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Abstract. In 1-out-of-q Oblivious Transfer (OT) protocols, a sender is
able to send one of q ≥ 2 messages to a receiver, all while being oblivious
to which message was actually transferred. Moreover, the receiver only
learns one of these messages.
Oblivious Transfer combiners take n instances of OT protocols as input,
and produce a single protocol that is secure if sufficiently many of the n
original OT implementations are secure.
We present a generalization of an OT combiner protocol that was in-
troduced by Cascudo et al. (TCC’17). We show a general 1-out-of-q OT
combiner that is valid for any prime power q ≥ 2. Our OT combiner is
based on secret sharing schemes that are of independent interest.
Our construction achieves the strong notion of perfect security against
active (A,B)-adversaries. For q ≥ n, we present a single-use, n-server, 1-
out-of-q OT combiner that is perfectly secure against active adversaries
that corrupt a minority of servers. The amount of bits exchanged during
the protocol is (q2 + q + 1)n log q.
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1 Introduction

In this section, we introduce OT protocols and OT combiners, we overview the
related literature, and we sketch the aims and results of this article.

1.1 Oblivious Transfer

Oblivious Transfer (OT) protocols were first introduced by Rabin [53] in 1981.
Oblivious transfer protocols involve two parties, a sender and a receiver, which
we also respectively name Alice and Bob. The functionality provided by OT
consists in allowing the sender to transfer part of its inputs to the receiver, while
guaranteeing that the sender is oblivious to which part of its inputs is actually
obtained by the receiver. It also guarantees that the receiver is not able learn
more information than it is entitled to as per the protocol.

The results of this article are part of the second author’s master’s thesis.
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The first example of an OT functionality, realized in the first OT protocol by
Rabin [53], starts with Alice holding a single message. After the execution of the
protocol, Bob learns this message with probability 1/2, and Alice is oblivious to
whether or not Bob received it. Another flavor of OT is 1-out-of-2 OT [26], in
which the sender holds two messages and where the receiver chooses to receive
one of the two messages from the sender. The security guarantees here are that
the sender is oblivious to the message that was actually transferred to the re-
ceiver, and that the receiver gets information on one of the messages only. The
type of OT that we study here is called 1-out-of-q OT. It is a generalization
1-out-of-2 OT that lets the sender hold q ≥ 2 messages instead of just two, and
allows the receiver to fetch only one of those messages.

The relevance of OT protocols in cryptography lies in their role as a funda-
mental primitive in many cryptographic constructions. The main functionalities
OT has found an application to are secure multi-party computation [57,39],
zero-knowledge proofs [39,40,9] and bit commitment schemes [39]. Other related
fields are private information retrieval [17] and oblivious linear function evalua-
tion [47,25].

1.2 OT Combiners

The security of OT protocols is necessarily conditional, since perfectly secure
OT protocols would yield unconditionally-secure two-party computation by [39],
which is impossible to obtain for some functions (see [10,18]). Hence, OT proto-
cols are built by imposing assumptions on security, such as the use of hardware
tokens [31], assuming the existence of a noisy channel between both parties [20],
or restricting the storage [13] or computational capabilities of the parties. In
relation to this last assumption, there exist many computational hardness as-
sumptions one can base OT protocols on, such as the hardness of RSA [53], the
Decisional Diffie-Hellman assumption [9,1], the assumptions used in the McEliece
encryption scheme [24] and also some worst-case lattice assumptions [51].

The conditional security of OT protocols implies that the security guarantees
of OT could be compromised. For example, at some point a hardware token
could become corrupted, or a computational assumption could be broken due
to cryptanalytic developments. The standard method to mitigate this concern
consists in grounding security on various assumptions at once, by simultaneously
using several implementations. This motivates the introduction of OT combiners.

The notion of combiner consists of finding a way to blend various crypto-
graphic implementations into a single one, so that the resulting combination is
secure even if some of the original implementations are insecure. Combiners have
been previously studied in many areas of cryptography, such as in the familiar
context of multi-factor authentication, where many authentication methods are
used concurrently, as well as in cascading of block ciphers. Also, previous works
have studied combiners of encryption schemes [4,23], of PRGs [34], of hash func-
tions [22] and, of course, of OT protocols.

Using an OT combiner, a set of n candidate implementations of OT can be
merged to realize a single OT protocol, in such a way that the final protocol is
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secure as long as sufficiently many of the initial implementations were secure to
begin with. In other words, an OT combiner can be used to instantiate a protocol
between a sender Alice and a receiver Bob that realizes OT by internally using
n candidate OT implementations. Moreover, the resulting protocol stays secure
even if the security of few of the OT candidates is flawed.

1.3 Related Work

The study of OT combiners was initiated by Harnik, Kilian, Naor, Reingold and
Rosen [33] in 2005. They define the notion of (n, t)-OT combiner, which consists
in taking n candidate 1-out-of-2 OT implementations and combining them into
a 1-out-of-2 OT protocol that is secure provided at most t of the OT candidates
are faulty. They show that, when t < n/2, there exist (n, t)-OT combiners that
are unconditionally secure against passive (i.e. semi-honest) adversaries. They
prove the tightness of this bound and show that such OT combiners cannot exist
for n = 2, t = 1, and they build an OT combiner for n = 3, t = 1. They introduce
a second solution for the active (i.e. malicious) adversary model, but this variant
has efficiency and security flaws (e.g. see [36, Section 5.4]).

Meier, Przydatek and Wullschleger [46] define the notion of (n, δ)-uniform
OT combiner. These OT combiners implement the 1-out-of-2 OT functionality,
and they are unconditionally secure against passive adversaries that corrupt
either Alice and a number tA of OT candidates, or Bob and tB OT candidates,
for any tA + tB < n. Their solution requires the roles of the sender and the
receiver to be reversed during the protocol execution, and the corresponding
combiner makes two calls to each OT candidate.

Later, Przydatek and Wullschleger [52] consider combiners that take a set
of n OLFE candidate implementations and produce a 1-out-of-2 OT protocol.
Their solution is also unconditionally secure for tA+tB < n. However, it requires
the size of the message space to be greater than the number n of candidate imple-
mentations of OLFE to combine. Interestingly, we also consider this restriction
in the analysis of our results (see Section 6).

Harnik, Ishai, Kushilevitz and Nielsen [32] present the first single-use OT
combiner, meaning that one black-box call is made to each of the n OT imple-
mentations per protocol execution. They study (n, tA, tB)-OT combiners, which
are secure against passive adversaries that corrupt either Alice and tA OT candi-
dates, or Bob and tB OT candidates. A statistically secure (n, t, t)-OT combiner
is given for t = Ω(n), which makes a constant number of calls to each OT candi-
date. Their solution is set in the 1-out-of-2 scenario. They also provide constant
production rate, meaning that the number of secure OT protocols produced is
not just one, but a constant fraction Θ(n) of the number n of OT candidates.

Additionally, [32] gives a computationally secure OT combiner against active
adversaries. Subsequently, Ishai, Prabhakaran and Sahai [36] show that this con-
struction can be turned into an (n, t, t)-OT combiner that is statistically secure
against active adversaries for t = Ω(n), while leaving unconditional security as
an open problem.
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Ishai, Maji, Sahai and Wullschleger [35] present a single-use (n, t, t)-OT com-
biner in the 1-out-of-2 setting. Their solution is statistically secure against pas-
sive adversaries for t = n/2− ω(log κ), where κ is the security parameter.

Another variant of combiners for OT is that of cross-primitive combiners,
studied by Meier and Przydatek in [45]. As in [52], here the combiner imple-
ments a different functionality than the candidates. They present a (2, 1)-PIR-
to-OT combiner, which takes two Private Information Retrieval (PIR) schemes
and produces a 1-out-of-2 OT protocol that is unconditionally secure for the
sender, provided one of the two PIR schemes is also secure. This result comes in
contrast with the impossibility result of [33]. Their construction only guarantees
the privacy of Alice against a honest-but-curious adversary corrupting Bob and
one of the two candidates.

Following [35], Cascudo, Damg̊ard, Farràs and Ranellucci [16] achieve single-
use 1-out-of-2 OT combiners. They generalize the security notion of Harnik et
al. [32] by defining the notion of perfect security against active (A,B)-adver-
saries, which we also adopt in this article. This definition considers a malicious
adversary that can corrupt either Alice and a set A ∈ A of OT candidates, or
Bob and a set B ∈ B of OT candidates, obtaining their inputs and full control
of their outputs. The OT combiner in [16] achieves perfect (unconditional, zero-
error) security against active adversaries.

In this article we present secret sharing schemes that are of independent inter-
est. Given a function f : {0, 1}n → {0, 1} be a function, we can define an access
structure on {1, . . . , n} × {0, 1} whose minimal subsets are {(1, x1), . . . , (n, xn)}
with f(x1, . . . , xn) = 1 and {(i, 0), (i, 1)}. Efficient constructions for some of
these structures were presented in [7,56]. Recently, Liu and Vaikuntanathan and
Wee [44] presented more efficient general constructions for these access structres,
and presented a connection between these schemes and Conditional Disclosure of
Secrets (CDS) protocols [29] that was later used to construct better general con-
structions for secret sharing [43,3,2,8]. In this work, we study access structures
determined by functions f : {0, . . . , q − 1}n → {0, 1}, a case that has already
been studied in some of these works like [29,2,3].

1.4 Our Work

In this work, we present a 1-out-of-q OT combiner that extends previous 1-out-
of-2 OT combiners from [16,15] to the 1-out-of-q case, where q ≥ 2 is an arbitrary
prime power. In our setting, the underlying OT candidates and the produced
OT protocol take q messages m0, . . . ,mq−1 from Alice and an element b ∈ Fq
from Bob, and they output the message mb to Bob.

As in [16,15], we view OT combiners as server-aided OT protocols. This
means that each of the n OT candidates is modeled as a server that implements
the OT functionality, i.e. that receives q messages m0, . . . ,mq−1 ∈ Fq from Alice
and an element b ∈ Fq from Bob, and outputs the message mb to Bob. In the rest
of this article we adopt this convention and refer to each of the n OT candidates
as a server. In practice, a complete server transaction must be thought of as
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an OT protocol execution between Alice and Bob. We say an OT combiner is
n-server if it takes n OT candidates as input.

