
TEMP: Time-locked Encryption Made Practical

Leemon Baird
Swirlds

Pratyay Mukherjee
Visa Research

Rohit Sinha
Swirlds

Abstract
Time-locked encryption can encrypt a message to a future

time such that it can only be decrypted after that time. Po-
tential applications include sealed bid auctions, scheduled
confidential transactions, and digital time capsules.

Prior practical schemes for time-locked encryption rely on
a clock-equipped trusted server, who periodically publishes
a time-specific decryption key based on a long-term secret.
Their main idea is to model time periods as identities in an
identity-based encryption scheme. While such schemes allow
encryption to a future time periods, they offer limited support
for decryption of past ciphertexts. In particular, they force a
client to be online when the key is published, or interact with
the server to re-generate the key.

This paper proposes a new notion of time-locked encryp-
tion where an aggregated decryption key can be used to de-
crypt any ciphertext locked to a prior time. Furthermore, we
decentralize the trust among a number of servers, such that it
can tolerate up to a threshold number of (malicious) corrup-
tions. We call our notion threshold aggregated time-locked
encryption (TATLE). We propose a practical construction that
supports compact decryption keys as well as compact cipher-
texts (both logarithmic in the total lifetime). Our construction
is based on bilinear pairing and adapts ideas from Canetti et
al.’s binary tree encryption [Eurocypt 2003] and Naor et al.’s
distributed pseudorandom functions [Eurocrypt 1999].

1 Introduction

Time-locked encryption can encrypt a message to a future
time such that a receiver can only decrypt the ciphertext after
that time. It opens the door for several novel applications [26,
25]. Examples include: 1) sealed-bid auctions (to prevent
malicious auctioneers from reading bids before deadline); 2)
scheduled confidential transactions with non-repudiation (e.g.
insiders issuing commitments to stock trades that cannot be
discarded if later unfavorable); 3) digital equivalent of time
capsules; 4) cryptocurrency wallet backups (e.g., escrow or a
set of users assisting with key recovery after a deadline).

Prior schemes for time-locked encryption fall into two
broad categories. �Time-lock puzzles [26] requires the receiver
to perform expensive sequential computations (a.k.a. puzzles),
where the difficulty of the puzzle (e.g., repeated squaring mod-
ulo a product of two primes) determines a lower bound on the
time that the receiver must execute (under some assumption
on “best available” hardware). Although no trust is placed on
third parties in the case of time-lock puzzles, they only let
the sender specify a coarse-grained release time, dependent
on factors including the receiver’s CPU speed and when the
receiver commenced the puzzle. Moreover, it requires a signif-
icant amount of computation and energy from the receiver; in
an auction, it would require the auctioneer to solve a separate
puzzle for each bidder, which is not scalable.

When the application demands a precise or absolute time
for decryption (e.g. digital lockbox or voting), or requires
efficiency, an approach based on one or more trusted time
servers is far more practical, and that is our focus for this work.
In fact, to avoid a single point of failure, we decentralize trust
to a set of servers, who hold shares of a long-term secret key
(under a threshold secret-sharing scheme, for instance), such
that they collectively generate the time-specific decryption
key after the deadline has passed, while keeping the long-term
key distributed at all times. Prior schemes of this variant, by
Blake and Chan [9] and Cheon et al. [12], use a trusted “timed-
release" server that keeps a long-term secret to periodically
compute and publish a decryption key for each time period
or epoch. Both schemes are essentially adapted from identity-
based encryption [4] (IBE), wherein each epoch is mapped to
an identity; they borrow a useful property from IBE wherein
encryption uses a short public key and can be done prior to
generating the epoch’s decryption key.

Now consider what happens when the user is offline at
the time the server releases the decryption key, or receives a
back-dated ciphertext, or simply gets around to decrypting the
ciphertext at a later time (very likely in real-time settings with
sub-second epochs). In all these situations, the user needs
access to older keys.

To that end, the server can either make available the older

1

keys (by re-computing them on user’s request or publish-
ing them on a bulletin board), or alternatively, broadcast the
entire set of keys to the client. Each approach has its draw-
backs. Re-computing keys for user requests has prohibitive
computational and deployment overheads, and possibly pri-
vacy concerns in some contexts as the user must reveal the
ciphertext’s epoch (or use a protocol for private information
retrieval [6], which needs high bandwidth). On the other hand,
publishing historical keys on a bulletin board or broadcast-
ing them quickly exhausts storage and / or bandwidth. When
using 1-second epochs, it would take over 1.8 GB of key ma-
terial for each year worth of epochs (each epoch’s key being
a 64 byte group element). The underlying issue is that there
is no correlation amongst the keys for different epochs.

We take a different view on time-locked encryption. A key
released for epoch τ must be aggregated, in that it should be
sufficient to decrypt for all prior epochs τ′ ≤ τ as well. Not
surprisingly, the epoch-specific keys1 must also be sub-linear
in size (in the lifetime of the system), and small in practice
(ideally no more than a few KBs for practical lifetimes). The
ability to decrypt for prior epochs has never been considered
in prior works, and we believe it to be a natural notion for time-
locked encryption. Combining with the decentralization of the
key-generation, we propose a new notion called (threshold)
aggregated time-locked encryption (TATLE).

We provide a simple and efficient construction that achieves
chosen-plaintext security using an (asymmetric) bilinear pair-
ing on a Gap Diffie-Hellman group – our security reduces to
the decision Biliniear Diffie-Hellman (DBDH) assumption
in the random oracle model. Our construction operates in a
(t,n)-threshold setting for any t ≤ n, where the lifetime secret
(from which epoch keys are periodically derived) is secret-
shared onto a set of n servers, such that compromising fewer
than a threshold t of the servers reveals no information about
the lifetime secret. We show how to obtain CCA-security us-
ing a standard transformation. Furthermore, using simple and
efficient non-interactive zero-knowledge proofs, our construc-
tion also provides malicious security without much overhead,
so a cheating server cannot force incorrect decryption. We
emphasize that these augmentations are done independently
such that it is possible to combine these properties (such as
CCA and malicious security together) in any desired way.

Though we present a detailed empirical study later, consider
a few metrics (for our maliciously secure scheme) for a sample
data point: lifetime of 230 epochs, or roughly 34 years with
1-second epochs. Our key size is logarithmic in the number
of epochs; it ranges from 0.16 KB - 4.8 KB, depending on the
specific epoch in a lifetime. Ciphertexts are also logarithmic
in size (0.19-2 KB of ciphertext expansion) and decryption
incurs logarithmic number of group operations (between 35-
50 ms). Key derivation also incurs logarithmic number of
group operations on the server (between 2-4 ms).

1We also refer to these keys by epoch keys or aggregated keys throughout
the paper to distinguish them from the long-term keys.

Contributions In this work, we define, design and imple-
ment threshold aggregated time-locked encryption (TATLE).
Our contribution can be summarized as follows:

− formalization of TATLE, and its CPA / CCA security
properties in a threshold setting;

− constructions for semi-honest and malicious settings,
achieving CPA and CCA security, with compact keys
and ciphertexts (both logarithmic in the total lifetime),
and practical running time;

− open-source implementation and empirical evaluation
measuring the sizes of keys and ciphertexts, and the
running time of the various algorithms in TATLE.

2 Related Work

We briefly summarize some closely related works here.

Computational Reference Clocks Instead of having an
absolute decryption time, schemes based on time-lock puz-
zles require the recepient to perform an expensive sequential
computation to recover the message, thus imposing a coarse-
grained release time. Rivest et al. [26] provide a construction
based on repeated squaring modulo a product of two primes.
Mahmoody et al. [21] constructs time-lock puzzles in the
random oracle model. A recent proposal by Liu et al. [20]
constructs time-locked encryption using a computational ref-
erence clock (based on Bitcoin hashchains) and an extractable
witness encryption scheme which is not practical.

Trusted Time Servers Blake and Chan [9] and Cheon et
al. [12] provide schemes that are adaptations of the Boneh-
Franklin IBE scheme [4]. Neither schemes enable decryption
of prior ciphertexts, or alternatively, require aggregated keys
of linear size in order to do so. The scheme of Rabin and
Thorpe [25] requires the servers to compute a separate public
key for each epoch, whose private component is released
during that epoch. This requires the servers to apriori publish
a long list of future public keys.

Additional Relevant Works Specter et al. [29] add denia-
bility to emails by divulging private signing keys (so authen-
ticity can no longer be proven) over time from a hierarchical
identity-based signature scheme, adapted from the Gentry-
Silverberg scheme [18]. Moreover, their hierarchy mimics
that of a calendar, and they achieve succintness by allowing a
child’s key to be derivable from the parent’s key. While our
approaches have technical similarity, our scheme shows how
a binary identity space can enable a more efficient tree-based
encryption scheme with shorter keys. Ning et al. [24] design
a time-release protocol that split a secret into several shares,
and require the shareholders to release their shares on a future
date or get penalized by a smart contract.

2

3 Technical Overview

We assume a finite lifetime for the scheme, which is dis-
cretized into a set of T time periods called epochs. Our work
makes no assumption on the duration of each epoch in terms
of wall-clock time, so our only system parameter is the total
number of epochs T .

3.1 Deployment and Operation
We have a client-server setting. The server uses a long-term
secret-key to compute per-epoch keys. Moreover, to avoid a
single point of failure, we use a set of independent servers,
and distribute the long-term secret material amongst them.

A setup phase establishes a lifetime (long-term) secret key
lsk, and generates a corresponding public key l pk. Clients
use l pk to encrypt messages. Instead of the whole lsk, the
setup phase outputs shares of lsk computed using a t out of
n threshold secret sharing scheme [28]2; here, n denotes the
number of servers and t is the corruption threshold, as in t
shares are required to reconstruct lsk and any subset of t−1
shares reveals no information (in the information-theoretic
sense) about lsk.

Each server Si is given a share lski of the whole secret lsk.
At the start of epoch τ, server Si publishes a partial aggre-
gated/epoch key Kτ,i. Given any t such partial keys, a client
can combine them locally to attain the whole epoch key Kτ.
The client then uses Kτ to decrypt any ciphertext locked to
epoch τ or earlier.

We note that the whole lsk is never reconstructed. More-
over, the scheme is non-interactive, in that the keys output by
the server do not depend on the message or the ciphertext.

