
Intelligent Composed Algorithms 1

Intelligent Composed Algorithms

Frank Byszio 1

Dr. Klaus-Dieter Wirth 2

Dr. Kim Nguyen 3

(D-Trust GmbH, Berlin, Germany)

1 Frank.Byszio@bdr.de 2 K.Wirth@d-trust.net 3 Kim.Nguyen@bdr.de

March 05, 2021

mailto:Frank.Byszio@bdr.de
mailto:K.Wirth@d-trust.net
mailto:Kim.Nguyen@bdr.de

Intelligent Composed Algorithms 2

Summary

Intelligent Composed Algorithms (ICA) have been developed as a mechanism for

introducing new cryptographic algorithms into applications and PKIs. Using ICAs, known

cryptographic algorithms (Component-Algorithms) can be combined in order to obtain a

stronger mix of cryptographic algorithms or primitives. Using ICAs it is also possible to use

known Component-Algorithms as mutual alternatives. Furthermore, the combined and

alternative use of Component-Algorithms as ICAs shall enable agile use of cryptographic

algorithms without having to change standards as X.509 or CMS.

An Intelligent Composed Algorithm is a flexible group of cryptographic algorithms

together with the corresponding rules for their combination. The rules for the combination of

Component-Algorithms are defined as algorithms (Controlling-Algorithms) themselves. In

applications, ICAs are used as conventional algorithms, described by an algorithm identifier

(an OID) and matching parameters. The chosen Component-Algorithms are defined by

parameters of the Controlling-Algorithm.

The use of ICAs impose no need to modify higher-order standards for applications and

protocols, as X.509, RFC 5280, RFC 6960, RFC 2986, RFC 4210, and RFC 5652.

Introduction

D-Trust is a member of the Bundesdruckerei Group. As an independent and certified

trust service provider, D-Trust operates several PKIs. These PKIs include the PKIs for the

German identity card, the PKIs for German passports, state-regulated PKIs according to eIDAS

[1], publicly verifiable PKIs according to the rules of CAB/F [2] [3], as well as large PKIs for

companies. In the past, PKIs had to be migrated regularly due to new or changed algorithms.

Among other things, the development of computing power has forced the introduction of

improved algorithms and larger keys in PKIs or algorithms such as RIPEMD-160 hade to be

phased out. Examples are the change from SHA-1 to SHA-2, the change from RSA PKCS-1 V1.5

to RSA-PSS, or the increase of RSA key lengths from 1024 over 2048 to 3072 and 4096 bits

today. New applications also require new algorithms. The introduction of ECDSA was largely

motivated and partially enforced by small and embedded devices.

Intelligent Composed Algorithms 3

Changes to a PKI represent a high effort for the operators. Many PKIs have a lifespan of

10, 20 or more years, depending on their purpose and area of application. During this time,

business continuity is the most important requirement. The operators must ensure the safety

and availability of the PKIs during this time. Therefore, changes to a PKI must be done during

ongoing operation or, in the worst case, need a seamless migration to a new PKI.

Challenging when migrating a PKI is that changes in algorithms and keys do not only

affect their own certificates, CA management systems, OCSP responders, CRLs, and HSMs.

The systems of the customers (end entities) and their partners (relying parties) are also

affected. A PKI operator usually does not necessarily have a direct relationship with Relying

Parties. Thus, a change in a PKI is usually introduced through communication with software

manufacturers. Such a process usually takes many years. This means that short-term threats

due to identified weaknesses in algorithms are difficult to respond to adequately and the

topic of backward compatibility is always discussed.

In the future, it is expected that migrations due to changes in algorithms or key lengths

will occur more frequently and for larger PKIs. Cryptoagility and agility of PKIs are essential for

future processes of PKI operation. A major driver for this expectation is the development in

the field of quantum computing. Future quantum computers have the potential to make the

asymmetric signature and encryption algorithms used today insecure.

Various organizations have started processes to select successors of the currently used

asymmetric algorithms that can withstand attacks using quantum computers.

In 2016, NIST has started a process for the development and selection of new

cryptographic standards for algorithms that are resistant to attacks by quantum computers

[4]. Currently, as planned, the 3rd round [5] in the selection process of the competition is

ongoing. Four candidates for encryption / KEM as well as three candidates for digital

signatures were selected for round 3. Further five alternative candidates for encryption / KEM

and three alternative candidates for digital signatures suggest that NIST expects a greater

variety of algorithms in PKIs and applications in the future.