Consider the case where adversaries can corrupt at most t out of the n OT
candidates; i.e. A = B =

(
n
t

)
. In the single-use case, the OT combiner in [15]

can only achieve perfect security against active adversaries for t = b0.11nc. We
obtain the following result (see Section 6 for more details).

Theorem 1. Let n ≥ 2 and q ≥ n. There exists a single-use, n-server, 1-out-
of-q OT combiner that is perfectly secure against active adversaries corrupting
at most t = dn/2e − 1 OT candidates. The amount of bits exchanged during the
protocol is (q2 + q + 1)n log q.

In the process of building our 1-out-of-q OT combiner, we study secret sharing
schemes associated to affine spaces. Concretely, letW ⊆ Fnq be an affine subspace,
and let f : Fnq → {0, 1} be a function with f(x1, . . . , xn) = 1 if and only if
(x1, . . . , xn) ∈ W . We study access structures on the set of nq participants
{1, . . . , n} × Fq in which a subset {(1, v1), . . . , (n, vn)} is authorized if and only
if f(v1, . . . , vn) = 1. We present ideal Fq-linear secret sharing schemes for access
structures with this property. Moreover, from our schemes, it is possible to build
n-server CDS protocols for f with domain of secrets Fq with optimal message
size and certain robustness (in the sense of [2]).

This work is organized in six sections. In Section 1, we have given a brief
introduction to OT protocols and OT combiners. In Section 2, we lay out the
preliminaries on secret sharing schemes, OT and OT combiners needed in the rest
of this article. Section 3 presents our 1-out-of-q OT combiner. In Sections 4 and 5
we respectively state the correctness and security definitions and proofs that
assess the properties of our construction. At the end of Section 5 we are able to
prove Theorem 1. Finally, in Section 6 we conclude the article by commenting
on the achieved results and on some future research lines.

2 Preliminaries

In this section, we lay out the background theory needed in the rest of the
article. We divide it in five sections. In Section 2.1, we introduce some basic
definitions and notation. Section 2.2 presents the OT primitive, along with some
examples and applications. Next, in Sections 2.3 and 2.4 we give an account of
Secret Sharing, which is an essential primitive to our construction. Finally, in
Section 2.5 we introduce OT combiners.

2.1 Notation and Basic Definitions

All through this work, q denotes an arbitrary positive prime power. We identify
the set of representatives of the integer residue classes modulo q with the set
of non-negative integers smaller than q. Hence, by abuse of notation, we de-
note Fq = {0, . . . , q − 1}. Given an integer n ≥ 2, we denote by Pn the set of
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positive integers up to n, i.e. Pn := {1, . . . , n}. We define Pn,q := Pn × Fq =
{(i, j) : i ∈ Pn, j ∈ Fq}. The power set of a set P is 2P := {A : A ⊆ P}.

In this work we deal with two-party protocols, and the aim of such protocols
is to compute a certain functionality. The notion of functionality is formalized
in the next definition.

Definition 1 ([42]). A functionality F is a possibly random process F : {0, 1}∗×
{0, 1}∗ → {0, 1}∗ × {0, 1}∗ that takes a pair of inputs x, y ∈ {0, 1}∗ and outputs
a random variable (F1(x, y),F2(x, y)).

We say a protocol between two parties Alice and Bob implements a function-
ality F when, assuming Alice and Bob behave honestly and have input x and y
respectively, at the end of the protocol Alice obtains F1(x, y) and Bob obtains
F2(x, y).

2.2 Oblivious Transfer

The main functionality studied in this work, called the 1-out-of-q OT function-
ality, was first presented by Crépeau, Brassard and Robert [19] in 1986, and
it generalizes that of 1-out-of-2 OT by allowing Alice to hold multiple mes-
sages. In the 1-out-of-q OT functionality, the sender Alice is assumed to hold q
messages m0, . . . ,mq−1, and the receiver Bob chooses a message index b ∈ Fq.
At the end of a protocol implementing this functionality, Bob receives mb and
Alice receives nothing. That is, in the notation of Definition 1, the function-
ality F(x, y) = (F1(x, y),F2(x, y)) implemented by 1-out-of-q OT protocols is
described by

x = (m0, . . . ,mq−1),

y = b,

F1(x, y) = ⊥,
F2(x, y) = my.

where ⊥ stands for the empty bit string. This functionality is illustrated in Fig. 1.

The 1-out-of-q OT Functionality

Sender Receiver

Messages m0, . . . ,mq−1 Chosen index b ∈ Fq

m0, . . . ,mq−1 One-out-of-q
OT

Protocol

b

mb

Fig. 1. One-out-of-q OT.
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Given a 1-out-of-q OT protocol, it is possible to build a t-out-q OT protocol
by invoking t runs of the original protocol [55]. In a t-out-q OT protocol, Bob
recovers t messages out of the q that Alice holds. It is also possible to build
1-out-of-q OT protocols for bit messages by invoking a 1-out-of-2 OT protocol
q − 1 times [19], or even just log q times [48].

The 1-out-of-q extension of OT enables applications such as private set in-
tersection [41,49], private information retrieval [48] and multi-party computa-
tion [30] (where 1-out-of-4 OT is necessary to securely evaluate arithmetic mul-
tiplication gates).

2.3 Secret Sharing Schemes

Secret sharing schemes, introduced by Shamir [54] and Blakley [11], are crypto-
graphic primitives used to protect a secret value by distributing it into shares. In
the typical scenario, a user called the dealer holds the secret value and generates
a set of shares. Then, it sends each share privately to a different participant. We
next state a formal definition of secret sharing scheme, taken from [15]. See [6,50]
for an introduction to secret sharing.

Definition 2. Let P = {1, . . . , n} be the set of participants. A Secret Sharing
scheme Σ on P consists of the following two algorithms

(x1, . . . , xn)← ShareΣ(s, r): Probabilistic algorithm that takes as input a secret
s, belonging to a finite set E0, and some randomness r. It returns an array of
values (x1, . . . , xn), where each xi belongs to some finite set Ei. This array
is called a sharing of s, and each of its elements is a share of s.

s← ReconstructΣ((i, xi)i∈A): Algorithm that takes a set of pairs (i, xi)i∈A as
input for some A ⊆ P , where xi ∈ Ei. It returns either a secret s, or ⊥.

Following the notation of [16,15], given a secret s and randomness r, we
denote a sharing of the secret s by [s, r]Σ = ShareΣ(s, r). Whenever we can
safely drop the randomness r, we denote this sharing by [s]Σ . The indexes i of
shares xi in the input to ReconstructΣ are omitted when implicitly clear.

We say a subset A ⊆ P is authorized for Σ if, for every secret s, provided the
shares (xi)i∈A are part of a sharing of s, the function Reconstruct((i, xi)i∈A)
recovers s with overwhelming probability. That is, if, for every secret s,

Pr[ReconstructΣ(ShareΣ(s, r)) = s] = 1.

Similarly, we say that A ⊆ P is forbidden for Σ when the shares (xi)i∈A of
participants in A do not reveal any information on the secret value s. That is,
if, for every s, s′ ∈ E0,

Pr[(ShareΣ(s, r))A = (xi)i∈A] = Pr[(ShareΣ(s′, r))A = (xi)i∈A].

We define the adversary (resp. access) structure of Σ as the collection of all
forbidden (resp. authorized) subsets A ⊆ P for Σ. We say that Σ is perfect if
every subset A ⊆ P is either authorized or forbidden for Σ.
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Given a secret sharing scheme Σ on P , the information ratio σ(Σ) of Σ is a
quantity that measures the efficiency of secret sharing schemes. It is defined as
the ratio of the maximum length in bits of the shares to the length of the secret

σ(Σ) =
max1≤i≤n log |Ei|

log |E0|
.

The schemes with information ratio 1 are called ideal .
Given an access structure Γ , we define the minimal access structure of Γ by

minΓ = {A ∈ Γ : B 6⊂ A for all B ∈ Γ}. Similarly, given an adversary structure
A, we define the maximal adversary structure of A by maxA = {A ∈ A : A 6⊂
B for all B ∈ A}.

If A,B ⊆ 2P are two adversary structures, we say that they are R2 when
A ∪B 6= P for every A ∈ A, B ∈ B. We need the following lemma.

Lemma 1 ([15]). Let (A,B) be an R2 pair of adversary structures, and Σ a
perfect secret sharing scheme with A as its adversary structure. Then, for every
B ∈ B, its complement B is authorized in Σ.

2.4 Linear Secret Sharing Schemes

Linear Secret Sharing schemes (LSSS) are a type of secret sharing schemes that
is key to building our 1-out-of-q OT construction. We now define LSSS, and we
restate some of the previous properties. We also provide a result needed to prove
the security of our construction.

Definition 3. Let K be a finite field, P = {1, . . . , n}, and let Σ be a secret
sharing scheme, where secrets s take values in a finite set E0 and sharings
(x1, . . . , xn) ∈ E1 × · · · × En.

Then Σ is called K-linear (or a K-Linear Secret Sharing scheme, written
K-LSSS) if the following conditions hold

– Ω,E0, . . . , En are vector spaces of finite dimension over K,
– the randomness r is chosen uniformly over Ω, and
– ShareΣ is defined as a K-linear surjective map

ShareΣ : E0 ×Ω → E1 × · · · × En.

In this work we only consider Fq-linear secret sharing schemes where dimE0 =
1. That is, we may assume that E0 = Fq and that, for each i ∈ P , the i-th share
space is Ei = F`iq for some positive integer `i. These schemes are perfect.

The information ratio of a LSSSΣ with dimE0 = 1 is σ(Σ) = maxi∈P dimEi.
Every adversary structure admits an Fq-LSSS for every q [37]. However, almost
all access structures require Fq-LSSS with information ratio at least 2n/3−o(n)

for every q [5]. The characterization of adversary structures admitting Fq-LSSS
with small share sizes is an open problem in secret sharing.

Given a secret value x0 ∈ Fq, we have that [x0]Σ ∈ F`1q × · · · × F`nq . In this
case, if we denote by V the set of all possible shares [0]Σ of 0 ∈ Fq, we have that
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V = {ShareΣ(0, r) : r ∈ Ω} is a vector subspace of F`1q × · · · × F`nq . Similarly,
if we denote by Wb the set of all possible shares [b]Σ of a secret value b ∈ Fq,
we have that Wb = [b]Σ + V is an affine subspace of F`1q × · · · × F`nq , where [b]Σ
denotes some share of b using Σ. We make explicit use of the affine subspaces
V and Wb in our construction.