3.2 Requirements
3.2.1 Efficiency Requirements

For the system to be practical for applications with real-time
constraints (e.g. auctions) and large number of users (e.g.
voting), it must have:

− short keys: the key size must be sub-linear in the life-
time T . For practical parameters (e.g. T = 232, or 136.2
years of 1-second epochs), we expect keys on the order
of KBs.

− efficient operations: encryption and decryption oper-
ations should consume CPU time on the order of few
milliseconds. We expect a similar requirement for key
generation on the server.

2In the threshold setting, the setup phase can also be performed using a
distributed key generation protocol [17], in lieu of assuming a trusted dealer,
such that no single party learns the lifetime secret key, however we do not
place any such demands on the setup phase in our definition and it does not
matter that much because it is done only once in the beginning.

− short ciphertexts: we expect ciphertexts to be short as
well, with at most a few KBs of ciphertext expansion for
practical parameters.

The above requirements ensure practical bandwidth over-
heads between the client and servers, and also practical run-
ning time for the clients.

3.2.2 Security Requirements

Message Privacy Any ciphertext encrypted for a future
epoch cannot be decrypted using any subset of keys released in
the past. Specifically, prior keys do not reveal any information
about future keys (to a computationally-bounded adversary).

Malicious Security We assume that fewer than t out of n
servers may behave maliciously, including producing incor-
rect shares of the epoch key. In order to prevent these attacks
from causing incorrect decryptions, we require that the ag-
gregated keys (both partial and whole) be publicly verifiable
(using public parameters generated during the setup phase).
Moreover, while corrupt servers may also cheat by releasing
key material for future epochs, an attacker has negligible ad-
vantage in extracting the whole decryption key for a future
epoch (again, assuming that fewer than t servers are corrupt).

Availability The system must be functional as long as at
least t servers are operating correctly. In other words, we can
have fewer than n− t corrupt servers, who may go offline or
publish incorrect values, but the client must still succeed in
deriving the correct decryption key.

3.3 Overview of our Construction
Here we provide an elaborated technical overview of our main
construction. For full details we refer to Section 6. First we
assume a single centralized key-generation server – in this
setting we describe the prior IBE based construction, which
fails to meet our efficiency requirements. Then we describe
our (centralized) construction. Later we show how to deploy it
into the threshold setting. Finally we mention how to augment
this into CCA-secure and malicious-secure setting.

3.3.1 Prior IBE-based Constructions

Let us briefly examine how prior works essentially adapt
identity-based encryptions (IBE) to the purpose of time-
locked encryption. The basic idea is to apply the pairing-based
IBE scheme of Boneh and Franklin [4], where each identity
is mapped to an epoch. The scheme makes use of source
groups3 G and GT which are both cyclic groups of prime

3For the ease of exposition here we assume the symmetric variant of
pairing where both the source groups are same, as opposed to an asymmetric
variant where different source groups are used – our implementation uses
asymmetric pairing for better efficiency.

3

order q, a bilinear pairing e : G×G→GT , generator g ∈G,
and hash function H : {0,1}∗→G. The scheme essentially
works as follows:

− Setup : Sample random α←$ Zq, and output the lifetime
public key l pk := gα, and lifetime secret key lsk := α.

− In each epoch, the server outputs epoch key Kτ := H (τ)α.

− Enc(m,τ) outputs c := (gr,m · e(H (τ)r, l pk) for r←$ Zq.

− Dec(Kτ,c) outputs m := v · e(Kτ,u)−1 where c = (u,v).

Note that these operations correspond closely to the Boneh-
Franklin IBE construction [4]. A debilitating property of this
scheme is that the keys {H (τ)α}τ∈1...T are unstructured, in
that they cannot be aggregated or compressed (without α).
In particular, there is no way to compactly generate a key
at epoch τ, which would be used to decrypt any ciphertext
encrypted to an epoch τ′ ≤ τ.

3.3.2 HIBE-based approach

Our initial observation is that keys must mimic the inherent
hierarchy amongst the epochs: key material for a later epoch
must subsume that of earlier epochs, while not revealing any
bits of information about the future epochs. This points us to-
wards hierarchical identity-based encryption [18, 19] (HIBE).

In addition to the properties of an IBE scheme, HIBE as-
sumes a partial ordering for the identity-space and derives
keys hierarchically. That is, in addition to associating a key
with each identity, given identities id � id′, the key for id can
be derived from the key for id′, via a property called delega-
tion. This property is beneficial for our use case, wherein we
can define a partial order amongst the epochs, and thus avoid
having to publish keys of lower-level epochs if a higher-level
epoch key is already released. In particular, we focus on a
particular HIBE construction for a restriced identity space of
binary strings, known as Binary Tree Encryption (BTE) [7].

Consider arranging identities or epochs in a binary tree, as
illustrated below for T = 15 epochs.

15

7 14

3 6 10 . . .

1 2 4 5 8 9
010 011

00 01

001

0 1

10

100 101000

ε

Figure 1: Double labeling of tree with epoch id (via post-order
traversal) and path id (binary encoding of path from root node)

Each node is given two labels or identities: the epoch id τ

(0 ≤ τ ≤ T), and a path id ω containing a binary string that
denotes the path to that node from the root (left child being 0
and right child being 1) – we find it convenient to present the
construction using the path-based identity, but it is not strictly
necessary. The path identities form a prefix order relation,
where ω� ω′ if ω′ is a prefix of ω – we denote the root node
(or the least upper bound) by the empty string ε. The epoch id
is assigned via a post-order traversal on the binary tree, which
gives us a very useful property.4

Consider a non-leaf node with path id ω and epoch id τ.
Then, any of its descendant has an epoch id τ′ < τ. Further-
more, ω is a prefix of ω′, which is the path id corresponding
to τ′. Clearly, a HIBE key (we refer to such keys as id keys)
for a node labeled ω can be used to derive a key correspond-
ing to node ω′. This satisfies our requirement because any
such epoch τ′ is smaller than τ. So, it is sufficient to include a
single id key for τ to enable decryption corresponding to any
τ′ which is the epoch id of a descendant — this enables the
desired aggregation. Note that, the set of descendants, how-
ever, do not exhaust all prior epochs, and therefore we need
to include more id keys into an epoch key to enable the time
hierarchy we want. However, the tree-structure guarantees
that any epoch does not contain more than log(T) id keys.

For instance, we publish the HIBE key for node 000 in
epoch 1, 000 and 001 in epoch 2, 00 in epoch 3, nodes 00 and
010 in epoch 4, and so on. In particular, for a node with path
id ω, an epoch key consists of w id keys, where w denotes the
hamming weight of bit-string ω. Therefore, in the worst case
an epoch-key consists of log(T)+ 1 id keys.5 Instantiating
with a scheme such as BTE, that uses O(log(T)) group ele-
ments for one id key, we obtain a scheme where an epoch key
requires O(log2(T)) group elements in total.

A natural question is whether we can achieve a better space
efficiency. While investigating this, we find that the delegation
property – using an id key to derive keys for lower-level
identities – of HIBE is not strictly required for our setting
(also see Remark 3.1). In particular, in contrast to the HIBE
requirements, our key-generation procedure always has access
to the lifetime secret-key lsk (which actually makes it similar
to IBE). Let us summarize the main properties that we seek
in our encryption scheme:

− public-key encryption (similar to both IBE and HIBE):
encryption should only require the lifetime public key
l pk and the epoch id ω, and nothing else;

− key-generation (similar to IBE): key for id ω may be
generated from the lifetime secret key lsk and an epoch
id ω;

4It is evident later when we present the construction that binary tree
structure provides best space efficiency for our scheme. Furthermore, we
also explain why post-order traversal is chosen as opposed to pre-order (as
chosen in [7]) or in-order ones.

5Note that this happens for nodes with path id 111 . . .1.

4

− hierarchical decryption (similar to HIBE): epoch key
for id ω (epoch id τ) is sufficient to decrypt ciphertexts
“locked to” ω′ � ω (or equivalently τ′ ≤ τ)

A key contribution of this work is to propose an encryption
scheme satisfying these properties, while using O(1) key ma-
terial for each node, and hence, O(log(T)) size epoch keys.

We focus on the base construction first, and then aug-
ment the encryption to achieve malicious-security and CCA-
security.

3.3.3 Our TATLE scheme

We now present the core aspects of our scheme below (within
the box), and give the full details in Sec. 6. We note that our
construction is inspired by the BTE construction of Canetti
et al. [7]. Sometimes we use path id and epoch id of a node
alternatively — as discussed in Sec. 6, this is enabled by an
efficient bijective mapping between these two labels. In the
following description, we shall use ω|i to denote the first i
bits of ω, |ω| to denote the bit-length of ω, and Sω to denote
the id key for node with path id ω.

Lifetime Keys : lsk = α, l pk = gα where α←$ Zq

Key for path id ω generated with lsk :

Sω = H (ε)α ·
|ω|

∏
j=1

H (ω| j)α

Encryption of M :

C = (gγ,H (ω|1)γ,H (ω|2)γ . . . ,H (ω)γ,M ·d)
where d = e(l pk,H (ε))γ = e(g,H (ε))αγ

Decryption of C with Sω :

Parse C as (U0,U1, . . . ,Ut ,V)

Output M =V ·d−1 where d =
e(U0,Sω)

∏
|ω|
i=1 e(l pk,Ui)

Observe from the bilinearity property of pairings that:

d =
e(U0,Sω)

∏
|ω|
i=1 e(gα,Ui)

=
e(gγ,H (ε)α ·∏|ω|j=1 H (ω| j)α)

∏
|ω|
i=1 e(gα,H (ω|i)γ)

=
e(g,H (ε))αγ ·∏|ω|i=1 e(g,H (ω|i))αγ

∏
|ω|
i=1 e(g,H (ω|i))αγ

= e(g,H (ε))αγ

Let us consider an example assuming T = 15 as depicted
below, where the id keys are highlighted in red.

15ε

70 . . .

