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ABSTRACT
Nakamoto proof-of-work ledger consensus currently underlies the

majority of deployed cryptocurrencies and smart-contract block-

chains. While a long and fruitful line of work studying the provable

security guarantees of this mechanism has succeeded to identify

its exact security region—that is, the set of parametrizations under

which it possesses asymptotic security—the existing theory does not
provide concrete settlement time guarantees that are tight enough

to inform practice.

In this work we provide a new approach for obtaining concrete

and practical settlement time guarantees suitable for reasoning

about deployed systems. We give an efficient method for computing

explicit upper bounds on settlement time as a function of primary

system parameters: honest and adversarial computational power

and a bound on network delays. We implement this computational

method and provide a comprehensive sample of concrete bounds

for several settings of interest. We also analyze a well-known at-

tack strategy to provide lower bounds on the settlement times. For

Bitcoin, for example, our upper and lower bounds are within 90

seconds of each other for 1-hour settlement assuming 10 second

network delays and a 10% adversary. In comparison, the best prior

result has a gap of 2 hours in the upper and lower bounds with the

same parameters.

1 INTRODUCTION
Nakamoto proof-of-work consensus, introduced in the 2008 Bitcoin

white paper [17], is the basic algorithmic framework supporting

the sensational Bitcoin and Ethereum blockchains. This charm-

ingly simple protocol has inspired a large body of analytic work

which—after over a decade of attention—has finally settled the se-
curity region of the protocol: specifically, two independent recent

articles [6, 10] determine the exact conditions under which the

protocol eventually achieves consensus. In greater detail, they iden-

tify the exact region of critical parameters (honest and adversarial

hashing power, network delays) under which the probability of a

consistency failure has the form exp(−Ω(𝑡)), where 𝑡 is the amount

of time a given transaction has been included in the blockchain.

Despite offering interesting theoretical insights, such asymp-

totic guarantees tell us very little about concrete settlement times.

In particular, their proof techniques are intentionally optimized

for simplicity over precision, and they make no effort to achieve

reasonable—or even explicit—constants in the results. This state

of affairs is especially frustrating as it leaves conspicuously unan-

swered the most fundamental question faced by users of deployed

cryptocurrencies and blockchains:

How long must I wait for a transaction to settle?

One prominent feature of Nakamoto consensus is that the set-

tlement question has a parametric answer: a block (and its trans-

actions) achieves higher certainty with longer waiting times. The

ideal answer would thus determine the exact probability of a set-

tlement failure as a function of the elapsed time or the number of

subsequent blocks amassed on top of the block of interest.

Towards this end, the Bitcoin white paper [17] analyzed the

transaction settlement time under a specific attack called the pri-
vate mining attack. However, this approach is clearly not satisfac-

tory. The gold standard for any security analysis is to consider a

well-defined and widely accepted threat model that puts limita-

tions on the adversary without prescribing its concrete actions, and

then prove that the protocol remains secure against any adversary

allowed in that model.

The model widely adopted for analyzing blockchains, which we

also employ in this work, gives the adversary the ability to adap-

tively delay any messages sent by honest players and make corrupt

parties deviate arbitrarily from the protocol. To make the adversary

more powerful, corrupt parties are assumed to be connected by a

zero-latency network so that they can act with perfect knowledge

of each other’s states—thus the adversary can be characterized by

a single entity with the collective hashing power of all corrupt

parties. As standard, we assume an upper bound on the fraction of

hashing power controlled by corrupt parties. On the other hand,

honest players are assumed to follow the protocol to the letter (see

Section 2.1). Our model does not cover attacks exploiting rational

behavior of parties, such as the selfish-mining attacks [8], beyond

considering such parties corrupt.

Themain sticking point in copingwith such a general model is ac-

counting for possible network delays. Indeed, if one is content to as-

sume an instantaneous network, two recent works [1, 6] do provide

exact analysis for proof-of-work blockchains. However, network

delays make the analysis much harder. Most existing blockchain

analysis with network delays [3, 6, 9, 10, 12, 14, 18, 19, 21] only

give asymptotic bounds and do not directly speak to the question.

Some recent works derive concrete bounds by working out the

constants in these asymptotic analyses [3, 14], but the resulting

settlement bounds are very weak; for Bitcoin, the results come to

thousands of hours—orders of magnitude larger than what is used

in practice. Only recently, Li et al. [15] derived the first practically

viable settlement time upper bounds; their results are still a few

hours larger than corresponding lower bounds.

Our results. We lay out a new proof technique for analyzing con-

sistency of proof-of-work blockchains with an eye toward explicit

settlement times. Our method offers striking improvements over

the best previous work—typically by a factor of 10 or more—in

explicit settlement times for both the Bitcoin setting (with long

interblock arrival times) and the Ethereum setting (with short in-

terblock arrival times). In both settings, the settlement times we
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obtain are within minutes of optimality. See Section 1.2 below for

more detailed discussion.

1.1 An Overview of the Analysis
We capture the schedule of mining successes and the output of a

concrete execution by a characteristic string and a PoW-tree respec-
tively, two notions introduced for this purpose in the context of

proof-of-stake [11] and adapted to proof-of-work (PoW) in [1, 10].

Our analysis departs almost immediately from [10] by shifting its

focus to serialization. Given a sequence of mining successes, the

longest-chain algorithm will produce a “hash tree” of blocks, where

edges are given by the predecessor hashes in the generated blocks.

The partial order assigned to blocks by this tree may be incon-

sistent with the “real” order in which they were generated due

both to network delays and adversarial players postponing delivery

of their blocks. But there is always a reordering of the block cre-

ation events for which the tree has a simple “temporally consistent”

explanation—such a reordering is a serialization. Motivated by the

fact that the analysis is more tractable in the lockstep-synchronous

(Δ = 0) setting, we will first carry out the analysis in the Δ = 0

setting; we then study the serializations that can arise with net-

work delays (Δ = 1 setting), and then rely on the lockstep results

to analyze the serialized executions.

Ultimately, we are interested in studying the longest chain rule in

a continuous-time model C[Δr] where honest parties and the adver-
sary both create proofs of work according to independent Poisson

processes with rates 𝑟ℎ and 𝑟𝑎 , respectively, and the adversary may

selectively delay honest block delivery by up to Δr time (“r” stands
for “real”). One way to capture this setting is to consider discrete

slots corresponding to very short intervals of length 𝑡 (𝑡 ≪ Δr) and

to appropriately adjust the network model so that honest parties

are not guaranteed to see messages that were sent to them at most

Δ ≜ ⌈Δr/𝑡⌉ slots ago. Call this model D[Δ, 𝑡], where the two pa-

rameters record the maximum delay in slots and the duration of

the slot, respectively. This is the approach taken in [10, 12, 18]; and

taking 𝑡 → 0 makes this model approach C[Δr] [10]. However, one
difficulty in tackling this model is in keeping track of the complex

delay patterns that can occur as each individual message can be

delayed by anywhere between 0 to Δr/𝑡 slots.
The alternative approach that we propose in this work is to

introduce two “adjacent” discrete models. The first model D[0,Δr]
is a lockstep-synchronous model, dividing time into relatively long

slots of length Δr. Honest players producing blocks in the same slot

are not apprised of each other’s blocks, but the network is assumed

to deliver all created (honest) blocks at the end of each slot. Of

course, the adversary always operates with full knowledge of all

adversarial and honest blocks produced in any slot. The second

model D[1,Δr] is similar, and a slot still represents a Δr-long time

interval, but an honest block may now be delivered at the end of

the next slot, i.e., the slot following the one in which the block was

created; this effectively permits that some messages are delayed by

up to 2Δr.

It is easy to observe that C[Δr] and D[Δ, 𝑡] are “sandwiched”
between these two models

D[0,Δr] ⪯ D[Δ, 𝑡], C[Δr] ⪯ D[1,Δr]

in the sense that any valid execution in a model on the left-hand

side of ⪯ is also valid in the model on the right-hand side, as the

restriction on delays gets more permissive as we move to the right.

Therefore, an upper bound on the probability of settlement failure

in a right-hand side model is also an upper bound in a left-hand side

one; in other words, the D[0,Δr] model settles more quickly than

the model of interest D[Δ, 𝑡], while D[1,Δr] settles more slowly.

We first analyze consistency inD[0,Δr] in Section 3. The analy-

sis follows essentially the same lockstep trajectory of [6] and can be

given fairly succinctly. We then shift our attention in Section 4 to

D[1,Δr] where the core technical difficulty lies. Our approach here

is to show how to serialize an execution in theD[1,Δr] model to an
execution in D[0,Δr]. We can then rely on upper bounds obtained

in the simpler D[0,Δr] model.

We evaluate numerically our results in Section 5.1. We then com-

pare our upper bound results with lower bounds, which we obtain

in Section 5.2 by analyzing the success probability of the private

mining attack in theD[0,Δr] model. Recall that theD[0,Δr] model

settles more slowly than the D[Δ, 𝑡] model and the private mining

attack may not be the most effective adversarial strategy. Therefore,

this gives a lower bound on the consistency failure (or settlement

times) of PoW blockchains.

Finally, in Appendix A we determine the security region in which

our theory can be used to prove the security of the protocol except

with negligible error.

In the rest of the paper, we reserve the symbol Δ to denote the

maximummessage delay in slots. Hence, in Section 3 (resp. 4), which
employs the model D[0,Δr] (resp. D[1,Δr]), we consider Δ = 0

(resp. Δ = 1). However, recall that in both these models, a slot itself

has duration Δr.

We remark that our analysis does not consider difficulty adjust-

ments that are present in PoW protocols. This is well justified by the

fact that block settlement time is much shorter than the difficulty

adjustment period (hours vs. weeks).

1.2 Sample Results Generated by our Method
As mentioned, our results provide very sharp estimates for Bitcoin

in the region of practical interest: see Figure 1.With a 10% adversary

and a bound of 10 seconds on network delay, we obtain a settlement

error of no more than 4.489% after one hour. This can be directly

compared with a lower bound of 4.261%, which is obtained by

analyzing the private mining attack. Notably, these results are “only

minutes” apart: 90 seconds before the one hour mark, the lower

bound is 4.494%. So the upper bound is less than 90 seconds away

from optimal. Alternatively, our results yield a 0.48% settlement

error guarantee for the 6-block confirmation rule that is common

used in practice.

In the case of Ethereum,
1
recall that blocks are comparatively

small and have 13 second interblock time. With 2 second network

delays and a 10% adversary, our methods bound settlement failure

probability after four minutes within 0.1097% and 0.02518%. As

expected, we observe a larger gap than in the “nearly lockstep-

synchronous” Bitcoin case. However, the result is still less than one

1
Note that while Ethereum considers uncle blocks for difficulty recalculation and

rewards distribution, these blocks do not affect its chain-selection rule, hence Ethereum

is fully covered by our analysis.
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Figure 1: Our upper and lower bounds on settlement failure
probability for Bitcoin with a 10% adversary and 10 second
network delays; results from [15] included for comparison
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Figure 2: Our upper and lower bounds on settlement failure
probability for Ethereum with a 10% adversary and 2 second
network delays; results from [15] included for comparison.

minute away from the optimum: at the five minute mark the upper

bound has fallen to 0.02219%. These results improve the settlement

failure estimates of previous work by well over an order of mag-

nitude in the regime of interest. See Figure 2 for a representative

example of our results for Ethereum and a comparison with [15]. A

more comprehensive discussion of both time-based and block-based

settlement appears in Section 5.1 and Appendix C.

2 PRELIMINARIES
Notation. Throughout the paper, N = {0, 1, 2, . . .} denotes the set
of natural numbers (including zero). For 𝑛 ∈ N, [𝑛] denotes the
set {1, . . . , 𝑛} (hence [0] = ∅). For a set 𝑋 , we let P(𝑋 ) denote the
power set of 𝑋 .

For a word of length 𝑛 over alphabet Σ, we use the notation𝑤 =

𝑤1 . . .𝑤𝑛 ∈ Σ𝑛 . We denote by𝑤𝑖:𝑗 its subword𝑤𝑖𝑤𝑖+1 . . .𝑤 𝑗 , and

#𝑎 (𝑤) denotes the number of occurrences of the symbol 𝑎 ∈ Σ in𝑤 .

We denote by ∥ the concatenation of words and by ◦ the concate-
nation of languages, i.e., 𝐿1 ◦ 𝐿2 ≜ {𝑤1 ∥𝑤2 | 𝑤1 ∈ 𝐿1 ∧𝑤2 ∈ 𝐿2}.

2.1 Modeling Proof-of-Work Blockchains with
Network Delays

Our modeling of the protocol and its execution environment ex-

tends the model in [10], we summarize the model here for com-

pleteness.

A PoW blockchain protocol is carried out by a set of parties of

two types: honest parties follow the protocol and adversarial parties
may diverge arbitrarily. All parties actively engage in searching for

“proofs-of-work” (PoWs), which afford them the right to contribute

to the ledger. We divide time into slots of length Δr and use a

characteristic string to indicate a summary of the outcomes of the

proof-of-work lottery in each slot.

More concretely, our main alphabet of interest in this paper

will be Σ∞ ≜ {0, h,H} × N. Intuitively, a single symbol (𝑠, 𝑎) ∈
{0, h,H} × N from this alphabet captures the outcome of the proof-

of-work lottery in a given time slot, at a level of precision that

will be most convenient for our treatment. The natural number 𝑎

simply captures the number of adversarial successes; the symbol

𝑠 ∈ {0, h,H} captures the number of honest successes as follows:

0 represents no honest successes, h represents one and only one

honest success, and H denotes more than one honest successes in

the considered slot.

Note that a characteristic string symbol does not capture the

full outcome of the lottery in a given slot: it merely describes the

numbers of successes and their attribution to party types, but not

their ordering within a slot. Looking ahead, it will be clear that our

analysis implicitly assumes that this ordering is the best possible

for the adversary, in line with our effort to obtain upper bounds on

error probabilities.

For notational convenience when treating our imprecise account-

ing of honest successes described above, we define the following

helper “rounding” function roundH : N → {0, h,H}. Let ℎ be the

number of honest successes in a given time slot and define

roundH (ℎ) ≜


0 if ℎ = 0 ,

h if ℎ = 1 ,

H if ℎ ≥ 2 .

(1)

We consider characteristic strings𝑤 (i.e., words) drawn from the

set Σ𝐿∞; these describe the outcomes of the proof-of-work lottery

over a period of 𝐿 slots. We write

𝑤 = (𝑤1, . . . ,𝑤𝐿) = ((𝑠1, 𝑎1), . . . , (𝑠𝐿, 𝑎𝐿)) .

Let Y denote the empty characteristic string (i.e., 𝐿 = 0).

The Bitcoin protocol calls for parties to exchange blockchains,
each of which is an ordered sequence of blocks beginning with a

distinguished “genesis block,” known to all parties. Each proof-of-

work success confers on that party the right to add exactly one

block to an existing blockchain. (In fact, the party must identify

the previous chain on which she wishes to build ahead of time, but

this will not affect our analysis.) Honest parties follow the longest-
chain rule which dictates that they always choose to add to the

longest blockchain they have observed thus far and broadcast the

result to all other parties. The basic dynamics of the system, with a
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particular characteristic string𝑤 and an adversary, can be described

as follows.

Let C𝑡 denote the collection of all blockchains created by time 𝑡

and let 𝐻 (C𝑡 ) denote the subset of all chains in C𝑡 whose last block
was created by an honest party. Set C0 = {𝐺}, where𝐺 denotes the

unique chain consisting solely of the genesis block. The genesis

block is “honest”; thus 𝐻 (C0) = C0. It is convenient to adopt the

convention that C−𝑡 = 𝐻 (C−𝑡 ) = {𝐺} for any negative integer

−𝑡 < 0. Then the protocol execution proceeds as follows. For each

slot 𝑡 = 1, 2, . . .:

• Initiate C𝑡 := C𝑡−1 and 𝐻 (C𝑡 ) := 𝐻 (C𝑡−1).
• If𝑤𝑡 = (0, 𝑎), the adversary may repeat the following ad-

versarial iteration 𝑎 times: select a single blockchain𝐶 from

C𝑡 and add a block to create a new chain𝐶 ′, which is added

to C𝑡 . 𝐻 (C𝑡 ) remains unchanged.

• If 𝑤𝑡 = (h, 𝑎), the same 𝑎 adversarial iterations happen

as above, but they are arbitrarily interleaved with a single

honest iteration defined as follows: the adversary may select

any collection of chainsV for which𝐻 (C𝑡−1−Δ) ⊆ V ⊆ C𝑡 .
This is the “view” of the honest player, who applies the

longest chain rule to V , selects the longest chain 𝐿 ∈ V
where ties are broken by the adversary, and adds a new

block to create a new chain 𝐿′ that is added to C𝑡 and also

𝐻 (C𝑡 ).
• If𝑤𝑡 = (H, 𝑎), then the execution of 𝑎 adversarial iterations

is arbitrarily interleaved with at least two honest iterations.

