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Abstract. In 1-out-of-q Oblivious Transfer (OT) protocols, a sender
Alice is able to send one of q ≥ 2 messages to a receiver Bob, all while
being oblivious to which message was transferred. Moreover, the receiver
learns only one of these messages. Oblivious Transfer combiners take n
instances of OT protocols as input, and produce an OT protocol that is
secure if sufficiently many of the n original OT instances are secure.
We present new 1-out-of-q OT combiners that are perfectly secure against
active adversaries. Our combiners arise from secret sharing techniques.
We show that given an Fq-linear secret sharing scheme on a set of n
participants and adversary structure A, we can construct n-server, 1-
out-of-q OT combiners that are secure against an adversary corrupting
either Alice and a set of servers in A, or Bob and a set of servers B with
B̄ /∈ A. If the normalized total share size of the scheme is `, then the
resulting OT combiner requires ` calls to OT protocols, and the total
amount of bits exchanged during the protocol is (q2 + q + 1)` log q.
We also present a construction based on 1-out-of-2 OT combiners that
uses the protocol of Crépeau, Brassard and Robert (FOCS 1986). This
construction provides smaller communication costs for certain adversary
structures, such as threshold ones: For any prime power q ≥ n, there
are n-server, 1-out-of-q OT combiners that are perfectly secure against
active adversaries corrupting either Alice or Bob, and a minority of the
OT candidates, exchanging O(qn log q) bits in total.
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1 Introduction

Oblivious Transfer (OT) protocols involve two parties, a sender and a receiver,
which we also respectively name Alice and Bob. The functionality provided by
OT consists in allowing the sender to transfer part of its inputs to the receiver,
while guaranteeing that the sender is oblivious to which part of its inputs is
actually obtained by the receiver. It also guarantees that the receiver is not able
learn more information than it is entitled to as per the protocol.

OT protocols were first introduced by Rabin [45] in 1981. In 1-out-of-2 OT
protocols [23], the sender holds two messages, and the receiver chooses to receive
one of them from the sender. Security here consists in the sender being oblivious
to the message that was actually transferred, and the receiver getting information
on only one of the messages. The type of OT that we study here is called 1-out-
of-q OT. It is a generalization of 1-out-of-2 OT, first presented by Crépeau,



Brassard and Robert [19] in 1986. It lets the sender hold q ≥ 2 messages instead
of just two, and allows the receiver to fetch only one of those messages. The
relevance of OT protocols in cryptography lies in their role as a fundamental
primitive in many cryptographic constructions. The main functionalities OT
has found an application to are secure multi-party computation, zero-knowledge
proofs and bit commitment schemes (see [10,32,33,48], for example).

The security of OT protocols is necessarily conditional, since perfectly secure
OT protocols would yield unconditionally-secure two-party computation by [32],
which is impossible to obtain for some functions (see [11,17]). Hence, the security
of OT protocols is based on computational hardness assumptions such as the
hardness of RSA [45], the DDH assumption [1,10], code-based assumptions [22]
and also lattice-based assumptions [43]. Alternatively, the security of OT can be
guaranteed by the existence of a noisy channel between both parties [20], the
use of hardware tokens [25], restrictions on the storage [13], and other ways. The
conditional security of OT protocols implies that the security guarantees of OT
could be compromised. The standard method to mitigate this concern consists
in grounding security on various assumptions at once, by simultaneously using
several implementations. This motivates the use of OT combiners.

The notion of combiner consists of blending various cryptographic implemen-
tations into one, so that the resulting combination is secure even if some of the
original implementations are insecure. Combiners have been previously studied
in other areas of cryptography, for instance in multi-factor authentication, where
many authentication methods are used concurrently, as well as in cascading of
block ciphers or hybrid key encapsulation.

Using an OT combiner, a set of n candidate implementations of OT can be
merged to realize a single OT protocol. In other words, an OT combiner can be
used to instantiate a protocol between a sender Alice and a receiver Bob that
realizes OT by internally using n candidate OT implementations. The resulting
protocol is secure as long as sufficiently many of the initial implementations were
secure to begin with.

An OT combiner is black-box if, during the combined protocol, the candidate
OT implementations are used in a black-box way, i.e. ignoring their internal
workings. In this work, we only consider black-box OT combiners. Under this
assumption, as in [16], we view OT combiners as server-aided OT protocols. This
means that we model each of the OT candidate implementations as a server
that implements the 1-out-of-q OT functionality, i.e. that receives q messages
m0, . . . ,mq−1 from Alice and an index b from Bob, and outputs the message mb

to Bob. We then say that an OT combiner is n-server if it takes n OT candidates
as input. An OT combiner is single-use if each OT candidate is used only once
during the execution of the protocol. In contrast, an OT combiner is multi-use
if, during the protocol, an OT candidate can be used more than once.

1.1 Related Work

The study of OT combiners was initiated by Harnik, Kilian, Naor, Reingold and
Rosen [27] in 2005. They define the notion of (n, t)-OT combiner, which consists
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in taking n candidate 1-out-of-2 OT implementations and combining them into
a 1-out-of-2 OT protocol that is secure provided at most t of the OT candidates
are faulty. They show that, when t < n/2, there exist (n, t)-OT combiners that
are unconditionally secure against passive (i.e. semi-honest) adversaries. They
prove the tightness of this bound and show that such OT combiners cannot
exist for n = 2, t = 1. They also build a (3, 1)-OT combiner that uses each OT
instance twice.

Meier, Przydatek and Wullschleger [39] present OT combiners that imple-
ment the 1-out-of-2 OT functionality and are unconditionally secure against
passive adversaries that corrupt either Alice and a number tA of OT candidates,
or Bob and tB OT candidates for any tA + tB < n. These protocols were later
called (n, tA, tB)-OT combiners. Their combiner is multi-use, and it makes two
calls to each OT candidate.

Harnik, Ishai, Kushilevitz and Nielsen [26] present a statistically secure (n, t, t)-
OT combiner for t = Ω(n), which makes a constant number of calls to each OT
candidate. Their solution is set in the 1-out-of-2 scenario. Additionally, [26] gives
a computationally secure OT combiner against active adversaries. Subsequently,
Ishai, Prabhakaran and Sahai [29] show that this construction can be turned
into an (n, t, t)-OT combiner that is statistically secure against active adver-
saries for t = Ω(n). Ishai, Maji, Sahai and Wullschleger [28] present a single-use
(n, t, t)-OT combiner that is statistically secure against passive adversaries for
t = n/2− ω(log κ), where κ is the security parameter.

Regarding the relation between other primitives and OT, Przydatek and
Wullschleger [44] study the relation of Oblivious Linear Function Evaluation
(OLFE) with OT. A two-party OLFE protocol allows a receiver to learn the
evaluation of a linear polynomial function f over Fq of its choice on an input
value x ∈ Fq held by the receiver, so that each party learns no information about
the input of the other party. Przydatek and Wullschleger consider combiners that
take a set of n OLFE candidate implementations and produce a 1-out-of-2 OT
protocol. Their solution is also unconditionally secure for tA + tB < n. However,
it requires the size of the message space to be larger than the number n of
candidate implementations of OLFE to combine.

Another variant of combiners for OT is that of cross-primitive combiners,
studied by Meier and Przydatek in [38]. As in [44], here the combiner imple-
ments a different functionality than the candidates. They present a (2, 1)-PIR-
to-OT combiner, which takes two Private Information Retrieval (PIR) schemes
and produces a 1-out-of-2 OT protocol that is unconditionally secure for the
sender, provided one of the two PIR schemes is also secure. This result comes in
contrast with the impossibility result of [27]. Their construction only guarantees
the privacy of Alice against a honest-but-curious adversary corrupting Bob and
one of the two candidates.

Following R2, Cascudo, Damg̊ard, Farràs and Ranellucci [16] achieve single-
use 1-out-of-2 OT combiners. They generalize the security notion in [26] by
defining the notion of perfect security against active (A,B)-adversaries for some
A,B ⊆ 2Pn , where Pn = {1, . . . , n} denotes the set of OT candidates. We also
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adopt this notion. This definition considers an active adversary that can corrupt
either Alice and a set A ∈ A of OT candidates, or Bob and a set B ∈ B of
OT candidates, obtaining their inputs and full control of their outputs. Their
OT combiner achieves perfect (unconditional, zero-error) security against (A,B)-
adversaries so that A ∪ B 6= Pn for every A ∈ A and B ∈ B. When this last
condition is fulfilled, we say that the pair (A,B) of adversary structures is R2.
They prove this to be a necessary condition for security.