. . . 601

. . . 5011
S01=H(ε)αH(0)αH(01)αH(011)α

S01=H(ε)αH(0)αH(01)α

S0=H(ε)αH(0)α

Sε=H(ε)α

Figure 2: Id keys for our doubly-labeled tree

For instance, say that we wish to encrypt for ω = 01, and
decrypt first using S01 and later using S0 (note that for 01, the
epoch key consists of two id keys). Encryption of message M
for ω = 01 produces the ciphertext:

(U0 = gγ, U1 = H (0)γ, U2 = H (01)γ, V = M · e(gα,H (ε))γ)

Observe that the e(gα,H (ε))γ term acts as a random mask
based on the client’s randomness γ. Given id key S01 =
H (ε)α ·H (0)α ·H (01)α, we decrypt the above ciphertext
as follows:

V ·d−1 =V · e(g
α,U1) · e(gα,U2)

e(U0,S01)
= M

More importantly, due to hierarchical structure, we can also
decrypt the same ciphertext using id key S0 = H (ε)α ·H (0)α:

V ·d−1 =V · e(g
α,U1)

e(U0,S0)

= M · e(gα,H (ε))γ · e(gα,H (0)γ)

e(gγ,H (ε)α) · e(gγ,H (0)α)
= M

We emphasize that Sω′ for any prefix ω′ of ω is sufficient
to decrypt a ciphertext locked to ω. The intuition behind this
scheme is that the ciphertext for ω contains an element cor-
responding to each prefix of ω, and hence, can be thought of
as encrypting to each prefix of ω (or an epoch corresponding
to each node from the root to the node for ω). Therefore,
when given a node key for any prefix ω′ � ω, we can ig-
nore the remaining elements of the ciphertext (i.e., beyond
U|ω′| = H (ω||ω′|)γ) and decrypt as if the ciphertext was in-
stead locked to id ω′.

Remark 3.1 (Comparison with HIBE and IBE). Delegation
means that anyone with a key for id ω can derive a key for id
ω′. This is useful in the original motivation for HIBE, where
a separate party can assume full ability to derive keys in an
identity subspace (e.g. a team within a larger organization)
with respect to the assigned hierarchical structure. However,
in TATLE, all epoch keys are issued by the same server, and

5

access to the lifetime secret lsk gives the server ability to
compute the key for any id — this is rather similar to IBE.
Therefore, in our case, it suffices to enforce the hierarchy in
an efficient manner without providing the ability to delegate.

Given the above scheme, it is straightforward to construct
a TATLE scheme (albeit with centralized key-generation, i.e.,
for n = t = 1): For any epoch τ, the epoch/aggregated key
consists of O(log(T)) S values, such that their subtrees cover
all epochs between 1 and τ. For instance, in the above example
with T = 15, the key for epoch 4 is K4 = {S00,S010}, epoch
5 is K5 = {S00,S010,S011}, and so on. The final epoch 15 is
K15 = {Sε = H (ε)α}, which simply allows decryption of all
ciphertexts encrypted with the l pk. Since each S value is a
single group element, our epoch keys have O(log(T)) size (as
opposed to O(log2(T)) in HIBE). We stress that hierarchical
decryption is the key enabler here, as it allows us to prune S
values of children once a parent node’s id key can be emitted.
We refer the reader to Sec. 6 for a full presentation.

3.3.4 Drawbacks of Unbalanced Trees

We have a hierarchical structure of a balanced binary tree
similar to BTE [7]. As explained above, the standard IBE
gives a linear structure which fails to achieve our efficiency
requirement of compact aggregated/epoch keys. Therefore,
a tree-like structure seems inevitable in order for an ag-
gregated key to cover a large number of epochs. However,
as we have seen, an id key for epoch τ does not cover
all keys corresponding to epochs < τ — this leads to an
epoch key size of O(log(T)). One might wonder whether
this blow up can be avoided by instead employing an unbal-
anced tree: each node in the tree would have a right child
which is a leaf, and a left child which branches out further.

15

13 14

. . . 12

3

1 2

Figure 3: Unbalanced id tree

Such a tree (for T = 15)
is illustrated to our left. It
is easy to see that such a
structure indeed supports
epoch keys of O(1) sizes,
in that all non-leaf nodes
with epoch id τ′ < τ are
contained within the sub-
tree rooted a τ. That would
mean that an aggregated
key could contain as few
as two id-keys (two group
elements). However, this
leads to a blow up in the
ciphertext size, rendering
it to contain O(T) many
group elements — intu-
itively, this occurs because

each ciphertext for a node with path id ω must contain Ω(|ω|)
group elements when using the above encryption technique

with hierarchical decryption. In an unbalanced tree, a path id
ω can have upto T bits. Thus, such alternatives fail to achieve
our efficiency requirements.

3.3.5 Thresholdizing

Since our keys consist of a set of S values, each computed by
exponentiating the lifetime secret key lsk = α on a known
group element, it is simple to compute them when the lifetime
secret key is distributed in a manner such that there are n
servers holding a (t,n)-threshold secret sharing of lsk. Ba-
sically, instead of computing values like H (v)lsk (for some
value v) the i-th server now computes H (v)lski . The client, on
receiving any t of such values, can combine them using La-
grange reconstruction in the exponent. This step is similar to
the threshold computation of PRF as proposed in [23, 2]. Hav-
ing thresholdized the scheme in this manner, we decentralize
the trust as it protects against upto t−1 server compromises.

3.3.6 Malicious and CCA security

Our base construction (c.f. Fig. 4) achieves CPA-security
against semi-honest attackers. In Section 6.1, we show how
to augment this to a verifiable construction, in that a client
can verify the responses from each server and thus protect
against malicious corruption. Furthermore, in Section 6.2, we
outline how to use a variant of the Fujisaki-Okamoto [16]
transformation (also used in BTE [7]) to obtain CCA-security.
Importantly, these two modifications can be made indepen-
dently of each other and hence one can easily combine them
to obtain a CCA-secure construction (c.f. Corollary 1) which
is verifiable and thus resilient against malicious attacks.

4 Formal Security Model

4.1 Definition of ATLE Scheme
Definition 1 (Threshold Aggregate Timed-Locked Encryp-
tion). A threshold aggregate time-locked encryption (TATLE)
scheme is a tuple of algorithms (Setup, PartAggKeyGen,
KeyCombine, Enc, Dec) with the following syntax:

− Setup(1κ,T,n, t)→ (pp, l pk,(lsk1, . . . , lskn), : On input
the security parameter 1κ and the lifetime duration T
(in the number of epochs), Setup generates public pa-
rameters pp (to be used by all algorithms that follow), a
life-time public key l pk, n shares {lski}i∈[n] of the life-
time secret key lsk, and the initial aggregated key K0.

− PartAggKeyGen(lsk j,τ)→ Kτ, j : On input a long-term
key-share lsk j and an epoch τ ∈ {1, . . . ,T}, this algo-
rithm outputs a partial aggregated key kτ, j specific to the
time period τ and the key-share used (i.e. j).

− KeyCombine(Kτ,1, . . . ,Kτ,t)→ Kτ combines t partial ag-
gregated keys into a whole aggregated key.

6

− Enc(l pk,m,τ)→ c : encrypts a message m “locked to”
epoch τ, using the lifetime public key l pk, and outputs
the ciphertext c.

− Dec(l pk,K,c)→ m/⊥ : decrypts the ciphertext c using
an aggregated key K. If unsuccessful, Dec returns ⊥.

Then, the following condition holds for any
n, t,κ,T ∈ N, (such that t ≤ n). Let (pp, l pk,(lsk1,
. . . , lskn))← Setup(1κ,T,n, t); then, for any message m, any
two epochs τ,τ′ ∈ [T] for which τ≤ τ′, it satisfies:

(i) correctness, that is there exists a negligible function
negl(·) for which the following probability is at least
1−negl(κ):

Pr
[
m← Dec(l pk,Kτ′ ,c) |

(pp, l pk,K0,(lsk1, . . . , lskn))← Setup(1κ,T,n, t)

c← Enc(l pk,m,τ){
(Kτ, j)← PartAggKeyGen(lsk j,τ)

}
j∈[t]

Kτ← KeyCombine(Kτ,1, . . . ,Kτ,t){
(Kτ′, j)← PartAggKeyGen(lsk j,τ

′)
}

j∈[t]

Kτ′ ← KeyCombine(Kτ′,1, . . . ,Kτ′,t)
]

where the probability is over the random coin tosses of
the parties involved in Setup, PartAggKeyGen and Enc;

(ii) efficiency, that is both |Kτ,i| and |c| are proportional to
O(log(T)).

4.2 Security
We define a security game (IND-TL-CCA) for achieving cho-
sen ciphertext security against a “selective" TATLE attacker
who commits to the epoch to be attacked in advance (be-
fore the setup phase). For that reason, we call this attack a
selective-epoch attack. Our definition is inspired by the secu-
rity definitions for binary tree encrypion [7].

First, the attacker A submits her target epoch τ?. As is com-
mon in CCA games, we allow A to perform a set of queries
both before and after sending the challenge plaintexts. To
avoid trivial wins, the game checks whether A issued a key
generation query for any epoch on or after τ?, whose output
can be used to derive the keys for epoch τ?. The challenger
C responds to a polynomial number of decryption and key
generation queries by A , after which A submits a challenge
pair of equal-length messages m0, m1; C selects a random bit
b and sends A the encryption of mb locked to the epoch τ?

(selected by A earlier). After receiving the challenge cipher-
text, A submits another set of decryption and key generation
queries, under the constraint that A is not requesting the de-
cryption of the challenge ciphertext nor is requesting a key

for any epoch ≥ τ?. Finally, A outputs the guess bit b′ and
wins if b′ = b.

Definition 2 (IND-TL-CPA/CCA). A TATLE := (Setup,
PartAggKeyGen,KeyCombine,Enc,Dec) scheme satisfies
indistinguishability under chosen ciphertext attack if for all
PPT adversaries A , there exists a negligible function negl
such that the advantage of A is given by∣∣Pr

[
CCATATLE,A(1κ,0) = 1

]
−

Pr
[
CCATATLE,A(1κ,1) = 1

]∣∣≤ negl(κ),

in a security game CCA which is defined below.
CCATATLE,A(1κ,b):

− Selection. A(1κ,T) outputs an epoch 0≤ τ? ≤ T .

− Initialization. Run Setup(1κ,T) to get (lsk, pp). Give
pp to A . Initialize τmax := 0.

− Corruption. A outputs a set of corrupt party’s identities
C ⊆ [n] such that |C|< t. Give lski to A for all i ∈C.

− Phase 1. A adaptively issues a polynomial number of
queries, each of one of two types:

− Pre-challenge decryption. In response to A’s
decryption query (Decrypt,τ,c), C responds
by generating the epoch key kτ (by running
PartAggKeyGen and KeyCombine many times in
sequence as needed), and using it to decrypt c.

