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ABSTRACT
Timed-release encryption can encrypt a message to a future time
such that it can only be decrypted after that time. Potential appli-
cations include sealed bid auctions, scheduled condential trans-
actions, and digital time capsules. To enable such applications as
decentralized smart contracts, we explore how to use timed-release
encryption on blockchains.

Practical constructions in literature rely on a trusted server (or
servers in a threshold setting), which periodically publishes an
epoch-specic decryption key based on a long-term secret. Their
main idea is to model time periods or epochs as identities in an
identity-based encryption scheme. However, these schemes suer
from a fatal aw: an epoch’s key does not let us decrypt ciphertexts
locked to prior epochs. Paterson and Quaglia [SCN’10] address
this concern by having encryption specify a range of epochs when
decryption is allowed. However, we are left with an eciency con-
cern: in each epoch, the server(s) must publish (via a smart contract
transaction) a decryption key of size logarithmic in the lifetime
(total number of epochs). For instance, on Ethereum, for a modest
lifetime spanning 2 years of 1-minute long epochs, a server must
spend over $6 in gas fees, every minute; this cost multiplies with
the number of servers in a threshold setting.

We propose a novel timed-release encryption scheme, where a
decryption key, while logarithmic in size, allows incremental up-
dates, wherein a short update key (single group element) is sucient
to compute the successive decryption key; our decryption key lets
the client decrypt ciphertexts locked to any prior epoch. This leads
to signicant reduction is gas fees, for instance, only $0.30 in the
above setting. Moreover, ciphertexts are also compact (logarithmic
in the total lifetime), and encryption and decryption are on the
order of few milliseconds. Furthermore, we decentralize the trust
among a number of servers, so as to tolerate up to a threshold
number of (malicious) corruptions.

Our construction is based on bilinear pairing, and adapts ideas
from Canetti et al.’s binary tree encryption [Eurocypt 2003] and
Naor et al.’s distributed pseudorandom functions [Eurocrypt 1999].

1 INTRODUCTION
Timed-release encryption [28] can encrypt a message “locked" to a
future time such that a receiver can only decrypt the ciphertext after
that time. It opens the door for several novel applications [33, 34].
Examples include: 1) sealed-bid auctions; 2) scheduled condential

transactions (e.g. insider trades); 3) digital equivalent of time cap-
sules1; 4) cryptocurrency wallet backups (e.g., escrow or a set of
users assisting with key recovery after a deadline).

The existing constructions of timed-release encryption can be
broadly divided into two categories: computational reference clocks
and trusted time servers. Schemes based on computational refer-
ence clocks [10, 11, 15, 19, 34] require the recepient to perform an
expensive sequential computation (also called time-lock puzzle) to
recover the message. This has the benet of non-interactive decryp-
tion, but is highly inecient for most applications. The practical
alternative is to rely on trusted time server(s) [12, 16, 17, 32, 33]
who holds a master secret key, and periodically releases decryption
keys at each time epoch (for example, every minute or even every
second).

We begin our work with the following question: how can timed-
release encryption be used by smart contracts on blockchains? Such a
primitive would enable privacy-enhancing alternatives to a large
ecosystem of decentralized nancial applications, such as auctions
and decentralized exchanges (DEXs) – in particular, sealed bid
auctions and scheduled condential transactions can rely on the
users’ orders being secret (until a deadline) while also binding or
actionable without requiring any further interaction from the user
(e.g., opening in a commit-reveal scheme, which the user will only
do if the outcome is favorable)2. We study timed-release encryption
in the following blockchain-based setting: a set of servers, of which
a threshold fraction is assumed to operate correctly, periodically
publish (shares of) the decryption key via transactions to an special
aggregator contract, who then aggregates them for use by other
smart contracts, such as for sealed-bid auctions3.

A long line of constructions [12, 16, 33] operate by deriving an
independent key for each epoch by essentially making black-box
use of identity-based encryption (where epochs are mapped to
identities). While the keys are suciently compact (single group
element), they suer from a fatal problem: an epoch’s key does not
let us decrypt ciphertexts locked to prior epochs, which is a common
situation given the nature of our applications – a workaround is to
store historical keys, but that incurs on-chain storage that is linear
in the lifetime of the system.

Paterson and Quaglia [32] proposed a natural extension, called
time-specic encryption, wherein the encryption procedure can

1A 19th century application: Mark Twain stipulated that his autobiography not be
published for 100 years after his death [1].
2In that light, timed-release decryption can be viewed in the same light as threshold
decryption, but with the added crucial property that a single key can be used across
arbitrary many applications and users.
3This model is based on blockchain oracles, who provide o-chain data and services,
by periodically issuing transactions in exchange for a token payment.



lock the ciphertext to a range of time epochs when decryption
is allowed, with only logarithmic increase in the ciphertext size
(and logarithmic size keys) – this allows prior decryption with only
logarithmic size on-chain storage. However, an eciency concern
remains. Note that each server must publish the latest decryption
key on each epoch, which incurs a smart contract transaction with
logarithmic size input – the natural design is to use an “incremental"
mode of operation where a server publishes only the delta between
two consecutive keys; even then, a server would publish 𝑙𝑜𝑔(𝑇 )/2
new group elements on average in each epoch (where𝑇 is the total
number of epochs in the system’s lifetime).

Input bytes are expensive for on-chain transactions. Consider
an example deployment on Ethereum; with a lifetime of 𝑇 = 220
epochs (roughly 2 years lifetime spanning 1-minute epochs), 100
servers would spend a total of $614 in gas costs for each epoch4.

For timed-release encryption to be practical on blockchains, in-
cremental updates must be short. That is the objective of this work.

1.1 Our work
We provide a novel solution for timed-release encryption, which
has an asymptotic and concrete reduction in on-chain costs. In
particular, our scheme has a special incrementality property that
ensures that the server needs to publish exactly one group element
(called the update key) in each epoch, for augmenting the decryp-
tion key from epoch 𝜏 to 𝜏 + 1; this updated decryption key lets
decryption of ciphertexts locked to any epoch ≤ 𝜏 + 1. We call the
The decryption key is still logarithmic size, as in [32], so on-chain
storage is logarithmic size. Since update keys, and therefore their
smart contract transactions, are now constant size, our total cost
for 100 servers goes down to $30.7 for each epoch, in the example
above. We maintain other characteristics from [32]; our ciphertexts
are logarithmic in size, and encryption and decryption operations
are also logarithmic time (on the order of few milliseconds).

While our base scheme has a single trusted key-server, we also
propose how to further decentralize the system by using threshold
cryptography techniques. In particular, we show how instead of a
single time-server, we can use 𝑛 servers, each of them holding only
a share of the master secret key, such that any 𝑡 (for 1 ≤ 𝑡 ≤ 𝑛)
of them need to publish a share of the update key in any epoch.
Furthermore, our threshold scheme is resilient to (up to) 𝑡 − 1
malicious corruptions.

We provide a simple and ecient construction that achieves
chosen-plaintext security using an (asymmetric) bilinear pairing
on a Gap Die-Hellman group – our security reduces to the deci-
sion Biliniear Die-Hellman (DBDH) assumption in the random
oracle model. Our (𝑡 out of 𝑛) threshold solution is obtained us-
ing the key-homomorphic property of our construction similar to
threshold BLS signatures [5] or NPR distributed PRFs [29]. Mali-
cious security against ≤ 𝑡 corruptions is achieved using techniques
similar to DiSE [2]. The overall solution is still quite ecient. We
also show how to obtain CCA-security using a standard (namely
Fujisaki-Okamoto [22]) transformation. We emphasize that these
two augmentations are done independently such that it is possible

4At the time of writing, as per [38], each byte of a transaction costs 16 gas units; with
an average cost of 200 GWei per gas unit, we incur 0.0000032 ETH or roughly $0.01 at
$3000 / ETH. So, a single group element of 32 bytes costs roughly $0.30.

to combine these properties (CCA and threshold-malicious security
together) in any desired way.

Consider a few metrics for our maliciously secure threshold
scheme (CCA security), for a sample data point: lifetime of 230
epochs, or roughly 34 years with 1-second epochs. Our key size is
logarithmic in the number of epochs; it averages 2.4 KB, depending
on the specic epoch. Computing the update key incurs logarithmic
number of group operations on the server (2-4 ms on average).
The update key is one group element (48 bytes) in each epoch;
in the threshold setting, servers publish one group element each.
Ciphertexts are also logarithmic in size (0.19-2 KB of ciphertext
expansion) and decryption incurs logarithmic number of group
operations (35-50 ms).

1.2 Summary of Our Contribution
− We formalize incremental timed-release encryption, called

𝔦-TiRE, and in particular its incrementality property (and its
extension to the threshold setting).

− We put forward a new ecient construction satisfying our
incrementality requirement.

− We provide an open-source implementation and evaluation
measuring the sizes of keys and ciphertexts, and the running
time of the various algorithms in our threshold 𝔦-TiRE scheme.

2 RELATEDWORK
Computational Reference Clocks. Instead of having an absolute

decryption time, schemes based on time-lock puzzles require the re-
cepient to perform an expensive sequential computation to recover
the message, thus imposing a coarse-grained release time. Rivest et
al. [34] provide a construction based on repeated squaring modulo
a product of two primes. Mahmoody et al. [27] constructs time-lock
puzzles in the random oracle model. Liu et al. [26] construct time-
locked encryption using a computational reference clock (based on
Bitcoin hashchains) and an extractable witness encryption scheme,
which is not practical.

Trusted Time Servers. Blake and Chan [12] and Cheon et al. [16]
provide schemes that are adaptations of the Boneh-Franklin IBE
scheme [4]. An similar technique [30] is adapted by Shutter Net-
work to prevent front-running attacks. Neither schemes enable
compact decryption of prior ciphertexts; in other words, to enable
decryption of prior ciphertext one needs to store all keys released
so far. The scheme of Rabin and Thorpe [33] requires the servers
to compute a separate public key for each epoch, whose private
component is released during that epoch. This requires the servers
to apriori publish a long list of future public keys.

Time-specic Encryption [32]. Perhaps the most relevant to ours
is the work by Paterson and Quaglia [32], who introduced a related
notion called time-specic encryption, where ciphertexts are locked
to a range of timestamps. Certainly, our notion of timed-release en-
cryption is a special case of their notion, because onemay just x the
upper range to the maximum value of time to obtain a timed-release
encryption. We do not focus on achieving time-specic encryption.
Instead, we focus on achieving the incrementality property which
was not considered before. Taking a closer look at their work [32],
we observe that while it is possible to adapt their scheme to our
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setting, it will still fail to achieve the incrementality. On average
the update keys in the adapted scheme would consist of log(𝑇 )/2
group elements, whereas for our scheme it is always a single group
element (recall that the incrementality requires this to be constant
size, always). Intuitively, this is due to the fact that they put the
path information (root to node) into their keys and use a minimal
set cover for the ciphertexts, whereas our ciphertexts have the path
information and our decryption keys are corresponding to a mini-
mal set cover via a post-order traversal. Since ciphertexts can not be
augmented from one another (because they depend on independent
randomnesses), they are unable to leverage the benet of minimal
set cover for incrementality, whereas, our strategy through post-
order labeling enables us to leverage this benet by using only a
single group element as an update key. Apart from this crucial dif-
ference our scheme also has additional benets: (i) our ciphertexts
are on average 2x smaller than theirs as they used IBE in a black-box
manner (both the schemes have log(𝑇 )/2 group elements in their
ciphertexts on average); (ii) our decryption key contains between 1
to log(𝑇 ) group elements, whereas theirs is always log(𝑇 ) group
elements, making our keys 2x smaller on average.

Additional Relevant Works. Specter et al. [37] add deniability to
emails by divulging private signing keys over time from a hierar-
chical identity-based signature scheme, adapted from the Gentry-
Silverberg scheme [24]. Moreover, their hierarchy mimics that of a
calendar, and they achieve succintness by allowing a child’s key to
be derivable from the parent’s key. While there is technical similar-
ity, our scheme shows how a binary identity space can enable more
ecient tree-based encryption with shorter keys. The scheme by
Ning et al. [31] splits a secret into shares, and requires the share-
holders to release their shares at a future time or get penalized by
a smart contract.

3 TECHNICAL OVERVIEW
We distinguish between update keys, each of which is released at a
time epoch, and decryption keys which lets one decrypt all cipher-
texts encrypted up to a specic time. Looking ahead, a decrypton
key 𝐾𝜏 for time 𝜏 is constructed from the update key 𝑢𝑘𝜏 for time 𝜏
and the decrypton key 𝐾𝜏−1 for 𝜏 − 1.

3.1 Deployment and Operation
For clarity, we rst describe the system design with a single server,
and then discuss the threshold scenario.