All the works mentioned above combine 1-out-of-2 OT primitives into 1-out-
of-2 OT. So far, to the best of our knowledge, there are no explicit 1-out-of-q
OT combiner constructions in the literature. Two similar works [19,40] build
1-out-of-q OT for q > 2 by re-using a single 1-out-of-2 OT instance as many
as q − 1 [19] or log q [40] times. However, seeing these constructions directly as
1-out-of-q OT combiners makes them insecure, as a single faulty 1-out-of-2 OT
candidate results in an insecure 1-out-of-q OT protocol. In this work, we explore
1-out-of-q OT combiners with better security guarantees.

Our OT combiners are built using a specific kind of secret sharing schemes
that has been studied in previous works. Given a Boolean function f : {0, 1}n →
{0, 1}, consider the access structure on the set of participants P = {1, . . . , n} ×
{0, 1} whose minimal authorized subsets are {(1, x1), . . . , (n, xn)} that satisfy
f(x1, . . . , xn) = 1 and the subsets {(i, 0), (i, 1)} for 1 ≤ i ≤ n. Efficient construc-
tions are known [7,47] for some of these structures. Liu, Vaikuntanathan and
Wee [36] present more efficient schemes, and show a connection between these
schemes and Conditional Disclosure of Secrets (CDS) protocols [24], namely for
CDS protocols for the INDEX predicate. That connection is used to construct
better general constructions for secret sharing [2,3,35,8]. In this work, we study
access structures determined by functions f : {0, . . . , q − 1}n → {0, 1}, a case
studied for example in [2,3,24].

1.2 Our Work

This work deals with the construction of efficient 1-out-of-q OT combiners for
any q ≥ 2. We extend the security and consistency notions of [16] from the 1-
out-of-2 case to the 1-out-of-q case, and we present OT combiners that attain
perfect security against active (A,B)-adversaries. As far as we know, this is the
first work that achieves efficient 1-out-of-q OT combiners with active security
for any q ≥ 2. Our main result is the following theorem, which is constructive.

Theorem 1.1. Let Fq be a finite field, let Σ be an Fq-linear secret sharing
scheme on Pn with adversary structure A and normalized total share size `, and
let B ⊆ 2Pn satisfying that (A,B) is R2. Then there exists an n-server, 1-out-
of-q OT combiner for messages in Fq that is perfectly secure against any active
(A,B)-adversary and requires exchanging (q2 + q + 1)` log q bits. If Σ is ideal,
then the OT combiner is single-use.

As a corollary of this theorem and [16], we have that (A,B) admits a 1-out-
of-q OT combiner if and only if (A,B) is R2. It was already known for q = 2 [16],
but not for greater q.
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The communication cost of this theorem does not take into account the
communication cost of the OT instantiations, because our combiner is black-
box. Our combiner is stated in the server model, with each server representing
a different OT instantiation, and all exchanged information passes through the
servers. The communication cost thus refers to the length of the input and output
of servers. Moreover it is worth noting that, while messages are assumed to be
in Fq, servers take messages in Fqq as input. Hence, the used OT candidates are
assumed to implement 1-out-of-q OT with q log q-bit strings.

This OT combiner makes use of the OT implementations a total of ` times.
That is, the communication complexity increases linearly with the normalized
total share size of Σ. Therefore, in our construction, the search of efficient OT
combiners is reduced to the search of efficient linear secret sharing schemes.
We build 1-out-of-q OT combiners for those pairs of R2 adversary structures
(A,B) for which there exist Fq-linear secret sharing schemes with an adversary
structure C satisfying A ⊆ C and B ⊆ C∗ = {C ⊆ Pn : Pn \ C /∈ C }. In the
threshold case, we have the following result.

Corollary 1.2. Let q be a prime power and let 2 ≤ n ≤ q. There exists a single-
use, n-server, 1-out-of-q OT combiner that is perfectly secure against active ad-
versaries corrupting either Alice or Bob, and a minority of the OT candidates.
The amount of bits exchanged during the protocol is (q2 + q + 1)n log q.

In the process of building our 1-out-of-q OT combiners, we study secret
sharing schemes associated to affine spaces. Namely, let W ⊆ Fnq be an affine
space, and let f : Fnq → {0, 1} be the Boolean function with f(x1, . . . , xn) = 1 if
and only if (x1, . . . , xn) ∈W . We present ideal linear secret sharing schemes on
the set of nq participants {1, . . . , n}× Fq in which a subset {(1, v1), . . . , (n, vn)}
is authorized if and only if f(v1, . . . , vn) = 1. Moreover, from our schemes, it is
possible to build n-server CDS protocols for f with domain of secrets Fq, and
with optimal message size and certain robustness, in the sense of [2].

We also describe a 1-out-of-q OT combiner with similar security properties
that uses the 1-out-of-q OT construction by Crépeau, Brassard and Robert [19].
It consists in combining 1-out-of-2 OT combiners. This construction relies on
F2-linear secret sharing schemes and 1-out-of-2 OT protocols. For threshold ad-
versary structures and single-bit messages, the communication complexity is
(3q − 1)n log n. This construction allows for an arbitrary number of messages
q ≥ 2 instead of only a prime power. It is highly multi-use, as each of the 1-out-
of-2 OT instances is executed q log n times. To support messages larger than one
bit, the protocol is replicated and combined with zigzag functions [19].

Theorem 1.3. Let 2 ≤ n ≤ q and t < n/2. There exists an n-server, 1-out-of-q
OT combiner, with messages of bitsize s ≥ 1, that is perfectly secure against
active adversaries corrupting either Alice or Bob and less than t OT candidates.
It requires exchanging O(qns1.6 log n) bits, and O(qs1.6 log n) calls to each 1-out-
of-2 OT instance.

In general, given an R2 pair (A,B), the convenience of one of the construc-
tions proposed here over others will depend on the share size of F-linear secret
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sharing schemes for (A,B) for F = F2 or F = Fq. Notice that the power of
linear secret sharing schemes over fields of different characteristics is incompara-
ble. Indeed, there is a super-polynomial separation between any two fields with
different characteristics [9].

For messages of log q bits, q ≥ n, and for t < n/2, Corollary 1.2 provides
1-out-of-q OT-combiners for t-threshold structures A and B that are single-
use and for which the number of exchanged bits is O(q2n log q). The construc-
tion of Theorem 1.3 requires less communication, O(qn log n log2 q), but requires
O(q log n log2 q) calls to each one of the 1-out-of-2 OT instances.

1.3 Overview of Our Constructions

Next, we describe the structure of the main constructions of this work (laid
out in Sections 4 and 7). Take n servers S1, . . . , Sn, each one performing the
1-out-of-q OT functionality. Bob holds b ∈ Fq, and Alice holds some messages
m0, . . . ,mq−1 ∈ Fq. At the end of the protocol, Bob can recover mb, while Alice
does not get information about b.

Bob creates n shares of b with an ideal secret sharing scheme Σ, and sends
one share to each server. That is, the server Si receives a share bi ∈ Fq, which
will be the selection input of the OT functionality of Si. Independently, Alice
creates shares of her messages. Alice creates nq shares of the message m0 with

some special secret sharing scheme S0. These shares m
(i,j)
0 ∈ Fq are indexed

by (i, j) ∈ {1 . . . n} × {0 . . . q − 1}. Then, Alice creates shares of the rest of

messages mk, each with a different scheme Sk, obtaining the shares m
(i,j)
k with

(i, j) ∈ {1 . . . n} × {0 . . . q − 1}. All these shares are packed in strings uji =

m
(i,j)
0 ||m(i,j)

1 || · · · ||m(i,j)
q−1 ∈ Fqq, and Alice sends u0

i , . . . , u
q−1
i to server Si for each

1 ≤ i ≤ n. Then, server Si performs the 1-out-of-q OT functionality with the
inputs received from Alice and Bob. Namely, Si outputs ubii to Bob. Finally,
Bob collects all messages sent by the servers, and recovers mb. A diagram of the
protocol for the case q = 4 and n = 3 is presented in Figure 1.

In this setting, Σ and S0, . . . ,Sq−1 must be chosen in such a way that the
functionality is performed correctly. Roughly speaking, if b1, . . . , bn is a valid
sharing of b byΣ, then it must be possible to recovermb from ub11 , . . . , u

bn
n . Hence,

the subsets {(1, b1), . . . , (n, bn)} must be authorized sets of Sb if b1, . . . , bn is a
valid share of b. Regarding security, if Bob can recover mb, he must not be able to
obtain any information about other mk for k 6= b. Hence, in this case, ub11 , . . . , u

bn
n

must not provide any information about mk, and so {(1, b1), . . . , (n, bn)} must
be a forbidden subset of Sk.

