIN AFTER SAME TRACE IMPLIES STRICT EQUIV-
ALENCE). Let X4 and Xg be two PCA corresponding w. r. t. A, B. Let Yq = Xg \ {A} and Yg = Xg \ {B}. Let
(ayy, myy) € Execs(Yq) X Execs(Yg) with Istate(ay,) = qy, and Istate(my,) = qy,. If

b qYﬂRCOquYB and
o trace(ay,) = trace(ny,) = f,

then qY 4 Rstrict‘]YZ;

Proor. By lemma 10.10, it exists (dx,,7xz) € Execs(Xg) X Execs(Xg) s. t. (i) trace(ax,) = trace(ay,) =
trace(my,) = trace(7ix,) and (ii) qy, = Xﬂ.ysﬂ(qxﬂ) and qy; = ng.y?(qxg) where gx, = Istate(ix,) and
Gxq = Istate(ax,).

Since trace(dx,) = trace(7ix,), we have j) hidden-actions(X#)(gx,) = hidden-actions(Xg)(Gx,) by hiding-
correspondence of definition 6.3 and jj) Va € @(Xﬂ)((jxﬂ)ﬂsz’?](ng) (Gxg). created(X) (Gx) (a) = created(Xg)(Gx,)(a).

By lemma 10.6 we have (*) hidden-actions(Y.#)(qy,) = hidden-actions(Yg)(qy,) , and by lemma 10.4 we have (**)
Va € sig(Ya) (qy) = sig(Yg) (qy,)-

If we combine the definition gy, Reonfqy, with (*) and (**), we obtain gy, Rstrictqy,, which ends the proof.

O

Finally, the next lemma states that, after projection, two configuration-equivalent states obtain via executions with

the same trace lead necessarily to strictly equivalent transitions.

LEMMA 10.12 (AFTER PROJECTION, CONFIGURATION-EQUIVALENCE OBTAIN AFTER SAME TRACE IMPLIES STRICT EQUIVA-
LENT TRANSITIONS). Let X 4 and Xg be two PCA corresponding w. 1. t. A, B. Let Yq = Xq \ {A} and Yg = Xg \ {B}.
Let (ay,, myg) € Execs(Yq) X Execs(Yg) with Istate(ay,) = qy, and Istate(nyg) = qyg. If

hd qYﬂRCOquYB and
o trace(ay,) = trace(my,) = B,

then foreverya € s’i?}(Yy[)(qm) = s/z?;(Yg)(qu),r](yﬂ’qyﬂ’a) a”dU(Yg,qu,a) are strictly equivalent, i. e. 3f : states(K) —

states(K') s. t.n <L> n’
strict

Proor. By previous lemma 10.11, gy, and gy, are strictly equivalent. Thus by previous lemma 10.9, it exists

f .
fs.t N(Yaqy.a) m N(Ys.qvg.a)- Let two corresponding states (q;,ﬂ,q;,ﬂ) € WPP(’?(Xﬂ,qY](,a)) XN (Yg,qvg.a) S b
f(q;ﬂ) = q;B. We have qQﬂRconfqﬁ@(*)- Furthermore, since qy, Rstrictqvg. sig(Ya)(qy,) = sig(Yg)(qy,), namely
ext(Ya)(qy,) = ext(Yg)(qy,), which means trace(a;ﬂ e aq;ﬂ) = trace(ﬂY; qvg aqg@). So we can reapply previous
lemma to obtain q;ﬂ Rstrictq;@ which ends the proof.
O
82

Dynamic Probabilistic Input Output Automata

Now we can finally show that if X # and Xg are corresponding w. r. t. A, B then X # \ {A} and Xg \ {B} are

semantically-equivalent which was the main aim of this subsection.

THEOREM 10.13 (X 4 AND X g CORRESPONDING W. R. T. A, B IMPLIES X # \ {A} AND Xg \ {8} SEMANTICALLY-EQUIV-
ALENT). Let X7 and Xg be two PCA corresponding w.r.t. A, B.Let Yq = X7 \ {A} and Yg = Xg \ {B}.
The PCA Y7 and Yg are semantically-equivalent.

Proor. We recursively construct a strong complete bijective PCA executions-matching (f;, 7", £¢¥) where
fs : reachable<s(Y#) — reachable<s;(Yg) and f&* : {a € Execs(Yg)||la| < s} — {x € Execs(Yg)||zn| < s} s. t.
() = m implies Istate(a)Rstrictlstate ().

Basis: s = 0, reachable<o(Y#) = {Gx, }, while reachable<o(Yg) = {gGxy }.

By definition 6.16 of corresponding automata config(X#)(dx,) <as config(Xg)(dx,), while (Gy,, Gy,) =
(Xq.ut (@xa), Xg.uB (gx,)) by definition 8.11 of PCA projection, which gives gy, Reonfqy, by lemma 10.2. More-
over tracey, (Gy,) = traceyy(dy,) = A (A denotes the empty sequence). Thus we can apply lemma 10.11 to ob-
tain Gy, RstrictGyg- We construct fo(qy,) = qvg, fi¥(qvs) = qyg- Clearly fj is a bijection from reachabley(Y.#) to
reachableg(Yg), while f* is a bijection from Execso(Ys) to Execso(Yg)

Induction: We assume the result to be true for an integer s € N and we will show it is then true for s + 1. Let
Execss(Yq) = {a € Execs(Yg)||| = s} and Execss(Yg) = {a € Execs(Yg)||n| = s}.

We can build fs11 (resp. £59) s. t. Vq € reachable<s, fs+1(q) = fs(q) (resp. s. t. Va € Execs<s(Ya) £ () = (@)
and Vq{,ﬂ € reachables.1, fs+1(q*) (resp. Va®J € Execss(Yg), o (@’)) is built as follows:

We note a®/ = a;; qYn aq{/ﬂ (qyn = Istate(ay,)). We note 1y, = f&* (ay,). By induction assumption, gy, Rstrictqvg
with gy, = Istate(ay,) and qy, = Istate(ry,). Hence sig(Y#)(qy,) = sig(Yg)(qy,) and by previous lemma 10.12,

) j
for every a € sig(Ya)(qy,) = sig(Yg)(qy,), 390, N(Ya.qy,.a) L 1(Yg.qv,.0)"

strict
ai

ex . ,a.j ex

f = a;ﬂ e aq?ﬂ - s+1(ayﬂ)A]§(qyﬂ)ag{1(q§ﬂ), while f;41 is naturally defined via

o5 1 e for every q#ﬂ € reachables1(Y5), we note a®/ € Execss1(Yg) s. t. Istate(a®)) = q{/ﬂ and fs+1(q{,ﬂ) =

gé(q{,ﬂ) = Istate(f&X (a%))).

We finally define f¢* : ¢%a'..a™q"... = f(g")al...a"fu(q™), f : q — fu(q) where ¢ = Istate(q®al...q") and
i@ an(vaqae) = (F(@ anvs.f(q).a)

Clearly (f, 7, f¢¥) is strong since for every pair (qva-9vg), st f(qva) = Qvgs Gy Rstrictqvs-

Moreover, (f, f7, £¢¥) is complete since dom(f) = reachable(Y#) = states(Yg).

Finally, the bijectivity of f* is given by the inductive bijective construction.

Hence, we define

Hence (f, f*", £¢¥) is strong complete bijective PCA executions-matching from Y4 to Yg which ends the proof.
o

11 TOP/DOWN CORRESPONDING CLASSES (BIS)

In previous section 10, we have shown in theorem 10.13 that if X # and Xg are corresponding w. r. t. A and B (in the
sense of definition 6.16), then Yg = X4 \ {A} and Yg = Xg \ {B} are semantically equivalent. We can note Y an
arbitrary PCA semantically equivalent with both Y4 and Yg.
In section 9, we have shown in theorem 9.19 that for every PCA & environment of both X # and Xg, X #||& and
ASVY||Y4||E (resp. Xg||E and BS¥||Yg||E) are linked by a PCA executions-matching
83

Pierre Civit and Maria Potop-Butucaru

It is time to combine this two results to realise that for every PCA & environment of both X # and Xg, X #||& and
FASW||E (resp. Xg||E and B5Y||E’) are linked by a PCA executions-matching where &’ = §||Y.

Hence (*) if &’ cannot distinguish A*" from B, we will be able to show that & cannot distinguish X # from Xg.

In this section, we formalise (*) in theorem 11.25 of monotonicity of implementation relation. However, some
assumptions are required to reduce the implementation of Xg by X # into implementation of 8 by A. These are all
minor technical assumptions except for one: our implementation relation concerns only a particular subset of schedulers
so-called creation-oblivious, i. e. in order to compute (potentially randomly) the next transition, they do not take into

account the internal actions of a sub-automaton preceding its last destruction.

