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Abstract

We provide the �rst construction of a succinct non-interactive argument (SNARG) for all poly-
nomial time deterministic computations based on standard assumptions. For ) steps of computa-
tion, the size of the proof and the common random string (CRS) as well as the veri�cation time are
poly-logarithmic in ) . �e security of our scheme relies on the hardness of the Learning with Errors
(LWE) problem against polynomial-time adversaries. Previously, SNARGs based on standard assump-
tions could support bounded-depth computations and required sub-exponential hardness assumptions
[Jawale-Kalai-Khurana-Zhang, STOC’21].

Along the way, we also provide the �rst construction of non-interactive batch arguments for NP
based solely on the LWE assumption. �e size of the proof and CRS for a batch of : statements grows
only with the size of a single witness.
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1 Introduction

Consider the following scenario: a client wishes to evaluate a program % (say, represented as a Turing
machine) on an input G but does not have the necessary computational resources. Instead, it delegates
the computation to an untrusted server who provides the output % (G) together with a proof Π. �e key
requirement is that the proof Π should be much faster to verify than the time it takes to compute % (G).

�e focus of this work is on constructing such proof systems in the non-interactive se�ing, where they
are referred to as succinct non-interactive arguments (SNARGs).1 �e de facto model for such proof systems
allows for an initial setup that samples a (reusable) common reference string (CRS) and distributes it to the
parties. Furthermore, the soundness guarantee is computational, i.e., it only holds against computationally-
bounded provers [BCC88]. �e key bene�t of such proof systems is that they can be used as short certi�-
cates for the correctness of long computations that can be veri�ed by anyone. Applications of SNARGs
abound in the literature and include popular real-world systems such as blockchains [BCG+14].

In this work, we focus on the task of constructing SNARGs based on standard assumptions. Despite
extensive research over the recent years (see Section 1.2 for a summary), the following basic question has
remained open:

Do there exist SNARGs for all polynomial-time (deterministic) computations based on standard assumptions?

A recent beautiful work of Jawale, Kalai, Khurana and Zhang [JKKZ21] makes progress on this front.
�ey construct SNARGs for bounded-depth deterministic computations based on the sub-exponential hard-
ness of the Learning with Errors (LWE) assumption. �e goal of our work is to support arbitrary-depth
polynomial-time computations, while relying only on standard polynomial-time assumptions.

1.1 Our Results

We construct SNARGs for all polynomial-time deterministic computations based on the hardness of LWE
against polynomial time adversaries. Our construction is in the common random string model and achieves
adaptive soundness.

�eorem 1 (Informal). Assuming the hardness of LWE, for every polynomial ) = ) (_), there exists a
publicly-veri�able non-interactive delegation scheme with adaptive soundness for any time ) Turing ma-
chine. �e veri�er running time, size of the CRS and proof are all poly(log), _) while the prover running time
is poly(), _).

Our result also extends, with the same parameters, to delegation of RAM computation.

Non-interactive Batch Arguments. Towards obtaining our main result, we study the related prob-
lem of non-interactive batch arguments (BARGs) for NP. Informally speaking, such an argument system
allows an e�cient prover to compute a non-interactive and publicly veri�able “batch proof” of : NP in-
stances, with size smaller than the combined witness length. If any of the : instances is false, then no
polynomial-time cheating prover must be able to produce an accepting proof. BARGs allow for delegating
non-deterministic computation for a speci�c sub-class of NP, namely, conjunction of NP statements.

Very recently, Choudhuri, Jain and Jin [CJJ21] provided the �rst construction of BARGs for NP based
on standard assumptions. In their scheme, the size of the proof for proving : statements for the circuit
satis�ability problem de�ned by a circuit� is $̃ (( |� | +

√
: |� |) ·_). �e security of their scheme is based on

the hardness of �adratic Residuosity (QR) and either LWE or sub-exponential Decisional Di�e-Hellman
(DDH).

1In the literature, the term SNARG is typically associated with NP computations. In this work, similar to [JKKZ21], we focus
on deterministic computations.
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We improve upon their work along several dimensions that are important towards obtaining our main
result in �eorem 1:

– We consider (and achieve) a notion of semi-adaptive somewhere soundness which is stronger than the
non-adaptive soundness notion considered in [CJJ21]. We discuss this further in Section 2.2

– We reduce the dependence on the number of statements in the proof and CRS size to only poly-
logarithmic. As a contribution of independent interest (but not crucial towards obtaining �eorem
1), we also remove the dependence on the circuit size.

– We simplify the hardness assumptions and base the security of our scheme solely on LWE.3

�eorem 2 (Informal). Assuming the hardness of LWE, there exists a BARG for NP with the following pa-
rameters: in order to prove : instances of a language L whose NP-relation can be decided by a Turing machine
in time) , the size of the CRS and proof are poly(log:, log),<, _), the prover running time is poly(:,) ,<, _)
and the veri�er running time is poly(log:, log),<, _) +poly(:, =, _), where = is the length of a single instance
and< is the length of a single witness.

Finally, we note that our BARG scheme is in the common random string model. In contrast, [CJJ21]
requires a common reference string.

1.2 Related Work

We now provide a brief overview of the related work on delegating computation. We borrow from the
excellent summaries in [JKKZ21, KPY19] and some of the text below is taken verbatim from these works.

Prior work on delegating computation can be roughly divided in three categories, described below.

– SNARGs. �ere is a large body of work, starting from [Mic94], that constructs SNARGs for non-
deterministic computation (see, e.g., [Mic94, Gro10, Lip12, DFH12, GGPR13, BCI+13, BCCT13, BCC+17].
�ese schemes are either in the Random Oracle model or require non-falsi�able assumptions [Nao03].
However, some of these schemes form the basis of e�cient implementations used in practice. Other
constructions of SNARGs for deterministic computations are known based on assumptions related
to obfuscation or multilinear maps [CHJV15, KLW15, BGL+15, CH16, ACC+16, CCC+16, PR17].
Recently, [KPY19] constructed SNARGs for deterministic computations (as well as batch arguments
for NP) from a new falsi�able but non-standard assumption on groups with bilinear maps (which
is known to be broken with quantum a�acks). Independently, [CCH+19] constructed SNARGs for
bounded-depth computations based on a very strong assumption, namely, the existence of fully
homomorphic encryption with optimal circular security.
Even more recently, [JKKZ21] constructed SNARGs for bounded-depth computations from sub-
exponential hardness of LWE. Our work overcomes both limitations of their work, i.e. support for
bounded-depth computations and use of sub-exponential hardness assumptions.

– Designated Veri�er Proofs. An in�uential line of work starting from [KRR13, KRR14] and con-
tinuing with [KP16, BHK17, BKK+18, HR18, BK20] construct delegation schemes for deterministic
computations and various sub-classes of non-deterministic computations (such as batch arguments)
based on standard assumptions. �e main drawback of these schemes is that they can only be veri-
�ed by a designated veri�er, who knows the “secret key” corresponding to the CRS. �e main bene�t
of our work compared to this line of work is that we achieve public veri�ability.

2As observed in [BHK17], there are signi�cant barriers to constructing BARGs with full adaptive soundness due to implications
to adaptively sound SNARGs for NP [GW11].

3An alternative direction that we do not pursue in this work is to base security solely on sub-exponential DDH (as in [JJ21]).

4



– Interactive Proofs. In the se�ing of interactive protocols, publicly veri�able delegation schemes for
NP are known from standard assumptions [Kil92]. �e work of [BKP18] constructs three message
protocols based on multi-collision resistant hash functions, and [PRV12] constructs two-message
schemes (in addition to CRS) for low-depth circuits from a�ribute-based encryption.

Finally, we note that in the interactive se�ing, delegation schemes with even unconditional sound-
ness are known. �e works of [GKR08, RRR16] construct such schemes for bounded depth and
bounded space computations, respectively. Furthermore, [RRR16, RRR18, RR20] construct batch
proofs (with unconditional soundness) for UP, a subclass of NP where each statement in the lan-
guage has a unique witness of membership.

More Related Work. We also mention recent works of [GZ21, GR19] that study publicly veri�able
non-interactive argument systems for deterministic computations. In particular, assuming standard as-
sumptions on groups with bilinear maps, [GZ21] constructs a publicly veri�able non-interactive argument
system for polynomial-time computations where the proof size does not grow with the size of the compu-
tation. �eir scheme (as well as [GR19]), however, requires a long CRS (and hence, long veri�cation time)
proportional to the circuit size.

�e work of [GZ21] introduce a new notion of no-signaling commitment schemes. We use this primitive
in our construction of SNARGs for polynomial-time computations.

2 Technical Overview

Towards our goal of achieving publicly veri�able delegation schemes for all polynomial time computations,
we depart signi�cantly from prior approaches in the designated-veri�er se�ing. We leverage advances in
the instantiation of the Fiat-Shamir transformation, recently applied in the context of publicly veri�able
delegation schemes for bounded-depth computation [CCH+19, JKKZ21]. We start with an overview of the
necessary background before describing the main ideas underlying our work.

2.1 Background

Fiat-Shamir (FS) Paradigm. At a very high level, the Fiat-Shamir transform [FS87] is a round collapsing
transformation that allows one to start with an interactive proof of a speci�ed structure, and transform it
into a non-interactive argument in the CRS model. Speci�cally, the starting interactive proof system (P,V)
must be public coin i.e. a protocol where the veri�er only sends random coins as its messages.

�e transformation is de�ned with respect to some hash function family H , where the sampled hash
function, ℎ ←H , is set to be the CRS. �e prover can then derive the veri�er’s messages non-interactively
by applying ℎ on the protocol transcript. Consider the following interactive protocol between the prover
P and veri�er V establishing that G ∈ L, where the V’s message V is a uniformly random string.

P(G) V(G)

U

V

W

To generate a non-interactive proof, P computes V = ℎ(G, U) with the resultant proof being (U,W).
V can recompute V (from G and U) and check if the transcript (G, U, V,W) is accepting. Note that the total
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communication from the prover to the veri�er remains unchanged by the transformation. �erefore, when
proof size is the main concern in the non-interactive se�ing, it is important to start with an interactive
protocol that already satis�es the communication requirements.

Soundness of Fiat-Shamir transform and CI. Initially, the soundness (i.e. inability of a cheating
prover to generate an accepting proof when G ∉ L) of the Fiat-Shamir transform was proven, modeling
the hash family as a random oracle. But an exciting line of recent results have shown that for several
applications [KRR17, CCRR18, HL18, CCH+19, PS19, BKM20, CPV20, CKU20, JJ21], the Fiat-Shamir trans-
formation is sound when the hash family is correlation intractable.

First, let us see why there is a need to “re-prove” the soundness in the transformed non-interactive
protocol. Unlike in the interactive se�ing, where the prover has no control over the veri�er message V , in
the transformed protocol, a cheating prover could try various values of U as inputs to ℎ until it arrives on
a V it �nds favorable. Speci�cally, for every G ∉ L, and every U , we de�ne the set of “bad” Vs,

BG,U B
{
V

�� ∃W s.t. V(G, U, V,W) = 1
}
.

Intuitively, these are the set of veri�er challenges that could lead the veri�er to accept, even if the statement
is not in the language. We want it to be computationally intractable to �nd anU such thatℎ(G, U) ∈ BG,U , i.e.
hard to �nd U that would result in a bad veri�er challenge. �is is exactly what correlation intractability
of a hash family captures. Speci�cally, we say that H is correlation intractable for a function 5 if the
following holds for all probabilistic polynomial time adversary (PPT) A,

Prℎ←H [ℎ(G) = 5 (G) | A(ℎ) = G ] ≤ negl(_) .

Assume for the moment that there exists at most one bad veri�er challenge for every pair (G, U). �en
one can de�ne a function 5 (·) B BAD(·) that on input (G, U) outputs the unique V ∈ BG,U (if it exists).
If H is a CIH for 5 , then any cheating prover producing an accepting transcript (U,W) for G ∉ L must
break the correlation intractability ofH , since by de�nition ℎ(G, U) ∈ BG,U . For any set BG,U where |BG,U |
is polynomially bounded, one can set 58 (·) B BAD(·, 8) to output the 8-th element of BG,U . By a simple
application of union bound, one can observe that it remains computationally intractable for an adversary
to �nd an U such that ℎ(G, U) is the output of any 58 , and thereby remains intractable to output any element
in BG,U .

Although our discussion thus far has been for a single veri�er message, the above ideas can be ex-
tended to multi-round protocols that additionally satisfy certain properties such as round-by-round sound-
ness [CCH+19].

Note that the BAD functions that can be supported using the above methodology are constrained by
the functions for which we can construct CIH. �e known CIH from standard assumptions are: bounded-
depth polynomial size circuits from LWE [CCH+19, PS19], approximable relations for constant-degree
polynomials from trapdoor hash functions [BKM20, DGI+19], and TC0 circuits from sub-exponential DDH
[JJ21].

Fiat-Shamir Instantiation for Product Relations. While we described above an extension to any
polynomially bounded |BG,U |, this approach no longer works when BG,U is super-polynomial. Looking
ahead, the set of bad challenges we consider in our work will not be of a polynomially bounded size, and
therefore the ideas discussed above do not su�ce. Instead, we will borrow upon the recent exciting work
of [HLR21]. �eir work consider setsBG,U that for every G and U , can be represented as a Cartesian product
of C sets,

BG,U = B (1)G,U × · · · × B (C )G,U ,
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where each B (8)G,U can be e�ciently veri�ed, i.e. there is a circuit � that on input (G, U), V8 and 8 outputs 1
if and only V8 ∈ B (8)G,U . For such sets, [HLR21] show that one can construct CI hash families assuming only
the hardness of LWE even if |BG,U | is not polynomially bounded.

Main Barriers. Since the Fiat-Shamir transformation preserves prover communication, it is imperative
that our interactive protocol already has low communication. A natural candidate for such an interactive
protocol is the interactive delegation protocol for NP by Kilian [Kil92]. �e protocol is public coin and the
total communication is smaller than the size of the witness. One would then hope that if we are able to
instantiate the Fiat-Shamir transform applied to Kilian’s protocol, this would give us, in the CRS model,
a non-interactive delegation scheme for polynomial-time computations (and in fact, much more). While
the approach appears promising at �rst, a recent work of [BBH+19] established non-trivial barriers to
instantiating the hash function in the Fiat-Shamir transformation of Kilian’s protocol.

�ere is in fact a broader point to consider: Kilian’s protocol is an argument, i.e. its soundness holds
only against computationally bounded cheating provers. In general, successful applications of the Fiat-
Shamir paradigm when used in conjunction withCIH, have been largely limited to starting with interactive
proofs, i.e. protocols for which even a computationally unbounded adversary cannot convince a veri�er of
the validity of a false statement. In fact there are examples of certain interactive arguments that are not
sound on the application of the Fiat-Shamir transformation (see e.g. [Bar01, GK03]).

‘For this reason, the state of the art non-interactive delegation schemes that follow this approach
[CCH+19, JKKZ21] are limited to bounded-depth computations, as they rely upon known interactive del-
egation schemes with unconditional soundness – in particular, the scheme of [GKR08] for bounded-depth
computations. Indeed, constructing publicly veri�able interactive delegation schemes with unconditional
soundness for classes beyond those in the works of [GKR08, RRR16] is a major open question.

We also note that [GKR08], and therefore [CCH+19, JKKZ21] use the Sumcheck protocol [LFKN92,
Sha92] as a crucial component in their scheme. In the context of FS transformation, the resulting “bad” chal-
lenge function seems to necessitate sub-exponential hardness assumptions (we refer the reader to [JKKZ21]
for details).

Our Work. In light of the challenges described above, we take a di�erent approach. We choose to view
the problem of delegation of deterministic computations through the lens of batch arguments for NP. Here
the prover is trying to convince the veri�er of the veracity of : di�erent statements for an NP language,
with communication smaller than the combined length of the witnesses for all the statements. �is is an
independently interesting problem, and has seen recent progress in the non-interactive se�ing based on
standard assumptions [CJJ21].

More speci�cally, we reduce the task of constructing delegation schemes for polynomial-time com-
putations to the task of constructing non-interactive batch arguments (BARGs) for NP. We then use the
Fiat-Shamir methodology to construct BARGs for NP. As is to be expected, the same challenges as dis-
cussed earlier in the context of using the Fiat-Shamir transformation apply to the problem of constructing
BARGs as well. Indeed, presently interactive batch proofs are only known for UP (a subset of NP for which
each statement has a unique witness) [RRR16, RRR18, RR20], and it is an open problem to construct batch
proofs for NP. Nevertheless, as we will discuss later in Section 2.3, we will build upon the “dual-mode
methodology” from the recent work of [CJJ21] to circumvent these challenges and construct BARGs (with
necessary security and e�ciency properties that we discuss below) based on LWE. For now, however, we
simply assume that such BARGs exist and proceed to describe the main ideas underlying our construction
of a delegation scheme for polynomial-time computations.

We remark that some works [BHK17, KPY19] have previously studied both of these problems – del-
egations schemes for deterministic computations and batch arguments for NP –and used common tools
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and techniques to solve both the problems. We make this connection more explicit by reducing the prob-
lem of delegation of deterministic computations to batch arguments. A similar approach was taken in
the work of [RRR16] who consider the problem of batch verifying interactive proofs in the se�ing of (un-
conditionally sound) interactive delegation for bounded space computation. At a very high level, in their
work, the prover sends several intermediate steps of the computation and then batches proofs that these
intermediate steps were computed correctly. We use a similar blueprint; however, our focus is on the non-
interactive se�ing, and all polynomial-time computations. Furthermore, we require stronger e�ciency –
poly-logarithmic dependence on the number of computation steps, as opposed to sublinear in [RRR16].

2.2 Delegating Polynomial-Time Computations

We start our discussion with the problem of delegating the computation of a Turing machine. Here, for
a Turing machineM and input G , the prover produces a proof Π to convince the veri�er thatM accepts
G within ) steps, with the requirement that both the proof size |Π | and the veri�er’s running time are
polylog() ). As stated earlier, we want to cast the problem of delegation as a problem of BARGs for NP.
Intuitively, a BARG for an NP language L allows the prover to prove that : statements G1, · · · , G: all
belong to L such that communication cost is “small”. For the moment, we leave imprecise the exact
communication requirements, but we shall specify it shortly based on our use case.