Additionally, our OT combiners guarantee protection against adversaries tak-
ing control of Alice and some servers A ∈ A, or Bob and some servers B ∈ B.
This protection is guaranteed by restricting the access structures of the secret
sharing schemes Σ and Sk to these requirements, while preserving correctness
(see an introduction to secret sharing in Section 2.1). In general, given a secret
sharing scheme Σ, it is not known if there exist efficient schemes S0, . . . ,Sq−1

adapted to the shares of Σ.
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Fig. 1. Diagram of a 1-out-of-4 OT combiner for n = 3.

One of the main contributions of this work is that, when Σ is ideal and
Fq-linear, we find schemes S0, . . . ,Sq−1 that are ideal, Fq-linear, and satisfy
the desired security restrictions. These schemes additionally satisfy the prop-
erty that any set of shares is valid, as long as shares belong to the correct do-
main, in the sense that a corresponding secret can always be extracted from the
shares received by Bob. As a consequence, we obtain an efficient, single-use, n-
server, 1-out-of-q OT combiner. Hence, given an R2 pair of adversary structures
(A,B), if A admits an ideal Fq-linear secret sharing scheme, then the result-
ing OT combiner is perfectly secure against active (A,B)-adversaries. Here, the
main difficulty lies in constructing the schemes Sk. As mentioned above, subsets
{(1, b1), . . . , (n, bn)} for sharings of b must be authorized for b = k and forbid-
den if b 6= k. Additionally, since we guarantee perfect security against an active
adversary controlling Alice and servers {Si}i∈A for any A ∈ A, it must not
be possible to obtain b from {bi}i∈A. And, since we guarantee perfect security
against an active adversary controlling Bob and servers {Si}i∈B for any B ∈ B,
the subset {(1, b1), . . . , (n, bn)} ∪ {(i, j) : i ∈ B, 0 ≤ j < q} must be forbidden
in Sk for every b 6= k.

In the construction of Theorem 1.1 we use the fact that, if a secret sharing
scheme Σ is Fq-linear, then the family of sharings of b ∈ Fq form an affine space
in Fnq . Our schemes Sk, as the ones in [16] for q = 2, exploit this property.
However, the case q = 2 differs from the case q > 2 in the following sense. For
every F2-affine space W , there exists an ideal F2-linear secret sharing scheme
whose minimal authorized subsets are vectors in W . However, for q > 2, Fq-
affine spaces do not admit ideal Fq-linear secret sharing schemes, in general.

We circumvent this problem by finding a sufficient condition for a secret
sharing scheme to be used as a building block of our OT combiner. We call this
condition W -OT-compatibility. Then we prove that the schemes Sk that are the
natural extension of the ones in [16] are indeed W -OT-compatible.

In case that Σ is a non-ideal Fq-linear secret sharing scheme with adversary
structureA, we can still construct OT combiners that are perfectly secure against
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active (A,B)-adversaries. However, they are multi-use, as they require some
servers to perform more than one OT execution. The number of OT executions
coincides with the normalized total share size of Σ. In this case, we transform
Σ into an ideal Fq-linear scheme Σ′ defined on an extended set of participants,
and we run the protocol for the ideal case with Σ′.

1.4 Paper Organization

In Section 2, we lay out the preliminaries on secret sharing and OT combiners.
Section 3 states the correctness and security definitions of OT combiners. In
Section 4, we present our single-use 1-out-of-q OT combiner. The results of this
section imply Corollary 1.2. Section 5 analyzes the secret sharing schemes used
in our constructions, and Section 6 presents the correctness and security proofs
of this combiner. In Section 7, we extend our construction to the general case
where the underlying scheme is not ideal, obtaining a multi-use OT combiner.
Results in Sections 4 and 7 imply Theorem 1.1. Finally, we present constructions
of 1-out-of-q OT combiners built from 1-out-of-2 OT combiners in Section 8, from
which Theorem 1.3 is deduced.

2 Preliminaries

In this section, we lay out the background theory needed in the rest of the article.
In Sections 2.1 and 2.2 we give an account of secret sharing and we present OT
combiners in Section 2.3.

From now on, unless it is stated otherwise, q denotes an arbitrary positive
prime power. By abuse of notation, we denote the finite field of q elements
as Fq = {0, . . . , q − 1}. The power set of a set P is 2P := {A : A ⊆ P}.
Given an integer n ≥ 2, we denote Pn := {1, . . . , n} and Pn,q := Pn × Fq =
{(i, j) : i ∈ Pn, j ∈ Fq}. We also consider the partition Pn,q = P1 ∪ . . . ∪ Pn,
where Pi := {(i, 0), (i, 1) . . . , (i, q−1)} for i = 1, . . . , n. For any A ⊆ Pn we denote
Ā = Pn \A. For any A ⊆ 2Pn we define its dual as A∗ = {A ⊆ Pn : Ā /∈ A}.

2.1 Secret Sharing Schemes

For convenience, we take the definition of secret sharing scheme from [16], which
is equivalent to the standard one [5]. For an introduction to this field, see [5,42].

Definition 2.1 ([16]). A secret sharing scheme Σ on a set of participants P =
{1, . . . , n} consists of the following two algorithms

(x1, . . . , xn)← ShareΣ(s, r): Probabilistic algorithm that takes as input a secret
s, belonging to a finite set E0, and some randomness r in a set Ω. It returns
an array of values (x1, . . . , xn), where each xi belongs to some finite set Ei.
This array is called a sharing of s, and each of its elements is a share of s.

s← ReconstructΣ((i, xi)i∈A): Algorithm that takes a set of pairs (i, xi)i∈A as
input for some A ⊆ P , where xi ∈ Ei. It returns either a secret s, or ⊥.
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The normalized total share size is
∑n
i=1 log |Ei|/ log |E0|.

Following the notation of [16], given a secret s and randomness r, we denote
a sharing of the secret s by [s, r]Σ = ShareΣ(s, r). Whenever we can safely
drop the randomness r, we denote this sharing by [s]Σ . The indexes i of shares
xi in the input to ReconstructΣ are omitted when implicitly clear. With this
notation, we continue with more definitions. Let A ⊆ P . We say that

– A is authorized for Σ if, for every secret s, provided the shares (xi)i∈A are
part of a sharing of s, the function Reconstruct((i, xi)i∈A) recovers s with
probability one. That is, if, for every secret s,

Pr[ReconstructΣ((ShareΣ(s, r))A) = s] = 1.

– A is forbidden for Σ when the shares (xi)i∈A of participants in A do not
reveal any information on the secret value s. That is, if, for every s, s′ ∈ E0,
and every (xi)i∈A ∈

∏
i∈AEi,

Pr[(ShareΣ(s, r))A = (xi)i∈A] = Pr[(ShareΣ(s′, r))A = (xi)i∈A].

We define the access structure of a scheme Σ as the family of all its authorized
subsets, and the adversary structure of Σ is the family of its forbidden subsets.
We say that Σ is perfect if every subset A ⊆ P is either authorized or forbidden.
A perfect scheme with total normalized share size n is called ideal .

Due to [30], access (resp. adversary) structures are just monotone increasing
(resp. decreasing) families of subsets. For an access structure Γ , we define the
minimal access structure of Γ by minΓ = {A ∈ Γ : B 6⊂ A for all B ∈ Γ}.
Analogously, given an adversary structure A, we define the maximal adversary
structure of A by maxA = {A ∈ A : A 6⊂ B for all B ∈ A}. Given two adversary
structures A,B ⊆ 2P , we say that the pair (A,B) is R2 if A ∪ B 6= P for every
A ∈ A and B ∈ B. Notice that a pair (A,B) is R2 if and only if B ⊆ A∗.

2.2 Linear Secret Sharing Schemes

Linear Secret Sharing schemes (LSSS) are a type of secret sharing schemes that
is key to building our 1-out-of-q OT constructions. For convenience, we use the
definition in [5,16], where secrets are elements of a finite field.

Definition 2.2. Let Σ be a secret sharing scheme, where secrets take values in
E0, and shares in E1 × · · · × En. Let F be a finite field. Then Σ is F-linear if
the following conditions hold

1. the randomness r is chosen uniformly over a set Ω,
2. E0 = F and Ω,E1, . . . , En are vector spaces of finite dimension over F, and
3. ShareΣ is an F-linear map

ShareΣ : E0 ×Ω → E1 × · · · × En

so that the induced linear maps E0 ×Ω → Ei are surjective.
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For each i ∈ P , the i-th share space is Ei = F`i for some positive integer `i.
Linear schemes are perfect and have normalized total share size ` =

∑n
i=1 `i.

Every adversary structure admits an Fq-LSSS for every q [30]. However, al-
most all access structures require Fq-LSSS with normalized share size at least
2n/3−o(n) for every q [4]. The characterization of adversary structures admitting
efficient LSSSs is an open problem.