One prominent project in the scope of the EU research programme Horizon 2020 has

been the project pqcrypto [6]. Various algorithms for small devices (WP1), the Internet (WP2)

and cloud applications (WP3) have been examined in three work packages.

Intelligent Composed Algorithms 4

The Chinese Association for Cryptologic Research has launched its post-quantum

cryptography competition in 2018 and has completed the competition end of 2019 with the

selection of three first, three second, and five third prizes [7].

In summary, all current projects or investigations avoid the statement that a single

algorithm will be the new successor to the existing algorithms. None of the current

candidates meets the requirements of "performance", "small keys", "small signatures",

"flexible use" and "proven mathematical security". Therefore, we assume that there will be

several successors and mixed forms of known and new algorithms. Furthermore, we assume

that algorithm changes in PKIs will occur more frequently in the future. Most candidates

under consideration are relatively young and require even more time for thorough

cryptographic analysis. Nevertheless, the new algorithms will have to be introduced, as the

development of the technology requires high-performance, quantum computer-resistant

algorithms, with - depending on the application - small keys or flexible use. Agile PKIs are

likely to become much more important in the future.

Since the advantages and disadvantages of classical algorithms on the one hand and new

algorithms on the other hand are very different, it is interesting to consider if hybrid solutions

that arise from combination of these algorithms might be robust against all possible attacks,

see e.g.[8]. Such solutions are currently discussed and implemented in prototypes. Two of the

most noted implementations for key negotiation in TLS has been done by Google with

CECPQ1 [9] and CECPQ2 [10]. The well-known ECDH was combined with some new lattice-

based key exchange algorithms. An attempt is currently being made to standardize a hybrid

key exchange in TLS [11] .

For PKIs, however, only few approaches are known how to deal with combinations of

algorithms. For certificates and CRLs, ITU-T X.509 (10/2019) [12] defines additional extensions

to introduce additional algorithms for the certificate holder's public key and for the signature.

The additional algorithms do not use the known fields subjectPublicKeyInfo and signature, but

new extensions subjectAltPublicKeyInfo, altSignatureAlgorithm and altSignatureValue. The

verification of such certificates with alternative algorithms depends on the ability of the

relying party to process the alternative algorithms. If they can process the alternative

algorithms, only these should be used for verification, if they cannot process them, only the

native algorithms should be used. This approach is intended to solve the problem of

Intelligent Composed Algorithms 5

backward compatibility. We see the advantages of such a PKI for the introduction of new

algorithms in certificates and CRLs. From our point of view, the isolated introduction of

alternative algorithms in certificates and revocation lists is not sufficient for operators of open

PKIs. The alternative algorithms need also to be introduced for certificate management

formats (e.g. in PKCS#10, CMP, OCSP) and various end user applications. We see the most

critical point of this approach in the fact that the certificate validity shall depend on the

capability of software to process new algorithms. This results in different verification results

of a certificate depending on the software used. In this way it is not possible to use

certificates with alternative algorithms and signatures as qualified certificates according to

eIDAS [1].

Despite these promising approaches, it will be necessary to set up new PKIs (parallel to

the existing ones) if new algorithms are to be introduced and business continuity for

applications must be guaranteed. Setting up and operating parallel PKIs, which may be linked

by cross- or link certificates, is very complex, but well described by existing standards and less

susceptible to errors due to the long experience and existing standards.

Another way is to compose algorithms to groups of algorithms. This composition is done

below the certificate level and therefore it does not affect the standards for structure and

validation of certificates. For the specific application TLS, this method is described in the

above mentioned Draft RFC [11]. The way of building groups for TLS lacks flexibility.

Introducing or removing algorithms in a group depends on standardization.

Intelligent Composed Algorithms

An Intelligent Composed Algorithm (ICA) describes a flexible set of algorithms and the

associated rules for their combination. ICAs can be used with the previously mentioned PKI

models such as hybrid and parallel PKI. This is possible because the combination of algorithms

affects only the structures defined by an algorithm, such as algorithm identifiers, keys,

signatures, or ciphertexts. These structures can be described in ASN.1. Standards for

applications and protocols, such as X.509, RFC 5280, RFC 6960, RFC 2986, RFC 4210 or RFC

5652, are not affected.

