
A Note on “Reduction Modulo 2448 − 2224 − 1”

Timothy Shelton
University of Kent
tjbs2@kent.ac.uk

Abstract

Nath and Sarkar propose algorithms to improve the efficiency of Diffie-Hellman
key agreement using Curve448. In this note an error in the proof of correctness of
the subtraction algorithm is described. An alternative argument is offered to fix
this error without changing the algorithm or statement of correctness.

Introduction

Transport Layer Security (TLS) protocol version 1.3, RFC 8446, includes Curve448 in
the list of supported groups for key exchange [3, p. 46]. Curve448 is an elliptic curve with
underlying field Fp where p = 2448 − 2224 − 1. Therefore, to implement cryptographic
algorithms using Curve448, efficient arithmetic modulo 2448 − 2224 − 1 is required.

In [1], Nath and Sarkar propose algorithms for reduction and subtraction modulo
2448−2224−1 that improve the speed of X448 shared secret and key generation operations
compared to the work [2]. [1, Theorem 1] and [1, Theorem 2] state correctness of the
algorithms for reduction and subtraction respectively and proofs are provided.

A review of the proof of Theorem 2 revealed a potential error in the argument that
Algorithm 2 will terminate without overflow. This note identifies the error and offers an
alternative argument to show [1, Algorithm 2] will terminate correctly.

Algorithm

Algorithm 2 and the definition of the sub instruction provided in [1] are reproduced here.

Definition. The instruction sub is defined as follows.

(z, bout)← sub(x, y, bin) (1)

z =

{
x− (y + bin) if x ≥ y + bin,

264 + x− (y + bin) if x < y + bin;
(2)

bout =

{
0 if x ≥ y + bin,

1 if x < y + bin;
(3)

1



Algorithm 2: Subtraction in Fp

1 function sub448(f(θ), g(θ))
2 input: 7-limb quantities f(θ) and g(θ) such that 0 ≤ fi, gj < 264 for

i, j = 0, 1, . . . , 6.
3 output: h(2)(θ) = h

(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
6 θ6 such that 0 ≤ h

(2)
i < 264 for

i = 0, 1, . . . , 6 and h(2)(θ) ≡ (f(θ)− g(θ)) mod p.

4 b← 0
5 for i← 0 to 6 do

6 (h
(0)
i , b)← sub(fi, gi, b)

7 end for

8 d← b; d′ ← b≪ 32
9 b← 0

10 (h
(1)
0 , b)← sub(h

(0)
0 , d, b)

11 (h
(1)
1 , b)← sub(h

(0)
1 , 0, b)

12 (h
(1)
2 , b)← sub(h

(0)
2 , 0, b)

13 (h
(1)
3 , b)← sub(h

(0)
3 , d′, b)

14 (h
(1)
4 , b)← sub(h

(0)
4 , 0, b)

15 (h
(1)
5 , b)← sub(h

(0)
5 , 0, b)

16 (h
(1)
6 , b)← sub(h

(0)
6 , 0, b)

17 d← b; d′ ← b≪ 32
18 b← 0

19 (h
(2)
0 , b)← sub(h

(1)
0 , d, b)

20 (h
(2)
1 , b)← sub(h

(1)
1 , 0, b)

21 (h
(2)
2 , b)← sub(h

(1)
2 , 0, b)

22 (h
(2)
3 , b)← sub(h

(1)
3 , d′, b)

23 h
(2)
4 ← h

(1)
4 ;h

(2)
5 ← h

(1)
5 ;h

(2)
6 ← h

(1)
6

24 return h(2)(θ) = h
(2)
0 + h

(2)
1 θ + · · ·+ h

(2)
6 θ6

25 end function

The Errors

In the proof of Theorem 2 of [1] it is correctly argued that [1, Algorithm 2] outputs the
correct result without overflow in cases 2 and 3(a). However, there is an error in the
argument that Algorithm 2 will not overflow at Step 22.

