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Abstract. Li and Micciancio (Eurocrypto 2021) shattered a widespread
misconception regarding the security of protocols based on CPA-secure
homomorphic encryption (HE). They showed an attack breaking secu-
rity of HE-based protocols provided that the protocol employs an HE
scheme for approximate numbers, like CKKS, and the adversary sees de-
crypted ciphertexts. However, their attack fails when employing exact
HE schemes, like BGV, or denying access to decrypted data.
We show that the Li-Micciancio attack is only the tip of the iceberg:
1. We exhibit an input-recovery attack completely breaking the privacy

of a wide and natural family of HE-based protocols, including pro-
tocols using only exact HE-schemes and with an adversary exposed
solely to encrypted data. This proves that CPA-security is insufficient
to ensure privacy in a much broader context than previously known.

2. To address the threat exhibited by our attack we introduce suffi-
cient conditions, on either the encryption scheme or the protocol,
that do guarantee privacy: (a) Every HE scheme with a sanitization
algorithm (e.g., BGV and FHEW) can be transformed into a “sani-
tized” scheme so that protocols instantiated with it preserve privacy
against malicious adversaries. (b) Moreover, we characterize a natu-
ral sub-family of these protocols for which CPA-security does suffice
to guarantee privacy, albeit against semi-honest adversaries.

To prove (2a) we define a notion of circuit-privacy+ that lies between
semi-honest and malicious circuit-privacy and realize it from existing
schemes; this may be of independent interest.

Keywords: homomorphic encryption · CPA-security · protocols · attack

1 Introduction

Background. Homomorphic encryption (HE) supports computing over en-
crypted data without access to the secret key. HE schemes are typically
exact in the sense that decrypting results in the exact same value as pro-
duced by computing on cleartext values [29,19,30,9,10,18,11,16,13]; an
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exception is the CKKS [12] approximate scheme that adds noise to the
underlying cleartext message so that decryption returns a close value,
but not the exact one. HE-based protocols are popular for privacy related
tasks such as secure outsourcing of computation and private information
retrieval; and the golden standard for securing HE-based protocols is uti-
lizing HE schemes that are CPA-secure.

Li and Micciancio [26] recently shattered the misconception that CPA-
security of the HE scheme suffices to guarantee security for HE-based
protocols. They showed an attack breaking the security of such protocols
under the following two conditions:

(a) The protocol employs an approximate HE scheme like CKKS, and

(b) The adversary has access to decrypted ciphertexts.

Essentially, their attack shows that the noise introduced by CKKS and
exposed after decryption reveals information that can be leveraged to re-
cover the secret key, despite the CPA-security guarantee of the encryption
scheme. Importantly, their attack is valid only for the toxic combination of
employing approximate HE schemes together with exposure to decrypted
ciphertexts. This attack had a major impact; in particular, all libraries
implementing approximate HE schemes either introduced heuristic mea-
sures for mitigating the attack [2,3], or revised their security guidelines to
forbid exposing decryptions to untrusted entities [1]. For exact schemes,
in contrast, Li and Micciancio have proved that their attack does not
apply [26]. In view of the Li-Micciancio attack we ask:

might CPA-security fail to guarantee security also in protocols em-
ploying exact HE schemes and never exposing decryptions?

Our contribution. In this work we show that the insufficiency of CPA-
security expands much farther beyond the combination of approximate
HE schemes with exposed decryptions. We demonstrate this insufficiency
by exhibiting a new input-recovery attack breaking the security of a wide
and natural family of HE-based protocols, including protocols that use
only exact HE schemes and where the adversary sees only encrypted data.
We then address the security gap indicated by our attack by identifying
natural conditions on schemes or protocols and proving they suffice for
securing protocols in this family.

The protocols we address are HE-based secure outsourcing protocols
where a client generates keys and uploads encrypted data to a server;
the server executes computations over the encrypted data and sends
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encrypted results to the client; moreover, to lessen some of the com-
putational burden, the server may send the client (typically few and
lightweight) queries of the form (e, G), for e a vector of ciphertexts and G
a function, so that the client computes G on the underlying cleartext val-
ues and sends the server the encrypted result e′ ← Encpk(G(Decsk(e))).
We call such protocols client-aided protocols. Importantly, in client-aided
protocols the server sees only encrypted data. The security goal for such
protocols is to guarantee privacy for the client’s input against the server
(see Definition 5 adapted from Definition 2.6.2 in [22]).3 Client-aided pro-
tocols are common; for example, the client can provide a re-encryption
service to avoid costly bootstrapping at the server’s side by setting G to
be the identity function [31]; likewise, the client may compute compari-
son [7], minimum [4,5], solving linear equations [20,6], ReLU and Max-
Pooling [24], and so forth, where the client’s computation may be on
masked data.

Our input-recovery attack completely breaks the security of client-
aided protocols, and can be mounted on all client-aided protocols regard-
less of whether they use an approximate or exact CPA-secure HE scheme.
We note that there is no contradiction between our attack and the fact
that the underlying HE scheme is CPA-secure: our attack proves the in-
sufficiency of CPA-security to guarantee privacy.

Theorem 1 (attack, informal). There exists CPA-secure HE schemes
so that for all client-aided protocols instantiated with such schemes, there
is an attack by the server that recovers the client’s input.

To address the threat exhibited by our attack we rigorously study
the security of client-aided protocols introducing two natural conditions
– one for schemes and the other for protocols – and proving that if either
condition holds then privacy is guaranteed.

A sufficient condition on the encryption scheme. We prove that any
HE scheme with a sanitization algorithm, e.g., BGV [10] and FHEW [16],
can be transformed into a “sanitized” scheme so that all client-aided
protocols instantiated with the sanitized scheme preserve privacy against
malicious servers. A sanitization algorithm [17] re-randomizes ciphertexts
to make them statistically close to other sanitized ciphertexts decrypting
to the same value; our sanitized scheme applies the sanitization algorithm
on the ciphertexts processed by the encryption scheme.

3 The client-server terminology is used for convenience, yet the protocol can involve
any two parties, one owning the secret key and the other computing over encrypted
data.
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Theorem 2 (privacy against malicious servers, informal). Client-
aided protocols instantiated with a sanitized CPA-secure encryption scheme
preserve privacy against malicious servers.

A sufficient condition on the protocol. We formalize a property sat-
isfied by natural client-aided protocols, and prove that for such proto-
cols, CPA-security of the encryption scheme implies the protocol preserves
privacy, albeit only against semi-honest servers. The property we define
(named: cleartext computability) is that the client’s input determines the
underlying cleartext values of the ciphertexts transmitted throughout the
protocol. This captures the fact that the encryption in the protocol is
an external wrapping of the cleartext values, used merely for achieving
privacy against the server, and does not affect the underlying cleartext
computation. This property is natural in outsourcing protocols, where the
server does not contribute any input to the computation but rather it is
only a vessel for storing and processing encrypted data on behalf of the
client. We prove that for cleartext computable protocols, CPA-security
guarantees privacy.

Theorem 3 (privacy against semi-honest servers, informal).
Cleartext-computable client-aided protocols instantiated with a CPA-secure
encryption scheme preserve privacy against semi-honest servers.

Our techniques. We show that every CPA-secure scheme can be slightly
modified to yield a punctured CPA-secure scheme with which our attack
is applicable. The attack uses a single e′ ← Encpk(G(Decsk(e))) query,
where e is a concatenation of the client’s encrypted input with a special
“trapdoor” cipephertext planted in the public-key. The query e hits the
puncturing of the scheme so that the result e′ reveals the client’s input.

To prove Theorem 2 we introduce an enhanced security notion for
encryption schemes, named funcCPA, prove that sanitized schemes are
funcCPA-secure, and that funcCPA-security of the scheme implies, for any
protocol instantiated with the scheme, privacy against malicious servers.
The definition of funcCPA extends CPA by granting the adversary in the
CPA experiment access to an Encpk(G(Decsk(·))) oracle for a family of
functions G. Our attack, together with our result that funcCPA guar-
antees privacy, proves that funcCPA is strictly stronger than CPA. To
construct a funcCPA-secure scheme, we first define the notion of circuit-
privacy+ that lies between semi-honest and malicious circuit privacy in
allowing maliciously formed ciphertexts but requiring honestly generated
keys. We then show how to transform any CPA-secure scheme that has a

4



sanitization algorithm into a CPA-secure circuit-private+ scheme. Finally
we prove that CPA-secure circuit-private+ schemes are funcCPA-secure.

Paper organization. Preliminary definitions are given in Section 2; our
attack in Section 3; our result on funcCPA schemes in Section 4, and on
cleartext computable protocols in Section 5; we conclude in Section 6.

2 Preliminaries

In this section we specify standard terminology, notations and definitions
used throughout this paper, including public key encryption and CPA-
security, homomorphic encryption, sanitization algorithm and privacy-
preserving protocols.

2.1 Terminology and Notations

We use the following standard notations and terminology. For n ∈ N, let
[n] denote the set {1, . . . , n}.