Intelligent Composed Algorithms 6

ICAs are composed of two parts, the component algorithms, i.e. the actual cryptographic

algorithms and the controlling algorithms. The component algorithms of an ICA are known1

cryptographic algorithms, generally of the same type, i.e. signature algorithms or encryption

algorithms. Controlling algorithms control the use of the cryptographic component algorithms

in an Intelligent Composed Algorithm.

ICA have been devised to obtain stronger algorithms by combining known algorithms or

to use component algorithms alternatively. In addition, the combined and/or alternative use

of component algorithms shall prevent changes in PKI standards such as X.509 or CMS for the

only reason to achieve algorithm agility. Changing today's PKI standards would require

enormous efforts.

Cryptographic infrastructures that support ICAs allow a high level of cryptoagility. They

enable the introduction of new cryptographic algorithms into running PKIs and the phase-out

of outdated algorithms without jeopardizing the continuous operation of the cryptographic

services. ICAs are not intended to be a tool for migrating to new algorithms, but are a means

of building cryptographically agile systems2. When ICAs are introduced into a PKI, new

cryptographic algorithms can easily be introduced without having to change higher-level

standards of applications or protocols.

Syntax of ICAs

As usual, an ICA can and should be clearly identified in ASN.1 notation. An algorithm

according to RFC 5280 is defined as

AlgorithmIdentifier ::= SEQUENCE {

 algorithm OBJECT IDENTIFIER,

 parameters ANY DEFINED BY algorithm OPTIONAL }

1 "known" is understood as "known at the time of use as a component of an ICA". New algorithms can be used in ICAs as

soon as the are defined.
2 The introduction of the ICA concept requires new software for all participants of a PKI. Some people might think that this is

too expensive. It should be noted, however, that several new cryptographic algorithms will have to be introduced in the next
few years with significantly greater implementation effort. In comparison, the introduction of controlling algorithms is simple
and cheap.

Intelligent Composed Algorithms 7

Accordingly, an ICA is defined by an OBJECT IDENTIFIER and its parameters. The component

algorithm of type OBJECT IDENTIFIER designates the controlling algorithm used and the

component parameters, the type of which is determined by the controlling algorithm,

designates the component algorithms used and, optionally, other possible parameters.

An ICA defined in this way fits into all cryptographic structures containing algorithms

specified in ASN.1. The example of an X.509 certificate according to RFC 5280 is used to

illustrate this approach. In RFC 5280, an X.509 certificate is described as follows:

Certificate ::= SEQUENCE {

 tbsCertificate TBSCertificate,

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING }

where

TBSCertificate ::= SEQUENCE {

 version [0] EXPLICIT Version DEFAULT v1,

 serialNumber CertificateSerialNumber,

 signature AlgorithmIdentifier,

 issuer Name,

 validity Validity,

 subject Name,

 subjectPublicKeyInfo SubjectPublicKeyInfo,

 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version MUST be v2 or v3

 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version MUST be v2 or v3

 extensions [3] EXPLICIT Extensions OPTIONAL

 -- If present, version MUST be v3

}

The cryptographically interesting components are signatureAlgorithm and

signatureValue in the certificate itself and signature and

subjectPublicKeyInfo in the certificate content (TBSCertificate)3, where

signatureAlgorithm in the certificate and signature in the certificate content must

contain the same AlgorithmIdentifier. This AlgorithmIdentifier can of course also be an ICA

consisting of a controlling algorithm and named component algorithms. The value of

signatureValue is a BIT STRING whose generation (signature generation) and verification

3 We are not going into details of cryptographic contents in certificate extensions here. It is easy to see, that ICAs can be

applied in extensions, too.

Intelligent Composed Algorithms 8

(signature verification) is precisely defined by the specification of the algorithm designated by

the AlgorithmIdentifier, see section Controlling algorithms.