Given a secret value s ∈ Fq, we have that [s]Σ ∈ F`q = F`1q × · · · × F`nq .

We define V ⊆ F`q as the set of all possible shares [0]Σ of 0 ∈ Fq, i.e., V =

{ShareΣ(0, r) : r ∈ Ω}, is a vector subspace of F`q. Similarly, we denote by Wk

the set of all possible shares [k]Σ of a secret value k ∈ Fq. Notice that given a
sharing [k]Σ of k, the set Wk can be described as Σ Wk = [k]Σ+V and W0 = V .
Hence, each Wk is a coset of V [37] and so it is an affine subspace of F`q. The
following result can be found in [18, Lemma 11.71], for example.

Lemma 2.3. Let Σ be an Fq-LSSS with dimE0 = 1. A subset A ⊆ P is forbid-
den for Σ if and only if there exists a vector r ∈ Ω for which ShareΣ(1, r) =
(x1, . . . , xn) satisfies xi = 0 for every i ∈ A.

2.3 OT combiners

In 1-out-of-q OT protocols, the sender Alice is assumed to hold q messages
m0, . . . ,mq−1, and the receiver Bob chooses a message index b ∈ Fq. At the end
of a protocol implementing this functionality, Bob receives mb and Alice receives
nothing.

Here we lay out the fundamental theory of OT combiners. Before proceeding
further, and as in [16], we need to introduce the ideal 1-out-of-q OT functionality
FOT . We make use of the ideal functionality FOT in our security definitions. It
consists of an ideal version of a 1-out-of-q OT protocol that implements the
functionality correctly and that does not allow any kind of corruption. Hence,
FOT is an abstraction of an ideal OT protocol. Without loss of generality, in
this work all 1-out-of-q OT protocols that are considered secure are assumed to
follow the blueprint of FOT . Figure 2 depicts the FOT ideal functionality. Next,
we formally define OT combiners, following the notation of [16].

Definition 2.4. Let S1, . . . , Sn be candidate OT implementations. An OT com-
biner is an efficient two-party protocol π = π(S1, . . . , Sn), with access to the
candidates S1, . . . , Sn, that implements the OT functionality. An OT combiner
is 1-out-of-q if it implements the 1-out-of-q OT functionality.

From this point onward, we assume OT combiners to be 1-out-of-q, n-server,
and black-box. Under these assumptions, we can formalize the notion of OT
combiner according to the next definition. In this definition, we additionally
assume that OT combiners are single-use, and that they combine various 1-
out-of-q OT candidates into a 1-out-of-q OT protocol. For more general cases,
such as the multi-use case and the case where OT candidates are 1-out-of-2, see
Remark 2.6 below.
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Ideal 1-out-of-q OT Functionality FOT

Outline of the functionality:

1. The receiver Bob selects b ∈ Fq, and sends its input (transfer, b) to FOT .
2. The functionality FOT sends (ready) to Alice.
3. The sender Alice sends q messages (send,m0, . . . ,mq−1) to FOT .
4. If (transfer, b) has been received from Bob, FOT sends (sent,mb) to Bob.

Sender Receiver

Messages m0, . . . ,mq−1 Chosen index b ∈ Fq

(ready)

(send,m0, . . . ,mq−1)

Ideal 1-out-of-q
OT Functionality

FOT

(transfer, b)

mb

Fig. 2. The ideal 1-out-of-q Oblivious Transfer functionality.

Definition 2.5. We define an n-server, black-box, single-use 1-out-of-q OT com-
biner π = π(S1, . . . , Sn) by means of the next three polynomial-time algorithms:

(b1, . . . , bn)← π.Choose(b): Probabilistic algorithm run by the receiver Bob and
taking as input a message index b ∈ Fq. It returns an n-tuple (b1, . . . , bn),
where each bi ∈ Fq is to be sent to server Si.

(uji )(i,j)∈Pn,q
← π.Send(m0, . . . ,mq−1): Probabilistic algorithm, run by the sender

Alice, taking as input q chosen messages m0, . . . ,mq−1. It returns a qn-tuple

(uji )(i,j)∈Pn,q
, where each tuple (u0

i , . . . , u
q−1
i ) is to be sent to server Si.

m← π.Rec(b, (v1, . . . , vn)): Algorithm, run by the receiver Bob, that takes as
input the chosen message index b ∈ Fq, along with the randomness used in
Choose, and n elements v1, . . . , vn, where each vi is received from server Si.
It returns a message m.

Given an OT combiner π = (π.Choose, π.Send, π.Rec) and given n servers
S1, . . . , Sn implementing the 1-out-of-q OT functionality, we regard π as a pro-
tocol between a sender Alice and a receiver Bob. In this case, the resulting OT
protocol π(S1, . . . , Sn) develops sequentially in five phases:

Choice phase: The receiver Bob chooses a message index b ∈ Fq.
Bob generates the tuple (b1, . . . , bn)← π.Choose(b).
Bob sends (transfer, bi) to server Si for i = 1, . . . , n.

Ready phase: On receiving bi from Bob, the server Si sends (ready) to Alice.
Sending phase: The sender Alice chooses q messages m0, . . . ,mq−1.

Alice generates the corresponding tuple

(uji )(i,j)∈Pn,q
← π.Send(m0, . . . ,mq−1).
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After receiving (ready) from every server, Alice sends the generated shares
(send, u0

i , . . . , u
q−1
i ) to Si for i = 1, . . . , n.

Transfer phase: The server Si sends (sent, ubii ) to Bob.

Output phase: Bob reconstructs the message mb from the shares ub11 , . . . , u
bn
n

he received by executing π.Rec(b, (ub11 , . . . , u
bn
n )).

Remark 2.6. In the multi-use setting, which is considered in Section 7, the i-th
OT candidate is used a total of ni ≥ 1 times. We work with the same algorithms
of Definition 2.5, but we take bi, u

j
i and vi as arrays of length ni, and we assume

that both parties sequentially feed the inputs to the i-th server across the ni
executions.

The case where the combiner takes 1-out-of-2 OT candidates as input is also
considered in Section 8. Here, we also use the same algorithmic notation, but we
instead impose bi ∈ F2, and that the output of π.Send is (uji )(i,j)∈Pn,2

.

3 Correctness and Security Definitions

In this section, we state the definitions used to capture the correctness and secu-
rity properties of our constructions. In the following discussions, Pn represents
the set of servers.

3.1 Correctness Definition

The correctness property of OT combiners refers to the fact that, assuming
all servers correctly implement the OT functionality and that both parties are
honest, the protocol produced by the combiner implements the OT functionality
correctly. Hence, we have to show that the message retrieved by Bob in the
execution of the OT combiner is exactly the one that he should receive as per
the OT functionality. This is expressed by the zero-error property formalized in
the following definition, which is adapted from [16].

Definition 3.1. An OT combiner π is zero-error if, for every message index
b ∈ Fq and for any q messages m0, . . . ,mq−1, we have that

mb ← π.Rec(b, (ub11 , . . . , u
bn
n )),

where (b1, . . . , bn)← π.Choose(b) and (uji )(i,j)∈Pn,q
← π.Send(m0, . . . ,mq−1).

3.2 Security Definitions

An OT combiner is unconditionally secure if its security rests solely on the secu-
rity assumptions of the OT candidate implementations [16]. That is, if, provided
the security of enough OT candidates holds, the resulting OT protocol is per-
fectly secure. Therefore, unconditional security guarantees that any attack on
an OT combiner must forcibly break the security of sufficiently many of the OT
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candidate implementations in order to be successful. As in [16], an OT combiner
is called perfectly secure if it is both unconditionally secure and correct.

In order to capture the notion of unconditional security, we formalize it into
a simulator-based security definition [34]. We now give the definition of secu-
rity that we employ in our work, namely perfect security against active (A,B)-
adversaries, which is adapted from [16] and uses the Universal Composability
framework [14].

Given two adversary structures A,B ⊆ 2Pn , our security definition protects
against two types of active adversaries: one that corrupts the sender Alice and
a set of servers A ∈ A, and one that corrupts the receiver Bob and a set of
servers B ∈ B. This respectively corresponds to the case that a set A ∈ A
of the OT candidates are insecure for the receiver, and to the case that a set
B ∈ B of the OT candidates are insecure for the sender. To deal with the Alice
corruption case, we define the notion of perfect security for the receiver against
active A-adversaries, and in the Bob corruption case we define the notion of
perfect security for the sender against active B-adversaries.

In the Alice corruption case, we consider a malicious (i.e., active) adversary
Adv that controls the sender Alice, that interacts with an honest receiver B, and
that is able to eavesdrop and fully operate each server in a set A ∈ A. Our
security aim here is to protect the confidentiality of the receiver’s choice b ∈ Fq.
Hence, the ability to corrupt the servers in A must give Adv no information on b.