A function µ : N → R+ is negligible in n if for every positive polyno-
mial p(·) and all sufficiently large n it holds that µ(n) < 1/p(n). We use
neg(·) to denote a negligible function if we do not need to specify its name.
Unless otherwise indicated, “polynomial” and “negligible” are measured
with respect to a system parameter λ called the security parameter. We
use the shorthand notation ppt for probabilistic polynomial time in λ.

A random variable A is a function from a finite set S to the non-
negative reals with the property that

∑
s∈S A(s) = 1. A probability en-

semble X = {X(a, n)}a∈{0,1}∗,n∈N is an infinite sequence of random vari-
ables indexed by a ∈ {0, 1}∗ and n ∈ N. Two probability ensembles
X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N are said to be
computationally indistinguishable, denoted by X ≈c Y , if for every non-
uniform polynomial-time algorithm D there exists a negligible function
neg such that for every a ∈ {0, 1}∗ and every n ∈ N,

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≤ neg(n).

The statistical distance of two probability ensembles
X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N is defined by

∆(X,Y ) =
1

2

∑
s∈S
|Pr[s ∈ X]− Pr[s ∈ Y ]|.
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A (strong) one-way function is a polynomial time computable function
f : {0, 1}∗ → {0, 1}∗ so that any ppt algorithm can invert f with at most
negligible probability; See a formal Definition in Goldreich [21], Definition
2.2.1.

2.2 CPA-Secure Public Key Encryption

A public key encryption scheme has the following syntax and correctness
requirement.

Definition 1 (public-key encryption (PKE)). A public-key encryp-
tion (PKE) scheme with message space M is a triple (Gen,Enc,Dec) of
ppt algorithms satisfying the following conditions:

– Gen (key generation) takes as input the security parameter 1λ, and
outputs a pair (pk, sk) consisting of a public key pk and a secret key
sk; denoted: (pk, sk)← Gen(1λ).

– Enc (encryption) takes as input a public key pk and a message m ∈M,
and outputs a ciphertext c; denoted: c← Encpk(m).

– Dec (decryption) takes as input a secret key sk and a ciphertext c,
and outputs a decrypted message m′; denoted: m′ ← Decsk(c).

Correctness. The scheme is correct if for every (pk, sk) in the range of
Gen(1λ) and every message m ∈M,

Pr[Decsk(Encpk(m)) = m] ≥ 1− neg(λ)

where the probability is taken over the random coins of the encryption
algorithm.

A PKE E = (Gen,Enc,Dec) is CPA-secure if no ppt adversary A can
distinguish between the encryption of two equal length messages x0, x1 of
his choice. This is formally stated using the following experiment between
a challenger Chal and the adversary A.

The CPA indistinguishability experiment EXPcpaA,E(λ):

1. Gen(1λ) is run by Chal to obtain keys (pk, sk).
2. Chal provides the adversary A with pk A sends to Chal two messages
x0, x1 ∈M s.t. |x0| = |x1|.

3. Chal chooses a random bit b ∈ {0, 1}, computes a ciphertext c ←
Encpk(xb) and sends c to A. We call c the challenge ciphertext.

4. A outputs a bit b′.
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5. The output of the experiment is defined to be 1 if b′ = b (0 otherwise).

Definition 2 (CPA-security). A public key encryption scheme E =
(Gen,Enc,Dec) has indistinguishable encryptions under chosen-plaintext
attacks (or is CPA-secure) if for all ppt adversaries A there exists a neg-
ligible function neg such that:

Pr[EXPcpaA,E(λ) = 1] ≤ 1

2
+ neg(λ)

where the probability is taken over the random coins of A and Chal.

A PKE E = (Gen,Enc,Dec) with message space M has indistinguish-
able multiple encryptions if no ppt adversary A can distinguish between
the encryption of two vectors of equal length messages X0 = (x10, . . . , x

t
0)

and X1 = (x11, . . . , x
t
1) of his choice. See formal definition in [25].

Theorem 4 ([25] theorem 10.10). If a public-key encryption scheme
is CPA-secure, then it has indistinguishable multiple encryptions security.

2.3 Homomorphic Encryption and Sanitization

A homomorphic public-key encryption scheme (HE) is a public-key en-
cryption scheme equipped with an additional ppt algorithm called Eval
that supports “homomorphic evaluations” on ciphertexts. The correct-
ness requirement is extended to hold with respect to any sequence of ho-
momorphic evaluations performed on ciphertexts. A fully homomorphic
encryption scheme must satisfy an additional property called compactness
requiring that the size of the ciphertext does not grow with the complexity
of the sequence of homomorphic operations. The formal definition follows
(adapted from [10]).

Definition 3 (homomorphic encryption (HE)). A homomorphic public-
key encryption (HE) scheme E = (Gen,Enc,Dec,Eval) with message space
M is a quadruple of ppt algorithms as follows:

– (Gen,Enc,Dec) is a correct PKE.
– Eval (homomorphic evaluation) takes as input the public key pk, a cir-

cuit C : M` →M, and ciphertexts c1, . . . , c`, and outputs a ciphertext
ĉ; denoted: ĉ← Evalpk(C, c1, . . . , c`).

The scheme E is called secure if it is a CPA-secure PKE; compact if
its decryption circuit is of polynomial size; C-homomorphic for a cir-
cuit family C if for all C ∈ C and for all inputs x1, . . . , x` to C, letting
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(pk, sk)← Gen(1λ) and ci ← Enc(pk, xi) it holds that:

Pr[Decsk(Evalpk(C, c1, . . . , c`)) 6= C(x1, . . . , x`)] ≤ neg(λ)

where the probability is taken over all the randomness in the experiment;
and fully homomorphic if it is compact and C-homomorphic for C the
class of all polynomially computable circuits.

Sanitization. A ciphertext sanitization algorithm for a homomorphic en-
cryption re-randomizes ciphertexts to make them statistically close to
other (sanitized) ciphertexts decrypting to the same plaintext. Sanitiza-
tion algorithms exists, as shown by Ducas and Stehlé [17], essentially
for all the major schemes known at the time their paper was published,
including Gentry’s original scheme [19], BGV [10], and FHEW [16].4

Definition 4 (sanitization algorithm [17]). A sanitization algorithm
for a homomorphic public-key encryption scheme E = (Gen,Enc,Dec,Eval),
denoted Sanitize, is a ppt algorithm that takes a public key pk and a ci-
phertext c and returns a ciphertext, so that with probability ≥ 1− neg(λ)
over the choice of (pk, sk)← Gen(1λ) the following holds:

– (Message-preservation) ∀c in the ciphertext space:

Decsk(Sanitizepk(c)) = Decsk(c).

– (Sanitization) ∀c, c′ in the ciphertext space s.t. Decsk(c) = Decsk(c
′):

∆
(
(Sanitizepk(c), (pk, sk)) ,

(
Sanitizepk(c

′), (pk, sk)
))
≤ neg(λ).

2.4 Privacy-Preserving Two-Party Protocols

The protocols considered in this work involve two-parties, client and
server, denoted by Clnt and Srv respectively, where the client has in-
put and output, the server has no input and no output, and both receive
the security parameter λ. The client and server interact in an interactive
protocol denoted by π = 〈Clnt,Srv〉. The server’s view in an execution of
π, on client’s input x, no server’s input (denoted by ⊥), and security pa-
rameter λ, is a random variable viewπSrv(x,⊥, λ) capturing what the server
has learned, and defined by

viewπSrv(x,⊥, λ) = (r,m1, . . . ,mt)

4 We conjecture that [17] can be extended to newer schemes, published following their
paper, including TFHE [13] and CKKS [12]; this is beyond the scope of this work.
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where r is the random coins of Srv, and m1, . . . ,mt are the messages
Srv received during the protocol’s execution. The client’s output in the
execution is denoted by outπClnt(x,⊥, λ). The protocol preserves privacy
if the views of any server on (same length) inputs are computationally
indistinguishable (see [22] Definition 2.6.2 Part 2).5

Definition 5 (correctness and privacy). An interactive client-server
protocol π = 〈Clnt,Srv〉 for computing F : A → B, where the server has
no input or output is said to be:

Correct: if Srv and Clnt are ppt and for all x ∈ A,

Pr[outπClnt(x,⊥, λ) = F (x)] = 1− neg(λ).

Private: if there exists a negligible function neg(·) such that for every
λ ∈ N, every ppt distinguisher D that chooses x0, x1 ∈ A s.t. |x0| =
|x1|, and every ppt server Srv∗ it holds that:

|Pr[D(viewπSrv∗(x0,⊥, λ)) = 1]− Pr[D(viewπSrv∗(x1,⊥, λ)) = 1]| ≤ neg(λ)

where the probability is taken over the random coins of Clnt and Srv∗.

Definition 5 captures malicious adversaries, but can be relaxed to semi-
honest ones by quantifying only over the prescribed Srv rather than every
ppt Srv∗. We call the former privacy against malicious servers and the
latter privacy against semi-honest servers.