To cast the delegation problem as a BARG, we look at the intermediate states of the Turing machine
computation. Let st8 be the encoding of the state ofM and its tapes a�er exactly 8 steps of the computation.
We want to prove that for every 8 ∈ [) − 1], st8+1 = Step(st8), where Step is the deterministic algorithm
computing the state transition of a single step. �e states st8 are thus a “witness” to the entire computation.
On the surface, this already appears to be a batch problem of ) instances, but an observant reader may
notice that for each 8 , the witnesses for 8 and 8 + 1 “overlap”, speci�cally the overlapping state st8+1. If this
overlap of witnesses are not ensured, then a cheating prover could use witnesses (st8 , st8+1) and (st′8+1, st′8+2)
such that st8+1 = Step(st8)∧st′8+2 = Step(st′8+1) but st8+1 ≠ st′8+1. �is is clearly undesirable since the overlap
of witnesses is necessary to establish continuity in the computation - otherwise a cheating prover is proving
) independent statements, unhelpful to establish correctness of computation. Unfortunately, the notion of
batch arguments we have described does not enforce any constraints across statements.

To overcome this problem, we have the prover commit to all the internal states st1 | | · | |st) - let this
commi�ed value be 2 . �e prover now proves that for every 8 ∈ [) ], (G, 2, 8) ∈ L, where L is de�ned by
the relation circuit � below.

�

Statement: G, 2, 8
Witness: st8 , st8+1, openst8 , openst8+1
Output: Output 1 if and only if the following verify

1. check if Com.Verify(2, st8 , openst8 )
?
= 1.

2. check if Com.Verify(2, st8+1, openst8+1)
?
= 1.

3. if 8 = 1, check if st1 encodes input G .

4. if 8 = ) − 1, check if st) is the accept state.

5. Check if Step(st8) = st8+1.
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Here, openst8 corresponds to a proof of opening that st8 was indeed the 8-th vector that was commi�ed
to in 2 .

Let us consider some e�ciency properties of the commitment scheme,

– Size of the commitment: For now we allow the total communication from the prover to the veri�er
be at most poly(log), |st|), i.e. the communication grows with the size of the internal state. We shall
shortly see how to go beyond the space constraints, but for this discussion we focus on the weaker
goal of bounded-space computation since it already highlights the main challenges. Enforcing the
same communication limit to the size of the commitment - we have that the commitment to a vector
of size ) · |st| is at most poly(log), |st|), i.e. the commitment is succinct.

– Size of the opening: Looking ahead, we will require that the size of � , the relation circuit for L,
to also be at most poly(log), |st|). �is means that the commitment must have a succinct local
opening opening openst8 to st8 , since the opening is a part of the witness (and thus contributes to
|� |). Succinctness here means that the size of the opening is poly(log), |st|).

Observe that the statements that the prover is batching are identical except for the index 8 . �is moti-
vates us to adopt the following useful abstraction we call batch arguments for index languages. Formally,
an index language is de�ned as follows,

L ′ = {(�, 8) | ∃F s.t. � (8,F) = 1}

where� represents a circuit, and 8 an index. In a BARG for an index language, the prover tries to convince
the veri�er that (�, 1), · · · , (�,) ) ∈ L ′. For now we assume the existence of such BARGs, and we describe
how we construct them in the next section. But before we construct the BARG, it is important to establish
both the e�ciency and security properties required for the purposes of constructing delegation scheme
for polynomial-time computations.

E�ciency. As stated, we require the total communication to be poly(log), |st|). So, as long as |� | =
poly( |st|), we allow the size of the batch arguments for ) statements to be poly(log), |� |). �is already
rules out using existing batch arguments based on standard assumptions such as [CJJ21], since they do not
meet the e�ciency requirements (the BARG proof size in [CJJ21] depends on

√
) ). We will also require

the veri�cation time of the BARG to be poly(log), |� |). Usually the veri�cation time for BARG has an
overhead to read all instances, but due to the above abstraction each instance can be “read” as required by
simply specifying the circuit � and an index 8 .

Security. Given that the commitment is compressing (succinct), for every 8 there could always exist
states st′8 and st′8+1 with corresponding local commitment openings to 2 such that Step(st′8 ) = st′8+1 even if
it is computationally hard to �nd them. �us for all 8 it may always be the case that (�, 8) ∈ L ′, making
soundness of the batch argument a vacuous notion. �e �x is to use somewhere statistical binding com-
mitments [HW15] such that for a commitment key generated on input 8∗ there is a unique (except with
negligible probability) local opening to st′

8∗, st
′
8∗+1. �us, if Step(st′

8∗) ≠ st′
8∗+1, then (�, 8∗) ∉ L ′.

In more detail, let (8 be the set of indices corresponding to st8 in the vector st1 | | · · · | |st) . We will
require the somewhere statistical binding property to be at indices (8 ∪ (8+1 when the commitment key is
generated in the trapdoor mode4 on input (8∪(8+1. We shall shortly see why this is the case. In fact, with an
eye towards a future discussion, we will actually require something stronger. Namely, generating a key in
trapdoor mode on input (8 ∪(8+1 produces a trapdoor that allows for unique extraction at positions (8 ∪(8+1

4Keys generated in this mode (only in the security proof) are computationally indistinguishable from keys in the normal mode.
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even for a commitment produced by an unbounded cheating prover. We refer to this as the somewhere
extractable property, and use the shorthand SE to refer to it in the sequel.

From the discussion above, by se�ing the SE commitment to be extractable for st8 , st8+1, the best that
one can hope for in terms of BARG soundness is that a cheating prover is not able to produce an accepting
proof when the 8-th statement is false, i.e. st8+1 ≠ Step(st8). �is motivates a notion of somewhere soundness
where the CRS for the BARG is generated on an index 8 such that it is hard for a cheating prover to produce
an accepting proof when (�, 8) ∉ L ′.

It should be further noted that in our application of BARG to P-delegation, a cheating prover gets to
choose the commitment 2 , which is hardcoded into the circuit � , e�ectively allowing it to adaptively pick
the statements a�er the CRS is generated. �is is stronger than the non-adaptive security for BARG consid-
ered in [CJJ21], where the statements are �xed before the CRS is generated. As observed in [BHK17], there
are signi�cant barriers to achieving full adaptivity, where the cheating prover can choose the statements
a�er the CRS is generated.

We overcome this seeming conundrum by considering an intermediate notion of security that we call
semi-adaptive somewhere soundness. We explain it here for the case of index language. Intuitively, the
cheating prover must declare an index 8∗ of its choice before the CRS is generated. However, it can choose
the circuit � a�er viewing the CRS. �e soundness guarantee states that it will not be able to produce an
accepting batch proof if (�, 8∗) ∈ L. More speci�cally, for any computationally bounded cheating prover
P∗,

Pr
 Π accepting
(�, 8∗) ∉ L

������ 8
∗ ← P∗

crs∗ ← TrapdoorMode(8∗)
(Π,�) ← P∗(crs∗)

 < negl(_)

Now that we have seemingly �xed the issues raised above, how do we prove that the above scheme
is secure? A natural proof strategy is the following: (1) set the index 8 for the trapdoor generation of the
CRS for BARG, and index (8 ∪(8+1 for the commitment key for the SE commitment; (2) extract s̃t8 and s̃t8+1
from the SE commitment using the trapdoor; (3) if Step(s̃t8) ≠ s̃t8+1, but the proof Π is accepting, output
(�,Π) as the cheating proof of the BARG scheme.

Let us see why this is the case. From the somewhere extractability property of the SE commitment,
we know that other than with negligible probability, the extracted value is the only valid opening. So, if
Step(s̃t8) ≠ s̃t8+1, then (� ′, 8) ∉ L, and therefore we can break the soundness of the BARG scheme for
index languages.

Local vs global soundness. By the above, we are guaranteed that if the proof is accepting, then the
8-th instance must be true: (�, 8) ∈ L, i.e. it must be the case that the extracted values do indeed satisfy
� . �is gives us a local soundness guarantee (8-th statement is true), but for the entire computation to be
true, we want local soundness to hold simultaneously for all 8 ∈ [) ], i.e. we want global soundness. If
one stops to think about this, our argument above for the soundness of the 8-th instance crucially relied
on extractability at position 8 and 8 + 1. For simultaneous local soundness to hold, we would require
extractability at all positions, which is not achievable in a succinct manner (the commitment size would
grow with ) instead of poly(log) ) as desired). One might propose an alternate hybrid strategy where
one starts by proving the �rst instance is locally sound, then switch to proving the same for the second
instance and so on. But a local witness, i.e. the extracted value in each case, could satisfy � even though
there exists no global witness, i.e.M does not accept G in ) steps.

�is problem is not new to our se�ing, and is in fact well documented in delegation literature starting
with [KRR14]. �e solution to this problem earlier works have involved using no-signaling proofs of some
form - either no-signaling PCPs [KRR13, KRR14, KP16, BHK17, BKK+18, BK20], or, more recently, quasi-
arguments [KPY19, GZ21].
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No-signaling commitments. We take a slightly di�erent approach and describe the notion of no-
signaling with respect to SE commitments as done very recently in [GZ21]. Speci�cally, an extractor
for an SE scheme is said to be computationally no-signaling if for any sets ( and ( ′, both of size at most
!, the extracted values in the intersection ( ∩ ( ′ have computationally indistinguishable marginal distri-
butions whether extracted on set ( or ( ′. Speci�cally, for any computationally bounded adversary A, the
following distributions are computationally indistinguishable:(2,~(∩(′)

������ ( , td) ← TrapdoorMode(!, ()
2 ← A( )
~ = Ext(td, 2)

 ≈
(2,~(∩(′)

������ ( , td) ← TrapdoorMode(!, ( ′)
2 ← A( )
~ = Ext(td, 2)


[GZ21] also describe a generic compiler that transforms any SE scheme to a no-signaling one (NS-SE)

without additional assumptions, thereby preserving the assumptions from the underlying SE commitment.
We observe that the transformation also preserves the desired e�ciency requirements. For completeness,
we discuss the transformation in the technical sections of our paper.

It is the no signaling property of the SE, in conjunction with the BARG for index languages, that �nally
gives us a delegation scheme. Consider two experiments:
EXP1: (a) the BARG CRS is generated on input 8 , the NS-SE key generated on (1 ∪ (2; (b) extract st1 and

st2 from the NS-SE and output it along with proof Π if Π is accepting.
EXP2: (a) the BARG CRS is generated on input 8 , the NS-SE key generated on (2 ∪ (3; (b) extract st′2 and

st′3 from the NS-SE and output it along with proof Π if Π is accepting.
By our earlier argument, due of the (local) soundness of BARG, we have already established that st2 is
consistent with st1 in EXP1, and st′2 with st′3 in EXP2. By the description of � , we additionally know that
the start state st1 is consistent with the input G , where by consistent we mean that it is the unique correct
state at step 1 with respect to G . Now, the no-signaling property of the SE commitment scheme ensures
that st2 and st′2 have computationally indistinguishable distributions. �is su�ces to ensure that st2 and
st′2 must both be consistent with G , since otherwise there is an e�cient distinguisher - compute s̃t2 from G

and see which of the two it matches. �erefore, by the fact that st′2 is consistent with st′3, st′3 is consistent
with G . By a hybrid argument we can extend this approach all the way to st) establishing that st) is indeed
consistent with G .

Remark 1. Note that in each experiment the adversary could choose to output a di�erent G , but the above
distinguishing check is done with respect to the G output by the adversary, guaranteeing that the extracted st8
is consistent with the G that the adversary output.

From the proof size of the underlying BARG scheme, the total proof size for the delegation scheme
is poly( |st|, log) ). �e same is true of the size of the CRS, which depends on |� |, and thus only on st
in our se�ing. �is ensures that the above scheme is a delegation scheme for space bounded computation
with a short CRS. Unlike prior work [KPY19], our CRS is already “small”, and therefore we do not need an
additional bootstrapping step to reduce the CRS size.

Beyond bounded space computation. To go beyond delegation for bounded space computation, we
use ideas from prior works [KP16, BHK17, KPY19]. �e main insight is to simulate a Turing machineM
with large space via a RAM machine R, where the RAM machine has access to a large untrusted external
memory but a small internal memory. A digest of the external memory, in the form of the root of the
hash tree, is stored in the internal memory. �is has two bene�ts: (i) the root of the hash tree is small
(poly(_)), and thus can be stored in the internal memory; and (ii) the hash tree allows for authenticated
access, both read and write, to the external memory where the proof size logarithmic in the size of the
external memory. Applying these ideas to our bounded space computation, we achieve a RAM delegation
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protocol. Since the size of the CRS is small in the bounded space computation, it continues to be so in the
RAM delegation se�ing.

�e notion of RAM delegation we achieve is similar to that considered in [KPY19]. Here a prover is
convincing the veri�er that a RAM machine R starting at con�guration G (including the large external
memory) transitions to con�guration ~ in) steps where the veri�er is only given digests hG and h~ of the
two con�gurations. �e notion of security is that a computationally bounded cheating prover, other than
with negligible probability, should not be able to produce a con�guration G , digest h and proof Π such that:
(i) Π is accepting for the digests (hG , h) where hG is digest for con�guration G ; and (ii) h is not the digest
of the (unique) con�guration of R ) steps a�er G . We refer the reader to [KPY19] for a detailed discussion
of the various notions of RAM delegation considered in prior works.

2.3 Non-interactive Batch Arguments for NP

Now that we have constructed a delegation scheme assuming the existence of BARGs for index languages
in the CRS model, we revisit the problem of constructing such a primitive. In fact, we consider the more
general case of constructing BARGs for NP.

Recall that in a BARG for NP, a prover wants to convince a veri�er of the veracity of : statements
(G1, · · · , G: ) in L by producing a non-interactive batch proof that is publicly veri�able, such that if any of
the : instances are false (i.e. ∃8 s.t. G8 ∉ L), then a computationally bounded cheating prover should not
be able to generate an accepting proof. If the witness length is< =<( |G |), we require the communication
to be strictly smaller than : ·<.

PriorWork. We know of only two solutions to this problem based on falsi�able assumptions: (i) [KPY19]
construct such BARG relying on a new non-standard hardness assumption on groups with bilinear maps;
and (ii) more recently [CJJ21] construct the same by assuming the hardness of the quadratic residuos-
ity (QR) assumption in addition to either the hardness of Learning with Errors (LWE) problem, or sub-
exponential hardness of the decisional Di�e-Hellman (DDH) problem. In the context of this paper, of
particular interest to us is the work of [CJJ21] since they follow the Fiat-Shamir instantiation approach.
(As we will soon see, however, the properties achieved by the BARG scheme of [CJJ21] does not meet our
requirements from the previous subsection.)

As discussed earlier in the context of non-interactive delegation schemes for polynomial-time com-
putation, there are challenges to starting with an interacting argument if we want to go the “Fiat-Shamir
instantiation” approach. Instead of tackling the (seemingly harder) problem of constructing interactive
batch proofs for NP, [CJJ21] choose an alternate starting point to apply the Fiat-Shamir transform. �ey
introduce the notion of a dual-mode interactive batch arguments in the common reference string (CRS)
model. �e CRS in such protocols can be generated in two computationally indistinguishable modes - nor-
mal mode and trapdoor mode. We have already seen a �avor of this notion when describing the delegation
scheme. For an honest protocol execution, the CRS is generated in the normal mode, while trapdoor mode
is used in the proof of soundness. Speci�cally, in the trapdoor mode, an index 8 is speci�ed during CRS
generation such that if G8 ∉ L, then even a computationally unbounded cheating prover cannot provide
an accepting proof.

Such a protocol provides two complementary bene�ts: (i) building a batch argument is easier than
building a batch proof; and (ii) it allows for the possibility of instantiating the Fiat-Shamir transform in
the trapdoor mode.

[CJJ21], building on the Spartan protocol [Set20], constructs such a dual-mode interactive batch argu-
ment. �ey then show that the speci�c dual-mode interactive batch argument constructed is Fiat-Shamir
compatible, i.e. there exists a hash function family such that the Fiat-Shamir transformation when instan-
tiated with this family is a sound non-interactive batch argument. �e size of the batch proof in their
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protocol is $̃ (( |� | +
√
: |� |) ·_) where |� | is the size of the relation circuit for L, _ is the security parameter

and $̃ hides factors that are poly-logarithmic in |� | and : .

Our Work. In our overview of the delegation scheme for polynomial-time computation, we identi�ed
both security and e�ciency properties for the BARGs we deemed essential for the construction of said
delegation scheme. At the time of discussion, we also stated that the BARG constructed in [CJJ21] do not
satisfy those requirements.

To achieve the desired properties in our BARG, we adopt the same “dual mode methodology” intro-
duced in [CJJ21], but deviate from their approach in a couple of crucial aspects. First, instead of building
upon the Spartan protocol, we work directly with probabilistic checkable proofs (PCPs), in a manner concep-
tually similar to Kilian’s protocol. Next, we leverage this change of approach to recurse over the number of
statements (akin to [RRR16]), allowing us to depend only poly-logarithmically on the number of instances.
We will elaborate on these points further when we detail the construction shortly.

To summarize our improvements over the BARG in [CJJ21]: (i) we achieve a stronger notion of secu-
rity - semi-adaptive somewhere soundness, (ii) we signi�cantly improve upon the size of the batch proofs
to incur only poly-logarithmic dependence on : , (iii) we simplify the underlying assumptions - we no
longer additionally require the quadratic residuosity (QR) assumption. We also believe that our protocol
is conceptually simpler.

Before we proceed, we note that it may not be evident from the above discussion how we are able to
remove the reliance on the QR assumption in [CJJ21]. At a high level, due to the reliance on the Spartan
protocol, their constructed protocol necessitated the SE commitments to additionally satisfy some linear
homomorphism properties, which in turn they construct assuming the hardness of QR. A consequence of
our approach di�ering from that of [CJJ21] is that it removes the need for these additional requirements,
thereby allowing us to build the required SE commitments from LWE.

Since our delegation scheme construction in the previous subsection relied on batch arguments for
index languages, we �rst show how to construct them, and then provide a generic transformation from
BARG for index languages to BARG for NP.