11.1 Creation-oblivious scheduler

Here we recall the definition of creation-oblivious scheduler (already introduced in subsection 6.4), that does not take
into account previous internal actions of a particular sub-automaton to output its probability over transitions to trigger.

We start by defining strict oblivious-schedulers that output the same transition with the same probability for pair of
execution fragments that differ only by prefixes in the same class of equivalence. This definition is inspired by the one
provided in the thesis of Segala, but is more restrictive since we require a strict equality instead of a correlation (section
5.6.2 in [8]).

Definition 11.1 (strict oblivious scheduler (recall). Let W be a PCA or a PSIOA, let & € schedulers(W) and let = be an
equivalence relation on Frags*(W) verifying Va1, @ € Frags*(W) s.t. a1 = ag, Istate(ay1) = Istate(az) . We say that
& is (=)-strictly oblivious if Yy, dz, d3 € Frags* (W) s.t. 1) a1 = az and 2) fstate(ds) = Istate(dy) = Istate(d), then
o(a as) = 6(a; as).

Now we define the relation of equivalence that defines our subset of creation-oblivious schedulers. Intuitively, two
executions fragments ending on A creation are in the same equivalence class if they differ only in terms of internal

actions of A.

Definition 11.2 (@ =7 @’ (recall)). Let A be a PSIOA, W be a PCA, Y&, &’ € Frags* (W), we say & =7 a’ iff:
(1) @, a’ both ends on A-creation.
(2) @and @’ differ only in the A-exclusive actions and the states of A, i. e. (&) = p(&’) where (@ = §°a'§*...a"§") €
Frags* (W) is defined as follows:
e remove the A-exclusive actions
o replace each state §’ by its configuration Config(W)(§) = (A, %)
e replace each configuration (A%, §') by (AL, §%) \ {A}
o replace the (non-alternating) sequences of identical configurations (due to A-exclusiveness of removed
actions) by one unique configuration.
(3) trace(a) = trace(a’),
(4) Istate(ay) = Istate(a)

We can remark that the items 4 can be deduced from 1 and 2 if X is configuration-conflict-free. We can also remark
that if W is a A-conservative PCA, we can replace p(a) = u(a’), by ,uf[(o?) ! (W \{A}) = p;ﬂ(&’) P W\ {A}) but
we want to be as general as possible for next definition of creation oblivious scheduler:

Definition 11.3 (creation-oblivious scheduler). Let A be a PSIOA, W be a PCA, & € schedulers(W). We say that ¢ is

A-creation oblivious if it is (Ef;{)—strictly oblivious.
84

Dynamic Probabilistic Input Output Automata

We say that & is creation-oblivious if it is A-creation oblivious for every sub-automaton A of W (A € Uq estates(W)
auts(config(W)(q))). We note CrOB the function that maps every PCA W to the set of creation-oblivious schedulers
of W.If W is not a PCA but a PSIOA, CrOB(W) = schedulers(W).

If W is A-conservative and & is A-creation oblivious, we note oblivious A,pe(0) (and usually 6| 7 . when it is clear
in the context) the (unique by definition) scheduler s. t. for every &, @’ € Frags* (W) with i) & is ending on A-creation
i) W' (@) 1 (W \ {A)}) = e, iii) trace() = f and iv) fstate(@’) = Istate(d), then &4, 5,(d’) = 5(@&'). Let us
note that Istate(a) is entirely defined with i) and ii). We remark that if such an execution fragment & € Frags*(W)
verifying i), ii) and iii) exists, then 6|4 g = 6|, the sub-scheduler conditioned by 6 and & in the sense of definition

11.4 stated immediately below.

Definition 11.4 (conditioned scheduler). Let A be a PSIOA, o € schedulers(A) and let a1 € Frags*(A). We note
Ol * {az € Frags*(A)|fstate(az) = Istate(a1)} — SubDisc(dtrans(A)) the sub-scheduler conditioned by ¢ and a;
that verifies Vay € Frags®(A), fstate(az) = Istate(a1), 0|4, (22) = o(a] az).

We take the opportunity to state a lemma of conditional probability that will be used later for lemma 11.24.

LEMMA 11.5 (CONDITIONAL MEASURE LAW). Let A be a PSIOA, o € schedulers(A) and let ay € Frags™(A) and 0|4,
the sub-scheduler conditioned by o and . Let ap, a2 € Frags®(A), fstate(ay) = Istate(a1) = q12. Then
€00, (cal) : €c7|a1,q12 (Cag) ifal £ ao
€o,a, (Cafag) = } —
eo-\al al (Caz) lfao = al a,
Proor. We note a12 = a a2.
1) a1 £ ao:
(@) a1 £ ap and ap £ a3:
This implies a12 £ o and ap £ a12 thus €54, (Cafzxz) = €6,a, (Ca,) = 0 which ends the proof.
(b) ap < a1:
This implies @y < @12 By induction on size s of . Basis: s = 0, i. e. ag = Istate(a1) = q12. Thus, we meet
the second case of definition of €0lay.q12 (Ca,): @2 < q12, which means €0y, q10 (Cq,) = 1 and terminates
the basis. Induction: We assume the result to be true up to size s € N and we want to show it is still true

for size s + 1. Let a2 € Frags™(A), fstate(az) = Istate(a1) = qi2 with |az| = s + 1. We note a2 = a5~ q’aq

’
12

By definition we have €01, q12 (Cay) = €010y q12 (Caé) . U(aé)(r](ﬂ!q,’a)) “N(Aq.a) (q)-
In Parallel, by definition: €5 4, (Cay,) = €o,a, (Cab) . U(aiz)(q(ﬂ,qﬁa)) “1(Aq.a)(9) and by induction

and a], = a]" a;. We have |aj| =sand ap < «

assumption, €50, (Cay,) = €6,a, (Ca;) - €12 (Caé) . O’(a{z)(f](ﬂ!q"a)) (A .a) (9) and so €54, (Cq,,) =
€0,00(Cay) * €014,,q12(Ca,), which ends the induction and so the case.
(2) a0 = a" ;. By definition, €5,4, (Cq,) = 1

(a) both a;2 £ ao and @y £ a12. This implies a2 £ a/ and @, £ a2 Then, by definition, €54, (Cqy,) =
€005 (Cay) = 0.

(b) @12 < a,. This implies ap < a;,. Then, by definition, €5, (Cq,,) = €010, 0t) (Caq,) =1

(©) ao < ai2:
We proceed by induction on size s of aa.
Basis: s = 0, i. e. g = q12. Then by definition €44, (Cay,) = €5,a,(Ca,) = 1. Moreover g12 < a,, which
means €, q, (Cq,) = 1, which ends the basis.

85

Pierre Civit and Maria Potop-Butucaru

Induction:

We assume the result to be true up to size s € N and we want to show it is still true for size s + 1. Let
az € Frags™(A), fstate(az) = Istate(a1) £ g2 with |az| = s+ 1. We note a2 = a5 q’aq and a, = " aj.
We have |a;| = s and ap < a,.
By definition we have €010 th (Ca,) = €010 1) (Caé) . a(aé)(n(ﬂq/,a)) “N(Ag.a) (D

In Parallel, by definition: €5 4, (Cay,) = €o,a, (Caiz) . a(a{z)(n(ﬂ’q»,a)) “1(Aq.a)(9) and by induction
assumption, €o,a, (Ca,) = €0.a, (Cor1) €0,y (Ca) - 0(@15) (N(A,q,0)) (A ,a) (@) a0d 50 €50, (Capar,) =
€o,0, (Cay) - €010,.th (Cay)- Finally, since €5,4,(Cqa,) = 1, we have €54, (Cay,) = €010, 0th (Ca,) which ends
the induction, the case and so the proof.

O

We have formally defined our notion of creation-oblivious scheduler. This will be a key property to ensure lemma
11.23 that allows to reduce the measure of a class of comportment as a function of measures of classes of shorter
comportment where no creation of A or B occurs excepting potentially at very last action. This reduction is more or

less necessary to obtain monotonicity of implementation relation.

11.2 Creation made explicit

In this subsection, we recall notion of creation-explicitness (already introduced in subsection 6.2). This property will

allow us to obtain the reduction of lemma 11.23 mentioned in last paragraph.

Definition 11.6 (creation-explicit PCA). Let A be a PSIOA and X be a PCA. We say that X is A-creation-explicit
iff: it exists a set of actions, noted creation-actions(X)(A), s. t. Vqx € states(X), Va € s@(X)(qx), if we note
Ax = auts(config(X)(qx)) and ¢x = created(X)(qx)(a), then A ¢ Ax ANA € px & a € creation-actions(X)(A).