The following lemma follows from the definition of access structure above.

Lemma 2. Let Σ be an Fq-linear secret sharing scheme with dimE0 = 1. A
subset A ⊆ P is forbidden for Σ if and only if there exists a vector r ∈ Ω for
which ShareΣ(1, r) = (x1, . . . , xn) satisfies xi = 0 for every i ∈ A.

2.5 OT combiners

Here we lay out the fundamental theory of OT combiners. We define them, we
name some of their properties, and we fix notation.

Before proceeding further, and as in [15], we need to introduce the ideal 1-out-
of-q OT functionality FOT . We make use of the ideal functionality FOT in our
correctness and security definitions. It consists of an ideal version of a 1-out-of-q
OT protocol that implements the functionality correctly and that does not allow
any kind of corruption. Hence, FOT is an abstraction of an ideal OT protocol,
and not a functionality in the sense of Definition 1. Without loss of generality,
in this work all 1-out-of-q OT protocols that are considered secure are assumed
to follow the footprint of FOT . Figure 2 depicts the FOT ideal functionality.

Ideal 1-out-of-q OT Functionality FOT

Outline of the functionality:

1. The receiver Bob selects b ∈ Fq, and it sends its input (transfer, b) to FOT .
2. The functionality FOT sends (ready) to Alice.
3. The sender Alice sends q − 1 messages (send,m0, . . . ,mq−1) to FOT .
4. If (transfer, b) has been received from Bob, FOT sends (sent,mb) to Bob.

Sender Receiver

Messages m0, . . . ,mq−1 Chosen index b ∈ Fq

(ready)

(send,m0, . . . ,mq−1)

Ideal 1-out-of-q
OT Functionality

FOT

(transfer, b)

mb

Fig. 2. The ideal 1-out-of-q Oblivious Transfer functionality.

Next, we formally define OT combiners, following the notation of [16,15].
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Definition 4. Let S1, . . . , Sn be candidate OT implementations. An OT com-
biner is an efficient two-party protocol π = π(S1, . . . , Sn), with access to the
candidates S1, . . . , Sn, that implements the OT functionality.

We say that an OT combiner is 1-out-of-q if it implements the 1-out-of-
q OT functionality. An OT combiner is black-box if, during the protocol, the
candidate OT implementations are used in a black-box way, i.e. ignoring their
internal workings and making oracle calls as in the ideal OT functionality. Under
the black-box assumption, as in [16,15], we refer to each of the OT candidate
implementations as servers (as noted at the end of Section 1.4). An OT combiner
is single-use if each server is used only once during the execution of the protocol.

From this point onward we assume OT combiners to be 1-out-of-q, n-server,
single-use and black-box. Under this assumption, we can formalize the notion of
OT combiner according to the following definition.

Definition 5. We define a 1-out-of-q, n-server, single-use, black-box OT com-
biner π = π(S1, . . . , Sn) by means of the next three polynomial-time algorithms:

(b1, . . . , bn)← π.Choose(b): Probabilistic algorithm run by the receiver Bob and
taking as input a

ReconstructSk

(
(m

(i,j)
k )(i,j)∈A

)
=

n∑
i=1

m
(i,bi)
k .

message index b ∈ Fq. It returns an n-tuple (b1, . . . , bn), where each bi ∈ Fq
is to be sent to server Si.

(uji )(i,j)∈Pn,q
← π.Send(m0, . . . ,mq−1): Probabilistic algorithm run by the sender

Alice, taking as input q chosen messages m0, . . . ,mq−1. It returns a qn-tuple

(uji )(i,j)∈Pn,q
, where each tuple (u0i , . . . , u

q−1
i ) is to be sent to server Si.

m← π.Reconstruct(b, (v1, . . . , vn)): Algorithm run by the receiver Bob, that takes
as input the chosen message index b ∈ Fq and n elements v1, . . . , vn, where
each vi is received from server Si. It returns a message m.

Given an OT combiner π = (π.Choose, π.Send, π.Reconstruct) and given n
servers S1, . . . , Sn implementing the 1-out-of-q OT functionality, we can regard
π as a protocol between a sender Alice and a receiver Bob. In this case, the
resulting OT protocol π(S1, . . . , Sn) develops sequentially in five phases:

Choice Phase: The receiver Bob chooses a message index b ∈ Fq.
Bob generates the tuple (b1, . . . , bn)← π.Choose(b) where bi ∈ Fq.
Bob sends (transfer, bi) to server Si for i = 1, . . . , n.

Ready Phase: On receiving bi from Bob, the server Si sends (ready) to Alice.
Sending Phase: The sender Alice chooses q messages m0, . . . ,mq−1.

Alice generates the corresponding tuple

(uji )(i,j)∈Pn,q
← π.Send(m0, . . . ,mq−1).

After Alice has received (ready) from every server, she sends the generated
shares (send, u0i , . . . , u

q−1
i ) to Si for i = 1, . . . , n.
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Transfer Phase: The server Si sends (sent, ubii ) to Bob.

Output Phase: Bob reconstructs the message mb from the shares ub11 , . . . , u
bn
n

he received by executing π.Reconstruct(b, (ub11 , . . . , u
bn
n )).

The diagram of the protocol for the case q = 4 and n = 3 is presented in
Figure 3.

Alice

m1,m2,m3,m4

Bob

b

πOT .Send(m1,m2,m3,m4)

πOT .Choose(b)

ReconstructSb(b, ub11 ,

ub22 , u
b3
3 ) = mb

u0
i , u

1
i , u

2
i , u

3
i

b1

b2

b3

ub11
ub22

ub33

S1

S2
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Fig. 3. Diagram of a 1-out-of-4 OT combiner for n = 3.

3 One-out-of-q OT Combiners

This section introduces our 1-out-of-q OT combiner, which can be seen as an
extension of the OT combiner in [15] to the 1-out-of-q scenario. Here we in-
troduce our construction for the particular case where the adversary structure
A of the security definition admits an ideal Fq-linear secret sharing scheme. In
Appendix C we describe our construction in full generality, achieving an OT
combiner with perfect security against active (A,B)-adversaries, where (A,B) is
an arbitrary R2 pair of adversary structures.

Later in Section 5, our 1-out-of-q OT protocol is proven secure against any
(A,B)-adversary (see Definition 12), where A,B ⊆ 2Pn is any pair of R2 adver-
sary structures such that A admits an ideal Fq-LSSS. Throughout this section,
we assume that the pair (A,B) of adversary structures is fixed, and that A ad-
mits an ideal Fq-LSSS Σ. The efficiency of our OT combiner is affected by the
size of the shares of Σ, and it is best in this ideal case. We note that the char-
acterization of adversary structures that admit Fq-LSSS with small share sizes
is an open problem in secret sharing. See Section 2.4 or [50] for more details.
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This section is organized as follows. First, in Section 3.1 we develop the notion
of OT-Compatibility, necessary to extend the previous scheme of [15] to suit our
purposes. The OT-compatible secret sharing scheme we make use of is described
in Section 3.2. Then, in Section 3.3 we explicitly describe our 1-out-of-q OT
combiner for the particular case where A admits a perfect ideal Fq-LSSS.

3.1 Definition of OT-Compatibility

Let A ⊆ 2Pn be an adversary structure on the set Pn = {1, . . . , n} of n partic-
ipants, and let Σ be an ideal Fq-LSSS for Pn with adversary structure A. As
in [15], the scheme Σ is used by the receiver Bob to request the message with
the selected index b ∈ Fq, simply by generating a sharing [b]Σ = (b1, . . . , bn) of
b under Σ and sending each share bi ∈ Fq to the corresponding server Si.

Denote by V ⊆ Fnq the vector space consisting of all the sharings of 0 under
the scheme Σ. Given any b ∈ Fq, let Wb ⊆ Fnq be the affine subspace of sharings
of b for Σ. Note that, by this definition, V = W0. Since Σ is an Fq-LSSS, we can
express Wb = b +V , where b = [b]Σ is a sharing of b for Σ. We can also express
Fnq as the disjoint union Fnq = W0 ∪ · · · ∪Wq−1.

In order for Alice to send the messages m0, . . . ,mq−1 to each server, our
construction follows the blueprint of [15] and makes use of secret sharing schemes
related to affine subspaces W ⊆ Fnq . All such schemes proposed here are defined
on the set of nq participants Pn,q = Pn × Fq. We also consider the partition

Pn,q = P1 ∪ . . . ∪ Pn,

where Pi = {(i, 0), (i, 1) . . . , (i, q − 1)} for i = 1, . . . , n.
We associate an access structure ΓW ⊆ 2Pn,q to each W ⊆ Fnq as follows.

Definition 6. Let W ⊆ Fnq . We define ΓW as the access structure on Pn,q
determined by the minimal access structure

minΓW = {{(1, b1), (2, b2), . . . , (n, bn)} : b = (b1, b2, . . . , bn) ∈W} .

In the 1-out-of-q scenario, Alice holds q messages m0, . . . ,mq−1. To generalize
the construction in [15] to this scenario, we would need to instantiate q Fq-LSSS
S0, . . . ,Sq−1 on the set of participants Pn,q = Pn × Fq, so that Sk has access
structure ΓWk

for each k ∈ Fq. Then, Alice would generate a sharing

[mk]Sk = (m
(i,j)
k )(i,j)∈Pn,q

of each message mk, and she would send q of these shares, m
(i,0)
k , . . . ,m

(i,q−1)
k ,

to each OT server Si for each message mk. Since this requires exactly q shares
per server, we would need the Fq-LSSS Sk for ΓWk

to be ideal for each k ∈ Fq.
In [15] Cascudo et al. prove that, if W ⊆ Fn2 is an affine subspace, then the

access structure ΓW described above always admits an ideal F2-LSSS. However,
in general, given an affine subspace W ⊆ Fnq , ideal Fq-LSSS for the access struc-
ture ΓW are not expected to exist. While Fq-LSSS are guaranteed to exist for any
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such access structure thanks to [37], the ideality requirement may prove harder
to obtain. Hence, we can not just take the course of action described above.

