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Abstract. In this note, we describe an attack against the ANSSI Side-Channel
Analysis Database (ASCAD), which recovers the full key using the leakage of a single
masked block cipher execution. The attack uses a new open-source Side-Channel
Analysis Library (SCALib), which allows running the leakage profiling and attacking
in less than 5 minutes. It exploits well-known techniques, yet improves significantly
over the best known attacks against ASCAD. We conclude by questioning the impact
of these experimental findings for side-channel security evaluations.
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1 Introduction
Since 2018, ASCAD has become one of the most used datasets for side-channel analysis
benchmarking [BPS+20]. It contains power measurements of a two-share masked AES
implementation running on an 8-bit micro-controller. As intended by the authors, most of
the published attacks against ASCAD use Deep Learning (DL) – we refer to the publications
using this dataset at CHES 2020 for illustration [ZBHV20, MDP20, WAGP20, WP20,
PCP20, HHO20, ZZN+20, ZDF20]. Most of these works focus on recovering a single key
byte by looking at a small (possibly desynchronized) part of the leakage traces, and do not
exploit the knowledge of the masking randomness during their profiling stage. An exception
is the recent work of Xiangjun Lu et al. which we discuss in conclusion [LZC+21].

In this note, we take another approach and use the recently introduced SCALib to
analyze ASCAD. The proposed attack efficiently takes advantage of all the time samples
in the leakage traces (next called raw traces) and leverages the knowledge of the masking
randomness during the profiling phase. It mixes Signal to Noise Ratio (SNR) computations,
Linear Discriminant Analysis (LDA) [SA08] and Soft Analytical Side-Channel Attacks
(SASCA) [VGS14]. As a result, we are able to efficiently recover a full encryption key by
exploiting the leakage of a single masked block cipher execution.1

2 SCALib
The Side-Channel Analysis Library (SCALib) is an open-source library that provides all
the tools needed to run our attack. SCALib is a python package available on PyPI that
provides optimized implementations of a series of algorithms for side-channel analysis.
The focus of this library is on performance (both single-core and multi-threaded) and
usability. SCALib is hosted at https://github.com/simple-crypto/SCALib and the
documentation lives at https://scalib.readthedocs.io/en/stable/.

1 The full key is 14 bytes since the 2 first bytes of the AES key are not masked in ASCAD.

mailto:{olivier.bronchain,gaetan.cassiers,fstandae}@uclouvain.be
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Figure 1: Single byte graph.

3 Attack methodology
The methodology used to mount the attack is similar to the one proposed by Bronchain
and Standaert in [BS20, BS21]. Namely, the profiling goes in two steps:

1. The SNR is computed for all the shares within the implementation [Man04]. The
samples with largest SNR are taken as Points-Of-Interest (POIs) for each share. We
kept 500 POIs per share out of the 250,000 traces’ samples.

2. Models are then built for each share thanks to LDA, with limitation to a small
subspace. LDA can be viewed as a (Gaussian) template attack embedding a dimen-
sionality reduction as pre-processing. We kept 10 dimensions per share. The model
of each share is computed only from the corresponding POIs.

The attack phase uses SASCA. For each key byte, it goes in three sequential steps:

1. Graph description consists in representing the implementation with a factor graph
including operations and variables. The graph used in this note is represented in
Figure 1 and follows the guidelines of [BS21]. More precisely, each shared intermediate
variables is unmasked. As an example, the Sbox output y is derived from its shares
yi such that y = y0 ⊕ y1. Then the circuit is represented with operations on the
unshared variables. In Figure 1, the shares are in blue, the plaintext is in green and
the key byte to recover is in red. A rectangle stands for an operation and a circle for
a variable. If multiple traces are used for the attack, the graph is replicated once for
each trace, with the k node being common across all replicas.

2. Probabilities extraction consists in using the models to obtain the distribution
(Pr[xi = α|l])α∈F256

of the shares xi given the leakage l. Then, this probability is
inserted in the factor graph as the initial distribution of these shares.