This property of creation-explicitness will clarify the condition to obtain surjectivity of [zeﬂ’+ since it suffices to

consider this function with a restricted range where no action of creation-actions(X)(A) appears before last action.

LEMMA 11.7 (PARTIAL SURJECTIVITY WITH EXPLICIT CREATION). Let A be a PSIOA and X be a A-conservative and
A-creation-explicit PCA. Let & be partially-compatible with X. Let Y = X \ {A}. Let E 4 = E||Y. Let ((E]1X). [tzﬂ
ENX). 7, ENX).a7, (E11X).ji) the E-extension of (X", X i), X i, X g4 Leta, o’ € Execs(8 4| A%™)
s. L. creation-actions(X) (A) N actions(a) =

1) Then 3@ € dom(il") s. t. ji*" (&) = ﬁe‘ﬂ(d) =a.

2)Ifa’ = a™q, a, q" with a € creation-actions(X)(A), then 3a’ € dom([t *) st ~ﬂJ’(oz’) =a'.

Proor. We proof the results in the same order they are stated in the lemma:

(1) We note & = ¢° a',...,a" ¢"... and we proof the result by induction on the prefix size s. Basis: the result
trivially holds for any execution « of size 0 by construction of X \ {A} that requires X.p; (start(X))
start(X \ {A}). We assume the result holds up to prefix size s and we show it still holds for prefix size
s+ 1. We note a5 = ¢°,al,...a% ¢° and &° € Execs(&||X) s. t. i7'(&s) = as. By lemma 9.17 of signature

preservation a*™1 € sig(éHX)(qs). Moreover, by assumption a*! ¢ creation-actions(X)(A) which means the

A
. . . . Hz .
application of lemma 9.8 of homomorphic transitions lead us to TENX).G5a T T(En)| A g s So it

exists ¢°*1 € supp(q(8| 1X).4, av) with ! (§) = q. So pg (0{5 §°a**1§5*1) = agy1. This ends the induction and so

the proof of 1..
86

Dynamic Probabilistic Input Output Automata

(2) We apply 1. and note @ € Execs(&||X) s. t. ji7'(&¢) = a. By lemma 9.17 of signature preservation a; €

A+
sig(éHX)(zj) with ¢ = Istate(a). Moreover, by lemma 9.8 of homomorphic transition, 1(&11X).da &

. : ~ . At~ At~ o~y :
N Enl| A g So it exists ¢’ € supp(q(é‘lx),q,a!) with p7""(§") = q’. So p"" (@™ da1g’) = @’ which ends
the proof.

[m]

Since we 1) classify executions in some classes according to their projection on an environment and ii) are concerned by
the actions of the execution that create A, the next lemma will simplify this classification. It states that if the projection
e of an execution a € Execs(E.4||A*™) on the environment & 4 ends by an action a; € creation-actions(X)(A), then

the execution necessarily ends by ay.

LEMMA 11.8 (ENVIRONMENT PROJECTION ENDS ON CREATION IMPLIES THE EXECUTION ITSELF ENDS ON CREATION).
Let A be a PSIOA and X be a A-conservative and A-creation-explicit PCA. Let & be partially-compatible with X. Let
Y=X\{A}. Let E4 = E||Y.

Let (((E11X).47% (E11X) .27, (E11X).574, (E11X).i+*) the E-extension of
(X X, X i X.ﬁ;’“).

Let a1 € creatlon—actians(X)(ﬂ) and a € Execs(Ef||AY)s.t.a | Eq = ¢ = e qa,q with creation-
actions(X)(A) N actions(e) =

Then it exist @ € dom(ﬁe) s t. ~&ZH((I) =a.

Proor. We note « = a' " g;, a, quanz

We have g} | AW = qgsw. Indeed let assume the contrary: g; | AW # qa;lw. Then g | ASY # qi;(sw for every
state ¢ € a'. Since creation-actions(X)(A) N actions(e) = 0, creation-actions(X)(ﬂ) N actions(a') = 0. Thus we
apply lemma 11.7 of partial surjectivity with explicit creation to obtain, it exists &' € Execs(&[|X) s. t. ji “7{ *al) = a
with both A € auts(config(X)(Istate(d') I X)) and ay € creation-actions(X)(A) N szg(X)(lstate(al)) I X) which
is impossible.

Since q; | AV = qqs~ »al AV = qi’;.[w for every state q € a?. Hence, a® = qf, to respect a | E4 = €', which
means o = al’\qtl,, a, qf

Since creation-actions(X)(A) N actions(e) = 0, creation-actions(X)(A) N actions(a'?) = 0. Thus we apply lemma
11.7 of partial surjectivity with explicit creation to obtain Ja € Execs(E|1X) s. t. [Nﬁ *(&) = a.

m]

Here we recall the notion of print (already introduced in 4.6). This notion captures the perception of a system &||X
by the environment &. This notion allows us to propose an intuitive definition of implementation that is monotonic w.
r. t. PSIOA creation.

Definition 11.9 (print = trace + environment projection). Let K be a PSIOA (resp. a PCA). Let & be a PSIOA (resp. a
PCA) partially-compatible with K. We note print g k) : & € Execs(E||K) > (traceg|x(a), @ | E).Forevery { = (B, e)
where f} is a sequence of actions and e an alternating sequence of states and action, we note Class (Execs(&||K), print(g k), {) =
{a € Execs(E||K)|print g k) (a) = {}.

The next definition allows to aggregate print-based classification into a larger classification in order to prepare the

reduction of the implementation of a system Xg by a system X 4 into the implementation of 8 by A.
87

Pierre Civit and Maria Potop-Butucaru

Definition 11.10 (aggregate print without creation). Let A be a PSIOA, let X be a A-conservative and A-creation-
explicit PCA. Let & be a PCA partially-compatible with X. Let Y = X \ {A}. For every { = (f, ¢) where f§ is a sequence of
actions and e = ¢’ ¢’aq an alternating sequence of states and actions with actions(e’) N creation-actions(X)(A) = 0
then we note Class(Execs(é||X),printfé’o;)l”ﬂ,)={ace Execs(E||X)|trace(@) = BA (é||X).p‘z{’+(&) M (ENY) = e}.

Now we state the bijectivity of ﬁf[’+ (when no creation occurs) in terms of corresponding classes of external
perception.

LEmMMA 11.11 ([JfI’Jr 1S A BIJECTION FROM C T0 C). Let A be a PSIOA and X be a A-conservative and A-creation-explicit
PCA. Let & be partially-compatible withX. LetY = X\{A}. LetE z = E||Y. Let (EIIX).a7% (EN1X).575), (EN1X). 50, (E11X).470)
the E-extension of ((X.fi7 ,X.ﬁzﬂ), X. ﬁf:[* X.ﬁ;ﬂ).

Forevery{ = (f,e’ = e q,a,q") where § is a sequence of actions and e’ an alternating sequence of states and action

with creation-actions(X)(A) N actions(e) = 0, (8||X) iV isa bijection from C 10 C, where

e C= Class(Execs(é||X),prmtfg);)yﬂ 0)

e C= Class(Execs(Sy;||.7~ISW),prlnt8ﬂ Fisws §)

PRroOOF. o Injectivity is immediate by lemma 7.11, item (2).
e Surjectivity: Let & € C. By previous lemma 11.7, 3¢ € Execs(&||X) s. t. ﬁeﬂ*(d) = a. Finally, since ﬁ;ﬂ’Jr isa
strong executions-matching, the trace is preserved which means trace(&) = trace(a).

O

This bijectivity allows us to obtain the preservation of measure of probability for corresponding classes of external

perception.

LEMMA 11.12 (EQUIPROBABILITY OF TOP/DOWN CORRESPONDING CONES). Let A be a PSIOA and X be a A-conservative
and A-creation-explicit PCA. Let& be partially-compatible withX. LetY = X\{A}.LetE 4 = &Y. Let ((E]1X). /1;7{, (8||X) T N, (E|1X).ji Vtr
the E-extension of ((X.fi7 ,X.ﬁz&ZI), X. ﬁt}rl * X.[/;ﬂ).

Let{ = (B¢’ = e q,a,q") where § is a sequence of actions and e’ an alternating sequence of states and action with
creation-actions(X)(A) N actions(e) = 0

Let Cs = Ugepld’ € Execs(8|IX)l@ < @} and Co = Ugecfa’ € Execs(Ea|lAY)|a < o'} with C =
Class(Execs(E]X), printpmxy’ﬂ {)andC = Class(Execs(Sy[Hj(sw) print(8 ﬁsw,gv)

(8X)

Then for every & € schedulers(E||X), for o ((E1X).a7% (E11X).47), (E11X). i+, (E11X).i7%*) -alter ego of 5,
C

G(Sq(fHX)()= 7045 115 SW>(¢)

ProoF. Bylemma 11.11, ﬁeﬂ’+ is a bijection from C to C. We note {(&;, ;) };e = C X C the related pairs of executions

s. t. i7" (&) = a;. We obtain 60-5q S)(¢) = 2ier € 504 H (a,) an dec,(;q‘S . SW)(c) = Dier € 05‘7(5 o) (Ca;)-
Thus it is enough to show that Vl €le; 5 (Csz,) = (Ca;) WhICh is given by theorem 7.10 that can

&) %4 (6 g1159)
be applied since /Je * is a continued executlons-matching by theorem 9.23.