3 CPA-Security Does Not Imply Privacy

In this section we show that CPA-security is insufficient for guaranteeing
privacy for HE-based protocols (cf. Theorem 1).

We demonstrate the insufficiency of CPA-security by exhibiting an
attack applicable on a wide and natural family of protocols: client-aided
protocols. Importantly, in these protocols the server sees only encrypted
data, encrypted with a CPA-secure encryption, and never sees decryp-
tions. The HE scheme may be exact, e.g., BGV/FV [10,18] rather than
only an approximate scheme, e.g., CKKS [12], as in [26]. In fact, we can
transform any CPA-secure encryption scheme, using a one-way function,
into a CPA-secure encryption scheme for which our attack works. Our
attack completely breaks the security of the protocol in the strong sense
that the server is able to completely recover the client’s input.

In the following we define the family of client-aided protocols in Sec-
tion 3.1, and specify our attack in Section 3.2.

5 We note that the server has no input and no output, and hence we do not require
security against the client.
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3.1 Client-Aided Protocols

In this section we formally define the family of client-aided protocols, or
(E ,G)-aided protocols, parameterized by a PKE scheme E with message
space M and a family of functions G = {Gn : M → M}n∈N. We note
that E can be any PKE scheme (i.e., not necessarily an HE scheme).

Definition 6 ((E ,G)-aided protocol). Let E = (Gen, Enc,Dec) be a
public-key encryption scheme with message spaceM, and G = {Gn : M→
M}n∈N a family of functions. An interactive client-server protocol π =
〈Clnt,Srv〉 for computing a function F : A → B is called an (E ,G)-aided
protocol if it has the following three stage structure:

1. Client’s input outsourcing phase (on input x ∈ A): Clnt runs
(sk, pk)← Gen(1λ), encrypts its input c← Encpk(x), and sends c and
pk to Srv.

2. Server’s computation phase: Srv performs some computation and
in addition may interact with Clnt by sending it pairs (e, n), for e a
ciphertexts and n ∈ N, and receiving in response Encpk(Gn(Decsk(e))).

3. Client’s output phase: Srv sends to Clnt the last message of the
protocol; upon receiving this message, Clnt produces an output.

Remark 1 (multiple inputs and outputs). The family G may include func-
tions with multiple inputs and outputs. In this case the query e and
response e′ are vectors of ciphertexts, and the decryption and encryption
in Encpk(Gn(Decsk(e))) are computed entry-by-entry. Throughout the pa-
per we slightly abuse notations and denote byM, Dec, Enc, e and e′ also
their extension to vectors.

3.2 An Attack on Privacy

We specify our construction of a CPA-secure (possibly, homomorphic) en-
cryption scheme Ef , and show we can break every (Ef ,G)-aided protocol.

We show how to construct Ef from any CPA-secure (possibly, homo-
morphic) encryption scheme E with message spaceM of super-polynomial
size and any one-way function f : M→M. The scheme Ef is similar to
E , except for the key difference that its encryption and decryption are
“punctured” on a random point m∗ ∈M, where its public key implicitly
specifies m∗ by augmenting it with f(m∗) and Encpk(m

∗). See the formal
details in Figure 1 and Theorem 5.
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Genf (1λ): Given 1λ, output (pkf , skf ) computed as follows. Let (pk, sk) ← Gen(1λ)
and sample a uniformly random m∗ ∈M. Set

pkf := (pk,Encpk(m∗), f(m∗)) and skf := (sk, f(m∗)).

Encf
pkf

(m): Given m = (m1,m2) ∈ M×M, if f(m2) = f(m∗) then output (m1,m2),

else output
(Encpk(m1),Encpk(m2)).

Decf
skf

(c): Given c = (c1, c2), if f(c2) = f(m∗) then output (c1, c2), else output

(Decsk(c1),Decsk(c2)).

Evalf
pkf

(C, c1, ..., c`): Given a circuit C = C1 × C2 over ` inputs, and ` ciphertexts

ci = (ci,1, ci,2) for i ∈ [`], do the following. For each i ∈ [`], if f(ci,2) = f(m∗) then set
c′i = (Encpk(ci,1),Encpk(ci,2)), else set c′i = ci. Output

(Evalpk(C1, c
′
1,1, ..., c

′
`,1),Evalpk(C2, c

′
1,2, ..., c

′
`,2)).

Fig. 1. The construction of the scheme Ef = (Genf ,Encf ,Decf ,Evalf ) from a PKE
scheme E = (Gen,Enc,Dec,Eval) and a one-way function f over its message space M.

Theorem 5 (properties of Ef). For every PKE scheme E and one-way
function f over the message-space of E, the scheme Ef (cf. Figure 1) is a
PKE scheme satisfying the following. If E is CPA-secure, compact, and C-
homomorphic, then Ef is CPA-secure, compact, and C×C-homomorphic.6

Proof. Correctness, compactness and homomorphism of Ef follow directly
from the properties of E . The CPA-security of Ef essentially follows from
the fact that the encryption in Ef is identical to encrypting pairs (m1,m2)
of messages under E , except if m2 is a pre-image of f(m∗). The latter
however occurs with no more than a negligible probability due to f being
a one-way function and m∗ being a random message. See formal details
in Lemma 4-5, Appendix A. ut

We present our attack in which the server recovers the client’s input
in any (Ef ,G)-aided protocol. We remark that our attack is applicable
from every PKE E , regardless of whether it is a HE scheme.

Theorem 6 (CPA-security does not imply privacy). For every PKE
scheme E with message-space M and every one-way function f over M,

6 We note that a C × C-homomorphic encryption scheme is also C-homomorphic, as
we can embed C in C × C, e.g., by mapping every C ∈ C into (C,C) ∈ C × C.
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there exists a CPA-secure PKE scheme Ef so that for every family of
functions G = {Gn : M→M}n∈N and every (Ef ,G)-aided protocol there
is a server’s strategy that recovers the client’s input.

Proof. Denote E = (Gen,Enc,Dec). Assume without loss of generality
that G contains the identity function I.7 Set Ef = (Genf ,Encf ,Decf ) to
be the encryption scheme constructed from E and f in Figure 1.

Our active input-recovery attack is applicable on any (Ef ,G)-aided
protocol π = 〈Clnt,Srv〉 as follows.

1. Clnt executes phase 1 of π. That is, it runs (pkf , skf )← Genf (1λ) to
obtain a public key pkf = (pk,Encpk(m

∗), f(m∗)), encrypts its input

x by computing cx ← Encf
pkf

(x, x) and sends cx and pkf to Srv.

2. Upon receiving cx = (c1, c2) and pkf , Srv generates a new ciphertext
e = (c1,Encpk(m

∗)), where Encpk(m
∗) is taken from pkf , and sends

(e, I) to Clnt.

3. Clnt sends (c′1, c
′
2)← Encf

pkf
(I(Decf

skf
(e))) to Srv.

4. Upon receiving the client’s response (c′1, c
′
2), Srv outputs c′1.

The attack recovers the client’s input x because c′1 = x as explained

next. Observe that I(Decf
skf

(e)) = (x,m∗) is a message where the en-

cryption algorithms Encf
pkf

is punctured, implying that

Encf
pkf

(I(Decf
skf

(e))) = (x,m∗).

Namely, (c′1, c
′
2) = (x,m∗) in Step 3, and so c′1 = x. ut

Remark 2. Our attack can be mounted by malicious servers on every
(Ef ,G)-aided protocol. By semi-honest servers, the attack can be mounted
on (contrived) protocols where the server’s prescribed behavior includes
sending a query (e, I) for e = (c1,Encpk(m

∗)) as in Step 2 of our attack.

4 A Sufficient Strengthening of CPA

We present sufficient conditions on the encryption scheme that guarantee
privacy for client-aided protocols against malicious servers. Specifically,

7 In case G does not contain the identity function, we slightly modify Ef by replac-
ing each occurrence of Encpk(m∗) and f(m∗) in Figure 1 with Encpk(G(m∗)) and
f(G(m∗)) respectively for an efficiently computable G ∈ G, and slightly modify the
proof by replacing each occurrence of I by G.
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it suffices to use a sanitized CPA-secure scheme, or more generally any
funcCPA-secure scheme (cf. Definition 7 and Theorem 2).

In the following we first present our strengthening of CPA-security to
function-chosen-plaintext attack or funcCPA-security (Section 4.1); show
that funcCPA-security of an encryption scheme E is sufficient to guarantee
privacy for any (E ,G)-aided protocol (Section 4.2); and present a real-
ization of funcCPA-secure schemes from standard properties, specifically,
from any CPA-secure HE that has a sanitization algorithm (Section 4.3).

4.1 funcCPA-Security: A Strengthening of CPA

In this section we define and a new security notion of public-key encryp-
tion that we name function-chosen-plaintext attack (funcCPA-security).
The definition captures a stronger adversary than the standard CPA ad-
versary in the sense that the adversary has access to a “decrypt-function-
encrypt” oracle, specified with respect to a family of functions, where the
adversary may submit a ciphertext together with a function identifier and
receive in response a ciphertext that is produced as follows. The submit-
ted ciphertext is first decrypted, then the requested function is calculated
on the plaintext and the result is encrypted and returned to the adversary.