In each time step 𝑡 we also maintain the set of Δ-dominant chains
D𝑡 ⊆ C𝑡 , determined entirely by C𝑡 and 𝐻 (C𝑡−1−Δ): namely, D𝑡 is

the set of all chains in C𝑡 that are at least as long as the longest chain
in 𝐻 (C𝑡−1−Δ). The intuition behind the definition of Δ-dominant

chains is that, in a time slot 𝑡 , it is in principle possible for the adver-

sary to manipulate an honest party into adopting any Δ-dominant

chain, as the adversary is only obligated to deliver those chains

in 𝐻 (C𝑡−1−Δ) and the chains in D𝑡 are at least as long as those in

𝐻 (C𝑡−1−Δ).
Note that the synchrony assumption is reflected in the descrip-

tion of the honest iteration: the adversary is obligated to deliver all

chains produced by honest players that are Δ slots old. Although

we keep the presentation general, recall that as explained in the

introduction, this work focuses on the two models D[0,Δr] and
D[1,Δr], and hence always considers Δ ∈ {0, 1}.

Considering that the adversary selects both the viewV of each

honest player and is empowered to break ties, the structure of the

resulting sequence of chains (that is, the directed acyclic graph nat-

urally formed by the blocks) is determined entirely by the adversary

and the characteristic string.

We make two final remarks. First, we permit the adversary to

have full view of the characteristic string during this process. Of

course, in practice a Bitcoin adversary must make decisions “on-

line,” so our modeling only makes the adversary stronger. Second,

we have placed an implicit constraint on the adversary: the only

means of producing a new chain is to append a block (associated

with a proof-of-work success) to an existing chain. In practice, this

constraint is guaranteed with cryptographic hash functions.

In the context of ledger protocols, one is usually interested in

preserving two properties, consistency and liveness, formulated in [9,

13, 20]. Consistency means that once a block (or equivalently, a

transaction within it) is settled, then it remains settled forever. We

consider two settlement rules in this paper: a time-based one and a

block-based one.

• Consistency for time-based settlement; with parame-
ter 𝜏 . A block 𝐵 that is mined before time ℓ and contained

in some chain in D𝑡 where 𝑡 ≥ ℓ + 𝜏 is contained in every

chain 𝐶 ∈ D𝑡 ′ for all 𝑡
′ ≥ 𝑡 .

• Consistency for block-based settlement; with param-
eter 𝑘 . A block 𝐵 that is 𝑘 blocks deep in some chain inD𝑡

is contained in every chain 𝐶 ∈ D𝑡 ′ for all 𝑡
′ ≥ 𝑡 .

Intuitively, the above settlement rules state that, when an honest

player examines the longest chain to its knowledge at time 𝑡 , it

considers all blocks mined at least 𝜏 time earlier (in the case of

time-based settlement) or buried 𝑘 blocks deep (in the case of block-

based settlement) settled. The focus of this paper is to bound the

error probability (from both above and below) as a function of the

settlement delay, i.e., of the parameters 𝜏 or 𝑘 in the above two

settlement rules, respectively.

We also remark that our definitions of consistency and its er-

ror probability above are applicable to individual blocks. One can

also phrase the consistency as a global property of the protocol

by requiring the above to hold for all blocks. However, the error

probability of such a global consistency property will depend on

the total running time of the blockchain protocol and is hard to

characterize accurately.

For completeness, we also mention the liveness property [10].

• Liveness; with parameter 𝑢. For any two slots 𝑡1, 𝑡2 > 0

with 𝑡1 + 𝑢 ≤ 𝑡2, and any chain 𝐶 ∈ D𝑡2
, there is a time

𝑡 ′ ∈ {𝑡1, . . . , 𝑡1 + 𝑢} and a chain 𝐶 ′ ∈ 𝐻 (C𝑡 ′) \ 𝐻 (C𝑡 ′−1)
such that 𝐶 ′ is a prefix of 𝐶 .

2.2 Proof-of-Work Blocktrees
We formally capture the above protocol dynamics by the combina-

torial notion of a PoW Δ-tree. It is a variant of the “fork” concept
first considered for the proof-of-stake case in [2, 5, 11] and more

recently also employed for PoW-analysis [1, 10].

Definition 2.1 (PoW Δ-tree). Let Δ, 𝐿 ∈ N. A PoW Δ-tree for the
string 𝑤 ∈ Σ𝐿∞ is a directed, rooted tree 𝐹 = (𝑉 , 𝐸) (in the graph-

theoretic sense) with a pair of functions

l# : 𝑉 → {0, . . . , 𝐿} and ltype : 𝑉 → {h, a}

satisfying the axioms below. Edges are directed “away from” the

root so that there is a unique directed path from the root to any

vertex. The value l# (𝑣) is referred to as the label of 𝑣 . The value
ltype (𝑣) is referred to as the type of the vertex: when ltype (𝑣) = h,
we say that the vertex is honest; otherwise it is adversarial.

(A1) the root 𝑟 ∈ 𝑉 is honest and is the only vertex with label

l# (𝑟 ) = 0;

(A2) the sequence of labels l# () along any directed path is non-

decreasing;

(A3) if𝑤𝑖 = (𝑠𝑖 , 𝑎𝑖 ), then the number ℎ𝑖 of honest vertices of 𝐹

with the label 𝑖 satisfies roundH (ℎ𝑖 ) = 𝑠𝑖 , and there are no

more than 𝑎𝑖 adversarial vertices of 𝐹 with the label 𝑖;
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𝐹 ⊢ 𝑤 = (h, 0)

1

(h, 0)

2

(h, 0)

3

(H, 0) (0, 2)

4

4

(h, 0)

55

(h, 0) (h, 1)

6

(0, 0) (h, 0) (0, 0)

7

88

10

0

Figure 3: A PoW 1-tree 𝐹 for the characteristic string 𝑤 . Honest vertices are shown with double-struck boundaries, while
adversarial vertices are simple circles. Vertices are labeled with l# (·). The tree indicates a successful double spend attack—given
by the red and blue chains—in a circumstance where the simple private-chain attack does not succeed: in particular, the tree
constructs two alternate chains with disjoint suffixes of length 5, while only three adversarial proofs of work are discovered
over this period. We remark that 𝐹 ≡ 𝐹 ⌈1 , since the last symbol of𝑤 is (0, 0), and that 𝐹 ⌈1 is obtained by removing the adversarial
vertex with label 8. Thus len(𝐹 ⌈1 ) = 5, this maximum length achieved by the blue chain. Note, then, that the two chains indicated
in red and blue each have 1-advantage equal to zero, and both are 1-dominant. Considering that these chains share no vertices
after the root, they witness 𝛽1

1
(𝐹 ) ≥ 0 for the tree 𝐹 and hence for the characteristic string𝑤 .

(A4) for any pair of honest vertices 𝑣,𝑤 for which l# (𝑣) + Δ <

l# (𝑤), len(𝑣) < len(𝑤), where len() denotes the depth of

the vertex.

We will often refer to PoW Δ-trees simply as trees whenever Δ is

clear from the context. Unless explicitly stated otherwise, through-

out the paper we reserve the term ‘tree’ for the above PoW-specific

structure, as opposed to the underlying graph-theoretic notion.

A PoW Δ-tree abstracts a protocol execution with a simple but

sufficiently descriptive discrete structure. Its vertices and edges

stand for blocks and their connecting hash links (in reverse direc-

tion), respectively. The root represents the genesis block, and for

each vertex 𝑣 , l# (𝑣) and len(𝑣) denote the slot in which the corre-

sponding block was created and the block’s depth, respectively.

It is easy to see the correspondence between the above axioms

and the constraints imposed in the protocol execution. In particular,

(A1) corresponds to the trusted nature of the genesis block; (A2)

reflects that the blocks’ ordering in a chain must be consistent with

the order of their creation; (A3) reflects that honest players produce

exactly one block per PoW success, while the adversary might forgo

a block-creation opportunity; finally (A4) reflects the fact that given

sufficient time, as needed for block propagation in the network, an

honest party will take into account the blocks produced by previous

honest parties.

Definition 2.2 (Tree notation). We write 𝐹 ⊢Δ 𝑤 to indicate that

𝐹 is a Δ-tree for the string 𝑤 . If 𝐹 ′ ⊢Δ 𝑤 ′ for a prefix 𝑤 ′ of 𝑤 , we

say that 𝐹 ′ is a subtree of 𝐹 , denoted 𝐹 ′ ⊑ 𝐹 , if 𝐹 contains 𝐹 ′ as a
consistently-labeled subgraph. Given a Δ-tree 𝐹 , we denote by 𝐹 the

maximal subtree of 𝐹 having all leaves honest. We call two trees 𝐹1

and 𝐹2 equivalent, denoted 𝐹1 ≡ 𝐹2, if their underlying graphs and

the ltype (·) functions are identical. Note that equivalent trees may

only differ in their l# (·) functions; whenever useful, we indicate
the tree to which a labeling function belongs by a superscript (e.g.

l𝐹
#
(·)).

An individual blockchain constructed during the protocol exe-

cution is represented by the notion of a chain, defined next.

Definition 2.3 (Chains). A path in a tree 𝐹 originating at the root

is called a chain (note that chains do not necessarily terminate at

a leaf). As there is a one-to-one correspondence between directed

paths from the root and vertices of a tree, we routinely overload

notation so that it applies to both chains and vertices. Specifically,

we let len(𝑇 ) denote the length of the chain, equal to the number

of edges on the path; recall that len(𝑣) also denotes the depth of a

vertex. We sometimes emphasize the tree from which 𝑣 is drawn

by writing len𝐹 (𝑣). We further overload this notation by letting

len(𝐹 ) denote the length of the longest chain in a tree 𝐹 . Likewise,

we let l# (·) apply to chains by defining l# (𝑇 ) ≜ l# (𝑣), where 𝑣 is
the terminal vertex on the chain 𝑇 . We say that a chain is honest if
the last vertex of the chain is honest. For a vertex 𝑣 in a tree 𝐹 , we

denote by 𝐹 (𝑣) the chain in 𝐹 terminating in 𝑣 .

For two chains 𝑇,𝑇 ′ of a tree 𝐹 , we write 𝑇 ∼ℓ 𝑇 ′ if the two

chains share a vertex with a label greater or equal to ℓ .

Intuitively, 𝑇 ∼ℓ 𝑇 ′ guarantees that the respective blockchains
agree on the state of the ledger up to time slot ℓ . Looking ahead,

the adversary can make two honest parties disagree on the state

of the ledger up to time ℓ only if she makes them hold two chains

𝑇 ≁ℓ 𝑇
′
.

Definition 2.4 (Tree trimming; dominance). For a string 𝑤 =

𝑤1 . . .𝑤𝑛 and some 𝑘 ∈ N, we let 𝑤 ⌈𝑘 = 𝑤1 . . .𝑤𝑛−𝑘 denote the

string obtained by removing the last 𝑘 symbols. For a tree 𝐹 ⊢Δ
𝑤1 . . .𝑤𝑛 we let 𝐹 ⌈𝑘 ⊢Δ 𝑤 ⌈𝑘 denote the tree obtained by retaining

only those vertices labeled from the set {1, . . . , 𝑛 − 𝑘}. We say that

a chain 𝑇 in 𝐹 is Δ-dominant if len(𝑇 ) ≥ len(𝐹 ⌈Δ) and simply call

it dominant if Δ is clear from the context.

Observe that honest chains appearing in 𝐹 ⌈Δ are those that are

necessarily visible to honest players at the end of the last time

slot of the characteristic string. Correspondingly, the notion of a

Δ-dominant chain matches the use of this term in Section 2.1.
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2.3 Advantage and Margin
Definition 2.5 (Advantage 𝛼Δ

𝐹
). For a Δ-tree 𝐹 ⊢Δ 𝑤 , we define

the Δ-advantage of a chain 𝑇 ∈ 𝐹 as

𝛼Δ𝐹 (𝑇 ) = len(𝑇 ) − len(𝐹 ⌈Δ) .

Observe that 𝛼Δ
𝐹
(𝑇 ) ≥ 0 if and only if 𝑇 is Δ-dominant in 𝐹 .

Definition 2.6 (Margin 𝛽Δ
ℓ
). For ℓ ≥ 1, we define the Δ-margin of

a tree 𝐹 as

𝛽Δℓ (𝐹 ) = max

𝑇 ∗≁ℓ𝑇
𝑇 ∗ is Δ-dominant

𝛼Δ𝐹 (𝑇 ) ,

this maximum extended over all pairs of chains (𝑇,𝑇 ∗) where
𝑇 ∗ is Δ-dominant and 𝑇 ≁ℓ 𝑇 ∗. We call the pair (𝑇 ∗,𝑇 ) the Δ-
witness chains for 𝐹 if the above conditions are satisfied; i.e., 𝑇 ∗ is
Δ-dominant, 𝑇 ∗ ≁ℓ 𝑇 , and 𝛽Δ

ℓ
(𝐹 ) = 𝛼Δ

𝐹
(𝑇 ). Note that there might

exist multiple such pairs in 𝐹 , but under the condition ℓ ≥ 1 there

will always exist at least one such pair, as the trivial chain 𝑇0 con-

taining only the root vertex satisfies 𝑇0 ≁ℓ 𝑇 for any 𝑇 and ℓ ≥ 1,

in particular 𝑇0 ≁ℓ 𝑇0. For this reason, we will always consider 𝛽
Δ
ℓ

only for ℓ ≥ 1.

We overload the notation and let

𝛽Δℓ (𝑤) = max

𝐹⊢Δ𝑤
𝛽Δℓ (𝐹 ) .

We call a tree 𝐹 ⊢Δ 𝑤 a Δ-witness tree for 𝑤 if 𝛽Δ
ℓ
(𝑤) = 𝛽Δ

ℓ
(𝐹 );

again many Δ-witness trees may exist for a string𝑤 .

Intuitively, 𝛼Δ
𝐹
(𝑇 ) captures the length advantage (or deficit) of

the chain𝑇 against the longest honest chain created at least Δ slots

before the upcoming slot, which is hence now known to all honest

parties. Consequently, 𝛽Δ
ℓ
(𝐹 ) records the maximal advantage of

any chain 𝑇 in 𝐹 that potentially disagrees with some Δ-dominant

chain𝑇 ∗ about the chain state up to slot ℓ . A negative 𝛽Δ
ℓ
(𝐹 ) hence

indicates that the adversary cannot make an honest party holding

𝑇 ∗ switch to any 𝑇 that would potentially cause a revision of its

ledger state up to slot ℓ . This connection between margin and

consistency/settlement is exploited in previous work, for the PoW

case it was made formal in [10, Lemma 1] in which the following

fact is implicit:

Lemma 2.7 ([10]). Consider an execution of a PoW blockchain for 𝐿
slots as described in Section 2.1, resulting in a characteristic string
𝑤 = 𝑤1 . . .𝑤𝐿 . Let 𝐵 be a block produced in slot ℓ ∈ [𝐿], and let
𝑡 > ℓ be such that 𝐵 is contained in some chain 𝐶 ∈ D𝑡 . If for every
𝑡 ′ ∈ {𝑡, . . . , 𝐿} we have 𝛽Δ

ℓ
(𝑤1:𝑡 ′) < 0 then 𝐵 is contained in every

𝐶 ′ ∈ D𝑡 ′ for all 𝑡 ′ ∈ {𝑡, . . . , 𝐿}.

This statement motivates our effort to upper-bound 𝛽Δ
ℓ
(𝑤) in

the following sections.

Remark. One can define and study an analogous notion of con-

sistency for protocols with unbounded lifetimes and, in fact, the

explicit upper bounds we compute later in the paper reflect this

stronger notion. Specifically, for a characteristic string𝑤 = 𝑤1𝑤2 . . .

and a finite ℓ , this requires that 𝛽Δ
ℓ
(𝑤1:𝑡 ′) < 0 for all 𝑡 ′ ≥ ℓ .

3 THE LOCKSTEP-SYNCHRONOUS ANALYSIS
In this section we focus on the simpler, so-called lockstep-synchro-

nous setting, where all messages are delivered at the end of the slot

in which they were sent, this corresponds to Δ = 0 (the D[0,Δr]
model). Throughout the section, as no confusion can arise, we omit

the index 0 and write 𝐹 ⊢ 𝑤 , 𝛼𝐹 (), 𝛽ℓ (), in place of 𝐹 ⊢0 𝑤 , 𝛼0

𝐹
(),

𝛽0

ℓ
(), respectively. Note that now 𝛼𝐹 (𝑇 ) = len(𝑇 ) − len(𝐹 ).
Our main goal will be to obtain a simple recursive description of

the margin quantity 𝛽ℓ (𝑤) for a characteristic string𝑤 ∈ Σ∗∞. Look-
ing ahead, we will obtain an exact characterization (Theorem 3.6)

that will then serve us later in Section 4 when establishing bounds

for the margin 𝛽1

ℓ
(𝑤) in the case with delays Δ = 1.

3.1 The Fully Serialized Setting (Σser = {h, a})
We begin the analysis of the lockstep-synchronous setting by con-

sidering an additional simplifying assumption that block creations

are fully serialized, i.e., exactly one block is created in each time slot.

Specifically, we work with a reduced alphabet Σser = {(h, 0), (0, 1)}
for characteristic strings, and use the abbreviations h = (h, 0) and
a = (0, 1); thus we treat characteristic strings over the alphabet
{h, a}. The definition of tree remains unchanged.