The main idea of this work is that, instead of aiming for Fq-LSSS with access
structures of the form ΓW , it is possible to relax the conditions on the access
structure and still be able to construct ideal schemes that fit our security needs.
We accordingly propose the notion of W -OT-compatibility.

Definition 7. Let W ⊆ Fnq . Let ∆ ⊆ 2Pn,q be the family of subsets defined by

∆ = {A1 ∪ . . . ∪An : Ai ⊆ Pi and |Ai| = 0, 1 or q for i = 1, . . . , n}.

We say that an access structure Γ ⊆ 2Pn,q is W -OT-compatible if Γ ∩ ∆ =
ΓW ∩∆. Similarly, we say that a secret sharing scheme is W -OT-compatible if
its access structure is W -OT-compatible.

The motivation behind this definition is the following: the Fq-LSSS to be
used by Alice that we design are built so that an adversary controlling Bob, and
possibly some servers, can learn from each server Si either

– no shares, e.g. in the case where an active adversary corrupts Alice and Si,
– one share, e.g. in the case that the server Si is not corrupted, or
– all q shares sent to Si, in the case that an adversary corrupts Bob and Si.

In particular, the obtained Fq-LSSS Sk satisfy the condition that the knowl-
edge of any two distinct shares sent to server Si leads to the knowledge of all q
of them. Under this assumption, the shares that an adversary controlling Bob is
able to see in any execution of the OT combiner are always determined by some
subset of ∆. Therefore, even if the obtained Fq-LSSS has an access structure Γ
other than ΓW , it serves our security purposes as long as Γ coincides with ΓW
when restricting it to ∆. That is, as long as Γ is W -OT-compatible.

We next state some properties of W -OT-compatible access structures.

Remark 1. If an access structure Γ ⊆ 2Pn,q is W -OT-compatible, then

– minΓW ⊆ minΓ . So {(1, b1), . . . , (n, bn)} ∈ Γ for every (b1, . . . , bn) ∈W .
– {(1, v1), . . . , (n, vn)} /∈ Γ for every v = (v1, . . . , vn) ∈ Fnq \W .
– If A ∈ Pn,q has size |A| < n, then A /∈ Γ .
– If A ∈ Γ has size |A| = n, then A ∈ minΓW and A ∈ minΓ .
– Pn,q \ Pi /∈ Γ for i = 1, . . . , n.

In Appendix B we give some examples ofW -OT-compatible access structures.

3.2 Our W -OT-Compatible Linear Secret Sharing Scheme

Given k ∈ Fq, we instantiate the Fq-LSSS Sk associated to the affine subspace
Wk in Figure 4. The scheme Sk is used by Alice to generate the input to each
OT server for a single message mk. It is defined on the set of nq participants
Pn,q and it is Fq-linear and ideal.
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The Secret Sharing Scheme Sk

To share a message m ∈ Fq, first
– let k = (k1, . . . , kn) ∈ Fnq be a sharing of k using Σ
– sample r1, . . . , rn−1 ∈ Fq uniformly at random, and let rn = m−

∑n−1
i=1 ri

– sample h = (h1, . . . , hn) uniformly at random from V ⊥

For every i ∈ Pn and for every j ∈ Fq, define the (i, j)-th share as

m(i,j) = ri + (ki − j)hi.

Fig. 4. The Fq-LSSS Sk related to the affine subspace Wk ⊆ Fnq .

Assuming A ⊆ Pn,q contains a set A′ ∈ minΓWk
, which are of the form A′ =

{(1, b1), . . . , (n, bn)} where b = (b1, . . . , bn) ∈ Wk, we can define the function

ReconstructSk on the shares (m
(i,j)
k )(i,j)∈A of the message mk as

ReconstructSk

(
(m

(i,j)
k )(i,j)∈A

)
=

n∑
i=1

m
(i,bi)
k .

To see that this function effectively reconstructs mk, note that

n∑
i=1

m
(i,bi)
k =

n∑
i=1

(ri + (ki − bj)hi) =

n∑
i=1

ri + 〈k− b,h〉 = mk

since we know that
∑n
i=1 ri = m, that k,b ∈Wk (so k− b ∈ V ) and h ∈ V ⊥.

The following theorem states that the Fq-LSSS Sk satisfies the properties
required for our purposes. Its proof is in Appendix A

Theorem 2. For every k ∈ Fq, the secret sharing scheme Sk defined in Figure 4
is Fq-linear, perfect, ideal and Wk-OT-compatible.

3.3 Our One-out-of-q OT Combiner in the Ideal Case

Let Σ be an ideal Fq-LSSS for n participants, with adversary structure A ⊆ 2Pn .
The shares generated with this scheme are used by Bob to query each server.
Also, denote by Sk the ideal Fq-LSSS defined previously in Figure 4 for k ∈
Fq. Remind that the scheme Sk is attached to the affine subspace Wk ⊆ Fnq
determined by Wk = k + V , where k is a sharing of k for the scheme Σ and
V ⊆ Fnq is the vector space consisting of all the sharings of 0 for the scheme Σ.

We are now in position to describe our 1-out-of-q OT combiner in the case
that the adversary structure A admits an ideal Fq-LSSS. The protocol runs
between a sender Alice and a receiver Bob, who communicate through a set of
n servers S1, . . . , Sn that implement the ideal 1-out-of-q OT functionality FOT
(described in Figure 2). The proposed construction is defined in Figure 5 below.
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Our 1-out-of-q OT Combiner πOT

πOT .Choose(b): Given b ∈ Fq, compute a sharing [b]Σ = (b1, . . . , bn) of b using Σ.
Note that each bi ∈ Fq because Σ is ideal.
Output (b1, . . . , bn).

πOT .Send(m0, . . . ,mq−1): For each message mk, independently compute a sharing

[mk]Sk = (m
(i,j)
k )(i,j)∈Pn,q .

Then, for each (i, j) ∈ Pn,q, compute the values

uji := m
(i,j)
0 ||m(i,j)

1 || · · · ||m(i,j)
q−1 .

Output (uji )(i,j)∈Pn,q .
πOT .Reconstruct(b, (v1, . . . , vn)): Parse each vi as

vi = n
(i)
0 ||n

(i)
1 || · · · ||n

(i)
q−1,

where n
(i)
k ∈ Fq for each i ∈ Pn.

If b = k, retrieve mb by evaluating

ReconstructSk ((n
(i)
k )i∈Pn).

If the reconstruction fails at any step, output 0.
Otherwise, output the reconstructed message mb.

Fig. 5. Our 1-out-of-q OT combiner πOT in the case where the access structure A
admits an ideal Fq-LSSS Σ.

Remark 2. In the Choice phase, Bob sends a total of n log q bits to servers. In the
Sending phase, Alice sends a total of q2n log q bits to the servers. In the Transfer
phase, servers send a total of n log q bits to Bob. Hence, the communication
complexity is (q2 + q + 1)n log q.

Remark 3. For q ≥ n, there exists an ideal threshold secret sharing scheme Σ
with adversary structure A = {A ⊆ Pn : |A| < n/2}.

4 Correctness of our OT Combiner

This section deals with the correctness of our 1-out-of-q OT combiner. In Sec-
tion 4.1, we present the used correctness definitions. Then, in Section 4.2 we
prove the correctness of our construction.

4.1 Correctness Definitions

The correctness property of OT combiners refers to the fact that, in the eyes
of the receiver Bob, the produced protocol should always implement the OT
functionality correctly. To define correctness, we need to consider two scenarios:
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one where the sender Alice follows the protocol honestly, and one where she may
act maliciously.

In the first scenario all participants behave honestly. Here, we must ensure
that, assuming all servers correctly implement the OT functionality and that
parties follow the protocol honestly, the protocol produced by the combiner
implements the OT functionality correctly. Hence, we have to show that the
message retrieved by Bob in the execution of the OT combiner is exactly the
one that he should receive as per the OT functionality.

This first approach to correctness is expressed by the zero-error property,
which we formalize in the following definition.

Definition 8. An OT combiner π is zero-error if for every message index b ∈ Fq
and for any q messages m0, . . . ,mq−1 we have that

mb ← π.Reconstruct(b, (ub11 , . . . , u
bn
n )),

where (b1, . . . , bn)← π.Choose(b) and (uji )(i,j)∈Pn,q
← π.Send(m0, . . . ,mq−1).

In the second scenario, we consider a malicious sender Adv and an honest
receiver B. We assume that Adv corrupts a set A ∈ A of servers, where A ⊆ 2Pn

is an adversary structure preset according to the threat model of Adv, and where
Pn represents the set of servers. We assume that Adv can see the inputs (bi)i∈A of
B, and that she can also fix the messages (zi)i∈A that B receives. Furthermore,
she arbitrarily chooses inputs (u0i , . . . , u

q−1
i )i∈A for the non-corrupted servers

in A.
Here correctness states that, regardless of how the malicious sender generates

input for each server, the obtained protocol is still an OT protocol. That is, the
message index b chosen by B should determine one and only one message, even
if it is malformed (i.e. ⊥, due to the malicious behavior of Alice). In particular,
the received message, which is computed using π.Reconstruct, should exclusively
depend on b (and not on the randomness associated to the sharing of b sent
by B).

This second approach to correctness is formalized in the following definition,
which uses the simulation paradigm [42], and which compares the execution of
the protocol in the real world and in the ideal world.

In the real world, Adv and B interact through an OT combiner protocol π.
The receiver B starts by choosing a message index b ∈ Fq, and distributes each
element bi of the output of π.Choose(b) to each server. The adversary Adv is
assumed to completely corrupt every server in a set A ∈ A, and so she sees all
the inputs (bi)i∈A of B on those servers. Since the corruption is malicious, Adv
also controls the outputs of servers in A, and so she chooses which output values
zi are received by B for i ∈ A. Non-corrupted servers i ∈ A are assumed to
behave as the ideal FOT functionality, so Adv sends q messages u0i , . . . , u

q−1
i to

each of them and learns no information from that interaction.
In the ideal world, the whole view and output of Adv is controlled by the

simulator Sim, and Sim and B interact exclusively through the ideal OT func-
tionality FOT . Because of this, the adversary Adv does not receive anything from
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the interaction. By processing all the output that the adversary Adv generates,
Sim produces a set of messages m̃0, . . . , m̃q−1 and handles them to the FOT func-
tionality, which outputs the message m̃b to B for the requested message index
b ∈ Fq.