More formally, we define funcCPA-security via a funcCPA-experiment
specified for a public-key encryption scheme E = (Gen,Enc,Dec) with
message space M, a family of functions G = {Gn : M→M}n∈N, and an
adversary A, as follows:

funcCPA indistinguishability experiment EXPFcpaA,E,G(λ):

1. Gen(1λ) is run to obtain a key-pair (pk, sk)

2. The adversary A is given pk and access to a decrypt-function-encrypt
oracle, denoted Encpk(G(Decsk(·))), defined as follows: the queries to
Encpk(G(Decsk(·))) are pairs consisting of a ciphertext e and a function
index n, and the response is e′ ← Encpk(Gn(Decsk(e))).

3. A outputs a pair of messages x0, x1 ∈M with |x0| = |x1|.
4. A random bit b ∈ {0, 1} is chosen, and the ciphertext c ← Encpk(xb)

is computed and given to A. We call c the challenge ciphertext. A
continues to have access to Encpk(G(Decsk(·))) oracle.

5. The adversary A outputs a bit b′. The experiment’s output is defined
to be 1 if b′ = b, and 0 otherwise.

Definition 7 (funcCPA). A PKE scheme E = (Gen,Enc,Dec) with mes-
sage space M is funcCPA-secure with respect to a family of functions
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G = {Gn : M → M}n∈N ( funcCPA-secure w.r.t. G) if for all ppt adver-
saries A, there exists a negligible function neg(·) such that for all λ ∈ N,

Pr[EXPFcpaA,E,G(λ) = 1] ≤ 1

2
+ neg(λ)

where the probability is taken over the random coins used by A, as well
as the random coins used to generate (pk, sk), choose b, and encrypt.

4.2 funcCPA implies Privacy

In this section we show that (E ,G)-aided protocols preserve privacy against
malicious servers, if E is funcCPA-secure. This implication holds for any
funcCPA-secure PKE, not only HE schemes.

Theorem 7 (funcCPA implies privacy). Let E be a PKE with mes-
sage space M and G = {Gn : M → M}n∈N a family of functions. If
E is funcCPA-secure w.r.t. G, then every (E ,G)-aided protocol preserves
privacy against malicious servers.

Proof. Informally, the proof relies on the fact that any communication
with the client, specified by the protocol, can be replaced by communica-
tion with the Encpk(G(Decsk(·))) oracle. The formal details follow.

Let π be a (E ,G)-aided protocol for a function F : A→ B. Assume by
contradiction that privacy does not hold for π. That is, there exists a ppt
distinguisher D that chooses x0, x1 ∈ A with |x0| = |x1|, a malicious ppt
server Srv∗, and a polynomial p(·) such that for infinitely many λ ∈ N:

Pr[D(viewπSrv∗(x1,⊥, λ)) = 1]− Pr[D(viewπSrv∗(x0,⊥, λ)) = 1] ≥ p(λ) (1)

We show that given D and Srv∗ we can construct an adversary A that
violates the funcCPA security of E with respect to the family G.

The adversary A participates in EXPFcpaA,E,G as follows:

1. Upon receiving pk, A outputs x0, x1 (as computed by D).
2. Upon receiving cx ← Encpk(xb) from the challenger, A internally exe-

cutes Srv∗ and behaves as the Clnt in the execution of the protocol π:
in the client’s input outsourcing phase of π, A sends (cx, pk) to Srv∗;
in the server’s computation phase of π, every incoming message (e, n)
to Clnt is redirected to the oracle Encpk(G(Decsk(·))) and the response
is sent to Srv∗ as if it were coming from Clnt.

3. A runs the distinguisher D on viewSrv∗ (Srv∗’s view in A during Step 2)
and outputs whatever D outputs.
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The adversary A is ppt due to Srv∗ and D being ppt. Note that π is
perfectly simulated.

We denote by viewEXPFcpa

Srv∗ (xb,⊥, λ) the view of Srv∗, simulated by A,

in the execution of EXPFcpaA,E,G with bit b being selected by the challenger.
Since A behaves exactly as Srv∗ in π, it holds that for every b ∈ {0, 1},

Pr[D(viewπSrv∗(xb,⊥, λ)) = 1] = Pr[D(viewEXPFcpa

Srv∗ (xb,⊥, λ)) = 1] (2)

From Equations 1 and 2 it follows that:

Pr[D(viewEXPFcpa

Srv∗ (x1,⊥, λ)) = 1]− Pr[D(viewEXPFcpa

Srv∗ (x0,⊥, λ)) = 1] ≥ p(λ)
(3)

Therefore, we obtain that:

Pr[EXPFcpaA,E,G(λ) = 1]

=
1

2
·
(

Pr[EXPFcpaA,E,G(λ) = 1|b = 1] + Pr[EXPFcpaA,E,G(λ) = 1|b = 0]
)

=
1

2
·
(

Pr[D(viewEXPFcpa

Srv∗ (x1,⊥, λ)) = 1] + Pr[D(viewEXPFcpa

Srv∗ (x0,⊥, λ)) = 0]
)

=
1

2
+

1

2
·
(

Pr[D(viewEXPFcpa

Srv∗ (x1,⊥, λ)) = 1]− Pr[D(viewEXPFcpa

Srv∗ (x0,⊥, λ)) = 1]
)

≥ 1

2
+

1

2
· p(λ)

where the last inequality follows from Equation 3. Combining this with
A being ppt we derive a contradiction to E being funcCPA secure. This
concludes the proof. ut

4.3 Construction of funcCPA Secure Encryption

In this section we show how to transform any CPA-secure HE scheme
E that has a sanitization algorithm (e.g. [19,10,16]) into a sanitized HE
scheme E santz that is funcCPA-secure. See the construction of E santz in
Definition 8, and the proof it is funcCPA-secure in Theorem 8.

Definition 8 (sanitized scheme Esantz). Let E = (Gen,Enc,Dec,Eval)
be a C-homomorphic PKE scheme with message space M and a sanitiza-
tion algorithm Sanitize. We define the sanitized scheme, denoted E santz =
(Gen,Encsantz,Dec,Evalsantz), as follows:
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– Gen and Dec are as in E;
– Encsantz takes a public key pk and a message m ∈M and outputs:

Encsantzpk (m) = Sanitizepk (Encpk(m)) ;

– Evalsantz takes a public key pk, a circuit C ∈ C, and ciphertexts c1, . . . , c`
and outputs:

Evalsantzpk (C, c1, . . . , c`) = Sanitizepk (Evalpk(C,Sanitizepk(c1), . . . ,Sanitizepk(c`))) .

We note that E santz inherits all the properties of E : C-homomorphism,
compactness, security, and correctness. In particular, correctness holds
due to correctness of E and the message-preservation property of Sanitize.
We show that if E is CPA-secure, then E santz in funcCPA-secure.

Theorem 8 (Esantz is funcCPA-secure). If E is a C-homomorphic CPA-
secure PKE scheme with a sanitization algorithm, then the sanitized scheme
E santz is funcCPA-secure w.r.t. C.8

Proof. To prove the theorem we first enhance the definition of circuit
privacy to circuit-privacy+ (cf. Definition 9 below); then show that if
E is C-homomorphic and has a sanitization algorithm then the sanitized
scheme E santz is circuit-privacy+ for C (cf. Lemma 1 below); and show that
if a C-homomorphic CPA-secure encryption scheme is circuit-privacy+ for
C, then it is funcCPA-secure w.r.t. C (cf. Lemma 2 below). We conclude
that E santz is funcCPA-secure w.r.t. C. ut

Circuit-privacy+. Our definition of circuit-privacy+ addresses maliciously
generated ciphertexts by quantifying over all ciphertexts in the ciphertext
space, rather than only over ciphertexts that were properly formed by ap-
plying the encryption algorithm on a message. Prior definitions of circuit
privacy either considered the semi-honest settings where both the keys
and the ciphertext are properly formed [23,19,8], or considered settings
where both keys and ciphertexts may be maliciously formed [23,28,15,27].
In contrast, in our settings the keys are properly formed whereas the ci-
phertexts may be maliciously formed.

Definition 9 (circuit-privacy+). A C-homomorphic PKE scheme E =
(Gen,Enc,Dec,Eval) is circuit-private+ for C if the following holds with
probability ≥ 1 − neg(λ) over the choice of (pk, sk) ← Gen(1λ) and the
random coins in Enc and Eval: For every circuit C ∈ C over ` inputs and

8 We slightly abuse notations and allow funcCPA with respect to a circuit family.
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ciphertexts c1, . . . , c` in the ciphertext space of E the following distribu-
tions are statistically close:

∆ (Encpk (C (Decsk(c1), . . . ,Decsk(c`))) ,Evalpk (C, c1, . . . , c`)) < neg(λ)

We prove that the sanitized scheme E santz is circuit-private+.