O

In next subsection, we want to extend this lemma 11.12 to any case with an arbitrary number of destructions and
creations of the sub-automaton A.

88

Dynamic Probabilistic Input Output Automata

11.3 Monotonicity

In this subsection, we want to reduce the computation of the probability measure of a class of executions to the
computation of several classes without creation (excepting at very last action) in order to apply lemma 11.12 and then
use the implementation of 8 by A.

We start by a sequence of definitions to identify easily an execution « as the concatenations of several execution

fragments a; where each @; does not contain creation actions except for very last action.

Definition 11.13 (n- buzldmg-vectorfor traces). Let fbe a sequence of actions . Let n € NU {oo}. A n-building-vector of
B is a (potentially infinite) vector ﬂ (B ... B 0f|ﬁ| =n sequences of actlons s.t. pITL BT L = B We

note Building-vectors(f, n) the set of n-building-vector of f and ﬂ i B to say ﬁ € Building-vectors(f, n). We note
Flil=pland fl:i] = =7 i1,

Definition 11.14 (n-building-vector for executions). Let e be an alternating sequence states and actions starting by
state and finishing by a state if e is finite. Let n € N U {oo}. A n-building-vector of e is a (potentially infinite) vector e =
(el,...el,..) of |?| = n alternating sequences of states and actions starting by state and finishing by a state (excepting
potentially the last one if it is infinite) s. t. e} ™ ...e! ™17 e!™ . = e (with Vi € [1, |?| — 1], fstate(ejr1) = Istate(e;)).
We note Building-vectors(e, n) the set of n-building-vector of e and e eto say e e Building-vectors(e, n). We note
Building-vectors(e) = Upenu{co} Building-vectors(e,n) and e :eto say e € Building-vectors(e). We note ?[i] =el

1~ ~,i-1

and ?[: ij=e".."e
N
Definition 11.15 (e (X:y() e). Let W and X be two PCA s. t. X is A-creation-explicit, e € Frags(W). We note

e (X,:JZ{) e (and e y{ e when X is clear in the context) the (clearly unique) vector e Building-vectors(e) of execution
fragments s. t.

(1) Vie[Ln], (actions(?[i]) \ laction(?[i])) N creation-actions(X)(A) = 0 and

(2) Vie [1,n-1], laction(?[i])) € creation-actions(X)(A).

We write ¢ or e - toindicate that |?| =n.
(X,A) A

Definition 11.16 (A-decomposition). Let A be a PSIOA and X be a PCA. Let « = ¢°al...a"q"... € Frags(X). We say
that

o o is a A-open-portion iff a does not create A, i. e. Vi € [1,|a|]A ¢ auts(config(X)(¢")) = A ¢
auts(config(X)(q’)).

e « is a A-closed-portion iff & does not create A excepting at very last last action, i. e. Vi € [1,|a|]A ¢
auts(config(X)(q"~1)) A A € auts(config(X)(¢')) & i = |al.

e o isa A-portion of X if it is either a A-open-portion or a A-closed-portion.

We call A-decomposition of a, note A-decomposition(a), the unique vector (al, ...a", ...) € Building-vectors(a) s.

e Vi€ [1,|A-decomposition(a)| — 1], &’ is a A-closed-portion of X and
o if | A-decomposition(a)| = n € N, ' is a A-portion of X.

LEmMA 11.17 (; (: | @ MEANS @ = A-decomposition(a)). Let A be a PSIOA and X be a A-creation-explicit PCA.
X,A

R

Let a € Frags(X). Leta = A-decomposition(a). Then o (i |
XA

89

Pierre Civit and Maria Potop-Butucaru

Proor. By definition, a e Building-vectors(a). Still by definition, Vi € [1,|A-decomposition(a)| — 1], o' is a
A-closed-portion of X, i. e. a’ does not create A excepting at very last last action laction(;). By definition of creation-
explicitness, the two item of definition 11.15 are verified for every i € [1,|A-decomposition(a)| — 1]. Finally, by
definition, if |A-decomposition(a)| = n € N, o™ is a A-portion of X, i. e. " does not create A excepting potentially
at very last last action if " is finite. Again, by definition of creation-explicitness, the first item of definition 11.15 is

verified.

After this sequence of definitions we can start our process of decomposition. First, we partition each class of
equivalence into an aggregation several "proxy classes" that will able the application of lemma 11.12 after their

decomposition.

LEMMA 11.18 (PARTITIONING OF CLASS CPé 1nto cLasses CF-¢). Let A be a PSIOA, let X be a A-conservative PCA
and & partially-compatible with X. Let § be a sequence of actions, let é an alternating sequence of states and actions starting
by a state and finishing by a state if finite and letéj = (p,é). Let

o C% £ Class(Execs(&|1X), print g . H2{ae Execs(éHX)lprint(6x) (@ = 7).

(55; = {é?’zm eNU {00},; r:lﬂ,e € Execs(éHX \{A}),e | E=¢ P e}, where
o COF = {a|d = A-decomposition(a), Vi € [1,| 2], trace(2[i]) = E[f], ENX) LD 1T EIX\{AY) =
e[il}

Then 6¢ is a partition Ofég.

Proor. The proof is immediate by construction since the A-decomposition is unique. We first show that CcBo =
U”GNU{"O} UE"ﬁ UeeExecs(SHX\{_’zz(}) el&=¢ UH" C ﬁ
By double inclusion:
<ns — - .
o Cleta € C(ﬁe) We note o = A- decomposition(a). We note f§ = trace(g), e = trace(g) M &, e =

(E1X). T Al) By construction, we have f : ﬂand ¢ " éforsomen € NU{eo}. Thus @ € Upenu{eo} UE':‘/? UeeExecs(éHX\{J’r(}),eré

Hence C79 ¢ Uy aniu oo UE% Uecbxecs(&11X\ {A)),e1é=6 Uz, C©

o 2:leta € Unenufeo) UE':’ﬁ UeeExecs(SHX\{ﬂ}) eré=s an Ce ﬁ . By construction, trace(a) = fand a |

& = & Hence, Unenueo) Un) Uecrrees 81X\ (1)) e18=2 U, © ef c ¢

! Y

WeshowthatV((ﬁ), (ﬂ e))s t. (/3) # (/3), ceﬁ mce B = 0. Let (0, ') € ceﬁ xC€# and
a = A- decomposztlon(a) and 0(= A- decomposztzon(a’) If o # 0{ , then necessarily o # a. We proceed by

contradiction. Let assume @ = « .We note n = |a| = |0(| with n € N U {co}. Then Vi € [1,n], trace(z[i]) =
trace(a [1]) = fli] = p] and E1X).4 (@li]) 1 &a = (EI1X).4" (@lil) [&4 = €i] = ¢ [i]) which is not
p0551b1e since (ﬂ e) #(pf e ,).Thus; # o which means a # o’ and so V((ﬂ,?), (B ,?’)) s. t. ([3,?) #(p ,?/),
GOPnCE s =,

90

Dynamic Probabilistic Input Output Automata

Now we use the A-creation explicitness to prove the lemma 11.19 and 11.20 in order to restate the previous lemma

11.18 into a simpler version to use, stated in lemma 11.21.

LEMMA 11.19 (CHUNKS ENDING ON CREATION). Let A be a PSIOA, let X be a A-conservative and ‘A-creation-explicit
PCA and & partially-compatible with X. Let & € Frags(éHX) and e € Frags(éHX\ {A}) s. ¢t ((CNJ||X)./1;7(’+(07) I
(ENX\{A}) =e.

Then

o laction(a) = ay € creation-actions(X)(A) = laction(e) = ay € creation-actions(X)(A).
o ifd € dom(i]),

laction(&) = ay € creation-actions(X)(A) <= laction(e) = ay € creation-actions(X)(A).