Smart Contract Service. Timed-release encryption is used as a
service to smart contracts provided by a trusted time server, who
periodically modies a smart contract with the decryption key for
the latest epoch. In particular, the contract is initialized with the
decryption key for epoch 0. From then on, once every epoch, the
server issues a transaction containing an update key for the latest
epoch. The transaction is destined to a special aggregator contract
that uses the update key to compute the latest decryption key – any
application smart contract (e.g. auction) can read the aggregator’s
most-recent decryption key.

Threshold Setting. To avoid having a single point of failure or
trust, we show how to extend to a threshold setting that uses a
collection of servers. A setup phase establishes a lifetime (long-term)

secret key 𝑙𝑠𝑘 , and generates a corresponding public key 𝑙𝑝𝑘 . Instead
of the whole 𝑙𝑠𝑘 , the setup phase outputs shares of 𝑙𝑠𝑘 computed
using a 𝑡 out of 𝑛 threshold secret sharing scheme [36]5; here, 𝑛
denotes the number of servers and 𝑡 is the corruption threshold, as
in 𝑡 shares are required to reconstruct 𝑙𝑠𝑘 and any subset of 𝑡 − 1
shares reveals no information (in the information-theoretic sense)
about 𝑙𝑠𝑘 . Each server 𝑆𝑖 is given a share 𝑙𝑠𝑘𝑖 of the whole secret
𝑙𝑠𝑘 .

Operation. Clients use the public key 𝑙𝑝𝑘 to encrypt messages, at
which point theymust also specify a future epoch. During any given
epoch 𝜏 , each server 𝑆𝑖 publishes a partial update key 𝑢𝑘𝜏,𝑖 . Given
any 𝑡 such partial tokens, the aggregator contract can combine
them to attain the whole update key 𝑢𝑘𝜏 ; the 𝑢𝑘𝜏 is then combined
with 𝐾𝜏−1 to compute 𝐾𝜏 . The application contract then uses 𝐾𝜏 to
decrypt any ciphertext “locked” to epoch 𝜏 or earlier. Note that a
single instance of timed-release encryption service can support an
arbitrary number of applications. This allows the servers’ cost to
be amortized; therefore, we must look past simpler schemes that
scale poorly, such as having the sender secret-share each message
to the servers to be later released to the receiver, for instance.

Observe the following key characteristics:
− The scheme is non-interactive, in that the keys output by

the server do not depend on the message or the ciphertext.
Moreover, there is no interaction amongst the servers either.

− The whole 𝑙𝑠𝑘 is never made available to any party.
− Decryption for a ciphertext locked to 𝜏 requires a key for epoch
𝜏 ′ ≥ 𝜏 , which is available when at least 𝑡 servers release their
shares of the update key for epoch 𝜏 ′ – this ensures that at
least one honest server must have waited until epoch 𝜏 .

Next we provide technical highlights of our scheme, and defer
full details to Section 6. First, we describe the prior IBE based con-
struction, which fails to meet our eciency requirements. Then,
wee describe our main construction, and later show how to thresh-
oldize it. Finally, we mention how to achieve CCA and malicious
security.

3.2 Prior IBE-based Constructions
Let us briey examine how prior works [12, 16] essentially adapt
identity-based encryptions (IBE) to the purpose of timed-release
encryption. The basic idea is to apply the pairing-based IBE scheme
of Boneh and Franklin [4], where each identity is mapped to an
epoch. The scheme makes use of source groups6 G and G𝑇 which
are both cyclic groups of prime order 𝑞, a bilinear pairing 𝑒 : G ×
G → G𝑇 , generator 𝑔 ∈ G, and hash function H : {0, 1}∗ → G.
The scheme essentially works as follows:
− Setup : Sample random 𝛼 ←$ 𝑍𝑞 , and output the lifetime public

key 𝑙𝑝𝑘 := 𝑔𝛼 , and lifetime secret key 𝑙𝑠𝑘 := 𝛼 .
− In each epoch, the server outputs update key 𝑢𝑘𝜏 := H(𝜏)𝛼 .
− Enc(𝑚,𝜏) outputs 𝑐 := (𝑔𝑟 ,𝑚 · 𝑒 (H (𝜏)𝑟 , 𝑙𝑝𝑘) for 𝑟 ←$ 𝑍𝑞 .

5In the threshold setting, the setup phase can also be performed using a distributed
key generation protocol [23], in lieu of assuming a trusted dealer, such that no single
party learns the lifetime secret key, however we do not place any such demands on
the setup phase in our denition and it does not matter that much because it is done
only once in the beginning.
6For ease of exposition, we assume the symmetric variant of pairings where both the
source groups are same – our implementation uses asymmetric pairings for eciency.

3



− Dec(𝑢𝑘𝜏 , 𝑐) outputs𝑚 := 𝑣 · 𝑒 (𝑢𝑘𝜏 , 𝑢)−1 where 𝑐 = (𝑢, 𝑣).
Note that these operations correspond closely to the Boneh-

Franklin IBE construction [4]. A debilitating property of this scheme
is that the keys {H (𝜏)𝛼 }𝜏 ∈1...𝑇 are unstructured, in that they can-
not be aggregated or compressed (without 𝛼). In particular, there
is no way to compactly describe a decrypton key at time epoch 𝜏 ,
which would be used to decrypt any ciphertext encrypted to a time
epoch 𝜏 ′ ≤ 𝜏 .

3.3 HIBE-based approach
Our initial observation is that keys must mimic the inherent hi-
erarchy amongst the epochs: key material for a later epoch must
subsume that of earlier epochs, while not revealing any bits of infor-
mation about the future epochs. This points us towards hierarchical
identity-based encryption [24, 25] (HIBE).

In addition to the properties of an IBE scheme, HIBE assumes a
partial ordering for the identity-space and derives keys hierarchi-
cally. That is, in addition to associating a key with each identity,
given identities 𝑖𝑑 � 𝑖𝑑 ′, the key for 𝑖𝑑 can be derived from the key
for 𝑖𝑑 ′, via a property called delegation. This property is benecial
for our use case, wherein we can dene a partial order amongst
the epochs, and thus avoid using keys of lower-level epochs if a
higher-level update key is already available. In particular, we focus
on a particular HIBE construction for a restriced identity space of
binary strings, known as Binary Tree Encryption (BTE) [8]. Con-
sider arranging identities or epochs in a binary tree, as illustrated
below for 𝑇 = 15 epochs.

15

7 14

3 6 10 . . .

1 2 4 5 8 9
010 011

00 01

001

0 1

10

100 101000

𝜖

Figure 1: Double labeling of tree with epoch id (via post-order tra-
versal) and path id (binary encoding of path from root node)

Each node is given two labels or identities: the epoch id 𝜏 (0 ≤
𝜏 ≤ 𝑇 ), and a path id 𝜔 containing a binary string that denotes the
path to that node from the root (left child being 0 and right child
being 1) – we nd it convenient to present the construction using
the path-based identity, but it is not strictly necessary. The path
identities form a prex order relation, where 𝜔 � 𝜔 ′ if 𝜔 ′ is a prex
of 𝜔 – we denote the root node (or the least upper bound) by the
empty string 𝜖 . The epoch id is assigned via a post-order traversal
on the binary tree, which gives us a very useful property explained
later.7

Consider a non-leaf node with path id 𝜔 and epoch id 𝜏 . Then,
any of its descendant has an epoch id 𝜏 ′ < 𝜏 . Furthermore, 𝜔 is a
7It is evident later when we present the construction that binary tree structure provides
best space eciency for our scheme. Furthermore, we also explain why post-order
traversal is chosen as opposed to pre-order (as chosen in [8]) or in-order ones.

prex of 𝜔 ′, which is the path id corresponding to 𝜏 ′. Clearly, a
HIBE key (we refer to such keys as update keys) for a node labeled𝜔
can be used to derive a key corresponding to node 𝜔 ′. This satises
our requirement because any such epoch 𝜏 ′ is smaller than 𝜏 . So, it
is sucient to include a single update key for 𝜏 to enable decryption
corresponding to any 𝜏 ′which is the epoch id of a descendant — this
enables the desired compression. Note that, the set of descendants,
however, do not exhaust all prior epochs, and therefore we need to
include more update keys into a decrypton key to enable the time
hierarchy we want. However, the tree-structure guarantees that
any decrypton key does not contain more than log(𝑇 ) update keys.

For instance, we can publish the HIBE key for node 000 in epoch
1, 000 and 001 in epoch 2, 00 in epoch 3, nodes 00 and 010 in epoch 4,
and so on. In particular, for a node with path id 𝜔 , a decrypton key
consists of𝑤 update keys, where𝑤 denotes the hamming weight of
bit-string 𝜔 . Therefore, in the worst case a decrypton key consists
of log(𝑇 ) + 1 update keys.8 Instantiating with a scheme such as
BTE, that uses 𝑂 (log(𝑇 )) group elements for one update key, we
obtain a scheme where a decrypton key requires𝑂 (log2 (𝑇 )) group
elements in total.

While investigating this, we nd that the delegation property –
using an id key to derive keys for lower-level identities – of HIBE is
not strictly required for our setting (also see Remark 1). In particular,
in contrast to the HIBE requirements, our key-generation procedure
always has access to the lifetime secret-key 𝑙𝑠𝑘 (which actually
makes it similar to IBE). Our key contribution is to construct a new
encryption scheme that supports a hierarchical decryption, in that
any decrypton key for time 𝜏 can be used to decrypt a ciphertext
corresponding to time 𝜏 ′ ≤ 𝜏 , but does not support key-delegation
such as deriving a decrypton key exactly for epoch 𝜏 ′. Sacricing
the delegation property enables us to have constant size update
keys, which are sucient to “increment” the time bound key from
one epoch to the next one. A new trick we use for this purpose is
a post-order labeling of the tree (hence calling it a doubly-labeled
tree).

Next we provide an overview of our core 𝔦-TiRE construction.

3.4 Our 𝔦-TiRE scheme
We now present the core aspects of our scheme below (within the
box), and give the full details in Sec. 6.We note that our construction
is inspired by the BTE construction of Canetti et al. [8]. In what
follows, we use path id and epoch id of a node interchangably — as
discussed in Sec. 6, this is enabled by an ecient bijective mapping
between these two labels. In the following description, we shall use
𝜔 |𝑖 to denote the rst 𝑖 bits of 𝜔 , |𝜔 | to denote the bit-length of 𝜔 ,
and 𝑆𝜔 to denote the id key for node with path id 𝜔 .

8Note that this happens for nodes with path id 111 . . . 1.
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Lifetime Keys : 𝑙𝑠𝑘 = 𝛼, 𝑙𝑝𝑘 = 𝑔𝛼 where 𝛼 ←$ 𝑍𝑞

Key for path id 𝜔 generated with 𝑙𝑠𝑘 :

𝑆𝜔 = H(𝜖)𝛼 ·
|𝜔 |∏
𝑗=1
H(𝜔 | 𝑗 )𝛼

Encryption of𝑀 :
𝐶 = (𝑔𝛾 ,H(𝜔 |1)𝛾 ,H(𝜔 |2)𝛾 . . . ,H(𝜔)𝛾 , 𝑀 · 𝑑)
where 𝑑 = 𝑒 (𝑙𝑝𝑘,H(𝜖))𝛾 = 𝑒 (𝑔,H(𝜖))𝛼𝛾

Decryption of 𝐶 with 𝑆𝜔 :
Parse 𝐶 as (𝑈0,𝑈1, . . . ,𝑈𝑡 ,𝑉 )

Output𝑀 = 𝑉 · 𝑑−1 where 𝑑 =
𝑒 (𝑈0, 𝑆𝜔 )∏ |𝜔 |
𝑖=1 𝑒 (𝑙𝑝𝑘,𝑈𝑖 )

The bilinearity property of pairings implies that:

𝑑 =
𝑒 (𝑈0, 𝑆𝜔 )∏ |𝜔 |
𝑖=1 𝑒 (𝑔𝛼 ,𝑈𝑖 )

=
𝑒 (𝑔𝛾 ,H(𝜖)𝛼 ·∏ |𝜔 |

𝑗=1H(𝜔 | 𝑗 )
𝛼 )∏ |𝜔 |

𝑖=1 𝑒 (𝑔𝛼 ,H(𝜔 |𝑖 )𝛾 )

=
𝑒 (𝑔,H(𝜖))𝛼𝛾 ·∏ |𝜔 |

𝑖=1 𝑒 (𝑔,H(𝜔 |𝑖 ))
𝛼𝛾∏ |𝜔 |

𝑖=1 𝑒 (𝑔,H(𝜔 |𝑖 ))𝛼𝛾

= 𝑒 (𝑔,H(𝜖))𝛼𝛾

The update keys for our example are shown here in red.

15𝜖

70 . . .