The content of the component subjectPublicKeyInfo has little to do with the

other three components mentioned, which all concern the certificate signature. It contains

the public key that is assigned to the certificate owner by the certificate. The type of

subjectPublicKeyInfo is

SubjectPublicKeyInfo ::= SEQUENCE {

 algorithm AlgorithmIdentifier,

 subjectPublicKey BIT STRING }

Again, the component algorithm of type AlgorithmIdentifier can denote an ICA. The

component subjectPublicKey is a BIT STRING whose use (signature verification,

encryption or key agreement) is precisely defined by the AlgorithmIdentifier, see section

Controlling algorithms.

There are no changes for ICA in the definition of the X.509 certificate and its use

compared to the known cryptographic algorithms.

The same consideration as for X.509 certificates can be made for other structures with

cryptographic elements, such as for revocation lists (according to RFC 5280), for CMS

(according to RFC 5652), for OCSP (according to 6960) or even for signatures in passports

(according to ICAO Doc 9303, Part 11, 2015). Wherever cryptographic algorithms with the

definition of AlgorithmIdentifier given in RFC 5280 are used, ICAs can be used.

Controlling-Algorithms

A controlling algorithm defines syntax and rules how to combine known algorithms. Like

cryptographic algorithms, it has a unique name, an OBJECT IDENTIFIER. The OBJECT

IDENTIFIER of the controlling algorithm of an ICA is also the OBJECT IDENTIFIER of the ICA as it

appears in applications.

Intelligent Composed Algorithms 9

Parameters are defined for a controlling algorithm. The parameters are the component

algorithms that are combined by the controlling algorithm4 . Optionally, there may be

additional parameters.

For an application to process an ICA, it must first be able to process the controlling

algorithm. As for cryptographic algorithms, an area of application is defined for controlling

algorithms. The most obvious application areas are

- digital signature

- encryption

- key agreement

Further, it is defined how the keys of the algorithm should look like. We are primarily

dealing with asymmetric cryptography. Thus, it has to be defined what the private and public

keys of the controlling algorithm should look like. The private and public keys of a controlling

algorithm are composed by concatenating the private and public keys, respectively, of the

component algorithms named in the parameters. The order of the (partial) keys of the

component algorithms is exactly that of the component algorithms in the parameter. The key

generation is just as simple: The keys of all component algorithms are generated and

assembled by concatenation in the named order to the key of the ICA5.

Depending on the application area it has to be specified for controlling algorithm

- in case of digital signature: format of signatures, process of signature generation, process

of signature verification,

- in case of encryption: format of ciphertexts, process of encryption, process of decryption,

- in case of key agreement: format of shared secrets, process of shared secret generation.

Appendix A lists rudimentary specifications of controlling algorithms.

4 The idea to parametrize an algorithm by further algorithms is not really new. RSA in the variants RSA PSS and RSA OAEP is

parametized by mask functions and hash algorithms, see RFC 8017.
5 The rules to generate and to use the keys is certainly associated to the controlling algorithm. The result of the application

of the rules might be seen as associated to the ICA.

Intelligent Composed Algorithms 10

In Appendix B, an AlgorithmIdentifier of a signature-OR combination of RSA PSS and

ECDSA is given as an example.

Use of ICAs

To use ICAs, only the controlling algorithms need to be implemented. The component

algorithms, be they RSA, ECDSA, ECDH or new, quantum-safe algorithms, are already

implemented or need to be implemented, regardless of whether ICAs should be used.

Controlling algorithms are easy to implement, no deep cryptographic knowledge is required.

Controlling algorithms are based on simple arithmetic and logical operations.

Roll out of ICAs is only a small additional effort if new server and client software has to

be rolled out anyway due to the introduction of a new cryptographic component algorithm.

Once the most important ICAs6 have been implemented and rolled out in a PKI, there are

many advantages:

Even without the introduction of new cryptographic algorithms, more flexible solutions

or more secure solutions can be found by combining known algorithms.

The introduction of new cryptographic algorithms into a PKI is substantially easier,

because there is no need to perform PKI upgrades for all PKI participants simultaneously. The

introduction of a new cryptographic algorithm can occur at different times at the CAs, the end

entities (EEs - i.e. those participants of the PKI who have keys and certificates) and Relying

Parties (RPs):

- CAs can create and distribute certificates with new algorithms encapsulated in ICAs,

regardless of the special conditions of EEs and RPs.

- EEs can individually customize their application software for new algorithms

independently of the CAs and other EEs.