This definition uses the simulation paradigm [34], and compares the execution
of the protocol in the real world and in the ideal world. In the real world, Adv
and B interact through an OT combiner protocol π. In the ideal world, the
whole view and output of Adv is controlled by the simulator Sim, and Sim and
B interact exclusively through the ideal OT functionality FOT . Because of this,
in the ideal experiment the adversary Adv does not receive any information on
the choice b ∈ Fq of B from the interaction.

To provide security against malicious senders, Sim takes all the information
viewed by Adv in the ideal world, which is the one herself produced, so as to
transform it to a view that should be indistinguishable to the information seen
by Adv in the real world. Hence, Sim also simulates the private inputs of B on
the corrupted servers.

Definition 3.2. Let π be an n-server, 1-out-of-q OT combiner protocol, and let
FOT denote the ideal 1-out-of-q OT functionality. Let Adv denote an adversary-
controlled malicious sender, which is assumed to corrupt all the servers indexed
by some set A ∈ A. Let B denote an honest receiver, and let Sim = (Sim1,Simout)
be a stateful simulator. We define the probabilistic experiments RealπAdv,B() and

IdealFOT

Adv,B,Sim() as follows:
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RealπAdv,B() :

b← B()

(b1, . . . , bn)← π.Choose(b)

((uji )i∈Ā,j∈Fq , (zi)i∈A)← Adv ((bi)i∈A)

output ((bi)i∈A, (u
j
i )i∈Ā,j∈Fq , (zi)i∈A)

IdealFOT
Adv,B,Sim() :

b← B()

(bi)i∈A ← Sim1()

((uji )i∈Ā,j∈Fq , (zi)i∈A)← Adv((bi)i∈A)

output Simout((u
j
i )i∈Ā,j∈Fq , (zi)i∈A)

We say that π is perfectly secure for the receiver against active A-adversaries
if, for every set A ∈ A, for all adversarial senders Adv corrupting the set of
servers indexed by A, and for all honest receivers B, there exists a simulator
Sim such that the output values of RealπAdv,B() and IdealFOT

Adv,B,Sim() are identically
distributed, where the probabilities are taken over the random coins of π, Adv, B
and Sim.

In the Bob corruption case, we consider a malicious (i.e., active) adversary
Adv that controls the receiver Bob, that interacts with an honest sender A,
and that is able to eavesdrop on and fully operate each server in a set B ∈ B.
Our security aim here is to protect the confidentiality of the sender’s messages
m0, . . . ,mq−1. Hence, the ability to corrupt the servers in one set B ∈ B of
servers must give Bob no information on m0, . . . ,mq−1 other than possibly one
chosen message. As the previous definition, this definition uses the simulation
paradigm [34] and compares the execution of the protocol in the real world and
in the ideal world.

In the real world, A and Adv interact through an OT combiner protocol π.
The sender A, who is assumed to act honestly, holds messages m0, . . . ,mq−1 and

uses the OT combiner π to generate the input u0
i , . . . , u

q−1
i that is sent to server

Si for every i ∈ Pn. The adversary Adv is assumed to completely corrupt every
server in a set B ∈ B, and so he sees all the inputs (uji )i∈B,j∈Fq

. He also acts
as the receiver, generating an input bi for the rest of servers i ∈ B̄. Since the
servers i ∈ B̄ are assumed to behave as the ideal FOT functionality, Adv receives
(ubii )i∈B̄ and learns no other information from that interaction.

In the ideal world, the whole view and output of Adv is controlled by the
simulator Sim, and Sim and A interact through the ideal OT functionality FOT .
By processing all the output that the adversary Adv generates, Sim produces a
message index b̃ and handles it to the FOT functionality. Then, after the sender
A has sent the messages m0, . . . ,mq−1 to FOT , the adversary Adv receives the
message mb̃. To provide security against malicious receivers, Sim takes all the
information viewed by Adv in the ideal world, so as to transform it to a view
that should be indistinguishable to the one of the real world.

Definition 3.3. Let π be an n-server, 1-out-of-q OT combiner, and let FOT
denote the 1-out-of-q OT functionality. Let Adv denote an adversary-controlled
malicious receiver, which is assumed to corrupt all the servers indexed by some
set B ∈ B. Let A denote an honest sender, and let Sim = (Sim1,Sim2,Simout)
be a stateful simulator. We define the probabilistic experiments RealπA,Adv() and

IdealFOT

A,Adv,Sim() as follows:
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RealπA,Adv() :

(m0, . . . ,mq−1)← A()

(uji )(i,j)∈Pn,q ← π.Send(send,

m0, . . . ,mq−1)

(bi)i∈B̄ ← Adv((uji )i∈B,j∈Fq )

output ((uji )i∈B,j∈Fq , (u
bi
i )i∈B̄ , (bi)i∈B̄)

IdealFOT
A,Adv,Sim() :

(uji )i∈B,j∈Fq ← Sim1()

(bi)i∈B̄ ← Adv((uji )i∈B,j∈Fq )

b̃← Sim2 ((bi)i∈B̄)

(ready)← FOT (transfer, b̃)

(m0, . . . ,mq−1)← A()

(sent,mb̃)← FOT (send,m0, . . . ,mq−1)

output Simout(b̃,mb̃, (bi)i∈B̄)

We say that π is perfectly secure for the sender against active B-adversaries
if, for every B ∈ B, for all adversarial receivers Adv corrupting the set of servers
indexed by B, and for all honest senders A, there exists a simulator Sim such that
the output values of RealπA,Adv() and IdealFOT

A,Adv,Sim() are identically distributed,
where the probabilities are taken over the random coins of π, A, Adv and Sim.

The two previous definitions, on top of the correctness definition, make up
the security definition considered in this work, namely perfect security against
active (A,B)-adversaries. We next formally state this.

Definition 3.4. Let π be an n-server, 1-out-of-q OT combiner, and let A,B ⊆
2Pn . We say that π is perfectly secure against active (A,B)-adversaries if it is
zero-error, and it is perfectly secure for the sender against active B-adversaries
and for the receiver against active A-adversaries.

4 Single-Use 1-out-of-q OT Combiners

In this section, we present our 1-out-of-q OT combiner in the particular setting
where Σ is an ideal Fq-LSSS. We achieve a single-use OT combiner with perfect
security against active adversaries. In Section 7, we describe our construction
for general LSSSs.

The proposed 1-out-of-q OT combiner is shown in Figure 3. It is described
according to Definition 2.5 and follows the structure described in Section 1.3.

Theorem 4.1. Let Σ be an ideal Fq-LSSS with adversary structure A. The
OT combiner πOT defined in Figure 3 is perfectly secure against active (A,A∗)-
adversaries.

The proof of Theorem 4.1 is split in three blocks: First, in Section 5, we
analyze the secret sharing schemes Sk used in the construction, which are defined
in Figure 4. In Section 6, we prove the correctness of the protocol and then its
security. Theorem 4.1 implies Theorem 1.1 for the case that Σ is an ideal LSSS,
and the non-ideal case is implied by Theorem 7.2. At the end of Section 6 we
prove Corollary 1.2 by combining these results.
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Single-use 1-out-of-q OT Combiner πOT

πOT .Choose(b): Given b ∈ Fq, compute a sharing [b]Σ = (b1, . . . , bn) of b using Σ.
Note that each bi ∈ Fq because Σ is ideal.
Output (b1, . . . , bn).

πOT .Send(m0, . . . ,mq−1): For each message mk, independently compute a sharing

[mk]Sk = (m
(i,j)
k )(i,j)∈Pn,q .

Then, for each (i, j) ∈ Pn,q, compute the values

uji := m
(i,j)
0 ||m(i,j)

1 || · · · ||m(i,j)
q−1 .

Output (uji )(i,j)∈Pn,q , where each tuple (u0
i , . . . , u

q−1
i ) is to be sent to server Si.

πOT .Rec(b, (v1, . . . , vn)): Parse each vi, which is received from server Si, as

vi = n
(i)
0 ||n

(i)
1 || · · · ||n

(i)
q−1,

where n
(i)
k ∈ Fq for each k ∈ Fq.

Retrieve mb by evaluating

ReconstructSb((n
(i)
b )i∈Pn).

If the reconstruction fails at any step, output ⊥. Otherwise, output mb.

When the protocol follows correctly, πOT .Rec is executed with (v1, . . . , vn) =

(ub11 , . . . , u
bn
n ) and retrieves ReconstructSb((m

(1,b1)
b , . . . ,m

(n,bn)
b ).

Fig. 3. Single-use 1-out-of-q OT combiner πOT in the case Σ is an ideal Fq-LSSS. The
schemes Sk are defined in Figure 4.