. . . 601

. . . 5011
𝑆01=𝐻 (𝜖)𝛼𝐻 (0)𝛼𝐻 (01)𝛼𝐻 (011)𝛼

𝑆01=𝐻 (𝜖)𝛼𝐻 (0)𝛼𝐻 (01)𝛼

𝑆0=𝐻 (𝜖)𝛼𝐻 (0)𝛼
𝑆𝜖=𝐻 (𝜖)𝛼

Figure 2: update keys for our doubly-labeled tree

For instance, say that we wish to encrypt for𝜔 = 01, and decrypt
rst using 𝑆01 and later using 𝑆0 (note that for 01, the decrypton key
consists of two update keys). Encryption of message𝑀 for 𝜔 = 01
produces the ciphertext:

(𝑈0 = 𝑔
𝛾 , 𝑈1 = H(0)𝛾 , 𝑈2 = H(01)𝛾 ,

𝑉 = 𝑀 · 𝑒 (𝑔𝛼 ,H(𝜖))𝛾 )

Observe that the 𝑒 (𝑔𝛼 ,H(𝜖))𝛾 term acts as a random mask based
on the client’s chosen randomness 𝛾 . Given id key 𝑆01 = H(𝜖)𝛼 ·

H (0)𝛼 · H (01)𝛼 , we decrypt the above ciphertext as follows:

𝑉 · 𝑑−1 = 𝑉 · 𝑒 (𝑔
𝛼 ,𝑈1) · 𝑒 (𝑔𝛼 ,𝑈2)
𝑒 (𝑈0, 𝑆01)

= 𝑀

More importantly, due to hierarchical structure, we can also decrypt
the same ciphertext using id key 𝑆0 = H(𝜖)𝛼 · H (0)𝛼 :

𝑉 · 𝑑−1 = 𝑉 · 𝑒 (𝑔
𝛼 ,𝑈1)

𝑒 (𝑈0, 𝑆0)

= 𝑀 · 𝑒 (𝑔𝛼 ,H(𝜖))𝛾 · 𝑒 (𝑔𝛼 ,H(0)𝛾 )
𝑒 (𝑔𝛾 ,H(𝜖)𝛼 ) · 𝑒 (𝑔𝛾 ,H(0)𝛼 )

= 𝑀

We emphasize that 𝑆𝜔′ for any prex 𝜔 ′ of 𝜔 is sucient to
decrypt a ciphertext locked to 𝜔 . The intuition behind this scheme
is that the ciphertext for 𝜔 contains an element corresponding to
each prex of𝜔 , and hence, can be thought of as encrypting to each
prex of 𝜔 (or an epoch corresponding to each node from the root
to the node for 𝜔). Therefore, when given a key corresponding to a
node for any prex 𝜔 ′ � 𝜔 , we can ignore the remaining elements
of the ciphertext (i.e., beyond 𝑈 |𝜔′ | = H(𝜔 | |𝜔′ |)𝛾 ) and decrypt as
if the ciphertext was instead locked to id 𝜔 ′.

Remark 1 (Comparison with HIBE and IBE). Delegation means
that anyone with a key for id 𝜔 can derive a key for id 𝜔 ′. This is
useful in the original motivation for HIBE, where a separate party can
assume full ability to derive keys in an identity subspace (e.g. a team
within a larger organization) with respect to the assigned hierarchical
structure. However, in 𝔦-TiRE, all update keys are issued by the same
server, and access to the lifetime secret 𝑙𝑠𝑘 gives the server ability
to compute the key for any epoch/id — this is rather similar to IBE.
Therefore, in our case, it suces to enforce the hierarchy eciently
without providing the ability to delegate.

Given the above scheme, it is straightforward to construct a
𝔦-TiRE scheme: for any epoch 𝜏 , the decrypton key consists of
𝑂 (log(𝑇 )) 𝑆 values, such that their subtrees cover all epochs be-
tween 1 and 𝜏 . For instance, in our running example with𝑇 = 15, the
key for epoch 4 is 𝐾4 = {𝑆00, 𝑆010}, epoch 5 is 𝐾5 = {𝑆00, 𝑆010, 𝑆011},
and so on. The nal epoch 15 is 𝐾15 = {𝑆𝜖 = H(𝜖)𝛼 }, which simply
allows decryption of all ciphertexts encrypted with the 𝑙𝑝𝑘 . Since
each 𝑆 value is a single group element, our update keys have 𝑂 (1)
size and the decrypton keys have 𝑂 (log(𝑇 )) size (as opposed to
𝑂 (log2 (𝑇 )) in HIBE). We stress that hierarchical decryption is the
key enabler here, as it allows us to prune 𝑆 values of children once
a parent node’s key can be emitted.

Incremental Updates. When releasing keys sequentially in the
order of epochs, the post-order traversal ensures the following fact.
The set of 𝑆 values for any decryption key 𝐾𝜏+1 includes all but one
of the 𝑆 values from 𝐾𝜏 ; therefore, the server must release only one
𝑆 value (one group element) as the update key in each epoch when
computing keys incrementally.

3.4.1 Drawbacks of Unbalanced Trees. Wehave a hierarchical struc-
ture of a balanced binary tree similar to BTE [8]. As explained above,
the standard IBE gives a linear structure which fails to achieve our
eciency requirement of compact time-bound keys. Therefore, a
tree-like structure seems inevitable in order for an aggregate key
to cover a large number of epochs. However, as we have seen, an
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update key for epoch 𝜏 does not cover all keys corresponding to
epochs < 𝜏 — this leads to an decrypton key size of𝑂 (log(𝑇 )). One
might wonder whether this blow up can be avoided by instead em-
ploying an unbalanced tree: each node in the tree would have a right
child which is a leaf, and a left child which branches out further.

15

13 14

. . . 12

3

1 2

Figure 3: Unbalanced id
tree

Such a tree (for
𝑇 = 15) is illus-
trated to our left. It
is easy to see that
such a structure in-
deed supports de-
crypton keys of𝑂 (1)
sizes, in that all
non-leaf nodeswith
epoch id 𝜏 ′ < 𝜏 are
containedwithin the
sub-tree rooted at 𝜏 .
That would mean
that an decrypton
key could contain
as few as two id-
keys (two group el-

ements). However, this leads to a blow up in the ciphertext size,
rendering it to contain 𝑂 (𝑇 ) many group elements — intuitively,
this occurs because each ciphertext for a node with path id 𝜔 must
contain Ω( |𝜔 |) group elements when using the above encryption
technique with hierarchical decryption. In an unbalanced tree, a
path id 𝜔 can have up to 𝑇 bits. Thus, such alternatives fail to
achieve our eciency requirements.

3.4.2 Thresholdizing and CCA security. Since our update keys con-
sist of a single 𝑆 value, computed by exponentiating the lifetime
secret key 𝑙𝑠𝑘 = 𝛼 on a known group element, it is simple to com-
pute that when the lifetime secret key is distributed in a manner
such that there are 𝑛 servers holding a (𝑡, 𝑛)-threshold secret shar-
ing of 𝑙𝑠𝑘 . Basically, instead of computing values likeH(𝑣)𝑙𝑠𝑘 (for
some value 𝑣) the 𝑖-th server now computesH(𝑣)𝑙𝑠𝑘𝑖 . The client,
on receiving any 𝑡 such values, can combine them using Lagrange
reconstruction in the exponent to get the full update key. This
step is similar to the threshold computation of PRF as proposed
in [2, 29], and it lets us handle up to 𝑡 − 1 server compromises.
In Section 6.2 we show the extension to the threshold setting. In
fact, we consider security against malicious adversaries who can
corrupt up to 𝑡 − 1 parties. In this setting it is crucial that a client
can verify the responses from each server and thus protect against
malicious corruption – this is enabled by ecient non-interactive
zero-knowledge proofs. In Section 6.3, we outline how to use a
variant of the Fujisaki-Okamoto [22] transformation (also used
in BTE [8]) to obtain CCA-security. Importantly, these two aug-
mentations can be made independently of each other and hence
one can easily combine them to obtain a CCA-secure construction
(c.f. Corollary 1) which supports threshold key-generation and is
resilient against malicious attacks.

4 DEFINITIONS
4.1 Incremental Timed-Release Encryption

(𝔦-TiRE)
Definition 1 (𝔦-TiRE). An incremental timed-release encryption

(𝔦-TiRE) scheme is a tuple of algorithms (Setup, UKGen,DKGen,
Enc, Dec) with the following syntax:
− Setup(1^ ,𝑇 ) → (𝑝𝑝, 𝑙𝑝𝑘, 𝑙𝑠𝑘) : On input the security parame-

ter 1^ and the lifetime duration 𝑇 (in the number of epochs),
Setup generates public parameters 𝑝𝑝 (to be used by all algo-
rithms that follow), a lifetime public key 𝑙𝑝𝑘 , a lifetime secret
key 𝑙𝑠𝑘 .

− UKGen(𝑙𝑠𝑘, 𝜏) → 𝑢𝑘𝜏 : On input a lifetime secret key 𝑙𝑠𝑘 and
an epoch 𝜏 ∈ {1, . . . ,𝑇 }, this algorithm outputs an update key
𝑢𝑘𝜏 specic to the epoch 𝜏 .

− DKGen(𝐾𝜏−1, 𝑢𝑘𝜏 ) → 𝐾𝜏 : On input a decryption key for
the (previous) epoch 𝜏 − 1 (𝜏 ∈ 1, . . . ,𝑇 ) and update key for
(current) epoch 𝜏 , this algorithms output the decryption key
𝐾𝜏 for the (current) epoch 𝜏 .

− Enc(𝑙𝑝𝑘,𝑚, 𝜏) → 𝑐 : encrypts a message𝑚 “locked to” epoch
𝜏 , using the lifetime public key 𝑙𝑝𝑘 , and outputs a ciphertext 𝑐 .

− Dec(𝑙𝑝𝑘, 𝐾, 𝑐) →𝑚/⊥ : deterministically decrypts the cipher-
text 𝑐 using a decryption key 𝐾, returning ⊥ on failure.

Then, the following condition holds for any^,𝑇 ∈ N. Let (𝑝𝑝, 𝑙𝑝𝑘, 𝑙𝑠𝑘)
← Setup(1^ ,𝑇 ); then, for any message𝑚, any two epochs 𝜏, 𝜏 ′ ∈
[𝑇 ] for which 𝜏 ≤ 𝜏 ′, it satises:

(i) correctness, that is there exists a negligible function negl(·) for
which the following probability is at least 1 − negl(^):

Pr
[
𝑚 ← Dec(𝑙𝑝𝑘, 𝐾𝜏′, 𝑐) |

(𝑝𝑝, 𝑙𝑝𝑘, 𝑙𝑠𝑘, 𝐾0) ← Setup(1^ ,𝑇 );
𝑐 ← Enc(𝑙𝑝𝑘,𝑚, 𝜏);

𝑢𝑘1 ← UKGen(𝑙𝑠𝑘, 1); 𝐾1 ← DKGen(𝐾0, 𝑢𝑘1);
.
.
.

𝑢𝑘𝜏′ ← UKGen(𝑙𝑠𝑘, 𝜏 ′); 𝐾𝜏 ′ ← DKGen(𝐾𝜏′−1, 𝑢𝑘𝜏′)
]

where the probability is over the random coin tosses of the
parties involved in Setup, UKGen, DKGen and Enc;

(ii) eciency, that is both |𝐾𝜏 | and |𝑐 | are proportional to𝑂 (log(𝑇 )).
(iii) incrementality, that is |𝑢𝑘𝜏 | is of size 𝑂 (1).

We dene a security game (IND-TR-CCA) for achieving cho-
sen ciphertext security against a “selective" 𝔦-TiRE attacker who
commits to the epoch to be attacked in advance (before the setup
phase). For that reason, we call this attack a selective-epoch attack.
Our denition is inspired by the security denitions for binary tree
encrypion [8].

First, the attackerA submits her target epoch 𝜏★. As is common
in CCA games, we allow A to perform a set of queries both before
and after sending the challenge plaintexts. To avoid trivial wins,
the game checks whether A issued a key generation query for any
epoch on or after 𝜏★, whose result can be used to decrypt for epoch
𝜏★. The challenger C responds to a polynomial number of decryp-
tion and key generation queries by A, after which A submits a
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challenge pair of equal-length messages𝑚0,𝑚1; C selects a random
bit 𝑏 and sends A the encryption of 𝑚𝑏 locked to the epoch 𝜏★
(selected by A earlier). After receiving the challenge ciphertext,
A submits another set of decryption and key generation queries,
under the constraint thatA is not requesting the decryption of the
challenge ciphertext nor is requesting a key for any epoch ≥ 𝜏★.
Finally, A outputs the guess bit 𝑏 ′ and wins if 𝑏 ′ = 𝑏.