The following exact characterization of 𝛽ℓ in the lockstep (i.e.,

Δ = 0), fully serialized (i.e., with alphabet Σser) setting was given
in prior work [1] and serve as an instructive starting point of our

investigation. Recall that Y is the empty characteristic string.

Lemma 3.1 ([1, Lemma 1]). Fix ℓ ≥ 1. We consider characteristic
strings𝑤 ∈ Σ∗ser. By definition 𝛽ℓ (Y) = 0. We have

𝛽ℓ (𝑤a) = 𝛽ℓ (𝑤) + 1 ,

𝛽ℓ (𝑤h) =
{
𝛽ℓ (𝑤), if 𝛽ℓ (𝑤) = 0 and |𝑤h| < ℓ ,
𝛽ℓ (𝑤) − 1, otherwise.

Thus, prior to slot ℓ , 𝛽ℓ performs a biased barrier walk with a

barrier at 0; after round ℓ , it performs a standard biased random

walk (without any barriers).

3.2 The Setting with Multi-honest Slots
(Σmh = {h,H, a})

We now slightly generalize the treatment of Section 3.1 and con-

sider characteristic strings over an alphabet that allows for multiple

honest (hence the “mh” subscript) successes in a single slot. Namely,

we consider Σmh = {(h, 0), (H, 0), (0, 1)} ⊂ Σ∞, and use the short-

hands {h,H, a} for these three symbols, respectively. The definition

of a tree again remains unchanged.

Lemma 3.2. Fix ℓ ≥ 1. We consider characteristic strings𝑤 ∈ Σ∗mh.
By definition 𝛽ℓ (Y) = 0. We have

𝛽ℓ (𝑤a) = 𝛽ℓ (𝑤) + 1,

𝛽ℓ (𝑤h) =
{
𝛽ℓ (𝑤), if 𝛽ℓ (𝑤) = 0 and |𝑤h| < ℓ ,
𝛽ℓ (𝑤) − 1, otherwise,

𝛽ℓ (𝑤H) =
{
𝛽ℓ (𝑤), if 𝛽ℓ (𝑤) = 0,
𝛽ℓ (𝑤) − 1, otherwise.

(2)

Informally, the reason why H has a different effect on 𝛽ℓ than h
after slot ℓ is as follows. If 𝛽ℓ (𝑤) = 0, this means that there are two

competing chains of the same, maximal length that can be served

to honest parties; now the adversary can orchestrate things so that

the two (or more) honest successes occurring in this slot contribute
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to both of these chains equally, and hence they don’t improve the

situation for the honest parties. We call this effect a neutralization
of honest successes. Note that, in contrast, a unique honest success

h improves the situation for the honest parties in the “tie” case of

𝛽 (𝑤) = 0, as it extends only one of the chains, creating a unique

longest chain.

The proof of Lemma 3.2 is an extension of the proof of Lemma 3.1

that appeared in [1], accounting for presence of H symbols in the

considered characteristic string, we provide it in full in Appendix B.

3.3 The General Case (Σ∞ = {0, h,H} × N)
We finally consider the full alphabet Σ∞ = {0, h,H} ×N. Intuitively,
our approach here is to assign to any “rich” characteristic string𝑤 ∈
Σ∗∞ a set of “possible serializations”𝑅0 (𝑤) ⊆ Σ∗mh such that any tree

over𝑤 can be interpreted (via relabeling) as a tree over one of these

Σmh-serializations, and vice versa. This then allows to precisely

characterize 𝛽ℓ (𝑤) in terms of 𝛽ℓ () of these Σmh-serializations,

which are already understood in Lemma 3.2.

Serialization of the general alphabet. We define a serialization

mapping 𝑅0 : Σ∞ → P(Σ∗mh) as follows:

𝑅0 (0, 𝑘) =
{
a𝑘

}
,

𝑅0 (h, 𝑘) =
{
𝑟 ∈ {a, h}∗ | #h (𝑟 ) = 1 ∧ #a (𝑟 ) = 𝑘

}
,

𝑅0 (H, 𝑘) =
{
𝑟 ∈ {a, h,H}∗ | #a (𝑟 ) = 𝑘 ∧

∧ (#h (𝑟 ) ≥ 2 ∨ #H (𝑟 ) ≥ 1)} .
Moreover, we naturally extend the mapping 𝑅0 (·) to strings 𝑤 =

𝑤1 . . .𝑤𝑛 ∈ Σ∗∞ by the convention

𝑅0 (𝑤) ≜ 𝑅0 (𝑤1) ◦ · · · ◦ 𝑅0 (𝑤𝑛) ⊆ Σ∗mh .

Lemma 3.3. Let𝑤 ∈ Σ𝑛∞ and 𝐹 ⊢ 𝑤 . Then there is a characteristic
string𝑤 ′ ∈ 𝑅0 (𝑤) and a tree 𝐹 ′ ⊢ 𝑤 ′ such that 𝐹 ′ ≡ 𝐹 .

Proof. Consider the fragment of a PoW-tree

𝐹 ⊢ 𝑤 = 𝑤1 . . .𝑤𝑛 ∈ Σ𝑛∞
induced by vertices attributed to a particular symbol𝑤𝑖 ∈ Σ∞. This
is a (potentially disconnected) forest of trees. (The word “tree” here

and throughout this proof is used in its standard graph-theoretic

sense, as opposed to referring to a PoW tree.) Partitioning this forest

according to depth—as measured in the original tree 𝐹—we write

the vertices of the forest as a disjoint union 𝑉𝑑 ∪ · · · ∪𝑉𝐷 , where 𝑑
is the smallest depth appearing in the forest, 𝐷 is the largest depth,

and 𝑉𝑗 contains those vertices of depth 𝑗 . Now associate with each

𝑉𝑗 the string

𝑤 ( 𝑗) =


a𝑘 if 𝑉𝑗 contains no honest vertices,

ha𝑘 if 𝑉𝑗 contains one honest vertex,

Ha𝑘 if 𝑉𝑗 contains multiple honest vertices,

where 𝑘 is the number of adversarial vertices appearing in 𝑉𝑗 . By

construction, there is a straightforward labeling of each set 𝑉𝑗

by the string 𝑤 ( 𝑗) that maintains the classification of vertices as

adversarial or honest and satisfies axioms (A2) and (A3). Finally,

let 𝑤 ′
𝑖
= 𝑤 (𝑑) . . .𝑤 (𝐷) . Combining the labelings of each 𝑉𝑗 in-

duces a labeling of the trees by the string 𝑤 ′
𝑖
that likewise satis-

fies (A2) and (A3). It follows that 𝐹 can be (re)labeled by the string

𝑤 ′
1
. . .𝑤 ′𝑛 ∈ 𝑅0 (𝑤) so as to satisfy all of the PoW tree axioms; this

relabeling determines the PoW tree 𝐹 ′, as desired. □

Lemma 3.4. Let 𝑤 ∈ Σ∗∞ and 𝑤 ′ ∈ 𝑅0 (𝑤). Then for any tree
𝐹 ′ ⊢ 𝑤 ′ there exists a tree 𝐹 ⊢ 𝑤 such that 𝐹 ≡ 𝐹 ′.

Proof. Let 𝑣 be a vertex in 𝐹 ′ with l# (𝑣) = 𝑗 ∈ [|𝑤 ′ |], and let

𝑖 ∈ [|𝑤 |] be the index in𝑤 = 𝑤1 . . .𝑤 |𝑤 | such that the 𝑗-th symbol

in𝑤 ′ belongs to the expansion 𝑅0 (𝑤𝑖 ) of𝑤𝑖 . Then it suffices to set

the label of 𝑣 in 𝐹 as l𝐹
#
(𝑣) = 𝑖 . The correctness of this construction

follows directly from the definition of 𝑅0. □

Lemmas 3.3 and 3.4 immediately imply the following corollary.

Corollary 3.5. Let𝑤 ∈ Σ∗∞. Then
𝛽ℓ (𝑤) = max

𝑤′∈𝑅0 (𝑤)
𝛽ℓ′ (𝑤 ′) ,

where ℓ ′ is the appropriate index in𝑤 ′ corresponding to ℓ in𝑤 .

Proof. Let 𝐹 ⊢ 𝑤 be a witness tree, and let 𝑤∗ ∈ 𝑅0 (𝑤) and
𝐹 ∗ ≡ 𝐹 be such that 𝐹 ∗ ⊢ 𝑤∗ as guaranteed by Lemma 3.3. Let ℓ∗

be the appropriate index in𝑤∗ corresponding to ℓ in𝑤 . We have

𝛽ℓ (𝑤) = 𝛽ℓ (𝐹 ) = 𝛽ℓ∗ (𝐹 ∗) ≤ 𝛽ℓ∗ (𝑤∗) ≤ max

𝑤′∈𝑅0 (𝑤)
𝛽ℓ′ (𝑤 ′)

where ℓ ′ is defined as in the statement of the lemma, establishing

the first inequality.

For the opposite inequality, let

𝑤∗ ≜ arg max

𝑤′∈𝑅0 (𝑤)
𝛽ℓ′ (𝑤 ′)

for ℓ ′ as defined in the statement, let ℓ∗ be the respective value

for 𝑤∗, and let 𝐹 ∗ ⊢ 𝑤∗ be its witness tree. Let 𝐹 ⊢ 𝑤 be the tree

satisfying 𝐹 ≡ 𝐹 ∗ as guaranteed by Lemma 3.4. Then

max

𝑤′∈𝑅0 (𝑤)
𝛽ℓ′ (𝑤 ′) = 𝛽ℓ∗ (𝑤∗) = 𝛽ℓ∗ (𝐹 ∗) = 𝛽ℓ (𝐹 ) ≤ 𝛽ℓ (𝑤)

as desired. □

Now we are ready to establish the main result of this section.

Theorem 3.6. Fix ℓ ≥ 1. We consider characteristic strings 𝑤 ∈
Σ∗∞ = ({0, h,H} × N)∗. By definition 𝛽ℓ (Y) = 0. We have

𝛽ℓ (𝑤 (0, 𝑎)) = 𝛽ℓ (𝑤) + 𝑎,

𝛽ℓ (𝑤 (h, 𝑎)) =
{
𝛽ℓ (𝑤) + 𝑎, if 𝛽ℓ (𝑤) = 0 ∧ |𝑤 | + 1 < ℓ ,
𝛽ℓ (𝑤) + 𝑎 − 1, otherwise,

𝛽ℓ (𝑤 (H, 𝑎)) =
{
𝛽ℓ (𝑤) + 𝑎, if −𝑎 ≤ 𝛽ℓ (𝑤) ≤ 0,
𝛽ℓ (𝑤) + 𝑎 − 1, otherwise.

Proof. The statements are shown independently for each case,

always applying Corollary 3.5, the definition of the mapping 𝑅0,

and Lemma 3.2. Concretely, in the simplest case we have

𝛽ℓ (𝑤 (0, 𝑎)) = max

𝑤′∈𝑅0 (𝑤 (0,𝑎))
𝛽ℓ′ (𝑤 ′) = max

𝑤′′∈𝑅0 (𝑤)
𝛽ℓ′ (𝑤 ′′a𝑘 )

= max

𝑤′′∈𝑅0 (𝑤)
𝛽ℓ′ (𝑤 ′′) + 𝑘 = 𝛽ℓ (𝑤) + 𝑎 .

The other two cases are fully analogous, additionally taking into

account subcases depending on the value of 𝛽ℓ (𝑤) and ℓ when

invoking Lemma 3.2. □
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4 THE ANALYSIS WITH DELAYS
We now move our attention to the case of Δ = 1. Contrary to the

previous section, we will not derive an exact description of 𝛽1

ℓ
(𝑤);

nonetheless, we will define an easy-to-compute recurrent function

that we show can give us a good upper-bound on 𝛽1

ℓ
(𝑤).

4.1 Weak Serialization via Deferrals
We start by defining the set D1 (𝑤) of so-called deferrals of𝑤 that

will play a somewhat similar role in this section as the set of se-

rializations 𝑅0 (𝑤) in Section 3. The important difference is that

while 𝑅0 partially serialized the block-creation events captured

in𝑤 , deferrals have a different goal: they account for the possible

1-slot delay of these successes without actually fully serializing

them. A deferral is hence still a characteristic string over the rich,

unserialized alphabet Σ∞.

Definition 4.1 (Realizations and deferrals). Consider a character-
istic string 𝑤 = ((𝑠1, 𝑎1), . . . , (𝑠𝑛, 𝑎𝑛)) ∈ Σ𝑛∞. A realization of 𝑤

is a string 𝑟 = ((ℎ1, 𝑎1), . . . , (ℎ𝑛, 𝑎𝑛)) ∈ (N × N)𝑛 where for each

𝑖 ∈ [𝑛] we have 𝑠𝑖 = roundH (ℎ𝑖 ). Let
𝑟 = ((ℎ1, 𝑎1), . . . , (ℎ𝑛, 𝑎𝑛))
𝑟 ′ = ((ℎ′

1
, 𝑎′

1
), . . . , (ℎ′𝑛, 𝑎′𝑛), (ℎ′𝑛+1, 𝑎

′
𝑛+1))

be two realizations, where each (ℎ𝑖 , 𝑎𝑖 ) and (ℎ′𝑖 , 𝑎
′
𝑖
) are elements of

N2
. We say that 𝑟 ′ is a 1-deferral of 𝑟 if
(1) for each 𝑡 ∈ {0, . . . , 𝑛}, ∑𝑡

𝑖=1
𝑎𝑖 ≤

∑𝑡+1
𝑖=1

𝑎′
𝑖
≤ ∑𝑡+1

𝑖=1
𝑎𝑖 , and

(2) for each 𝑡 ∈ {0, . . . , 𝑛}, ∑𝑡
𝑖=1

ℎ𝑖 ≤
∑𝑡+1
𝑖=1

ℎ′
𝑖
≤ ∑𝑡+1

𝑖=1
ℎ𝑖 ,

where we adopt the convention that 𝑎𝑛+1 = ℎ𝑛+1 = 0. Finally,

consider two characteristic strings

𝑤 = ((𝑠1, 𝑎1), . . . , (𝑠𝑛, 𝑎𝑛)) ∈ Σ𝑛∞ ,

𝑤 ′ = ((𝑠 ′
1
, 𝑎′

1
), . . . , (𝑠 ′𝑛, 𝑎′𝑛), (𝑠 ′𝑛+1, 𝑎

′
𝑛+1)) ∈ Σ

𝑛+1
∞ .

We say that𝑤 ′ is a 1-deferral of𝑤 if there are realizations 𝑟 (of𝑤 )

and 𝑟 ′ (of𝑤 ′) so that 𝑟 ′ is a 1-deferral of 𝑟 . Let D1 (𝑤) denote the
set of all 1-deferrals of𝑤 . As we only consider 1-deferrals in this

work, we sometimes simply call them deferrals.

The following lemma is an analogue of Lemma 3.3, showing that

any 1-tree of𝑤 can be seen as a 0-tree of some 1-serialization of𝑤 .

Lemma 4.2. Let 𝑤 ∈ Σ𝑛∞ and 𝐹 ⊢1 𝑤 . Then there is a 1-deferral
𝑤 ′ ∈ D1 (𝑤) and an equivalent tree 𝐹 ′ ≡ 𝐹 such that 𝐹 ′ ⊢0 𝑤 ′.

Proof. For any tree 𝐹 we call a pair of vertices (𝑢, 𝑣) a violating
pair in 𝐹 if ltype (𝑢) = ltype (𝑣) = h, l𝐹

#
(𝑢) < l𝐹

#
(𝑣) and len𝐹 (𝑢) ≥

len𝐹 (𝑣). Denote byV(𝐹 ) the set of all violating pairs in 𝐹 .

Now consider 𝑤 = ((𝑠1, 𝑎1), . . . , (𝑠𝑛, 𝑎𝑛)) ∈ Σ𝑛∞, satisfying 𝑠𝑖 ∈
{0,H, h} and 𝑎𝑖 ∈ N for each 𝑖 ∈ [𝑛], and a tree 𝐹 ⊢1 𝑤 as in the

statement of the lemma. We first construct the string 𝑤 ′ ∈ Σ𝑛+1∞
and show that 𝑤 ′ ∈ D1 (𝑤). Let 𝑉𝑖 denote the set of vertices in 𝐹

with l#-label 𝑖 , then for each 𝑖 ∈ [𝑛 + 1] ∪ {0}, define
Ĥ𝑖 ≜

{
𝑢 ∈ 𝑉𝑖 | ltype (𝑢) = h ∧ [∃𝑣 ∈ 𝐹 : (𝑢, 𝑣) ∈ V(𝐹 )]

}
,

H𝑖 ≜
{
𝑢 ∈ 𝑉𝑖 | ltype (𝑢) = h ∧ 𝑢 ∉ Ĥ𝑖

}
,

Â𝑖 ≜
{
𝑢 ∈ 𝑉𝑖 | ltype (𝑢) = a ∧

[
∃𝑣 ∈ Ĥ𝑖 : 𝑢 descendant of 𝑣

]}
,

A𝑖 ≜
{
𝑢 ∈ 𝑉𝑖 | ltype (𝑢) = a ∧ 𝑢 ∉ Â𝑖

}
.