6 We think of ICAs with the controlling algorithms sketched in Appendix A.

Intelligent Composed Algorithms 11

- RPs can customize their application software for new algorithms independently of

CAs, EEs and other RPs.

This asynchronous introduction of new algorithms is possible as long as controlling

algorithms are used with OR designs, such as signature-OR or signature K of N.

As with the introduction of new algorithms, an asynchronous approach is also possible

for the phase-out of outdated algorithms.

- As soon as a CA rates an algorithm for no longer trustworthy, new certificates are

issued without this algorithm encapsulated in the ICAs. The other PKI participants will

be affected by this action only if they have supported only this one specific algorithm

and not two or more algorithms, as would have been possible with ICAs.

- If EEs or RPs no longer want to accept an outdated algorithm, they can customize their

systems accordingly. Thereafter, only certificates or other data that contain only the

outdated cryptographic algorithm encapsulated in the ICAs and not two or more

algorithms, as would have been possible with ICAs, will not be processed.

ICAs allow for another option in usage: Usually there are several algorithms for

signature, encryption, and key agreement that can be combined. On the other hand,

individual policies can regulate the use or non-use of certain cryptographic algorithms.

Combining algorithms with ICA allows different policies of PKI participants without destroying

communication with partners. Thus, if an EE wants to sign some documents for a larger

number of RPs and at the same time it is known that the RPs accept different algorithms in

their verification policies without a common intersection, the EE can use an ICA signature OR

to combine several signatures into an ICA signature that can be verified by each RP.

This method is also suitable for introducing algorithm catalogs in the operation of a PKI.

References

[1] REGULATION (EU) No 910/2014 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 23 July 2014 on electronic identification and trust services for electronic transactions

in the internal market and repealing Directive 1999/93/EC

Intelligent Composed Algorithms 12

[2] Baseline Requirements for the Issuance and Management of Publicly-Trusted

Certificates, CA/Browser Forum, https://cabforum.org/baseline-requirements-

documents/

[3] Guidelines For The Issuance And Management Of Extended Validation Certificates,

CA/Browser Forum, https://cabforum.org/extended-validation-2/

[4] Post-Quantum Cryptography, Call for Proposals, National Institute of Standards and

Technology, 2017, https://csrc.nist.gov/Projects/post-quantum-cryptography/post-

quantum-cryptography-standardization/Call-for-Proposals

[5] Post-Quantum Cryptography, Round 3 Submissions, National Institute of Standards and

Technology, 2020, https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-

submissions

[6] https://pqcrypto.eu.org/index.html

[7] https://player.vimeo.com/video/507939029

[8] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, Douglas Stebila: Hybrid

Key Encapsulation Mechanisms and Authenticated Key Exchange, 10th International

Workshop on Post-Quantum Cryptography, 2019,

https://link.springer.com/chapter/10.1007/978-3-030-25510-7_12

[9] https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

[10] https://sites.google.com/a/chromium.org/dev/cecpq2

[11] https://tools.ietf.org/html/draft-ietf-tls-hybrid-design-01

[12] International Telecommunication Union: DATA NETWORKS, OPEN SYSTEM

COMMUNICATIONS AND SECURITY, Directory, Information technology – Open Systems

Interconnection – The Directory: Public-key and attribute certificate frameworks,

Recommendation ITU-T X.509 (10/2019)

[13] M. Nystrom, B. Kaliski: PKCS #10: Certification Request Syntax Specification, Version 1.7,

Request for Comments: 2986, November 2000

[14] C. Adams, S. Farrell, T. Kause, T. Mononen: Internet X.509 Public Key Infrastructure -

Certificate Management Protocol (CMP), Request for Comments: 4210, September 2005

Intelligent Composed Algorithms 13

[15] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams: X.509 Internet

Public Key Infrastructure - Online Certificate Status Protocol - OCSP, Request for

Comments: 6960, June 2013

[16] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk: Internet X.509 Public

Key Infrastructure - Certificate and Certificate Revocation List (CRL) Profile, Request for

Comments: 5280, May 2008

[17] R. Housley: Cryptographic Message Syntax (CMS), Request for Comments: 5652,

September 2009

Intelligent Composed Algorithms 14

Appendix A

A.1 signature-OR

Name: signature-OR

OID: {1 3 6 1 4 1 4788 6 1 1 1}

Parameters: ComponentAlgorithms ::= SEQUENCE SIZE (1..MAX) OF AlgorithmIdentifier

Application area: Digital signatures

Keys:

private: SEQUENCE OF ANY

 The number of elements of the private key (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the private key elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of private keys of the component algorithms)

public: SEQUENCE OF ANY

 The number of elements of the public key (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the public key elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of public keys of the component algorithms)

Key generation: The keys are generated individually for all component algorithms. Subsequently, the generated keys
are concatenated in the same succession as the are named in the parameters
(ComponentAlgorithms).