Definition 2 (IND-TR-CPA/CCA). A 𝔦-TiRE := (Setup,UKGen,
UKCombine, Enc,Dec) scheme satises indistinguishability under
chosen ciphertext attack if for all PPT adversaries A, there exists a
negligible function negl such that the advantage of A is given by��Pr [CCA𝔦-TiRE,A (1^ , 0) = 1

]
−

Pr
[
CCA𝔦-TiRE,A (1^ , 1) = 1

] �� ≤ negl(^),
in a security game CCA which is dened below.
CCA𝔦-TiRE,A (1^ , 𝑏):

− Selection. A(1^ ,𝑇 ) outputs an epoch 0 ≤ 𝜏★ ≤ 𝑇 .
− Initialization. Initialize 𝜏𝑚𝑎𝑥 := 0. Run Setup(1^ ,𝑇 ) to get
(𝑝𝑝, 𝑙𝑝𝑘, 𝑙𝑠𝑘, 𝐾0). Give (𝑝𝑝, 𝑙𝑝𝑘) to A.

− Phase 1. A adaptively issues a polynomial number of queries,
each of one of two types:
− Pre-challenge decryption. In response to A’s decryption

query (Decrypt, 𝜏, 𝑐), C responds by generating the up-
date key 𝐾𝜏 (by running UKGen many times as needed),
and using it to decrypt 𝑐 .

− Pre-challenge key derivation. In response toA’s key deriva-
tion query (Derive, 𝜏), run UKGen with 𝑙𝑠𝑘 and 𝜏 and
return the output to A. Update 𝜏𝑚𝑎𝑥 :=𝑚𝑎𝑥 (𝜏𝑚𝑎𝑥 , 𝜏).

− Challenge.A outputs (Challenge,𝑚0,𝑚1) where |𝑚0 | = |𝑚1 |.
Give 𝑐★← Enc(𝑝𝑝,𝑚𝑏 , 𝜏★) to A. Output 1 if 𝜏𝑚𝑎𝑥 ≥ 𝜏★.

− Phase 2. A adaptively issues a polynomial number of queries,
each of one of two types:
− Post-challenge decryption. Repeat phase 1 but with the

following caveat. Only process A’s decryption query
(Decrypt, 𝜏, 𝑐) if 𝑐 ≠ 𝑐★, else return ⊥ to A.

− Post-challenge key derivation. Repeat phase 1 but with the
following caveat: respond to A’s key derivation query
(Derive, 𝜏) only if 𝜏 < 𝜏★else return ⊥ to A.

− Guess. Finally, A returns a guess 𝑏 ′. Output 𝑏 ′.
When the attacker is prohibited from invoking the decryption or-
acle, the above denition achieves a weaker guarantee called in-
distinguishability under chosen plaintext attack or IND-TR-CPA.
However, even in IND-TR-CPA, the adversary is given access to the
key-derivation oracle. The corresponding experiment is denoted
by CPA𝔦-TiRE,A .

4.2 Threshold 𝔦-TiRE
In a threshold 𝔦-TiRE scheme there are 𝑛 parties, each of which
holds a share of the lifetime secret key. Therefore, the algorithm
to generate the (partial) update keys is now run by a single party
using her share of the secret-key instead of the whole secret key.
Additionally, there’s a (public) combine algorithm which combines
the partial update keys to construct the entire update key. Apart
from these changes, the syntax remains the same. We consider a 𝑡
out of 𝑛 threshold setting where any 𝑡 (≤ 𝑛) partial update keys can

be combined to construct the entire update key, but no 𝑡 ′ < 𝑡 partial
keys suce. We provide the syntax below, and omit the formal
correctness denition, which can be adjusted straightforwardly.
The eciency and incrementality conditions remain exactly the
same. For reader’s convenience we highlight the major changes in
syntax in 𝑏𝑙𝑢𝑒 .

A threshold incremental timed-release encryption (𝔦-TiRE) scheme
is a tuple of algorithms (Setup, PartUKGen, Combine, DKGen, Enc,
Dec) where the syntax for algorithms DKGen, Enc,Dec remain un-
altered from the previous (non-threshold) denition. So we only
provide the syntax for the other algorithms below.

− Setup(1^ ,𝑇 , 𝑛, 𝑡) → (𝑝𝑝, 𝑙𝑝𝑘, (𝑙𝑠𝑘1, . . . 𝑙𝑠𝑘𝑛)) : On input the
security parameter 1^ and the lifetime duration𝑇 (in the num-
ber of epochs), Setup generates public parameters 𝑝𝑝 (to be
used by all algorithms that follow), a life-time public key 𝑙𝑝𝑘 ,
𝑛 shares of lifetime secret key (𝑙𝑠𝑘1, . . . 𝑙𝑠𝑘𝑛). .

− PartUKGen(𝑙𝑠𝑘 𝑗 , 𝜏) → 𝑢𝑘𝜏,𝑗 : On input a share of lifetime se-
cret key 𝑙𝑠𝑘 𝑗 and an epoch 𝜏 ∈ {1, . . . ,𝑇 }, this algorithm out-
puts a partial update key𝑢𝑘𝜏,𝑗 specic to the epoch 𝜏 and party
𝑗 .

− UKCombine(𝑢𝑘𝜏,1, . . . , 𝑢𝑘𝜏,𝑡 ) → 𝑢𝑘𝜏 combines 𝑡 partial up-
date keys into a whole update key.

In the threshold setting the security denition also changes
accordingly. In particular, in a 𝑡 out of 𝑛 setting, the adversary, in
addition to making CPA/CCA queries as elaborated in Denition 2,
may also maliciously corrupt up to 𝑡 − 1 parties in the security
game. We describe the changed security game below (with the
major changes highlighted in 𝑏𝑙𝑢𝑒 as well).
IND-ThTR-CCATh-𝔦-TiRE,A (1^ , 𝑏):

− Selection. A(1^ ,𝑇 , 𝑛, 𝑡) outputs an epoch 0 ≤ 𝜏★ ≤ 𝑇 .
− Initialization. Initialize 𝜏𝑚𝑎𝑥 := 0. Run Setup(1^ ,𝑇 , 𝑛, 𝑡) to get
(𝑝𝑝, 𝑙𝑝𝑘, (𝑙𝑠𝑘1, . . . , 𝑙𝑠𝑘𝑛)). Give (𝑝𝑝, 𝑙𝑝𝑘) to A.

− Corruption. A outputs a set of corrupt party’s identities 𝐶 ⊆
[𝑛] such that |𝐶 | < 𝑡 . Give 𝑙𝑠𝑘𝑖 to A for all 𝑖 ∈ 𝐶 .

− Phase 1. A adaptively issues a polynomial number of queries,
each of one of two types:
− Pre-challenge decryption. In response to A’s decryption

query (Decrypt, 𝜏, 𝑐), C responds by generating the up-
date key 𝐾𝜏 (by running UKGen and UKCombine many
times in sequence as needed), and using it to decrypt 𝑐 .

− Pre-challenge key derivation. In response toA’s key deriva-
tion query (Derive, 𝜏, 𝑗)where 𝑗 ∈ [𝑛]\𝐶 , runPartUKGen
with 𝑙𝑠𝑘 𝑗 and𝜏 and return the output toA. Update𝜏𝑚𝑎𝑥 :=
𝑚𝑎𝑥 (𝜏𝑚𝑎𝑥 , 𝜏) only if (Derive, 𝜏, 𝑗) is asked for at least
𝑡 − |𝐶 | dierent 𝑗 values — the challenger can track by
storing the queries in a list 𝐿𝜏 for each 𝜏 .

− Challenge.A outputs (Challenge,𝑚0,𝑚1) where |𝑚0 | = |𝑚1 |.
Give 𝑐★← Enc(𝑝𝑝,𝑚𝑏 , 𝜏★) to A. Output 1 if 𝜏𝑚𝑎𝑥 ≥ 𝜏★.

− Phase 2. A adaptively issues a polynomial number of queries,
each of one of two types:
− Post-challenge decryption. Repeat phase 1 but with the

following caveat. Only process A’s decryption query
(Decrypt, 𝜏, 𝑐) if 𝑐 ≠ 𝑐★, else return ⊥ to A.

− Post-challenge key derivation. Repeat phase 1 but with the
following caveat: respond to A’s key derivation query
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(Derive, 𝜏, 𝑗) only if either 𝜏 < 𝜏★or 𝐿𝜏 has < 𝑡 − |𝐶 |
distinct 𝑗 values,else return ⊥ to A.

− Guess. Finally, A returns a guess 𝑏 ′. Output 𝑏 ′.

Remark 2 (Adaptive security). The denition achieves a stronger
adaptive security if the “selection” phase takes place after ’corruption”
but before the challenge phase. Our construction can be generically
transformed to satisfy adaptive security by using complexity leverag-
ing, that is by assuming sub-exponential security of the underlying
assumption.

5 NOTATIONS AND PRIMITIVES
Notation. The set of all binary strings of length ℓ is denoted as

{0, 1}ℓ . Sometimes we denote 1ℓ or 0ℓ to denote strings of 1 and 0
resp. repeated ℓ times. The output 𝑦 of a probabilistic algorithm 𝐴

on input 𝑥 is denoted by 𝑦 ← 𝐴(𝑥). For deterministic algorithms
sometimes we use 𝑦 := 𝐴(𝑥). Moreover, occasionally we need to
explicitly specify the randomness 𝑟 of a probabilistic algorithm,
which is denoted by 𝑦 := 𝐴(𝑥 ; 𝑟 ). For any bitstring𝑤 , we write𝑤 |𝑖
to denote the rst 𝑖 bits of𝑤 . We denote the empty string by 𝜖 .

5.1 Bilinear Pairings
Certain elliptic curves have an additional structure, called a bilinear
pairing. We use the following denitions from [6].

Definition 3. Let G0, G1, G𝑇 be three cyclic groups of prime
order 𝑞 where 𝑔0 ∈ G0 and 𝑔1 ∈ G1 are generators. A pairing is an
eciently computable function 𝑒 : G0 × G1 → G𝑇 satisfying the
following properties:
− bilinear:

∀𝑢,𝑢 ′ ∈ G0 . ∀𝑣 ∈ G1 . 𝑒 (𝑢 · 𝑢 ′, 𝑣) = 𝑒 (𝑢, 𝑣) · 𝑒 (𝑢 ′, 𝑣)
∀𝑢 ∈ G0 . ∀𝑣, 𝑣 ′ ∈ G1 . 𝑒 (𝑢, 𝑣 · 𝑣 ′) = 𝑒 (𝑢, 𝑣) · 𝑒 (𝑢, 𝑣 ′)

− non-degenerate: 𝑔𝑇 =: 𝑒 (𝑔0, 𝑔1) is a generator of G𝑇 .
Bilinearity implies the following property:

𝑒 (𝑔𝛼0 , 𝑔
𝛽

1 ) = 𝑒 (𝑔0, 𝑔1)
𝛼 ·𝛽 = 𝑒 (𝑔𝛽0 , 𝑔

𝛼
1 )

The decision-BDH assumption states that given random ele-
ments 𝑔𝛼0 , 𝑔

𝛽

0 ∈ G0 and 𝑔
𝛼
1 ,𝑔

𝛾

1 ∈ G0, the value 𝑒 (𝑔0, 𝑔1)
𝛼 ·𝛽 ·𝛾 ∈ G𝑇

is indistinguishable from a random element in G𝑇 .

Definition 4. Attack Game for Decision bilinear Die -
Hellman (DBDH) assumption: let 𝑒 : G0×G1 → G𝑇 be a bilinear
pairing where G0, G1, G𝑇 are cyclic groups of prime order 𝑞 with
generators 𝑔0 ∈ G0 and 𝑔1 ∈ G1. For a given adversary A, we dene
two experiments.
Experiment 𝑏 ∈ {0, 1}:
The challenger computes
− 𝛼 , 𝛽 , 𝛾 , 𝛿 ← Z𝑞 .
− 𝑢0 ← 𝑔𝛼0 , 𝑢1 ← 𝑔𝛼1 , 𝑣0 ← 𝑔

𝛽

0 , and𝑤1 ← 𝑔
𝛾

1
− 𝑧 (0) ← 𝑒 (𝑔0, 𝑔1)𝛼 ·𝛽 ·𝛾 ∈ G𝑇 , 𝑧 (1) ← 𝑒 (𝑔0, 𝑔1)𝛿 ∈ G𝑇

The adversary is given (𝑢0, 𝑢1, 𝑣0,𝑤1, 𝑧 (𝑏) ) outputs a bit 𝑏 ∈ {0, 1}.
Let𝑊𝑏 be the event that A outputs 1 in experiment 𝑏. We dene A’s
advantage in solving the DBDH problem as:

DBDHadv[A, e] =| 𝑃𝑟 [𝑊0] − 𝑃𝑟 [𝑊1] |

5.2 Secret Sharing
Definition 5 (Shamir’s Secret Sharing). Let 𝑝 be a prime. An

(𝑛, 𝑡, 𝑝, 𝑠)-Shamir’s secret sharing scheme is a randomized algorithm
SSS that on input four integers 𝑛, 𝑡, 𝑝, 𝑠 , where 0 < 𝑡 ≤ 𝑛 < 𝑝 and
𝑠 ∈ 𝑍𝑝 , outputs 𝑛 shares 𝑠1, . . . , 𝑠𝑛 ∈ 𝑍𝑝 such that the following two
conditions hold for any set {𝑖1, . . . , 𝑖ℓ }:
− if ℓ ≥ 𝑡 , there exists xed (i.e., independent of 𝑠) integers _1, . . . , _ℓ ∈
𝑍𝑝 (a.k.a. Lagrange coecients) such that

∑ℓ
𝑗=1 _ 𝑗𝑠𝑖 𝑗 = 𝑠 mod𝑝 ;

− if ℓ < 𝑡 , the distribution of (𝑠𝑖1 , . . . , 𝑠𝑖ℓ ) is uniformly random.