In order to ensure that π behaves as an OT protocol in this setting, we should
guarantee the indistinguishability between the reconstruction output by B in the
real world and the view of B in the ideal world.

Definition 9. Let π be a 1-out-of-q, n-server OT combiner protocol, and let
FOT denote the ideal 1-out-of-q OT functionality. Let Adv denote the adversary-
controlled malicious sender, which is assumed to corrupt the set of servers in-
dexed by some set A ∈ A. Let B denote the honest receiver, and let Sim =
(Sim1,Sim2) be a stateful simulator. We define the probabilistic experiments
RealπAdv,B() and IdealFOT

Adv,B,Sim() as follows:

RealπAdv,B() :

b← B()

(b1, . . . , bn)← π.Choose(b)(
(uji )i∈A,j∈Fq

, (zi)i∈A

)
← Adv ((bi)i∈A)

output π.Reconstruct
(
b,
(

(ubii )i∈A, (zi)i∈A

))
IdealFOT

Adv,B,Sim() :

b← B()

(ready)← FOT (transfer, b)

(bi)i∈A ← Sim1()(
(uji )i∈A,j∈Fq

, (zi)i∈A

)
← Adv((bi)i∈A)

(m0, . . . ,mq−1)← Sim2

(
(uji )i∈A,j∈Fq

, (zi)i∈A

)
(sent,mb)← FOT (send,m0, . . . ,mq−1)

output mb

We say that π implements the OT functionality correctly for the receiver against
active A-adversaries if, for every set A ∈ A, for all adversarial senders Adv cor-
rupting the set of servers indexed by A, and for all honest receivers B, there exists
a simulator Sim such that the output values of RealπAdv,B() and IdealFOT

Adv,B,Sim() are
identically distributed, where the probabilities are taken over the random coins
of π, Adv, B and Sim.

4.2 Correctness Proofs

We start with the proof of correctness in the setting where all parties follow the
OT combiner protocol honestly.
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Theorem 3. The OT combiner πOT defined in Figure 5 is zero-error. That is,
πOT implements the 1-out-of-q OT functionality correctly provided both Alice
and Bob are semi-honest.

Proof. If Alice and Bob follow the protocol honestly, at the end of the protocol

Bob receives the values m
(1,b1)
b , . . . ,m

(n,bn)
b for some sharing [b]Σ = (b1, . . . , bn) ∈

Wb of his input b. Since Sb is Wb-OT-compatible by Theorem 2, the set {(1, b1),
. . . , (n, bn)} is authorized for Sb, and thus Bob can use ReconstructSb to recon-
struct the message mb. ut

Now, we consider the case of Definition 9, where Alice is controlled by an
active adversary Adv.

Theorem 4. Let (A,B) be an R2 pair of adversary structures, and assume that
the adversary structure A admits an ideal Fq-LSSS Σ. Then the OT combiner
πOT defined in Figure 5 implements the OT functionality correctly for the re-
ceiver against active A-adversaries (see Definition 9).

Proof. We start by defining the simulator appearing in Definition 9, and we then
compare the output of the ideal experiment to that of the real experiment in the
security definition.

Sim1(): Generate a uniformly random sharing of 0 ∈ Fq,

[0]Σ = (b01, . . . , b
0
n).

Output (b0i )i∈A.
Sim2((uji )i∈A,j∈Fq

, (ui)i∈A): Retrieve, from the state of Sim, the previously gen-

erated sharing [0]Σ = (b0i )i∈Pn
, that was computed in the previous execution

of Sim1.
Generate uniformly random sharings of every nonzero element of Fq,

[1]Σ =(b11, . . . , b
1
n),

...

[q − 1]Σ =(bq−11 , . . . , bq−1n ),

subject to the restriction that bki = b0i for every k ∈ Fq\{0} and for every
i ∈ A. Note that these sharings exist, because A is forbidden for Σ. In
practice, this step requires showing a solution of a compatible system of |A|
linear equations.

Parse each uji as uji = m
(i,j)
0 || · · · ||m(i,j)

q−1 whenever it is possible. If some uji
is not of the specified form (as it has been malformed by Alice), set mk = 0
for every k ∈ Fq such that bki = j.
For every k ∈ Fq, if mk has not already been set to 0 in the previous step,
then try to reconstruct Alice’s input by executing

ReconstructSk

(
{(m(i,bki )

k ) : i ∈ Pn}
)
.

If the reconstruction succeeds, let mk be its output. Otherwise, set mk = 0.
Output (m0, . . . ,mq−1).
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In order to prove indistinguishability remind that, in the real world, Bob
generates a sharing [b]Σ = (b1, . . . , bn) of his input b ∈ Fq. Note that the shares
(bi)i∈A correspond to the set A ∈ A, which is forbidden for Σ. Hence, they are
distributed identically to the A-shares in a uniformly random sharing of any
other b′ 6= b.

Because of the previous observation, the messages
(

(uji )i∈A,j∈Fq
, (zi)i∈A

)
generated by Adv are identically distributed in both the real and the ideal world.
Also because of the previous observation, the A-shares of the sharing [b]Σ =
(b1, . . . , bn) generated in the real world and the shares (bi)i∈A generated by Sim
in the ideal world are indistinguishable.

Therefore, the reconstruction process of the messages mb is carried in exactly
the same way in the real world and in the ideal world. This proves indistinguisha-
bility. ut

5 Security of our OT Combiner

This section deals with the security of our 1-out-of-q OT combiner. In Section 5.1,
discuss the security definition used to capture the security properties of our
construction. Then, in Section 5.2 we prove the security of our construction.

5.1 Security Definitions

The security notion considered by Cascudo et al. [15] is called unconditional
security. An OT combiner is unconditionally secure if its security rests solely
on the security assumptions of the OT candidate implementations. That is, if,
provided the security of sufficiently many OT candidates holds, the resulting OT
protocol is perfectly secure. Therefore, unconditional security guarantees that
any attack on an OT combiner must forcibly break the security of sufficiently
many of the OT candidate implementations in order to be successful.

As in [15], an OT combiner is called perfectly secure if it is both uncondi-
tionally secure and zero-error (see Definition 8 above).

In order to capture the notion of unconditional security, we formalize it into
a simulator-based security definition [42]. We now give the definition of secu-
rity that we employ in our work, namely perfect security against active (A,B)-
adversaries, which is adapted from [16,15] and uses the Universal Composability
framework [14].

Given two adversary structures A,B ⊆ 2Pn , where Pn represents the set of
servers, our security definition protects against two types of malicious adver-
saries: one that corrupts the sender Alice and a set of servers A ∈ A, and one
that corrupts the receiver Bob and a set of servers B ∈ B. This respectively
corresponds to the case that a set A ∈ A of the OT candidates are insecure
for the receiver, and to the case that a set B ∈ B of the OT candidates are
insecure for the sender. To deal with the Alice corruption case, we define the
notion of perfect security for the receiver against active A-adversaries, and in
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the Bob corruption case we define the notion of perfect security for the sender
against active B-adversaries.

In the Alice corruption case, we consider a malicious (i.e., active) adversary
Adv that controls the sender Alice, that interacts with an honest receiver B, and
that is able to eavesdrop and fully operate each server in a set A ∈ A. Our
security aim here is to protect the confidentiality of the receiver’s choice b ∈ Fq.
Hence, the ability to corrupt the servers in A ∈ A must give Adv no information
on b.

This definition uses the simulation paradigm [42], and compares the execution
of the protocol in the real world and in the ideal world. In the real world, Adv and
B interact through an OT combiner protocol π. The setting of this experiment is
equivalent to that of Definition 9. In the ideal world, the whole view and output
of Adv is controlled by the simulator Sim, and Sim and B interact exclusively
through the ideal OT functionality FOT . Because of this, in the ideal experiment
the adversary Adv does not receive anything from the interaction.

To provide security against malicious senders, Sim takes all the information
viewed by Adv in the ideal world, which is the one herself produced, so as to
transform it to a view that should be indistinguishable to the information seen
by Adv in the real world, which includes the private inputs of B on the corrupted
servers.

Definition 10. Let π be a 1-out-of-q, n-server OT combiner protocol, and let
FOT denote the ideal 1-out-of-q OT functionality. Let Adv denote an adversary-
controlled malicious sender, which is assumed to corrupt all the servers indexed
by some set A ∈ A. Let B denote an honest receiver, and let Sim = (Sim1,Simout)
be a stateful simulator. We define the probabilistic experiments RealπAdv,B() and

IdealFOT

Adv,B,Sim() as follows:

RealπAdv,B() :

b← B()

(b1, . . . , bn)← π.Choose(b)(
(uji )i∈A,j∈Fq

, (zi)i∈A

)
← Adv ((bi)i∈A)

output
(

(bi)i∈A, (u
j
i )i∈A,j∈Fq

, (zi)i∈A

)
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IdealFOT

Adv,B,Sim() :

b← B()

(ready)← FOT (transfer, b)

(bi)i∈A ← Sim1()(
(uji )i∈A,j∈Fq

, (zi)i∈A

)
← Adv((bi)i∈A)

output Simout

(
(uji )i∈A,j∈Fq

, (zi)i∈A

)
We say that π is perfectly secure for the receiver against active A-adversaries
if, for every set A ∈ A, for all adversarial senders Adv corrupting the set of
servers indexed by A, and for all honest receivers B, there exists a simulator
Sim such that the output values of RealπAdv,B() and IdealFOT

Adv,B,Sim() are identically
distributed, where the probabilities are taken over the random coins of π, Adv, B
and Sim.

In the Bob corruption case, we consider a malicious (i.e., active) adversary
Adv that controls the receiver Bob, that interacts with an honest sender A,
and that is able to eavesdrop on and fully operate each server in a set B ∈ B.
Our security aim here is to protect the confidentiality of the sender’s messages
m0, . . . ,mq−1. Hence, the ability to corrupt the servers in B ∈ B must give
Bob no information on m0, . . . ,mq−1 other than possibly one chosen message.
As the previous definition, this definition uses the simulation paradigm [42] and
compares the execution of the protocol in the real world and in the ideal world.