Signature: SEQUENCE OF ANY

 The number of elements of the signature (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the signature elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of signatures of the component algorithms)

Preconditions: A key pair of the chosen algorithm {OID, Parameter} has been generated. The private and the public
key, respectively, are available in the form of the concatenation of the private and public keys,
respectively, of the component algorithms named in the parameters.

 A hash algorithm has been agreed and an hash value H of a message to be signed M can be
computed.

Signature process:

Input: Private key given as concatenation of the private keys of the component algorithms named in the
parameters.

 Hash H of the message to be signed M

Actions: The component signatures for all component algorithms named in the parameters are computed.

 The signature value is formed as the concatenation of the component signatures in the order given in
the parameters.

Output: Signature value as the concatenation of the component signatures.

Verification process:

Input: Public key given as concatenation of the public keys of the component algorithms named in the
parameters.

 Hash H of the message to be signed M

 Value of the signature to be verified

Intelligent Composed Algorithms 15

Actions: For all component algorithms do:

- Check if the component algorithm can be handled, otherwise proceed to the next component
algorithm.

- Extract the component signature from the signature to be verified.

- If the component signature can be verified successfully, complete verification process with the
result OK, otherwise proceed to the next component algorithm.

 If the processing of none of the component algorithms has provided the result OK, complete
verification process with the result not-OK.

Output. Verification process OK or not-OK.

A.2 signature-AND

Name: signature-AND

OID: {1 3 6 1 4 1 4788 6 1 1 2}

Parameters: ComponentAlgorithms ::= SEQUENCE SIZE (1..MAX) OF AlgorithmIdentifier

Application area: Digital signatures

Keys:

private: SEQUENCE OF ANY

 The number of elements of the private key (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the private key elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of private keys of the component algorithms)

public: SEQUENCE OF ANY

 The number of elements of the public key (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the public key elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of public keys of the component algorithms)

Key generation: The keys are generated individually for all component algorithms. Subsequently, the generated keys
are concatenated in the same succession as the are named in the parameters
(ComponentAlgorithms).

Signature: SEQUENCE OF ANY

 The number of elements of the signature (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the signature elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of signatures of the component algorithms)

Preconditions: A key pair of the chosen algorithm {OID, Parameter} has been generated. The private and the public
key, respectively, are available in the form of the concatenation of the private and public keys,
respectively, of the component algorithms named in the parameters.

 A hash algorithm has been agreed and an hash value H of a message to be signed M can be
computed.

Signature process:

Input: Private key given as concatenation of the private keys of the component algorithms named in the
parameters.

 Hash H of the message to be signed M

Actions: The component signatures for all component algorithms named in the parameters are computed.

Intelligent Composed Algorithms 16

 The signature value is formed as the concatenation of the component signatures in the order given in
the parameters.

Output: Signature value as the concatenation of the component signatures.

Verification process:

Input: Public key given as concatenation of the public keys of the component algorithms named in the
parameters.

 Hash H of the message to be signed M

 Value of the signature to be verified

Actions: For all component algorithms do:

- Check if the component algorithm can be handled, otherwise complete verification process with
the result not-OK.

- Extract the component signature from the signature to be verified.

- If the component signature can be verified successfully, proceed to the next component
algorithm, otherwise complete verification process with the result not-OK.

 If the processing of all of the component algorithms has provided the result OK, complete verification
process with the result OK.

Output. Verification process OK or not-OK.