3. Belief propagation is a message passing rule between the nodes of the factor
graph [VGS14]. It allows us to estimate the probability of a key byte (i.e., k in
Figure 1) based on the initial distribution of the shares.

Evaluation. To evaluate the attack, we compute the rank of the correct key based on the
probabilities retrieved by the attack for each key byte. SCALib provides an implementation
of the histogram-based rank estimation from CHES 2016 [PSG16].

Implementation. The implementation of the attack and its evaluation are both available
at https://github.com/cassiersg/ASCAD-5minutes.

https://github.com/cassiersg/ASCAD-5minutes


Olivier Bronchain, Gaëtan Cassiers and François-Xavier Standaert 3

4 Results
We first ran our attack on the full traces (i.e., 250,000 time samples). We used 5000 traces
for profiling (i.e., computing the SNRs and building models for) the 86 shares. The attack
was then run 100 independent times using n = 1, then n = 2 attack traces.

We computed the resulting rank of the 14 byte masked key. The results are reported
in Figure 2, and show that even with a single trace, the attack always succeeds. The total
execution time (for both profiling and attacking) is less than 4 minutes on a 4-core laptop
(16 GB RAM, Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz).
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Figure 2: Attack against full ASCAD raw traces for the full (14 byte) key: boxplot of the
rank of the correct key. Attacks with two traces always result in finding the correct key at
rank 1. With only one attack trace, the correct key is always at very low (i.e., trivially
enumerable) rank, and more than 0.75 % of the times at rank 1.

For the sake of completeness, we also report in Figure 3 an attack on the third byte
exploiting only a few samples (1400) of the traces, as usually considered in previous works.
As before, we run the attack 100 times for each number of attack traces. This attack uses
100,000 traces for the profiling and the total execution time is 12 seconds. We can see that
if all bytes were giving similar results, 8 attack traces would be enough to perform a full
key recovery attack. As expected, due to the reduction in the number of leakage points,
this attack is less powerful than the one exploiting the full trace.

5 Conclusion: so what?
The full key recovery attack described in this note significantly improves the state-of-the-
art, both in terms of profiling cost and in terms of online attack complexity. At high level,
efficient profiling is obtained thanks to a good exploitation of the masking randomness
while the improved online attack is primarily due to an analytical strategy that takes
advantage of the complete (raw) traces. These results naturally raise the question of what
is their impact for security evaluations. That is, should one consider that the security level
of the ASCAD implementation corresponds to worst-case attacks with strong capabilities
or to more relaxed attacks (e.g., without masking randomness during profiling)?

Our main conclusions in this respect are twofold. On the one hand, worst-case
evaluations are significantly faster to perform and are also a useful tool to anticipate
the risk of improved attacks due to continuous research developments. So following the
backwards evaluation approach outlined in [ABB+20], we believe they are anyway an
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Figure 3: Attack against partial ASCAD traces for one key byte: boxplot of the rank of
the correct key. Attacks with 32 traces almost always result in finding the correct key at
rank 1. With only 8 traces, the correct key is at rank 1 more than half of the times.

interesting asset before launching more expensive attacks in less permissive contexts.2
On the other hand, the gap between worst-case attacks and relaxed ones remains to be
thoroughly investigated. Understanding whether it affects the profiling complexity, the
online attack complexity or both (and to what extent) would help to better clarify the
conservativeness/practicality of these two evaluation settings. Without such a clearly
established and quantified gap, considering worst-case attacks as unpractical appears as
an undesirable risk of security overstatement, especially in the long term.

We finally note that the recent work in [LZC+21] provides an interesting counterpart
to our results and does a first step in quantifying the gap between worst-case and relaxed
adversaries. It shows attacks against a single byte of the ASCAD implementation that
succeed with 3 to 10 raw traces. Their profiling does not leverage the known masking
randomness of the ASCAD traces and is therefore significantly more expansive, confirming
our worst-case approach as a useful shortcut for evaluators in this case.
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