In the real world, A and Adv interact through an OT combiner protocol π.
The sender A, who is assumed to act honestly, holds messages m0, . . . ,mq−1 and

generates the input u0i , . . . , u
q−1
i that is sent to server Si for every i ∈ Pn. The

adversary Adv is assumed to completely corrupt every server in a set B ∈ B, and
so he sees all the inputs (uji )i∈B,j∈Fq . He also acts as the receiver, generating an

input bi for the rest of servers i ∈ B. Since the servers i ∈ B are assumed to
behave as the ideal FOT functionality, Adv receives (ubii )i∈B and learns no other
information from that interaction.

In the ideal world, the whole view and output of Adv is controlled by the
simulator Sim, and Sim and A interact through the ideal OT functionality FOT .
By processing all the output that the adversary Adv generates, Sim produces a
message index b̃ and handles it to the FOT functionality. Then, after the sender
A has sent the messages m0, . . . ,mq−1 to FOT , the adversary Adv receives the
message mb̃. To provide security against malicious receivers, Sim takes all the
information viewed by Adv in the ideal world, so as to transform it to a view
that should be indistinguishable to the one of the real world.

Definition 11. Let π be a 1-out-of-q, n-server OT combiner, and let FOT de-
note the 1-out-of-q OT functionality. Let Adv denote an adversary-controlled
malicious receiver, which is assumed to corrupt all the servers indexed by some
set B ∈ B. Let A denote an honest sender, and let Sim = (Sim1,Sim2,Simout)
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be a stateful simulator. We define the probabilistic experiments RealπA,Adv() and

IdealFOT

A,Adv,Sim() as follows:

RealπA,Adv() :

(m0, . . . ,mq−1)← A()

(uji )(i,j)∈Pn,q
← π.Send(send,m0, . . . ,mq−1)

(bi)i∈B ← Adv
(

(uji )i∈B,j∈Fq

)
output

(
(uji )i∈B,j∈Fq , (u

bi
i )i∈B , (bi)i∈B

)
IdealFOT

A,Adv,Sim() :

(uji )i∈B,j∈Fq
← Sim1()

(bi)i∈B ← Adv
(

(uji )i∈B,j∈Fq

)
b̃← Sim2

(
(bi)i∈B

)
(ready)← FOT (transfer, b̃)

(m0, . . . ,mq−1)← A()

(sent,mb̃)← FOT (send,m0, . . . ,mq−1)

output Simout

(
b̃,mb̃, (bi)i∈B

)
We say that π is perfectly secure for the sender against active B-adversaries if,
for every B ∈ B, for all adversarial receivers Adv corrupting the set of servers
indexed by B, and for all honest senders A, there exists a simulator Sim such that
the output values of RealπA,Adv() and IdealFOT

A,Adv,Sim() are identically distributed,
where the probabilities are taken over the random coins of π, A, Adv and Sim.

The two previous definitions, on top of the correctness definitions, make up
the security definition considered in this work, namely perfect security against
active (A,B)-adversaries. We formally state this as follows.

Definition 12. Let π be a 1-out-of-q, n-server OT combiner, and let A,B ⊆
2Pn . We say that π is perfectly secure against active (A,B)-adversaries if it
is perfectly secure for the sender against active B-adversaries and for the re-
ceiver against active A-adversaries, it is zero-error, and it implements the OT
functionality correctly for the receiver against active A-adversaries.

Finally, we state a result that characterizes the pairs (A,B) of adversary
structures for which perfectly secure OT combiners are known to be impossible
to attain.

Proposition 1 ([16]). If (A,B) is not an R2 pair of adversary structures, then
perfectly secure OT combiners against active (A,B)-adversaries cannot exist.
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5.2 Security Proofs

The following theorem states the security properties of our construction.

Theorem 5. Let (A,B) be an R2 pair of adversary structures, and assume that
the adversary structure A admits an ideal Fq-LSSS Σ. Then the OT combiner
πOT defined in Figure 5 is perfectly secure against active (A,B)-adversaries (see
Definition 12).

Before proceeding with a proof, we need to prove the following lemma. Sup-
pose that an adversary controlling Bob corrupts a set B ∈ B of servers. As a
consequence of this lemma, if the shares (bi)i∈B sent to non-corrupted servers

in B do not correspond to any sharing [b]Σ of b, the adversary can not get any
information on the message mb.

Lemma 3. Let m0, . . . ,mq−1 ∈ Fq be arbitrary messages, and fix independent

sharings [mk]Sk = (m
(i,j)
k )(i,j)∈Pn,q

for every k ∈ Fq. Let B ⊆ {1, . . . , n} and
(b′1, . . . , b

′
n) ∈ Fnq , and define the set H ⊆ Pn,q by

H = {(i, b′i) : i ∈ B} ∪ {(i, j) : i ∈ B, j ∈ Fq}.

Fix b ∈ Fq. Then, if the shares (b′i)i∈B are not part of any sharing [b]Σ, the
shares

{m(i,j)
k : (i, j) ∈ H, k ∈ Fq}

give no information about mb.

Proof. Since the sharing of every message is done independently, the only shares

that could potentially give any information on mb are (m
(i,j)
b )(i,j)∈H. Hence, we

need to prove thatH is forbidden for Sb. Since Sb is Wb-OT-compatible and since
H ∈ ∆, if H were authorized for Sb then H ∈ ΓWb

, and thus it would contain
a set {(1, b1), . . . , (n, bn)} for some (b1, . . . , bn) ∈ Wb. However, then necessarily
bi = b′i for all i ∈ B, and this would mean that (b′i)i∈B belongs to a sharing [b]Σ ,
a contradiction. ut

We can now proceed to the proof of Theorem 5.

Proof. Correctness is proved in Theorems 3 and 4. The rest of the proof is split
in two parts, corresponding to Definitions 10 and 11. In each case, we define the
simulators and compare the output of the ideal experiment to that of the real
experiment.

Perfect security for the receiver against active A-adversaries:

Sim1(): Generate a uniformly random sharing of 0 ∈ Fq,

[0]Σ = (b01, . . . , b
0
n).

Output (b0i )i∈A.
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Simout((u
j
i )i∈A,j∈Fq

, (zi)i∈A): Retrieve, from the state of Sim, the sharing [0]Σ =

(b0i )i∈Pn
that was generated in the previous execution of Sim1.

Output
(

(b0i )i∈A, (u
j
i )i∈A,j∈Fq

, (zi)i∈A

)
.

We prove indistinguishability in a similar fashion than in Theorem 4.
Note that the shares (bi)i∈A that the adversary Adv takes as input correspond

to the set A ∈ A, which is forbidden for Σ. Because of this, these shares are
distributed identically to theA-shares in a uniformly random sharing of any other
b′ 6= b (in particular, of 0 ∈ Fq). Moreover, they do not carry any information

on b, so the messages
(

(uji )i∈A,j∈Fq
, (zi)i∈A

)
generated by Adv are identically

distributed in both worlds.
Since the shares (bi)i∈A do not allow to distinguish between the real and the

ideal world, we have proved indistinguishability.

Perfect security for the sender against active B-adversaries:

Sim1(): For every k ∈ Fq, choose m′k ∈ Fq at random and generate the sharing

[m′k]Sk = (m′
(i,j)
k )(i,j)∈Pn,q

.

Then, create the values uji = m′
(i,j)
0 || · · · ||m′(i,j)q−1 for every (i, j) ∈ B × Fq.

Output (uji )i∈B,j∈Fq
.

Sim2((bi)i∈B): Try to reconstruct the input b of the adversary Adv by executing
the ReconstructΣ function over the input to non-corrupted servers, i.e., by
executing ReconstructΣ((bi)i∈B).

If the reconstruction succeeds, output the reconstructed message index b̃.
If the reconstruction fails, output ⊥.

Simout(b̃,mb̃, (bi)i∈B): Retrieve, from the state of Sim and for every k, the

messages m′k, the sharings [m′k]Sk = (m′
(i,j)
k )(i,j)∈Pn,q

and the messages

(uji )i∈B,j∈Fq
that were generated in the previous execution of Sim1.

Proceed as follows, depending on whether the reconstruction in Sim2 failed
or not:
– If b̃ 6= ⊥, let m̃b̃ = mb̃ and m̃k = m′k for k ∈ Fq \ {b̃}. Then, generate a

sharing

[m̃b̃]Sb̃ = (m′
(i,j)

b̃
)(i,j)∈Pn,q

subject to the restriction that m̃
(i,j)

b̃
= m′

(i,j)

b̃
for every (i, j) ∈ B × Fq

(note that this is possible, since B × Fq is forbidden for S0, . . . ,Sq−1).

For every k ∈ Fq \ {b̃}, set

m̃
(i,j)
k = m′

(i,j)
k for every (i, j) ∈ Pn,q.

– If b̃ = ⊥ then, for every k ∈ Fq, let

m̃k = m′k

m̃
(i,j)
k = m′

(i,j)
k for every (i, j) ∈ Pn,q.
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Create the values ubii = m̃
(i,bi)
0 || · · · ||m̃(i,bi)

q−1 for every i ∈ Pn.

Output
(

(uji )i∈B,j∈Fq
, (ubii )i∈B , (bi)i∈B

)
.

In order to prove indistinguishability we first note that, by Lemma 1, the set
B is authorized for Σ. By the definition of Sk, we see that at least one share per
server is needed to reconstruct a message. Hence, the set B × Fq is forbidden

for S0, . . . ,Sq−1, and so the shares (uji )i∈B,j∈Fq do not hold any information
on the messages m0, . . . ,mq−1. Therefore, the shares (bi)i∈B generated by the
adversary Adv in the real world and in the ideal world are identically distributed.

Now, since B is authorized for Σ, we have two possibilities regarding the
shares (bi)i∈B received by Sim: either they are part of a sharing [b]Σ , or they are
not part of any sharing under Σ (due to the malicious behavior of Adv).

In the first case, Sim2 successfully reconstructs b. The set

{(i, bi) : i ∈ B} ∪ (B × Fq)

is then authorized for Sb and, by Lemma 3, it is forbidden for all the other Fq-
LSSS Sk. Since the sharings formb generated by Simout are distributed identically
to those of the real world, this proves indistinguishability.