− Pre-challenge key derivation. In response to A’s
key derivation query (Derive,τ, j) where j ∈ [n]\
C, run PartAggKeyGen with lsk j and τ and return
the output to A . Update τmax := max(τmax,τ) if
(Derive,τ, j) is asked for at least t different j’s
— this can be tracked by storing the queries into a
list Lτ for each τ.

− Challenge. A outputs (Challenge,m0,m1) where
|m0| = |m1|. Give c? ← Enc(pp,mb,τ

?) to A . Output
1 if τmax ≥ τ?.

− Phase 2. A adaptively issues a polynomial number of
queries, each of one of two types:

− Post-challenge decryption. Repeat phase 1 but with
the following caveat. Only process A’s decryption
query (Decrypt,τ,c) if c 6= c?, else return ⊥ to A .

− Post-challenge key derivation. Repeat phase 1 but
with the following caveat. Only respond to A’s key
derivation query (Derive,τ, j) only if either τ < τ?

or Lτ has < t distinct j in total, else return ⊥ to A .

− Guess. Finally, A returns a guess b′. Output b′.

7

When the attacker is prohibited from invoking the decryp-
tion oracle, the above definition achieves a weaker guarantee
called indistinguishability under chosen plaintext attack or
IND-TL-CPA However, even in IND-TL-CPA, the adversary
is given access to the key-derivation oracle. The correspond-
ing experiment is denoted by CPATATLE,A .

Remark 4.1 (Semi-honest vs malicious security). The ad-
versary A in the above definition can either be semi-honest
or malicious. Clearly a construction that is secure against
the malicious adversary achieves a stronger security guar-
antee, albeit with additional overhead. Our base construc-
tion (c.f. Fig. 4) provides security against the semi-honest
attacker. In Section 6.1 we show how to augment that to a
construction providing security against a malicious attacker,
requiring changes only to the PartAggKeyGen and Combine
algorithms. In particular, a client who runs Combine verifies
proofs produced by each server (independently, i.e., no inter-
action amongst the servers or between clieant and server)
that it executed PartAggKeyGen correctly. Therefore, we call
such a construction (publicly) verifiable TATLE.

Remark 4.2 (Adaptive security). The definition achieves a
stronger adaptive security if the “selection” phase takes place
after ’corruption” but before the challenge phase. Our con-
struction can be generically transformed to saisfy adaptive
security by using complexity leveraging, that is by assuming
sub-exponential security of the underlying assumption.

5 Notations and Primitives

Notation The set of all binary strings of length ` is denoted
as {0,1}`. The output y of a probabilistic algorithm A on in-
put x is denoted by y← A(x). For deterministic algorithms
sometimes we use y := A(x). Moreover, occasionally we need
to explicitly specify the randomness r of a probabilistic al-
gorithm, which is denoted by y := A(x;r). For any bitstring
w, we write w|i to denote the first i bits of w. We denote the
empty string by ε.

5.1 Bilinear Pairings
Certain elliptic curves have an additional structure, called a
bilinear pairing. We use the following definitions from [5].

Definition 3. Let G0, G1, GT be three cyclic groups of prime
order q where g0 ∈ G0 and g1 ∈ G1 are generators. A pair-
ing is an efficiently computable function e : G0×G1→GT
satisfying the following properties:

− bilinear:

∀u,u′ ∈G0. ∀v ∈G1. e(u ·u′,v) = e(u,v) · e(u′,v)
∀u ∈G0. ∀v,v′ ∈G1. e(u,v · v′) = e(u,v) · e(u,v′)

− non-degenerate: gT =: e(g0,g1) is a generator of GT .

Bilinearity implies the following property:

e(gα
0 ,g

β

1) = e(g0,g1)
α·β = e(gβ

0 ,g
α
1)

The decision-BDH assumption states that given random
elements gα

0 , gβ

0 , gγ

0 ∈ G0, the value e(g0,g1)
α·β·γ ∈ GT is

indistinguishable from a random element in GT .

Definition 4. Attack Game for Decision bilinear Diffie -
Hellman (DBDH) assumption: let e : G0×G1→GT be a
bilinear pairing where G0, G1, GT are cyclic groups of prime
order q with generators g0 ∈ G0 and g1 ∈ G1. For a given
adversary A , we define two experiments.
Experiment b ∈ {0,1}:
The challenger computes

− α, β, γ, δ← Zq.

− u0← gα
0 , u1← gα

1 , v0← gβ

0 , and w1← gγ

1

− z(0)← e(g0,g1)
α·β·γ ∈GT , z(1)← e(g0,g1)

δ ∈GT

The adversary is given (u0,u1,v0,w1,z(b)) outputs a bit
b̂ ∈ {0,1}. Let Wb be the event that A outputs 1 in experiment
b. We define A’s advantage in solving the DBDH problem as:

DBDHadv[A ,e] =| Pr[W0]−Pr[W1] |

5.2 Secret Sharing
Definition 5 (Shamir’s Secret Sharing). Let p be a prime. An
(n, t, p,s)-Shamir’s secret sharing scheme is a randomized
algorithm SSS that on input four integers n, t, p,s, where 0 <
t ≤ n < p and s ∈ Zp, outputs n shares s1, . . . ,sn ∈ Zp such
that the following two conditions hold for any set {i1, . . . , i`}:

− if `≥ t, there exists fixed (i.e., independent of s) integers
λ1, . . . ,λ` ∈ Zp (a.k.a. Lagrange coefficients) such that
∑
`
j=1 λ jsi j = s mod p;

− if ` < t, the distribution of (si1 , . . . ,si`) is uniformly ran-
dom.

Concretely, Shamir’s secret sharing works as follows. Pick
a1, . . ., at−1 ←$ Zp. Let f (x) be the polynomial s+ a1 · x+
a2 ·x2+ . . .+at−1 ·xt−1. Then si is set to be f (i) for all i ∈ [n].

6 Our construction

In this section we put forward our main TATLE construction.
Our construction, though inspired by the Binary-tree encryp-
tion [7], is much simpler and thereby more efficient. Our base
construction (Fig. 4) satisfies CPA-security and is protected
only against semi-honest attacker. In Sec. 6.1 we show how to
augment our base construction to achieve malicious security.
Finally, we show how to augment that to CCA-security in

8

Sec. 6.2 by a variant of Fujisaki-Okamoto transformation [16]
analogous to Canetti et al. [7]. Since these two augmenta-
tions are orthogonal, it is possible to combine them easily to
obtain construction satisfying CCA and malicious security
simultaneously (c.f. Corollary 1).

Doubly-labeled tree. We use a binary-tree in our construc-
tion analogous to BTE [7]. Each node of the tree is labeled
with a binary bit-string as follows: let the depth of the tree be
d; then the root is labeled with the empty string ε, its left child
is labeled 0 and the right child is labeled 1; then the entire
tree is labeled recursively such that for each node with label
ω ∈ {0,1}∗, its left child is labeled by ω0 and right child by
ω1. Clearly, any node at level δ ∈ {1, . . . ,d} is labeled with a
binary string of length δ, which is equal to the length of the
path from the root to this node. These labels of the nodes are
called primary labels. We refer to a node by its primary label.
Additionally, each node is labeled with an integer (referred to
as secondary labels), which is assigned through a post-order
traversal on the tree. Recall that a post-ordered traversal as-
signs integer labels in an increasing sequence (that is 1,2, . . .)
in order left-right-root recursively. So, we can define a bi-
jective mapping M : {0,1}∗ → N which maps the primary
labels to the secondary labels. The inverse mapping from the
secondary to primary labels is denoted by M−1 : N→{0,1}∗.
An example is given in Fig. 1. For the lack of a better name
we shall refer to this structure by doubly-labeled tree. For any
node ω in the tree we define its left-extended (similarly right-
extended family) family (denoted as LEF(ω)) as the set which
contains all nodes that are left children of any node in the path
from root to ω, but do not belong to the path themselves. For
example, let ω = 0100, then the path from root to ω is the or-
dered set (ε,0,01,010,0100). Among them, only the node 0
has a left child, namely 00, which does not belong to the path.
So LEF(0100) consists of only one node {00}. Similarly for
111, we have LEF(111)= {0,10,110}, because every node of
the path (ε,1,11,111) has a left child that does not belong to
the path. It is worth noting that the size of LEF(ω) is equal to
the hamming weight of ω. Furthermore, no two nodes within
the same LEF can have ancestor-descendant relation.

Our CPA-secure construction is provided in Fig. 4.6 We
show the following theorem, the proof is given in Appnedix B.

Theorem 6.1. Under the decisional BDH assumption
(DBDH, defined in Def. 4), there exists an TATLE scheme
that satisfies IND-TL-CPA security against semi-honest ad-
versary as per Def. 2 in the random oracle model.

The construction follows the basic description from Sec. 3.
We emphasize that while our construction works for both sym-
metric and asymmetric pairings, the latter provides smaller
sized groups G0 (for the same level of security) (requiring

6For notational convenience we assume that the KeyCombine algorithm
works with responses from the first t servers, as opposed to any t servers.
The generalization can be done in a straightforward manner.

fewer bits for encoding), and also more efficient group and
pairing operations. Moreover, we designed our construction
so that the elements of the aggregated key (i.e., the S values)
are elements of the smaller group G0, while the public key is
an element of G1. The ciphertext consists of |ω| elements of
G0 (where ω = M−1(τ)), 1 element from G1, and 1 element
from target group GT ; since a majority of elements of the
ciphertext come from G0, we get a further reduction in our
ciphertext size as well.

Thresholdizing Our threshold mechanism is a straightfor-
ward adaptation of distributed psuedo-random function [23]
for multiplicative prime-order groups. We first recall their
mechanism. The PRF functionality being computed collec-
tively can be written as fα(x) = H (x)α, where H : {0,1}∗→
G is a hash function (modeled as a random oracle) and the
secret key is α ∈ Zp. To distribute the evaluation of f , the
secret key α must be secret shared between the parties. In the
setup phase, a trusted party samples a master key α←$ Zp
and uses Shamir’s secret sharing scheme [28] (see Def. 5)
with a threshold t to create n shares α1, . . . ,αn of α. Share αi
is given privately to the server i. We know that for any set of
t parties {i1, ..., it} ⊆ [n], there exists integers (i.e. Lagrange
coefficients) λi1 , . . . ,λit ∈ Zp such that ∑ j∈{i1,...,it}α jλ j = α.
Therefore, it holds that

fs(x) = H (x)α = H (x)∑ j∈{i1 ,...,it } λ jα j = ∏
j∈{i1,...,it}

(H (x)α j)
λ j

which can be computed in a distributed manner, by having
each server i produce H(x)α j .