Lemma 1 (Esantz is circuit-private+). Let E be a C-homomorphic PKE
with a sanitization algorithm, then E santz is circuit-private+ for C.

Proof. Informally, the proof follows from the definition of E santz and the
properties of C-homomorphism and Sanitize; See the formal proof details
in Appendix B.1. ut

Circuit-privacy+ implies funcCPA. We prove that a sufficient condition
for a HE scheme to be funcCPA-secure is that it is CPA-secure and circuit-
private+. We remark that Lemma 2 holds even if the schemes satisfies only
a weaker notion of circuit-privacy+ where we require only computational
indistinguishability rather than statistical.

Lemma 2 (circuit-privacy+ implies funcCPA). Let E be a CPA-secure
PKE. If E is C-homomorphic and circuit-private+ for C, then E is funcCPA-
secure w.r.t. C.

Proof. The proof idea is to carefully replace Encpk(G(Decsk(·))) oracle
calls with Eval operations. The formal details follow.

Let E = (Gen,Enc,Dec,Eval) be a CPA-secure C-homomorphic encryp-
tion scheme with message spaceM that is circuit-private+ for C. For any
ppt adversary A that participates in EXPFcpaA,E,C we construct an adversary

B for EXPcpaB,E that behaves as follows: The adversary B runs A internally
while relaying messages between the challenger and A, with the exception
that Encpk(C(Decsk(·))) queries are answered using Eval. That is, B does
the following:

– Upon receiving pk from challenger, forward it to A.
– Answer queries (e, n) to Encpk(C(Decsk(·))) by e′ ← Evalpk (Cn, e).
– Once A generates x0, x1 forward them to the challenger and return

the response c← Encpk(xb) to A.
– Output the b′ that A outputs.

The adversary B is ppt (due to A and Eval being ppt), and all the
interaction of A is perfectly simulated by B except for the responses
to queries to Encpk(C(Decsk(·))) that are simulated using Eval. Circuit
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privacy+ of E guarantees that these responses are indistinguishable from
decrypting, applying Cn and encrypting the result.

More formally, we define a series of hybrid executions that gradually
move between EXPFcpaA,E,C experiment (where Encpk(C(Decsk(·))) oracle is

used) to EXPcpaB,E experiment (where Eval is used). Let q denote an upper
bound on the number of queries done by A, we define q + 1 hybrids as
follows:

Hybrid H0 is defined as the execution of EXPFcpaA,E,C .

Hybrid Hi is defined for i ∈ [q]. The hybrid Hi is defined as EXPFcpaAi,E,C ,
where Ai’s last i queries are answered using Eval instead of oracle
Encpk(C(Decsk(·))).

Note that Hq is equivalent to the CPA-experiment EXPcpaB,E , and hence,

Pr[EXPcpaB,E(λ) = 1] = Pr[EXPFcpaAq ,E,C(λ) = 1] (4)

In each pair of adjacent hybrids Hi−1 and Hi the difference is that in
Hi the (q − i+ 1)’th query is done using Eval instead Encpk(C(Decsk(·)))
oracle. In this case the indistinguishability follows from E being circuit
private+ for C. Namely,

|Pr[EXPFcpaAi,E,C(λ) = 1]− Pr[EXPFcpaAi−1,E,C(λ) = 1]| ≤ neg(λ).

Since q is polynomial in λ, by the hybrid argument the indistinguishability
of EXPFcpaA,E,C and EXPcpaB,E follows. Finally, from the CPA-security of E and
Equation 4 we conclude that

Pr[EXPFcpaA,E,C(λ) = 1] ≤ 1

2
+ neg(λ)

As required. ut

5 Sufficiency of CPA for Cleartext Computable Protocols

We define a natural property for (E ,G)-aided protocols (called cleartext
computable), and show that for protocols satisfying this property, CPA-
security guarantees privacy against semi-honest servers (cf. Theorem 3).

Cleartext computable protocols. A protocols is cleartext computable if
the messages whose encryption constitutes the client’s responses to the
server’s queries are efficiently computable given only the client’s input.
To formalize this we first define the client’s cleartext response. Let π =
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〈Clnt,Srv〉 be an (E ,G)-aided protocol (cf. Definition 6). The client’s clear-
text response in an execution of π on client’s input x and randomness rClnt,
server’s randomness rSrv, and security parameter λ ∈ N, is defined by:

clear-resπ((x, rClnt), rSrv, λ) = (Gn1(Decsk(e1)), . . . , Gnq(Decsk(eq)))

where (sk, pk)← Gen(1λ) is the key pair generated by the client in Phase
1 of π; q is the number of queries sent from server to client in Phase 2
of π; and for each j ∈ [q], (ej, nj) and Encpk(Gnj (Decsk(ej))) are the jth
server’s query and the corresponding client’s response respectively with
Gnj (Decsk(ej)) being the underlying cleartext response message.

Definition 10 (cleartext computable). An (E ,G)-aided protocol π =
〈Clnt,Srv〉 for computing a function F : A→ B is cleartext computable if
Srv is ppt and there exists a ppt function h such that for all inputs x ∈ A,
all client and server randomness rClnt and rSrv, respectively, and all λ ∈ N

clear-resπ((x, rClnt), rSrv, λ) = h(x)

CPA-security implies privacy for cleartext computable protocols. We show
that for cleartext computable (E ,G)-aided protocols, CPA-security of E
implies that the protocol preserves privacy against semi-honest servers.

The family G should be admissible in the sense that all Gn ∈ G are
polynomial-time computable (in the security parameter) and have fixed
output length, i.e., |Gn(x0)| = |Gn(x1)| for all x0, x1 ∈ M. We note that
the latter trivially holds when G is specified as a family of circuits.

Theorem 9 (privacy of cleartext computable protocols). Every
cleartext computable (E ,G)-aided protocol preserves privacy against semi-
honest servers, provided that E is CPA-secure and G is admissible.

Proof. Let E = (Gen,Enc,Dec) be a CPA-secure public-key encryption
scheme with message space M, G = {Gn : M → M}n∈N a family of
admissible functions overM, and π a (E ,G)-aided protocol for a function
F : A → B. Assume by contradiction that privacy does not hold for π.
That is, there exists a ppt distinguisher D that chooses x0, x1 ∈ A with
|x0| = |x1|, and a polynomial p(·) such that for infinitely many λ ∈ N:

Pr[D(viewπSrv(x1,⊥, λ)) = 1]

−Pr[D(viewπSrv(x0,⊥, λ)) = 1] ≥ p(λ)
(5)

We show below that given D we can construct an adversary A that violate
the CPA security of E .

The adversary A participates in EXPcpaA,E as follows:
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1. Upon receiving pk output x0, x1 (as computed by D).

2. Upon receiving Encpk(xb) behave exactly as Srv behaves while execut-
ing π upon receiving cx and pk from Clnt, except that every message
(e, n) (where e is an encryption and n ∈ N) sent from Srv to Clnt is
answered by A as follows: A samples uniformly at random m from
the domain of Gn, computes e′ ← Encpk(Gn(m)), and behaves as Srv
upon receiving e′ as the response from Clnt.

3. Run the distinguisher D on viewSrv (Srv’s view in A during step 2)
and output whatever D outputs.

The adversary A is ppt due to the admissibility of G and Srv and D be-
ing ppt. Note that π is almost perfectly simulated except that the queries
to Clnt are simulated using encryption of the image of Gn on a randomly
sampled elements in its domain. Let π′ denote this variant of π that is sim-
ulated by A, namely π′ is a protocol identical to π except that each query
(e, n) to Clnt is answered by the encryption of Gn(m) for a randomly
sampled m from the domain of Gn. We denote by viewEXPcpa

Srv (xb,⊥, λ)
the view of Srv, simulated by A, in the execution of EXPcpaA,E with bit b
being selected by the challenger. By definition of π′ it holds that for every
b ∈ {0, 1},

Pr[D(viewπ
′

Srv(xb,⊥, λ)) = 1]

= Pr[D(viewEXPcpa

Srv (xb,⊥, λ)) = 1]
(6)

Furthermore, the CPA security of E and cleartext computability of π
guarantees (as shown in Lemma 3 below) that the server’s view in π and
π′ is computationally indistinguishable. In particular, for every x ∈ A

Pr[D(viewπ
′

Srv(x,⊥, λ)) = 1]

−Pr[D(viewπSrv(x,⊥, λ)) = 1] ≤ neg(λ) .
(7)

Putting Equation 7 together Lemma 3 and Equations 5-6 it follows that

Pr[D(viewEXPcpa

Srv (x1,⊥, λ)) = 1]

−Pr[D(viewEXPcpa

Srv (x0,⊥, λ)) = 1] ≥ p(λ)− neg(λ).
(8)
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Therefore, we obtain that:

Pr[EXPcpaA,E(λ) = 1]

=
1

2
·
(

Pr[EXPcpaA,E(λ) = 1|b = 1] + Pr[EXPcpaA,E(λ) = 1|b = 0]
)

=
1

2
· Pr[D(viewEXPcpa

Srv (x1,⊥, λ)) = 1]

+
1

2
· Pr[D(viewEXPcpa

Srv (x0,⊥, λ)) = 0]

=
1

2
+

1

2

(
Pr[D(viewEXPcpa

Srv (x1,⊥, λ)) = 1]− Pr[D(viewEXPcpa

Srv (x0,⊥, λ)) = 1]
)

≥ 1

2
+

1

2
· p(λ)− neg(λ)

where the last inequality follows from Equation 8. Combining this with A
being ppt we derive a contradiction to E being CPA secure. This concludes
the proof. ut

Let π′ = 〈Clnt′, Srv〉 be as defined in the proof of Theorem 9, i.e., it
is identical to π = 〈Clnt,Srv〉 except that Clnt′, upon receiving server’s
queries (e, n), instead of responding as in Step 2 in Figure 6, responds
by sending the encryption of Gn(m) for a uniformly random message m
from the domain of Gn. We show that the server is indifferent to the
correctness of answers it receives from the client in the sense that its view
in π and π′ is indistinguishable.