Note that Ĥ0 = Â0 = A0 = Ĥ𝑛 = Â𝑛 = Ĥ𝑛+1 = H𝑛+1 = Â𝑛+1 =

A𝑛+1 = ∅ andH0 contains exactly the root vertex. Intuitively, Ĥ
and Â contain vertices that will need to be deferred in order to

ensure that violating pairs are suitably serialized. It will be conve-

nient to also define Ĥ =
⋃

𝑖∈[𝑛]∪{0} Ĥ𝑖 and analogously for H ,

Â and A. Moreover, for each 𝑖 ∈ [𝑛] let 𝑎𝑖 ≜ 𝑎𝑖 − |A𝑖 | − |Â𝑖 |
and define 𝑎0 = 𝑎𝑛+1 = 0, intuitively 𝑎𝑖 represents the number of

adversarial successes in slot 𝑖 that are left unused in 𝐹 , i.e., do not

have a corresponding vertex. Letting ℎ𝑖 ≜ |Ĥ𝑖 ∪H𝑖 |, observe that
𝑟 ≜ ((ℎ1, 𝑎1), . . . , (ℎ𝑛, 𝑎𝑛)) is a realization of𝑤 .

We now define𝑤 ′ alongwith its realization 𝑟 ′. For each 𝑖 ∈ [𝑛+1]
we define

𝑎′𝑖 ≜ |A𝑖 | + |Â𝑖−1 | + 𝑎𝑖−1 , ℎ′𝑖 ≜ |Ĥ𝑖−1 | + |H𝑖 | (3)

and 𝑠 ′
𝑖
≜ roundH (ℎ′𝑖 ), and we let

𝑟 ′ ≜ ((ℎ′
1
, 𝑎′

1
), . . . , (ℎ′𝑛, 𝑎′𝑛), (ℎ′𝑛+1, 𝑎

′
𝑛+1)) ∈ (N × N)

𝑛+1

𝑤 ′ ≜ ((𝑠 ′
1
, 𝑎′

1
), . . . , (𝑠 ′𝑛, 𝑎′𝑛), (𝑠 ′𝑛+1, 𝑎

′
𝑛+1)) ∈ Σ

𝑛+1
∞ ,

clearly 𝑟 ′ is a realization of𝑤 ′.
We now observe that𝑤 ′ ∈ D1 (𝑤), as witnessed by realizations 𝑟

and 𝑟 ′. Condition (1) of Definition 4.1 follows by simple accounting,

it is sufficient to observe that for each 𝑖 ∈ [𝑛 + 1] we have 𝑎𝑖 =

|A𝑖 | + |Â𝑖 | +𝑎𝑖 and 𝑎′𝑖 = |A𝑖 | + |Â𝑖−1 | +𝑎𝑖−1 and moreover |Â0 | =
𝑎0 = |Â𝑛+1 | = |A𝑛+1 | = 𝑎𝑛+1 = 0. Condition (2) holds by a similar

argument.

The tree 𝐹 ′ is then constructed as follows:

• the set of vertices, edges and the mapping ltype of 𝐹 ′ are
identical to 𝐹 (hence ensuring 𝐹 ′ ≡ 𝐹 );

• for any 𝑢 ∈ H𝑖 ∪ A𝑖 we let l𝐹
′

#
(𝑢) := 𝑖;

• for any 𝑢 ∈ Ĥ𝑖 ∪ Â𝑖 we let l𝐹
′

#
(𝑢) := 𝑖 + 1.

It remains to argue that 𝐹 ′ is a valid tree and 𝐹 ′ ⊢0 𝑤 ′. Axiom (A1)

is trivially satisfied by construction: the root is contained in H0

and hence its l𝐹
′

#
-label is 0.

Axiom (A2) is also preserved from 𝐹 . To see this, note that by

construction, if the l# (·)-label of any vertex 𝑢 changes from 𝐹 to 𝐹 ′

then it increases by exactly 1. Moreover, we also claim that for any

such honest vertex 𝑢 whose l# (·)-label was increased and for any

descendant vertex 𝑣 of𝑢 having l# (𝑣) = l# (𝑢), the l# (·)-label of 𝑣 will
also increase by 1 from 𝐹 to 𝐹 ′. For adversarial 𝑣 the claim follows

directly from the definitions of Â𝑖 and l𝐹
′

#
(·); while for honest 𝑣 ,

this is because if 𝑢 is a first coordinate of some violating pair (𝑢,𝑤)
then (𝑣,𝑤) must also be a violating pair and hence the claim follows

from the definitions of Ĥ𝑖 and l𝐹
′

#
(·). To conclude, if the l# (·)-label

of a vertex gets changed from 𝐹 to 𝐹 ′, then it increases by 1 and

all the l# (·)-labels of its children having the same label increase as

well, therefore the weak monotonicity of the l# (·)-labeling along
any chain remains satisfied.

Axiom (A3) can be verified for 𝐹 ′ by simple accounting. For

adversarial vertices 𝑢, the label l# (𝑢) = 𝑖 is by construction of l𝐹
′

#

attributed exactly to all vertices in Â𝑖−1 ∪ A𝑖 , and this is aligned

with the definition of 𝑎𝑖 in (3). The argument for honest vertices

is analogous; it just needs to additionally take into account the

“coarser” accounting of honest vertices using symbols {0, h,H}.
Finally we verify axiom (A4) for 𝐹 ′ and Δ = 0. Towards a con-

tradiction, assume there exist honest vertices 𝑢, 𝑣 in 𝐹 ′ such that

8
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l𝐹
′

#
(𝑢) < l𝐹

′
#
(𝑣) and len𝐹 ′ (𝑢) ≥ len𝐹 ′ (𝑣) (note that len(·) does not

change from 𝐹 to 𝐹 ′ so we omit the subscript from now on). Con-

sider two cases:

l𝐹
#
(𝑢) < l𝐹

#
(𝑣) : This means that (𝑢, 𝑣) ∈ V(𝐹 ) and hence l𝐹

′
#
(𝑢) =

l𝐹
#
(𝑢) +1 by construction. Since len(𝑢) ≥ len(𝑣) and 𝐹 ⊢1 𝑤 ,

we have l𝐹
#
(𝑣) ≤ l𝐹

#
(𝑢) + 1. At the same time l𝐹

′
#
(𝑢) < l𝐹

′
#
(𝑣)

and the l#-labels change by at most 1 from 𝐹 to 𝐹 ′, therefore
we must have l𝐹

′
#
(𝑣) = l𝐹

#
(𝑣) + 1 and l𝐹

#
(𝑣) = l𝐹

#
(𝑢) + 1. This

in turn implies 𝑣 ∈ Ĥ and that means that there exists

a vertex 𝑤 ∈ 𝐹 such that (𝑣,𝑤) ∈ V(𝐹 ). However, the
pair (𝑢,𝑤) now violates axiom (A4) for Δ = 1 in 𝐹 as we

have l𝐹
#
(𝑢) < l𝐹

#
(𝑣) < l𝐹

#
(𝑤) and len(𝑢) ≥ len(𝑣) ≥ len(𝑤),

which is a contradiction.

l𝐹
#
(𝑢) ≥ l𝐹

#
(𝑣) : Given that l𝐹

′
#
(𝑢) < l𝐹

′
#
(𝑣) and the l#-labels change

by at most 1 from 𝐹 to 𝐹 ′, we must have l𝐹
#
(𝑢) = l𝐹

#
(𝑣), 𝑣 ∈

Ĥ and 𝑢 ∈ H . In particular, 𝑣 ∈ Ĥ implies the existence of

a vertex𝑤 such that (𝑣,𝑤) ∈ V(𝐹 ), i.e., l𝐹
#
(𝑣) < l𝐹

#
(𝑤) and

len(𝑣) ≥ len(𝑤). However, this gives us len(𝑢) ≥ len(𝑣) ≥
len(𝑤) and l𝐹

#
(𝑢) = l𝐹

#
(𝑣) < l𝐹

#
(𝑤), meaning that (𝑢,𝑤) ∈

V(𝐹 ) and hence 𝑢 ∈ Ĥ , a contradiction.

This concludes the argument that 𝐹 ′ ⊢0 𝑤 ′ and the proof of the

lemma. □

We can now establish the following lemma, which is again an

analogue of Corollary 3.5, and is proven in Appendix B.

Lemma 4.3. Let𝑤 ∈ Σ𝑛∞, then 𝛽1

ℓ (𝑤) ≤ max

𝑤′∈D1 (𝑤)
𝛽0

ℓ+1 (𝑤
′) + 2.

4.2 The Recurrence Bℓ (·)
In this section we define an easily computable recurrent function Bℓ
that we later use to upper-bound 𝛽ℓ of a particular string 𝑤 . The

definition of Bℓ will be composed of several basic functions that we

define first. After that, we give a recursive description of how Bℓ
can be computed using these basic constituent operations.

The basic intuition underlying the computation of Bℓ (𝑤) is to
internally simulate the computation of 𝛽0

ℓ
(𝑤 ′) on all possible defer-

rals𝑤 ′ ∈ D1 (𝑤), as 𝛽0

ℓ
(𝑤 ′) is precisely described in Theorem 3.6.

More concretely, Bℓ returns a tuple

Bℓ (𝑤) = ((𝛽0, 𝑎0), (𝛽H, 𝑎H), (𝛽h, 𝑎h)) ∈ (Z × N)3

where each pair (𝛽𝑠 , 𝑎𝑠 ) for 𝑠 ∈ {0,H, h} keeps track of the best

(in a well-defined sense detailed below) achievable margin 𝛽𝑠 and

the number of delayed adversarial successes 𝑎𝑠 after processing a

deferral of𝑤 that: (0) does not produce an honest carry-over from

slot |𝑤 | to |𝑤 | + 1; (h) produces a single such honest carry-over; or

(H) produces a multi-honest such carry-over. The definition of Bℓ
then describes how to update this tuple Bℓ (𝑤) to arrive at Bℓ (𝑤𝑧)
for any 𝑧 ∈ Σ∞.

Basic operations. For any (𝛽, 𝑎, 𝑎′) ∈ Z ×N ×N we introduce the

following functions:

NHE(𝛽, 𝑎, 𝑎′) ≜ (𝛽 + 𝑎, 𝑎′) ,
HE(𝛽, 𝑎, 𝑎′) ≜ (𝛽 + 𝑎 − 1, 𝑎′) ,

NO(𝛽, 𝑎, 𝑎′) ≜


(max{0, 𝛽 + 𝑎}, 𝑎′ +min{0, 𝛽 + 𝑎})

if 𝛽 ∈ {−𝑎 − 𝑎′, . . . , 0},
HE(𝛽, 𝑎, 𝑎′) otherwise.

(4)

Their names stand for (no) honest effect and neutralization oppor-
tunity, respectively. Intuitively, these functions will be invoked in

the update step computing Bℓ (𝑤𝑧) from Bℓ (𝑤) with their inputs

(𝛽, 𝑎) being one of the pairs (𝛽𝑠 , 𝑎𝑠 ) in Bℓ (𝑤) for some 𝑠 , and 𝑎′

being the number of adversarial successes in the currently pro-

cessed symbol 𝑧. The functions then return a new, updated value

pair (𝛽∗, 𝑎∗) if (NHE) there was no honest effect on 𝛽ℓ in this round

(e.g., no delayed honest success from previous slot and no honest

success in this slot either); or (HE) there was an effect of a honest

success that decreased 𝛽ℓ by 1; or (NO) there was a neutralization
opportunity and whether an honest effect occurred depends on the

current running value of 𝛽 .

Note that which of these basic functions are invoked when com-

puting Bℓ (𝑤𝑧) from Bℓ (𝑤) depends on information external to

these functions: the honest carry from previous slot (i.e., which 𝑠 is

used to index into the previous tuple Bℓ (𝑤)), the honest success(es)
recorded in the current symbol 𝑧, and the desired honest carry to

the next slot (i.e., which pair of the new value Bℓ (𝑤𝑧) is being
computed). In all cases, these functions are chosen to match the

behavior of 𝛽0

ℓ
on the respective deferral as described by Theo-

rem 3.6. Looking ahead, this inductive property will be established

in Lemma 4.5.

For notational convenience, we also introduce a function HE𝑡
ℓ

that behaves as NO or HE depending on two parameters ℓ, 𝑡 ∈ N; ℓ
will be the usual parameter of 𝛽ℓ and 𝑡 will be the current slot—HE𝑡ℓ
will hence be used to distinguish the “pre-ℓ” and “post-ℓ” settings:

HE𝑡ℓ (𝛽, 𝑎, 𝑎
′) ≜

{
NO(𝛽, 𝑎, 𝑎′) if 𝑡 < ℓ,

HE(𝛽, 𝑎, 𝑎′) if 𝑡 ≥ ℓ .

To reason about these basic functions, we introduce a binary

relation ⪯ on the elements (𝛽, 𝑎) ∈ Z × N as follows:

(𝛽1, 𝑎1) ⪯ (𝛽2, 𝑎2) :⇔ [(𝛽1 + 𝑎1 < 𝛽2 + 𝑎2) ∨
∨ (𝛽1 + 𝑎1 = 𝛽2 + 𝑎2 ∧ 𝑎1 ≤ 𝑎2)] . (5)

It is easy to verify that ⪯ is in fact a total order on Z × N. We use

the standard notation 𝑥 ≺ 𝑦 for (𝑥 ⪯ 𝑦 ∧ 𝑥 ≠ 𝑦). For convenience,
let us define an operator max≺ that, given a tuple {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1

of

pairs from Z × N, returns the maximum pair with respect to the

total order ⪯. Finally, let ⊥ represent the pair (−∞, 0); to handle ⊥
we sometimes abuse the notation and extend ⪯ to (Z ∪ {−∞}) ×N
in the natural way. We also sometimes treat ⊥ as a ternary function

(akin to NHE, HE, NO) that always returns (−∞, 0), which will

always be clear from the context.

9
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Formal description of Bℓ . Let Bℓ (Y) ≜ ((0, 0),⊥,⊥). Furthermore,

if Bℓ (𝑤) = ((𝛽0, 𝑎0), (𝛽H, 𝑎H), (𝛽h, 𝑎h)) and |𝑤 | + 1 = 𝑡 then

Bℓ (𝑤 (0, 𝑎′)) = (max≺


NHE(𝛽0, 𝑎0, 𝑎

′)
NO(𝛽H, 𝑎H, 𝑎′)
HE𝑡

ℓ
(𝛽h, 𝑎h, 𝑎′)

 ,⊥,⊥) ,

Bℓ (𝑤 (H, 𝑎′)) = (max≺


NO(𝛽0, 𝑎0, 𝑎

′)
NO(𝛽H, 𝑎H, 𝑎′)
NO(𝛽h, 𝑎h, 𝑎′)

 ,

max≺


NHE(𝛽0, 𝑎0, 𝑎

′)
NO(𝛽H, 𝑎H, 𝑎′)
NO(𝛽h, 𝑎h, 𝑎′)

 ,

max≺


NO(𝛽0, 𝑎0, 𝑎

′)
NO(𝛽H, 𝑎H, 𝑎′)
NO(𝛽h, 𝑎h, 𝑎′)

) ,
Bℓ (𝑤 (h, 𝑎′)) = (max≺


HE𝑡

ℓ
(𝛽0, 𝑎0, 𝑎

′)
NO(𝛽H, 𝑎H, 𝑎′)
NO(𝛽h, 𝑎h, 𝑎′)

 ,⊥,

max≺


NHE(𝛽0, 𝑎0, 𝑎

′)
NO(𝛽H, 𝑎H, 𝑎′)
HE𝑡

ℓ
(𝛽h, 𝑎h, 𝑎′)

) .
We additionally introduce some notation that allows us to conve-

niently reason about Bℓ . For some

Bℓ (𝑤) = ((𝛽0, 𝑎0), (𝛽H, 𝑎H), (𝛽h, 𝑎h))

and 𝑠 ∈ {0,H, h} we use the notation Bℓ (𝑤) [𝑠] to refer to the pair

(𝛽𝑠 , 𝑎𝑠 ) in Bℓ (𝑤). Moreover, we let

𝐵ℓ (𝑤) ≜ max

𝑠∈{0,H,h}
𝛽𝑠 + 𝑎𝑠 .

Intuitively, given some 𝑤 ∈ Σ∗∞ and 𝑧 ∈ Σ∞, the final step of

computation of Bℓ (𝑤𝑧) (processing the trailing symbol 𝑧 ∈ Σ∞) can
be seen as determined by a three-dimensional table of 3

3 = 27 cells,

each cell specifying a single operation op ∈ {NHE,HE𝑡
ℓ
,NO,⊥} that

needs to be applied to Bℓ (𝑤) [𝑠prev] if the “honest carry” from the

previous step is 𝑠prev, the honest part of the current symbol 𝑧 is 𝑠cur
(i.e., 𝑧 = (𝑠cur, 𝑎′)), and the desired honest carry to the next slot is

𝑠next; with all 𝑠prev, 𝑠cur, 𝑠next ∈ {0,H, h}. We sometimes explicitly

refer to this operation as op[𝑠prev,𝑠cur,𝑠next ] ∈ {NHE,HE
𝑡
ℓ
,NO,⊥}.