Coming to our TATLE construction, we can write Sω as a
combination of values produced by the above DPRF f :

Sω = H (ε)α ·
|ω|

∏
j=1

H (ω| j)α = fα(ε) ·
|ω|

∏
j=1

fα(ω| j)

Reconstruction from partial keys leverages the natural ho-
momorphism. Consider any set of t servers {i1, ..., it} ⊆ [n],
who publish {Sω,1, . . . ,Sω,t} respectively. Then, we get:

∏
j∈{i1,...,it}

S
λ j
ω, j = ∏

j∈{i1,...,it}

(
H (ε)α j ·

|ω|

∏
k=1

H (ω|k)α j

)λ j

= ∏
j∈{i1,...,it}

(
H (ε)α jλ j ·

|ω|

∏
k=1

H (ω|k)α jλ j

)

= H (ε)α ·
|ω|

∏
k=1

(
∏

j∈{i1,...,it}
H (ω|k)α jλ j

)

= H (ε)α ·
|ω|

∏
k=1

H (ω|k)α = Sω

9

Ingredients

− Let G0, G1, and GT be multiplicative cyclic groups of prime
order q such that there exists a bilinear pairing e: G0×G1→
GT that is efficiently computable and non-degenerate. Let
g0 ∈G0 and g1 ∈G1 be generators of the respective groups.

− Hash function H : {0,1}∗→G0 modeled as a random oracle

− SSSn,t,q is a t out of n Shamir Secret Sharing scheme for Zq

− A doubly-labeled tree Γ of depth d such that T = 2d −1

TATLE construction

− Setup(1κ,T,n, t)→ (pp, l pk,(lsk1, . . . , lskn) :
Choose uniform random α←$Zq. Then, set
pp := (G0,G1,GT ,e,q,H ,Γ); lsk:=α; (lsk1, . . . , lskn) :=
SSSn,t,q(α) and l pk := gα

1 ;

− PartAggKeyGen(lsk j,τ)→ Kτ, j :

Parse α j := lsk j. Let ω := M−1(τ) and (ω1, . . . ,ωη) :=
LEF(ω) where η ∈ {0, . . . ,d} is the hamming weight of
ω.
Then letting ωη+1 := ω set for i = 1, . . . ,η+1 compute:

− Si, j :=
(

H (ε)∏
`i
k=1 H (ωi|k)

)α j
, where `i = |ωi|

− τi := M(ωi).

Output Kτ, j := ((τ1,S1, j), . . . ,(τη+1,Sη+1, j)).

− KeyCombine(Kτ,1, . . . ,Kτ,t) =: Kτ :
Parse each Kτ, j := (τ1,S1, j), . . . ,(τη+1,Sη+1, j) for some
η ∈ {0, . . . ,d}. For each i ∈ {1, . . . ,η + 1} collect
(Si,1, . . . ,Si,t) and then use Lagrange coefficients λ j ∈ Zq to

compute Si := ∏ j∈[t] S
λ j
i, j.

Output Kτ := ((τ1,S1), . . . ,(τη+1,Sη+1)).

− Enc(l pk,m,τ)→ c :
Let ω = M−1(τ). Sample uniform random r←$Zq and then
compute:

− c1 := (τ,gr
1,H (ω|1)r,H (ω|2)r, . . . ,H (ω)r);

− c2 := m · e(H (ε)r, l pk);

Output c = (c1,c2)

− Dec(l pk,K,c) =: m/⊥ :
Parse c as (c1,c2) and then:

− parse c1 := (τ′,R,h1, . . . ,h`);

− parse ((τ1,S1), . . . ,(τη+1,Sη+1)) := K.

− if τ′ > τη+1 then output ⊥, else go to the next step;

− identify the unique (τi,Si) such that either τi = τ′ or
ωi := M−1(τi) is a prefix of ω′ := M−1(τ′);

− set d := e(Si,R) · (∏`i
i=1 e(hi, l pk))−1 where `i := |ωi|;

Output m := c2 ·d−1

Figure 4: Our CPA-secure TATLE construction

6.1 Verifiable TATLE Construction
In this section we put forward an augmented TATLE con-
struction which satisfies security against a malicious attacker
and thereby yields a (publicly) verifiable TATLE construc-
tion. In addition to publishing elements of the aggregated key,
the server must publish a NIZK proof (specifically, Schnorr’s
proof [27, 11] via the Fiat-Shamir transform [15]) to prove
the key’s validity.

For provable security, we use trapdoor commitments to
commit to secret key shares of parties and generate NIZKs
with respect to these commitments, in lieu of simply proving
correctness with respect to the public key l pk – since our
IND-TL-CCA adversary is allowed to corrupt parties after ob-
taining the public parameters output by Setup, we make use
of trapdoor commitments to let the simulator open the com-
mitments to a different values using a trapdoor. Correctness
follows from the extractability property of the NIZK scheme
and the binding property of the commitment scheme.

The changes from the base construction are highlighted in
blue. Notably, the only changes take place in three algorithms:
Setup, PartAggKeyGen, and KeyCombine. The Enc and Dec
algorithms remain the same, so we omit mentioning them. We
need some additional ingredients:

− A trapdoor commitment (Setupcom,Commit) (Def. 7).

− Another hash function H ′ : {0,1}∗→{0,1}poly(κ) mod-
eled as a random oracle (within the NIZK).

− A SS-NIZK := (ProveH ′ ,VerifyH ′) (Def. 8).

The changed algorithms are described in Figure 5. We state
the following theorem — the proof is provided in Appendix B.

Theorem 6.2. Under the decisional BDH assumption
(DBDH, defined in Def. 4), there exists an TATLE scheme
that satisfies IND-TL-CPA security against malicious adver-
sary as per Def. 2 in the random oracle model.

Fig. 5 also defines our concrete instantiation of the trap-
door commitment and NIZK proofs. We use Pedersen com-
mitments (using independent generators g,h ∈G0, whose dis-
crete log is the trapdoor), and Schnorr-style proofs (more gen-
erally, sigma protocols (see Sec. A.3)) made non-interactive
using the Fiat-Shamir transformation in the random oracle
model. The Setup phase outputs a commitment γi to each
share αi using randomness ρi.

Concretely, server i proves the following statement for ω:

∃αi,ρi.γi := gαi ·hρi ∧ Sω,i =

(
H (ε)

|ω|

∏
j=1

H (ω| j)

)αi

We emphasize that our proof contains 3 field elements of Zq
(where q is the order of group G0), and its size is independent
of the bit-length of ω. The reason is that even though Sω,i
is a product of |ω| terms, it can be written as xαi , where x =

10

Verifiable TATLE construction

− Setup(1κ,T,n, t)→ (pp, l pk,(lsk1, . . . , lskn)) : Choose
uniform random α←$Zq. Let lsk:=α, l pk := gα and
run (α1, . . . ,αn) := SSSn,t,q(α). Run Setupcom(1κ)
to get ppcom. Sample uniform random ρi and
compute γi := Commit(ppcom,αi;ρi). Then set:
pp := (G0,G1,GT ,e,q,H ,Γ, , ppcom,γ1, . . . ,γn) and
lski := (αi,ρi).

− PartAggKeyGen(lsk j,τ)→ Kτ, j : Parse α j := lsk j. Let

ω := M−1(τ) and (ω1, . . . ,ωη) := LEF(ω) where η ∈
{0, . . . ,d} is the hamming weight of ω.
Letting ωη+1 := ω set for i = 1, . . . ,η+1 compute:

− w0 := H (ε), for k ∈ {1, . . . , `i} wk := H (ωi|k).

− Si, j := (∏
`i
k=0 wk)

α j , where `i = |ωi|
− τi := M(ωi).

− Run ProveH ′
for the language {∃ α,ρ s.t. Si, j =

(∏
`i
k=0 wk)

α ∧ γi = Commit(ppcom,α;ρ)} with state-
ment (Si, j,w0,w1, . . . ,w`i ,γi) and witness (αi,ρi) to
obtain a proof πi, j

Then, set Kτ, j :=((τ1,S1, j,π1, j), . . . ,(τη+1,Sη+1, j,πη+1, j)).

− KeyCombine(Kτ,1, . . . ,Kτ,t) =: Kτ/⊥ : Parse each
Kτ, j := (τ1,S1, j,πi, j), . . . ,(τη+1,Sη+1, j,πη+1, j) for
a η ∈ {0, . . . ,d}. For each i ∈ {1, . . . ,η + 1} collect
(Si,1, . . . ,Si,t) and then let ωi := M−1(τi) do as follows:

− Compute w0 := H (ε), for k ∈ {1, . . . , `i} and wk :=
H (ωi|k).

first check whether proof πi, j verifies with respect to the
statements (Si, j,τi,γ j) (w0,w1, . . . , are calculated from
τi), if not then output ⊥, otherwise use Lagrange coef-
ficients λ j ∈ Zq to compute Si := ∏ j∈[t] S

λ j
i, j. Set Kτ :=

((τ1,S1), . . . ,(η+1,Sη+1)).

Concrete instantiation

− Setupcom(1κ): Sample generator h ←$ G0, and output
ppcom =: (g0,h).

− Commit(ppcom = (g,h),α;ρ): output gα ·hρ

− ProveH ′
({∃ α,ρ. S = (∏

`i
k=0 wk)

α∧ γ = gα ·hρ} with state-
ment (S,w0,w1, . . . ,w`i ,γ) and witness (α,ρ):
Let w = ∏

`i
k=0 wk. Sample v,v′←$ Zp and set t := wv, t ′ :=

gv ·hv′ . Compute c := H ′(g,h,S,w0,w1, . . . ,w`i ,γ, t, t
′). Let

u := v− c · s and u′ := v′− c · r. Output proof π = (c,u,u′).

− Verify(π = (c,u,u′)) for statement (S,w0,w1, . . . ,w`i ,γ):
Compute t := wu ·Sc, t ′i := gu ·hu′ · γc and output 1 iff c =
H ′(g,h,S,w0,w1, . . . ,w`i ,γ, t, t

′).

Figure 5: Changes for the verifiable TATLE construction

H (ε)∏
|ω|
j=1 H (ω| j) is 1 group element. Therefore, aggregated

keys are of size Θ(log(T)) even in the verifiable construction.