Remark 4.2 (Structure). The protocol runs between a sender Alice and a receiver
Bob, who communicate through a set of n servers S1, . . . , Sn that implement the
ideal 1-out-of-q OT functionality FOT (described in Figure 2).

An ideal Fq-LSSS Σ is used by the receiver Bob to request the message
with the selected index b ∈ Fq, in the following way. He generates a sharing
[b]Σ = (b1, . . . , bn) of b with Σ, and queries each server Si with bi ∈ Fq. This
corresponds to the πOT .Choose function.

In order for Alice to distribute the messages m0, . . . ,mq−1 ∈ Fq, she makes
use of q different secret sharing schemes S0, . . . ,Sq−1, which are related to the
affine subspaces W0, . . . ,Wq−1, respectively. This step corresponds to function
πOT .Send, and we note that each of the q messages sent to servers belong to Fqq,
and so their length is expanded by factor of q with respect to the length of the
original messages.

Then, the servers execute the OT functionality with the inputs they received,
and send their outputs to Bob. Bob executes πOT .Rec and retrieves the message.

Remark 4.3 (Communication complexity). In the Choice phase, Bob sends a
total of n log q bits to servers. In the Sending phase, Alice sends a total of q2n log q
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The Secret Sharing Scheme Sk

ShareSk : To share a message m ∈ Fq, first
– let k = (k1, . . . , kn) ∈ Fnq be a sharing of k using Σ
– sample r1, . . . , rn−1 ∈ Fq uniformly at random, and let rn = m−

∑n−1
i=1 ri,

so that (r1, . . . , rn) is an additive sharing of the message m
– sample h = (h1, . . . , hn) uniformly at random from V ⊥

For every i ∈ Pn and for every j ∈ Fq, define the (i, j)-th share as

m(i,j) = ri + (ki − j)hi.

ReconstructSk : In this work we are just interested in reconstructing the message
for subsets A = {(1, b1), . . . , (n, bn)} with (b1, . . . , bn) ∈ Wk. In this case, the
reconstruction function for (m(i,j))(i,j)∈A is

n∑
i=1

m(i,bi).

Fig. 4. The Fq-LSSS Sk related to the secret sharing scheme Σ, the affine subspace
Wk = [k]Σ , and V = [0]Σ .

bits to the servers. In the Transfer phase, servers send a total of qn log q bits to
Bob. Hence, the communication complexity is (q2 + q + 1)n log q.

Remark 4.4 (Adversary structure). Let A be an adversary structure. A protocol
is secure against (A,A∗)-adversaries if and only if it is secure against (A,B)-
adversaries for any B such that the pair (A,B) is R2. This is equivalent to
saying that it is secure against an adversary that corrupts either Alice and a
set of servers in A, or Bob and a set of servers B with B̄ /∈ A, as stated in
the abstract. Such a 1-out-of-q OT combiner is also secure against any (A′,B′)-
adversary satisfying A′ ⊆ A and B′ ⊆ A∗.

Remark 4.5 (Variants). The first observation is that the protocol can be run for
messages that are shorter than log q. For instance, if the messages are just one
bit, the protocol is not affected and the communication complexity is the same.

The second observation is that the protocol can be adapted to run 1-out-of-q′

OT combiner for q′ < q. In this case, Bob will choose mb among m1, . . . ,mq′ .
We attain the same level of security, but the communication is reduced. Next,
we detail the changes that should be done.

The πOT .Send algorithm does not change. The algorithm πOT .Send has only

q′ inputs, so the values uji will be shorter, i.e., uji = m
(i,j)
0 ||m(i,j)

1 || · · · ||m(i,j)
q′−1. The

servers will perform the 1-out-of-q OT functionality, and they will send to Bob a
shorter vi. The algorithm πOT .Rec is executed analogously. The communication
complexity now is n log q + qq′n log q + q′n log q = (qq′ + q′ + 1)n log q.

Consequently, given some integers q′ and s, we can get 1-out-of-q′ OT com-
biners of s-bit strings from our 1-out-of-q OT combiners, taking as q a prime
power greater than k and 2s.
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The flexibility of the construction may be useful for certain adversary struc-
tures. It is known that there are adversary structures A for which there only
exist efficient F-LSSSs Σ for fields F of a certain characteristic [9].

Remark 4.6 (Efficiency of multisecret sharing schemes). In the Sending phase
of our protocol, we share each of the q messages independently. For q = 2, this
process was improved in [16] by creating sharings of the two messages at the
same time, which reduces the number of shares from 4n to 2n. The scheme
in [16] can be seen as a multisecret sharing scheme [12,31]. In such schemes, n
shares are generated from a sequence of k > 1 secrets, and each secret can be
recovered from the shares, but each secret has its own access structure. Observe
that we can define our 1-out-of-q constructions from multisecret sharing schemes.
Since our multisecret sharing scheme is just a combination of independent secret
sharing schemes, we decided to simplify the notation.

A natural question is what is the smallest size in bits of uji , which leads to
bounds on the communication complexity of the protocol. It can be proved that
the randomized Fq-linear mapping πOT .Send in [16] cannot be generalized for

q > 2 with uji in Fq, i.e., there are schemes Σ that require that the total amount
of bits sent by Alice is greater than qn log q bits. The proof uses arguments
that depend on the specific properties of the scheme Σ, and is displayed in
Appendix A. A research line in the direction of this work is to build more efficient
1-out-of-q OT-combiners with multisecret sharing schemes and to know what is
the optimal communication complexity.

5 Secret Sharing Schemes for OT Combiners

In this section, we introduce a family of secret sharing schemes that are useful
to build 1-out-of-q OT combiners. In Section 5.2, we show that the schemes Sk
in Figure 4 are indeed Wk-OT-compatible. This fact simplifies the security proof
of our 1-out-of-q OT combiners.

5.1 W -OT-Compatible Secret Sharing Schemes

Recall the discussion in Section 1.3 about the properties involved in our construc-
tion. This section is dedicated to the study of the schemes Sk that guarantee the
correctness and security of our protocol. Consider the following definition.

Definition 5.1. Let Fq be a finite field, and let W ⊆ Fnq . We define ΓW as the
access structure on Pn,q determined by the minimal access structure

minΓW = {{(1, b1), (2, b2), . . . , (n, bn)} : (b1, b2, . . . , bn) ∈W} .

The study of the share size of access structures ΓW for general W is of
independent interest. If n = 2, then ΓW is a bipartite graph access structure,
and this case is studied in several works as [6,21]. As a consequence of [35,2,3],
improvements on the efficiency of schemes for ΓW will result in improvements in
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the efficiency of CDS protocols, and in the efficiency of secret sharing schemes
for general access structures.

Following the discussion in Section 1.3, here we are interested in the con-
struction of secret sharing schemes with access structure ΓW where W is the
collection of sharings of b by Σ. Since we only consider linear schemes, the col-
lection of sharings [b]Σ always defines an Fq affine space. Hence, from now on,
we restrict to the study of the access structures ΓW when W is an affine space.

If W ⊆ Fn2 is a binary affine subspace, then the access structure ΓW described
above always admits an ideal F2-LSSS [16]. However, in general, given an affine
subspace W ⊆ Fnq , ideal Fq-LSSS for the access structure ΓW are not expected
to exist.

Instead of looking for Fq-LSSS with access structures of the form ΓW , which
will give rise to non-efficient OT combiners, we explore the possibility of relaxing
the restrictions on the access structure of Sk while keeping our security needs.
With the aim of building schemes Sk for the protocol in Figure 3, we define the
notion of W -OT-compatibility.

Recall that we defined Pi := {(i, 0), (i, 1) . . . , (i, q − 1)} for i = 1, . . . , n, and
Pn,q = P1 ∪ . . . ∪ Pn is the set of participants of the schemes Sk.

Definition 5.2. Let W ⊆ Fnq . Let ∆ ⊆ 2Pn,q be the family of subsets defined by

∆ = {A1 ∪ . . . ∪An : Ai ⊆ Pi and |Ai| = 1 or q for i = 1, . . . , n}.

We say that an access structure Γ ⊆ 2Pn,q is W -OT-compatible if Γ ∩ ∆ =
ΓW ∩∆. Similarly, we say that a secret sharing scheme is W -OT-compatible if
its access structure is W -OT-compatible.

The motivation behind this definition is the following: The secret sharing
schemes S0, . . . ,Sq−1 used by Alice, which we can assume honest at this point,
and are built so that an adversary controlling Bob, and possibly some servers,
can learn from each server Si either

– one share, e.g. in the case that the server Si is not corrupted, or
– all q shares sent to Si, in the case that an adversary corrupts Bob and Si.