For example op[0,0,0] ≡ NHE, op[H,0,0] ≡ NO, op[h,0,0] ≡ HE𝑡
ℓ
,

op[0,0,𝑠 ] ≡ ⊥ for any 𝑠 ∈ {0, h,H}, and so on.

Monotonicity.We conclude this section by stating a simple mono-

tonicity property of all the basic functions NHE, HE, NO and HE𝑡
ℓ

underlying Bℓ . Given partial orders (𝑆, ≺𝑆 ) and (𝑇, ≺𝑇 ), recall that
a function 𝑓 : 𝑆 → 𝑇 is called (weakly) monotone if

∀𝑥,𝑦 ∈ 𝑆 : (𝑥 ⪯𝑆 𝑦 ⇒ 𝑓 (𝑥) ⪯𝑇 𝑓 (𝑦)) .

We defer the proof of the following lemma to Appendix B.

Lemma 4.4. For any fixed 𝑎′ ∈ N and 𝑡, ℓ ≥ 1, the functions
NHE(·, ·, 𝑎′), HE(·, ·, 𝑎′), HE𝑡

ℓ
(·, ·, 𝑎′) and NO(·, ·, 𝑎′) mapping Z ×

N→ Z × N are monotone with respect to the total order ⪯ of (5).

4.3 Upper-bounding Deferral Margin by Bℓ (·)
The following lemma is the key technical result that formalizes the

intuition behind the definition of Bℓ .

Lemma 4.5. Let 𝑤 ∈ Σ𝑛∞ and let 𝑤 ′ ∈ D1 (𝑤). Writing 𝑤 ′ =
𝑥 ′(𝑠 ′

𝑛+1, 𝑎
′
𝑛+1), so that 𝑥

′ ∈ Σ𝑛∞ consists of the first 𝑛 symbols of𝑤 ′

and (𝑠 ′
𝑛+1, 𝑎

′
𝑛+1) ∈ {0,H, h} × N is the last symbol. Then we have(

𝛽0

ℓ (𝑥
′), 𝑎′𝑛+1

)
⪯ Bℓ (𝑤) [𝑠 ′𝑛+1] .

Proof. We proceed by induction on the length𝑛 ∈ N of𝑤 ∈ Σ∗∞.
Base case. With 𝑛 = 0, we have 𝑤 = Y, 𝑤 ′ ∈ D1 (𝑤) = {(0, 0)},
Bℓ (𝑤) = ((0, 0),⊥,⊥) and hence𝑤 ′ = 𝑥 ′(𝑠 ′

𝑛+1, 𝑎
′
𝑛+1) for 𝑥

′ = Y and

𝑠 ′
𝑛+1 = 𝑎′

𝑛+1 = 0. This implies (𝛽0

ℓ
(𝑥 ′), 𝑎′

𝑛+1) = (𝛽
0

ℓ
(Y), 0) = (0, 0) =

Bℓ (𝑤) [0], as desired.
Induction step. Let𝑤 ∈ Σ𝑛∞ and𝑤 ′ ∈ D1 (𝑤). Write𝑤 = 𝑥 (𝑠𝑛, 𝑎𝑛),
where 𝑥 consists of the first 𝑛 − 1 symbols of𝑤 . We will first con-

struct 𝑥 ′ that is a deferral of 𝑥 and shares the first𝑛−1 symbols as 𝑥 ′.
We observe that𝑤 ′ naturally gives rise to a deferral of 𝑥 . To describe
this, let 𝑟 = (ℎ1, 𝑎1), . . . , (ℎ𝑛, 𝑎𝑛) and 𝑟 ′ = (ℎ′

1
, 𝑎′

1
), . . . , (ℎ′

𝑛+1, 𝑎
′
𝑛+1)

be realizations of𝑤 and𝑤 ′, respectively, for which 𝑟 ′ is a deferral
of 𝑟 . Letting 𝑞 denote the first 𝑛 − 1 symbols of the realization 𝑟 , it’s

clear that 𝑞 is a realization of 𝑥 . Then we observe that an adaptation

of the suffix of 𝑟 ′ (and 𝑤 ′) yields a deferral of 𝑥 (the prefix of 𝑤 ).

Specifically, defining

(ℎ′𝑛, 𝑎′𝑛) = (ℎ′𝑛, 𝑎′𝑛) + (ℎ′𝑛+1, 𝑎
′
𝑛+1) − (ℎ𝑛, 𝑎𝑛)

(where arithmetic is coordinatewise) it is easy to confirm that 𝑞′ ≜
(ℎ′

1
, 𝑎′

1
), . . . , (ℎ′

𝑛−1
, 𝑎′

𝑛−1
), (ℎ′𝑛, 𝑎′𝑛) is a deferral of the realization 𝑞

of 𝑥 . To see this, observe that by construction,

ℎ
′
𝑛 +

𝑛−1∑︁
𝑖=1

ℎ′𝑖 =

(
𝑛+1∑︁
𝑖=1

ℎ′𝑖

)
− ℎ𝑛 =

𝑛−1∑︁
𝑖=1

ℎ𝑖

and

𝑎′𝑛 +
𝑛−1∑︁
𝑖=1

𝑎′𝑖 =

(
𝑛+1∑︁
𝑖=1

𝑎′𝑖

)
− 𝑎𝑛 =

𝑛−1∑︁
𝑖=1

𝑎𝑖 ,

so the full sums are correct and the remaining nested sums (items

(1) and (2) of Definition 4.1) follow from the fact that 𝑟 ′ is a deferral
of 𝑟 . To reiterate and organize the notation, we arrange these in

a table, where we use the notation 𝑤 ← 𝑟 to indicate that 𝑟 is a

realization of the string 𝑤 , and 𝑤 ⇝ 𝑤 ′ to indicate that 𝑤 ′ is a
1-deferral of𝑤 .

𝑤 ← 𝑟 = (ℎ1, 𝑎1), . . . , (ℎ𝑛, 𝑎𝑛)

⇝

𝑤 ′ ← 𝑟 ′ = (ℎ′
1
, 𝑎′

1
), . . . , (ℎ′𝑛, 𝑎′𝑛), (ℎ′𝑛+1, 𝑎

′
𝑛+1)

𝑥 ← 𝑞 = (ℎ1, 𝑎1), . . . , (ℎ𝑛−1, 𝑎𝑛−1)

⇝

𝑥 ′ ← 𝑞′ = (ℎ′
1
, 𝑎′

1
), . . . , (ℎ′𝑛−1

, 𝑎′𝑛−1
), (ℎ′𝑛, 𝑎′𝑛)

Let 𝑧′ be the (𝑛 − 1)-prefix of𝑤 ′ (or 𝑥 ′) and let 𝑠 ′𝑛 ∈ {0, h,H} be
the “rounded” version of ℎ

′
𝑛 , i.e., 𝑠

′
𝑛 ≜ roundH (ℎ

′
𝑛). By induction

hypothesis we have

(𝛽0

ℓ (𝑧
′), 𝑎′𝑛) ⪯ Bℓ (𝑥) [𝑠 ′𝑛] . (6)

The inductive step of the argument is now established in a se-

quence of manipulations that respect the ordering ⪰. We first give

10
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an overview of this sequence and then justify each of its steps in

detail. Namely, we will prove that

Bℓ (𝑤) [𝑠 ′𝑛+1]
(a)

= max≺


op[0,𝑠𝑛,𝑠′𝑛+1 ] (Bℓ (𝑥) [0], 𝑎𝑛)
op[H,𝑠𝑛,𝑠′𝑛+1 ] (Bℓ (𝑥) [H], 𝑎𝑛)
op[h,𝑠𝑛,𝑠′𝑛+1 ] (Bℓ (𝑥) [h], 𝑎𝑛)


(b)

⪰ op[𝑠𝑛,𝑠𝑛,𝑠′𝑛+1 ]
(
Bℓ (𝑥)

[
𝑠 ′𝑛

]
, 𝑎𝑛

)
(c)

⪰ op[𝑠𝑛,𝑠𝑛,𝑠′𝑛+1 ]
(
𝛽0

ℓ (𝑧
′), 𝑎′𝑛, 𝑎𝑛

)
(d)

=

(
𝛽0

ℓ (𝑥
∗), 𝑎∗

) (e)

⪰
(
𝛽0

ℓ (𝑥
′), 𝑎′𝑛+1

)
,

(7)

where 𝑥∗, 𝑎∗ are simple modifications of 𝑥 ′, 𝑎′
𝑛+1 that we precisely

define below. Note that establishing (7) concludes the inductive

step and hence also the whole proof of the lemma.

Equation (a) follows from the definition of Bℓ , as op[𝑠,𝑠𝑛,𝑠′𝑛+1 ]
is the operation that is used in the computation of Bℓ in the cell

where the honest carry from previous slot is 𝑠 , the honest part of

the symbol in the current slot is 𝑠𝑛 , and the desired honest carry

to the next slot is 𝑠 ′
𝑛+1. Step (b) then follows by definition of max≺ .

Step (c) is a direct application of the induction hypothesis (6) and

the monotonicity of op[𝑠𝑛,𝑠𝑛,𝑠′𝑛+1 ] with respect to its first two inputs,
as established in Lemma 4.4.

Towards justifying step (d), we first define 𝑥∗ and 𝑎∗. Let𝑤∗ ∈
Σ𝑛+1∞ be a 1-deferral of 𝑤 that is identical to 𝑤 ′ except for its last
two symbols, and, intuitively, these two symbols only differ from

the respective symbols in 𝑤 ′ by a potentially different number

of adversarial successes being deferred from slot 𝑛 to slot 𝑛 + 1.

Formally, if 𝑟 ′ = (ℎ′
1
, 𝑎′

1
), . . . , (ℎ′𝑛, 𝑎′𝑛), (ℎ′𝑛+1, 𝑎

′
𝑛+1) is a realization

of𝑤 ′, then𝑤∗ corresponds to a realization

𝑤∗ ← 𝑟∗ = (ℎ′
1
, 𝑎′

1
), . . . , (ℎ′𝑛, 𝑎′𝑛 + 𝑎′𝑛+1 − 𝑎

∗), (ℎ′𝑛+1, 𝑎
∗)

where

𝑎∗ =

{
𝑎𝑛 if op[𝑠𝑛,𝑠𝑛,𝑠′𝑛+1 ] ∈ {NHE,HE

𝑛
ℓ
} ,

𝑎𝑛 +min

{
0, 𝛽0

ℓ
(𝑧′) + 𝑎′𝑛

}
if op[𝑠𝑛,𝑠𝑛,𝑠′𝑛+1 ] ≡ NO .

We let 𝑥∗ denote the first 𝑛 symbols of𝑤∗ (just like 𝑥 ′ is related to

𝑤 ′), i.e., 𝑤∗ = 𝑥∗ (𝑠 ′
𝑛+1, 𝑎

∗); and for convenience let 𝑥∗𝑛 be the last

symbol of 𝑥∗.
Observe that, intuitively, in all three cases (NHE,HE𝑛

ℓ
,NO), the

value 𝑎∗ is defined to be exactly the number of adversarial successes

that are deferred by the respective operation (i.e., the second co-

ordinate of its output) according to its definition (4), given input

(𝛽0

ℓ
(𝑧′), 𝑎′𝑛, 𝑎𝑛). Note that the fact that the second component of

op[𝑠𝑛,𝑠𝑛,𝑠′𝑛+1 ] (𝛽
0

ℓ
(𝑧′), 𝑎′𝑛, 𝑎𝑛) equals 𝑎∗ (which is a part of step (d))

follows from the definition of 𝑎∗.
The main effort in establishing the induction case lies in ver-

ifying the other part of step (d), namely, the first component of

op[𝑠𝑛,𝑠𝑛,𝑠′𝑛+1 ]
(
𝛽0

ℓ
(𝑧′), 𝑎′𝑛, 𝑎𝑛

)
being equal to 𝛽0

ℓ
(𝑥∗). This amounts

to verifying that, intuitively, the operation performed in the cell

of the definition of Bℓ determined by (𝑠𝑛, 𝑠𝑛, 𝑠 ′𝑛+1) is identical to
how 𝛽0

ℓ
(𝑥∗) = 𝛽0

ℓ
(𝑧′𝑥∗𝑛) evolves from 𝛽0

ℓ
(𝑧′) when processing the

last symbol 𝑥∗𝑛 of 𝑥∗. Luckily, this behavior of 𝛽0

ℓ
is exactly de-

scribed by Theorem 3.6, and hence this claim can be verified by a

straightforward case analysis considering each of the cells sepa-

rately and comparing it to the behavior guaranteed by Theorem 3.6.

For illustration, consider the three cells involved in the case when

𝑠𝑛 = 𝑠 ′
𝑛+1 = 0, and hence according to the definition of Bℓ , we have

Bℓ (𝑥 (0, 𝑎𝑛)) [0] = max≺


NHE(𝛽0, 𝑎0, 𝑎𝑛)
NO(𝛽H, 𝑎H, 𝑎𝑛)
HE𝑛

ℓ
(𝛽h, 𝑎h, 𝑎𝑛)

 , (8)

where the values ((𝛽0, 𝑎0), (𝛽H, 𝑎H), (𝛽h, 𝑎h)) are taken from Bℓ (𝑥).
The intuitive way to read the above equation (8) is that the new

value Bℓ (𝑥 (𝑠𝑛, 𝑎𝑛)) [0] after processing (𝑠𝑛, 𝑎𝑛) will be computed

as a maximum of three possible evolutions: either

(i) starting from (𝛽0, 𝑎0) (representing no deferred honest suc-

cess from the previous slot 𝑛 − 1 to the current slot 𝑛 in 𝑥∗)
and applying NHE;

(ii) starting from (𝛽H, 𝑎H) (representing multiple such deferred

honest successes) and applying NO; or
(iii) starting from (𝛽h, 𝑎h) (representing a single such deferred

honest success) and applying HE𝑛
ℓ
.

Observe that this is, according to Theorem 3.6, exactly the behavior

of 𝛽0

ℓ
on the last symbol of 𝑥∗:

(i) If there are no deferred honest successes from the previous

slot, given that there are also no honest successes in this slot

(𝑠𝑛 = 0), 𝛽0

ℓ
simply increases by 𝑎0 and 𝑎∗ = 𝑎𝑛 adversarial

successes are deferred to the next slot, i.e., NHE is applied.

(ii) If multiple honest successes were deferred from the previous

slot, 𝛽0

ℓ
again increases by 𝑎0 but also potentially decreases by

1 to account for the carried-over honest successes, unless 𝛽H
is in the appropriate range that allows for “neutralizing” this

effect. If a neutralization is possible, the number of carried-

over adversarial successes 𝑎∗ is chosen to be maximal while

ensuring the neutralization happens. I.e., NO is applied.

(iii) If a single honest success was deferred from the previous slot,

𝛽0

ℓ
again increases by 𝑎0, but if we are in a slot 𝑛 > ℓ then is

also guaranteed to decrease by 1 to account for processing the

carried-over honest success. Given that there are no honest

successes in this slot (𝑠𝑛 = 0, a single honest success (h)
cannot be neutralized after slot ℓ . On the other hand, in the

case 𝑛 < ℓ , 𝛽0

ℓ
is only decreased by 1 if it is positive, again in

agreement with Theorem 3.6. I.e., overall, HE𝑛
ℓ
is applied.

The reasoning for all other cells of Bℓ is fully analogous.

Finally, to justify step (e), we need to argue that, all other things

equal, deferring any different number of adversarial successes than

𝑎∗ in the last slot of𝑤 will lead to a pair (𝛽 ′, 𝑎′) ≺ (𝛽∗ = 𝛽0

ℓ
(𝑥∗), 𝑎∗).

Observe that we can argue this separately for each of the cases

where 𝛽0

ℓ
behaves according to NHE, HE, and NO respectively. In

light of the analysis above, 𝛽0

ℓ
always follows one of these opera-

tions and the choice of it depends only on the pattern of deferred

honest successes and the length 𝑛, which are identical in𝑤∗ and𝑤 ′.
For NHE and HE, the desired property is immediate, as𝑤∗ defers
all available adversarial successes in these cases; deferring fewer

of them (i.e., choosing 𝑎′ < 𝑎∗) would result in a pair (𝛽 ′, 𝑎′) such
that 𝛽 ′ + 𝑎′ = 𝛽∗ + 𝑎∗ but 𝑎′ < 𝑎∗, and hence (𝛽 ′, 𝑎′) ≺ (𝛽∗, 𝑎∗).
For NO, deferring a smaller number of adversarial successes (i.e.,

choosing 𝑎′ < 𝑎∗) would have the same effect, i.e., it would lead to

(𝛽 ′, 𝑎′) such that 𝛽 ′ + 𝑎′ = 𝛽∗ + 𝑎∗ but 𝑎′ < 𝑎∗. On the other hand,
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choosing 𝑎′ > 𝑎∗ would prevent “neutralizing” the honest success

in slot 𝑛, leading to a pair (𝛽 ′, 𝑎′) such that 𝛽 ′ + 𝑎′ = 𝛽∗ + 𝑎∗ − 1,

again implying (𝛽 ′, 𝑎′) ≺ (𝛽∗, 𝑎∗) as desired. This concludes the
justification of step (e) and hence the whole proof. □

Given Lemma 4.5, we can now establish our main result.