6.2 CCA-security
Our base construction achieves IND-TL-CCA-security by us-
ing a variant of Fujisaki-Okamoto [16] transformation, analo-
gous to the BTE construction of Canetti et al. [7]. Remarkably
the only changes we need to make from our IND-TL-CPA
secure base construction (c.f. Figure 4) are in the Enc and Dec
algorithms. Therefore, one can easily deploy these changes
together with the augmentation needed for malicious secu-
rity as discussed in the previous subsection, thereby achiev-
ing a construction simultaneously satisfying verifiability and
IND-TL-CCA security. We describe the changed Enc′ and
Dec′ algorithms below. Those are generic extensions of the
algorithms Enc and Dec respectively from the base construc-
tion. For that we will be needing a few more ingredients:

− A symmetric-key encryption scheme (SE.Enc,SE.Dec)
that takes {0,1}κ bit key.

− Two hash functions H1 : GT → {0,1}κ and H2 : GT ×
{0,1}∗×{0,1}∗→ Zq modeled as random oracles.

− Enc′(l pk,m,τ)→ c: Let ω := M−1(τ). Then:

− Sample uniform random s←$ GT .

− Compute c1← Enc(l pk,s,τ;H2(s,ω,m)).

− Compute c2 ← SE.Enc(H1(s),m) where H1(s) is
used as the key.

− Set c := (τ,c1,c2).

− Dec′(l pk,K,c) → m/⊥: Parse (τ,c2,c2) := c and let
ω := M−1(τ) then:

− Compute s := Dec(c1).

− Use H1(s) as the key to decrypt m :=
SE.Dec(H1(s),c2).

− Then re-encrypt with the randomness H2(s,ω,m)
to check whether c1 = Enc(l pk,s,τ;H2(s,ω,m)).

− If the check succeeds then output m otherwise out-
put ⊥.

We state the following theorem, the proof for which is
deferred to Appendix B.

Theorem 6.3. Under the decisional BDH assumption
(DBDH, defined in Def. 4), there exists an TATLE scheme
that satisfies IND-TL-CCA security against semi-honest ad-
versary as per Def. 2 in the random oracle model.

Combining Theorem 6.2 with the above theorem we get
the following corollary immediately.

Corollary 1. Under the decisional BDH assumption (DBDH,
defined in Def. 4), there exists an TATLE scheme that satisfies
IND-TL-CCA security against malicious adversary as per
Def. 2 in the random oracle model.

11

7 Implementation and Evaluation

We measure several attributes of our TATLE scheme, includ-
ing the size of aggregate keys, size of ciphertexts, and the
running time of the individual algorithms.

We implement our TATLE scheme in Go, and make it
available open source7. We use the 256-bit Barretto-Naehrig
curves that support the Optimal Ate pairings as described
in [22] (implementation from [1]). Benchmarks were run on
a Macbook Pro with a 2.6 GHz 6-Core Intel Core i7 CPU and
16 GB DDR4 RAM.

7.1 Key Size
We measure the size of the aggregate key (produced by
PartAggKeyGen) as a function of the (number of epochs in)
lifetime T . This metric denotes the amount of key material
output by each server in each epoch, and is indicative of the
client-server bandwidth overhead, or alternatively, the space
overhead of publishing the aggregate key on a bulletin board.

Recall that the size of the key Kτ for epoch τ < T depends
on the number of tree nodes required to cover the range of
epochs from 1 to τ. For that reason, we get a range of key
sizes within a lifetime T . We expect Θ(log(T)) number of
nodes in the worst case, and each node has an associated S
value in Kτ – each S value is an element of G0, of length 64
bytes when serialized in binary form. So, we collect key sizes
for the entire range of epochs in a lifetime, and report the min,
max, and the average (which unsurprisingly ends up being
half of the largest key size). We also report the key size for
both semi-honest and malicious settings, with the distinction
being that the maliciously secure scheme has a NIZK proof
(containing 3 field elements of 32 bytes each) alongside each
S value. The results are given in Table 1.

epochs stat Semi-honest Malicious
TATLE IBE TATLE IBE

210

min 0.064 0.064 0.16 0.16
max 0.640 65.47 1.6 163.7
avg 0.320 32.74 0.8 81.84

215

min 0.064 0.064 0.16 0.16
max 0.960 2.09×103 2.4 5.24×103

avg 0.480 1.04×103 1.2 2.62×103

220

min 0.064 0.064 0.16 0.16
max 1.280 6.71×104 3.2 1.68×105

avg 0.640 3.35×104 1.6 8.39×104

230

min 0.064 0.064 0.16 0.16
max 1.920 6.87×107 4.8 1.72×108

avg 0.960 3.44×107 2.4 8.59×107

Table 1: Key size (in KBs): logarithmic growth for TATLE

For illustrative purposes, we compare with the size of
key material when using an IBE-based scheme, such as the

7https://github.com/gotatle/tatle.git

schemes from prior works [12, 9]. Since their keys grow
linearly with the number of epochs T , it ends up being pro-
hibitively large (in the order of terabytes) for even modest
sized lifetimes. On the other hand, our keys grow logarithmi-
cally in T , and it is under 2 KB in the semi-honest and 5 KB
in the malicious setting for a lifetime of 230 epochs.

It is worth re-stating that when we operate in a t out of n
threshold setting, the client needs to be given at least t partial
keys of the size reported above.

7.2 Ciphertext Size

We report the ciphertext size when the message is encoded as
a group element, which can also be thought of as the overhead
from ciphertext expansion when encrypting a binary string in
our CCA construction (see Sec. 6.2).

Similar to the case with key size, different epochs produce
ciphertexts of varying size, depending on the position of the
node in the tree – recall that for path-based identity ω of
the node labelled τ, a ciphertext locked to epoch τ will have
|ω| group elements from G1 (64 byte each), 1 element from
G0 (128 bytes), and 1 element from GT (384 bytes). Table 2
reports the min, max, and average statistics over the ciphertext
sizes across the lifetime, for various values of T .

Epochs
210 215 220 230

min 0.576 0.576 0.576 0.576
max 1.088 1.408 1.728 2.368
avg 1.025 1.344 1.664 2.304

Table 2: Ciphertext Expansion (in KBs)

Ciphertexts in TATLE grow logarithmically in the lifetime
T , unlike IBE-based schemes which have constant-size ci-
phertexts containing 2 group elements. While this property of
our scheme is far from ideal, we do not find it to be a practical
hinderance for the proposed applications of time-locked en-
cryption – it may present a challenge when encrypting large
databases, but such use cases are out of scope.

7.3 Running Time

We report the running times of algorithms in our TATLE con-
struction. The server runs PartAggKeyGen, while the client
runs Enc and Dec using the whole aggregated key.

7.3.1 Key Generation

Caching Optimization We implement an obvious caching
optimization when running PartAggKeyGen for consecutive
epochs. For any node with id ω, Sω is defined recursively as
Sω′ ·H (ω)α (where ω′ denotes the parent of ω). So, if we
have cached the S value of any parent node, we can avoid

12

2^10 2^15 2^20 2^30
Number of epochs in lifetime

0

1

2

3

4

5

6

7

8

9

La
te

n
cy

 (
m

ill
is

e
c)

Semi-Honest

Malicious

Figure 6: Running Time of PartAggKeyGen

2^10 2^15 2^20 2^30
Number of epochs in lifetime

3
4
5
6
7
8
9

10
11
12
13
14
15

R
u
n
n
in

g
 T

im
e
 (

m
ill

is
e
c)

Figure 7: Running Time of Enc

2^10 2^15 2^20 2^30
Number of epochs in lifetime

1

6

11

16

21

26

31

36

41

46

51

56

R
u
n
n
in

g
 T

im
e
 (

m
ill

is
e
c)

Figure 8: Running Time of Dec

recomputing several group operations. To that end, we main-
tain a cache comprising S values for each node along the path
from the root node to ω, and remove S values of nodes that
are no longer needed (because we will never output it in a key
nor compute its child in future). Consider Fig. 1; in epoch
4 for instance, we remove S000 and S001 from the cache, and
add S01 and S010. We still compute Θ(log(T)) new S values
in the worst case (e.g. in epoch 8, where fresh S values must
be computed along the entire path from the root). However,
observe that intermediate nodes never compute fresh S values
(since a leaf node would have already computed the necessary
S values); more generally, we find a significant drop in the
required computation across a large fraction of the nodes. We
stress that the cache never exceeds the height of the tree, so it
is at most 64 * dlog(T)e bytes (2 KB for 230 epochs).

We illustrate the distribution of running times in Fig. 6. Due
to caching, a large fraction of evaluations of PartAggKeyGen
terminate under 1 ms, but we can observe the Θ(log(T)) worst
case running time in the outliers. Moreover, the quantiles grow
with T in our malicious construction because the NIZK proof
generation does not benefit from caching in the same manner
as the S values.

Encryption and Decryption Fig. 7 and Fig. 8 report the
running times for encryption and decryption, respectively.
Similar to all other metrics, the running time for each Enc
and Dec operation depends on the depth of the node – recall
that a ciphertext includes a group element corresponding to
each node along the path from the root node – so we plot the
distribution from millions of trials, with each trial encrypting
or decrypting from a random epoch.

References

[1] Advanced crypto library for the Go language. https:
//github.com/dedis/kyber.

[2] Shashank Agrawal, Payman Mohassel, Pratyay Mukher-
jee, and Peter Rindal. DiSE: Distributed symmetric-key
encryption. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018,
pages 1993–2010. ACM Press, October 2018.

[3] Shashank Agrawal, Payman Mohassel, Pratyay Mukher-
jee, and Peter Rindal. DiSE: Distributed symmetric-
key encryption. Cryptology ePrint Archive, Report
2018/727, 2018. https://eprint.iacr.org/2018/
727.

[4] Dan Boneh and Matthew K. Franklin. Identity-based
encryption from the Weil pairing. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 213–229.
Springer, Heidelberg, August 2001.

13

https://github.com/dedis/kyber
https://github.com/dedis/kyber
https://eprint.iacr.org/2018/727
https://eprint.iacr.org/2018/727

[5] Dan Boneh and Victor Shoup. A graduate course in
applied cryptography. Manuscript, 2020. https://
toc.cryptobook.us/.

[6] Christian Cachin, Silvio Micali, and Markus Stadler.
Computationally private information retrieval with poly-
logarithmic communication. In Jacques Stern, editor,
EUROCRYPT’99, volume 1592 of LNCS, pages 402–
414. Springer, Heidelberg, May 1999.