Concretely, Shamir’s scheme works as follows. Pick 𝑎1, . . ., 𝑎𝑡−1
←$ 𝑍𝑝 . Let 𝑓 (𝑥) be the polynomial 𝑠+𝑎1 ·𝑥 +𝑎2 ·𝑥2+ . . .+𝑎𝑡−1 ·𝑥𝑡−1.
Then 𝑠𝑖 = 𝑓 (𝑖) for all 𝑖 ∈ [𝑛].

5.3 Sigma Protocols
A sigma protocol allows a prover to convince the verier that a
witness satises a statement containing arbitrary linear relations
(once we take discrete logarithms) in zero-knowledge, i.e., without
revealing any other information about the witness. LetG be a cyclic
group of prime order 𝑞 generated by 𝑔 ∈ G. We consider statements
of the following type:

∃𝑥1, . . . , 𝑥𝑛 . 𝑢1 =
𝑛∏
𝑗=1

𝑔
𝑥 𝑗
1𝑗 ∧ . . . ∧ 𝑢𝑚 =

𝑛∏
𝑗=1

𝑔
𝑥 𝑗
𝑚𝑗

Here, a witness is an assignment (𝛼1, . . . , 𝛼𝑛) ∈ 𝑍𝑛𝑞 to the variables
𝑥1, . . . , 𝑥𝑛 that makes the formula true, while 𝑔𝑖 𝑗 and 𝑢𝑖 values are
group elements that are known to the verier (e.g., public values
or constants). The protocol between (𝑃,𝑉 ) for such a relation is as
follows:

𝑃 → 𝑉 : 𝑢 ′1, . . . , 𝑢
′
𝑚 ∈ G where 𝑢 ′𝑖 ←

𝑛∏
𝑗=1

𝑔
𝛼′𝑗
𝑖 𝑗
, 𝛼 ′𝑗 ←$ 𝑍𝑞

𝑉 → 𝑃 : 𝑐 ←$ 𝑍𝑞

𝑃 → 𝑉 : 𝛼1, . . . , 𝛼𝑛 ∈ 𝑍𝑞 where 𝛼 𝑗 = 𝛼 ′𝑗 + 𝛼 𝑗𝑐

𝑉 outputs 1 i ©«
𝑛∏
𝑗=1

𝑔
�̃� 𝑗

𝑖 𝑗

?
= 𝑢 ′𝑖 · 𝑢

𝑐
𝑖

ª®¬ for 𝑖 = 1, . . . ,𝑚

Fiat-Shamir for Sigma protocol. Using the Fiat-Shamir transform,
we can convert the Sigma protocol into a non-interactive zero-
knowledge proof system as follows. Instead of obtaining the chal-
lenge 𝑐 from the verier𝑉 , the prover 𝑃 uses 𝑐 = 𝐻 (𝑢1, 𝑔1𝑗 , . . . , 𝑢𝑚,
𝑔𝑚𝑗 , 𝑢

′
1, . . . , 𝑢

′
𝑚), where𝐻 is modeled as a random oracle; i.e., we use

a hash of the statement and the rst message of 𝑃 as the challenge.

6 OUR CONSTRUCTIONS
Our 𝔦-TiRE constructions, though inspired by the so-called Binary-
tree encryption [8], are much simpler and more ecient. Our base
𝔦-TiRE construction (Fig. 4) satises CPA-security. In Sec. 6.2 we
show how to augment this construction to a 𝑡 out of 𝑛 threshold
setting, secure against malicious corruption of up to 𝑡 − 1 par-
ties. Finally, we show how to achieve CCA-security in Sec. 6.3 by
a variant of Fujisaki-Okamoto transformation [22] analogous to
Canetti et al. [8]. Since these two augmentations are orthogonal,
it is possible to combine them easily to obtain a threshold 𝔦-TiRE
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construction satisfying CCA security against malicious corruption
(c.f. Corollary 1).

Doubly-labeled tree. We use a binary-tree in our construction
analogous to BTE [8]. Each node of the tree is labeled with a binary
bit-string as follows: let the depth of the tree be 𝑑 ; then the root is
labeled with the empty string 𝜖 , its left child is labeled 0 and the
right child is labeled 1; then the entire tree is labeled recursively
such that for each node with label𝜔 ∈ {0, 1}∗, its left child is labeled
by𝜔0 and right child by𝜔1. Clearly, any node at level 𝛿 ∈ {1, . . . , 𝑑}
is labeled with a binary string of length 𝛿 , which is equal to the
length of the path from the root to this node. These labels of the
nodes are called primary labels. We refer to a node by its primary
label. Additionally, each node is labeled with an integer (referred
to as secondary labels), which is assigned through a post-order
traversal on the tree. Recall that a post-ordered traversal assigns
integer labels in an increasing sequence (that is 1, 2, . . .) in order
left-right-root recursively. So, we can dene a bijective mapping
𝑀 : {0, 1}∗ → N which maps the primary labels to the secondary
labels. The inverse mapping from the secondary to primary labels
is denoted by 𝑀−1 : N → {0, 1}∗. An example is given in Fig. 1.
For the lack of a better name we shall refer to this structure by
doubly-labeled tree.

Left-extended Family. For any node 𝜔 in the tree we dene its
left-extended (similarly right-extended family) family (denoted as
LEF(𝜔)) as the set which contains node𝜔 plus all nodes that are left
children of any node in the path from root to𝜔 , but do not belong to
the path themselves. For example, let 𝜔 = 0100, then the path from
root to 𝜔 is the ordered set (𝜖, 0, 01, 010, 0100). Among them, only
the node 0 has a left child, namely 00, which does not belong to the
path. So LEF(0100) consists of nodes {00, 0100}. Similarly for 111,
we have LEF(111) = {0, 10, 110, 111}, because every intermediate
node of the path (𝜖, 1, 11) has a left child that does not belong to
the path. It is worth noting that the size of LEF(𝜔) is equal to the
hamming weight of 𝜔 plus one. Equivalently LEF(𝜏) can be dened
as the same as LEF(𝜔) when 𝜏 = 𝑀 (𝜔).

Remark 3 (An important property). A very important property
is that for any 𝜏 ∈ {1, . . . ,𝑇 } if 𝜔 := 𝑀−1 (𝜏) and 𝜔 ′ := 𝑀−1 (𝜏 + 1),
then the set dierence LEF(𝜔 ′) \ LEF(𝜔) = {𝜔 ′}. In other words all
but exactly one element, namely 𝜔 ′, of the set LEF(𝜔 ′) is contained
in the set LEF(𝜔). This follows from the labeling through post-order
traversal. Looking ahead, this fact ensures that the incrementality
property holds in our constructions.

6.1 CPA-secure 𝔦-TiRE
Our construction follows the basic description from Sec. 3, and
it is provided in Fig. 4.9 While it works for both symmetric and
asymmetric pairings, the latter provides smaller sized groups G0
(for the same level of security) (requiring fewer bits for encoding),
and also more ecient group and pairing operations. Moreover, we
designed our construction so that the elements of the aggregated
key (i.e., the 𝑆 values) are elements of the smaller group G0, while
the public key is an element of G1. The ciphertext consists of |𝜔 |
9For notational convenience we assume that the UKCombine algorithm works with
responses from the rst 𝑡 servers, as opposed to any 𝑡 servers. The generalization is
straightforward.

elements of G0 (where 𝜔 = 𝑀−1 (𝜏)), one element from G1, and
one element from target group G𝑇 ; since a majority of elements
of the ciphertext come from G0, we get a further reduction in our
ciphertext size as well.

The following theorem is proved in Appnedix B.

Theorem 1. Under the decisional BDH assumption (DBDH in
Def. 4), there exists an 𝔦-TiRE scheme that satises IND-TR-CPA se-
curity as per Def. 2 in the random oracle model.

6.2 Threshold 𝔦-TiRE
Our threshold mechanism is a straightforward adaptation of dis-
tributed psuedo-random function [29] for multiplicative prime-
order groups. We rst recall their mechanism. The PRF functional-
ity being computed collectively can be written as 𝑓𝛼 (𝑥) = H(𝑥)𝛼 ,
whereH : {0, 1}∗ → 𝐺 is a hash function (modeled as a random
oracle) and the secret key is 𝛼 ∈ Z𝑝 . To distribute the evaluation of
𝑓 , the secret key 𝛼 must be secret shared between the parties. In
the setup phase, a trusted party samples a master key 𝛼 ←$ Z𝑝 and
uses Shamir’s secret sharing scheme [36] (see Def. 5) with a thresh-
old 𝑡 to create 𝑛 shares 𝛼1, . . . , 𝛼𝑛 of 𝛼 . Share 𝛼𝑖 is given privately to
the server 𝑖 . We know that for any set of 𝑡 parties {𝑖1, ..., 𝑖𝑡 } ⊆ [𝑛],
there exists integers (i.e. Lagrange coecients) _𝑖1 , . . . , _𝑖𝑡 ∈ Z𝑝
such that

∑
𝑗 ∈{𝑖1,...,𝑖𝑡 } 𝛼 𝑗_ 𝑗 = 𝛼 . Therefore, it holds that

𝑓𝑠 (𝑥) = H(𝑥)𝛼 = H(𝑥)
∑

𝑗∈{𝑖1,...,𝑖𝑡 } _ 𝑗𝛼 𝑗

=
∏

𝑗 ∈{𝑖1,...,𝑖𝑡 }

(
H(𝑥)𝛼 𝑗

)_ 𝑗
which can be computed in a distributed manner, by having each
server 𝑖 produce 𝐻 (𝑥)𝛼 𝑗 . Coming back to our construction, we can
write 𝑆𝜔 as a combination of values produced by the above DPRF
𝑓 , as follows:

𝑆𝜔 = H(𝜖)𝛼 ·
|𝜔 |∏
𝑗=1
H(𝜔 | 𝑗 )𝛼 = 𝑓𝛼 (𝜖) ·

|𝜔 |∏
𝑗=1

𝑓𝛼 (𝜔 | 𝑗 )

Reconstruction from partial keys leverages the natural homomor-
phism. Consider any set of 𝑡 servers {𝑖1, ..., 𝑖𝑡 } ⊆ [𝑛], who publish
{𝑆𝜔,1, . . . , 𝑆𝜔,𝑡 } respectively. Then, we get:∏

𝑗 ∈{𝑖1,...,𝑖𝑡 }
𝑆
_ 𝑗
𝜔,𝑗

=
∏

𝑗 ∈{𝑖1,...,𝑖𝑡 }

©«H(𝜖)𝛼 𝑗 ·
|𝜔 |∏
𝑘=1
H(𝜔 |𝑘 )𝛼 𝑗

ª®¬
_ 𝑗

=
∏

𝑗 ∈{𝑖1,...,𝑖𝑡 }

©«H(𝜖)𝛼 𝑗_ 𝑗 ·
|𝜔 |∏
𝑘=1
H(𝜔 |𝑘 )𝛼 𝑗_ 𝑗 ª®¬

= H(𝜖)𝛼 ·
|𝜔 |∏
𝑘=1

©«
∏

𝑗 ∈{𝑖1,...,𝑖𝑡 }
H(𝜔 |𝑘 )𝛼 𝑗_ 𝑗 ª®¬

= H(𝜖)𝛼 ·
|𝜔 |∏
𝑘=1
H(𝜔 |𝑘 )𝛼 = 𝑆𝜔

Furthermore, in this setting to protect against malicious attacker
each party needs to publish a NIZK proof (specically, Schnorr’s
proof [14, 35] via the Fiat-Shamir transform [21]) to prove the key’s
validity. For provable security, we use trapdoor commitments to
commit to secret key shares of parties and generate NIZKs with
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Ingredients
* Let G0, G1, and G𝑇 be multiplicative cyclic groups of prime order
𝑞 such that there exists a bilinear pairing 𝑒 : G0 × G1 → G𝑇 that is
eciently computable and non-degenerate. Let 𝑔0 ∈ G0 and 𝑔1 ∈ G1
be generators of the respective groups.