Lemma 3. Let E = (Gen,Enc,Dec) be a CPA-secure public-key encryp-
tion scheme with a message space M. Let G = {Gn : M→M}n∈N be a
family of admissible functions. If π is a cleartext computable (E ,G)-aided
protocol for F : A→ B, then for every efficiently samplable x ∈ A, and all
λ ∈ N the following holds:

viewπ
′

Srv(x,⊥, λ) ≈c viewπSrv(x,⊥, λ)

Proof. Assume by contradiction that Lemma 3 does not hold. That is,
there exists a ppt distinguisher D that chooses x ∈ A and a polynomial
p(·) such that for infinitely many λ ∈ N:

Pr[D(viewπ
′

Srv(x,⊥, λ)) = 1]

−Pr[D(viewπSrv(x,⊥, λ)) = 1] ≥ p(λ) .
(9)
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We define a series of hybrid executions that gradually move between
π = 〈Clnt,Srv〉 execution (where Clnt responds with Encpk(Gn(Decsk(e))))
to π′ = 〈Clnt′,Srv〉 execution (where Clnt′ responds with an encryption
of the image of Gn on a random message). Let q denote the number of
queries made to Clnt in π. We define q + 1 hybrids as follows:

Hybrid H0 is defined as the execution of 〈Clnt, Srv〉.
Hybrid Hj (j = 1, . . . , q) is similar to H0 except that the last j queries

to Clnt, each query (e, n) is answered by sampling a uniformly random
m in the domain of Gn and responding with Encpk(Gn(m)) (instead
of sending Encpk(Gn(Decsk(e))) as in Figure 6, Step 2).

Note that in each pair of adjacent hybrids Hj−1 and Hj for j ∈ [q] the
difference is that in Hj the (q + 1− j)’th query is answered using Gn(m)
for a random m instead of Decsk(e).

Denote by view
Hj
Srv(x,⊥, λ) the view of Srv in the hybrid Hj .

By the hybrid argument it follows from Equation 9 that there exists
j ∈ [q] such that:

Pr[D(view
Hj
Srv(x,⊥, λ)) = 1]

−Pr[D(view
Hj−1

Srv (x,⊥, λ)) = 1] ≥ p(λ)

q

(10)

We show that Equation 10 contradicts E being CPA secure. That is,
we construct an adversary A that communicates with the challenger Chal
in the CPA indistinguishability experiment EXPcpaA,E and wins with a non-

negligible advantage over half. Concretely, A participates in EXPcpaA,E as
follows:

1. A computes the client’s cleartext response clear-resSrv(x, r, λ) = (y1, . . . , yq)
(using the efficiently computable function h from Definition 10).

2. Upon receiving pk from Chal, A computes cx ← Encpk(x), samples a
random tape r for Srv, and executes Srv with randomness r on (cx, pk)
while answering each query of Srv as follows:

(a) For the first q−j queries of Srv, A encrypts under pk the responses
y1, . . . , yq−j associated with these queries, and sends the resulting
ciphertexts to Srv.

(b) For the (q − j + 1)’th query of Srv, denoted (e, n), A proceeds as
follows:

i. A sets m0 = yq−j+1, samples uniformly random m1 from the
domain of Gn, and sends m0 and Gn(m1) to Chal.
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ii. Upon receiving from Chal the challenge ciphertext c← Encpk(mb)
for uniformly random b← {0, 1}, A forwards this ciphertext c
to Srv.

(c) For the rest of the queries (e′, n′), A samples uniformly random
m in the domain of Gn′ , and sends Encpk(Gn′(m)) to Srv.

3. A executes the distinguisher D on the view of Srv during the execution
of Step 2 above, denoted viewSrv, and outputs whatever D outputs.

We note that if b = 0, then the challenge ciphertext c is the encryption
of yq−j+1 and since π is cleartext computable we get that viewSrv is exactly
as in Hj−1 and otherwise as in Hj . Therefore, we obtain that

Pr[EXPcpaA,E(λ) = 1]

=
1

2
·
(

Pr[EXPcpaA,E(λ) = 1|b = 1] + Pr[EXPcpaA,E(λ) = 1|b = 0]
)

=
1

2
+

1

2

(
Pr[D(view

Hj
Srv(x,⊥, λ)) = 1]− Pr[D(view

Hj−1

Srv (x,⊥, λ)) = 1]
)

≥1

2
+

1

2
· p(λ)

q
(11)

– a contradiction to the CPA-security of E ; this concludes the proof. ut

6 Conclusions

This work proves that CPA-security does not guarantee privacy for HE-
based client-aided protocols in a much broader context than previously
known, and presents (stronger) sufficient requirements, for schemes or
protocols, that do guarantee privacy. (1) We present a new attack prov-
ing that CPA-security of the underlying HE-scheme does not imply pri-
vacy, even for protocols employing exact HE-scheme and exposing only
encrypted data. (2) We prove that instantiating client-aided protocols
with sanitized CPA-secure schemes guarantees privacy against malicious
servers; and (3) for cleartext computable protocols, instantiating them
with CPA-secure schemes guarantees privacy against semi-honest servers.
Our attack cautions against reliance on CPA-security to guarantee privacy
in client-aided protocols, whereas our security proofs provide a easy-to-
use machinery for proving that client-aided protocols preserve privacy.

To prove (2) we introduce the notion of funcCPA-security, and prove
it guarantees privacy against malicious adversaries and holds for sani-
tized CPA-secure scheme. An open problem is to construct funcCPA-secure
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schemes attaining competitive efficiency with state-of-the-art CPA-secure
schemes. Two possible approaches follow. (i) Realize funcCPA-security
from other standard properties, beyond sanitization, or directly prove
it holds for existing un-sanitized schemes. (ii) Devise sanitization algo-
rithms for newer and faster schemes published subsequently to [17], e.g.
TFHE [14] and CKKS [12].
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A Proof of Theorem 5

In this section we given the proof of Theorem 5, showing that (a) if E is
a compact and C-homomorphic encryption scheme, then Ef is a compact
and C × C-homomorphic encryption scheme, see in Lemma 4; (b) if E is
CPA-secure then Ef is CPA-secure, see Lemma 5.

Lemma 4 (correctness, homomorphism and compactness of Ef).
For every public-key encryption scheme E with message-space M, and
every one-way function f over M, the public-key encryption scheme Ef
specified in Figure 1 is compact, and C ×C-homomorphic if E is compact,
and C-homomorphic.

Proof. Let E = (Gen,Enc,Dec,Eval) be a compact, C-homomorphic public-
key encryption scheme with message-space M, and let f be a one-way
function over M. Let Ef = (Genf ,Encf ,Decf ,Evalf ) be the encryption
scheme specified in Figure 1. We show that the algorithms of Ef are ppt,
and the scheme is correct, C ×C-homomorphic, and compact. We assume
without loss of generality that the message-space and ciphertext-space
of E are distinct; otherwise, change Enc to pad each ciphertext with an
additional character that make it syntactically distinct from values inM.
Consequently, the condition f(c2) 6= f(m∗) tested in Ef trivially holds for

all ciphertexts (c1, c2)← Encf
pkf

(m1,m2) s.t. f(m2) 6= f(m∗).

Efficiency of Ef . The algorithms of Ef involve only a constant number
of calls to the algorithms of E and to computing the forward direction of
the one-way function f . All these operations are in ppt, and therefore Ef
is ppt.