In the second case, Lemma 3 shows that the shares output by Simout give no
information about mb. Therefore, since here Simout generates them from random
messages, they obey the same distribution as in the real world, as required. ut

Finally, we can prove Theorem 1.

Proof (Theorem 1). It follows from Remark 2, Remark 3, and Theorem 5.

6 Conclusions

This work tackles OT combiners for 1-out-of-q OT protocols in the case that
q ≥ 2 is a prime power. In this case, we build a 1-out-of-q OT combiner by
extending the work of Cascudo, Damg̊ard, Farràs and Ranellucci [15], which in
turn is based in the construction by Ishai, Maji, Sahai and Wullschleger [35]. Our
OT combiner is black-box and single-use. The construction in [15], as ours, is
proved secure against malicious adversaries corrupting either one of the parties
and a certain set of OT candidates.

The main obstacle when trying to extend the construction in [15] was building
an ideal Fq-linear secret sharing scheme for ΓW where W ⊆ Fnq is an affine space,
because it is not possible. That is, ΓW is not ideal, in general. We circumvent
this problem by relaxing the restrictions on the access structure. We introduce
the notion of W -OT-compatible secret sharing schemes, and we present one such
scheme that fits our needs. We think that this construction is of independent
interest. Characterizing the W ⊆ Fnq for which ΓW admits efficient schemes is an
interesting open problem that is also related to the efficiency of CDS protocols.

We also extend the security and consistency notions of [15] to the 1-out-of-
q case, and we present them in an explicit and formal form. The consistency
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and the security of our construction are proved according to these definitions.
In particular, our construction uses the security notion of [16,15], called perfect
security against active (A,B)-adversaries.

Consider the particularly interesting case where adversaries are allowed to
corrupt at most t servers for some t < n/2, or more generally, where (A,B) is
an R2 pair of adversary structures satisfying

(Pn

t

)
⊆ A,B. By [16], there exists

a single-use 1-out-of-q OT combiner that is perfectly security against active
adversaries for t = b0.11nc. Increasing t in their case could take away the single-
use property. In our construction, by choosing q ≥ n and t = dn/2e − 1, we
can take Σ as the (t+ 1)-threshold Shamir Fq-LSSS and achieve perfect security
while keeping the single-use property.

In the Sending phase of our protocol, we share each of the q messages inde-
pendently. For q = 2, this process was improved in [16] by creating sharings of the
two messages at the same time, which reduces the number of shares from 4n to
2n. The scheme in [16] can be seen as a multi-secret sharing scheme [38,12,28]. In
such schemes, n shares are generated from a sequence of k > 1 secrets, and each
secret can be recovered from the shares, but each secret has its own access struc-
ture. Observe that we can define our 1-out-of-q construction from multi-secret
sharing schemes. Since our multi-secret sharing scheme is just a combination of
independent secret sharing schemes, we decided simplify the notation. However,
a research line in the direction of this work is to build more efficient 1-out-of-q
OT-combiners with multi-secret sharing schemes.
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28 O. Farràs, J. Ribes-González
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schemes. Inf. Process. Lett. 112(17-18), 667–673 (2012)

29. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)

30. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing. pp.
218–229. STOC ’87, ACM, New York, USA (1987)

31. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. IACR Cryptology ePrint Archive 2010, 153
(2010)

32. Harnik, D., Ishai, Y., Kushilevitz, E., Buus Nielsen, J.: OT-combiners via secure
computation. In: Canetti, R. (ed.) Theory of Cryptography. pp. 393–411. Springer,
Berlin, Heidelberg (2008)

33. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for
oblivious transfer and other primitives. In: Cramer, R. (ed.) Advances in Cryptol-
ogy – EUROCRYPT 2005. pp. 96–113. Springer, Berlin, Heidelberg (2005)

34. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (Mar
1999)

35. Ishai, Y., Maji, H.K., Sahai, A., Wullschleger, J.: Single-use OT combiners with
near-optimal resilience. In: International Symposium on Information Theory. pp.
1544–1548. IEEE (2014)

36. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious trans-
fer — efficiently. In: Proceedings of the 28th Annual Conference on Cryptology:
Advances in Cryptology. pp. 572–591. CRYPTO 2008, Springer-Verlag, Berlin,
Heidelberg (2008)

37. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan, Part III 72(9), 56–64 (1989)

38. Jackson, W., Martin, K.M., O’Keefe, C.M.: Multisecret threshold schemes. In:
CRYPTO93. LNCS, vol. 773, pp. 126–135 (1994)

39. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing. pp. 20–31. STOC
’88, ACM, New York, USA (1988)

40. Kilian, J., Micali, S., Ostrovsky, R.: Minimum resource zero-knowledge proofs.
In: Brassard, G. (ed.) Advances in Cryptology — CRYPTO’ 89 Proceedings. pp.
545–546. Springer, New York (1990)

https://eprint.iacr.org/2012/135
https://eprint.iacr.org/2012/135
https://doi.org/10.1109/TIT.2020.3005706


One-out-of-q OT Combiners 29

41. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
prf with applications to private set intersection. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. pp. 818–829.
CCS ’16, ACM, New York, USA (2016)

42. Lindell, Y.: How to simulate it - a tutorial on the simulation proof technique. In:
Tutorials on the Foundations of Cryptography (2016)

43. Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret sharing. In:
Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018. pp. 699–708. ACM (2018)

44. Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponential barrier for
general secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology
- EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10820, pp. 567–596.
Springer (2018)

45. Meier, R., Przydatek, B.: On robust combiners for private information retrieval and
other primitives. In: Dwork, C. (ed.) Advances in Cryptology - CRYPTO 2006. pp.
555–569. Springer, Berlin, Heidelberg (2006)

46. Meier, R., Przydatek, B., Wullschleger, J.: Robuster combiners for oblivious trans-
fer. In: Vadhan, S.P. (ed.) Theory of Cryptography. pp. 404–418. Springer, Berlin,
Heidelberg (2007)

47. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings
of the Thirty-first Annual ACM Symposium on Theory of Computing. pp. 245–254.
STOC ’99, ACM, New York, USA (1999)

48. Naor, M., Pinkas, B.: Computationally secure oblivious transfer. Journal of Cryp-
tology 18(1), 1–35 (2005)
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30 O. Farràs, J. Ribes-González
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A Proof of Theorem 2

To prove this theorem, we first need the following technical lemma.

Lemma 4. Let Fq be a finite field with q ≥ 2 and V ⊂ Fnq be a vector sub-
space. Let t ≤ n and y1, . . . , yt ∈ Fq. If (y1, . . . , yt, xt+1, . . . , xn) /∈ V for every
xt+1, . . . , xn ∈ Fq, then there exists h ∈ V ⊥ such that y1h1 + · · ·+ ytht = 1 and
ht+1 = · · · = hn = 0.

Proof. The lemma holds for t = n since, given y = (y1, . . . , yn) /∈ V , there always
exists an h ∈ V ⊥ such that 〈y,h〉 = 1.

Now, assume that t < n, and that we have y1, . . . , yt ∈ Fq such that

(y1, . . . , yt, xt+1, . . . , xn) /∈ V for all xt+1, . . . , xn ∈ Fq.

By induction hypothesis we have that, for every x ∈ Fq, there exists an
hx = (hx1 , . . . , h

x
n) ∈ V ⊥ such that

t∑
i=1

yih
x
i + xhxt+1 = 1

hxt+2 = · · · = hxn = 0.

If hxt+1 = 0, for some x ∈ Fq, then hx satisfies the lemma. Otherwise, by
the pigeonhole principle, let x and x′ be two distinct elements of Fq such that

hxt+1 = hx
′

t+1 6= 0. Define

h =
hx − hx

′

hxt+1(x′ − x)
∈ V ⊥.

Since h = (h1, . . . , hn) satisfies ht+1 = · · · = hn = 0 and

y1h1 + · · ·+ ytht =
1

hxt+1(x′ − x)

(
t∑
i=1

yih
x
i −

t∑
i=1

yih
x′

i

)

=
1

hxt+1(x′ − x)

(
(1− xhxt+1)− (1− x′hx

′

t+1)
)

= 1

we have that h satisfies the lemma. ut

We next prove Theorem 2.
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Proof. In order to share a secret m ∈ Fq in the considered scheme Sk, the sender

chooses r1, . . . , rn−1 ∈ Fq uniformly at random, sets rn = m −
∑n−1
i=1 ri and

chooses h = (h1, . . . , hn) ∈ V ⊥ uniformly at random. The share of participant
(i, j) is, then m(i,j) = ri + (ki − j)hi, where k = (k1, . . . , kn) is a sharing of k
using the ideal Fq-LSSS Σ, and we denote Wk = k + V . This scheme is ideal,
since each participant in Pn,q is assigned a single share in Fq, and it is Fq-linear.

Now we prove that the access structure Γ of the considered secret sharing
scheme is Wk-OT-compatible.

On one hand, we must prove that ΓWk
∩∆ ⊆ Γ ∩∆. Let w = (w1, . . . , wn) ∈

W and setA = {(1, w1), . . . , (n,wn)}. Since w = k+v for some v = (v1, . . . , vn) ∈
V , we have

∑
(i,j)∈A

m(i,j) =

n∑
i=1

(ri + (ki − wi)hi) =

n∑
i=1

ri − 〈v,h〉 =

n∑
i=1

ri = m

and so {(1, w1), . . . , (n,wn)} ∈ minΓ for every w ∈Wk. Hence, ΓWk
⊆ Γ .

On the other hand, we prove Γ ∩∆ ⊆ ΓWk
∩∆ by showing that, for every

A ∈ ∆, if A /∈ ΓWk
then A /∈ Γ . Assume, without loss of generality, that

A = {(1, v1), . . . , (t, vt)} ∪ Pt+1 ∪ · · · ∪ Pn.

Hence, we have that (v1, . . . , vt, xt+1, . . . , xn) /∈ Wk for every xt+1, . . . , xn ∈
Fq. By the previous lemma, there exists an h = (h1, . . . , hn) ∈ V ⊥ such that∑t
i=1(vi − ki)hi = 1 and ht+1 = · · · = hn = 0.
By considering such an h ∈ V ⊥ and the following choice of randomness

ri = (vi − ki)hi for i = 1, . . . , t,

ri = 0 for i = t+ 1, . . . , n,

we get a sharing of the message m = 1 such that m(i,j) = 0 for every (i, j) ∈ A.
The theorem follows by applying Lemma 2. ut

B Examples of W -OT-Compatible Access Structures

We now give examples of W -OT-compatible access structures.