[7] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-
secure public-key encryption scheme. In Eli Biham, ed-
itor, EUROCRYPT 2003, volume 2656 of LNCS, pages
255–271. Springer, Heidelberg, May 2003.

[8] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-
secure public-key encryption scheme. Cryptology ePrint
Archive, Report 2003/083, 2003. http://eprint.
iacr.org/2003/083.

[9] Aldar C. F. Chan and Ian F. Blake. Scalable, server-
passive, user-anonymous timed release cryptography. In
Proceedings of the 25th IEEE International Conference
on Distributed Computing Systems, ICDCS ’05, page
504–513, USA, 2005. IEEE Computer Society.

[10] Sanjit Chatterjee and Alfred Menezes. On cryptographic
protocols employing asymmetric pairings – the role of Ψ

revisited. Cryptology ePrint Archive, Report 2009/480,
2009. http://eprint.iacr.org/2009/480.

[11] David Chaum and Hans Van Antwerpen. Undeniable
signatures. In Gilles Brassard, editor, CRYPTO’89, vol-
ume 435 of LNCS, pages 212–216. Springer, Heidelberg,
August 1990.

[12] Jung Hee Cheon, Nicholas Hopper, Yongdae Kim, and
Ivan Osipkov. Provably secure timed-release public key
encryption. ACM Trans. Inf. Syst. Secur., 11(2), May
2008.

[13] Mihai Christodorescu, Sivanarayana Gaddam, Pratyay
Mukherjee, and Peter Rindal. Amortized threshold
symmetric-key encryption. To appear in ACM CCS
2021, 2021. via personal communication.

[14] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra
Marson, and Daniele Venturi. On the non-malleability
of the Fiat-Shamir transform. In Steven D. Galbraith and
Mridul Nandi, editors, INDOCRYPT 2012, volume 7668
of LNCS, pages 60–79. Springer, Heidelberg, December
2012.

[15] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems.
In Andrew M. Odlyzko, editor, CRYPTO’86, volume
263 of LNCS, pages 186–194. Springer, Heidelberg, Au-
gust 1987.

[16] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integra-
tion of asymmetric and symmetric encryption schemes.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666
of LNCS, pages 537–554. Springer, Heidelberg, August
1999.

[17] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk,
and Tal Rabin. Secure distributed key generation for
discrete-log based cryptosystems. Journal of Cryptol-
ogy, 20(1):51–83, January 2007.

[18] Craig Gentry and Alice Silverberg. Hierarchical ID-
based cryptography. In Yuliang Zheng, editor, ASI-
ACRYPT 2002, volume 2501 of LNCS, pages 548–566.
Springer, Heidelberg, December 2002.

[19] Jeremy Horwitz and Ben Lynn. Toward hierarchical
identity-based encryption. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 466–
481. Springer, Heidelberg, April / May 2002.

[20] Jia Liu, Tibor Jager, Saqib A. Kakvi, and Bogdan Warin-
schi. How to build time-lock encryption. Des. Codes
Cryptography, 86(11):2549–2586, November 2018.

[21] Mohammad Mahmoody, Tal Moran, and Salil P. Vad-
han. Time-lock puzzles in the random oracle model. In
Phillip Rogaway, editor, CRYPTO 2011, volume 6841
of LNCS, pages 39–50. Springer, Heidelberg, August
2011.

[22] Michael Naehrig, Ruben Niederhagen, and Peter
Schwabe. New software speed records for cryptographic
pairings. Cryptology ePrint Archive, Report 2010/186,
2010. https://eprint.iacr.org/2010/186.

[23] Moni Naor, Benny Pinkas, and Omer Reingold. Dis-
tributed pseudo-random functions and KDCs. In Jacques
Stern, editor, EUROCRYPT’99, volume 1592 of LNCS,
pages 327–346. Springer, Heidelberg, May 1999.

[24] Jianting Ning, Hung Dang, Ruomu Hou, and Ee-Chien
Chang. Keeping time-release secrets through smart
contracts. Cryptology ePrint Archive, Report 2018/1166,
2018. https://eprint.iacr.org/2018/1166.

[25] Michael O Rabin and Christopher Thorpe. Time-lapse
cryptography. 2006.

[26] Ronald L. Rivest, Adi Shamir, and David A. Wagner.
Time-lock puzzles and timed-release crypto. Technical
report, 1996.

[27] Claus-Peter Schnorr. Efficient identification and sig-
natures for smart cards. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 239–252.
Springer, Heidelberg, August 1990.

14

https://toc.cryptobook.us/
https://toc.cryptobook.us/
http://eprint.iacr.org/2003/083
http://eprint.iacr.org/2003/083
http://eprint.iacr.org/2009/480
https://eprint.iacr.org/2010/186
https://eprint.iacr.org/2018/1166

[28] Adi Shamir. How to share a secret. Communications of
the Association for Computing Machinery, 22(11):612–
613, November 1979.

[29] Michael Specter, Sunoo Park, and Matthew Green. Key-
forge: Mitigating email breaches with forward-forgeable
signatures, 2021.

A Additional Primitives

A.1 Commitment
Definition 6. A (non-interactive) commitment scheme Σ con-
sists of two PPT algorithms (Setupcom,Commit) which sat-
isfy hiding and binding properties:

− Setupcom(1κ)→ ppcom : It takes the security parameter
as input, and outputs some public parameters.

− Commit(m, ppcom;r) =: α : It takes a message m, pub-
lic parameters ppcom and randomness r as inputs, and
outputs a commitment α.

Hiding. A commitment scheme Σ = (Setupcom,Commit)
is hiding if for all PPT adversaries A , all messages m0, m1,
there exists a negligible function negl such that for ppcom←
Setupcom(1κ),

|Pr[A(ppcom,Commit(m0, ppcom;r0)) = 1]−
Pr[A(ppcom,Commit(m1, ppcom;r1)) = 1]| ≤ negl(κ),

where the probability is over the randomness of Setupcom,
random choice of r0 and r1, and the coin tosses of A .

Binding. A commitment scheme Σ = (Setupcom,Commit)
is binding if for all PPT adversaries A , if A outputs m0, m1,
r0 and r1 ((m0,r0) 6= (m1,r1)) given ppcom← Setupcom(1κ),
then there exists a negligible function negl such that

Pr[Commit(m0, ppcom;r0)=Commit(m1, ppcom;r1)]≤ negl(κ),

where the probability is over the randomness of Setupcom and
the coin tosses of A .

Definition 7 (Trapdoor (Non-interactive) Commitments.).
Let Σ = (Setupcom,Commit) be a (non-interactive) commit-
ment scheme. A trapdoor commitment scheme has two more
PPT algorithms SimSetup and SimOpen:

− SimSetup(1κ)→ (ppcom,τcom) : It takes the security pa-
rameter as input, and outputs public parameters ppcom
and a trapdoor τcom.

− SimOpen(ppcom,τcom,m′,(m,r)) =: r′ : It takes the pub-
lic parameters ppcom, the trapdoor τcom, a message m′

and a message-randomness pair (m,r), and outputs a
randomness r′.

For every (m,r) and m′, there exists a negligible function negl
such that ppcom ≈stat pp′com, where ppcom← Setupcom(1κ)
and (pp′com,τcom)← SimSetup(1κ); and

Pr
[
Commit(m, pp′com;r) = Commit(m′, pp′com;r′)

]
≥ 1−negl(κ),

where r′ := SimOpen(pp′com,τcom,m
′,(m,r)) and

(pp′com,τcom)← SimSetup(1κ).

Clearly, a trapdoor commitment can be binding against PPT
adversaries only.

A.1.1 Concrete instantiations.

Practical commitment schemes can be instantiated under vari-
ous settings:

Random oracle. In the random oracle model, a commit-
ment to a message m is simply the hash of m together with a
randomly chosen string of length r of an appropriate length.

DLOG assumption. A popular commitment scheme
secure under DLOG is Pedersen commitment. Here,
Setupcom(1κ) outputs the description of a (multiplicative)
group G of prime order p = Θ(κ) (in which DLOG holds)
and two randomly and independently chosen generators g,h.
If H : {0,1}∗→ Zp is a collision-resistant hash function, then
a commitment to a message m is given by gH (m) ·hr, where
r←$ Zp. A trapdoor is simply the discrete log of h with re-
spect to g. In other words, SimSetup picks a random generator
g, a random integer a in Z?

p and sets h to be ga. Given (m,r),
m′ and a, SimOpen outputs [(H (m)−H (m′))/a] + r. It is
easy to check that commitment to m with randomness r is
equal to the commitment to m′ with randomness r′.

A.2 Non-interactive Zero-knowledge
Let R be an efficiently computable binary relation. For pairs
(s,w) ∈ R, we refer to s as the statement and w as the wit-
ness. Let L be the language of statements in R, i.e. L = {s :
∃w such that R(s,w) = 1}. We define non-interactive zero-
knowledge arguments of knowledge in the random oracle
model based on the work of Faust et al. [14].

Definition 8 (Non-interactive Zero-knowledge Argument of
Knowledge). Let H : {0,1}∗→{0,1}poly(κ) be a hash func-
tion modeled as a random oracle. A NIZK for a binary rela-
tion R consists of two PPT algorithms Prove and Verify with
oracle access to H defined as follows:

− ProveH (s,w) takes as input a statement s and a witness
w, and outputs a proof π if (s,w) ∈ R and ⊥ otherwise.

− VerifyH (s,π) takes as input a statement s and a can-
didate proof π, and outputs a bit b ∈ {0,1} denoting
acceptance or rejection.

15

These two algorithms must satisfy the following properties:

− Perfect completeness: For any (s,w) ∈ R,

Pr
[
VerifyH (s,π) = 1 | π← ProveH (s,w)

]
= 1.

− Zero-knowledge: There must exist a pair of PPT simu-
lators (S1,S2) such that for all PPT adversary A ,∣∣∣Pr[AH ,ProveH

(1κ) = 1]−Pr[AS1(·),S ′2(·,·)(1κ) = 1]
∣∣∣≤ negl(κ)

for some negligible function negl, where

− S1 simulates the random oracle H ;

− S ′2 returns a simulated proof π← S2(s) on input
(s,w) if (s,w) ∈ R and ⊥ otherwise;

− S1 and S2 share states.

− Argument of knowledge: There must exist a PPT simu-
lator S1 such that for all PPT adversary A , there exists
a PPT extractor EA such that

Pr
[
(s,w) /∈ R and VerifyH (s,π) = 1 |

(s,π)← AS1(·)(1κ);w← EA(s,π,Q)
]
≤ negl(κ)

for some negligible function negl, where

− S1 is like above;

− Q is the list of (query, response) pairs obtained from
S1.