A.3 signature-K-OF-N

Name: signature-K-OF-N

OID: {1 3 6 1 4 1 4788 6 1 1 1}

Parameters: SEQUENCE {

 k INTEGER,

 compAlgs SEQUENCE SIZE (k..MAX) OF AlgorithmIdentifier}

Application area: Digital signatures

Keys:

private: SEQUENCE OF ANY

 The number of elements of the private key (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the private key elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of private keys of the component algorithms)

public: SEQUENCE OF ANY

 The number of elements of the public key (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the public key elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of public keys of the component algorithms)

Key generation: The keys are generated individually for all component algorithms. Subsequently, the generated keys
are concatenated in the same succession as the are named in the parameters
(ComponentAlgorithms).

Signature: SEQUENCE OF ANY

 The number of elements of the signature (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the signature elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of signatures of the component algorithms)

Preconditions: A key pair of the chosen algorithm {OID, Parameter} has been generated. The private and the public
key, respectively, are available in the form of the concatenation of the private and public keys,
respectively, of the component algorithms named in the parameters.

Intelligent Composed Algorithms 17

 A hash algorithm has been agreed and an hash value H of a message to be signed M can be
computed.

Signature process:

Input: Private key given as concatenation of the private keys of the component algorithms named in the
parameters.

 Hash H of the message to be signed M

Actions: The component signatures for all component algorithms named in the parameters are computed.

 The signature value is formed as the concatenation of the component signatures in the order given in
the parameters.

Output: Signature value as the concatenation of the component signatures.

Verification process:

Input: Public key given as concatenation of the public keys of the component algorithms named in the
parameters

 Value k - parameter of the control algorithm

 Value n - the number of component algorithms given by the number of elements in parameter
compAlgs

 Hash H of the message to be signed M

 Value of the signature to be verified

Actions: Set a the counter i of the number of verified component signatures to 0.

 Set the counter j of the number of of still not checked component signatures to n.

 For all component algorithms do:

- If i+j < k , complete verification process with the result not-OK.

- Check if component algorithm can be handled, otherwise set j := j-1 and proceed to the next
component algorithm.

- Extract component signature from the signature to be verified.

- If component signature can be verified successfully, set i := i+1, otherwise set j := j-1.

- If i >= k, complete verification process with the result OK, otherwise proceed to the next
component algorithm.

Output. Verification process OK or not-OK.

A.4 key-agreement-XOR

Name: key-agreement-XOR

OID: {1 3 6 1 4 1 4788 6 1 2 1}

Parameters: ComponentAlgorithms ::= SEQUENCE SIZE (1..MAX) OF AlgorithmIdentifier

Application area: Key agreement

Keys:

private: SEQUENCE OF ANY

 The number of elements of the private key (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the private key elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of private keys of the component algorithms)

public: SEQUENCE OF ANY

Intelligent Composed Algorithms 18

 The number of elements of the public key (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the public key elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of public keys of the component algorithms)

Key generation: The keys are generated individually for all component algorithms. Subsequently, the generated keys
are concatenated in the same succession as the are named in the parameters
(ComponentAlgorithms).

Shared Secret: OCTET STRING

Preconditions: Key pairs of the chosen algorithm {OID, Parameter} have been generated, each by the communication
partners. The own private key and the public key of the communication partner, respectively, are
available in the form of the concatenation of the private and public keys, respectively, of the
component algorithms named in the parameters.

Process of key agreement:

Input: Own private key given as concatenation of the private keys of the component algorithms named in
the parameters.

 Public key of the communication partner given as concatenation of the public keys of the component
algorithms named in the parameters.

Actions: Set value ComposedSharedSecret to 0.

 For all component algorithms do:

- Compute value ComponentSharedSecret as the shared secret of the own private key and the
public key of the communication partner associated to the selected component algorithm.

- Set ComposedSharedSecret := ComposedSharedSecret XOR ComponentSharedSecret

Output: Value of ComposedSharedSecret

A.5 key-agreement-CONCAT

Name: key-agreement-CONCAT

OID: {1 3 6 1 4 1 4788 6 1 2 2}

Parameters: ComponentAlgorithms ::= SEQUENCE SIZE (1..MAX) OF AlgorithmIdentifier

Application area: Key agreement

Keys:

private: SEQUENCE OF ANY

 The number of elements of the private key (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the private key elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of private keys of the component algorithms)

public: SEQUENCE OF ANY

 The number of elements of the public key (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the public key elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of public keys of the component algorithms)

Key generation: The keys are generated individually for all component algorithms. Subsequently, the generated keys
are concatenated in the same succession as the are named in the parameters
(ComponentAlgorithms).