Batch Arguments for Index Languages. Recall that in a BARG for index languages, the prover is
trying to prove that (�, 1), · · · , (�, :) ∈ L ′. To start, the prover generates a probabilistic checkable proof
(PCP) for the instances. A PCP for a statement is a proof where the veri�cation procedure only needs to
query a few locations of the PCP to be reasonably convinced of the validity of the statement. For now,
consider a PCP where the length of the PCP is< = poly( |� |) and the query& is of size polylog(<), where
� is the relation circuit for L. �e veri�cation procedure only takes in PCP|& , the values of the PCP at the
locations speci�ed by & .

�e prover generates : PCPs PCP1, · · · , PCP: using the corresponding witnesses F1, · · · ,F: . It then
arranges the PCPs in rows, and commits to them in a column-wise fashion. On receiving the commitment,
the veri�er sends the PCP query & to the prover, who then opens the commitments of the corresponding
columns. To be convinced of the proof, the veri�er checks if (i) the commitment openings are valid; and
(ii) all : PCP proofs verify. �is high level overview is represented in Figure 1. Note that the same & is
used for all PCPs.

While describing the delegation scheme, we stated the requirement that the proof size be poly(log:, |� |).
For large values of : , as will be the case in delegation schemes, the proof size is “signi�cantly smaller” than
the naı̈ve solution. As in the case of our delegation scheme, we use a succinct SE commitment with local
opening to commit to each column to bring down the communication cost.

Recall that in our discussion of the security for non-interactive BARG for index languages, we de�ned
a notion of semi-adaptive somewhere soundness, which required that a cheating prover a�er specifying an
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P(crs,�,F1, · · · ,F: ) V(crs,�)

PCP1

m-bits

PCP2

...

PCPk

cj

2 = (21, · · · , 2<)

Sample & ⊂ [<] s.t. |& | = polylog(<)

&

{{PCP8 [ 9]}8∈[: ], open9 } 9 ∈&

∀9 ∈ &,

Com.Verify(crs, 2 9 , {PCP8 [ 9]}8∈[: ], open9 )
?
= 1

∀8 ∈ [:],

PCP.Verify({PCP8 [ 9]} 9 ∈& , &)
?
= 1

Figure 1: High level overview of initial approach

index 8 should not be able to produce an accepting proof when (�, 8) ∉ L, where the CRS is generated in
the trapdoor mode on index 8 . Taking the approach in [CJJ21] of dual mode proofs, we extend the same
de�nition to the interactive se�ing, but here we allow the adversary to be unbounded once the index to
the trapdoor is �xed. Speci�cally, for any (potentially) cheating prover P∗,

Pr
 Π accepting
(�, 8∗) ∉ L

������ 8
∗ ← P∗

crs∗ ← TrapdoorMode(8∗)
(Π,�) ← 〈P∗(crs∗),V〉

 < negl(_)

where 〈P∗(crs∗),V〉 indicates the interaction between the cheating prover P∗, and veri�er V with output
the proof Π and the circuit the prover chooses � . Note that the mode indistinguishability, i.e. ability to
distinguish between the CRS generated for two di�erent indices 8 and 9 is still computational.

�us for security, in the trapdoor mode, the SE key for each column is generated on a set {8}, ensuring
that the prover is uniquely bound to PCP8 before it sees the queries & . �is then allows us to rely on the
(statistical) soundness of the PCP at index 8 .

We have thus far ignored the bo�leneck in the communication of our high level description, which is
the third round message consisting of commitment openings that require at least : bits of communication
(length of the message commi�ed).

We resolve this using ideas present in works such as [RRR16], by having the prover no longer explicitly
sending the openings, but instead providing a BARG that it has valid openings that result in the PCP
veri�er accepting, and then recurse on the number of statements : . In more detail, let us consider the
relation circuit �̃ for this new language that the prover will have to compute a BARG for.
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�̃

Hardcoded: 21, · · · , 2<, &,
Witness: {PCP8 [ 9], open8, 9 }
Output: Ouput 1 if and only if the following verify

1. Verify commitment openings:
∀9, Com.Verify(2 9 , 8, PCP8 [ 9], open8, 9 )

?
= 1

2. Verify PCP proof
PCP.Verify({PCP8 [ 9]} 9 ∈& , &)

?
= 1

Let the witnesses for this new language be (F̃1, · · · , F̃: ). To recurse on the number of statements,
we reduce the number from : to :/2 by pairing indices: (1, 2), · · · , (28 − 1, 28), · · · , (: − 1, :). �e relation
circuit de�ning the new language for the pair of statements is thus �̃ ′ = �̃ ∧ �̃ , i.e. (28 − 1, 28) has witness
(F̃28−1, F̃28).
�ere are two points of note in our description of �̃ ′:

1. By the succinctness of the local opening for the SE commitment scheme, the size of the witnesses
are poly(log:, _).

2. �e size of �̃ ′ is then dominated by the size of the PCP veri�er circuit, which can in fact depend (at
least) linearly on the circuit size |� |. �erefore, from the above description, we have that |�̃ ′ | ≥ 2· |� |.
If we were then to recurse log: times (to go from : to $ (1) statements), the circuit size at the last
level is ≥ : · |� |. Recall that the size of the PCP, and thus the commitment sent by the prover,
grows polynomially in the circuit size. �is leads to total communication ≥ : · |� |, not satisfying the
requirements for a BARG.

PCPs with Split Veri�cation. To avoid the blow-up in the communication cost, we want |�̃ ′ | to
be smaller than |� |. But this requirement seems at odds with the size of the PCP veri�cation circuit.
To navigate this issue, we introduce the notion of a PCP with split veri�cation. Intuitively, for such
a PCP, the veri�cation can be split into (i) a pre-computation circuit independent of the statement,
whose size can grow with |� |, but produces a short (i.e. much smaller than |� |/2) state st; and (ii) an
online veri�cation circuit, which uses the pre-processed state st, statement and a proof to verify the
PCP. �e size of the online veri�cation circuit, which is much smaller than |� |/2, can now replace
PCP.Verify (along with the state st) in |�̃ |, allowing for |�̃ ′ | to be smaller than |� |.
We demonstrate that certain existing PCP schemes [BFLS91, RRR16] can be modi�ed to satisfy the
split veri�cation property.

To recurse, we start with : instances of an index language, i.e. (� (0) , 1), · · · , (� (0) , :), where � (0) = � .
And reduce to :/2 instances (� (1) , 1), · · · , (� (1) , :/2) such that (other than with negligible probability)
(� (0) , 1), · · · , (� (0) , :) ∈ L ′ if and only if (� (1) , 1), · · · , (� (1) , :/2) ∈ L ′. � (0) corresponds to �̃ ′ in our
description above. As discussed, the circuit size does not grow, i.e. ∀8 ≥ 0, |� (8) | ≤ |� |. �is gives us the
following recursive formula for the proof size |Π |,

|Π (8) | ≤ |Π (8+1) | + |2 (8) |
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where |2 (8) | is the length of the commitment sent by the prover at the 8-th step. Since |2 (8) | depends on
the length of the PCP, which in turn depends on |� (8) |, by the succinctness property of the commitment
scheme, we have |2 (8) | ≤ poly(log:, |� |). Combined with the fact that there are log: steps of recursion,
we have that the total communication is poly(log:, |� |), as required.

Applying the Fiat-Shamir Transform. Given our interactive protocol, we want to compress it to a
non-interactive protocol via the Fiat-Shamir transform. As discussed earlier, crucial to this transformation
is de�ning the set of bad veri�er challenges.

B�,2 =
{
& | PCP.Verify(�, PCP8 |& ) = 1 ∧ (�, 8) ∉ L

}
where PCP8 is extracted using the trapdoor for the SE commitment with the commitment key in the trap-
door mode generated on index 8 .

If we are able to demonstrate that the above set is a Cartesian product of e�ciently veri�able sets,
then we can apply the [HLR21] result directly, achieving a result based on LWE. At a very high level, this
simply follows from the soundness ampli�cation by parallel repetition in the PCP. Speci�cally, for the
desired parameters, the split PCPs we consider have soundness (1 − Y) for Y = 1/poly(log |� |). Since we
want the soundness to be negligible, we amplify soundness by parallel repetition, generating C = _/Y sets
of queries &1, · · · , &C for the same PCP. �is gives the desired negligible soundness as (1 − Y)C = 2Ω (_) .
�us we have the following set of bad challenges for negligible soundness,

B�,2 = B (1)�,2 × · · · × B
(C )
�,2

where for each 8 , B (8)
�,2

= {&8 | PCP.Verify(�, PCP8 |&8
) = 1 ∧ (�, 8) ∉ L}. EachB (8)

�,2
is also clearly e�ciently

veri�able since the PCP.Verify can be used to verify if queries &8 ∈ B (8)�,2 . One also needs to verify that
(�, 8) ∉ L, which can be done a�er extracting PCP8 if we require further properties from the PCP. We
note that while the above description is not fully technically precise, it is helpful in providing the main
ideas, and we refer the reader to the technical section for the details.

It should be noted that the unrolled recursion is a multi-round protocol, while the above argument
considers the set of bad challenges for a single level of recursion. [CCH+19] showed that this approach
su�ces if the protocol is round-by-round sound which in this case intuitively means that if the (batch) claim
at one level of the recursion is false, then other than with negligible probability (over the veri�er’s random
coins), the claim remains false in the next level of recursion. Here, when we set the commitment key to
be generated in the trapdoor mode for index 8 , if at the 9-th level of recursion (� ( 9) , 8) is false, then other
than with negligible probability over the choice of PCP queries & , (� ( 9+1) , d8/2e) is also false.

Parameters. To summarize, the total communication is poly(log:, |� |). �e size of CRS depends on the
log: CRS for the correlation intractable hash functions in the Fiat-Shamir transform instantiation, one for
each level of the recursion. �ere are also log: commitment keys that are a part of the CRS. By the speci�c
instantiations of the correlation intractable hash family [HLR21], and SE commitment scheme[HW15], we
have that for each level of the recursion, the CRS is of size poly(log:, |� |) for a total of poly(log:, |� |).
�is allows the veri�cation time to also be poly(log:, |� |).

Generically obtaining BARG for NP from BARG for index languages. While we have already pre-
sented a BARG, we demonstrate how we can achieve the same result generically from any BARG for index
languages. Recall that in a BARG for an NP language L, the prover is trying to convince the veri�er of
the validity of : statements G1, · · · , G: , i.e. L has a relation circuit RL such that if G8 ∈ L, there exists a
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witnessF8 such that RL (G8 ,F8) = 1. Contrast this with our discussed notion of BARG for index languages,
where there is a single circuit � that takes in inputs 8 and witnessF8 , and outputs 1 if � (8,F8) = 1.

An immediate idea is to set F ′8 = (G8 ,F8) such that � implements the relation circuit RL . Since our
BARG for index languages allows the prover to choose any witness, the above idea allows a cheating
prover to choose new statements di�erent from G1, · · · , G: , thus the soundness does not translate. �e
next natural idea is to hardcode the statements G1, · · · , G: into the circuit� , which now only takes in input
(8,F8), but still implements RL . While we have solved our earlier issue, we have introduced a new one
since � now grows linearly in : , and from the e�ciency of the BARG scheme, so does the size of the
proof. �e communication issue we solve as before, by having the prover arrange the statements in rows,
and commit to them column-wise using an SE commitment scheme. � now hardcodes the commitment 2
instead, where the witness additionally consists of G8 along with a proof of (local) opening.

But in solving the communication issue we seem to have reintroduced our initial concern. While the
cheating prover is bound to the commitment 2 , there is nothing preventing them from commi�ing to :
true statements di�erent from G1, · · · , G: . Our last step in the solution is for the prover to use some �xed
randomness (e.g. 0) to compute the commitment. �us, when the veri�er constructs the circuit � to use
during veri�cation, it can recompute the commitment with the true statements G1, · · · , G: .

Our construction achieves some nice additional e�ciency properties, and we direct the reader to the
relevant technical section for the details.

Improving parameters for BARG forNP. Note that our constructed batch arguments for NP has proof
size poly(log:, |� |). �ese parameters su�ced for the construction of the delegation scheme since there
the circuit size |� | = poly(_), where _ is the security parameter (which we have not included thus far to
avoid clu�er). But in the case of BARG, we want to remove the dependence on |� |, since the circuit may
be large. To do so, we leverage our delegation scheme for deterministic polynomial-time computations.
We want to reiterate that the dependence on the circuit size was acceptable in our application of BARGs
to the design of delegation scheme since the circuit there did not correspond to the computation that was
being delegated but to the PCP veri�cation, so there is no circularity of requirements here.

Consider the NP language L = {G | ∃F s.t.M(G,F) outputs 1 in ) steps }. �e very high level idea
is the following: (i) the prover generates : delegation proofs {Π8}8∈[: ] thatM outputs 1 for each of the
inputs (G1,F1), · · · , (G: ,F: ). By the e�ciency of the delegation scheme, each of these proofs are of size
poly(_, log), |F |); (ii) generate a BARG that the delegation veri�er will accept for every 8 , (G8 ,F8 ,Π8).

�e |� | in the BARG now corresponds to the size of the delegation veri�er circuit, which again by
our delegation scheme is only poly(_, log), |F |) giving us the necessary e�ciency properties. We have
omi�ed several details in the high level overview, and refer the reader to the technical section for details.

3 Preliminaries

3.1 Notations

For any positive integer=, denote [=] = {1, 2, . . . , =}. For any positive integer=, any vectorG = (G1, G2, . . . , G=),
and any subset ( ⊆ [=], we denote G |( = {G8}8∈( .
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3.2 Low-degree Extensions

For any �eldH and any extension �eld F ofH, any index (81, 82, . . . , 8<) ∈ H< , let Ẽq81,82,...,8< be the following
polynomial over F[G1, G2, . . . , G<].

Ẽq81,82,...,8< (G1, G2, . . . , G<) =
∏

91∈H\{81 } (G1 − 91) ·
∏

92∈H\{82 } (G1 − 91) . . .
∏

9< ∈H\{8< } (G< − 9<)∏
91∈H\{81 } (81 − 91) ·

∏
92∈H\{82 } (81 − 91) . . .

∏
9< ∈H\{8< } (8< − 9<)

For any string G ∈ {0, 1}= , where = = |H|< , we identify the set H< with the index set [=]. �en we
de�ne the low-degree extension of G , LDE(G), as the following polynomial in F[G1, G2, . . . , G<],

LDE(G) =
∑

81,82,...8< ∈H
G81,82,...,8< · Ẽq81,82,...,8< (G1, G2, . . . , G<) .

3.3 Learning with Error

�e central cryptographic assumption we will require in our work is the Learning with Error (LWE) as-
sumption that we de�ne below.

De�nition 1 (Learning with Error Assumption). For any positive integers =, @, any s ∈ Z= , and any error
distribution j over Z, the LWE (Learning with Error) distribution �s,j is de�ned by uniformly sampling a
vector a, and outpu�ing (a, 〈a, s〉 + 4) ∈ Z=@ × Z@ , where 4 ← j .

�e LWE=,@,j assumption states that no non uniform PPT adversary can distinguish, with non-negligible
probability, between (i) the distribution �s,j ; and (ii) the uniform distribution over Z=@ × Z@ .

3.4 Correlation Intractable Hash

We start by describing a hash familyH = {H_}_∈N, which is de�ned by the two following algorithms:
Gen: a PPT algorithm that on input the security parameter 1_ , outputs key : .
Hash: a deterministic polynomial algorithm than on input a key : ∈ Gen(1_), and an element G ∈

{0, 1}= (_) outputs an element ~ ∈ {0, 1}_ .
Given a hash familyH , we are now ready to de�ne what it means forH to be correlation intractable.

De�nition 2 ([CGH04]). A hash familyH = (H .Gen,H .Hash) is said to be correlation intractable (CI) for
a relation family R = {R_}_∈N if the following property holds:

For every PPT adversary A, there exists a negligible function negl(·) such that for every ' ∈ R_ ,

Pr:←H.Gen(1_)
G←A(:)

[(G,H .Hash(:, G)) ∈ '] ≤ negl(_) .

CIH for E�ciently Veri�able Product Relations. We take the following de�nitions of product rela-
tions, and e�ciently veri�able relations, from [HLR21].

De�nition 3 (Product Relation, De�nition 3.1 [HLR21]). A relation ' ⊆ X ×YC is a product relation, if for
any G , the set 'G = {~ | (G,~) ∈ '} is the Cartesian product of several sets (1,G , (2,G , . . . , (C,G , i.e.

'G = (1,G × (2,G × . . . × (C,G .

De�nition 4 (E�cient Product Veri�ability, De�nition 3.3 [HLR21]). A relation ' is e�ciently product
veri�able, if there exists a circuit � such that, for any G , the sets (1,G , (2,G . . . (C,G (in De�nition 3) satisfy that,
for any 8 , ~8 ∈ (8,G if and only if � (G,~8 , 8) = 1.
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De�nition 5 (Product Sparsity, De�nition 3.4 [HLR21]). A relation ' ⊆ X × YC has sparsity d , if for any
G , the sets (1,G , (2,G , . . . , (C,G (in De�nition 3) satis�es |(8,G | ≤ d |Y|.

[HLR21] show that for e�cient product veri�able relations, there exists a CIH assuming only the
hardness of LWE.

�eorem 3 (CIH for E�cient Product Veri�able Relations, �eorem 5.5 [HLR21]). Let ' ⊆ X ×YC be a) -
time product veri�able relation with sparsity at most 1−n , for n ≥ _−$ (1) . �en, if C > _/n , there exists a hash
familyH = {H_ : X_ → YC__ }_ that is correlation intractable for ' under LWE assumption. Furthermore,H
only depends on (X_,Y_,)_, C_, n), and can be evaluated in time poly(log |- |, C,) ).

3.5 Somewhere Extractable Commitment

In this subsection, we de�ne somewhere extractable commitments. A somewhere extractable commitment
has a key with two computationally indistinguishable modes: (i) In the normal mode, the key is uniformly
random; and (ii) in the trapdoor mode, the key is generated according to a subset ( denoting the coordinates
of the commi�ed message.

Furthermore, we require the following properties.

– E�ciency: We require that the size of the CRS and commitment roughly grow with |( |.