* Hash function H : {0, 1}∗ → G0 modeled as a random oracle
* A doubly-labeled tree Γ of depth 𝑑 such that𝑇 = 2𝑑 − 1

CPA-secure 𝔦-TiRE
− Setup(1^ ,𝑇 ) → (𝑝𝑝, 𝑙𝑝𝑘, 𝑙𝑠𝑘) :

Choose uniform random 𝛼←$𝑍𝑞 . Then, set 𝑝𝑝 :=
(G0,G1,G𝑇 , 𝑒, 𝑞,H, Γ) ; 𝑙𝑠𝑘 := 𝛼 ; ; 𝑙𝑝𝑘 := 𝑔𝛼1 .

− UKGen(𝑙𝑠𝑘, 𝜏) → 𝑢𝑘𝜏 :
Parse 𝛼 := 𝑙𝑠𝑘 . Let 𝜔 := 𝑀−1 (𝜏) . Then, compute:

• 𝑆𝜏 :=
(
H(𝜖)∏ℓ

𝑘=1 H(𝜔 |𝑘 )
)𝛼

, where ℓ = |𝜔 |
Output 𝑢𝑘𝜏 := (𝜏, 𝑆𝜏 ) .

− DKGen(𝐾𝜏−1,𝑢𝑘𝜏 ) → 𝐾𝜏 :
If 𝜏 = 1, then𝐾1 := 𝑒𝑘1. Otherwise, let (𝜔1, 𝜔2, . . . , 𝜔ℓ ) := LEF(𝜏−
1) ∩ LEF(𝜏) . For all 𝑖 ∈ [ℓ ], let 𝜏𝑖 := 𝑀 (𝜔𝑖 ) .
Output 𝐾𝜏 := {𝑢𝑘𝜏1 , . . . 𝑢𝑘𝜏ℓ ,𝑢𝑘𝜏 }.

− Enc(𝑙𝑝𝑘,𝑚, 𝜏) → 𝑐 :
Let 𝜔 = 𝑀−1 (𝜏) . Sample uniform random 𝑟←$𝑍𝑞 and then com-
pute:

• 𝑐1 := (𝜏, 𝑔𝑟1 ,H(𝜔 |1)𝑟 ,H(𝜔 |2)𝑟 , . . . ,H(𝜔)𝑟 ) ;
• 𝑐2 :=𝑚 · 𝑒 (H(𝜖)𝑟 , 𝑙𝑝𝑘) ;

Output 𝑐 = (𝑐1, 𝑐2)
− Dec(𝑙𝑝𝑘, 𝐾, 𝑐) =:𝑚/⊥ :

Parse 𝑐 as (𝑐1, 𝑐2) and then:
• parse 𝑐1 := (𝜏′, 𝑅,ℎ1, . . . , ℎℓ ) ;
• parse ( (𝜏1, 𝑆1), . . . , (𝜏[+1, 𝑆[+1)) := 𝐾 .
• if 𝜏′ > 𝜏[+1 then output ⊥, else go to the next step;
• identify the unique (𝜏𝑖 , 𝑆𝑖 ) such that either 𝜏𝑖 = 𝜏′ or 𝜔𝑖 :=
𝑀−1 (𝜏𝑖 ) is a prex of 𝜔′ := 𝑀−1 (𝜏′) ;

• set 𝑑 := 𝑒 (𝑆𝑖 , 𝑅) · (
∏ℓ𝑖

𝑖=1 𝑒 (ℎ𝑖 , 𝑙𝑝𝑘))
−1 where ℓ𝑖 := |𝜔𝑖 |;

Output𝑚 := 𝑐2 · 𝑑−1

Figure 4: Our CPA-secure 𝔦-TiRE construction

respect to these commitments, in lieu of simply proving correctness
with respect to the public key 𝑙𝑝𝑘 – since the adversary is allowed
to corrupt parties after obtaining the public parameters output by
Setup, we make use of trapdoor commitments to let the simulator
open the commitments to dierent values using a trapdoor. Correct-
ness follows from the extractability property of the NIZK scheme
and the binding property of the commitment scheme.

Algorithms for our threshold 𝔦-TiRE scheme are described in
Figure 5, where the major changes from the previous construction
are highlighted in blue. The algorithms DKGen, Enc and Dec algo-
rithms remain the same, so we omit mentioning them. We need
some additional ingredients:

− A trapdoor commitment scheme (Setupcom,Commit) (Def. 7).
− Another hash functionH ′ : {0, 1}∗ → {0, 1}poly(^) modeled

as a random oracle (within the NIZK).
− A SS-NIZK := (ProveH′,VerifyH′) (Def. 8).

The following theorem is proved in Appendix B.

Theorem 2. Under the decisional BDH assumption (DBDH in
Def. 4), there exists a threshold 𝔦-TiRE scheme that satises IND-TR-CPA
security against malicious adversary in the random oracle model.

Fig. 5 also denes our concrete instantiation of the trapdoor com-
mitment and NIZK proofs. We use Pedersen commitments (using
independent generators 𝑔, ℎ ∈ G0, whose discrete log is the trap-
door), and Schnorr-style proofs (more generally, sigma protocols
(see Sec. 5.3)) made non-interactive using the Fiat-Shamir trans-
formation in the random oracle model. The Setup phase outputs a
commitment 𝛾𝑖 to each share 𝛼𝑖 using randomness 𝜌𝑖 .

Threshold 𝔦-TiRE
− Setup(1^ ,𝑇 , 𝑛, 𝑡 ) → (𝑝𝑝, 𝑙𝑝𝑘, (𝑙𝑠𝑘1, . . . , 𝑙𝑠𝑘𝑛)) : Choose uniform

random 𝛼←$𝑍𝑞 . Let 𝑙𝑠𝑘:=𝛼 , 𝑙𝑝𝑘 := 𝑔𝛼 and run (𝛼1, . . . , 𝛼𝑛) :=
SSS𝑛,𝑡,𝑞 (𝛼) . Run Setupcom (1^ ) to get 𝑝𝑝com. Sample uniform ran-
dom 𝜌𝑖 and compute𝛾𝑖 := Commit(𝑝𝑝com, 𝛼𝑖 ; 𝜌𝑖 ) . Then set: 𝑝𝑝 :=
(G0,G1,G𝑇 , 𝑒, 𝑞,H, Γ, , 𝑝𝑝com, 𝛾1, . . . , 𝛾𝑛) and 𝑙𝑠𝑘𝑖 := (𝛼𝑖 , 𝜌𝑖 ) .

− PartUKGen(𝑙𝑠𝑘 𝑗 , 𝜏) → 𝑢𝑘𝜏,𝑗 : Parse 𝛼 𝑗 := 𝑙𝑠𝑘 𝑗 . Let 𝜔 := 𝑀−1 (𝜏)
and ℓ = |𝜔 |, then

• Compute 𝑤0 := H(𝜖) , for 𝑘 ∈ {1, . . . , ℓ } 𝑤𝑘 := H(𝜔 |𝑘 ) .
• Compute 𝑆𝜏,𝑗 := (

∏ℓ
𝑘=0 𝑤𝑘 )𝛼 𝑗 .

• Run ProveH′ for the language {∃ 𝛼, 𝜌 s.t. 𝑆𝜏,𝑗 =

(∏ℓ
𝑘=0 𝑤𝑘 )𝛼 ∧ 𝛾 = Commit(𝑝𝑝com, 𝛼 ; 𝜌) } with statement

(𝑆𝜏,𝑗 , 𝑤0, 𝑤1, . . . , 𝑤ℓ , 𝛾 𝑗 ) and witness (𝛼 𝑗 , 𝜌 𝑗 ) to obtain a
proof 𝜋 𝑗

Output 𝑒𝑘𝜏,𝑗 := (𝜏, 𝑆𝜏,𝑗 , 𝜋 𝑗 ) .
− UKCombine(𝑢𝑘𝜏,1, . . . ,𝑢𝑘𝜏,𝑡 ) =: 𝑢𝑘𝜏 /⊥ : Parse each 𝑢𝑘𝜏,𝑗 :=
(𝜏, 𝑆𝜏,𝑗 , 𝜋 𝑗 ) , then compute 𝑤0 := H(𝜖) , for 𝑘 ∈ {1, . . . , ℓ } and
𝑤𝑘 := H(𝜔 |𝑘 ) where 𝜔 = 𝑀−1 (𝜏) . Then, rst check whether
proof 𝜋 𝑗 veries with respect to the statements (𝑆𝜏,𝑗 , 𝜏,𝛾 𝑗 ) , if not
then output ⊥, otherwise use Lagrange coecients _𝑗 ∈ 𝑍𝑞 to
compute 𝑆𝜏 :=

∏
𝑗∈[𝑡 ] 𝑆

_𝑗

𝜏,𝑗
. Output 𝑢𝑘𝜏 := (𝜏, 𝑆𝜏 ) .

Concrete instantiation
− Setupcom (1^ ) : Sample generator ℎ ←$ G0, and output 𝑝𝑝com =:
(𝑔0, ℎ) .

− Commit(𝑝𝑝com = (𝑔,ℎ), 𝛼 ; 𝜌) : output 𝑔𝛼 · ℎ𝜌
− ProveH′ ( {∃ 𝛼, 𝜌. 𝑆 = (∏ℓ𝑖

𝑘=0 𝑤𝑘 )𝛼 ∧𝛾 = 𝑔𝛼 ·ℎ𝜌 } with statement
(𝑆, 𝑤0, 𝑤1, . . . , 𝑤ℓ𝑖 , 𝛾 ) and witness (𝛼, 𝜌) :
Let 𝑤 =

∏ℓ𝑖
𝑘=0 𝑤𝑘 . Sample 𝑣, 𝑣′ ←$ 𝑍𝑝 and set 𝑡 := 𝑤𝑣 , 𝑡 ′ :=

𝑔𝑣 ·ℎ𝑣′ . Compute 𝑐 := H′ (𝑔,ℎ, 𝑆, 𝑤0, 𝑤1, . . . , 𝑤ℓ𝑖 , 𝛾, 𝑡, 𝑡
′) . Let𝑢 :=

𝑣 − 𝑐 · 𝑠 and 𝑢′ := 𝑣′ − 𝑐 · 𝑟 . Output proof 𝜋 = (𝑐,𝑢,𝑢′) .
− Verify(𝜋 = (𝑐,𝑢,𝑢′)) for statement (𝑆, 𝑤0, 𝑤1, . . . , 𝑤ℓ𝑖 , 𝛾 ) :

Compute 𝑡 := 𝑤𝑢 · 𝑆𝑐 , 𝑡 ′
𝑖
:= 𝑔𝑢 · ℎ𝑢′ · 𝛾𝑐 and output 1 i 𝑐 =

H′ (𝑔,ℎ, 𝑆, 𝑤0, 𝑤1, . . . , 𝑤ℓ𝑖 , 𝛾, 𝑡, 𝑡
′) .

Figure 5: Changes for the Threshold 𝔦-TiRE construction

Concretely, server 𝑖 proves the following statement for 𝜔 :

∃𝛼𝑖 , 𝜌𝑖 .𝛾𝑖 := 𝑔𝛼𝑖 · ℎ𝜌𝑖 ∧ 𝑆𝜔,𝑖 =
©«H(𝜖)

|𝜔 |∏
𝑗=1
H(𝜔 | 𝑗 )

ª®¬
𝛼𝑖

We emphasize that our proof contains 3 eld elements of 𝑍𝑞 (where
𝑞 is the order of group G0), and its size is independent of the bit-
length of 𝜔 . The reason is that even though 𝑆𝜔,𝑖 is a product of |𝜔 |
terms, it can bewritten as 𝑥𝛼𝑖 , where 𝑥 = H(𝜖)∏ |𝜔 |

𝑗=1H(𝜔 | 𝑗 ) is one
group element. Therefore, decryption keys are of size Θ(𝑙𝑜𝑔(𝑇 ))
even in the veriable construction.
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6.3 CCA-security
Our CPA-secure construction achieves IND-TR-CCA-security by
using a variant of Fujisaki-Okamoto [22] transformation, similar
to the BTE construction of Canetti et al. [8]. Remarkably the only
changes we need to make are in the Enc and Dec algorithms. There-
fore, one can easily deploy these changes together with the aug-
mentation needed for threshold setting as discussed in the previous
subsection, thereby achieving a threshold construction satisfying
security against malicious corruption and IND-TR-CCA security.
To that end, we will need more ingredients:
− A symmetric-key encryption scheme (SE.Enc, SE.Dec) that takes
{0, 1}^ bit key.

− Two hash functionsH1 : G𝑇 → {0, 1}^ andH2 : G𝑇 × {0, 1}∗ ×
{0, 1}∗ → 𝑍𝑞 modeled as random oracles.

We describe the changed Enc′ and Dec′ algorithms below. Those
are generic extensions of the algorithms Enc and Dec respectively
from the base construction.
1. Enc′(𝑙𝑝𝑘,𝑚, 𝜏) → 𝑐: Let 𝜔 := 𝑀−1 (𝜏). Then:
− Sample uniform random 𝑠 ←$ G𝑇 .
− Compute 𝑐1 ← Enc(𝑙𝑝𝑘, 𝑠, 𝜏 ;H2 (𝑠, 𝜔,𝑚)).
− Compute 𝑐2 ← SE.Enc(H1 (𝑠),𝑚) whereH1 (𝑠) is used as the

key.
− Set 𝑐 := (𝜏, 𝑐1, 𝑐2).