Shared Secret: OCTET STRING

Preconditions: Key pairs of the chosen algorithm {OID, Parameter} have been generated, each by the communication
partners. The own private key and the public key of the communication partner, respectively, are

Intelligent Composed Algorithms 19

available in the form of the concatenation of the private and public keys, respectively, of the
component algorithms named in the parameters.

Process of key agreement:

Input: Own private key given as concatenation of the private keys of the component algorithms named in
the parameters.

 Public key of the communication partner given as concatenation of the public keys of the component
algorithms named in the parameters.

Actions: Set value ComposedSharedSecret to 0.

 For all component algorithms do:

- Compute value ComponentSharedSecret as the shared secret of the own private key and the
public key of the communication partner associated to the selected component algorithm.

- Set ComposedSharedSecret := ComposedSharedSecret || ComponentSharedSecret

Output: Value of ComposedSharedSecret

A.6 encryption-ITERATION

Name: encryption-ITERATION

OID: {1 3 6 1 4 1 4788 6 1 3 1}

Parameters: ComponentAlgorithms ::= SEQUENCE SIZE (1..MAX) OF AlgorithmIdentifier

Application area: Asymmetric Encryption

Keys:

private: SEQUENCE OF ANY

 The number of elements of the private key (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the private key elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of private keys of the component algorithms)

public: SEQUENCE OF ANY

 The number of elements of the public key (SEQUENCE OF ANY) is the number of elements of the
parameters (ComponentAlgorithms)and the precise types of the public key elements(ANY) are

given by the corresponding elements of the parameters (AlgorithmIdentifier).

 (Concatenation of public keys of the component algorithms)

Key generation: The keys are generated individually for all component algorithms. Subsequently, the generated keys
are concatenated in the same succession as the are named in the parameters
(ComponentAlgorithms).

Ciphertext: OCTET STRING

Preconditions: A key pair of the chosen algorithm {OID, Parameter} has been generated. The private and the public
key, respectively, are available in the form of the concatenation of the private and public keys,
respectively, of the component algorithms named in the parameters.

Encryption process:

Input: Public key given as concatenation of the public keys of the component algorithms named in the
parameters

 Message to be encrypted

Actions: Set value Ciphertext := Message to be encrypted.

 For all component algorithms do (in the order given by the parameters):

- Compute the new value of Ciphertext by application (encryption) of the component algorithm to
the current value of Ciphertext.

Intelligent Composed Algorithms 20

Output: Encrypted message given by the value of Ciphertext

Decryption process:

Input: Private key given as concatenation of the private keys of the component algorithms named in the
parameters

 Encrypted message

Actions: Set value Plaintext := Encrypted message

 For all component algorithms do (in the reverse order given by the parameters):

- Compute the new value of Plaintext by application (decryption) of the component algorithm to
the current value of Plaintext.

Output: Decrypted message given by the value of Plaintext

Intelligent Composed Algorithms 21

Appendix B

Algorithm identifier for signature-OR with RSA-PSS and ECDSA

SEQUENCE {

 OBJECT IDENTIFIER ' 1 3 6 1 4 1 4788 6 1 1 1 ‚

 -- id-signature-OR

 SEQUENCE { -- Parameter signature-OR

 SEQUENCE { -- algorithIdentifier RSA-PSS

 OBJECT IDENTIFIER '1 2 840 113549 1 1 10'

 -- id-RSASSA-PSS

 SEQUENCE { -- RSASSA-PSS-params

 [0] {

 SEQUENCE {

 OBJECT IDENTIFIER '2 16 840 1 101 3 4 2 3'

 }

 }

 [1] {

 SEQUENCE {

 OBJECT IDENTIFIER '1 2 840 113549 1 1 8'

 SEQUENCE {

 OBJECT IDENTIFIER '2 16 840 1 101 3 4 2 3’

 }

 }

 }

 [2] {

 INTEGER 64

 }

 }

 }

 SEQUENCE { -- algorithmIdentifier ECDSA

 OBJECT IDENTIFIER '1 2 840 10045 4 3 3 '

 -- ecdsawith-SHA384 (RFC 5758)

 } -- no parameters

 }

}