– Extraction: �e trapdoor mode commitment key is associated with a trapdoor td, such that given
the trapdoor, one can extract the message on coordinates in ( . Note that the extraction implies the
statistical binding property for the coordinates in ( .

– Local Opening: We allow the prover to generate a local opening for any single coordinate of the
message. �e local opening needs to have a small size, which only grows poly-logarithmically with
the total length of the message. Moreover, we require that the value from the local opening should
be consistent with the extracted value.

We note that this notion is essentially the same as somewhere statistical binding hash [HW15], except
that we explicitly require an extraction property (although as we will see, this property is already satis�ed
by the construction of [HW15]). �is notion is also similar to the notion of somewhere-extractable linearly
homomorphic commitment in [CJJ21], except that here we do not require linear homomorphism property,
but we further require local opening property.

We now move to the formal de�nition. A somewhere extractable commitment scheme is a tuple of
algorithms (Gen, TGen,Com,Open,Verify, Ext) described below.

Gen(1_, 1# , 1 |( |): On input a security parameter, the length of the message # , and the size of a subset
( ⊆ [# ], the “normal mode” key generation algorithm outputs a uniformly random commitment
key  .

TGen(1_, 1# , (): On input a security parameter, the length of the message # , an extraction subset
( ⊆ [# ], the “trapdoor mode” key generation algorithm outputs a commitment key  ∗ and a
trapdoor td.

Com( ,m ∈ {0, 1}# ; A ): On input the commitment key  , a vector m = (<1,<2, . . . ,<# ) ∈ {0, 1}# ,
and the random coins A , it outputs a commitment 2 .

Open( ,m, 8, A ): On input the commitment key  , a vector m = (<1,<2, . . . ,<# ) ∈ {0, 1}# , an index
8 ∈ [# ], and the random coins A , the opening algorithm outputs a local opening c8 to<8 .

Verify( , 2,<8 , 8, c8): On input the commitment key  , a commitment 2 , a bit <8 ∈ {0, 1}, and a local
opening c8 , the veri�cation algorithm decides to accept (output 1) or reject (output 0) the local
opening.
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Ext(2, td): On input a commitment 2 , and the trapdoor td generated by the trapdoor key generation
algorithm TGen with respect to the subset ( , the extraction algorithm outputs an extraction string
<∗
(

on the subset ( .
Furthermore, we require the commitment scheme to satisfy the following properties.

Succinct CRS. �e size of the CRS is bounded by poly(_, |( |, log# ).
Succinct Commitment. �e size of the commitment 2 is bounded by poly(_, |( |, log# ).
Succinct Local Opening. �e size of the local openingc8 ← Open( ,<, 8, A ) is bounded by poly(_, |( |, log# ).
Succinct Veri�cation. �e running time of the veri�cation algorithm is bounded by poly(_, |( |, log# ).
Key Indistinguishability. For any non-uniform PPT adversary A and any polynomial # = # (_),

there exists a negligible function a (_) such that���� Pr
[
( ← A(1_, 1# ),  ← Gen(1_, 1# , 1 |( |) : A( ) = 1

]
−

Pr
[
( ← A(1_, 1# ), ( ∗, td) ← TGen(1_, 1# , () : A( ∗) = 1

] ���� ≤ a (_) .
Opening Completeness. For any commitment key  , any message m = (<1, . . . ,<# ) ∈ {0, 1}# , any

randomness A , and any index 8 ∈ [# ], we have

Pr [2 ← Com( ,m; A ), c8 ← Open( ,m, 8, A ) : Verify( , 2,<8 , 8, c8) = 1] = 1.

Extraction Correctness. For any subset ( ⊆ [# ], any trapdoor key ( ∗, td) ← TGen(1_, 1# , (), any
commitment 2 , any index 8 ∈ [# ], any bit<8∗ ∈ {0, 1}, and any proof c8∗ , we have

Pr [Verify( , 2,<8∗, 8
∗, c8∗) = 1⇒ Ext(2, td) |8∗ =<8∗] = 1.

Since the extracted value Ext(2, td) |8∗ is unique, the extraction correctness implies statistical bind-
ing property.

�eorem 4. �ere exists a construction of somewhere extractable commitment from LWE.

Proof Sketch. �eorem 4 is implicit in [HW15]. We brie�y recall the construction of the somewhere sta-
tistical binding hash in [HW15] here. For the ease of presentation, we only describe the construction for
|( | = 1 as in [HW15]. �e construction for general ( can be obtained by using multiple copies of such
commitments.

�e commitment key consists of a fully homomorphic encryption of the index 8∗ in the set ( . To hash
a message (<1,<2, . . . ,<# ), they build a Merkle Tree, where each node of the Merkle Tree is associated
with a ciphertext. �e leaf nodes contains the encryption of <8 ’s, and for the path from <8∗ to the root,
the ciphertext contains an encryption of <8∗ . �is is achieved by homomorphically evaluating a circuit
that selects the le� or the right child according to 8∗ on each node of the Merkle Tree. Since the fully
homomorphic encryption ciphertext is computationally indistinguishable with uniformly random string,
we can use uniformly random string in the “normal mode”. �e local opening follows from the Merkle
Tree structure.

�e extraction property is implicitly satis�ed by the construction. Speci�cally, the trapdoor corre-
sponds to the secret key of the fully homomorphic encryption. Given the secret key, we can decrypt the
root node to extract<8∗ .
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3.6 No-Signaling Somewhere Extractable Commitments

We consider here a slight variant of no-signaling somewhere extractable (NS-SE) commitments introduced
in the work of [GZ21]. �e no-signaling property, as described in the technical overview is imposed
on the extractor of the SE commitment scheme. Intuitively, an extractor for an SE scheme is said to be
computationally no-signaling if for any sets ( ′ ⊆ ( , where ( is of size at most !, the extracted values
corresponding to the indices in ( ′ have computationally indistinguishable marginal distributions whether
extracted on set ( or ( ′.

De�nition 6. �e extractor of an SECOM commitment scheme (Gen, TGen,Com,Open,Verify, Ext) is no-
signaling if for any ( ′ ⊆ ( ⊆ [# ], where |( | ≤ !, and any PPT adversary D = (D1,D2) there exists a
negligible function negl(·) such that for every _ ∈ N,������ Pr

 D2( ∗, 2, ®~, I)

������ ( 
∗, td) ← TGen(1_, 1# , ( ′)

(2, I) ← D1( ∗)
®~ B Ext(2, td)


− Pr

 D2( ∗, 2, ®~(′, I)

������ ( 
∗, td) ← TGen(1_, 1# , ()

(2, I) ← D1( ∗)
®~ B Ext(2, td)


������ ≤ negl(_)

We will refer to SECOM schemes satisfying the above de�nition to be an !-no-signaling NS-SECOM
commitment.

�eorem5 ([GZ21]). Given! instances of an SECOM commitment scheme (Gen, TGen,Com,Open,Verify, Ext)
with locality parameter 1, one can construct an !-no-signaling NS-SECOM.

Construction sketch. We sketch the construction from [GZ21] here, and defer details to Appendix A.
For simplicity we consider here the case that ( B {B1, · · · , B!} has size exactly !. �e rough idea is to
generate ! di�erent commitment keys  ′ = ( 1, · · · ,  !) such that to commit to a vector ®<, one produces
! commitments Com( 8 , ®<) (with di�erent randomness for each 8). For the trapdoor key generation algo-
rithm,  ′∗ = ( ∗1 , · · · ,  ∗!), where each  ∗8 is generated for the single element set {B8}. �erefore the size
of the keys and commitment in the !-no-signaling NS-SECOM are larger by a multiplicative factor of !.

For a full construction and proof of required properties, see Appendix A.

Preservation of succinct local opening. In our work, we will require local opening of the !-no-
signaling NS-SECOM to be succinct. From the above construction it is clear that if the underlying SECOM
has a succinct local opening, then the size of the succinct opening of the !-no-signaling NS-SECOM is
larger by a multiplicative factor of ! - one simply provides succinct local openings to each of the ! under-
lying SECOMs.

4 Non-interactive Batch Arguments

�is section is organized as follows.

– In section 4.1, we de�ne non-interactive batch arguments (BARGs) for the circuit satis�ability lan-
guage SAT.

– Next, in section 4.2, we de�ne and construct PCPs with a split veri�cation property which will be
necessary for our construction of BARGs.
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– In Section 4.3, we de�ne BARGs for index languages. We then construct them generically from PCPs
with split veri�cation, and somewhere extractable commitments.

– Finally, in section 4.4, we construct BARGs for circuit satis�ability SAT generically from BARGs for
the index languages, and somewhere extractable commitments.

4.1 De�nition

Circuit Satis�ability Language. Let SAT be the following language

SAT = {(�, G) | ∃ F s.t. � (G,F) = 1},

where � : {0, 1}= × {0, 1}< → {0, 1} is a Boolean function, and G ∈ {0, 1}= is an instance.
A non-interactive batch argument for SAT is a protocol between a prover and a veri�er. �e prover

and the veri�er �rst agree on a circuit � , and a series of ) instances G1, G2, . . . , G) . �en the prover sends
a single message to the veri�er and tries to convince the veri�er that (�, G1), (�, G2), . . . , (�, G) ) ∈ SAT.

More formally, such a protocol is speci�ed by a tuple of algorithms (Gen, TGen, P,V) that work as
follows.

– Gen(1_, 1) , 1 |� |) : On input a security parameter _, the number of instances ) , and the size of the
circuit � , the CRS generation algorithm outputs crs.

– TGen(1_, 1) , 1 |� |, 8∗) : On input a security parameter _, the number of instances ) , the size of the
circuit � and an index 8∗, the trapdoor CRS generation algorithm outputs crs∗.

– P(crs,�, G1, G2, . . . , G) , l1, l2, . . . , l) ) : On input crs, a circuit � , and ) instances G1, G2, . . . , G) and
their corresponding witnesses l1, l2, . . . , l) , the prover algorithm outputs a proof c .

– V(crs,�, G1, G2, . . . , G) , c) : On input crs, a circuit� , a series of instances G1, G2, . . . , G) , and a proof c ,
the veri�er algorithm decides to accept (output 1) or reject (output 0).

Furthermore, we require the aforementioned algorithms to satisfy the following properties.

– Succinct Communication. �e size of c is bounded by poly(_, log), |� |).

– Compact CRS. �e size of crs is bounded by poly(_, log), |� |).

– Succinct Veri�cation. �e veri�cation algorithm runs in time poly(_,) , =) + poly(_, log), |� |).
Moreover, it can be split into the following two parts5:

– Pre-processing: �ere exists a deterministic algorithm PreVerify(crs, G1, G2, . . . , G) ) that takes
as input the CRS, and ) instances G1, G2, . . . , G) , and outputs a short sketch 2 , where |2 | =
poly(_, log), |G1 |).

– Online Veri�cation: �ere exists an online veri�cation algorithm OnlineVerify(crs, 2,�, c)
that takes as input the sketch 2 , a circuit� , and a proof c , and outputs 1 (accepts) or 0 (rejects).
Furthermore, the running time of the online veri�cation algorithm is poly(_, |� |, |2 |, |c |) =

poly(_, log), |� |).
5We note this is a stronger property than previously considered. However, its is natural, and our construction achieves this

property.
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– CRS Indistinguishability. For any non-uniform PPT adversaryA, and any polynomial ) = ) (_),
there exists a negligible function a (_) such that���� Pr

[
8∗ ← A(1_, 1) ), crs← Gen(1_, 1) ) : A(crs) = 1

]
−

Pr
[
8∗ ← A(1_, 1) ), crs∗ ← TGen(1_, 1) , 8∗) : A(crs∗) = 1

] ���� ≤ a (_) .
– Completeness. For any circuit � , any ) instances G1, . . . , G) such that (�, G1), (�, G2), . . . , (�, G) ) ∈

SAT and witnesses l1, l2, . . . , l) for (�, G1), (�, G2), . . . , (�, G) ), we have

Pr
[
crs← Gen(1_, 1) , 1 |� |), c ← P(crs,�, G1, G2, . . . , G) , l1, l2, . . . , l) ) : V(crs,�, G1, G2, . . . , G) , c) = 1

]
= 1.

– Semi-Adaptive Somewhere Soundness. For any non-uniform PPT adversary A, and any poly-
nomial ) = ) (_), there exists a negligible function a (_) such that AdvsoundA (_) ≤ a (_), where
AdvsoundA (_) is de�ned as

Pr
[
8∗ ← A(1_, 1) ), crs∗ ← TGen(1_, 1) , 8∗), (�, G1, G2, . . . , G) ,Π) ← A(crs∗) :

8∗ ∈ [) ] ∧ (�, G8∗) ∉ SAT ∧ V(crs,�, G1, G2, . . . , G) ,Π) = 1
]
.

– Somewhere Argument of Knowledge. �ere exists a PPT extractor � such that, for any non-
uniform PPT adversary A, and any polynomial ) = ) (_), there exists a negligible function a (_)
such that

Pr
[
8∗ ← A(1_, 1) ), crs∗ ← � (1_, 1) , 8∗), (�, G1, G2, . . . , G) ,Π) ← A(crs∗),

l ← � (�, G1, G2, . . . , G) ,Π) : � (G8∗, l) = 1
]
≥ Pr

[
8∗ ← A(1_, 1) ), crs← Gen(1_, 1) ),

(�, G1, G2, . . . , G) ,Π) ← A(crs∗) : V(crs,�, G1, G2, . . . , G) ,Π) = 1
]
− a (_).

Moreover, the CRS generated by the extractor crs∗ ← � (1_, 1) , 8∗) and the CRS in real execution
crs← Gen(1_, 1) ) are computationally indistinguishable.

4.2 PCPs with Split Veri�cation

In this subsection, we de�ne PCPs with a split veri�cation property. At a high level, such a property requires
that for any PCP for the circuit satis�ability language

C-SAT = {G | ∃F : � (G,F) = 1},

the veri�cation algorithm can be split to two parts: (i) a query algorithm Q which generates the PCP
queries that depend on � but are independent of G ; and (ii) an online veri�cation algorithm D, which
depends on G but its running time grows only polylogarithmically in |� | and polynomially in |G |.

More formally, for any Boolean circuit � : {0, 1} |G | × {0, 1} |F | → {0, 1}, a PCP with split veri�cation
for C-SAT is a tuple of polynomial-time algorithms (P,Q,D), with the following syntax.

23



– P(1_,�, G, l) : �e prover algorithm takes as input a security parameter _, the circuit� , an instance
G and its witness l , and outputs a PCP proof c ∈ {0, 1}∗.

– Q (1_,�, A ) : On input the security parameter _, the circuit � , and the random coin A , the query
algorithm generates a subset & ⊆ [|c |], and a state st.

– D(G, st, c ′) : On input an instance G , a state st, and a binary string c ′ ∈ {0, 1} |& | , the online veri�ca-
tion algorithm D deterministically decides to accept (output 1) or reject (output 0).

Furthermore, we require the following properties of the PCP.

– Completeness. For any circuit � , any instance G ∈ C-SAT, and any witness l for G , we have

Pr
A

[
c ← P(1_,�, G, l), (&, st) ← Q (1_,�, A ) : D(G, st, c |& ) = 1

]
= 1.

– d (_)-Soundness. For any circuit � , and any G ∉ C-SAT, and any string c∗ ∈ {0, 1}∗,

Pr
A

[
(&, st) ← Q (1_,�, A ) : D(G, st, c∗ |& ) = 1

]
≤ d (_).

– Polynomial Proof Size. �e size of the proof c is bounded by poly(_, |� |).

– Small�ery Complexity. �e size of the set & is bounded by poly(_, log |� |).

– Succinct Veri�cation. �e state st can be represented in poly(_, |G |, log |� |) bits, and the online
veri�cation algorithm runs in time poly(_, |G |, log |� |).

– d-Proof of Knowledge. For any PCP proof c∗, there exists a deterministic polynomial time ex-
tractor � such that, if PrA [(&, st) ← Q (1_,�, A ) : D(G, st, c∗ |& ) = 1] > d (_), then Pr[l ← � (c∗) :
� (G, l) = 1] = 1.

Lemma 1. �ere exists a PCP with split veri�cation for the C-SAT language with d-soundness, and d-proof
of knowledge property, where d = 1 − 1/poly log |� |.

Proof Sketch. We show that the PCP in [BFLS91], and the probabilistic checkable interactive proofs in
[RRR16], can be modi�ed to obtain a PCP with split veri�cation. For any circuit� , by the Cook-Levin �e-
orem, there exists a 3-CNF q such that for any G , q (G, ·) is satis�able if and only if G ∈ C-SAT. Furthermore,
for any witness l of G ∈ C-SAT, we can derive a witness ~ for q (G, ·), where |~ | = $ ( |� |).

Parameters and Ingredients. Let H be a �eld of size polylog|� |, and let F be a large enough extension
�eld of H with size poly log |� |. Let<G = dlog |H | |G |e, and<~ = dlog |H | |~ |e. Let<′ = dlog |H | ( |G | + |~ |)e,
and = = |G |.

Let � : H<′ → {0, 1} be the following polynomials.

� (8) =
{

1 8 ≤ <G ,

0 Otherwise.
 (8) =

{
8 8 ≤ <G ,

8 − = Otherwise.

Let �̂ ,  ̂ be the extension of � ,  to F, respectively. �en �̂ and  ̂ has degree at most poly log |� |. Let
Ĝ = LDE(G), ~̂ = LDE(~) be the low-degree extension of G,~ over F, respectively.

Let %̂ (81, 82, 83, 11, 12, 13) be the following polynomial.

%̂ (81, 82, 83, 11, 12, 13) =
∏

9 ∈{1,2,3}

(
�̂ (8 9 ) · Ĝ ( ̂ (8 9 )) + (1 − �̂ (8 9 )) · ~̂ ( ̂ (8 9 )) − 1 9

)
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Let � ′(81, 82, 83, 11, 12, 13) be a circuit such that � ′(81, 82, 83, 11, 12, 13) = 1 if and only if (G81 = 11) ∨ (G82 =

12) ∨ (G83 = 13) is a clause in the 3-CNF q , and let �̂ be the extension of � ′ to F. �en we have that q (G, ·)
is satis�able, if and only if there exists a ~̂ such that the following polynomial � (I) of 3<′ + 3 variables is
a zero polynomial:

� (I) =
∑

81,82,83∈H,11,12,13∈{0,1}
�̂ (81, 82, 83, 11, 12, 13) · %̂ (81, 82, 83, 11, 12, 13) · Ẽq81,82,83,11,12,13

(I)

Construction Sketch. �e PCP construction is the unrolling of the following interactive protocol con-
sisting of two parts.