The second sentence of the last paragraph states: “If the value of b in the input of
sub in Step 22 is 0, then of course, the value of b produced by this sub call is also 0.”
This can be written as

bin = 0⇒ bout = 0. (4)

This is equivalent to
bin ̸= 1⇒ bout ̸= 1. (5)

2



The contrapositive of 5 is
bout = 1⇒ bin = 1 (6)

which is true if and only if h
(1)
3 = d′.

Case 3(b) is when f(θ) < g(θ) and h(0)(θ) < δ. Since f(θ) < g(θ), overflow occurs
in the final iteration of the loop in Steps 5–7. Overflow also occurs in Step 16 because
h(0)(θ) < δ and b = 1 in Step 8 from the previous overflow. From this we know d′ = 232

in Step 22. Therefore we can write Step 22 as

(h
(2)
3 , bout)← sub(h

(1)
3 , 232, bin). (7)

From the definition of sub we know that in Step 22, bout = 1 if and only if h
(1)
3 < 232+bin.

Therefore implication 6 holds exactly when h
(1)
3 = d′ = 232 as otherwise the inequality

may still hold with bin = 0. However, this equality does not hold for any inputs f(θ) and

g(θ) since, as part of the suggested changes, we will show h
(1)
3 ≥ 232 + 1.

A similar statement is made near the end of the paragraph about the sub call in Step
13; “the value of b produced by this sub call is 1 if and only if the value of b in the input
to this sub call is 1 and 0 ≤ h

(0)
3 < 232 + 1”. Using mathematical logic notation,

bout = 1 ⇐⇒ ((bin = 1) ∧ (0 ≤ h
(0)
3 < 232 + 1)). (8)

The right-to-left implication of 8 holds by definition of sub and the value of d′ in case
3(b). However, the left-to-right implication fails in general since h

(0)
3 < 232 will always

produce bout = 1 regardless of the value of bin.
The argument that Algorithm 2 will not overflow at Step 22 seems like it is a general

statement to argue that overflow cannot occur regardless of which case the inputs fall into.
This is unnecessary as the arguments presented for cases 2 and 3(a) already establish the
full result for those cases. Thus we can consider case 3(b) only in the final argument
which simplifies it.

Suggested changes: As argued in the original proof by the authors, if h
(1)
3 ≥ 232 + 1

then there will be no overflow in step 22. This inequality holds for case 3(b). The details
of this argument follow.

Proof of Theorem 2 Case 3(b). From the definition of sub(h
(1)
3 , d′, bin) we know bout = 1

if and only if h
(1)
3 < d′ + bin with d′ ∈ {0, 232} and bin ∈ {0, 1}. Therefore it is sufficient

to show h
(1)
3 ≥ 232 + 1. Since f(θ) < g(θ) in case 3(b), we have b = 1 in Step 8 and

consequently d′ = 232 in Step 13. Therefore, by the definition of sub and the values of
the computation at Step 13, we have

h
(1)
3 = 264 + h

(0)
3 − (232 + b)

≥ 264 − (232 + b)

≥ 232 + 1

as required.

3



References

[1] Kaushik Nath and Palash Sarkar. Reduction modulo 2448 − 2224 − 1. Math-
ematical Cryptology, (1):8–21, Jan. 2021. URL https://journals.flvc.org/

mathcryptology/article/view/123700.

[2] Thomaz Oliveira, Julio López, Hüseyin Hışıl, Armando Faz-Hernández, and Fran-
cisco Rodŕıguez-Henŕıquez. How to (pre-)compute a ladder. In Selected Areas in
Cryptography – SAC 2017, pages 172–191. Springer International Publishing, De-
cember 2017. doi: 10.1007/978-3-319-72565-9 9. URL https://doi.org/10.1007/

978-3-319-72565-9_9.

[3] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,
August 2018. URL https://rfc-editor.org/rfc/rfc8446.txt.

4

https://journals.flvc.org/mathcryptology/article/view/123700
https://journals.flvc.org/mathcryptology/article/view/123700
https://doi.org/10.1007/978-3-319-72565-9_9
https://doi.org/10.1007/978-3-319-72565-9_9
https://rfc-editor.org/rfc/rfc8446.txt