Under this assumption, since Pi corresponds to the shares sent to server Si,
the shares that an adversary controlling Bob is able to see in any execution of
the OT combiner are always determined by some subset in ∆. Therefore, even
if the obtained Fq-LSSS has an access structure Γ other than ΓW , it serves our
security purposes as long as Γ coincides with ΓW when restricting it to ∆. That
is, as long as Γ is W -OT-compatible.

See the Appendix B for an example of W -OT-compatible access structures.

5.2 Analysis of Sk

This subsection is dedicated to the analysis of the scheme Sk presented in Fig-
ure 4. See the Appendix B for an example for q = n = 3. The scheme Sk is
an ideal Fq-LSSS defined on the set of nq participants Pn,q. It is used by Alice
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to generate a sharing of the k-th message mk, which is distributed among the
OT servers. Proposition 5.4 states that Sk is Wk-OT-compatible for Wk = [k]Σ .
First, we present a technical lemma needed for its proof.

Lemma 5.3. Let Fq be a finite field, and V ( Fnq be a vector subspace. Let t ≤ n
and y1, . . . , yt ∈ Fq. If (y1, . . . , yt, xt+1, . . . , xn) /∈ V for every xt+1, . . . , xn ∈ Fq,
then there exists h ∈ V ⊥ such that y1h1+· · ·+ytht = 1 and ht+1 = · · · = hn = 0.

Proof. We prove this lemma by backward induction in t. The lemma holds for
t = n since, given y = (y1, . . . , yn) /∈ V , there always exists an h ∈ V ⊥ such that
〈y,h〉 = 1.

Assume that t < n. Suppose that there exist y1, . . . , yt ∈ Fq satisfying
(y1, . . . , yt, xt+1, . . . , xn) /∈ V for all xt+1, . . . , xn ∈ Fq. By induction hypoth-
esis we have that, for every x ∈ Fq, there exists an hx = (hx1 , . . . , h

x
n) ∈ V ⊥

with
t∑
i=1

yih
x
i + xhxt+1 = 1 and hxt+2 = · · · = hxn = 0.

If hxt+1 = 0 for some x ∈ Fq, then hx satisfies the lemma. Otherwise, by
the pigeonhole principle, let x and z be two distinct elements of Fq such that
hxt+1 = hzt+1 6= 0. Define

h =
hx − hz

hxt+1(z − x)
.

Since h = (h1, . . . , hn) is in V ⊥ and satisfies ht+1 = · · · = hn = 0 and

y1h1 + · · ·+ ytht =
1

hxt+1(z − x)

(
t∑
i=1

yih
x
i −

t∑
i=1

yih
z
i

)

=
1

hxt+1(z − x)

(
(1− xhxt+1)− (1− zhzt+1)

)
= 1,

we have that h satisfies the lemma. ut

Proposition 5.4. Let Σ be an ideal Fq-LSSS. For every k ∈ Fq, the secret
sharing scheme Sk defined in Figure 4 is an ideal Fq-LSSS that is Wk-OT-
compatible.

Proof. In order to prove that Sk is Wk-OT-compatible, we prove that Γ , the
access structure of Sk, satisfies ΓWk

∩∆ = Γ ∩∆.
Let A = {(1, b1), . . . , (n, bn)} be a subset in minΓWk

, and let (m(i,j))(i,j)∈A
be shares by Sk. Since

∑n
i=1 ri = m, then

n∑
i=1

m(i,bi) =

n∑
i=1

(ri + (ki − bi)hi) =

n∑
i=1

ri + 〈k− b,h〉 = m,

where we used that h ∈ V ⊥ and k−b ∈ V because k,b ∈Wk. Hence, ΓWk
⊆ Γ

and so ΓWk
∩∆ ⊆ Γ ∩∆.
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Now, we prove ΓWk
∩∆ ⊇ Γ∩∆ by showing that, for every A ∈ ∆, if A /∈ ΓWk

then A /∈ Γ . Let A ∈ ∆\ΓWk
. Otherwise assume, without loss of generality, that

for some t ≤ n we can express

A = {(1, v1), . . . , (t, vt)} ∪ Pt+1 ∪ · · · ∪ Pn.

We now use Lemma 2.3. More concretely, we show that there exists randomness
r1, . . . , rn−1 ∈ Fq and h = (h1, . . . , hn) ∈ V ⊥ so that the sharing of the message
m = 1 satisfies m(i,j) = 0 for every (i, j) ∈ A.

Since A /∈ ΓWk
, we have that (v1−k1, . . . , vt−kt, xt+1, . . . , xn) /∈ V for every

xt+1, . . . , xn ∈ Fq. By Lemma 5.3, there exists an h = (h1, . . . , hn) ∈ V ⊥ such

that
∑t
i=1(vi − ki)hi = 1 and ht+1 = · · · = hn = 0. We choose as randomness

this h ∈ V ⊥ and

ri = −(ki − vi)hi
ri = 0

for i = 1, . . . , t,

for i = t+ 1, . . . , n− 1.

Since we want a sharing of the message m = 1, we take rn = 1−
∑n−1
i=1 ri = 0.

Then, for (i, j) ∈ A, the shares m(i,j) = ri + (ki− j)hi of the message m = 1 are

m(i,vi) = −(ki − vi)hi + (ki − vi)hi = 0

m(i,j) = 0 + (ki − j) · 0 = 0

for i = 1, . . . , t,

for i = t+ 1, . . . , n.
ut

As a consequence of this result, for every affine space W ⊆ Fnq there exists
an ideal Fq-LSSS that is W -OT-compatible. For the particular case q = 2, the
proofs of Lemma 5.3 and Proposition 5.4 can be simplified [15]. Indeed, for q = 2,
the access structure of the scheme in Figure 4 is simply ΓWk

[15].
Secret sharing schemes of this kind are connected to Conditional Disclosure

of Secrets (CDS) protocols, as can be seen in [35,36,3], for example. Namely, the
shares of this scheme are also the messages of an n-server CDS protocol for the
Boolean function f : {0, . . . , q−1}n → {0, 1} defined as follows: f(x1, . . . , xn) = 1
if and only if (x1, . . . , xn) ∈W .

6 Correctness and security proofs

We start with the proof of correctness.

Proposition 6.1. The OT combiner πOT defined in Figure 3 is zero-error. That
is, provided both Alice and Bob are semi-honest, πOT implements the 1-out-of-q
OT functionality correctly.

Proof. If Alice and Bob follow the protocol honestly, at the end of the protocol

Bob receives the shares m
(1,b1)
b , . . . ,m

(n,bn)
b of the message mb, where [b]Σ =

(b1, . . . , bn) ∈ Wb is some sharing of his input b. Since {(1, b1), . . . , (n, bn)} ∈
minΓWb

is authorized for Sb, Bob can reconstruct the message mb. ut
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The security properties of our constructions are stated in Theorem 4.1. To
proceed with its proof, we first need to establish Lemma 6.2.

Suppose that an adversary controlling Bob corrupts a set B ∈ B of servers.
As a consequence of the next lemma, if the shares (bi)i∈B̄ sent to non-corrupted
servers in B̄ do not correspond to any sharing [b]Σ of b, the adversary can not
get any information on the message mb.

Lemma 6.2. Let m0, . . . ,mq−1 ∈ Fq be arbitrary messages, and fix indepen-

dent sharings [mk]Sk = (m
(i,j)
k )(i,j)∈Pn,q

for every k ∈ Fq. Let B ⊆ Pn and
(b′1, . . . , b

′
n) ∈ Fnq , and define the set H ⊆ Pn,q by

H = {(i, b′i) : i ∈ B̄} ∪ {(i, j) : i ∈ B, j ∈ Fq}.

Fix b ∈ Fq. Then, if the shares (b′i)i∈B̄ are not part of any sharing [b]Σ, the

shares {m(i,j)
k : (i, j) ∈ H, k ∈ Fq} give no information about mb.

Proof. Since the sharing of every message is done independently, only the shares

(m
(i,j)
b )(i,j)∈H could potentially give information on mb. We prove that H is for-

bidden for Sb. Since Sb is Wb-OT-compatible and since H ∈ ∆, if H were autho-
rized for Sb then H ∈ ΓWb

, and thus it would contain a set {(1, b1), . . . , (n, bn)}
for some (b1, . . . , bn) ∈ Wb. However, then necessarily bi = b′i for all i ∈ B̄, and
this would mean that (b′i)i∈B̄ belongs to a sharing [b]Σ , a contradiction. ut

Now we can complete the proof of Theorem 4.1.

Proof (Proof of Theorem 4.1). Correctness is proved in Proposition 6.1.The rest
of the proof is split in two parts, corresponding to Definitions 3.2 and 3.3. In
each case, we define the simulators and compare the outputs of the ideal and
real experiments. Let A ∈ A and B ∈ A∗.