Theorem 4.6. Let𝑤 ∈ Σ∗∞. Then

𝛽1

ℓ (𝑤) ≤ 𝐵ℓ+1 (𝑤) + 2 .

Proof. First, Lemma 4.3 gives us

𝛽1

ℓ (𝑤) ≤ max

𝑤′∈D1 (𝑤)
𝛽0

ℓ+1 (𝑤
′) + 2 .

Let 𝑤∗ ∈ D1 (𝑤) be the 1-deferral of 𝑤 that maximizes 𝛽0

ℓ+1 (·)
above, and as before let 𝑤∗ = 𝑥∗ (𝑠∗

𝑛+1, 𝑎
∗
𝑛+1) with 𝑥∗ ∈ Σ𝑛∞ and

(𝑠∗
𝑛+1, 𝑎

∗
𝑛+1) ∈ {0,H, h} × N. Let

Bℓ+1 (𝑤) = ((𝛽0, 𝑎0), (𝛽H, 𝑎H), (𝛽h, 𝑎h)),

then we have

𝛽0

ℓ+1 (𝑤
∗)

(a)

≤ 𝛽0

ℓ+1 (𝑥
∗) + 𝑎∗𝑛+1

(b)

≤ max

𝑠∈{0,H,h}
𝛽𝑠 + 𝑎𝑠 = 𝐵ℓ+1 (𝑤)

as desired, where inequality (a) follows from Theorem 3.6, and

inequality (b) is a direct consequence of Lemma 4.5. □

Finally, we remark that for characteristic strings of the special

form 𝑤 = 𝑤 ′(0, 0), i.e. terminating with a success-free slot, we

clearly have 𝛽1

ℓ
(𝑤) = 𝛽0

ℓ
(𝑤), this leads to a stronger statement

without the additional additive term +2 for this special case.

5 EXPLICIT BOUNDS
In this section, we study explicit bounds provided by our analysis.

As described, we are interested in the setting where honest and

adversarial block production are determined by Poisson processes

with parameters 𝑟ℎ and 𝑟𝑎 , while network delay of block delivery

is upper bounded Δr time.

We collect results for both a Bitcoin-like system—with 600 second

inter-block time corresponding to a 1/600 rate Poisson process—

and an Ethereum-like system—with 13 second inter-block periods

corresponding to a 1/13 rate process. The 90th percentile block

propagation time for Bitcoin (resp. Ethereum) has been measured

to be around 4 seconds [16] (resp. around 2 seconds [7], partly due

to smaller block sizes); we will use these values as the values of Δr
in the respective settings. To provide more data that are directly

comparable with a previous work [15], we will also give results for

a 10 seconds delay bound for Bitcoin and a 5 seconds delay bound

for Ethereum.

5.1 Numerical Evaluation of the Upper Bounds
The distribution of the characteristic string 𝑤 is as follows. Each

symbol 𝑤𝑖 = (𝑠𝑖 , 𝑎𝑖 ) ∈ {0, h,H} × N is independent and: (i) 𝑎𝑖
follows a Poisson distribution with parameter 𝑟𝑎Δr, and (ii) 𝑠𝑖 is

determined by a Poisson random variable 𝑋 with parameter 𝑟ℎΔr
so that 𝑠𝑖 = roundH (𝑋 ) (refer to (1)). Let 𝐷 (𝑟𝑎, 𝑟ℎ,Δr;𝑛) denote the
distribution on ({0, h,H} × N)𝑛 given by this rule.

Temporal settlement rules. Examining the conclusions of the pre-

vious section and, in particular, the recursive description of the

tuple Bℓ , it is clear that one can efficiently determine the value

Bℓ (𝑤) for any particular characteristic string𝑤 . Furthermore, con-

sidering that the distribution 𝐷 (𝑟𝑎, 𝑟ℎ,Δr;𝑛) calls for independent
symbols, it is straightforward to determine the exact distribution

of Bℓ (𝑤𝑎), where 𝑎 is an additional independent symbol, from that

of Bℓ (𝑤). Specifically, we consider a “six-dimensional” table 𝑇𝑛 ,

with one cell for each possible value of Bℓ (thus a value has the
form (𝛽0, 𝑎0, 𝛽h, 𝑎h, 𝛽H, 𝑎H)), whose cells are populated with the

probabilities that this value emerges in Bℓ (𝑤) (with𝑤 drawn from

𝐷 (𝑟𝑎, 𝑟ℎ,Δr;𝑛)). Given the “kernel” distribution for the next sym-

bol 𝑎, each cell of the corresponding table 𝑇𝑛+1 can be determined

as an appropriate convex combination of the entries in 𝑇𝑛 with the

kernel distribution. Of course, the symbol distribution has infinite

support; however, the Poisson distribution decays very rapidly so it

is straightforward to use finite approximations that suitably control

errors.

Initially, we must settle on a distribution of Bℓ at time ℓ (corre-

sponding to the moment in time when the transaction of interest

was submitted to the blockchain). While this does depend on ℓ ,

the distribution converges quickly to an exponentially decaying

distribution (in the sense that the entries are exp(−_(𝛽0 +𝑎0))). For
this reason, rather than selecting some particular ℓ in our numerical

evaluation, we choose a very large ℓ that corresponds to the steady

state of the blockchain. Specifically, we select a large enough ℓ so

that the difference in total variation observed by evolving for an

additional step is bounded by 10
−5
. (Intuitively, this initial distribu-

tion reflects the number of private blocks that the adversary may

have, along with any deferred honest blocks from slot ℓ .)

For simplicity, we append a concluding (0, 0) onto the end of the
generated characteristic string which, recalling the semantics of Bℓ ,
permits us to focus on a single pair, (𝛽0, 𝑎0); as the string does not

terminate with any honest victories, we may neglect the + 2 of

Theorem 4.6 and the event of interest is simply 𝛽0+𝑎0 ≥ 0, in which

case the adversary can launch a successful “double spend” attack.

Note that this postpended (0, 0) in fact corresponds to an observable
event–it can be guaranteed by witnessing a “quiet” region of length

2Δr. Finally, we compute the probability that the margin should

ever climb above zero after our threshold of interest, by continuing

to evolve the probability forward in time, but effectively “freezing”

any probability mass on positive values of margin. We then evolve

the system forward until the (exponentially decaying) contributions

from further evolution are negligible.

Block-based settlement rules. We also consider the settlement

rule that is actually used in Bitcoin “Wait for the transaction to be

buried by 𝑘 blocks.” This requires a small adaptation to the frame-

work above because an individual symbol may generate multiple

blocks: in this case, one maintains a graded data structure that

reflects the probabilities conditioned on observing a particular total

number of block-creation events. A further complication arises in

the interpretation of margin for this stopping time. In particular,

this stopping time is quite different from the simple stopping time

“wait for 𝑘 block creation events,” which is not even an observable

event. For example, note that if 𝛽ℓ () is 2𝑘 at time ℓ , an adversary can

immediately activate the settlement of “buried by 𝑘 blocks” and can
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double spend. Observe that if 𝛽ℓ (𝑤) = 𝑠 at time ℓ (so that |𝑤 | = ℓ),

then at least 2𝑘 − 𝑠 block creation events must take place in order

for the adversary to successfully create a double spend (which will

expose 2𝑘 blocks to the observer). With this observation in place,

we carry out the natural numerical evolution, conditioned on the

value of 𝛽 arising at𝑤 = ℓ . (We specifically use 𝛽0 + 𝑎0.)

5.2 Lower Bounds from Private Mining Attacks
We obtain lower bounds on the consistency failure probability by

analyzing the well known private mining attack strategy. This at-

tack strategy simply attempts to build a competing chain in private

that tries to double spend a target transaction. If there ever comes a

point in time after the target transaction has been settled, that the

adversary’s private chain becomes longer than the public honest

chain, the adversary releases its private chain and the private min-

ing attack succeeds. If such a time never occurs, the private mining

attack fails. In more detail, the private mining attack consists of two

stages. Before time ℓ (the time when the target transaction appears

in the system), the attacker tries to build a longer private chain: if

its private chain is longer than or equally long as the public chain,

it tries to extend its private chain; however, if its private chain is

overtaken by the public chain, it gives its private chain, and tries

to mine a new private chain from the tip of the public chain. After

time ℓ , the attacker goes all-in and keeps mining on the private

chain that double spends the target transaction.

We calculate the success probability of the private mining attack

in the lock-step model D[0,Δr] and assuming that neutralization

never occurs. These assumptions weaken the capabilities of the

adversary. We also remark that the private mining attack strategy

is not optimal when the network delay is non-zero, as shown in [6].

Hence, computing the success probability of this strategy with a

weakened adversary gives a lower bound on the probability of

consistency failures.

We also provide simulation results for the success probability

of the private mining attack in the actual continuous time model

C[Δr]. For each parameter setting, we run the private mining attack

10000 times in 10 experiments and then plot its success rate with

one standard deviation. Since the simulation results account for

neutralization, they give better (but noisy) lower bounds. Since our

upper and lower bounds already match closely for Bitcoin parame-

ters, we only carry out simulation for Ethereum parameters. We

also remark that we can only provide simulation results when the

settlement failure probability is relatively high (i.e., short confirma-

tion time or few confirmation blocks); when the settlement failure

probability is extremely small, we would have needed a very large

number of simulation runs to make reasonable estimates.

5.3 Results
Figures 4 and 5 give our results for temporal settlement in Bit-

coin and Ethereum, respectively. These figures depict both lower

bounds and upper bounds on the settlement error as a function of

time. More results for temporal settlement is given in Table 1 in

Appendix C. Results for the block-based settlement rule are sum-

marized in Figures 6 and 7. A more detailed record of our results

for block-based settlement is given in Table 2 in Appendix C.
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Figure 4: Bitcoin temporal settlement failure for a 10% adver-
sary, results from [15] for comparison.
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Figure 5: Ethereum temporal settlement failure for a 10%
adversary, results from [15] for comparison.

Figure 4, in particular, clearly shows that our method obtains

highly accurate settlement times for the temporal settlement rule

for Bitcoin. To elaborate (and as mentioned earlier in the paper), our

upper and lower bounds are merely minutes away. For example, for

Bitcoin with Δr = 10𝑠 delays and a 10% adversary, settlement error

probability at the one-hour mark is at most 4.489% (from the upper

bound computed in 1-deferral setting), while 90 seconds before

that, the settlement error probability is at least 4.494% (due to the

lower bound given by private mining attack). (These results are not

included in the tables in the appendix, but are obtained using the

methods we described in this section.)

Towards comparing with prior art [15], we plot the upper bound

results from [15] in Figures 4 and 5. As an example, their method

concludes that for a 10% adversary and Δr = 10𝑠 , a Bitcoin block is

settled with at most 0.1% error probability after 5 hours 20 minutes,

while our new results bound it within 2 hours and 30 minutes.
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Figure 6: Bitcoin block-based settlement failure for a 10%
adversary.
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Figure 7: Ethereum block-based settlement failure for a 10%
adversary.

Furthermore, our new results are no more than 2 minutes and

30 seconds away from the optimum. The comparison is similarly

favorable to our results for the Ethereum parametrization.

Comparing settlement modes. It is interesting to compare the

settlement error probability for the temporal rule and block-based

rule. At the first glance, one may intuitively feel that “waiting for 6

blocks” should provide similar consistency guarantees as “waiting

for 60 minutes.” We perform this comparison in Figure 8 where

we consider the Bitcoin setting with 10 second delays and plot the

upper bounds on the temporal settlement error as a function of

time (as indicated by Figure 4), alongside with the upper bound

on the block-based settlement error (as indicated by Figure 6) as a

function of the expected time it takes for the particular number of

blocks to appear under honest operation. As the graph illustrates,

in the above-mentioned case of 60 minutes vs. 6 blocks, the block-

based settlement guarantees are an order of magnitude better. This

illustrates that under normal operation of the protocol, users are

able to arrive at their desired settlement guarantee significantly

faster if they apply a block-based settlement rule. This is because the

block-based settlement rule naturally adapts to adversarial behavior

in the sense that withholding adversarial blocks, in general, will
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Figure 8: Bitcoin settlement method comparison: time- vs.
block-based, for a 10% adversary and Δr = 10𝑠.

cause the users to wait for longer before observing the requisite

number of blocks.

6 CONCLUSIONS
Practical relevance. The goal of this work has been to provide

concrete settlement bounds with practical applicability to all de-

ployed PoW blockchains. Indeed, while the concrete results we

quote consider the parametrizations of Bitcoin and Ethereum, the

two currently dominant PoW deployments, our methods can be

directly applied to compute these statistics for any other choice of

block interval, block propagation delay Δr, and assumed adversarial

share of mining power. In each specific case, the value Δr can be

estimated based on measurements, as we’ve done for Bitcoin and

Ethereum in Section 5.1 based on previously published data. Esti-

mating the fraction of adversarial mining power is more difficult

and ultimately comes down to each user’s belief. Nonetheless, our

results allow each individual user to choose their settlement times

or blocks based on their own beliefs about the system and their

acceptable failure probability (perhaps depending on the transacted

amount).

Future work. Themain open question remaining unresolved after

our work is to provide analogous practically relevant settlement

bounds also for other Nakamoto-style (i.e., longest-chain) ledger

consensus protocols, employing different Sybil-protection mech-

anisms such as proof of stake [5] and proof of space [4]. These

are, alongside PoW, also deployed in existing blockchain projects

currently carrying billions of dollars in value.
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A THE SECURITY REGION
As already mentioned, we consider the Nakamoto PoW consensus

in the by now standard setting, where honest and adversarial hash-

ing successes appear according to (independent) Poisson processes

with parameters 𝑟ℎ and 𝑟𝑎 , respectively, and messages are delayed

by at most Δr rounds. The security of the Nakamoto consensus in

this model is determined by these three parameters (𝑟ℎ, 𝑟𝑎,Δr), as
previous works [6, 10] exactly identified the set of all parametriza-

tions (𝑟ℎ, 𝑟𝑎,Δr) that guarantee consistency except with negligible

error, also called the security region of the protocol.

In this section, we explore the region of parameters for which the

security of the protocol in the above asymptotic sense is guaranteed

based on our method, we refer to this as the security region of our

analysis. Towards that, we first present the following statement.

Lemma A.1. Let𝑤 = 𝑤1, . . . ,𝑤𝑛 ∈ {0, 𝐻 }∗ and defineH(𝑤), the
height of𝑤 , to be the quantity given by the recursive ruleH(𝜖) = 0,
H(𝐻 ) = 1,

H(0𝑤) = H(𝑤)
and, for any symbol 𝑥 ∈ {0, 𝐻 },

H(𝐻𝑥𝑤) = 1 + H (𝑤) .
For 𝑛 > 0, let𝑤1, . . . ,𝑤𝑛 be independent random variables for which
Pr[𝑤𝑖 = 𝐻 ] = 𝑝 and Pr[𝑤𝑖 = 0] = (1 − 𝑝). Then

|E[H (𝑤)] − 𝛼𝑛 | ≤ 1

for 𝛼 = 𝑝/(1 + 𝑝).

Proof. Let 𝐸𝑛 = E[H (𝑤1, . . . ,𝑤𝑛)]. Then 𝐸𝑛 = 𝑝 (𝐸𝑛−2 + 1) +
(1−𝑝)𝐸𝑛−1. The base cases, for 𝑛 = 0 and 𝑛 = 1, are straightforward

computations. Then, by induction, we note that |𝐸𝑛 − 𝛼𝑛 | can be

written

= |𝑝 (𝐸𝑛−2 + 1) + (1 − 𝑝)𝐸𝑛−1 − 𝛼𝑛 |
= |𝑝 (𝐸𝑛−2 + 1 − 𝛼𝑛) + (1 − 𝑝) (𝐸𝑛−1 − 𝛼𝑛) |
≤ |𝑝 [𝐸𝑛−2 − 𝛼 (𝑛 − 2)] + (1 − 𝑝) [𝐸𝑛−1 − 𝛼 (𝑛 − 1)]
+ 𝑝 − 2𝑝𝛼 − (1 − 𝑝)𝛼
≤ 𝑝 |𝐸𝑛−2 − 𝛼 (𝑛 − 2) | + (1 − 𝑝) |𝐸𝑛−1 − 𝛼 (𝑛 − 1) |
+ |𝑝 − 𝛼 (1 + 𝑝) |
≤ 𝑝 + (1 − 𝑝) = 1 ,

as desired. □

The security region of our analysis, as was the case with previous

analysis [10], is determined by the behavior of 𝛽0 when 𝛽0 is suf-

ficiently far from zero, in which case neutralization opportunities

do not appear: in particular, so long as 𝛽0 is negatively biased (and

(𝛽0, 𝛽H, 𝛽h) cross zero with constant probability in situation where

𝛽0 ≈ 0), the analysis provides consistency except with exponen-

tially decaying error probability. To understand the security region

of our analysis, we hence simply need to identify the bias of the

behavior of 𝛽0 when 𝛽0 is sufficiently far from zero, and require

that this bias be negative.