Proor. We prove the two implications in the same order.
o —) Let assume a; = laction(@) € creation-actions(X)(A). Since X is A-creation-explicit, we have @ =
@' q arq with A ¢ auts(config(X)(q’)). Thus laction(e) = a) € creation-actions(X)(A).
o &) Let assume a; = laction(e) € creation-actions(X)(A). Thus a; € actions(&). Since X is A-creation-
explicit, it implies & = 0?1’\q}, ag,q}zc’\dz where A ¢ auts(config(X)(q})) and A € auts(config(X)(quc)). But
ace dom((éHX).ﬁ;ﬂ’J’), so @ = q}zc and hence laction(&) = ay € creation-actions(X)(A)

]

LEMMA 11.20 (COMMON STATES FOR PASTING). Let A be a PSIOA, X be a A-conservative and A-creation-explicit PCA
and & partially-compatible with X. Let § be a sequence of actions, let e be an alternating sequence of states and actions
— e
starting by a state and finishing by a state. Letn € NU{co}, f * B, ¢ e LetCoF = {a|a = A-decomposition(a),Vi €
— — . - ~ - . ~ - .
[1,[al], trace(a[i]) = BLil. (EIIX).u (a[i]) T (EIIX\{AY) = €[i]}.

(1) IfCEP %0, then
(@ ¢

e : e
(X, A)
(b) Ya,a’ € C’?’ﬁ,forz " oa and;/ "o Vie [1,n—1],
(X,A) (X, A)

Istate(@[i])) = Istate(@ [i])) = fstate(a[i+1])) = fstate([i+1]))
) 1f? * ?’ with ?/ : e, then é?’ﬂ =0.
(X.A)

PROOF. (1) (a) Leta € C¢Panda = A-decomposition(a). Since X is A-creation-explicit, we have o (:) a
XA

by lemma 11.17. Thus, for every i € [1,n — 1] we have both E)[i] that ends on creation of A and
(SHX).yeﬂ(a}[i]) P EIIX\{A)Y) = ?[i]. Thus, since X is A-creation-explicit, we can apply previous
lemma 11.19 to obtain Vi € [1,n — 1], laction(?[i]) € creation-actions(X)(A) . Let i € N and] a strict
prefix of ?[i]. By construction of ,ueﬂ’Jr, it exists a strict prefix of ;[i], noted o, s. t. &l |X).yeﬂ (e) 1
(ElX\{AY) = e;. By definition ofad (:) a,laction(a)) ¢ creation-actions(X)(A) . By contraposition of
X,A
lemma 11.19, laction(e]) ¢ creation-actions(X)(A). Since the results holds for any strict prefix, e (:y[) e
X,
o ’ ’
(b) Let ¢,a’ € C¢-P, Let o = A-decomposition(a), o = A-decomposition(a’), let |;| = |Tx> | = nand
7
leti € [1,n — 1]. By construction we have directly lstate(;[i]) = fstate(;[i +1]) and lstate(; [iD) =
91

Pierre Civit and Maria Potop-Butucaru

Fstate(@ [i +1]). Moreover, we have both (1) (&1X) 2 (2 [i]) T (EIIX\ {A}) = ENX) x2 (@ i) 1
(EIIX\{A)) = €[] and (2) map(config(X) (Istate([i])))(A) = map(config(X)(Istate(a [i])))(A) =
G #- The property (1) implies (3) auts(config(X)(lstate(;[i])))\{.?l} = auts(config(X)(lstate(;’[i])))\
{A} £ A’ and VB € A’, map(config(X)(lstate(g[i])))(B) = map(config(X)(lstate(;,[i])))(B).
Thus by (2) and (3) we obtain (4) auts(config(X) (lstate(z[i]))) = auts(config(X)(lstate(;l[i]))) =
A and VB € A, map(config(X)(lstate(a)[i])))(B) = map(config(X)(lstate(a)/[i])))(B). Since X is
configuration-conflict-free, lstate(; [iD) = lstate(;/ [i])) which ends the proof.
(2) By contraposition of former item 1a.

O

Now we can simplify lemma 11.17. We can already guess in C ¢-# the form of "proxy aggregated class" introduced in
definition 11.10.

LEMMA 11.21 (PARTITIONING OF CLASS CP€ INTO CLASSES C‘ﬁ’? ENDING ON (A CREATION). Let A be a PSIOA, let X be
a A-conservative and A-creation-explicit PCA and & partially-compatible with X. Let & # = EI|(X\{A}). Let f bea

sequence of actions, let € an alternating sequence of states and actions starting by a state and finishing by a state if finite

and let { = (B, é). Let
o C{ 2 Class(Execs(E]1X), print g . H2{ae Execs(é||X)|print(ex) (@ = 7).
ﬁ|EIe € Execs(E4),e | &= é,? (X?ﬂ) e,E " B} where

o COF = {a € Execs(EI1X)| wm @)= €1 = [f],Vi € [1,12], trace(@[i]) = B AEIX) T (@Li]) T

EIX\ {Ay) = € [i]}

23
Then, G’CrEx

L
e,

74 A
° GCrEx ={C

is a partition of C¢.
ProoF. By conjunction of lemma 11.17, lemma 11.18 and lemma 11.20, item 1a. [}
In next paragraph, we will isolate "proxy aggregated class without creation" introduced in definition 11.10.

Decomposition. We start this paragraph, by showing that cebis equal to the set of concatenated executions issued

to some fixed "proxy aggregated classes without creation" introduced in definition 11.10.

LEMMA 11.22 (DECOMPOSITION INTO SIMPLE CLASSES). Let A be a PSIOA, X be a A-conservative and A-creation-explicit
aPCAand & partially-compatible with X. Let & 4 = El|(X\ {A}). Let f3 be a sequence of actions, let e € Execs(E #). Let
-
n e NU {co}, " ,? " e Let
fook p 2 f)

CéF = {a e Execs(E]1X)|@ i @Y€l [a|], trace(@[i]) = BLil, (EIIX).pd (@ [i) T (EIX\ {AY) = €[il}.
A_)‘) n’ A_) . - .
Then, C¢F = XKcCe 1AL+ itk

o COP = {4 € Execs((E1]1X7)) Ndom((EH|XT) il*) |trace(a) = B, (E1[1X7). il (&) T (EIIXI\{A}) =
e}
o &'=E&andVvie [2,n], & = Sqa_,q‘zg with q’é = fstate(e;) | &, as per definition 9.9
92

Dynamic Probabilistic Input Output Automata
e X'=XandVie [2,n], X = XqX—>q§((as per definition 9.9) with qg(the unique state (by configuration-conflict-
free property) s. t. config(X)(q;() = C; U Cfﬂ with C; = config(X \ {A})(fstate(e;) | EIX \ {A)})) and
Ci = (A}, (A, G)-
n .
e RC'=C'®C?*®..0C"
;
e C'®C?={a] az]a; € C',ap € C?*}
Proor. By double inclusion.

o O)Leta e CP i e @ = A-decomposition(e) and Vi € [1,|2|], trace(a[i]) = B[i], (EIX) L2 (2[i]) T
ENX\ {A}) = ?[i]. We need to show that Vi € [1, |;|], ;[i] € é?[i]’ﬁ[i]’+. By construction due to A-
decomposition, Vi € [2,n], fstate(;[i]) = lstate(;[i — 1]) where ;[i — 1] ends on A-creation (1). Moreover,
Vi e [1,n], (EN1X). M (2] T (EIX\ {A}) = € [i] (2). By (1) and (2), fstate(a[i]) = start(E[|X') where
&' and X! are defined like in the lemma (3). By construction due to A-decomposition, o [i] does not create A

— ~ . Pl no, -2
before its very last action (4), thus by (3) and (4) a[i] € dom((8’||Xl).ﬁZ[’+) (5). Then C¢-F ¢ XcCe Ll Alil+
i

o D)Let (ai)ie[i,n) s-t- Vi€ [Lin],a; € é?[i]’ﬁ[i]’+.We note @ = (a1, a2, ..., i, ...) with |g| = n. By construction,
Vi € [1,n - 1], lstate(?[i]) = fstate(?[i + 1]) (6). Moreover Vi € [1,n — 1], laction(?[i]) € creation-
actions(X)(A) soVi € [1,n—1], laction(a;) € creation-actions(X)(A) (7) by lemma 11.19. Thus, Vi € [1,n—1],
map(config(E|1X)(Istate(a;)))(A)) = start(A) (8). Since Vi € [1,n], (E||XD) jT (ap) 1 (EHIXE\ {AY) =
P’ [i], by (6), (8) and configuration-conflict-free property, we deduce that Vi € [1,n—1], Istate(a;) = fstate(ait1)

i

(9). Now, we note a = a! " a? " ..a' " s. t. 2% a By assumption, Vi € [1,n], ;[i] € dom((&|X).), 1. e.