Correctness of Ef . Fix some key-pair (pkf , skf )← Genf (1λ), where pkf =
(pk,Encpk(m

∗), f(m∗)) and skf = (sk, f(m∗)) for (pk, sk) in the range of
Gen(1λ) and m∗ ∈ M. Fix some message m = (m1,m2) in the message

spaceM×M and let c = (c1, c2)← Encf
pkf

(m). We show that Decf
skf

(c) =
m as follows:

– if f(m2) 6= f(m∗), then (c1, c2) = (Encpk(m1),Encpk(m2)) and

Decf
skf

(c) = (Decsk(c1),Decsk(c2)) = (m1,m2) = m

where the first equality holds since c2 6= m∗ by the premise that M
and C do not intersect, and the second equality holds by the correct-
ness of E .
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– if f(m2) = f(m∗), then c = m (by definition of Encf
pkf

), implying

that c2 = m∗ and therefore Decf
skf

(c) = c (by definition of Decf
skf

).

So again Decf
skf

(c) = m.

We conclude that in both cases, Decf
skf

(Encf
pkf

(m)) = m.

Compactness of Ef . We show that there exists polynomial p(·) such that
the decryption algorithm Decf of Ef can be expressed as a circuit of
size p(λ). The decryption of Ef involves the following computations: (a)
executing twice the decryption algorithm of E , (b) evaluating the one-
way function f(c2), and (c) testing equality between f(c2) and the value
f(m∗) provided as part of the secret key. All these computations are
computable by poly-size circuits: (a) – due to the compactness of E ; (b)
– since the forward direction of one-way functions is computable in time
polynomial in the input size and the input c2 is of size polynomial in λ
due to the decryption algorithm Dec in E being a ppt algorithm; and (c)
– as checking equality of two values of size poly(λ) is computable in time
polynomial in λ.

Homomorphism of Ef . Fix some key-pair (pkf , skf ) ← Genf (1λ), where
pkf = (pk,Encpk(m

∗), f(m∗)) and skf = (sk, f(m∗)) for (pk, sk) in the
range of Gen(1λ) and m∗ ∈ M. Fix a circuit C = (C1, C2) ∈ C × C and a
set of inputs (x1, . . . , x`) ∈ (M×M)` to C where xi = (xi,1, xi,2) consists
of the i-th input to C1 and the i-th input to C2, respectively, and let
ci = (ci,1, ci,2)← Encf

pkf
(xi).

We show that Decf
skf

(Evalf
pkf

(C; c1, . . . , c`)) = C(x1, . . . , x`) with over-

whelming probability. First we observe that by definition of Evalf ,

Evalf
pkf

(C; c1, ..., c`) = (Evalpk(C1;Encpk(x1,1), ...,Encpk(x`,1))),

Evalpk(C2;Encpk(x1,2), ...,Encpk(x`,2)))

Next, by definition of Decf ,

Decf
skf

(Evalf
pkf

(C; c1, ..., c`)) = (Decsk(Evalpk(C1;Encpk(x1,1), ...,Encpk(x`,1))),

Decsk(Evalpk(C2;Encpk(x1,2), ...,Encpk(x`,2))))

Finally by the C-homomorphism of E , for every, the latter is equal to:

= (C1(x1,1, . . . , x`,1), C2(x1,2, . . . , x`,2))

= C(x1, . . . , x`)
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with overwhelming probability over the random coins of the experiment.
We conclude that

Pr[Decf
skf

(Evalf
pkf

(C; c1, ..., c`)) 6= C(x1, . . . , x`)] < neg

which concludes the proof. ut

Lemma 5 (CPA-security of Ef). Suppose E is a CPA-secure public-key
encryption scheme with message space M, and f is a one-way function
over M. Then Ef is a CPA-secure public-key encryption scheme with
message space M×M.

Proof. Let E = (Gen,Enc,Dec,Eval) be CPA-secure public-key encryption
scheme with message-spaceM, and let f be a one-way function overM.
Let Ef = (Genf ,Encf ,Decf ,Evalf ) be the encryption scheme specified
in Figure 1. To prove Ef is CPA-secure we gradually change E into Ef
while showing that CPA-security is preserved under all the modifications
we introduce. Namely, we first define a sequence of encryption schemes
starting from E , going through Ẽ , Ẽf and into Ef (see definitions for Ẽ , Ẽf
below), and show that each one is CPA-secure based on the CPA-security
of the previous encryption schemes.

The encryption scheme Ẽ and its CPA-security. is similar to E except for
encrypting pairs of messages rather than a single message. That is,

– G̃en takes as input the security parameter 1λ, and outputs (pk, sk)←
Gen(1λ)

– ˜Enc takes as input a public key pk and a message m = (m1,m2) ∈
M×M, and outputs a ciphertext (Encpk(m1),Encpk(m2))

– D̃ec takes as input a sk and a ciphertext c = (c1, c2), and outputs
(Decsk(c1),Decsk(c2))

– ˜Eval takes as input a public key pk, a function C = (C1, C2) ∈ C × C
and ` ciphertexts c1 = (c1,1, c1,2), . . . , c` = (c`,1, c`,2), and outputs
(Evalpk(C1; c1,1, . . . , c`,1),Evalpk(C2; c1,2, . . . , c`,2))

By Theorem 4 the CPA-security of E implies that it has indistinguishable
multiple encryptions security, implying that Ẽ is CPA-secure scheme.

The key augmented encryption scheme Ẽf and its CPA-security. The
scheme Ẽf is similar to Ẽ except for augmenting the public pk with

Encpk(m
∗) and f(m∗) for a random messages m∗ ∈ M. That is, G̃en

f
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on input the security parameter 1λ samples (pk, sk) ← G̃en(1λ) and a
uniformly random message m∗ ∈M, and outputs (pkf , skf ) for

skf = (sk, f(m∗))

pkf = (pk,Encpk( m
∗), f(m∗))

and the rest of the algorithms remain the same, i.e., ˜Enc
f
pkf (m) outputs

˜Encpk(m), D̃ec
f
skf (c) outputs D̃ecsk(c), and ˜Eval

f
pkf (C; c1, , ..., c`) outputs

˜Evalpk(C; c1, , ..., c`).
We now show that Ẽf is CPA-secure based on the CPA-security of Ẽ .

Suppose towards contradiction that Ẽf is not CPA-secure, namely, there
exists a ppt adversary Ãf and a polynomial p() such that:

Pr[EXPcpaÃf ,Ẽf (λ) = 1] ≥ 1

2
+ p(λ). (12)

We construct a ppt adversary Ã participating in the CPA experiment
EXPcpaÃ,Ẽ(λ) for Ẽ .

The adversary Ã internally runs Ãf while augmenting the public key
with Encpk(m

∗) and f(m∗) for a randomly chosen m∗ ∈ M. It forwards
Chal the two messages x0, x1 ∈ M×M chosen by Ãf , and feeds back
the challenge ciphertext received. Finally, it outputs the bit Ãf outputs.

The view of Ãf when it is run internally by Ã is identical to the view
of Ãf in the CPA experiment EXPcpaÃf ,Ẽf (λ). Together with Equation 12

we obtain that

Pr[EXPcpaÃ,Ẽ(λ) = 1] = Pr[EXPcpaÃf ,Ẽf (λ)] ≥ 1

2
+ p(λ)

in contradiction to Ẽ being CPA-secure, and hence we conclude that Ẽf
is CPA-secure.

Proof of CPA-security of Ef based on the CPA-security of Ẽf . Informally,
the CPA-security follows from the CPA-security of Ẽf together with the
fact that the punctured code in Enc, Dec, and Eval algorithms is executed
only only with negligible probability due to m∗ being randomly sampled.

Suppose towards contradiction that Ef is not CPA-secure, namely,
there exists a ppt adversary Af and a polynomial p() such that:

Pr[EXPcpaAf ,Ef (λ) = 1] ≥ 1

2
+ p(λ). (13)

We construct a ppt adversary Ãf participating in the CPA experiment
EXPcpaÃf ,Ẽf (λ) for Ẽf . The adversary Ãf behaves as follows:
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1. upon receiving from Chal a public key pkf = (pk,Encpk(m
∗), f(m∗))

generated by (pkf , skf )← G̃en
f
(1λ), it forwards pkf to Af .

2. Upon receiving fromAf two messages x0 = (x0,1, x0,2), x1 = (x1,1, x1,2) ∈
M×M, it forwards to Chal the message x0, x1 if f(xi,2) 6= f(m∗) for
both i ∈ {0, 1}, and aborts otherwise.

3. Upon receiving the challenge ciphertext c ← ˜Enc
f
pkf (xb) for a uni-

formly random bit b ∈ {0, 1}, it forwards c to Af .
4. Ãf outputs whatever Af outputs.

The adversary Ãf is ppt since Af is ppt and the condition in 2 is
efficiently testable.