– Low-Degree Testing: �e prover sends ~̂ = LDE(~). �e veri�er performs a low-degree test on ~̂.
�en the veri�er sends a random Î ∈ F3<′+3.

– Sumcheck: �e prover and the veri�er then execute a sumcheck protocol to prove � (Î) = 0 at the
point Î speci�ed above. At the end of the sumcheck protocol, the veri�er obtains a random point
(8̂1, 8̂2, 8̂3, 1̂1, 1̂2, 1̂3) ∈ F3<+3 (corresponding to its messages in the protocol) and a value E ∈ F. �e
veri�er then checks whether

�̂ (8̂1, 8̂2, 8̂3, 1̂1, 1̂2, 1̂3) · %̂ (8̂1, 8̂2, 8̂3, 1̂1, 1̂2, 1̂3) · Ẽq8̂1,8̂2,8̂3,1̂1,1̂2,1̂3
(Î) = E .

We now describe how to �t this PCP construction into our de�nition of PCP with split veri�cation.

– PCP.Q (1_,�, A ): We now show that the PCP queries can be generated independently of G . �e PCP
query consists of the queries in (i) the low-degree testing of ~̂; and (ii) the sumcheck. �e low-degree
testing queries only query some values of ~̂. Hence, these queries are generated independently of
G . �e sumcheck protocol is public-coin. �erefore, the queries in sumcheck can also be generated
independent of G .

In addition, for the sumcheck, we do the following “preprocessing” to save time in online veri�cation.
We evaluate �̂ (8̂1, 8̂2, 8̂3, 1̂1, 1̂2, 1̂3) in time poly(�), and store the resultant value in the state st. �is
can be done since 8̂1, 8̂2, 8̂3, 1̂1, 1̂2, 1̂3 are a part of the veri�er’s random coins during the sumcheck
protocol.

– PCP.D(G, st, c ′): We will show that given the state st, the veri�cation runs in poly( |G |, log |� |) time.

For the low-degree testing, the veri�er performs the same veri�cation procedure as the underlying
low-degree testing. �is takes time poly(log |� |).
For the sumcheck, the veri�er performs the same checks as in the underlying sumcheck protocol.
At the end, the veri�er uses the “preprocessed” values of �̂ (8̂1, 8̂2, 8̂3, 1̂1, 1̂2, 1̂3) present in the state st,
and computes %̂ (8̂1, 8̂2, 8̂3, 1̂1, 1̂2, 1̂3) in $̃ ( |G |) time by computing {Ĝ ( ̂ (8 9 ))} 9=1,2,3 which takes time
poly( |G |, log |� |).
Hence, the online veri�cation takes time poly( |G |, log |� |) in total.

By the above running time analysis, the succinct veri�cation property is satis�ed. �e small query
complexity follows from the small query complexity of the low-degree testing and the sumcheck protocol.
Since the sumcheck has$ (<′)-rounds, and the prover sends$ (1) elements in F in each round, the unrolled
proof has size |F|$ (<′) = poly( |� |). Hence, polynomial proof size property follows.

�e completeness and soundness follows from the completeness and soundness of the zero-testing and
the sumcheck protocol. �e proof of knowledge property follows from the decoding of ~̂.
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Next, we de�ne the bad relation for any PCP with split veri�cation with an eye towards our BARG
construction we describe next. As described in the overview in section 2, we commit several PCP proofs
“columnwise” using a somewhere extractable commitmentand apply aCIH to these commitments to obtain
the query PCP & .

In the soundness proof, we �rst switch the commitment key to the trapdoor mode. �e bad relation
is de�ned with respect to the trapdoor td of the commitment. Speci�cally, we can use td to extract a PCP
proof c from the commitment. Now given the extracted proof c , we de�ne a query & to be bad, when
c |& is accepting but we cannot extract a witness from c . However, the veri�cation algorithm not only
needs& , but also the state st. To resolve this issue, in the following de�nition, we have the CIH output the
randomness A . We then use this randomness to generate & and st via PCP.Q .

De�nition 7 (Bad relation for PCP). Let SECOM = (SECOM.Gen, SECOM.TGen, SECOM.Com, SECOM.Open,
SECOM.Verify, SECOM.Ext) be a somewhere extractable commitment scheme, and PCP = (P,Q,D) be any
PCP with split veri�cation, we de�ne the bad relation R = {R_}_ for PCP as follows.

For any instance length = = =(_), witness length < = <(_), proof length ℓ = ℓ (_), and a parameter
) = ) (_), we de�ne the bad relation for PCP as R_ = {'_,G,td}, where td is obtained from ( ∗, td) ←
SECOM.TGen(1_, 1) , 8∗) for a index 8∗ ∈ [) ], and

'_,G,td = {((�, 2), A ) | � (G, � (c)) ≠ 1 ∧ D(G, st, c |& ) = 1},

where (&, st) = Q (1_,�, A ), 2 = {2@}@∈[ℓ ], c = {SECOM.Ext(2@, td)}@∈[ℓ ] ,� : {0, 1}= × {0, 1}< → {0, 1} is a
Boolean circuit, and G is a string of length =, and � is the proof of knowledge extractor.

�eorem 6 (CIH for PCP). �ere exists a PCP with split veri�cation (P,Q,D) and a hash family H such
that,H is correlation intractable for its bad relation family R = {R_}_ (in De�nition 7). Furthermore,H can
be evaluated in time poly(_, log), |� |)

Proof. Intuitively, we will take the PCP in Lemma 1, and repeat its veri�cation several times in parallel
(with independent randomness), and apply �eorem 3 to the resulting PCP.

Let PCP′ = (PCP′.P, PCP′.Q, PCP′.D) be the (1 − n)-sound PCP with split veri�cation from Lemma 1,
where n = 1/poly log |� |. We build a new PCP = (P,Q,D) as follows.

– P is the same as PCP′.P.

– Q (1_,�, A ): Parse A = (A1, A2, . . . , AC ), where C = _/n .

– For each 8 ∈ [C], let (&8 , st8) = PCP′.Q (1_,�, A8).
– Output & = (&1, &2, . . . , &C ), st = (st1, st2, . . . , stC ).

– D(G, st, c ′) Parse c ′ = (c ′1, c ′2, . . . , c ′C ), and st = (st1, st2, . . . , stC ).

– For each 8 ∈ [C], verify if PCP′.D(G, st8 , c ′8 ) = 1.
– If all veri�cation passes, then output 1 (accept). Otherwise output 0 (reject).

– Proof of knowledge Extractor �: We use the proof of knowledge extractor of PCP′ as the extractor
for PCP.

�e resultant PCP satis�es d = (1 − n)C = 2−Ω (_) -soundness and d-proof of knowledge property. By
construction, for each security parameter _, instance G , and trapdoor td, '_,G,td is a product relation, since
the bad relation for PCP is the product of the bad relations for PCP′. �e bad relation for PCP′ is e�ciently
veri�able in time poly(_, log), |� |).
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To demonstrate sparsity, for any instanceG and extracted PCP proofc , if� (G, � (c)) ≠ 1, then PrA [(&, st) ←
Q (1_,�, A ) : D(G, st, c |& ) = 1] ≤ d , otherwise this contradicts the d-soundness of PCP. Since our con-
struction is a parallel repetition,

Pr
A
[(&, st) ← Q (1_,�, A ) : D(G, st, c |& ) = 1] = Pr

A
[(&, st) ← PCP′.Q (1_,�, A ) : PCP′.D(G, st, c |& ) = 1]C .

Hence, if the le� hand is bounded by d , then we have

Pr
A
[(&, st) ← PCP′.Q (1_,�, A ) : PCP′.D(G, st, c |& ) = 1] ≤ 1 − n.

Hence, the relation '_,td has sparsity (1−n). �erefore, by �eorem 3, there exists a correlation intractable
hash familyH for R.

4.3 BARGs for Index Languages

Index Language. Let the index language be the following language

Idx = {(�, 8) | ∃ F s.t. � (8,F) = 1},

where � is a Boolean function, and 8 is an index.
Non-interactive batch arguments for the index language is a special case of BARGs for general cir-

cuit satis�ability when the instances G1, G2, . . . , G) are simply the indices 1, 2, . . . ,) . We therefore omit
G1, G2, . . . , G) as inputs to the prover and the veri�er algorithms BARG.P,BARG.V (and also as an output
of the adversary A describing the semi-adaptive somewhere soundness property). Furthermore, since
the veri�er does not need to read the instances, there is no pre-processing in this case, and the succinct
veri�cation property requires the veri�er to run in time poly(_, log), |� |).

In this subsection, we mainly prove the following theorem.

�eorem7 (BARGs for Index Language). Assuming LWE, there exist batch arguments for the index language
with succinct veri�cation property.

We proceed to describe the construction of the BARGs for the index language.

Ingredients. Our construction is recursive. We use an index ! to index the level of recursion. Note that
we can assume without loss of generality that) is a power of two by padding the last instance (2 dlog2) e−) )
times. �e BARGs at the !-level can handle ) = 2! instances. To construct BARG! = (Gen, TGen, P,V) at
the !-level, we need the following ingredients.

– A somewhere extractable commitment (section 3.5) SECOM = (SECOM.Gen, SECOM.TGen, SECOM.Com,
SECOM.Open, SECOM.Verify, SECOM.Ext).

– A PCP with split veri�cation scheme PCP = (PCP.P, PCP.Q, PCP.D) with proof length ℓ = ℓ (_, |� |)
from �eorem 6.

– A CIH (de�nition 2)H = (H .Gen,H .Hash) for the bad relation of PCP with split veri�cation from
�eorem 6.

– A non-interactive batch arguments at the (! − 1)-level BARG!−1 = (BARG′.Gen,BARG′.TGen,
BARG′.P,BARG′.V).
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Circuit �̂ [ ,&,{2@ }@∈& ,st] (8, (
⃗⃗
d⃗, c ′,

⃗⃗
d⃗ ′, c ′′))

Output �̃ [ ,&,{2@ }@∈& ,st] (28 − 1, ⃗⃗d⃗, c ′) ∧ �̃ [ ,&,{2@ }@∈& ,st] (28,
⃗⃗
d⃗ ′, c ′′).

Figure 2: �e grouped new circuit, where the ungrouped new circuit �̃ is depicted in Figure 3.

Circuit �̃ [ ,&,{2@ }@∈& ,st] (8,
⃗⃗
d⃗, c ′)

Hardwired: �e commitment key  , the set & , the commitments {2@}@∈& , and the state st for
PCP veri�cation.

Parse the input ⃗⃗d⃗ = {d@}@∈& , and c ′ = {c ′@}@∈& .

– For each @ ∈ & , verify the opening c ′@ to the commitment 2@ . Speci�cally, verify

∀@ ∈ &, SECOM.Verify( , 2@, c ′@, 8, d@) = 1.

– Verify c ′ is accepted by the PCP online veri�cation, i.e. verify PCP.D(st, 8, c ′) = 1.

– If all veri�cation passes, then output 1 (accept), otherwise output 0 (reject).

Figure 3: �e ungrouped new circuit.

Construction. We proceed to describe the construction. In the base case ! = 0 and ) = 1, we have the
prover send the witness directly to the veri�er, and have the veri�er verify the witness. When ! ≥ 1, we
reduce the batch argument to verify a batch of) /2 instances, and apply the (!−1)-level BARG recursively.
In more detail, we construct BARG for ! ≥ 1 as follows.

– Gen(1_, 1)=2! , 1 |� |): �e CRS generation algorithm generates a CRS, which contains (i) a somewhere
extractable commitment key; (ii) a CRS for the smaller non-interactive batch arguments BARG!−1;
and (ii) a key for the CIHH .

– Let  ← SECOM.Gen(1_, 1) , 11), crs′ ← BARG′.Gen(1_, 1) ′, 1 |�̂ |), and H .: ← H .Gen(1_),
where ) ′ = ) /2.

– Let crs = ( , crs′,H .:) and output crs.

– TGen(1_, 1) , 1 |� |, 8∗): �e trapdoor CRS generation algorithm generates the trapdoor CRS as follows.

– Generate ( ∗, td) ← SECOM.TGen(1_, 1) , {8∗}),
– Let crs∗′← BARG.TGen(1_, 1) ′, 1 |�̂ |, b(8∗ + 1)/2c), andH .: ←H .Gen(1_).
– Let crs∗ = ( ∗, crs∗′,H .:), and output crs∗.

– P(crs,�, l1, l2, . . . , l) ): �e prover algorithm �rst commits to all PCP strings in a “columnwise”
manner, and then applies the CIH to the commitment.
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– For each 8 ∈ [) ], compute the PCP proof c8 ← PCP.P(1_,�, 8, l8) for 8-th instance (�, 8).
– Commi�ing the c = {c8}8∈[) ] “columnwise”,

∀@ ∈ [ℓ], 2@ ← SECOM.Com( , {c8 |@}8∈[) ] ; A@),

with uniformly random A@ .
– Applying the CIH to 2 = {2@}@∈[ℓ ] , A ←H .Hash(H .:, (�, 2)), and let (&, st) ← PCP.Q (1_,�, A ).
– For each 8 ∈ [) ], let ⃗⃗d⃗ 8 be the opening of c8 |& . Speci�cally,

⃗⃗
d⃗ 8 = {SECOM.Open( , {c8 |@}8∈[) ], 8, A@)}@∈& .

– Compute a smaller BARG proof, let

Π′← BARG′.P(crs′, �̂ [ ,&,{2@ }@∈& ,st], {
⃗⃗
d⃗ 28−1, c28−1 |& ,

⃗⃗
d⃗ 28 , c28 |& }8∈[) ′]),

where �̂ is depicted in Figure 2.
– Output the proof Π = (2,Π′).

– V(crs,�,Π): �e veri�cation algorithm parses the proof Π as the commitment and the proof for
the smaller BARG, then it utilizes the split veri�cation property of the PCP to delegate the online
veri�cation to the smaller BARG.

– Parse Π = (2,Π′). Applying CIH to 2 , let A ←H .Hash(H .:, (�, 2)).
– Generate the PCP query, (&, st) ← PCP.Q (1_,�, A ).
– Verify the smaller BARG, output BARG′.V(crs′, �̂ [ ,&,{2@ }@∈& ,st],Π′).

Before analysing the e�ciency, we �rst bound the size of the circuit �̂ [ ,&,{2@ }@∈& ,st] .

Lemma 2. In the construction of �̂ in Figure 2, we have

|�̂ [ ,&,{2@ }@∈& ,st] | = poly(_, log), log�) .

Proof. By the construction of �̂ , since 28 − 1 and 28 can be computed by a circuit of size$ (log) ), we have
|�̂ | = $ ( |�̃ |). For �̃ , we analyse the size of the circuit computing each step.

– First, �̃ veri�es if the opening c ′@ is accepted with respect to 2@ . By the succinct veri�cation prop-
erty of the somewhere extractable commitment, this step can be computed by a circuit of size
poly(_, log) )·|& |. By the small query complexity of the PCP, this term is bounded by poly(_, log), log�).

– Second, �̃ veri�es the PCP proof. By the succinct veri�cation property of PCP. �is step can be
computed by a circuit of size poly(_, log), log�).

Since each step of �̃ can be computed by a circuit of size poly(_, log), log�), which completes the proof.

Lemma 3 (Succinct Proof). �e aforementioned construction satis�es the succinct proof property.

Proof. We analyse the length of the proof recursively. By construction, we have

|Π! | = |2 | + |Π!−1 |,

where Π!−1 is the proof length of the (! − 1)-level BARG. By the succinct commitment property, the size
of 2 is bounded by poly(_, log) ) · ℓ . Since the length of the PCP proof is bounded by poly( |� |), we have
that ℓ = poly( |� |). Hence, |Π! | = poly(_, log), |� |) + |Π!−1 |. Hence, recursively applying Lemma 2, we
have Π! = poly(_, log), |� |).
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Lemma 4 (Succinct Veri�cation). �e aforementioned construction satis�es succinct veri�cation property.

Proof. Let Time! and Time!−1 be the veri�cation time for BARG! and BARG!−1 respectively. �en we
have

Time! = TimeH.Hash + TimePCP.Q + Time!−1,

where TimeH.Hash is the running time of H .Hash, and TimePCP.Q is the running time of PCP.Q . From
�eorem 6, TimeH.Hash = poly(_, log), |� |). From the PCP construction, PCP.Q needs to be a polynomial
time algorithm. Hence, we have TimePCP.Q = poly(_, |� |). �erefore,

Time! = poly(_, log), |� |) + Time!−1.

Recursively applying this equation, we obtain Time = poly(_, log), |� |).

Lemma 5 (Compact CRS). �e aforementioned construction satis�es compact CRS property.

Proof. By construction,
|crs! | = | | + |crs!−1 | + |H .: |,

where crs! and crs!−1 are the CRS of the BARG at the !-the level and (! − 1)-th level respectively. From
succinct CRS property of the commitment scheme, we have | | = poly(_, log) ). �e size of the hash key
is bounded by the running time ofH .Hash, which is poly(_, log), |� |). Hence, we have

|crs! | = poly(_, log), |� |) + |crs!−1 |.

Recursively applying this equation, by Lemma 2, we obtain |crs| = poly(_, log), |� |).

Lemma 6 (CRS indistinguishability). �e aforementioned construction satis�es CRS indistinguishability.

Proof. Since the construction is recursive, we prove the CRS indistinguishability by induction. In the
base case, when ) = 1, the CRS generated by Gen and TGen is clearly indistinguishable. Now, assum-
ing BARG!−1 satis�es CRS indistinguishability, we prove the CRS indistinguishability of BARG by the
following hybrid arguments.

– Hyb0: Let crs← Gen(1_, 1) , 1 |� |). Output crs.

– Hyb1: Let ( ∗, td) ← SECOM.TGen(1_, 1) , {8∗}), crs′ ← BARG.Gen(1_, 1) ′, 1 |�̂ |), and H .: ←
H .Gen(1_). Output crs = ( ∗, crs′,H .:).
�is hybrid is computationally indistinguishable with Hyb0, from the key indistinguishability of the
commitment scheme SECOM.