A is not created before last action of a; which means o= A-decomposition(a) (10). Thus a € C}?’ﬁ, Hence,
QCEliLBlIL+ ¢ GEF,
i

]

Now we can reduce the measure of the entire class of external perception into measures of some fixed "proxy
aggregated classes without creation" introduced in definition 11.10 to eventually apply the lemma 11.12. We start by an

immediate summation in lemma 11.23 before a slightly more subtle product in lemma 11.24

LEMMA 11.23 (MEASURE AFTER PARTITIONING AND DECOMPOSITION). Let A be a PSIOA, X be a A-conservative and
A-creation-explicit PCA and & partially-compatible with X. Let & 7 = E||X \ {A} Let f§ be a sequence of actions, let é be
an alternating sequence of states and actions starting by a state and finishing by a state. Let 6 € schedulers(E||X).

€:(Cape) =2 % ZE'ﬂlﬁ €5 ()-

5 o C RN
ecExecs(Eq).etE=é,e : éée [i], B [i]+
i

Proor. Immediate by lemma 11.18 and 11.22 O

) where &¢

Now we want to transform the term G&(Cé i) as a function of some terms €:(C 2T
i+ Celil, i)+

CeLLAL
must be defined. The critical point is that the occurrence of these events might not be independent with (*) a perfect-
information scheduler that chooses the measure of class C ¢ [I1A1i1+ a5 a function of the concrete prefix in class

Celi-1LA1i=11+ This observation enforced us to weaken the implementation definition to make it monotonic w.r.t.

PSIOA creation by handling only creation-oblivious schedulers that cannot make the choice (*).
93

Pierre Civit and Maria Potop-Butucaru

LEMMA 11.24 (MEASURE AFTER DECOMPOSITION FOR OBLIVIOUS CREATION SCHEDULER). Let A be a PSIOA, X be a

A-conservative, A-creation-explicit PCA and & partially-compatible with X.
d ~ ~
Let 8 be a vector of sequences of actions, let e € Execs(E||X \ {A}), and ¢ (") e. Let & € schedulers(E||X) that is
X,A

A-creation-oblivious.

Thenez(Cn _, -
RCE<liLAlil+

i

(5).

n .
=Ilezi (C - _,) withVie€ [1,n],6" = oblivious -
) i i cﬂ[ilxe[fl) [L.n] ABL1,E]

Proor. We recall the remark of definition 11.3 of A-creation-oblivious scheduler for a A-conservative PCA that
raises the fact that if an execution fragment @ € Frags* (W) verifying i) & ends on A-creation, ii) W.y;ﬂ *(&) = e and iii)
trace(a) = f exists, then 6| 4,5, = G4, the sub-scheduler conditioned by 6 and & in the sense of definition 11.4. Then we
simply apply lemma 11.5, which states that for every a = a;"ay € Frags*(&[|X), for 6|4, the sub-scheduler conditioned
by e schedulers(&||X) and ay (in the sense of definition 11.4), for e generated by 6, €5(Cy) = €5(Cq,,) - €510y (Cay)

with 6| (az) = 6(ay az) for every a, with fstate(a;) = Istate(ax).

no - .- — n —
For every a € ®Ce[’]’ﬁ[l]’+, for « = A-decomposition, €5(Cy) = Iles _, (C&'[i]) with a1 :i—-1] =
i

i
i @ [i-1)
a' " land g = start(E1])1X?) where &||X! is defined as in lemma 11.22.
- —/
By A-creation-oblivious property of &, for every pair of vectors a[1:i—1], ¢ [1:i—-1]s. t.Vje [1:i-1],
- —/ ~ - c. — . ~ - . ~ - P —/ ~ s :
trace(d[j]) = trace(a [j]) = ; and (&7[1x7).3/ (@ [j]) 1 (E/1IX7) = (E711x9).37 (a [7]) 1 (E7]1X7) = e, for

~ A+

every r € dom((8i||Xi).ye), 0> (m) = &‘4[1 e Hence, for every i € [1,n] we note 5’ € schedulers(E||X?)
o -

| [1:i—1]

~ . — no, oo
that matches & on dom((8’||X’).ﬁeﬂ’+) for an arbitrary «[1: i — 1]. This lead us to: Ya € (X)C* lilALiL+ for
i

[ar[1:i—1]
n
a o a, €5(Cy) = l;Ie&L(C;[i])
n
Thusez;(Crn _, - = n ., — Ilezi(C-,) and by lemma 11.22,
o ®ée|i1,ﬁ|i1,+) Zg; .« ae@CClLAlLY i o a[z]) Y
; (X.A) ;
n n

s(Cn o, o = . L o> Ile-i (Cy.) = ez (C >
€5 ®(}e[i],ﬂ[i],+ a ece LB+ aneCelilBlil+ ieo'(al) ieo'(Cﬁ[ilyg[il’_'_)

i

Now thanks to lemma 11.23, 11.24 and 11.12 we are ready to prove the main theorem of this paper: the monotonicity

of implementation w.r.t. PSIOA destruction/creation.

THEOREM 11.25 (MONOTONICITY). Let A and B be two PSIOA, let X # be a A-conservative and A-creation-explicit
PCA, let Xg be a B-conservative and B-creation-explicit PCA, s. t. X# and Xg are corresponding w. r. t. A, B with
creation-actions(X.#)(A) = creation-actions(Xg)(B) = CrActs.

print print
IfA <., 0p B thenXa <0 X8

Proor. Let & € eno(X4) Nenv(Xg). Let Y = Xq \ {A}, Yg = Xg \ {B}, E4 = E||Y4, Eg = E||Yg and & an
arbitrary PCA semantically equivalent to both &4 and Eg with & € eno(ASY) N env(B5Y) by theorem 10.13. We
note p g the (complete, strong and bijective) PCA executions-matching from & # to & and pc g the (complete, strong
and bijective) PCA executions-matching from & to Eg. We also note p; ¢ the (complete, strong and bijective) PCA
executions-matching from & #||AS" to &||ASY and pé g the (complete, strong and bijective) PCA executions-matching
from &||B*Y to Eg||B*Y.

94

Dynamic Probabilistic Input Output Automata

In the remaining we note (é||X3z[)le the automaton (é||Xﬂ)q(8HX |4 (as per definition 9.9) where q is the
A

unique state of &[|X 7 5. t. map(config(El1X) (@) (A) = G and config(ElIX2) (@) \ {A} = config(&) Ustate(e)).
Respectively, we note El1x g)le the automaton (&||X 8)g Elxg) =4 (as per definition 9.9) where q is the unique state

of é||X5g s. t. map(config(éHXB)(q))(ﬂ) = g§g and config(é”Xg)(q) \ {8} = config(Eg)(Istate(e)). Finally, we
note &°¢ = 8q8—>lstate(e)‘

Let 6 € CrOB(&||X#). We need to show it exists &/ € CrOB(é|[X3) s. t. for every sequence of actions f3, for
every & € Execs(&), for { = (8, 8), E&(Cé}iﬂ) = e(}/(CC){B) where C‘iﬂ = Class(Execs(éHXﬂ),print(g,xﬂ),f) and
éf(g = Class(Exizcs(é||ng),print~(é’xﬁg), g:)))

VB € trace(E||Xxz) U trace(E||Xg), Ve? € Execs(E4), we note 0| A,pea the ((8||Xﬂ)le).;]f"Jr alter-ego of

C
|A,B.e

(*) Since A <cyop B, it exists UfiBﬂe € scheduler(&E¢||B85Y) balanced with crlcﬂ fe i. e. for every sequence of

G| A, pea- Let e = pgc(e?) We note o € schedulers(E€||AY) the pxﬂc alter-ego of 0| 7 g ca

actions f’, for every e’ € Execs(&E), g|cgq 5 e(CCV(ﬁ,,E,)) = O'iiB 8 e(CCm,,E/)) where:
P A P]

. c((fé;{; = Class(Execs(E°I|A™), print g o), (F',¢')) and

. C’((gé)) = Class(Execs(Se||@5W),print(88,gsw), (B,¢e))

d
|B.p.e

’

X
|8, p.eb the How
We build 6" € CrOB(&||Xg) as follows:

VB e trace(&||X#) U trace(&||Xg), Vet ¢ Execs(Eg), Vi, 7’ € Frags*(éHXB) s.t. i) 7 ends on B creation, ii)
(El1Xg).ilN(7) | Eg = eb, iii) trace(7) = B, iv) Istate(7) = fstate(7'), 6" (7 #') = 5(3, ﬁ]eb(ﬁ') s. t. 5(53, peb A0d

Let el = pcs(e) We note o alter-ego of o

. b
G(B,ﬁ,eb are ((&E]|Xg)¢).,ufg’Jr alter-ego.