Denote by E the event that Ãf aborts in EXPcpaÃf ,Ẽf (λ), i.e., the event

that Af in EXPcpaAf ,Ef (λ) sends a message m = (m1,m2) s.t. f(m2) =

f(m∗) to the challenger Chal in the chosen pair of message. Observe that,

Pr[EXPcpaÃf ,Ẽf (λ) = 1] = Pr[EXPcpaAf ,Ef (λ) = 1 and ¬E]. (14)

Moreover,

Pr[EXPcpaAf ,Ef (λ) = 1 and ¬E]

= Pr[EXPcpaAf ,Ef (λ) = 1]− Pr[EXPcpaAf ,Ef (λ) = 1 and E]

≥ Pr[EXPcpaAf ,Ef (λ) = 1 and E]− Pr[E]

≥ 1

2
+ p(λ)− Pr[E]

where the last inequality follows from Equation 13.
To conclude the proof it is left to show that E occurs with at most

a negligible probability, by the premise that f is one-way and E is CPA-
secure. Toward this, we first show that the probability that Ãf aborts
is the same (up to a negligible difference) regardless of whether it is
given a valid public key pkf = (pk, c, f(m∗)) where c← Encpk(m

∗) or an
invalid key where c ← Encpk(r) for a uniformly random message r ∈ M
independent of m∗. Denote by Ẽf−inv the scheme Ẽf but with pkf =
(pk,Encpk(r), f(m∗)) for a uniformly random message r ∈ M. Similarly,
we denote by E′ the event that Ãf aborts in EXPcpaÃf ,Ẽf−inv(λ).

We prove (1) a negligible probability gap between abort events: |Pr[E]−
Pr[E′]| < neg(λ) relying on the CPA-security of E , and (2) a negligible
probability of abort: Pr[E′] < neg(λ) relying on the one-wayness of f .
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Proof of a negligible probability gap between abort events. Assume towards
contradiction that there exists a polynomial p(), such that

|Pr[E′]− Pr[E]| ≥ p(λ) (15)

We construct an adversary Bcpa that breaks the CPA-security of E .
That is, Bcpa participates in EXPcpaBcpa,E(λ) and behaves as follows:

1. Given a public key pk generated by (pk, sk)← Gen(1λ), Bcpa sends to
Chal two independent uniformly random messages m0,m1 ∈M.

2. Upon receiving the challenge ciphertext c = Encpk(mb) from Chal (on
a randomly sampled bit b by Chal), Bcpa internally executes Ãf on
pkf = (pk, c, f(m0)) while playing the role of the challenger (i.e, it
receives two messages x0, x1 from Ãf , picks a random bit t, and feeds

Ãf with ˜Enc
f
pkf (xt)).

3. Bcpa outputs b′ = 1 if Ãf aborts, and b′ = 0 otherwise.

Clearly Bcpa is ppt, since Ãf is ppt.
Observe that in EXPcpaBcpa,E(λ), the event E corresponds to the case of

an abort on c = Encpk(m0), i.e. when b = 0; whereas E′ corresponds to
the case of an abort on c = Encpk(m1), i.e. when b = 1. That is,

Pr[b′ = 1|b = 0] = Pr[E]

Pr[b′ = 1|b = 1] = Pr[E′].

Therefore,

Pr[EXPcpaBcpa,E(λ) = 1]

= Pr[EXPcpaBcpa,E(λ) = 1|b = 0] · Pr[b = 0] + Pr[EXPcpaBcpa,E(λ) = 1|b = 1] · Pr[b = 1]

= Pr[b′ = 0|b = 0] · Pr[b = 0] + Pr[b′ = 1|b = 1] · Pr[b = 1]

=
1

2
·
(
(1− Pr[b′ = 1|b = 0]) + Pr[b′ = 1|b = 1]

)
=

1

2
·
(
(1− Pr[E]) + Pr[E′]

)
=

1

2
+

1

2
·
(
Pr[E′]− Pr[E]

)
≥ 1

2
+

1

2
· p(λ)
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where the last inequality follows from Equation 15, and w.l.o.g assump-
tion that Pr[E′] ≥ Pr[E] (otherwise Bcpa returns b′ = 0 in case of
an abort). This contradicts the CPA-security of E , and hence implies
|Pr[E′]− Pr[E]| < neg(λ).

Proof of a negligible abort probability. Suppose for contradiction that
there exists a polynomial p(·) such that

Pr[E′] ≥ p(λ) (16)

We construct a ppt adversary Bowf that inverts f , and behaves as
follows:

1. Given f(m∗) for a uniformly random m∗ ∈ M, Bowf first generates
keys (pk, sk) ← Gen(1λ), chooses a uniformly random r ∈ M, com-
putes Encpk(r) and sets pkf = (pk,Encpk(r), f(m∗)).

2. Next, Bowf executes EXPcpaÃf ,Ãf−inv with the public key pkf , and plays

the role of the challenger Chal.

3. If Ẽf aborts, i.e., it received two messages m0 = (m0,1,m0,2),m1 =
(m1,1,m1,2) ∈M×M, such that f(mi,2) = f(m∗) for either i ∈ {0, 1},
then Bowf outputs mi,2 for the relevant i as a pre-image for its input
f(m∗). Otherwise, Bowf fails to invert f .

It follows from the construction of Bowf together with Equation 16
that

Pr[Bowf invers f ] = Pr[E′] ≥ p(λ) (17)

which is a contradiction to f being a one-way function.

We have proven that CPA-security E together with one-wayness of f
implies CPA-security Ef which concludes the proof. ut

B Omitted Proofs from Section 4

We bring here formal proof details omitted from Section 4.

B.1 Proof of Lemma 1.

We prove Lemma 1 showing that for every C-homomorphic public-key en-
cryption scheme E that has a sanitization algorithm Sanitize, its sanitized
version E santz specified in Definition 8 is circuit-private+ for C.
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Proof (of Lemma 1). Let E = (Gen,Enc,Dec,Eval) be a C-homomorphic
public-key encryption scheme with a sanitization algorithm Sanitize. De-
note by E santz = (Gen,Encsantz,Dec,Evalsantz) its sanitized version as spec-
ified in Definition 8. We show that E santz is circuit-private+ for C.

Fix a circuit C ∈ C over ` inputs, ciphertexts c1, . . . , c`, a security
parameter λ and (pk, sk) ← Gen(λ). To prove circuit-privacy+ holds we
need to show the two ciphertexts Encsantzpk (C (Decsk(c1), · · · ,Decsk(c`)))
and Evalsantzpk (C, c1, . . . , c`) are statistically close, with overwhelming prob-
ability.

By definition of E santz,

Encsantzpk (C (Decsk(c1), · · · ,Decsk(c`)))

= Sanitizepk (Encpk (C (Decsk(c1), . . . ,Decsk(c`))))

(18)

and

Evalsantzpk (C, c1, . . . , c`)

= Sanitizepk (Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(c`)))

(19)

By definition of the sanitization algorithm, if two ciphertexts decrypt
to the same plaintext then their sanitized version is statistically close.
Therefore it is sufficient to show that the corresponding ciphertexts in the
above two equations (specifically, Encpk (C (Decsk(c1), . . . ,Decsk(c`))) and
Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(c`))) decrypt to the same plain-
text.

The correctness property of E ensures that for every (pk, sk)← Gen(1λ):

∀i ∈ [`] : Pr[Decsk(Encpk(Decsk(ci))) = Decsk(ci)] ≥ 1− neg(λ) (20)

and

Pr
[
Decsk(Encpk(C(Decsk(c1),...,Decsk(c`))))

=C(Decsk(c1),...,Decsk(c`))

]
≥ 1− neg(λ) (21)

where the probabilities are taken over the random coins of the encryption
algorithm.

From Equation 20 we obtain that for every (pk, sk) ← Gen(1λ) it
holds that with probability ≥ 1 − neg(λ) over the random coins of the
experiment,

Decsk (Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(c`)))

=Decsk (Evalpk (C,Sanitizepk(Encpk(Decsk(c1))), . . . ,Sanitizepk(Encpk(Decsk(c`)))))

(22)
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The C-homomorphism of E guarantees that also E∗ = (Gen,Encsantz,Dec,Eval)
is C-homomorphic, and hence for every (pk, sk) ← Gen(1λ) it holds that
with probability ≥ 1− neg(λ) over the random coins of the experiment,

Decsk (Evalpk (C,Sanitizepk(Encpk(Decsk(c1))), . . . ,Sanitizepk(Encpk(Decsk(c`)))))

=Decsk
(
Evalpk

(
C, (Encsantzpk (Decsk(c1))), . . . , (Enc

santz
pk (Decsk(c`)))

))
=C (Decsk(c1), . . . ,Decsk(c`))

(23)

Combining Equations 21, 22, and 23 we obtain that for every (pk, sk)←
Gen(1λ) it holds that with probability ≥ 1−neg(λ) over the random coins
of the experiment,

Decsk (Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(c`)))

=Decsk (Encpk (C (Decsk(c1), . . . ,Decsk(c`))))
(24)

Therefore, we can apply the the statistical sanitization property of E ,
and obtain that with probability≥ 1−neg(λ) over the choice of (pk, sk)←
Gen(1λ) and the random coins in Enc and Eval the following distributions
are statistically close,

Sanitizepk (Encpk (C (Decsk(c1), . . . ,Decsk(c`))))

and
Sanitizepk (Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(c`)))

Combining the latter with Equations 18-19, we obtain that E santz is
circuit-private+. ut
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