– Hyb2: Let ( ∗, td) ← SECOM.TGen(1_, 1) , {8∗}), crs∗′ ← BARG.Gen(1_, 1) ′, 1 |�̂ |, b(8∗ + 1)/2c, and
H .: ←H .Gen(1_). Output crs = ( ∗, crs′,H .:)
�is hybrid is computationally indistinguishable with Hyb1, from the CRS indistinguishability of the
smaller BARG. �is hybrid is identical to crs∗ ← TGen(1_, 1) , 1 |� |, 8∗).

By the hybrid argument, we �nish the proof.

Lemma 7 (Completeness). �e aforementioned construction satis�es the completeness property.
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Proof. We prove the completeness by induction. For the base case ! = 0,) = 1, since the prover sends the
witness directly, the completeness is satis�ed. Now, assuming the BARG!−1 satis�es the completeness, we
need to show the completeness of BARG! . Since the veri�cation algorithm of BARG! invokes BARG!−1
and veri�es Π′, it su�ces to show that { ⃗⃗d⃗ 28−1, c28−1 |& ,

⃗⃗
d⃗ 28 , c28 |& }8∈[) ′] are the witnesses for �̂ [ ,&,{2@ }@∈& ,st] .

According to the construction, to prove this we only need to show ( ⃗⃗d⃗ 28−1, c28−1 |& ) is a witness for �̃ [ ,2,� ] .
�is follows from the completeness of the local opening and completeness of the PCP.

Before proving the semi-adaptive somewhere soundness, we �rst show in Lemma 8 that any adversary
for the semi-adaptive somewhere soundness of BARG! can be used to build a new adversary for the semi-
adaptive somewhere soundness of BARG!−1. �en in Lemma 9, we will apply this Lemma recursively to
prove the semi-adaptive somewhere soundness of BARG! .

Lemma 8. For any level ! and non-uniform PPT adversary A for the semi-adaptive somewhere soundness
of BARG! with advantage AdvsoundA (_), there exists a non-uniform PPT adversaryA ′ for BARG!−1 such that
AdvsoundA′ (_) ≥ AdvsoundA (_) − negl(_). Furthermore, let TimeA and TimeA′ be the running time of A and
A ′ respectively. �en TimeA′ = TimeA + poly(_).
Proof. We build the adversaryA ′ trying to break the semi-adaptive somewhere soundness for the under-
lying (! − 1)-level BARG scheme BARG!−1 as follows.

– A ′(1_, 1) ′): Invoke the adversary 8∗ ← A(1_, 1) ). Output 8∗′ = b(8∗ + 1)/2c.

– A ′(crs∗′): �e adversary generates crs for A, and obtains the proof from A.

– Generate ( ∗, td) ← SECOM.TGen(1_, 1) , {8∗}), andH .: ←H .Gen(1_).
– Compose the CRS for BARG, let crs∗ = ( ∗, crs∗′,H .:). Feed it to A, (�,Π) ← A(crs∗).
– Parse Π = (2,Π′). Applying CIH to 2 , A ←H .Hash(H .:, 2), and (&, st) ← PCP.Q (1_,�, A ).
– Output (�̂ [ ,&,{2@ }@∈& ,st],Π′).

To argue AdvsoundA′ (_) ≥ AdvsoundA (_) − negl(_), we build the following adversary B for the correlation
intractable hash familyH .

First, the adversary B invokes the adversary A by executing 8∗ ← A(1_, 1)=2! ). �en it gener-
ates a SECOM key ( ∗, td) ← SECOM.TGen(1_, 1) , {8∗}). �e adversary then chooses the bad relation
'_,8∗,td ∈ R_ to break the correlation intractability. Next, B is given a CIH key H .: . B generates the
CRS for the smaller BARG crs∗′ ← BARG.TGen(1_, 1) ′=) /2, 1 |�̂ |, b(8∗ + 1)/2c), and composes the CRS
crs = ( ∗, crs∗′,H .:), and feeds it to A. Let (�,Π) ← A(crs). Parse Π = (2,Π′). Output (�, 2).

By the correlation intractability, on the one hand we have that

Pr
[
H .: ←H .Gen(1_), (�, 2) ← B(H .:) : ((�, 2),H .Hash(H .:, (�, 2))) ∈ '_,8∗,td

]
≤ negl(_). (1)

But on the other hand,

AdvsoundA (_) = Pr [(�, 8∗) ∉ ! ∧ V(crs,�,Π) = 1]

= Pr
[
(�, 8∗) ∉ ! ∧ V(crs,�,Π) = 1 ∧ (�̂, 8∗′) ∈ !

]
+ Pr

[
(�, 8∗) ∉ ! ∧ V(crs,�,Π) = 1 ∧ (�̂, 8∗′) ∉ !

]
.

By the de�nition ofAdvsoundA′ (_), we have thatAdvsoundA′ (_) ≥ Pr
[
(�, 8∗) ∉ ! ∧ V(crs,�,Π) = 1 ∧ (�̂, 8∗′) ∉ !

]
.

Hence, it su�ces to bound the �rst term Pr[(�, 8∗) ∉ ! ∧ V(crs,�,Π) = 1 ∧ (�̂, 8∗′) ∈ !]. We have

Pr[(�, 8∗) ∉ ! ∧ (�̂, 8∗′) ∈ !] = Pr[(�, 8∗) ∉ ! ∧ �̂ (8∗′, ·) is satis�able]
≤ Pr[(�, 8∗) ∉ ! ∧ �̃ (8∗, ·) is satis�able] .

31



Note that in the last term, if �̃ (8∗, ·) is satis�able, then there exists ⃗⃗d⃗, c ′ such that ⃗⃗d⃗ is the opening of
c ′ and the PCP veri�cation of c ′ accepts. By the extraction correctness of SECOM, c ′ here should be
equal to the {SECOM.Ext(2@, td)}@∈[ℓ ] in the bad relation '_,8∗,td de�nition. Hence, PCP.D(8∗, st, c |& ) = 1,
which implies that ((�, 2), A ) ∈ '_,8∗,td. By correlation intractability (Equation 1), this event is bounded by
a negligible probability, which completes the proof.

Lemma9 (Semi-adaptive Somewhere Soundness). �eaforementioned construction satis�es the semi-adaptive
somewhere soundness.

Proof. We recursively apply the Lemma 8 ! = log2) times. At the end, we obtain a polynomial time
adversary for the 0-level base case construction. Since the base case protocol has the prover send the
witness directly, it is statistically sound. Hence, we reach a contradiction, which completes the proof.

Remark 2. �e proof of Lemma 9 can be extended to show somewhere argument of knowledge property. We
provide a proof sketch here. For the base case ! = 0,) = 1, since the prover sends the witness, we can extract the
witness from the proof directly. For any ! ≥ 1, we �rstly use the extractor of SECOM to extract the PCP proof
c as in the soundness proof, and then apply the proof of knowledge property of the PCP to obtain a witness.

4.4 BARGs for NP

In this subsection, we present a generic approach to generalize the BARG for index language and obtain
BARGs for SAT.

�eorem 8. If there exists a batch argument BARG′ = (BARG′.Gen,BARG′.TGen,BARG′.P,BARG′.V) for
the index language Idx, then there exists a batch argument BARG = (Gen, TGen, P,V) for SAT with succinct
veri�cation property.

Proof Sketch. We construct the BARG as follows.

Circuit � ′[ ,2,� ] (8, {d 9 } 9 ∈[=], G, l)

Hardwired: �e commitment key  , the commitments 2 = {2 9 } 9 ∈[=] , and a circuit � .

– Verify the opening {d 9 } 9 ∈[=] and the instance G are the 8-th coordinate of 2 .

∀9 ∈ [=], verify SECOM.Verify( , 2 9 , G [ 9], 8, d 9 ) = 1.

– Verify the C-SAT: verify if � (G, l) = 1.

If all veri�cation passes, then output 1. Otherwise, output 0.

Figure 4: �e new circuit � ′ for batch argument.

– Gen(1_, 1) , 1 |� |): When generating the CRS, in addition to generating the CRS for BARG′, we also
generate a somewhere extractable commitment key  .

– Let crs′← BARG′.Gen(1_, 1) , 1 |�′ |), where the circuit � ′ is depicted in Figure 4.
– Let  ← SECOM.Gen(1_, 1) , 11) be a somewhere extractable commitment key with set size 1.
– Output crs = ( , crs′).
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– TGen(1_, 1) , 1 |� |, 8∗): In the trapdoor CRS generation algorithm, we generate the trapdoor CRS of
BARG′, and also generate the trapdoor somewhere extractable commitment key which is extractable
at 8∗-th coordinate.

– Let crs∗′← BARG′.Gen(1_, 1) , 1 |�′ |, 8∗) be the trapdoor CRS of BARG′ for 8∗.
– Let  ∗ ← SECOM.Gen(1_, 1) , 11, {8∗}) be the trapdoor somewhere extractable commitment

key.
– Output crs∗ = ( ∗, crs∗′).

– P(crs,�, G1, . . . , G) , l1, . . . , l) ): �e prover �rst uses the somewhere extractable commitment to com-
mit all the instances, and obtain a short commitment 2 . �en we have the prover use BARG′ to prove
the statement: “for each 8 ∈ [) ], there exists an accepting local opening G8 at the 8-th coordinate for
the commitment 2 , and there exists a witness l8 such that � (G8 , l8) = 1”.

– Parse crs = ( , crs′), where  is a somewhere extractable commitment key, and crs′ is a CRS
for BARG′.

– Recall that = = |G1 | is the length of the instances. Commit the instances by

∀9 ∈ [=], 2 9 B SECOM.Com( , G1 [ 9], G2 [ 9], . . . , G) [ 9]; 0)6,

where G8 [ 9] is the 9-th bit of the string G8 . Let 2 = {2 9 } 9 ∈= .
– For each 8 ∈ [) ], 9 ∈ [=], generate the opening d8, 9 ← SECOM.Open( , (G1 [ 9], . . . , G) [ 9]), 8).
– Generate batch argument with witness ({d8, 9 } 9 ∈[=], G8 , l8),

Π′← BARG′.P
(
crs′,� ′[ ,2,� ], {{d8, 9 } 9 ∈[=], G8 , l8}8∈[) ]

)
.

– Output Π = Π′.

– V(crs,�, G1, G2, . . . , G) ,Π): �e veri�er parses Π = Π′ and crs = ( , crs′). We construct the following
pre-processing and online veri�cation algorithms.

– Pre-processing PreVerify(crs, G1, G2, . . . , G) ): Commit the instances by

∀9 ∈ [=], 2 9 B SECOM.Com( , G1 [ 9], G2 [ 9], . . . , G) [ 9]; 0) .

Output the short sketch 2 = {2 9 } 9 ∈[=] .
– Online Veri�cation OnlineVerify(crs, 2,�,Π′): Output BARG′.V(crs′,� ′[ ,2,� ],Π

′).

�e succinct communication property follows directly from the succinct communication property of
the BARGs for the index language. �e succinct veri�cation property follows from the construction. �e
compact CRS property is also satis�ed, since the underlying BARGs for index language satisfy compact
CRS property, and | | is also bounded by poly(_, log) ) from the succinct CRS property of somewhere
extractable commitment. �e CRS indistinguishability proprty follows from the key indistinguishability
of somewhere extractable commitment and the CRS indistinguishability of BARG′.

To prove semi-adaptive somewhere soundness, for any adversaryA for the semi-adaptive somewhere
soundness of BARG, we construct a new adversary A ′ for BARG′, as follows: A ′ �rst invokes A, and
obtain a index 8∗ which it outputs directly. �en, A ′ receives a CRS crs′, generates a trapdoor commit-
ment key  ∗ which is extractable at the 8∗-th coordinate, and feeds crs = ( =  ∗, crs′) to A. Next, A

6�e commitment is computed with �xed randomness, without loss of generality we �x this to be 0.
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outputs (�, G1, G2, . . . , G) ,Π). A ′ computes 2 = PreVerify(crs, G1, G2, . . . , G) ), and outputs (� ′[ ,2,� ],Π). �e
adversary A ′ simulates the environment for the adversary A. Furthermore, if (�, G8∗) ∉ SAT, then by
the extraction correctness of the commitment, we have (� ′, 8∗) ∉ Idx. Hence, if the a�ack of A succeeds,
then A ′ also succeeds. Since the underlying BARG′ is somewhere sound, we prove the semi-adaptive
somewhere soundness of BARG.

5 RAM Delegation

We follow the notions of delegation, for both Turing Machines and RAM, as de�ned in [KPY19] who further
show that their notion of RAM delegation implies Turing Machine delegation. �is allows us to focus on
constructing RAM delegation schemes for the rest of the paper.

5.1 Turing Machine Delegation

Consider a Turing machineM. A publicly veri�able non-interactive delegation scheme forM consists of
the following polynomial time algorithms:

Del.S - randomized setup algorithm that on input security parameter 1_ , time bound) and input length
= outputs a pair of public keys - prover key pk and veri�er key vk.

Del.P - deterministic prover algorithm that on input prover key pk and an input G ∈ {0, 1}= outputs a
proof Π.

Del.V - deterministic veri�er algorithm that on input veri�er key pk, input G ∈ {0, 1}= and proof Π
outputs either 0 or 1.

For any Turing machineM, we de�ne the corresponding languageUM below,

UM B
{
(G,) )

��M accepts G within ) steps
}

De�nition 8. A publicly veri�able non-interactive delegation scheme (Del.S,Del.P,Del.V) forM with setup
time )S = )S(_,) ) and proof length !Π = !Π (_,) ).

Completeness. For every _,) , = ∈ N such that = ≤ ) ≤ 2_ , and G ∈ {0, 1}= such that (G,) ) ∈ UM ,

Pr
[
Del.V(vk, G,Π) = 1

���� (pk, vk) ← Del.S(1_,) , =)
Π B Del.P(pk, G)

]
= 1

E�ciency. In the completeness experiment above,

– Del.S runs in time )S.
– Del.P runs in time poly(_,) ) and outputs a proof of length !Π .
– Del.V runs in time $ (!Π) + = · poly(_).

Soundness. For every PPT adversary A and pair of polynomials ) = ) (_) and = = =(_) there exists a
negligible function negl(cot) such that for every _ ∈ N,

Pr
[
Del.V(vk, G,Π) = 1
(G,) ) ∉ UM

���� (pk, vk) ← Del.S(1_,) , =)
(G,Π) ← A(pk, vk)

]
≤ negl(_)

5.2 RAM Delegation

A RAM machine of word size ℓ is modeled as a deterministic machine with random access to memory of
size 2ℓ where the local state of the machine has size only$ (ℓ). At each time step, the machine updates its
local state by either reading or writing a single memory. At any given time, the memory and the local state
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together represent the con�guration cf of the machine. For simplicity, we assume that the machine has no
input outside of its local state and memory, and the word size ℓ will correspond to the security parameter
_.

A publicly veri�able non-interactive delegation scheme for R consists of the following polynomial
time algorithms:

RDel.S - randomized setup algorithm that on input security parameter 1_ , time bound ) outputs a
triple of public keys - prover key pk, veri�er key vk and a digest key dk.

RDel.D - deterministic digest algorithm that on input digest key dk and con�guration cf outputs a
digest h.

RDel.P - deterministic prover algorithm that on input prover key pk and a pair of source and destination
con�gurations cf, cf ′ outputs a proof Π.

RDel.V - deterministic veri�er algorithm that on veri�er key pk, pair of digests h, h′ and proof Π out-
puts either 0 or 1.

For any machine R, we de�ne the corresponding languageUR below,

UR B
{
(ℓ, cf, cf ′,) )

�� R with word size ℓ transitions from cf to cf ′ in ) steps
}

De�nition 9. A publicly veri�able non-interactive delegation scheme (RDel.S,RDel.D,RDel.P, 'Del.V) for
R with setup time )S = )S(_,) ) and proof length !Π = !Π (_,) ).

Completeness. For every _,) ∈ N such that = ≤ ) ≤ 2_ , and cf, cf ′ ∈ {0, 1}∗ such that (_, cf, cf ′,) ) ∈
UR ,

Pr

 RDel.V(vk, h, h′,Π) = 1

��������
(pk, vk, dk) ← RDel.S(1_, )
h B RDel.D(dk, cf)
h′ B RDel.D(dk, cf ′)
Π B Del.P(pk, cf, cf ′)

 = 1

E�ciency. In the completeness experiment above,

– RDel.S runs in time )S.
– RDel.D on input cf runs in time |cf | · poly(_) and outputs a digest of length _.
– RDel.P runs in time poly(_,) , |cf |) and output a proof of length !Π .
– RDel.V runs in time $ (!Π) + poly(_).

Collision resistance. For every PPT adversary A and pair of polynomials ) = ) (_)there exists a neg-
ligible function negl(cot) such that for every _ ∈ N,

Pr
[
cf ≠ cf ′

RDel.D(dk, cf) = RDel.D(dk, cf ′)

���� (pk, vk, dk) ← RDel.S(1_,) , =)
(cf, cf ′) ← A(pk, vk, dk)

]
≤ negl(_)

Soundness. For every PPT adversary A and pair of polynomials ) = ) (_)there exists a negligible func-
tion negl(·) such that for every _ ∈ N,

Pr


RDel.V(vk, h, h′,Π) = 1
(_, cf, cf ′,) ) ∈ UR
h = RDel.D(dk, cf)
h′ ≠ RDel.D(dk, cf ′)

�������� (pk, vk, dk) ← RDel.S(1_,) , =)
(cf, cf ′, h, h′,Π) ← A(pk, vk, dk)

 ≤ negl(_)

As discussed in [KPY19], the notion of RAM delegation considered in their work is di�erent from those
in prior works [KP16, BHK17] - namely that in prior works the adversary was not required to output the full
con�guration explicitly, only that it was di�cult to produce accepting proofs for two di�erent statements
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(h, h′) and (h, h′′) that share the same initial digest. We refer the reader to [KPY19] for a more detailed
comparison of the notions.

�e following theorem establishes that RAM delegation implies Turing machine delegation for the
de�nitions described above.