Now we show that ¢ and ¢’ are balanced:

Let g: =(p,€é) € print(é, Xa)U print(é, Xg),i.e.f e trace(é”Xﬂ) U trace(éHXg), and ¢ € Execs(&). Let

. C’g{g’f) = Class(Execs(él|Xﬂ),pri"t(g’xﬂ)’ (B.€)) and
. Cz(gﬂ’e) = Class(Execs(8||X3),print(g’xﬂ), (B.€))

We need to show that €5 (C ~5.6)) = €5/ (C 556):
¢! Cy
We apply lemma 11.23 to obtain:

e

° €&(CC~‘§{'€) = Ze“ cExecs(Ex),e? [E=é 2—a ?oa Z.Enﬁ 65'(Cé
B :

Ayt

ICa

® 5(Cppe) = X b cprecs(Em) eb 1éms Dobn p 2on €7(Cn b =).
Cﬁ e’ eExecs(Eg),e’ [E=¢ P j:{eb BB ®C§ [il. B [i].+

Since & 4 and Eg are semantically equivalent, the sets {e? € Execs(E.4)e? T &= e} and {eb € Execs(83)|eb r

& = ¢} are in bijection. Hence, it is enough to show that V(e%, eb) e Execs(E.4) X Execs(Eg) with ebe = HAC ©

c pn —be

~ ~ a e
nes(e®) and eb¢ 1 & = e | & = ¢, for e "oeac e : ebe, for every f8 i B, then €5(C, _ac -)=
A A é; [i], B lil+
e; (C —be > .
& QCE [i],ﬁ[i],+)
ICg

95

Pierre Civit and Maria Potop-Butucaru

By definition, ¢ is A-creation-oblivious, and by construction, ¢ is B-creation-oblivious. This allows us to apply

lemma 11.24 to obtain:

5 = i —> —ac i i >y, 5 = v d ac G).
e ¢;(C, 2T) Heg (C (7 [i]) with Vi € [1,n], & oblwlousﬂ’ﬁ[:i]’? [:iJ(a)
i Cﬂ ﬁ
n .
5(C —be — =1Ilesi (C - —ac ith Vi 1, ,~”: blivi - c 5’ .
* <5 ééﬁeb [i],ﬁ[i],+) T (Agm,e [i])w1 i€lLn].o"=o wwusg,ﬁ[:i],?b [:i](G)
! = —ac —bc
herez[il=z[1]"..7 [l—l]forze{ﬂ e ,e }
AB1ETT _ VE“L]) o PrOXy A P 20
e Cy —class(Execs(8||X3z[) ,prmt(sx) ,(Blil, e [iD)

A*) . . - —be) — b
o GO 2 class(Execs(El|xg) e 1D, print %5 (il € [i))
(&X3)
Thus it is enough to show that Vi € [1,n], €5:(C - _ac) =€5i(C - _pc)).Letie [1,n]
é£[1]~€ [i] ézf[ine [i]
We can apply lemma 11.12 to obtain:

- (BLi1e“TiD)
° EUI(CCE]ﬁac[i]) = Eo-‘y(,;[:i] (C(Sﬂ A))
&)
o c5i(C = _pe)=€y (CS B .
eyt 1 sRa e O)
where:
ac . —ac . N _,ac
c((f[]ﬂ) "D = Class(Execs(8 5 I A), print e (L) € i) and
(&5 ,A™)
. —be » . — _b
c((g ’}B; b _ Class(Execs(8f, V1B print e, (Blile L)
(&5 8w
o e isthe (EIIXa)Y€ 1) 17 alter-ego of 5.
|AB:i],e [.
oo’ _ . isthe((ElXg)te U)iB alter-ego of 67
[8.B:i].e [:]
Hence it is sufficient to show thates _, .. (C Gz [_])) =€ ., C G []))
WL e C(éﬂm 1B.41E" [:] C(‘gB 5)
Finally, we find again our construction (*):
* oae (C e)= E0e (€ = =)
|A, B il e [:d] C((éf; £ [iD) \A B [:l],?[:i] C((gﬂ’y[(l)])e [i])
° €y i C)=66d (CV".—'.)
135 141¢ Ll C((fgl’éf o 18,8 [:1,% L] C((;f,é)]' tib
* &5c (c) =€4a € Fuzm)
|A B L4, € L] C(Sﬂ}()] <o 18, B[], 4] C(gﬁg)
where:
— . — —ac —be
e ¢ is the vector of (Frags*(E))" s. t.¥j € [1:n], e [jl = pac(e [j) =pg (e [JD.
(ﬁ il e[i) e[|| Fisw : I
C(Sﬂ) = Class(Execs(& [|A),prlnt LD, Fisw)’ (ﬁ[i], e [i])) and
. c((gg)e (i Class(Execs(S?l:iJ)||£§SW),print(21 oy C(BLL T

96

Dynamic Probabilistic Input Output Automata

Thisleadustoes _, _,. (C - _a)=¢€y (C - _bec), which ends the proof.
A BT Bl e T LD 7 CAE
(EqA) Blile [(€5.8)
O
12 TASK SCHEDULE
We have shown in previous section that Sglg; was a monotonic relationship. In this section, we explain why an easy

to use off-line scheduler introduced by Canetti & al. [4] is not creation-oblivious which suprisingly prevent us to obtain

monotonicity of implementation for scheduler schema.

12.1 Task-schedule

Here we present a subclass of fully off-line schedulers, called task-schedules. Before explaining what is a task-schedule,
we introduce the definition of task, adapted from [2] to the dynamic setting. In practice a task is invoked by the
scheduler to potentially trigger an action from a sub-component of the automaton. An automaton can be the result
of the composition of several automata, themselves the result of the composition of several automata and so on and
forth. We assume the existence of a subset Autidsy C Autids that represents the "atomic entities" of our formalism.

Any automaton is the result of the composition of automata in Autidsp.

Definition 12.1 (Constitution). For every A € Autids, we note

ration() ;| $1ateSA) = P(Autidsy) where P (Autidso) denotes the power set of Autidsy
constitution :
— constitution(A)(q)

For every A € Autidsy, for every q € states(A), constitution(A)(q) = {A}.

For every A = (Ajy, ..., Ay) € (Autidsy)", for every q € states(A) with A = Ay ||...|| Ay, constitution(A)(q) = A.

The constitution of a PCA is defined recursively through it configuration. For every PCA X, for every q € states(X),
if we note (A, S) = config(X)(q), constitution(X)(q) = U gea constitution(A)(S(A)).

Definition 12.2 (Task). A task T is a pair (id, actions) where id € Autidsy and actions C actions(aut(id)) is a set of

action labels. Let T = (id, actions), we note id(T) = id and actions(T) = actions.

Definition 12.3 (Enabled task). Let A € Autids. A task T is said enabled in state q € states(A) if :
e id(T) € constitution(A)(q)
o It exists a unique local action a € lof\c(fﬂ)(q) N actions(T) (noted a € T to simplify) enabled at state q (that is it
exists € Disc(Q#) s.t. (g,a,n) € Dg.

In this case we say that a is triggered by T at state q.

Now we are ready to define a task-schedule, which is a particular subclass of schedulers.
We are not dealing with a task-schedule of a specific automaton anymore, which differs from [2]. However the

restriction of our definition to "static” setting matches their definition.
Definition 12.4 (task-schedule). A task-schedule p = Ty, T, T3, ... is a (finite or infinite) sequence of tasks.

Since our task-schedule is defined, we are ready to solve the non-determinism and define a probability on the

executions of a PSIOA. We use the measure of [2].

Definition 12.5. (task-based probability on executions: apply # (¢, p) : Frags(A) — [0, 1]) Let A be a PSIOA. Given
yt € Disc(Frags(A)) a discrete probability measure on the execution fragments and a task schedule p, apply(y, p) is a

probability measure on Frags(A). It is defined recursively as follows.
97

Pierre Civit and Maria Potop-Butucaru

(1) apply#(p, A) := p. Here A denotes the empty sequence.
(2) Forevery T and a € Frags*(A), apply(u, T)(a) = p1(a) + p2(a), where:
. p1(a) = { waMaqg.a(@ ifa=a""(aq),q =Istate(a’) and ais triggered by T enabled after o’
0 otherwise
pu(a) if T is not enabled after «

[o) =
p2(a) { 0 otherwise

(3) 3.If p is finite and of the form p’T, then apply # (1, p) = apply 4 (apply 4 (1, p’), T).
(4) 4.1f p is infinite, let p; denote the length-i prefix of p and let pm; be apply # (i, pi). Then apply #(u, p) =

lim pm;.
1—00

PROPOSITION 2. Let A be a PSIOA, For each measure i on Frags® (A) and task schedule p, there is scheduler o for A
such that apply(p, p) is the generalized probabilistic execution fragment e y;.