Fiat-Shamir transform. Let (Prove,Verify) be a three-
round public-coin honest-verifier zero-knowledge interactive
proof system (a sigma protocol) with unique responses. Let
H be a function with range equal to the space of the veri-
fier’s coins. In the random oracle model, the proof system
(ProveH ,VerifyH) derived from (Prove,Verify) by applying
the Fiat-Shamir transform satisfies the zero-knowledge and
argument of knowledge properties defined above. See Def-
inition 1, 2 and Theorem 1, 3 in Faust et al. [14] for more
details. (They actually show that these properties hold even
when adversary can ask for proofs of false statements.)

A.3 Sigma Protocols
A sigma protocol allows a prover to convince the verifier that
a witness satisfies a statement containing arbitrary linear rela-
tions (once we take discrete logarithms) in zero-knowledge,
i.e., without revealing any other information about the witness.
Let G be a cyclic group of prime order q generated by g ∈G.
We consider statements of the following type:

∃x1, . . . ,xn. u1 =
n

∏
j=1

g
x j
1 j ∧ . . .∧um =

n

∏
j=1

g
x j
m j

Here, a witness is an assignment (α1, . . . ,αn) ∈ Zn
q to the

variables x1, . . . ,xn that makes the formula true, while gi j
andui values are group elements that are known to the verifier
(e.g., public values or constants). The protocol between (P,V)
for such a relation is as follows:

P→V : u′1, . . . ,u
′
m ∈G where u′i←

n

∏
j=1

g
α′j
i j ,α

′
j←$ Zq

V → P : c←$ Zq

P→V : α̃1, . . . , α̃n ∈ Zq where α̃ j = α
′
j +α jc

V outputs 1 iff

(
n

∏
j=1

g
α̃ j
i j

?
= u′i ·uc

i

)
for i = 1, . . . ,m

Fiat-Shamir for Sigma protocol Using the Fiat-Shamir
transform, we can convert the Sigma protocol into a non-
interactive zero-knowledge proof system as follows. Instead
of obtaining the challenge c from the verifier V , the prover P
uses c = H(u1,g1 j, . . . ,um,gm j,u′1, . . . ,u

′
m), where H is mod-

eled as a random oracle. In other words, we use a hash of the
statement and the first message of P as the challenge.

B Security Proofs

B.1 Proof of Theorem 6.1
B.1.1 Correctness

First note that, the threshold secret-sharing scheme ensures
that the algorithm KeyCombine correctly computes the aggre-
gated key Kτ from t values Kτ,1, . . . ,Kτ,t . A aggregated/epoch
key Kτ consists of η+1 pairs (τ1,S1), . . . ,(τη+1,Sη+1) where
τη+1 = τ. Note that, encryption of a message for some epoch
τ′ is given by(

τ,gr
1,H (ω|1)r,H (ω|2)r, . . . ,H (ω)r,m ·d

)
where d = e(H (ε)r,gα

1). During decryption of such cipher-
text using a key Kτ for which τ ≥ τ′, the first task is to
find the unique (τi,Si) for which ω = M−1(τ) is a prefix of
ω′ = M−1(τ′). By the doubly-labeled tree construction the
uniqueness is easy to see — no two nodes can have a com-
mon descendant unless one of them is an ancestor of another.
By our key-generation algorithm no epoch key can have two
such node with ancestor-descendant relationships. Now, once
such pair (τi,Si) is found, then assuming `i := |ωi| the decryp-
tion algorithm computes

e(Si,R) · (
`i

∏
k=1

e(H (ωi|k)r,gα
1))
−1

=
e(H (ε)α,gr

1) · e(H (ωi|k)α,gr
1) . . .e(H (ωi)

α,gr
1)

e(H (ω|1)r,gα
1) · . . . · e(H (ω)r,gα

1)

= e(H (ε)r,gα
1) = d

16

The final line follows by observing that ωi is a prefix of ω,
hence ωi|k = ω|k as long as k ≤ `i and using bilinear pairing.
This conclude the proof of correctness.

B.1.2 CPA-security

Proof. For simplicity we assume that the adversary corrupts
exactly t−1 parties. If it corrupts less than that, then some
subtleties arise which can be resolved with techniques similar
to the threshold symmetric encryption of Agrawal et al. [2].
Without loss of generality we assume that it corrupts parties
with identities 1, . . . , t−1.

We assume a PPT adversary A that has a non-negligible
advantage in the CPATATLE,A game. We use A to construct a
new adversary B that attacks the decisional BDH game with
non-negligible success probability. That is, B acts as a Game
challenger to A (and simulates the random oracle H1) and
uses the output of A to solve the following DBDH problem8:
when given description of groups G0 (with generator g0), G1
(with generator g1), GT , bilinear map e, and values (A0 = ga

0,
A1 = ga

1, B1 = gb
1,C0 = gc

0,C1 = gc
1 and D= e(g0,g1)

d), B must
determine whether d = abc or not (where a,b,c,d←$Zq).

First, B initiates the execution of A , who must commit to
the target epoch τ? that it wishes to attack. Let ω? := M−1(τ?)
be the primary label corresponding to τ? in the doubly-labeled
tree Γ and also let ` := |ω?| bits.

Recall that for a bit string σ, σ|i denotes the i-bit prefix
of σ, and we now let σ|ī denote the i−1-bit prefix followed
by the negation of the ith bit of σ. Below we often sample a
uniform random value, denoted as χω←$ Zq for each node
ω.

Now B , on query ω, chooses χω←$ Zq and programs the
random oracle H as follows:

H (ω) :=

B0 ω = ε

gχω

0 /B0 ω ∈ {ω?|i,ω?0,ω?1} for i ∈ [`]

gχω

0 otherwise

Then it sets l pk = A0, and give l pk to A . On the corruption
query, it sends t− 1 uniform random values lsk1, . . . , lskt−1
and thereby implicitly sets lskt := at , which is obtained by
Lagrange interpolation in the exponent from A0 = ga

0 and
glsk1

0 ,glskt−1
0 . Each aggregate key contains a set of Sω val-

ues, which B computes as follows:

Sω =
|ω|

∏
j=1

A
χω| j
1

Note that the summation may comprise zero terms (if the root
is the only common node between the path-based identities
of ω and ω?).

8we use the DBDH-3 assumption defined in [10] for Type 3 Pairings

Remark B.1 (Key Distribution). We verify that keys
given to A have the correct distribution.

Sω = H (ε)a ·
|ω|

∏
j=1

H (ω| j)a

= Bα
0 ·

(
|ω|

∏
j=1, j 6=i

g
χω| j α

0

)
· (g

χω|i
0 /B0)

α

=
|ω|

∏
j=1

A
χω| j
1

After some number of queries, A generates a challenge
query with messages m0 and m1. B responds by sampling
a random bit b and returning (c1,mb · D) where c1 :=
(C1,C

χω?|1
0 , . . . ,C

χω? |`
0).

Remark B.2 (Ciphertext Distribution). We must ver-
ify that the ciphertext given to A follows the correct
distribution.

(C1,C
χω? |1
0 , . . . ,C

χω? |`
0 ,mb ·D)

= (gc
1,g

χω? |1 c
0 , . . . ,g

χω? |` c
0 ,mb · e(g0,g1)

d)

= (gc
1,H (ω?|1)c, . . . ,H (ω?|`)c,mb · e(g0,g1)

d)

Finally, A responds with bit b′, and B outputs 1 if b= b′ and
0 otherwise. Clearly, if the DBDH game sets d = abc, we get
a valid encryption of mb and then B has the same advantage at
breaking DBDH as A at breaking CPA. On the other hand, if
d is a random element of Zp, then the last element is a random
element of GT and therefore the ciphertext is independent of
b — probability that B outputs 1 is exactly 1/2. Therefore the
probability that B succeeds in breaking the DBDH game is at
least |CCAadv[A ,TATLE]−1/2|. This concludes the proof.

B.2 Proof of Verifiability (Theorem 6.2)
This proof is very similar to the proofs provided in Agrawal
et al. [2] and Christodorescu et al. [13] in the context of
threshold symmetric-key encryptions. This is because the
only changes made in the base TATLE construction (c.f. Fig-
ure 4) to obtain verifiability (c.f. Figure 5) is in the algorithms
PartAggKeyGen and KeyCombine in a way that is very simi-
lar to the maliciously secure constructions provided in those
works (see, for example, Figure 4 of [3]). In particular, simi-
lar to those constructions, here too we use a NIZK proof for
exponent with respect to a statement involving trapdoor com-
mitments. In the proof, the reduction B , that attempts to break
DBDH, additionally needs to produce dummy commitments
as part of pp and simulated proofs when responding to the
PartAggKeyGen queries on behalf of the honest parties. This

17

can be done by a few hybrids from the initial security game.
We omit the details.

B.3 Proof of CCA-security (Theorem 6.3)
This proof is basically the same as the proof provided in the
BTE scheme (see Theorem 2 of [8]). Basically the only dif-
ference from the standard Fujisaki-Okamoto transform is the

inclusion of the node ω (equivalently the epoch information)
with the hash function to derive the randomness. This is nec-
essary in our context because, otherwise one may maul the
ciphertext by keeping everything same and just change the
epoch (namely to a lower value than the target) to make a
legitimate decryption query and subsequently break indistin-
guishability. We omit the details.

18

	Introduction
	Related Work
	Technical Overview
	Deployment and Operation
	Requirements
	Efficiency Requirements
	Security Requirements

	Overview of our Construction
	Prior IBE-based Constructions
	HIBE-based approach
	Our TATLE scheme
	Drawbacks of Unbalanced Trees
	Thresholdizing
	Malicious and CCA security

	Formal Security Model
	Definition of ATLE Scheme
	Security

	Notations and Primitives
	Bilinear Pairings
	Secret Sharing

	Our construction
	Verifiable TATLE Construction
	CCA-security

	Implementation and Evaluation
	Key Size
	Ciphertext Size
	Running Time
	Key Generation

	Additional Primitives
	Commitment
	Concrete instantiations.

	Non-interactive Zero-knowledge
	Sigma Protocols

	Security Proofs
	Proof of Theorem 6.1
	Correctness
	CPA-security

	Proof of Verifiability (Theorem 6.2)
	Proof of CCA-security (Theorem 6.3)