2. Dec′(𝑙𝑝𝑘, 𝐾, 𝑐) →𝑚/⊥: Parse (𝜏, 𝑐2, 𝑐2) := 𝑐 and let𝜔 := 𝑀−1 (𝜏)
then:
− Compute 𝑠 := Dec(𝑐1).
− UseH1 (𝑠) as the key to decrypt𝑚 := SE.Dec(H1 (𝑠), 𝑐2).
− Then, re-encrypt with H2 (𝑠, 𝜔,𝑚) to check whether 𝑐1 =

Enc(𝑙𝑝𝑘, 𝑠, 𝜏 ;H2 (𝑠, 𝜔,𝑚)). If the check succeeds then output
𝑚 otherwise output ⊥.

The following theorem is proved in Appendix B.

Theorem 3. Under the decisional BDH assumption (DBDH in
Def. 4), there exists an 𝔦-TiRE scheme that satises IND-TR-CCA
security as per Def. 2 in the random oracle model.

Combining Theorem 2 with the above theorem we get the fol-
lowing corollary immediately.

Corollary 1. Under the decisional BDH assumption (DBDH in
Def. 4), there exists a threshold 𝔦-TiRE scheme that satises IND-TR-CCA
security against malicious adversary in the random oracle model.

7 IMPLEMENTATION AND EVALUATION
We measure several attributes of our threshold 𝔦-TiRE scheme, in-
cluding the size of decrypton keys, size of ciphertexts, and the
running time of the individual algorithms. We implemented it in
Go, using the BLS12-381 curve [7], and released it open source at
https://github.com/gotatle/tatle. Benchmarks were run on a Mac-
book Pro with a 2.6 GHz Intel Core i7 CPU and 16 GB RAM.

7.1 Update Key Size
Due to incremental updates, a server only publishes an update key
comprising 1 group element from G0, which is of length 48 bytes,
when serialized in binary form. Contrast this with [32], where
update keys are of 𝑙𝑜𝑔(𝑇 ) size: 0.48 KB, 0.72 KB, 0.96 KB, and 1.44
KB for 𝑇 = 210, 215, 220, 230, respectively.

7.2 Decrypton Key Size
We measure the size of the decrypton key (produced by DKGen) as
a function of the lifetime𝑇 . This metric is indicative of the on-chain
storage required by the smart contract to maintain the decrypton
key.

Recall that the size of the key 𝐾𝜏 for epoch 𝜏 < 𝑇 depends on
the number of tree nodes required to cover the range of epochs
from 1 to 𝜏 . For that reason, we get a range of key sizes within a
lifetime 𝑇 . We expect 𝑙𝑜𝑔(𝑇 ) number of nodes in the worst case,
and each node has an associated 𝑆 value in 𝐾𝜏 – each 𝑆 value is
an element of G0 of length 48 bytes. So, we collect key sizes for
the entire range of epochs in a lifetime, and report the max and
the average statistics (which unsurprisingly ends up being half of
the max size). We also report the key size for both maliciously-
secure and semi-honest settings, with the distinction being that
the maliciously-secure scheme has a NIZK proof (containing 3 eld
elements of 32 bytes each) alongside each 𝑆 value.

The results are in Table 1. Our keys grow logarithmically in 𝑇 ,
and it is under 2 KB in the semi-honest and 5 KB in the malicious
setting for a lifetime of 230 epochs. On average, our keys are half
the size of those in [32] (denoted TSE in Table 1, though no imple-
mentation is reported in their work), as their keys are always of
size 𝑙𝑜𝑔(𝑇 ). Had we used an IBE-based scheme, such as [12, 16],
decrypton keys would have grown linearly with the number of
epochs 𝑇 , and they end up being prohibitively large (in the order
of gigabytes) for even modest sized lifetimes.

epochs stat Semi-Honest Malicious
𝔦-TiRE TSE 𝔦-TiRE TSE

210
max 0.480 0.480 1.6 -
avg 0.240 0.480 0.8 -

215
max 0.720 0.720 2.4 -
avg 0.360 0.720 1.2 -

220
max 0.960 0.960 3.2 -
avg 0.480 0.960 1.6 -

230
max 1.440 1.440 4.8 -
avg 0.720 1.440 2.4 -

Table 1: Key size (in KBs)

7.3 Ciphertext Size
We report the ciphertext size, which can be treated as the overhead
from ciphertext expansion when encrypting a binary string in our
CCA construction (see Sec. 6.3).

Similar to the case with key size, dierent epochs produce cipher-
texts of varying size, depending on the position of the node in the
tree – recall that for path-based identity 𝜔 of the node labelled 𝜏 , a
ciphertext locked to epoch 𝜏 will have |𝜔 | group elements from G0
(48 bytes each), one element from G1 (96 bytes), and one element
from G𝑇 (384 bytes). Table 2 reports the min, max, and average
statistics over the ciphertext sizes across the lifetime, for various
values of 𝑇 . One can observe that ciphertexts grow logarithmically
in the lifetime 𝑇 .
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epochs 210 215 220 230
min 0.576 0.576 0.576 0.576
max 1.088 1.408 1.728 2.368
avg 1.025 1.344 1.664 2.304

Table 2: Ciphertext Expansion (in KBs)
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Figure 6: Running Time of UKGen

7.4 Running Time
We report the running times of the UKGen algorithm run by the
server, and the Enc and Dec algorithms run by the client (using a
whole aggregate key).

7.4.1 Key Generation.

Caching Optimization. We implement an obvious caching opti-
mization when running UKGen for consecutive epochs. For any
node with id 𝜔 , 𝑆𝜔 is dened recursively as 𝑆𝜔′ · H (𝜔)𝛼 (where 𝜔 ′
denotes the parent of 𝜔). So, if we have cached the 𝑆 value of any
parent node, we can avoid recomputing several group operations.
To that end, we maintain a cache comprising 𝑆 values for each node
along the path from the root node to 𝜔 , and remove 𝑆 values of
nodes that are no longer needed (because we will never output it
in a key nor compute its child in future). Consider Fig. 1; in epoch
4 for instance, we remove 𝑆000 and 𝑆001 from the cache, and add
𝑆01 and 𝑆010. We still compute Θ(𝑙𝑜𝑔(𝑇 )) new 𝑆 values in the worst
case (e.g. in epoch 8, where fresh 𝑆 values must be computed along
the entire path from the root). However, observe that intermediate
nodes never compute fresh 𝑆 values, since a leaf node would have
already computed the necessary 𝑆 values. In general, we nd a
signicant drop in the required computation across a large fraction
of the nodes. Note that the cache never exceeds the tree’s height,
so it is at most 64 * d𝑙𝑜𝑔(𝑇 )e bytes (2 KB for 230 epochs).

Running Time of Key Generation. Fig. 6 shows the distribution of
running times. Most UKGen evaluations terminate under 1 ms due
to caching, but we can observe the Θ(𝑙𝑜𝑔(𝑇 )) worst case running
time in the outliers. The quantiles grow with 𝑇 in the malicious
execution as the NIZK proofs do not benet from caching in the
same manner as the 𝑆 values.

7.4.2 Running Time of Encryption and Decryption. Like other met-
rics, the running time for each Enc and Dec operation depends
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Figure 7: Distribution of Running Time of Enc and Dec oper-
ations

on the depth of the node – ciphertext includes a group element
for each node along the path from the root node – so we plot the
distribution attained from 106 trials, with each trial operating over
a random epoch. The results are shown in Fig. 7.

8 CONCLUSION
We put forward a new timed-release encryption scheme with a
crucial incrementality property – this enables applications such as
performing sealed bid auction over blockchains. Both the decryp-
tion key and the ciphertext size of our scheme are proportional to
log(𝑇 ), where 𝑇 is the lifetime of the system. Moreover, we show
how to strengthen our scheme to a threshold setting, which is
secure against malicious adversary and also provides CCA-security.
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Appendix
A ADDITIONAL PRIMITIVES
A.1 Commitment

Definition 6. A (non-interactive) commitment scheme Σ consists
of two PPT algorithms (Setupcom,Commit) which satisfy hiding and
binding properties:

− Setupcom (1^ ) → 𝑝𝑝com : It takes the security parameter as
input, and outputs some public parameters.

− Commit(𝑚, 𝑝𝑝com; 𝑟 ) =: 𝛼 : It takes a message 𝑚, public pa-
rameters 𝑝𝑝com and randomness 𝑟 as inputs, and outputs a com-
mitment 𝛼 .

Hiding. A commitment scheme Σ = (Setupcom,Commit) is hid-
ing if for all PPT adversaries A, all messages𝑚0,𝑚1, there exists a
negligible function negl such that for 𝑝𝑝com ← Setupcom (1^ ),

|Pr[A(𝑝𝑝com,Commit(𝑚0, 𝑝𝑝com; 𝑟0)) = 1]−
Pr[A(𝑝𝑝com,Commit(𝑚1, 𝑝𝑝com; 𝑟1)) = 1] | ≤ negl(^),

where the probability is over the randomness of Setupcom, random
choice of 𝑟0 and 𝑟1, and the coin tosses of A.

Binding. A commitment scheme Σ = (Setupcom,Commit) is
binding if for all PPT adversaries A, if A outputs𝑚0,𝑚1, 𝑟0 and
𝑟1 ((𝑚0, 𝑟0) ≠ (𝑚1, 𝑟1)) given 𝑝𝑝com ← Setupcom (1^ ), then there
exists a negligible function negl such that

Pr[Commit(𝑚0, 𝑝𝑝com; 𝑟0) = Commit(𝑚1, 𝑝𝑝com; 𝑟1)]
≤ negl(^)

where the probability is over the randomness of Setupcom and the
coin tosses of A.

Definition 7 (Trapdoor (Non-interactive) Commitments.).
Let Σ = (Setupcom,Commit) be a (non-interactive) commitment
scheme. A trapdoor commitment scheme has two more PPT algorithms
SimSetup and SimOpen:

− SimSetup(1^ ) → (𝑝𝑝com, 𝜏com) : It takes the security parame-
ter as input, and outputs public parameters 𝑝𝑝com and a trapdoor
𝜏com.

− SimOpen(𝑝𝑝com, 𝜏com,𝑚′, (𝑚, 𝑟 )) =: 𝑟 ′ : It takes the public pa-
rameters 𝑝𝑝com, the trapdoor 𝜏com, a message𝑚′ and a message-
randomness pair (𝑚, 𝑟 ), and outputs a randomness 𝑟 ′.

For every (𝑚, 𝑟 ) and𝑚′, there exists a negligible function negl such
that 𝑝𝑝com ≈𝑠𝑡𝑎𝑡 𝑝𝑝 ′com,where𝑝𝑝com ← Setupcom (1^ ) and (𝑝𝑝 ′com, 𝜏com) ←
SimSetup(1^ ); and

Pr
[
Commit(𝑚, 𝑝𝑝 ′com; 𝑟 ) = Commit(𝑚′, 𝑝𝑝 ′com; 𝑟 ′)

]
≥ 1 − negl(^)

where 𝑟 ′ := SimOpen(𝑝𝑝 ′com, 𝜏com,𝑚′, (𝑚, 𝑟 )) and (𝑝𝑝 ′com, 𝜏com) ←
SimSetup(1^ ).

Clearly, a trapdoor commitment can be binding against PPT
adversaries only.

A.1.1 Concrete instantiations. Practical commitment schemes can
be instantiated under various settings:

Random oracle. In the random oracle model, a commitment to
a message 𝑚 is simply the hash of 𝑚 together with a randomly
chosen string of length 𝑟 of an appropriate length.

DLOG assumption. A popular commitment scheme secure under
DLOG is Pedersen commitment. Here, Setupcom (1^ ) outputs the
description of a (multiplicative) group𝐺 of prime order 𝑝 = Θ(^) (in
which DLOG holds) and two randomly and independently chosen
generators 𝑔, ℎ. If H : {0, 1}∗ → 𝑍𝑝 is a collision-resistant hash
function, then a commitment to a message𝑚 is given by 𝑔H(𝑚) ·ℎ𝑟 ,
where 𝑟 ←$ 𝑍𝑝 . A trapdoor is simply the discrete log of ℎ with
respect to 𝑔. In other words, SimSetup picks a random generator 𝑔,
a random integer 𝑎 in 𝑍★𝑝 and sets ℎ to be 𝑔𝑎 . Given (𝑚, 𝑟 ),𝑚′ and 𝑎,
SimOpen outputs [(H (𝑚) −H (𝑚′))/𝑎] +𝑟 . It is easy to check that
commitment to𝑚 with randomness 𝑟 is equal to the commitment
to𝑚′ with randomness 𝑟 ′.