�eorem 9 ([KPY19]). Suppose that for any RAM machine there exists a publicly veri�able non-interactive
delegation scheme with setup time) ′S and proof length !

′
Π . �en for any Turing machine there exists a publicly

veri�able non-interactive delegation scheme with setup time)S and proof length !Π where)S(_,) ) = ) ′S (_,) ′),
!Π (_,) ) = !′Π (_,) ′) for ) ′ = $ () ).

5.3 Hash Tree

For going beyond space bounded computation, we recall the de�nition of hash trees as de�ned in [KPY19].
A hash tree consists of the following algorithms:

HT.Gen - randomized algorithm that on input the security parameter 1_ outputs a hash key dk

HT.Hash - deterministic algorithm that on input the hash key dk and string � ∈ {0, 1}! outputs a hash
tree tree and a root rt.

HT.Read - deterministic algorithm that on input hash tree tree and memory location ℓ outputs a bit 1
along with a proof Π.

HT.Write - deterministic algorithm that on input hash tree tree, memory location ℓ and bit 1 outputs
a new tree tree′, a new root rt′ along with a proof Π.

HT.VerRead - deterministic algorithm on input hash key dk, root rt, memory location ℓ , bit 1 and proof
Π outputs either 0 or 1.

HT.VerWrite - deterministic algorithm on input hash key dk, root rt, memory location ℓ , bit 1, new
root rt′ and proof Π outputs either 0 or 1.

De�nition 10 (Hash Tree). Ahash tree scheme (HT.Gen,HT.Hash,HT.Read,HT.Write,HT.VerRead,HT.VerWrite)
satis�es the following properties:

Completeness. For every _ ∈ N, � ∈ {0, 1}! for ! ≤ 2_ and ℓ ∈ [!]:

Pr
 HT.VerRead(dk, rt, ℓ, 1,Π) = 1
� [ℓ] = 1

������ dk← HT.Gen(1_)
(tree, rt) B HT.Hash(dk, �)
(1,Π) B HT.Read(tree, ℓ)

 = 1

E�ciency. In the completeness experiment, the running time of HT.Hash is |� | · poly(_). �e length of the
root rt, and proofs produced by HT.Read and HT.Write are poly(_).

Soundness of Read. For every polynomial size adversary A there exists a negligible function negl(·) such
that for every _ ∈ N,

Pr

11 ≠ 12
HT.VerRead(dk, rt, ℓ, 11,Π1) = 1
HT.VerRead(dk, rt, ℓ, 12,Π2) = 1

������ dk← HT.Gen(1_)
(rt, ℓ, 11,Π1, 12,Π2) ← A(dk)

 ≤ negl(_)

Soundness of Write. For every polynomial size adversaryA there exists a negligible function negl(·) such
that for every _ ∈ N,

Pr

rt1 ≠ rt2
HT.VerWrite(dk, rt, ℓ, 1, rt1,Π1) = 1
HT.VerWrite(dk, rt, ℓ, 1, rt2,Π2) = 1

������ dk← HT.Gen(1_)
(rt, ℓ, 1, rt1,Π1, rt2,Π2) ← A(dk)

 ≤ negl(_)
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�eorem 10 ([Mer88]). From any family of collision resistant hash functions, one can construct a hash tree
scheme.

5.4 Protocol

�e protocol follows the construction of the base case for RAM delegation in [KPY19]. �e crucial di�er-
ence in our se�ing is that we are able to reduce the computation to an instance of a non-interactive BARG
for index languages with a short CRS. �e bene�t of this is that we no longer have to do the bootstrapping
since the CRS is already small. Our proof also closely follows the proof structure of their construction,
although the no-signaling properties used in our proof are derived from the commitment rather than the
underlying argument scheme.

RAMmachine steps to circuit satis�ability. We use the translation from a single step of the machine
R as described in [KPY19]. Without loss of generality, assume that every step of R consists of a single
read operation, followed by a single write operation. �erefore, a single step can be decomposed into the
following deterministic polynomial time algorithms:

StepR: On input the local state st of R, outputs the memory location ℓ that R while in state st would read
from.

StepW: On input the local state st and bit 1, outputs a bit 1 ′, memory location ℓ ′ and state st′ such that R
while in state st on reading bit 1 would write 1 ′ to location ℓ ′ and then transition to new local state
st′.

We denote by i the circuit representing a single step of R, i.e. given a pair of digests h = (st, rt),
h′ = (st′, rt′), bit 1 and proof Π,Π′ there exists an e�ciently computable F (given (h, h′, 1,Π,Π′)) such
that i (h, h′, 1,Π,Π′,F) = 1 if and only if

ℓ = StepR(st)
(1 ′, ℓ ′, st′′) = StepW(st, 1)

st′ = st′′

HT.VerRead(dk, rt, ℓ, 1,Π) = 1
HT.VerWrite(dk, rt, ℓ ′, 1 ′, rt′,Π′) = 1

From the e�ciency of the hash tree scheme, there exists a i such that the above can be represented as a
formula of ! = poly(_) variables.

We will use i8 to denote the 8-th step in the above formula q . Note that the subscript will be helpful in
our discussion of security, but the circuits themselves are identical for all 8 .

For ) steps of R, we then have the following formula q over " B $ (! ·) ) variables:

q

(
h0,

{
h8 , 18 ,Π8 ,Π′8 ,F8

}
8∈[) ]

)
B

∧
8∈[) ]

i8 (h8−1, h8 , 18 ,Π8 ,Π′8 ,F8)

Note that the above formula is not an index language. �is is because for all 8 , i8 and i8+1 share a
part of the witness, something not handled by the index language since we would have to ensure that the
(partial) witness is the same. As described in the technical overview, we handle this by using a NS-SECOM
to commit to the witnesses, and then prove for each 8 that values in the commitment satisfy the clause q8 .
�e no-signaling property will help ensure consistency of the shared witness across di�erent clauses i8
and i8+1.

�e components we require for our delegation scheme are listed below:
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– An !-no-signaling-SECOM commitment scheme (De�nition 6) NS-SECOM = (Gen, TGen,Com,
Open,Verify, Ext).

– A non interactive batch argument (Section 4.1) for an index language (BARG.Gen,BARG.TGen,
BARG.P,BARG.V) (Section 4.3).

We present our RAM delegation scheme in Figure 5.

�eorem 11. Assuming the hardness of the Learning with Errors (LWE) (De�nition 1), for every polynomial
) = ) (_), the protocol in Figure 5 is a publicly-veri�able non-interactive RAM delegation scheme (De�nition
9) with CRS size, proof size and veri�er time all poly(_, log) ) while the prover running time is poly(_,) ).

�e assumptions required for our construction follow from the assumptions of the underlying primi-
tives. We focus on proving the e�ciency and security of our protocol below.

5.4.1 E�ciency

Before proving security, we prove that the language above is indeed an index language, and that the e�-
ciency criteria for a RAM delegation scheme are satis�ed.

Claim 1. For all 8 ∈ [) ], (�index, 8) ∈ L.

Proof. �is just follows from the construction in Figure 6. �e witness corresponds to the inputs as in the
delegation protocol.

Claim 2. |�index | = poly(_, log) )

Proof. |�index | consists of the following:

– �e hardcoded commitment key  : | | = ! · poly(_, log") = poly(_, log) ).

– �e hardcoded commitment 2: |2 | = ! · poly(_, log") = poly(_, log) ) (same as key size).

– �e hardcoded circuit i : |i8 | = $ (!) = poly(_).

– Size of openings as a part of the witness of size ! · poly(_, log") = poly(_, log) ).

– Veri�er circuit for commitment of size poly(_, log") = poly(_, log) ).

CRS size. �e CRS consists of the commitment key  , the BARG CRS crs and the digest key dk. By the
corresponding properties of the underlying scheme we have: | | + |crs| + |dk| = poly(_, log) ) +
poly(_, log), |�index |) = poly(_, log) ).

Proof length. �e proof consists of the commitment 2 and the BARG proof: |2 | + |Π | = poly(_, log) ) +
poly(_, log), |�index |) = poly(_, log) )

Veri�er time: �e veri�cation time is the time taken to compute the circuit |�index | and verify the BARG
proof: poly(_, log), |�index |) = poly(_, log) ).

7We overload notation here to specify opening to many bits.
8Since these are not a single bit, we overload notation and skip the index 8 that is passed to the Verify algorithm.
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RAM Delegation

RDel.S(1_,) ): Generate the public parameters for the underlying primitives

 ← Gen(1_, 1" ), crs← BARG.Gen(1_, 1) , 1 |�index |), dk← HT.Gen(1_).

Ouput (pk B ( , crs, dk), vk B ( , crs), dk).

RDel.D(dk, cf = (st, �)): Compute the hash tree,

(tree, rt) B HT.Hash(dk, �)

Output h B (st, rt).

RDel.P((pk, dk), cf, cf ′): Prover emulates R for ) steps from cf to cf ′ to obtain the satisfying assignment for q as
follows: de�ne

(st0, �0) B cf, (tree0, rt0) B HT.Hash(dk, �0), h0 B (st0, rt0)

�en for every 8 ∈ [) ]

ℓ8 = StepR(st8−1), (18 ,Π8 ) B HT.Read(tree8−1, ℓ8 )
(1 ′8 , ℓ ′8 , st8 ) B StepW(st8−1, 18 ), (tree8 , rt8 ,Π′8 ) B HT.Read(tree8−1, ℓ

′
8 , 1
′
8 )

h8 B (st8 , rt8 )

and then compute (e�ciently)F8 be such that i8 (h8−1, h8 , 18 ,Π8 ,Π′8 ,F8 ) = 1.
Compute the no-signaling commitment to (h0, {h8 , 18 ,Π8 ,Π′8 ,F8 }8∈[) ])

2 ← Com
(
 ,

(
h0,

{
h8 , 18 ,Π8 ,Π′8 ,F8

}
8∈[) ]

)
;'

)
For every 8 ∈ [) ], compute the local opening to the commitment:

For � ∈
{
h8−1, h8 , 18 ,Π8 ,Π′8 ,F8

}
,

d� B Open( ,�, ')7

Compute the circuit �index as described in Figure 6, and then compute the proof of the underlying BARG

Π B BARG.P
(
crs,�index,

{
h8−1, h8 , 18 ,Π8 ,Π′8 ,F8 , dh8−1 , dh8 , d18 , dΠ8

, dΠ′
8
, dF8

}
8∈[) ]

)
Output (2,Π).

RDel.V(vk, h, h′,Π): Given 2 and  , compute �index (as in Figure 6) and output 1 if and only if

BARG.V (crs,�index,Π) = 1

Figure 5: RAM delegation scheme

39



Circuit �index

Hardwired:  , 2, i
Input: 8, h8−1, h8 , 18 ,Π8 ,Π′8 ,F8 , dh8−1, dh8 , d18 , dΠ8

, dΠ′
8
, dF8

Output: Output 1 if and only if

1. Verify commitment openings:

(a) Verify( , 2, h8−1, dh8−1) = 18

(b) Verify( , 2, h8 , dh8 ) = 1
(c) Verify( , 2, 18 , d18 ) = 1

(d) Verify( , 2,Π8 , dΠ8
) = 1

(e) Verify( , 2,Π′8 , dΠ′8 ) = 1
(f) Verify( , 2,F8 , dF8

) = 1

2. i8 (h8−1, h8 , 18 ,Π8 ,Π′8 ,F8) = 1

Figure 6: Circuit

5.4.2 Security Proof

Let us assume for the sake of contradiction that the soundness of the above scheme does not hold. �en
�x A and ) such that there exists a polynomial p(·) where, for in�nitely many values of _ ∈ N,

Pr


RDel.V(vk, h, h′,Π) = 1
(_, cf, cf ′,) ) ∈ UR
h = RDel.D(dk, cf)
h′ ≠ RDel.D(dk, cf ′)

�������� (pk, vk, dk) ← RDel.S(1_,) , =)
(cf, cf ′, h, h′,Π) ← A(pk, vk, dk)

 ≥
1

p(_) . (2)

We now use an averaging argument to �x a bad digest key dk. Speci�cally, a digest key dk is bad
if Equation (2) holds with probability at least 1/2p(_) when dk is sampled by RDel.S. By an averaging
argument the fraction of such bad digest keys must be at least 1/2p(_). �erefore, conditioned on a �xed
bad digest key dk∗ we have,

Pr


RDel.V(vk, h, h′,Π) = 1
(_, cf, cf ′,) ) ∈ UR
h = RDel.D(dk∗, cf)
h′ ≠ RDel.D(dk∗, cf ′)

�������� (pk, vk, dk) ← RDel.S(1_,) , =) |dk=dk∗
(cf, cf ′, h, h′,Π) ← A(pk, vk, dk∗)

 ≥
1

p(_) . (3)

where (pk, vk, dk) ← RDel.S(1_,) , =) |dk=dk∗ is the setup algorithm RDel.S conditioned on the digest key
output being dk∗. Moving forward, for ease of notation, the �xed bad dk∗ will be denoted simply by dk.

Next, we change the setup algorithm in both the underlying commitment scheme (NS-SECOM) and the
batch argument (BARG) to be the trapdoor setup algorithm with the ∅ as the argument. We want to argue
that the distribution of A’s output (cf, cf ′, h, h′) does not change by more than a negligible probability.
Speci�cally,
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Claim 3. For all PPT distinguisher D,����Pr
[
D(cf, cf ′, h, h′) = 1

���� (pk, vk, dk) ← RDel.S(1_,) , =) |dk
(cf, cf ′, h, h′,Π) ← A(pk, vk, dk)

]

− Pr

 D(cf, cf
′, h, h′) = 1

��������
 ← TGen(1_, 1" , ∅)
crs← BARG.TGen(1_, 1) , 1 |�index |, ∅)
pk B ( , crs, dk), vk B ( , crs)
(cf, cf ′, h, h′,Π) ← A(pk, vk, dk)


�������� ≤ negl(_) . (4)

where in each experiment above (cf, cf ′, h, h′) =⊥ if RDel.V(vk, h, h′,Π) = 0.

Proof. Consider Hyb0 to be the experiment

(pk, vk, dk) ← RDel.S(1_,) , =) |dk
(cf, cf ′, h, h′,Π) ← A(pk, vk, dk)

with output (cf, cf ′, h, h′). Similarly, Hyb1 is the experiment

 ← TGen(1_, 1" , ∅)
crs← BARG.TGen(1_, 1) , 1 |�index |, ∅)
pk B ( , crs, dk), vk B ( , crs)

(cf, cf ′, h, h′,Π) ← A(pk, vk, dk)

with output (cf, cf ′, h, h′). It then su�ces to show thatHyb0 ≈ Hyb1. For this we introduce an intermediate
hybrid Hyb′ that has the same output, but the experiment is:

 ← Gen(1_, 1" )
crs← BARG.TGen(1_, 1) , 1 |�index |, ∅)
pk B ( , crs, dk), vk B ( , crs)

(cf, cf ′, h, h′,Π) ← A(pk, vk, dk) .

Note that for all of the above experiments, set (cf, cf ′, h, h′,Π) to ⊥ if Π is not accepting.
We now prove the following:

Hyb0 ≈ Hyb′: We rely on the key-indistinguishability property of the BARG scheme. Speci�cally, if there
exists a PPT distinguisher D that distinguishes Hyb0 and Hyb′, we can construct an adversary B
(with a bad dk as an additional argument) as below,

B(1_, dk):

1. Send ∅ to the BARG key indistinguishability.
2. On obtaining crs from the challenger, run the rest of the experiment.
3. Check if Π is accepting. If not, set (cf, cf ′, h, h′,Π) to ⊥.
4. Output D(cf, cf ′, h, h′).

Depending on the response received from the challenger, the experiment corresponds either to Hyb0
or Hyb′, and B succeeds if D succeeds.
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Hyb′ ≈ Hyb1: We rely on the key-indistinguishability property of the NS-SECOM scheme. �e proof fol-
lows identically as in the above case.

�is completes the proof.

If (cf, cf ′, h, h′) ≠⊥, i.e. the proof is accepting, then starting with con�guration cf we de�ne the “true”
con�guration cf8 a�er 8-steps of computation. Formally, for each 8 ∈ [0,) ], cf8 is the unique con�guration
such that (_, cf, cf8 , 8) ∈ UR . �e corresponding digest h8 is de�ned to be RDel.D(dk, cf8). We will refer to
such con�gurations (resp. digests) to be the “true” con�guration (resp. digest).
We de�ne below the event and experiment that will be relevant to the analysis.

CHEAT: �e event that BARG.Vf (crs,�index, c) = 1, and h = h0 but h′ ≠ h) .

EXP8 : Let (8 denote the set ofq ’s variables that represent the variables for the 8-th clause - h8−1, h8 , 18 ,Π8 ,Π′8 ,F8 .
EXP8 then corresponds to the experiment where the keys for the commitment scheme and the batch
argument are generated with trapdoor for (8 and 8 respectively. More formally

 ← TGen(1_, 1" , (8), crs← BARG.TGen(1_, 1) , 1 |�index |, 8)

If the proofc is non-accepting, the output of the experiment is⊥. Otherwise the output is (cf, cf ′, h, h′)
along with the extracted value

We claim that in the above experiment, the adversary still cheats with an inverse polynomial proba-
bility.

Claim 4. For all 8 ∈ [) ],
PrEXP8 [CHEAT] ≥

1
poly(_) (5)

Proof. �is follows in an identical manner to Claim 3 from the key indistinguishability of the underlying
schemes, and the fact that the event CHEAT is e�ciently checkable.

Claim 5. For all 8 ∈ [) ],

PrEXP8
[
CHEAT =⇒ i8 (h8−1, h8 , 18 ,Π8 ,Π′8 ,F8) = 1

]
≥ 1 − negl(_) (6)

where h8−1, h8 , 18 ,Π8 ,Π′8 ,F8 is extracted from the commitment using the trapdoor.