Example 1. Consider the ΓW access structure defined as follows. Let n = q = 3.
Then,

P1 = {(1, 0), (1, 1), (1, 2)} , P2 = {(2, 0), (2, 1), (2, 2)} , P3 = {(3, 0), (3, 1), (3, 2)}

P3,3 = P1 ∪ P2 ∪ P3

Let W = 〈(0, 1, 2), (1, 0, 2)〉 ⊆ F3
3. The vector subspace W has 9 vectors, and

so ΓW has 9 minimal authorized subsets. It can be checked that ΓW does not
admit an ideal linear secret sharing scheme [21,27]. Indeed, ΓW is not a matroid
port, and so the information ratio of schemes realizing it is at least 3/2.
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Example 2. Let n = q = 3 as in the previous example. Then,

∆ = {A ⊆ P3,3 : |A ∩ Pi| = 0, 1 or 3 for i = 1, 2, 3}.

Note that |∆| =
((

3
0

)
+
(
3
1

)
+
(
3
3

))3
= 125. Let W ⊆ F3

3 be the affine subspace
defined by W = k + V , where

k = (1, 1, 1)

V = 〈(1, 0, 2)〉F3
= {(0, 0, 0), (1, 0, 2), (2, 0, 1)} ,

so W = {(1, 1, 1), (2, 1, 0), (0, 1, 2)}. The access structure ΓW on P3,3 is defined
by the minimal access structure

minΓW = {{(1, 1), (2, 1), (3, 1)}, {(1, 2), (2, 1), (3, 0)}, {(1, 0), (2, 1), (3, 2)}} .

We note that ΓW is triviallyW -OT-compatible. To illustrateW -OT-compatibility,
consider now the access structures Γ1, Γ2, Γ3 on P3,3 determined by

minΓ1 = {{(1, 1), (2, 1), (3, 1)}, {(1, 2), (2, 1), (3, 0)}}
minΓ2 = {(2, 1)}
minΓ3 = minΓW ∪ {(1, 1), (2, 1), (3, 2), (3, 3)}

Since {(1, 0), (2, 1), (3, 2)} is in ΓW ∩ ∆ but not in Γ1, we have that Γ1 is not
W -OT-compatible. As for Γ2, while ΓW ⊆ Γ2, we have sets of Γ2 ∩∆, such as
P2 or {(1, 1), (2, 1), (3, 2)}, that do not belong to ΓW . In general, any W -OT-
compatible access structure Γ must satisfy minΓW ⊆ minΓ .

Lastly, we see that Γ3 is W -OT-compatible. This is because, for any set
A ∈ Γ3∩∆ that contains {(1, 1), (2, 1), (3, 2), (3, 3)}, we have that (1, 1) ∈ A∩P1,
that (2, 1) ∈ A ∩ P2 and A ∩ P3 = P3. Hence, A contains {(1, 1), (2, 1), (3, 1)},
and so Γ3 ∩ ∆ ⊆ ΓW ∩ ∆. This demonstrates that W -OT-compatible access
structures may have minimal access structure outside of minΓW .

C Our One-out-of-q OT Combiner in the Non-Ideal Case

In this section, we show how our protocol πOT from Section 3.3 extends to the
general case where the adversary structure A does not necessarily admit an ideal
Fq-linear secret sharing scheme.

C.1 OT-Compatible Secret Sharing Schemes

Let Σ be an Fq-linear secret sharing scheme for n participants with adversary

structure A. Since Σ is now not necessarily ideal, if [b]Σ = (b̃1, . . . , b̃n) is a
sharing of b using Σ, we note that each share b̃i belongs to some vector space
Ei = F`iq for some integer `i ≥ 1. Hence, unlike in the ideal case, b̃i may not
correspond to a message index, and in this case Bob can not just send the share
b̃i to each server Si.
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Instead, denote by ` =
∑n
i=1 `i the complexity of Σ. Rather than looking

at the sharings (b̃1, . . . , b̃n) as elements of F`1q × · · · × F`nq , we concatenate their

components and we see them as elements of the vector space F`q. Denote the
corresponding vector space isomorphism by

ϕ : F`1q × · · · × F`nq → F`q.

According to this, given Σ with the ShareΣ function, we can define the scheme
Σ′ on {1, . . . , `} with E′i = Fq for every i, satisfying that [b]Σ′ = ϕ([b]Σ) =
(b1, . . . , b`) for every b ∈ Fq, where each bi ∈ Fq.

As in the previous section, let V ′ ⊆ F`q denote the vector space consisting of

all the sharings of 0 under the scheme Σ′. Given any b ∈ Fq, let W ′b ⊆ F`q be the
affine subspace of sharings of b for Σ′.

Given k ∈ Fq, we instantiate the Fq-LSSS S ′k associated to the affine subspace
W ′k in Figure 6. The scheme S ′k is now defined on the set of `q participants P`,q
and it is Fq-linear and ideal.

The Secret Sharing Scheme S ′k

To share a message m ∈ Fq, first
– let k = (k1, . . . , k`) ∈ F`q be a sharing of k using Σ′

– sample r1, . . . , r`−1 ∈ Fq uniformly at random, and let r` = m−
∑`−1
i=1 ri

– sample h = (h1, . . . , h`) uniformly at random from (V ′)⊥

For every i ∈ P` and for every j ∈ Fq, define the (i, j)-th share as

m(i,j) = ri + (ki − j)hi.

Fig. 6. The Fq-LSSS S ′k related to the affine subspace W ′k ⊆ F`q.

As in the previous case, if A ⊆ P`,q contains a set A′ ∈ minΓW ′
k

of the form
A′ = {(1, b1), . . . , (`, b`)}, where b = (b1, . . . , b`) ∈ W ′k, we can then define the

function ReconstructS′
k

on the shares (m
(i,j)
k )(i,j)∈A of the message mk as

ReconstructS′
k

(
(m

(i,j)
k )(i,j)∈A

)
=
∑̀
i=1

m
(i,bi)
k

To see that this function effectively retrieves mk, note that

∑̀
i=1

m
(i,bi)
k =

∑̀
i=1

(ri + (ki − bj)hi) =
∑̀
i=1

ri + 〈k− b,h〉 = mk

since
∑`
i=1 ri = m, k,b ∈W ′k (so k− b ∈ V ′) and h ∈ V ′⊥.

As a direct consequence of Theorem 2 we have that, for every k ∈ Fq, the
secret sharing schemes S ′k are Fq-linear, perfect, ideal and W ′k-OT-compatible.
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C.2 Our One-out-of-q OT Combiner in the Non-Ideal Case

We now generalize the 1-out-of-q OT combiner presented previously to the case
where Σ is not ideal. The obtained 1-out-of-q OT combiner is now `-server
(instead of n-server), and it is still single-use and black-box. We describe it in
Figure 7.

Our 1-out-of-q OT Combiner Protocol π′OT

π′OT .Choose(b): Given b ∈ Fq, compute a sharing [b]Σ′ = (b1, . . . , b`) of b using Σ′.
Note that each bi ∈ Fq because Σ′ is ideal.
Output (b1, . . . , b`).

π′OT .Send(m0, . . . ,mq−1): For each message mk, independently compute a sharing

[mk]S′
k

= (m
(i,j)
k )(i,j)∈P`,q

.

Then, for every (i, j) ∈ P`,q, compute the values

uji := m
(i,j)
0 ||m(i,j)

1 || · · · ||m(i,j)
q−1 .

Output (uji )(i,j)∈P`,q
.

π′OT .Reconstruct(b, (v1, . . . , vn)): Parse each vi as

vi = n
(i)
0 ||n

(i)
1 || · · · ||n

(i)
q−1,

where n
(i)
k ∈ Fq for each i ∈ P`.

If b = k, retrieve mb by evaluating

ReconstructS′
k
((n

(i)
k )i∈P`).

If the reconstruction fails at any step, output 0.
Otherwise, output the reconstructed message mb.

Fig. 7. Our 1-out-of-q OT combiner π′OT for a general access structure A.

When considering this extension there is, however, a subtlety to take into
account. We originally assumed that we have n OT implementations at our dis-
posal, and an R2 pair (A,B) of adversary structures representing the capabilities
of malicious readers and receivers. Now, the adversary structure A′ is a family
of subsets of P`. Hence, in practice, some of the ` servers may correspond to the
same OT primitive (for example, the first `1 servers if `1 ≥ 2). Given A ∈ A, if a
malicious sender corrupts one of such servers, all of the servers implementing the
same OT candidate should also be considered as corrupted and be placed into
A. And conversely, if one of the servers is not corrupted by the sender, none of
them should be placed into A. The same observation applies for the sets B ∈ B
of servers corrupted by a malicious receiver.
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More formally, note that the set of servers is P`, which is in bijection with

P ′ = {(i, j) : i ∈ Pn, j = 1, . . . , `i}.

Given i ∈ Pn denote P ′i = {(i, j) : j = 1, . . . , `i}, so we can express the disjoint
union P ′ = P ′1 ∪ . . . ∪ P ′n. As stated earlier, we may assume that we have n
OT candidates at our disposal, and that the servers in P ′i implement the i-th
OT candidate. Since they implement the same OT candidate, they are either
corrupted or non-corrupted. To account for this, we can replace the adversary
structures in our security and consistency definitions by

A′′ = {∪i∈AP ′i : A ∈ A}, B′′ = {∪i∈BP ′i : B ∈ B}.

Note that, while the actual adversary structure A′ of Σ′ depends on the share
spaces E1, . . . , En of Σ, we know that A′′ ⊆ A′. Therefore, this is consistent
with the use of Σ′. Moreover, since (A,B) is an R2 pair, so is (A′′,B′′).

The notions of correctness and of security introduced earlier, and all their
proofs, translate mutatis mutandis to the non-ideal case by replacing n with `,
A and B with the adversary structures A′′ and B′′, V with V ′, and Wb with W ′b
for every b ∈ Fq.
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