Over any time interval 𝑇 , the number of adversarial successes

is given by the Poisson distribution with parameter 𝑇𝑟𝑎 and has

expectation exactly 𝑇𝑟𝑎 . With Δr network delay, the probability

of at least one honest success in a slot of length Δr is 𝑝 ≜ 1 −
exp(−Δr𝑟ℎ); it follows from Lemma A.1 that the expected heightH
of the characteristic vector of honest successes in time 𝑇 (resulting

in 𝑇 /Δr slots), is

𝑇

Δr
· 𝑝

1 + 𝑝 =
𝑇

Δr
· 1 − exp(−Δr𝑟ℎ)

2 − exp(−Δr𝑟ℎ)
,

thus the analysis provides security if

𝑟𝑎 <
1 − exp(−Δr𝑟ℎ)

Δr (2 − exp(−Δr𝑟ℎ))
.

This, as expected, falls short of the optimal, tight security re-

gion 𝑟𝑎 < 1/(Δr + 1/𝑟ℎ) established in two recent articles [6, 10].

Nonetheless, it is still better than the security region

𝑟𝑎 < 𝑟ℎ exp(−2Δr𝑟ℎ)
15
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of arguments based on leveraging Δr-isolated blocks, present in

earlier analyses [15, 19]. We reemphasize that our objective in this

work was not to match the asymptotically tight security region (as

that was already achieved in prior work), but rather to devise an

analysis that allows for concrete, practically relevant settlement

bounds.

B OMITTED PROOFS
B.1 Proof of Lemma 3.2

Proof. We proceed by induction on the length of𝑤 . The base

case is immediate, as the trivial tree has no nontrivial chains.

We begin by establishing the lower bounds for the quantities

𝛽ℓ (𝑤𝑠) for 𝑠 ∈ Σmh corresponding to each of the equations (2)

above. These implicitly yield an optimal (on-line) adversary for

maximizing 𝛽ℓ (): specifically, for a characteristic string𝑤1, . . . ,𝑤𝑛 ,

this yields a sequence of trees 𝐹1 ⊑ · · · ⊑ 𝐹𝑛 so that 𝐹𝑡 ⊢ 𝑤1 . . .𝑤𝑡

and each 𝐹𝑡 is only determined by the string 𝑤1 . . .𝑤𝑡 . We then

turn to the corresponding upper bounds, which establish equality

in each of the cases above.

Bounding from below; the optimal adversary. Let𝑤 be a character-

istic string and 𝐹 ⊢ 𝑤 a tree achieving 𝛽ℓ (𝐹 ) = 𝛽ℓ (𝑤); let 𝑇 ≁ℓ 𝑇 ∗
be two chains of 𝐹 which witness 𝛽 so that 𝑇 ∗ is dominant and

𝛼𝐹 (𝑇 ) = 𝛽ℓ (𝐹 ). Then:

(1) Consider the tree 𝐹 ′ ⊢ 𝑤a obtained by extending the chain

𝑇 with a new adversarial vertex labeled with the last symbol.

This new tree achieves 𝛽ℓ (𝐹 ′) ≥ 𝛽ℓ (𝑤) + 1.

(2) Consider the tree 𝐹 ′ ⊢ 𝑤h obtained by adding an honest

vertex to the end of𝑇 ∗. This new tree has len(𝐹 ′) = len(𝐹 )+
1 and achieves 𝛽ℓ (𝐹 ′) ≥ 𝛽ℓ (𝑤) − 1. (A pair of chains that

witness this in 𝐹 ′ are𝑇 and the dominant chain terminating

in the new vertex.) An analogous argument also works

when 𝑠 = H, the only difference is that 𝑇 ∗ is extended by

two honest vertices of the same depth.

(3) If 𝑠 = h and |𝑤h| < ℓ , consider an arbitrary tree 𝐹 ′ ⊢ 𝑤h for

which 𝐹 ⊑ 𝐹 ′. As |𝑤h| < ℓ any dominant chain in 𝐹 ′ can
serve as both𝑇 ∗ and𝑇 in the definition of 𝛽ℓ . This achieves

𝛽ℓ (𝐹 ′) ≥ 0, and hence, if 𝛽ℓ (𝑤) = 0 then 𝛽ℓ (𝑤h) ≥ 𝛽ℓ (𝑤)
as desired.

(4) If 𝑠 = H and 𝛽ℓ (𝑤) = 0, consider the tree 𝐹 ′ ⊢ 𝑤H obtained

by adding one honest vertex to the end of each of the chains

𝑇 and 𝑇 ∗ (note that len(𝑇 ) = len(𝑇 ∗)). This new tree has

len(𝐹 ′) = len(𝐹 ) + 1 and 𝛽ℓ (𝐹 ′) ≥ 0, as witnessed by the

two chains terminating in the newly added vertices.

Bounding from above. To complete the proof, we establish the

opposite inequalities in each of the cases 𝑠 ∈ {h,H, a}.
The case 𝑠 = h. Let 𝐹 ′ ⊢ 𝑤h be a tree for which 𝛽ℓ (𝐹 ′) = 𝛽ℓ (𝑤h);

let 𝑇 and 𝑇 ∗ be chains that witness this value of 𝛽 , where 𝑇 ∗ is
dominant and 𝛼𝐹 ′ (𝑇 ) = 𝛽ℓ (𝐹 ′). Let 𝐹 ⊢ 𝑤 be the tree obtained

by removing the honest vertex 𝑣 of 𝐹 ′ associated with the final h
symbol. Observe that len(𝐹 ) ≤ len(𝐹 ′) − 1.

If 𝑣 does not appear on𝑇 , this chain𝑇 remains in 𝐹 and 𝛼𝐹 (𝑇 ) ≥
𝛽ℓ (𝑤h) + 1. Note the chain𝑇 ∗ might not appear in 𝐹 if 𝑣 appears on

𝑇 ∗. In any case, however, the restriction of 𝑇 ∗ to the tree 𝐹 always

has length at least len(𝐹 ) and hence is dominant. We conclude that

𝛽ℓ (𝑤) ≥ 𝛽ℓ (𝑤h) + 1.

Otherwise 𝑣 appears on𝑇 , in which case𝑇 is an honest chain and

𝛽ℓ (𝑤h) = 𝛼𝐹 ′ (𝑇 ) = 0. If the chains 𝑇 and 𝑇 ∗ are distinct, we may

switch their roles (as both are dominant) and apply the argument

above to conclude that 𝛽ℓ (𝑤) ≥ 𝛽 (𝑤h) + 1. Otherwise 𝑇 = 𝑇 ∗

and we conclude that |𝑤h| < ℓ . In this case, removing the last

vertex from these chains results in a chain 𝑇 for which 𝛼𝐹 (𝑇 ) = 0,

establishing 𝛽ℓ (𝑤) ≥ 0. Hence, considering separately the cases

𝛽ℓ (𝑤) > 0 and 𝛽ℓ (𝑤) = 0, in each of them the desired inequality

holds.

The case 𝑠 = H. The proof is very similar to the previous case:

given a tree 𝐹 ′ ⊢ 𝑤H and its witness chains 𝑇 and 𝑇 ∗, a new tree

𝐹 ⊢ 𝑤 is constructed by removing all honest vertices in 𝐹 ′ associated
with the final H symbol (denote theseV). We know that

len(𝐹 ) ≤ len(𝐹 ′) − 𝑑 , (9)

where 𝑑 is the maximum number of vertices fromV that appear

on the same chain in 𝐹 ′ (note that contrary to the case 𝑠 = h, we
can have 𝑑 > 1).

If either 𝑇 or 𝑇 ∗ contains no vertices from V then 𝛽ℓ (𝑤) ≥
𝛽ℓ (𝑤H) + 1 can be established by an argument identical to the

previous case.

On the other hand, if both 𝑇 and 𝑇 ∗ contain some vertices from

V , the argument is similar to the case 𝑇 = 𝑇 ∗ above. Namely,

we know that 𝛽ℓ (𝑤H) = 0 (as 𝑇 is honest), and let 𝑇 denote the

chain out of 𝑇 and 𝑇 ∗ that contains at least as many vertices from

V as the other one (in case of equality, choose arbitrarily). Then

again, after removing all verticesV from 𝐹 ′ to obtain 𝐹 , the chain

that remained from 𝑇 still has length at least len(𝐹 ) thanks to (9),

and so the remainders of the two chains 𝑇 and 𝑇 ∗ in 𝐹 witness

𝛽ℓ (𝑤) ≥ 𝛽ℓ (𝐹 ) ≥ 0 as desired.

The case 𝑠 = a. Let 𝐹 ′ ⊢ 𝑤a realize 𝛽ℓ (𝐹 ′) = 𝛽ℓ (𝑤a) and let 𝑇

and 𝑇 ∗ be two chains of 𝐹 ′ that witness 𝛽ℓ (𝐹 ′), as above.
We begin with an argument showing that the tree 𝐹 ′ can be

restructured to yield a tree 𝐹 ⊢ 𝑤a for which 𝛽ℓ (𝐹 ) = 𝛽ℓ (𝐹 ′) and
there is a pair of chains 𝑇 and 𝑇 ∗ witnessing this value of 𝛽ℓ (𝐹 )
with the property that 𝑇 terminates with the adversarial vertex

𝑣 associated with the last symbol a, 𝛼
𝐹
(𝑇 ) = 𝛽ℓ (𝑤a), and 𝑇 ∗ is

dominant.

Restructuring 𝐹 ′. If 𝑇 contains the vertex 𝑣 , 𝐹 ′ already has the

desired property. Otherwise the vertex 𝑣 must, in fact, appear on𝑇 ∗:
if it appeared on neither𝑇 nor𝑇 ∗, removing the vertex from the end

of the chain on which it appears (if it exists) and adding it to the end

of the chain 𝑇 would result in a larger 𝛽ℓ (). To construct the tree
𝐹 , let 𝑣ℎ denote the honest vertex of maximum depth among those

vertices on either𝑇 or𝑇 ∗. Let𝑇ℎ ∈ {𝑇,𝑇 ∗} be a chain containing 𝑣ℎ ,

and 𝑇𝑎 denote the other chain. 𝐹 is constructed from 𝐹 ′ as follows:
(I.) All adversarial vertices on 𝑇ℎ appearing after 𝑣ℎ are removed

from𝑇ℎ and inserted into the chain𝑇𝑎 , producing a new chain𝑇 ; this

is possible because 𝑇𝑎 has no honest vertex with label larger than

l# (𝑣ℎ). Observe that the chain𝑇 constructed in this way contains the

final adversarial vertex 𝑣 . (II.) Starting from the vertex 𝑣ℎ , construct

a chain 𝑇 ∗ by going over the sequence of slots 𝑖 ∈ {l# (𝑣ℎ), . . . , |𝑤 |}
and (i) if𝑤𝑖 = h, move the unique honest vertex labeled 𝑖 in 𝐹 ′ on
top of the constructed chain; and (ii) if𝑤𝑖 = H, remove all vertices

labeled 𝑖 in 𝐹 ′ and instead, add two vertices of equal depth on top

of the growing chain (to satisfy axiom (A3)). Out of these two tips,
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choose arbitrarily to continue the iterative process. As a special

case, in the initial step 𝑖 = l# (𝑣ℎ), if 𝑤𝑖 = h then no modification

is done; if 𝑤𝑖 = H then all honest children of 𝑣ℎ with label 𝑖 are

removed (and an equal-depth honest sibling to 𝑣ℎ is added). Any

(necessarily adversarial) vertices orphaned by this process can be

attached to the tree arbitrarily. This constructs a new tree 𝐹 ⊢ 𝑤a.
As𝑇 ≁ℓ 𝑇

∗
, it is clear that the chains𝑇 and𝑇 ∗ constructed above

inherit this property. Note, also, that 𝑇 ∗ is clearly dominant in 𝐹 ,

as it terminates with the deepest honest vertex of 𝐹 . It remains to

ensure that 𝛼
𝐹
(𝑇 ) ≥ 𝛽ℓ (𝐹 ′). Recall that𝑇𝑎 ∈ {𝑇,𝑇 ∗}. If𝑇𝑎 = 𝑇 , it is

clear that 𝛼
𝐹
(𝑇 ) ≥ 𝛼𝐹 ′ (𝑇 ) because len(𝐹 ) ≤ len(𝐹 ′) and len(𝑇 ) ≥

len(𝑇 ) by construction. In the other case 𝑇𝑎 = 𝑇 ∗, any adversarial

vertices were inserted into the chain 𝑇 ∗ (to yield 𝑇 ). Recall that

𝑇 ∗ was dominant in 𝐹 ′; if 𝛽ℓ (𝑤a) ≤ 0, this immediately yields

𝛼
𝐹
(𝑇 ∗) ≥ 𝛽ℓ (𝑤a), as desired. Otherwise, observe that the number

of adversarial vertices inserted in 𝑇 ∗ is at least 𝛼𝐹 ′ (𝑇 ) = 𝛽ℓ (𝑤a),
in which case it is clear that 𝛼

𝐹
(𝑇 ) ≥ 𝛽ℓ (𝐹 ′), as desired. This

completes the construction and its analysis.

To complete the argument, assume that the tree 𝐹 ′ possesses the
property guaranteed above (that the final adversarial vertex appears

on the chain 𝑇 ). Let 𝐹 ⊑ 𝐹 ′ denote the tree 𝐹 ⊢ 𝑤 obtained by

removing the adversarial vertex 𝑣 associated with the final symbol a.
Then the restriction of𝑇 to 𝐹 and the chain𝑇 ∗ together witness the
fact that 𝛽ℓ (𝑤) ≥ 𝛽ℓ (𝐹 ) ≥ 𝛽ℓ (𝐹 ′) − 1 = 𝛽ℓ (𝑤a) − 1, as desired. □

B.2 Proof of Lemma 4.3
The following auxiliary statement is a general fact about witness

trees and is not specific to our investigation, it will however prove

useful in establishing Lemma 4.3.

Lemma B.1. Let 𝑤 ∈ Σ𝑛∞. Then there exists a tree 𝐹 ∗ that is a
witness 1-tree for𝑤 (i.e., 𝐹 ∗ ⊢1 𝑤 and 𝛽1

ℓ
(𝐹 ∗) = 𝛽1

ℓ
(𝑤)) that satisfies

len(𝐹 ∗) ≤ len(𝐹 ∗⌈1) + 1 . (10)

Proof. Let 𝐹 ⊢1 𝑤 be any witness tree, we show how it can

be transformed into 𝐹 ∗. The tree 𝐹 ∗ ⊢1 𝑤 is constructed as fol-

lows. For any 𝑑 ∈ N, let 𝑉𝑑 denote the set of all vertices in 𝐹

with depth 𝑑 . First, we partition the set of depths 𝐷 ≜ {len(𝐹 ⌈1) +
1, . . . , len(𝐹 )} ⊆ N into two sets 𝐷a and 𝐷h, where 𝐷a contains

all depths in which 𝐹 only has adversarial vertices, while 𝐷h are

the depths in which there are also some honest vertices: formally

𝐷h ≜
{
𝑑 ∈ 𝐷 | ∃𝑣 ∈ 𝑉𝑑 : ltype (𝑣) = h

}
and 𝐷a ≜ 𝐷 \ 𝐷h. If 𝐷h = ∅

then we can simply leave 𝐹 ∗ = 𝐹 , as 𝐹 has the desired property (10).

Otherwise, let 𝐷 ′h be 𝐷h with its minimum element removed. We

obtain 𝐹 ∗ from 𝐹 via two modifications:

(i) Remove from 𝐹 all vertices with depths in 𝐷a ∪ 𝐷 ′h, along
with their associated edges. For each vertex 𝑣 that was a

child of some removed vertex, add an edge to make it a

child of its deepest ancestor in 𝐹 that was not removed.

Let 𝑣h be some honest vertex in 𝐹 with len(𝑣h) = min𝐷h (note that

several such vertices may exist). By definition of 𝐷 ′h, len(𝑣h) ∉ 𝐷 ′h
and 𝑣h was not removed in the first step.

(ii) If the last symbol of𝑤 is𝑤𝑛 = (H, 𝑎) for some 𝑎 ∈ N, i.e., if
𝑤 asks for at least 2 honest vertices with the l#-label equal
to 𝑛, add a new honest vertex 𝑣 ′h to 𝐹 ∗, with l# (𝑣 ′h) = 𝑛,

ltype (𝑣 ′h) = h, and 𝑣 ′h having the same parent as 𝑣h has after

modification (i).

We first need to verify that 𝐹 ∗ ⊢1 𝑤 and that it satisfies (10). It

is straightforward to verify that modifications (i) and (ii) maintain

axioms (A1)–(A3); in particular, modification (ii) guarantees that

𝐹 ∗ contains the correct number of honest vertices with l# (𝑣) = 𝑛 as

required by axiom (A3). Finally, by construction of modification (i),

we know that the only honest vertices in 𝐹 ∗ with depth greater

than len(𝐹 ⌈1) are those that originate from honest vertices in 𝐹

with depth in 𝐷h \𝐷 ′h (or the newly added vertex 𝑣 ′h), and the depth

of all these vertices in 𝐹 ∗ must be len(𝐹 ⌈1) + 1; this implies both

axiom (A4) and property (10).