Proof. Given that CHEAT holds, we know that the proof Π output by A is accepting. We �rst use the
semi-adaptive somewhere soundness of the BARG to show that the (�index, 8) ∈ L. If not, we construct an
adversary B as below

B(1_, dk):

1. Send 8 to the BARG challenger and receive crs.

2. Compute the rest of the experiment EXP8 using crs.

3. Return (�index,Π).
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�us, we have (�index, 8) ∈ L which means that there is an accepting witness to �index in Figure 6.
Now, from the somewhere statistical binding property of the NS-SECOM for (8 , we have that other than
with negligible probability the extracted values (h8−1, h8 , 18 ,Π8 ,Π′8 ,F8) (along with their opening proofs)
are the only valid local openings to 2 on (8 . �erefore, since (�index, 8) ∈ L and (h8−1, h8 , 18 ,Π8 ,Π′8 ,F8) is the
only valid opening to 2 we have that other than with negligible probability, �index for index 8 has a unique
(partial) witness (h8−1, h8 , 18 ,Π8 ,Π′8 ,F8).

�is in turn implies (by the construction of �index), we have i8 (h8−1, h8 , 18 ,Π8 ,Π′8 ,F8) = 1.

�erefore we have
PrEXP8

[
CHEAT ∧
i8 (h8−1, h8 , 18 ,Π8 ,Π′8 ,F8) = 0

]
< negl(_) (7)

In EXP1, i1 is consistent with h, therefore h = h0 which gives us,

PrEXP1

[
CHEAT ∧
h0 ≠ h0

]
< negl(_) (8)

In EXP) , i) is consistent with h′, therefore h′ = h) which, because the adversary is cheating, gives us

PrEXP)

[
CHEAT ∧
h) = h)

]
< negl(_) (9)

We now want to use the no-signaling property to claim that in both EXP8 and EXP8+1 it must be the
case that the extracted h8 is the corresponding “true” digest at the 8-step of the execution.

Claim 6. For all 8 ∈ [) − 1]����PrEXP8

[
CHEAT ∧
h8 = h8

]
− PrEXP8+1

[
CHEAT ∧
h8 = h8

] ���� < negl(_) (10)

Proof. We will prove this using a sequence of hybrids. Let Hyb0 be the distribution in EXP8 with output
(cf, cf ′, h, h′, h8) where h8 is extracted from the NS-SECOM commitment scheme using the trapdoor for (8 .
Similarly, let Hyb1 be the distribution in EXP8 with output (cf, cf ′, h, h′, h8) where h8 is extracted from the
NS-SECOM commitment scheme using the trapdoor for (8+1.

It su�ces to show these two distributions are indistinguishable since given (cf, cf ′, h, h′, h8) one can
compute h8 and check if h8 = h8 . If the probability of the check succeeded di�ered in the Hyb0 and Hyb1
by a non-negligible amount, we would have an e�cient distinguisher.

We introduce an intermediate distribution Hyb′ where the experiment is:

 ← TGen(1_, 1" , (8+1)
crs← BARG.TGen(1_, 1) , 1 |�index |, 8)
pk B ( , crs, dk), vk B ( , crs)

(cf, cf ′, h, h′,Π) ← A(pk, vk, dk) .

with the output being (cf, cf ′, h, h′, h8).

Hyb0 ≈ Hyb′: We rely on the no-signaling property of the commitment scheme NS-SECOM. Speci�cally,
if there exists a PPT distinguisher D that distinguishes Hyb0 and Hyb′, we can construct an adver-
sary B = (B1,B2) (with a bad dk as non-uniform advice) as below,

B1(1_, dk):
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1. On input  , run the rest of the experiment with  as the NS-SECOM key.
2. Separate 2 from A’s proof.
3. Set I B (cf, cf ′, h, h′) as the auxiliary input, se�ing I to ⊥ if Π is not accepting.
4. Output (2, I).

B2(1_, dk):

1. On input  , 2, I, h8 , output D(cf, cf ′, h, h′, h8).

Depending on the response received from the challenger, the experiment corresponds either to Hyb0
or Hyb′, and B succeeds if D succeeds.

Hyb′ ≈ Hyb1: We rely on the key-indistinguishability property of the BARG scheme. Speci�cally, if there
exists a PPT distinguisher D that distinguishes Hyb′ and Hyb0 we construct an adversary B (with
a bad dk as non-uniform advice) as below,

B(1_, dk):

1. Send 8, 8 + 1 to the BARG key indistinguishability challenger.
2. On receiving crs run the rest of the experiment using received crs.
3. Use the NS-SECOM to extract h8 .
4. Output D(cf, cf ′, h, h′, h8).

Note that we have directly reduced to the key indistinguishability of the BARG between keys gen-
erated for 8 and 8 + 1, while our security de�nition only states that it is computationally intractable
to di�erentiate between the key generated in the normal mode, and the key generated for an index
8 . It is easy to see that our de�nition also implies key indistinguishability on any two inputs 8 and 9
(with the normal mode as the intermediate hybrid experiment).

�is completes the proof.

From the above equations, given that h) ≠ h) (other than with negligible probability), it must be
the case that there exists an 8∗ such that the input digest is “true”, while the output digest is not “true”.
Formally, from equations (5) to (10), we have that there exists 8∗ ∈ [) ] such that

PrEXP8∗


CHEAT ∧
h8∗−1 = h8∗−1∧
h8∗ ≠ h8∗∧
i8 (h8∗−1, h8∗, 18∗,Π8∗,Π′8∗,F8∗) = 1

 ≥
1

) · poly(_) =
1

poly(_) (11)

Let 8 B 8∗ as described above. �en for (st8−1, rt8−1) B h8−1,

ℓ8 B StepR(st8−1)
(1 ′8 , ℓ ′8 , st8) B StepW(st8−1, 18)
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Next, compute the corresponding “true” variables starting from (st8−1, �8−1) B cf8−1:

(tree8 , rt8) B HT.Hash(dk, �8−1)
ℓ8 B StepR(st8−1)

(18 ,Π8) B HT.Read(tree8−1, ℓ8)

(1 ′8 , ℓ
′
8 , st8) B StepW(st8−1, 18)

(tree8 , rt8 ,Π
′
8 ) B HT.Read(tree8−1, ℓ

′
8 , 1
′
8 )

We describe two events below.

CHEAT1: the event that the following is true

18 ≠ 18

HT.VerRead(dk, rt8−1, ℓ8 , 18 ,Π8) = 1

HT.VerRead(dk, rt8−1, ℓ8 , 18 ,Π8) = 1

CHEAT2 the event that the following is true

rt8 ≠ rt8
HT.VerWrite(dk, rt8−1, ℓ

′
8 , 1
′
8 , rt
′
8 ,Π
′
8 ) = 1

HT.VerWrite(dk, rt8−1, ℓ
′
8 , 1
′
8 , rt
′
8 ,Π
′
8 ) = 1

As observed in [KPY19], the following claim establishes that by the completeness of the hash tree
scheme, either the read or the write operation. We have reproduced the proof here for completeness.

Claim 7.

PrEXP8


CHEAT ∧
h8−1 = h8−1 ∧
h8 ≠ h8 ∧
i8 (h8−1, h8 , 18 ,Π8 ,Π′8 ,F8) = 1

 =⇒ CHEAT1 ∨ CHEAT2 (12)

Proof. �is follows from the completeness of the hash tree scheme. Speci�cally, by de�nition, we have
that h8−1 = (st8−1, rt8−1) and h8 = (st8 , rt8). By the completeness of the hash tree scheme we have,

HT.VerRead(dk, rt8−1, ℓ8 , 18 ,Π8) = 1

HT.VerWrite(dk, rt8−1, ℓ
′
8 , 1
′
8 , rt
′
8 ,Π
′
8 ) = 1

Now from the claim, we have that h8−1 = h8−1, which means that (st8−1, rt8−1) = (st8−1, rt8−1). Since
StepR is a deterministic algorithm, we also have ℓ8 = ℓ8 . Finally, since i8 (h8−1, h8 , 18 ,Π8 ,Π′8 ,F8) = 1 we
have,

h8 = (st8 , rt8)
HT.VerRead(dk, rt8−1, ℓ8 , 18 ,Π8) = 1

HT.VerWrite(dk, rt8−1, ℓ
′
8 , 1
′
8 , rt
′
8 ,Π
′
8 ) = 1

We consider two cases below to complete the proof. Note that in both the cases, the required proofs
from the events verify, so we omit them in the discussion below.
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Case 18 ≠ 18 : CHEAT1 holds.

Case 18 ≠ 18 : �en, because StepW is deterministic, we have that (ℓ ′8 , 1 ′8 , st8) = (ℓ
′
8 , 1
′
8 , st8) . Combining

this with the fact that h8 ≠ h8 , it must be the case that rt8 ≠ rt8 . �is ensures that CHEAT2 holds in
this case.

From the above claims, since CHEAT1 ∨ CHEAT2 happens with probability 1/poly(_). We can now
construct an adversary B for the hash tree scheme that breaks either the soundness of read (when CHEAT1
holds) or the soundness of write (when CHEAT2 holds). Speci�cally,

B(1_):

1. Receive dk from the HT challenger.

2. Runs EXP8 (from the above claim either CHEAT1 or CHEAT2 hold).

3. If CHEAT1 holds, output (rt8−1, ℓ8 , 18 ,Π8 , 18 ,Π8).

4. Else, if CHEAT2 holds, output (dk, rt8−1, ℓ
′
8 , 1
′
8 , rt
′
8 , rt
′
8 ,Π
′
8 )

Correctness follows from the description of the events. Since we have that the received dk is bad with
probability 1/2p(_), B successfully breaks the soundness of the hash tree scheme. �is completes the
security proof.

6 More E�cient Batch Arguments for NP

In this section, we show how to use batch arguments for NP and the Turing machine delegation scheme
to build more e�cient batch arguments for NP by removing the dependence on the circuit size. �e idea
is to delegate the veri�cation of an NP instance to the Turing machine, and then use the batch argument
to prove that the veri�er in the delegation scheme will accept the delegation proof for all instances.

In more detail, we use batch arguments for SAT and a Turing machine delegation scheme to construct
BARGs for the following NP language

L = {G | ∃l :M(G, l) outputs 1 (accepts) in ) steps},

whereM is a Turing machine. �e proof size and CRS size are polynomial in _, |F |, and log) .

�eorem12. LetDel = (Del.S,Del.P,Del.V) be a Turingmachine delegation scheme, andBARG′ = (BARG′.Gen,
BARG′.TGen,BARG′.P,BARG′.V) be a batch argument for SAT with e�cient online veri�cation property.
�en we can construct a batch argument BARG = (Gen, TGen, P,V) with e�cient online veri�cation property
for L with the following e�ciency. Let = = |G | be the length of the instances, < = |l | be the length of the
witnesses, and : be the number of instances.

– CRS size: �e size of the CRS is poly(_,<, log:, log) ).

– Proof size: �e size of the argument is poly(_,<, log:, log) ).

– E�cient Online Veri�cation: �e running time of the o�ine preprocessing is poly(_, :, =), and the
online veri�cation algorithm runs in poly(_,<, log:, log) ).

Proof. We build the BARG as follows. We will use a circuit DelVerify in Figure 7.
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Circuit DelVerify[ (pk,vk) ] (G, (l,Π))

Hardwired: �e CRS (pk, vk) for the Turing machine delegation scheme.
Output Del.V(pk, (G, l),Π).

Figure 7: �e new circuit � ′ for batch argument.

– Gen(1_, 1: , 1) ): Generate a CRS for the Turing machine delegation scheme, and a CRS for the batch
argument for C-SAT.

– Let (pk, vk) ← Del.S(1_,) ), and crs′← BARG′.Gen(1_, 1: , 1 |DelVerify |).
– Output crs = ((pk, vk), crs′).

– TGen(1_, 1: , 1) , 8∗): �e trapdoor CRS generation algorithm generates (pk, vk) in the same way as
Gen, and generates a trapdoor CRS for BARG′.

– Let (pk, vk) ← Del.S(1_,) ), and crs∗′← BARG′.Gen(1_, 1: , 1 |DelVerify |, 8∗).
– Output crs∗ = ((pk, vk), crs∗′).

– P(crs, G1, . . . , G: , l1, . . . , l: ): �e prover �rst delegates each instance using Turing machine delega-
tion, and then uses batch arguments to prove all the delegated instances verify.

Parse crs = ((pk, vk), crs′), where (pk, vk) is the CRS for Turing machine delegation, and crs′ is the
CRS for the batch argument.

– Delegate the computation ofM using Turing machine delegation.

∀8 ∈ [:],Π8 ← Del.P(pk, G8 , l8) .

– Use batch arguments to generate the poof.

Π′← BARG′.P(crs′,DelVerify[ (pk,vk) ], G1, . . . , G: , {(l8 ,Π8)}8∈[: ]) .

– Output Π = Π′.

– V(crs, G1, . . . , G: ,Π): �e veri�er parses Π = Π′, and veri�es

BARG′.V(crs′,DelVerify, G1, . . . , G: ,Π
′) = 1.

�e CRS size is | (pk, vk) | + |crs′ |. Since the delegation scheme has CRS size poly(_, log) ), and crs′ is
also bounded by poly(_, log:, |DelVerify|) = poly(_, log:, poly(_, log:, log),<)), the CRS size is bounded
by poly(_, log),<). �e proof size is the same as the proof size of BARG′. Hence, the proof size is also
bounded by poly(_,<, log:, log) ). Finally, since the veri�cation algorithm is the same as the veri�cation
of BARG′. �e e�cient online veri�cation property follows from the same property of the underlying
BARG′.

�e completeness follows from the completeness of the delegation scheme Del and the batch argument
BARG′. �e CRS indistinguishability follows the same property of BARG′.

To prove the semi-adaptive somewhere soundness, we require the somewhere argument of knowledge
property of the underlying batch argument BARG′, which allows us extraction a witness for the 8∗-th
instance from an accepting proof (See Remark 2).

47



Given somewhere argument of knowledge property, we can extract the witness (l8∗,Π′8∗) for the 8∗-th
instance from any cheating prover for BARG, and output Π′

8∗ as the a�acking proof for the underlying del-
egation scheme Del, with input (G8∗, l8∗). Since the delegation scheme is sound, this proves the soundness
of our batch argument construction.
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A Proof of �eorem 5

�eorem13. Given ℓ instances of an SECOM commitment scheme SECOM = (SECOM.Gen, SECOM.TGen,
SECOM.Com, SECOM.Open, SECOM.Verify, SECOM.Ext) with locality parameter 1, one can construct an
!-no-signaling NS-SECOM.

Proof. We construct the !-no-signaling NS-SECOM as follows.
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– TGen(1_, 1# , (): �e key generation algorithm generates a 1-SECOM key for each element in ( , and
also generates the remaining (! − |( |)-SECOM keys. �en it outputs a random shu�e of all the
generated keys.

– Let ( = {B1, B2, . . . , B |( |}. For each 8 ∈ [|( |], let ( ∗8 , td8) ← SECOM.TGen(1_, 1# , {B8}).
– For [!] \ [|( |],  ∗8 ← SECOM.TGen(1_, 1# , q), where q is the empty set.
– Let c : [!] → [!] be a random shu�e. Output  ∗ = { ∗

c (8) }8∈[!] , and td = ({td8}8∈[ |( | ], c).

– Com( ,m ∈ {0, 1}# ; A ): �e commitment algorithm commits the message m for each key speci�ed
in  .

– Parse A = A1, A2, . . . , A! , and  = { ′8 }8∈[!] .
– For each 8 ∈ [!], compute 28 ← SECOM.Com( ′8 ,m; A8). Output 2 = {28}8∈[!] .

– Ext(2, td): �e extraction algorithm extracts for each element in ( . It uses c to recover the order.

– Parse 2 = {28}8∈[!] , and td = ({td8}8∈[ |( | ], c).
– For each 8 ∈ [|( |], let<∗8 ← SECOM.Ext(2c (8) , td8). Output<∗

(
= {<∗8 }8∈[ |( | ] .

�e local opening algorithm Open and the local veri�cation algorithm Verify repeat the same algo-
rithms in SECOM for ! times. We omit the details here.

To prove the aforementioned construction is !-no-signaling, we build a series of hybrids. For any two
sets ( ′ ⊆ ( ,

– Hyb0: �is hybrid uses ( to generate the commitment key.

– ( ∗, td) ← TGen(1_, 1# , (), (2, I) ← D1( ∗), ®~ B Ext(2, td), Output D2( ∗, 2, ®~ |(′, I).

– Hyb1: �is bybrid is almost the same as Hyb0, except that, we rearrange the elements in ( as
{B1, B2, . . . , B |( |} such that the �rst |( ′ | elements are exactly ( ′, i.e. ( ′ = {B1, B2, . . . , B |(′ |}. Further-
more, we replace the computation of ®~ |(′ as direct computation without using {td8}8= |(′ |+1,..., |( | .

– ( ∗, td) ← TGen(1_, 1# , (), (2, I) ← D1( ∗).
– Parse 2 = {28}8∈[!] . For each 8 ∈ [|( ′ |], let~ ′8 B SECOM.Ext(2c (8) , td8). OutputD2( ∗, 2, {~ ′8 }8 , I).

�is hybrid is identical to the hybrid Hyb0, because the random shu�e c completely hides the order
we represent ( .

– Hyb9
∗

2 : �is hybrid is almost the same as Hyb1, except that we replace the TGen as follows.

– For each 8 ∈ |( |, if 8 ≤ |( ′ | + 9∗, then let  ∗8 ← SECOM.TGen(1_, 1# , q) and td8 = q . For each
|( ′ | + 9∗ < 8 ≤ |( |, let ( ∗8 , td8) ← SECOM.TGen(1_, 1# , {B8}).

– For [!] \ [|( |],  ∗8 ← SECOM.TGen(1_, 1# , q), where q is the empty set.
– Let c : [!] → [!] be a random shu�e. Output  ∗ = { ∗

c (8) }8∈[!] , and td = ({td8}8∈[ |( | ], c).

Hyb1
2 is computationally indistinguishable with Hyb1. Furthermore, Hyb9

∗

2 is computationally indis-
tinguishable with Hyb9

∗+1
2 . �is follows from the key indistinguishability of SECOM.

– Hyb3 = Hyb |( |− |(
′ |

2 . �is hybrid is identical to the following hybrid.
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– ( ∗, td) ← TGen(1_, 1# , ( ′), (2, I) ← D1( ∗), ®~ B Ext(2, td), Output D2( ∗, 2, ®~, I).

By the hybrid argument, Hyb0 and Hyb3 are computationally indistinguishable. We �nish the proof.
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