A.2 Non-interactive Zero-knowledge
Let 𝑅 be an eciently computable binary relation. For pairs (𝑠,𝑤) ∈
𝑅, we refer to 𝑠 as the statement and𝑤 as the witness. Let 𝐿 be the
language of statements in 𝑅, i.e. 𝐿 = {𝑠 : ∃𝑤 such that 𝑅(𝑠,𝑤) = 1}.
We dene non-interactive zero-knowledge (NIZK) arguments of
knowledge in the random oracle model based on the work of Faust
et al. [20].

Definition 8 (NIZKArgument ofKnowledge). LetH : {0, 1}∗ →
{0, 1}poly(^) be a hash function modeled as a random oracle. A NIZK
for a binary relation 𝑅 consists of two PPT algorithms Prove and
Verify with oracle access toH dened as follows:

− ProveH (𝑠,𝑤) takes as input a statement 𝑠 and a witness𝑤 , and
outputs a proof 𝜋 if (𝑠,𝑤) ∈ 𝑅 and ⊥ otherwise.

− VerifyH (𝑠, 𝜋) takes as input a statement 𝑠 and a candidate proof
𝜋 , and outputs a bit 𝑏 ∈ {0, 1} denoting acceptance or rejection.

These two algorithms must satisfy the following properties:
− Perfect completeness: For any (𝑠,𝑤) ∈ 𝑅,

Pr
[
VerifyH (𝑠, 𝜋) = 1 | 𝜋 ← ProveH (𝑠,𝑤)

]
= 1.

− Zero-knowledge: There must exist a pair of PPT simulators
(S1,S2) such that for all PPT adversary A,���Pr[AH,ProveH (1^ ) = 1] − Pr[AS1 ( ·),S

′
2 ( ·, ·) (1^ ) = 1]

���
≤ negl(^)

for some negligible function negl, where
− S1 simulates the random oracleH ;
− S′2 returns a simulated proof 𝜋 ← S2 (𝑠) on input (𝑠,𝑤) if
(𝑠,𝑤) ∈ 𝑅 and ⊥ otherwise;

− S1 and S2 share states.
− Argument of knowledge: There must exist a PPT simulator S1

such that for all PPT adversary A, there exists a PPT extractor
EA such that

Pr
[
(𝑠,𝑤) ∉ 𝑅 and VerifyH (𝑠, 𝜋) = 1 |

(𝑠, 𝜋) ← AS1 ( ·) (1^ );𝑤 ← EA (𝑠, 𝜋,𝑄)
]
≤ negl(^)

for some negligible function negl, where
− S1 is like above;
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− 𝑄 is the list of (query, response) pairs obtained from S1.

Fiat-Shamir transform. Let (Prove,Verify) be a three-round public-
coin honest-verier zero-knowledge interactive proof system (a
sigma protocol) with unique responses. LetH be a function with
range equal to the space of the verier’s coins. In the random
oracle model, the proof system (ProveH,VerifyH) derived from
(Prove,Verify) by applying the Fiat-Shamir transform satises the
zero-knowledge and argument of knowledge properties dened
above. See Denition 1, 2 and Theorem 1, 3 in Faust et al. [20] for
more details. (They actually show that these properties hold even
when adversary can ask for proofs of false statements.)

B SECURITY PROOFS
B.1 Proof of Theorem 1
B.1.1 Correctness. A time bound key 𝐾𝜏 consists of [ + 1 pairs
(𝜏1, 𝑆1), . . . , (𝜏[+1, 𝑆[+1) where 𝜏[+1 = 𝜏 . Note that, encryption of a
message for some epoch 𝜏 ′ is given by(

𝜏, 𝑔𝑟1,H(𝜔 |1)
𝑟 ,H(𝜔 |2)𝑟 , . . . ,H(𝜔)𝑟 ,𝑚 · 𝑑

)
where 𝑑 = 𝑒 (H (𝜖)𝑟 , 𝑔𝛼1 ). During decryption of such ciphertext
using a key 𝐾𝜏 for which 𝜏 ≥ 𝜏 ′, the rst task is to nd the unique
(𝜏𝑖 , 𝑆𝑖 ) for which 𝜔 = 𝑀−1 (𝜏) is a prex of 𝜔 ′ = 𝑀−1 (𝜏 ′). By the
doubly-labeled tree construction the uniquness is easy to see — no
two nodes can have a common descendant unless one of them is an
ancestor of another. By our key-generation algorithm no update key
can have two such node with ancestor-descendant relationships.
Now, once such pair (𝜏𝑖 , 𝑆𝑖 ) is found, then assuming ℓ𝑖 := |𝜔𝑖 | the
decryption algorithm computes

𝑒 (𝑆𝑖 , 𝑅) · (
ℓ𝑖∏
𝑘=1

𝑒 (H (𝜔𝑖 |𝑘 )𝑟 , 𝑔𝛼1 ))
−1

=
𝑒 (H (𝜖)𝛼 , 𝑔𝑟1) · 𝑒 (H (𝜔𝑖 |𝑘 )

𝛼 , 𝑔𝑟1) . . . 𝑒 (H (𝜔𝑖 )
𝛼 , 𝑔𝑟1)

𝑒 (H (𝜔 |1)𝑟 , 𝑔𝛼1 ) · . . . · 𝑒 (H (𝜔)𝑟 , 𝑔
𝛼
1 )

= 𝑒 (H (𝜖)𝑟 , 𝑔𝛼1 ) = 𝑑
The nal line follows by observing that 𝜔𝑖 is a prex of 𝜔 , hence
𝜔𝑖 |𝑘 = 𝜔 |𝑘 as long as 𝑘 ≤ ℓ𝑖 and using bilinear pairing. This
conclude the proof of correctness.

B.1.2 CPA-security.

Proof. We assume a PPT adversaryA that has a non-negligible
advantage in the CPA𝔦-TiRE,A game. We use A to construct a
new adversary B that attacks the decisional BDH game with non-
negligible success probability. That is, B acts as a Game challenger
to A (and simulates the random oracleH1) and uses the output of
A to solve the following DBDH problem10: when given description
of groups G0 (with generator 𝑔0), G1 (with generator 𝑔1), G𝑇 , bilin-
ear map 𝑒 , and values (𝐴0 = 𝑔𝑎0 , 𝐴1 = 𝑔𝑎1 , 𝐵1 = 𝑔

𝑏
1 , 𝐶0 = 𝑔

𝑐
0, 𝐶1 = 𝑔

𝑐
1

and 𝐷 = 𝑒 (𝑔0, 𝑔1)𝑑 ), B must determine whether 𝑑 = 𝑎𝑏𝑐 or not
(where 𝑎, 𝑏, 𝑐, 𝑑←$𝑍𝑞 ).

First, B initiates the execution of A, who must commit to the
target epoch 𝜏★ that it wishes to attack. Let 𝜔★ := 𝑀−1 (𝜏★) be the
primary label corresponding to 𝜏★ in the doubly-labeled tree Γ and
also let ℓ := |𝜔★ | bits.
10we use the DBDH-3 assumption dened in [13] for Type 3 Pairings

Recall that for a bit string 𝜎 , 𝜎 |𝑖 denotes the 𝑖-bit prex of 𝜎 , and
we now let 𝜎 |𝑖 denote the (𝑖 −1)-bit prex followed by the negation
of the 𝑖-th bit of 𝜎 . Below we often sample a uniform random value,
denoted as 𝜒𝜔 ←$ 𝑍𝑞 for each node 𝜔 .

Now B, on query 𝜔 , chooses 𝜒𝜔 ←$ 𝑍𝑞 and programs the
random oracleH as follows:

H(𝜔) :=


𝐵0 𝜔 = 𝜖

𝑔
𝜒𝜔
0 /𝐵0 𝜔 ∈ {𝜔★ |

𝑖
, 𝜔★0, 𝜔★1} for 𝑖 ∈ [ℓ]

𝑔
𝜒𝜔
0 otherwise

Then it sets 𝑙𝑝𝑘 = 𝐴0, and give 𝑙𝑝𝑘 toA and thereby implicitly sets
𝑙𝑠𝑘𝑡 := 𝑎𝑡 . Each update key (for time 𝜏 = 𝑀 (𝜔) ) contains exactly
one 𝑆𝜏 values, which B computes as follows:

𝑆𝜏 =

|𝜔 |∏
𝑗=1

𝐴
𝜒𝜔 | 𝑗
1

Note that the summation may comprise zero terms (if the root is
the only common node between the path-based identities of 𝜔 and
𝜔★).

Remark 4 (Key Distribution). We verify that keys given
to A have the correct distribution.

𝑆𝜏 = H(𝜖)𝑎 ·
|𝜔 |∏
𝑗=1
H(𝜔 | 𝑗 )𝑎

= 𝐵𝛼0 ·
©«
|𝜔 |∏

𝑗=1, 𝑗≠𝑖
𝑔
𝜒𝜔 | 𝑗 𝛼

0
ª®¬ · (𝑔𝜒𝜔 |𝑖0 /𝐵0)𝛼

=

|𝜔 |∏
𝑗=1

𝐴
𝜒𝜔 | 𝑗
1

After some number of queries, A generates a challenge query
with messages𝑚0 and𝑚1. B responds by sampling a random bit 𝑏
and returning (𝑐1,𝑚𝑏 · 𝐷) where 𝑐1 := (𝐶1,𝐶

𝜒𝜔★ |1
0 , . . . ,𝐶

𝜒𝜔★ |ℓ
0 ).

Remark 5 (Ciphertext Distribution). We must verify
that the ciphertext given toA follows the correct distribution.

(𝐶1,𝐶
𝜒𝜔★ |1
0 , . . . ,𝐶

𝜒𝜔★ |ℓ
0 ,𝑚𝑏 · 𝐷)

= (𝑔𝑐1, 𝑔
𝜒𝜔★ |1𝑐

0 , . . . , 𝑔
𝜒𝜔★ |ℓ 𝑐

0 ,𝑚𝑏 · 𝑒 (𝑔0, 𝑔1)𝑑 )

= (𝑔𝑐1,H(𝜔
★ |1)𝑐 , . . . ,H(𝜔★ |ℓ )𝑐 ,𝑚𝑏 · 𝑒 (𝑔0, 𝑔1)𝑑 )

Finally, A responds with bit 𝑏 ′, and B outputs 1 if 𝑏 = 𝑏 ′ and 0
otherwise. Clearly, if the DBDH game sets 𝑑 = 𝑎𝑏𝑐 , we get a valid
encryption of𝑚𝑏 and then B has the same advantage at breaking
DBDH as A at breaking CPA. On the other hand, if 𝑑 is a random
element of 𝑍𝑝 , then the last element is a random element of G𝑇 and
therefore the ciphertext is independent of 𝑏 — probability that B
outputs 1 is exactly 1/2. Therefore the probability that B succeeds
in breaking the DBDH game is at least |CCAadv[A, 𝔦-TiRE] − 1/2|.
This concludes the proof.

�
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B.2 Proof of the maliciously secure threshold
scheme (Theorem 2)

This proof is very similar to the proofs provided in Agrawal et
al. [2] and Christodorescu et al. [18] in the context of threshold
symmetric-key encryptions. This is because the only changes made
in the base 𝔦-TiRE construction (c.f. Figure 4) to enable threshold
key-generation against up to 𝑡−1malicious corruption (c.f. Figure 5)
is in the algorithms PartUKGen and UKCombine in a way that is
very similar to the maliciously secure constructions provided in
those works (see, for example, Figure 4 of [3]). In particular, similar
to those constructions, here too, on the corruption query, the reduc-
tions would send 𝑡 − 1 uniform random values 𝑙𝑠𝑘1, . . . , 𝑙𝑠𝑘𝑡−1 and
thereby implicitly sets 𝑙𝑠𝑘𝑡 := 𝑎𝑡 , which is obtained by Lagrange
interpolation in the exponent from 𝐴0 = 𝑔𝑎0 and 𝑔𝑙𝑠𝑘10 , . . . .𝑔

𝑙𝑠𝑘𝑡−1
0 .

Furthermore, to achieve security against malicious adversary we

use a NIZK proof for exponent with respect to a statement involv-
ing trapdoor commitments. Therefore, in the proof, the reduction
additionally needs to produce dummy commitments as part of 𝑝𝑝
and simulated proofs when responding to the PartUKGen queries
on behalf of the honest parties. This can be done by a few hybrids
from the initial security game. We omit the details.

B.3 Proof of CCA-security (Theorem 3)
This proof is basically the same as the proof provided in the BTE
scheme (see Theorem 2 of [9]). The only dierence from the stan-
dard Fujisaki-Okamoto transform is the inclusion of the node 𝜔
(equivalently the epoch information) with the hash function to
derive the randomness. This is necessary in our context because,
otherwise one may maul the ciphertext by keeping everything same
and just change the epoch (namely to a lower value than the tar-
get) to make a legitimate decryption query and subsequently break
indistinguishability. We omit the details.
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