ProoF. The result has been proven in [2], appendix B.4. O

q2'1' c q:{.r
£ e

oo Q|

g O >
qz.lr.' qi{.u-

Fig. 31. Non-deterministic execution: The scheduler allows us to solve the non-determinism, by triggering an action among the
enabled one. We give an example with an automaton A = (Q4, Ga = qo, sig(A), D) and the tasks Ty, To, Tp, Tp, (for green, orange,
pink, blue) with the respective actions {a}, {d}, {b,]’}, {c,c’}, and the tasks Ty, Ty, with the respective actions {a,d}, {c,c’,d}.
At state qo, sig(A) (qo) = (0, {a}, {d}). Hence both a and d are enabled local action at go, which means both T; and T, are enabled
at state qo, but Tyo is not enabled at state qq since it does not solve the non-determinism (a and d are enabled local action at gq). At
state g1, Tj is enabled but neither T,, or T. We give some results: apply(5qg, Ty) (¢%a,¢*°) =1

apply(8p0, TyTp) (q°, a, 4", b, ¢*>) = apply(apply(S,,Ty). Tp) (¢°, a,4"°, b, g>™) = 1/2
apply(840. TyTpTp) (9%, @, g%, b. g™, c.q>Y) = apply(apply(8,. TyTp). Tp) (4, a.q"°. b, g> ™, c.g>™) = 3/8

apply(5qo, TngTOTb)(qO, a, ql"’, b, qz’w, c, qS’W) =3/8, since Ty is not enabled at state qZ'W.

98

Dynamic Probabilistic Input Output Automata

12.2 Why a task-scheduler is not creation-oblivious ?

Let imagine the following example. The class C* is composed of two executions a®! and a2, the class CY is

z,11 x,lAay,l’

composed of two executions a%! and a¥%? and the class C? is composed of four executions a
a?l?2 = g¥17 Y2, qB = X2 gYl 0722 = %27 Y2 Let p = p!Tp? be a task-schedule. We do not have
apply(., p)(C?)) = apply(., p)(C¥) - apply(., p?)(CY) ! Indeed, the executions a®! and a™? can differ s. t. they do not
ignore the same tasks. Typically, p! could be written p! = p-¢~ pl’b where the last action of a®! is triggered by the last

task of p1@ and p»? is "ignored by a® 1. The issue comes if both apply(., p?)(CY) # 0 and apply(., p2P™p?)(CY) # 0.

=

The point is that C? can be obtained with different cut-paste: cut-paste A: p24 for C* and p»?™p? for CY ; cut-paste B:
p! for C* and p? for CY.

13 CONCLUSION

We extended dynamic I/O Automata formalism of Attie & Lynch [1] to probabilistic settings in order to cope with
emergent distributed systems such as peer-to-peer networks, robot networks, adhoc networks or blockchains. Our
formalism includes operators for parallel composition, action hiding, action renaming, automaton creation and use a
refined definition of probabilistic configuration automata in order to cope with dynamic actions. The key result of our
framework is as follows: the implementation of probabilistic configuration automata is monotonic to automata creation
and destruction. That is, if systems X 4 and Xg differ only in that X 4 dynamically creates and destroys automaton
A instead of creating and destroying automaton 8 as Xg does, and if A implements B (in the sense they cannot be
distinguished by any external observer), then X 4 implements Xg. This results is particularly interesting in the design
and refinement of components and subsystems in isolation. In our construction we exhibit the need of considering only
creation-oblivious schedulers in the implementation relation, i. e. a scheduler that, upon the (dynamic) creation of a
sub-automaton A, does not take into account the previous internal actions of A to output (randomly) a transition.

Interestingly and of independent interest, motivated by the monotonicity of execution w.r.t. to automata creation, we
introduce new proof techniques to deduce certain properties of a system X # from a sub-automaton X # dynamically
created and destroyed by X 4. This proof technique is used to construct a homomorphism between the probabilistic
spaces of automata executions. Then we expose such homomorphism from a system X # to a new system resulting from
the composition of A and X # \ {A}. The latter corresponds intuitively to the system X # deprived of A. Furthermore,
the homomorphism is used to show that under certain minor technical assumptions, if X # and Xg differ only in the fact
that X # dynamically creates and destroys the automaton A instead of creating and destroying the automaton 8 as Xg
does, then X 4 \ {A} and X5 \ {B} are semantically equivalent, i.e. they only differ syntactically. The homomorphism
is finally reused to establish the monotonicity of the implementation relation. Our technique can be used in extensions
of our formalism with time and cryptography notions.

As future work we plan to extend the composable secure-emulation of Canetti et al. [4] to dynamic settings. This
extension is necessary for formal verification of protocols combining probabilistic distributed systems and cryptography

in dynamic settings (e.g. blockchains, secure distributed computation, cybersecure distributed protocols etc).

REFERENCES

[1] Paul C. Attie and Nancy A. Lynch. 2016. Dynamic input/output automata: A formal and compositional model for dynamic systems. Inf. Comput. 249
(2016), 28-75. https://doi.org/10.1016/j.ic.2016.03.008

[2] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira, and Roberto Segala. 2018. Task-Structured Probabilistic {I/O}
Automata. J. Comput. System Sci. 94 (2018), 63—-97. https://doi.org/10.1016/j.jcss.2017.09.007

99

https://doi.org/10.1016/j.ic.2016.03.008
https://doi.org/10.1016/j.jcss.2017.09.007

Pierre Civit and Maria Potop-Butucaru

Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses D. Liskov, Nancy A. Lynch, Olivier Pereira, and Roberto Segala. 2005. Using Probabilistic I/O
Automata to Analyze an Oblivious Transfer Protocol. IACR Cryptol. ePrint Arch. (2005), 452. http://eprint.iacr.org/2005/452

Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Nancy A. Lynch, and Olivier Pereira. 2007. Compositional Security for Task-PIOAs. In 20th IEEE
Computer Security Foundations Symposium, CSF 2007, 6-8 July 2007, Venice, Italy. IEEE Computer Society, 125-139. https://doi.org/10.1109/CSF.2007.15
Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci. 777 (2019), 155-183. https://doi.org/10.
1016/j.tcs.2019.02.001

Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. 1988. A theory of atomic transactions. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 326 LNCS (1988), 41-71. https://doi.org/10.1007/3-540-50171-1_3
Martin L. Puterman. 1994. Markov decision processes: discrete stochastic dynamic programming (1 ed.). John Wiley & Sons.

Roberto Segala. 1995. Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. Dissertation. Massachusettes Institute of
technology.

100

http://eprint.iacr.org/2005/452
https://doi.org/10.1109/CSF.2007.15
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1007/3-540-50171-1_3

	Abstract
	1 Introduction
	2 Warm up
	2.1 Probabilistic Signature Input/Output Automata (PSIOA)
	2.2 Scheduler
	2.3 Environment, external behavior, implementation
	2.4 Probabilistic Configuration Automata (PCA)
	2.5 Road to monotonicity

	3 Preliminaries on probability and measure
	4 Probabilistic Signature Input/Output Automata (PSIOA)
	4.1 Action Signature
	4.2 PSIOA
	4.3 Execution, Trace
	4.4 Compatibility and composition
	4.5 Scheduler: define a measure on executions and traces
	4.6 Implementation
	4.7 Hiding operator
	4.8 State renaming operator

	5 Probabilistic Configuration Automata
	5.1 configuration
	5.2 Configuration transition
	5.3 Probabilistic Configuration Automata
	5.4 Compatibility, composition

	6 Introduction on PCA corresponding w.r.t. PSIOA A, B to introduce monotonicity
	6.1 Naive correspondence between two PCA
	6.2 Conservatism: the additional assumption for relevant definition of correspondence w. r. t. A, B
	6.3 Corresponding w. r. t. A, B
	6.4 Creation-oblivious scheduler

	7 Executions-matching
	7.1 PSIOA executions-matching and semantic equivalence
	7.2 PCA-matching execution

	8 Projection
	8.1 Projection on Configurations
	8.2 A-fairness assumption, motivated by our definition of PCA deprived from an internal PSIOA: X { A }
	8.3 Y = X { A } is a PCA if X is A-fair

	9 Reconstruction
	9.1 Simpleton wrapper : sw
	9.2 Partial-compatibility of (XA { A }) and sw
	9.3 Execution-matching from X to X { A } || sw
	9.4 Composition and projection are commutative

	10 PCA corresponding w.r.t. PSIOA A, B
	11 Top/Down corresponding classes (BIS)
	11.1 Creation-oblivious scheduler
	11.2 Creation made explicit
	11.3 Monotonicity

	12 Task schedule
	12.1 Task-schedule
	12.2 Why a task-scheduler is not creation-oblivious ?

	13 Conclusion
	References