Finally, it remains to argue that 𝐹 ∗ is a witness tree for𝑤 . To see

this, consider any pair (𝑇 ∗,𝑇 ) of witness chains in 𝐹 : clearly, as a

result of the above two modifications, len(𝐹 ∗) = len(𝐹 ) − |𝐷a∪𝐷 ′h |,
while len(𝑇 ) decreased by at most |𝐷a∪𝐷 ′h | depending on whether

it contained vertices of all depths in 𝐷a ∪𝐷 ′h. At the same time, the

relation 𝑇 ≁ℓ 𝑇
∗
was not violated by the modifications as the only

effect they had on 𝑇 and 𝑇 ∗ was removing vertices. This proves

that 𝛽1

ℓ
(𝐹 ∗) ≥ 𝛽1

ℓ
(𝐹 ), implying 𝛽1

ℓ
(𝐹 ∗) = 𝛽1

ℓ
(𝑤) as desired. □

We can now proceed to prove Lemma 4.3.

Proof. Let 𝐹 ∗ be awitness 1-tree for𝑤 satisfying (10), as guaran-

teed by Lemma B.1. We construct another tree 𝐹+ ⊢1 𝑤 from it that

will be useful in our proof. Let (𝑇 ∗,𝑇 ) be a pair of witness chains
in 𝐹 ∗, i.e., len(𝑇 ∗) = len(𝐹 ⌈1), 𝑇 ∗ ≁ℓ 𝑇 , and 𝛽1

ℓ
(𝐹 ∗) = 𝛼1

𝐹 ∗ (𝑇 ) =
len(𝑇 ) − len(𝐹 ∗⌈1). If len(𝐹

∗) = len(𝐹 ∗⌈1) simply let 𝐹+ := 𝐹 ∗, other-

wise we have len(𝐹 ∗) = len(𝐹 ∗⌈1) +1. This means the last honest slot

𝑛 has at least one honest success. In this case, let𝑇 ∗𝑛 be some longest

honest chain in 𝐹 ∗; we have that len(𝑇 ∗𝑛 ) = len(𝐹 ∗) = len(𝑇 ∗) + 1,

and the terminating vertex of 𝑇 ∗𝑛 (call it 𝑣𝑛) is honest and has

l# (𝑣𝑛) = 𝑛. We consider two subcases: if 𝑇 ∗𝑛 ≁ℓ 𝑇 then we let

𝐹+ := 𝐹 ∗; otherwise we construct 𝐹+ from 𝐹 ∗ as follows: the vertex
𝑣𝑛 is moved so that it extends the chain𝑇 ∗ (this operation does not

change the depth of 𝑣𝑛), and all direct children of 𝑣𝑛 become direct

children of the parent of 𝑣𝑛 (this decreases by one the depth of all

descendants of 𝑣𝑛 , which are all adversarial). This concludes the def-

inition of 𝐹+; observe that 𝐹+ ⊢1 𝑤 as the validity of all tree axioms

is inherited from 𝐹 ∗. Moreover, we have 𝛽1

ℓ
(𝐹+) ≥ 𝛽1

ℓ
(𝐹 ∗) − 1 as

the depth of some adversarial vertices possibly decreased by 1 and

these vertices don’t share the same branch with 𝑇 ∗; hence, len(𝑇 ∗)
remained unaffected and len(𝑇 ) decreased by at most 1 from 𝐹 ∗ to
𝐹+.

Let𝑤 ′ ∈ D1 (𝑤) and 𝐹 ′ ≡ 𝐹+ be such that 𝐹 ′ ⊢0 𝑤 ′ as guaranteed
by Lemma 4.2. Then we have

𝛽1

ℓ (𝑤) = 𝛽1

ℓ (𝐹
∗) ≤ 𝛽1

ℓ (𝐹
+) + 1

(a)

≤ 𝛽0

ℓ (𝐹
′) + 2

≤ 𝛽0

ℓ (𝑤
′) + 2 ≤ max

𝑤′∈D1 (𝑤)
𝛽0

ℓ (𝑤
′) + 2

as desired. Inequality (a) needs some justification. We will explain

now that it follows from the construction of 𝐹+. Indeed, if len(𝐹 ∗) =
len(𝐹 ∗⌈1) and hence 𝐹

+ = 𝐹 ∗, we have 𝛽0

ℓ
(𝐹 ′) ≥ 𝛼0

𝐹 ′ (𝑇 ) = 𝛼1

𝐹 + (𝑇 ) =
𝛽1

ℓ
(𝐹+) as desired. Similarly, if len(𝐹 ∗) = len(𝐹 ∗⌈1) + 1 and 𝑇 ∗𝑛 ≁ 𝑇 ,

then the pair (𝑇 ∗,𝑇 ) is witnessing 𝛽0

ℓ
(𝐹 ′) ≥ 𝛼0

𝐹 ′ (𝑇 ) = 𝛼1

𝐹 + (𝑇 ) + 1 =
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𝛽1

ℓ
(𝐹+)+1, as len(𝐹 ′) = len(𝐹 ∗) = len(𝐹 ∗⌈1)+1 = len(𝐹+⌈1)+1. Finally,

if 𝑇 ∗𝑛 ∼ 𝑇 in 𝐹 ∗, then the surgery performed on the terminating

vertex 𝑣𝑛 of 𝑇 ∗𝑛 ensures that after the modification (i.e., in 𝐹+), the
chain ending in 𝑣𝑛 (call it𝑇 ∗𝑛 ) satisfies𝑇

∗
𝑛 ≁ℓ 𝑇 in 𝐹+. Hence,𝑇 ∗𝑛 ≁ℓ+1

𝑇 in 𝐹 ′ and therefore can witness 𝛽0

ℓ+1 (𝐹
′) ≥ 𝛼0

𝐹 ′ (𝑇 ) = 𝛼1

𝐹 + (𝑇 )+2 =

𝛽1

ℓ
(𝐹+) + 2, as then we again have len(𝐹 ′) = len(𝐹+⌈1) + 1, but also

len𝐹 ′ (𝑇 ) = len𝐹 + (𝑇 ) ≥ len𝐹 ∗ (𝑇 ) − 1. This justifies inequality (a) in

all three cases of the construction of 𝐹+ and concludes the proof. □

B.3 Proof of Lemma 4.4
Proof. Consider (𝛽, 𝑎), ( ¯𝛽, 𝑎) ∈ Z × N such that (𝛽, 𝑎) ⪯ ( ¯𝛽, 𝑎).

The case (𝛽, 𝑎) = ( ¯𝛽, 𝑎) is immediate, hence it remains to consider

either (i) 𝛽 + 𝑎 < ¯𝛽 + 𝑎, or (ii) 𝛽 + 𝑎 = ¯𝛽 + 𝑎 ∧ 𝑎 < 𝑎. Whenever a

function 𝑓 : Z × N→ Z × N will be clear from the context, we will

denote by a star the components of the image under this function,

e.g., (𝛽∗, 𝑎∗) := 𝑓 (𝛽, 𝑎) and ( ¯𝛽∗, 𝑎∗) := 𝑓 ( ¯𝛽, 𝑎). We need to show

that

𝑓 (𝛽, 𝑎) = (𝛽∗, 𝑎∗) ⪯ ( ¯𝛽∗, 𝑎∗) = 𝑓 ( ¯𝛽, 𝑎) (11)

for all three functions 𝑓 from the statement.

For the function NHE, in case (i) we clearly have

NHE(𝛽, 𝑎, 𝑎′) = (𝛽 + 𝑎, 𝑎′) ≺ ( ¯𝛽 + 𝑎, 𝑎′) = NHE( ¯𝛽, 𝑎, 𝑎′)

as 𝛽 + 𝑎 + 𝑎′ < ¯𝛽 + 𝑎 + 𝑎′ in this case. In case (ii), we have

NHE(𝛽, 𝑎, 𝑎′) = NHE( ¯𝛽, 𝑎, 𝑎′), as desired. The proof is identical

for the function HE.
Consider now the function NO that is defined in terms of two

underlying functions 𝑓1 (𝛽, 𝑎) ≜ (max{0, 𝛽 + 𝑎}, 𝑎′ +min{0, 𝛽 + 𝑎})
and 𝑓2 (𝛽, 𝑎) ≜ HE(𝛽, 𝑎, 𝑎′) ≜ (𝛽 + 𝑎 − 1.𝑎′) and a predicate p(𝛽, 𝑎)
indicating whether or not 𝛽 ∈ {−𝑎 − 𝑎′, . . . , 0}. We first argue that

both 𝑓1 and 𝑓2 are monotone. The monotonicity of 𝑓2 has already

been established as 𝑓2 is simply HE. For 𝑓1, we have

𝛽∗ + 𝑎∗ = 𝛽 + 𝑎 + 𝑎′

𝑎∗ = 𝑎′ +min{0, 𝛽 + 𝑎}

and hence in case (i) we have 𝛽∗ +𝑎∗ < ¯𝛽∗ +𝑎∗, while in case (ii) we

have 𝛽∗ +𝑎∗ = ¯𝛽∗ +𝑎∗ and 𝑎∗ = 𝑎∗. In both cases we have 𝑓1 (𝛽, 𝑎) ⪯
𝑓1 ( ¯𝛽, 𝑎) as desired. This proves (11) whenever p(𝛽, 𝑎) = p( ¯𝛽, 𝑎).

It remains to argue that (11) also holds forNO if p(𝛽, 𝑎) ≠ p( ¯𝛽, 𝑎),
we show this via case analysis. Consider the two possible cases:

Case ¬p(𝛽, 𝑎) ∧ p( ¯𝛽, 𝑎) : We have 𝛽∗ + 𝑎∗ = 𝛽 + 𝑎 + 𝑎′ − 1 <
¯𝛽 + 𝑎 + 𝑎′ = ¯𝛽∗ + 𝑎∗, implying (11) as desired.

Case p(𝛽, 𝑎) ∧ ¬p( ¯𝛽, 𝑎) : In this case we cannot have (ii), as the

condition (ii) and p(𝛽, 𝑎) together imply p( ¯𝛽, 𝑎). Therefore,
we have (i) and 𝛽∗ +𝑎∗ = 𝛽 +𝑎+𝑎′ ≤ ¯𝛽 +𝑎+𝑎′−1 = ¯𝛽∗ +𝑎∗
and at the same time 𝑎∗ = 𝑎′ + min{0, 𝛽 + 𝑎} ≤ 𝑎′ = 𝑎∗,
again implying (11).

This concludes the proof also for NO.
Finally, observe that HE𝑡

ℓ
is either HE or NO depending on the

(fixed) parameters 𝑡 and ℓ , and hence the above also implies the

monotonicity of HE𝑡
ℓ
and concludes the proof. □

C DETAILED EXPLICIT BOUNDS
Figure 4 and Figure 5 are more detailed analogues of the two graphs

appearing the introduction (Figure 1 and Figure 2) that indicate

settlement times for both Bitcoin and Ethereum (measured in time,

rather than blocks).

In Table 1, we provide a detailed account of our numerical esti-

mates of the failure probability of time-based settlement in both

main blockchains of interest, Bitcoin and Ethereum. We give both

lower and upper bounds provided by our method, and consider two

variants of adversarial power (10% and 20%) and two variants of

the bound on network delay (Δr ∈ {4 sec, 10 sec} for Bitcoin and

Δr ∈ {2 sec, 5 sec} for Ethereum). In Table 2, we provide similar

estimates of the failure probabilities for block-based settlement.
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Confs.

upper bounds lower bounds

Δr = 10𝑠 Δr = 4𝑠 Δr = 10𝑠 Δr = 4𝑠

Bitcoin; 10% adversary

2 0.118882 0.111154 0.091072133 0.090289244

3 0.0402842 0.0368385 0.029544274 0.029154201

4 0.0137891 0.0123524 0.009793747 0.009616722

5 0.00476516 0.00418514 0.003294434 0.003217994

6 0.00165992 0.00143009 0.001120043 0.00108804

7 0.000582003 0.000492027 0.000383901 0.000370782

8 0.000205151 0.000170222 0.000132434 0.000127138

9 7.2633e-05 5.91573e-05 4.5926E-05 4.38129E-05

10 2.58108e-05 2.06366e-05 1.5996E-05 1.51607E-05

Bitcoin; 20% adversary

2 0.466437 0.45271 0.319646859 0.317452323

3 0.288865 0.277594 0.188866365 0.186940123

4 0.177784 0.169269 0.113180954 0.111647534

5 0.109524 0.103348 0.068498618 0.06733905

6 0.0676876 0.0633137 0.041762682 0.040912987

7 0.0419841 0.0389337 0.025608615 0.024999029

8 0.0261309 0.0240265 0.015775657 0.015344919

9 0.016314 0.0148737 0.009755295 0.009454384

10 0.0102126 0.00923299 0.006051757 0.005843401

Confs.

upper bounds lower bounds

Δr = 5𝑠 Δr = 2𝑠 Δr = 5𝑠 Δr = 2𝑠

Ethereum; 10% adversary

2 0.554298 0.256406 0.13124146 0.103613076

3 0.38244 0.120911 0.056912431 0.037008885

4 0.264554 0.0571909 0.025438212 0.013695484

5 0.183481 0.0271947 0.011522827 0.005185141

6 0.12746 0.0129908 0.005263762 0.001993565

7 0.0886243 0.00622754 0.002419679 0.000774795

8 0.0616519 0.00299308 0.001117841 0.000303492

9 0.0428996 0.00144124 0.000518528 0.000119582

10 0.0298552 0.000694936 0.000241348 4.73342E-05

Ethereum; 20% adversary

2 1.03875 0.673397 0.410871826 0.351521687

3 0.889277 0.479654 0.282740403 0.219222634

4 0.749407 0.337735 0.198320599 0.139166224

5 0.628655 0.237452 0.140561678 0.089448203

6 0.526782 0.167208 0.100281703 0.058018531

7 0.441386 0.118012 0.071879557 0.037893876

8 0.369901 0.0834758 0.051707349 0.024883864

9 0.310061 0.0591607 0.037305049 0.016411126

10 0.259949 0.0419967 0.026980289 0.010861279

Table 2: The failure probability of the block-based settlement
rule for Bitcoin (top) and Ethereum (bottom) under different
number of confirmations, adversary ratio and network de-
lays.

Time

(min)

upper bounds lower bounds

Δr = 10𝑠 Δr = 4𝑠 Δr = 10𝑠 Δr = 4𝑠

Bitcoin; 10% adversary

20 0.304519 0.298281 0.295002289 0.294517617

30 0.182942 0.177858 0.175313516 0.175442853

40 0.112861 0.109011 0.10716052 0.106774039

50 0.0707863 0.0679664 0.066656956 0.066352072

60 0.0448913 0.0428636 0.041949497 0.041845542

70 0.0286956 0.0272542 0.026621323 0.026448959

80 0.0184528 0.0174364 0.017000505 0.016874481

90 0.011922 0.0112094 0.010910293 0.010819242

100 0.00773178 0.00723447 0.007029835 0.006964646

Bitcoin; 20% adversary

20 0.505249 0.498112 0.494926979 0.492990797

30 0.383382 0.376117 0.373064366 0.371644562

40 0.295733 0.288859 0.286104409 0.284040603

50 0.230435 0.224161 0.221742068 0.219810527

60 0.180805 0.175197 0.173106136 0.17163273

70 0.142594 0.137653 0.135862886 0.134299714

80 0.11291 0.1086 0.107077575 0.105704297

90 0.0896948 0.0859628 0.084675044 0.083480911

100 0.0714434 0.0682312 0.067145976 0.066115746

Time

(min)

upper bounds lower bounds

Δr = 5𝑠 Δr = 2𝑠 Δr = 5𝑠 Δr = 2𝑠

Ethereum; 10% adversary

2 0.137626 0.0279521 0.015828578 0.011812983

3 0.0527935 0.00548293 0.002145191 0.001584263

4 0.0203159 0.0010971 0.000410932 0.000251815

5 0.00782799 0.000221883 6.9340E-05 3.615E-05

6 0.003018 4.51668e-05 1.0273E-05 5.61563E-06

7 0.00116389 9.23251e-06 2.0634E-06 9.38321E-07

8 0.00044892 1.89193e-06 3.6112E-07 1.48653E-07

9 0.000173164 3.87677e-07 5.5071E-08 2.23033E-08

10 6.67978e-05 7.87459e-08 1.1272E-08 3.57683E-09

Ethereum; 20% adversary

2 0.384056 0.156394 0.117232788 0.092808469

3 0.245871 0.0697603 0.043623877 0.033041265

4 0.158287 0.0317031 0.019425505 0.012949768

5 0.102233 0.0145709 0.008178393 0.004849916

6 0.0661652 0.00674751 0.003249166 0.001899153

7 0.0428818 0.00314153 0.001500296 0.000774062

8 0.0278188 0.00146854 0.000650086 0.00030802

9 0.0180596 0.000688627 0.000264363 0.000119565

10 0.0117302 0.000323706 0.000123975 4.80722E-05

Table 1: The failure probability of the temporal settlement
rule for Bitcoin (top) and Ethereum (bottom) under different
settlement time, adversary ratio and network delays.
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