Perfect security for the receiver against active A-adversaries:

Sim1(): Generate a sharing of 0 ∈ Fq,

[0]Σ = (b01, . . . , b
0
n).

Output (b0i )i∈A.

Simout((u
j
i )i∈Ā,j∈Fq

, (zi)i∈A): Retrieve, from the state of Sim, the sharing [0]Σ =

(b0i )i∈Pn
that was generated in the previous execution of Sim1.

Output
(

(b0i )i∈A, (u
j
i )i∈Ā,j∈Fq

, (zi)i∈A

)
.

Note that the shares (bi)i∈A that the adversary Adv takes as input correspond
to the set A ∈ A, which is forbidden for Σ. Hence, they are distributed identically
to the A-shares of a sharing of any other b′ 6= b (in particular, of 0 ∈ Fq), and

so they do not carry any information on b. The messages
(

(uji )i∈Ā,j∈Fq
, (zi)i∈A

)
generated by Adv are thus identically distributed in both worlds.
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Since the shares (bi)i∈A do not allow to distinguish between the real and the
ideal world, we have proved indistinguishability.

Perfect security for the sender against active B-adversaries:

Sim1(): For every k ∈ Fq, choose m′k ∈ Fq uniformly at random and gener-

ate the sharing [m′k]Sk = (m′
(i,j)
k )(i,j)∈Pn,q

. Then, create the values uji =

m′
(i,j)
0 || · · · ||m′(i,j)q−1 for every (i, j) ∈ B × Fq. Output (uji )i∈B,j∈Fq

.
Sim2((bi)i∈B̄): Try to reconstruct the input b of the adversary Adv by execut-

ing ReconstructΣ on the input. If the reconstruction succeeds, output the
reconstructed message index b̃. Otherwise, output ⊥.

Simout(b̃,mb̃, (bi)i∈B̄): Retrieve, from the state of Sim and for every k ∈ Fq,
the messages m′k, the sharings [m′k]Sk = (m′

(i,j)
k )(i,j)∈Pn,q

and the messages

(uji )i∈B,j∈Fq that were generated in the previous execution of Sim1.
Proceed as follows, depending on whether the reconstruction in Sim2 failed
or not:
– If b̃ 6= ⊥, let m̃b̃ = mb̃. Generate a sharing [m̃b̃]Sb̃ = (m̃

(i,j)

b̃
)(i,j)∈Pn,q

subject to the restriction that m̃
(i,j)

b̃
= m′

(i,j)

b̃
for every (i, j) ∈ B × Fq.

Note that this is possible, since B × Fq is forbidden for S0, . . . ,Sq−1.

For every k ∈ Fq \ {b̃} and every (i, j) ∈ B̄ × Fq, set m̃
(i,j)
k := m′

(i,j)
k .

– If b̃ = ⊥, for every k ∈ Fq and (i, j) ∈ B̄ × Fq, let

m̃
(i,j)
k = m′

(i,j)
k .

Create the values ubii = m̃
(i,bi)
0 || · · · ||m̃(i,bi)

q−1 for every i ∈ B̄.

Output
(

(uji )i∈B,j∈Fq
, (ubii )i∈B̄ , (bi)i∈B̄

)
.

In order to prove indistinguishability we first note that, since B ∈ A∗, the
set B̄ is not in A and so it is authorized for Σ. By the definition of Sk, we see
that at least one share per server is needed to reconstruct a message. Hence,
the set B × Fq is forbidden for S0, . . . ,Sq−1, and so the shares (uji )i∈B,j∈Fq do
not hold any information on the messages m0, . . . ,mq−1. Therefore, the shares
(bi)i∈B̄ generated by the adversary Adv in the real world and in the ideal world
are identically distributed.

Since B̄ is authorized for Σ, we have two possibilities as for the shares (bi)i∈B̄
received by Sim: either they are part of a sharing [b]Σ , or they are not part of
any sharing for Σ (due to the malicious behavior of Adv).

In the first case, Sim2 successfully reconstructs b. The set {(i, bi) : i ∈
B̄} ∪ (B × Fq) is then authorized for Sb and, by Lemma 6.2, it is forbidden
for all the other Fq-LSSS Sk. Since the sharings for mb generated by Simout are
distributed identically to those of the real world, this proves indistinguishability.

In the second case, Lemma 6.2 shows that the shares corresponding to the
participants {(i, bi) : i ∈ B̄}∪(B×Fq) give no information about any message in
the real world. Therefore, since here Simout generates these shares from random
messages in the ideal world, they obey the same distribution as in the real world,
as required. ut
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Finally, we can prove Corollary 1.2.

Proof (Corollary 1.2). For q > n, we choose Σ to be the Shamir secret sharing
scheme [46] over Fq with adversary structure A = {A ⊆ Pn : |A| < n/2}. If n
is odd, then A = A∗; else A∗ = {A ⊆ Pn : |A| ≤ n/2}. For q = n, we choose
the canonical one-participant-extension of the the Shamir secret sharing scheme
with adversary structure A. In both cases, Σ is ideal and Fq-linear. Then the
result follows from and Theorem 4.1 and Remark 4.3. ut

7 Our Multi-Use, One-out-of-q OT Combiner

In this section, we show a generalization of our protocol πOT from Section 4 that
extends to the general case where the adversary structure A does not admit an
ideal Fq-LSSS. Theorems 4.1 and 7.2 imply Theorem 1.1.

First, we present a black-box transformation from n′-server single-use OT
combiners to n-server OT combiners, with n < n′. This transformation illus-
trates the situation in which servers execute more than one OT instances of the
protocol.

Lemma 7.1. Let n′ > n be positive integers. Let π′ be an n′-server, black-box, 1-
out-of-q OT combiner that is perfectly secure against active (A′,B′)-adversaries.
Let (I1, . . . , In) be a partition of Pn′ and let

A = {A ⊆ Pn : ∪i∈AIi ∈ A′}
B = {B ⊆ Pn : ∪i∈BIi ∈ B′}

Then the protocol π in 5 is an n-server, black-box, 1-out-of-q OT combiner that is
perfectly secure against active (A,B)-adversaries. The amount of bits exchanged
in the protocols π and π′ are the same.

Proof. The correctness of the protocol π follows from the correctness of π′. We
next prove security against (A,B)-adversaries. Note that each server Si indexed
by i ∈ Pn corresponds to the participants Ii ⊆ P`. Hence, any adversary that
corrupts Alice and a set A ∈ A in π will have as many capabilities as an adversary
corrupting Alice and ∪i∈AIi in π′, since the interaction with a particular OT
implementation can be thought of as the concatenation of the interactions of the
different calls to it. We have an analogous situation for an adversary corrupting
Bob and the servers B′ = ∪i∈BIi. Hence, π is secure against the active corruption
of this adversary. ut

Let Σ be an Fq-LSSS for n participants with adversary structure A. Since Σ
is now not necessarily ideal, if [b]Σ = (b1, . . . , bn) is a sharing of b using Σ, we
note that each share bi belongs to some vector space Ei = F`iq for some integer
`i ≥ 1. Hence, unlike in the ideal case, bi may not correspond to a single message
index but a sequence of them.

Denote by ` =
∑n
i=1 `i the normalized share size of Σ. Rather than looking

at the sharings (b1, . . . , bn) as elements of F`1q × · · · × F`nq , we concatenate their
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Construction of an n-server 1-out-of-q OT combiner π from an n′-server
1-out-of-q OT combiner π′ with n′ > n

π.Choose(b): Given b ∈ Fq, compute π′.Choose(b) = (b1, . . . , bn′).
Output (b1, . . . , bn), where bi = (b′j)j∈Ii .

π.Send(m0, . . . ,mq−1): Compute π′.Send(m0, . . . ,mq−1) = (u′
j
i )(i,j)∈Pn′,q

.

Output (uji )(i,j)∈Pn,q , where (uji )(i,j) is the concatenation of (u′
j
k)(k,j) for k ∈ Ii.

π.Rec(b, (v1, . . . , vn)): Parse each vi as vi = (v′k)k∈Ii , obtaining (v′1, . . . , v
′
n′)

Output π.Rec(b, (v′1, . . . , v
′
n′)).

Fig. 5. Black-box 1-out-of-q OT combiner transformation

components and we see them as elements of the vector space F`q. Denote the
corresponding vector space isomorphism by

ϕ : F`1q × · · · × F`nq → F`q.

According to this, given Σ with the ShareΣ function, we can define the ideal
scheme Σ′ on P` with share spaces E′i = Fq for every i, satisfying that [b]Σ′ =
ϕ([b]Σ) = (b′1, . . . , b

′
`) for every b ∈ Fq, where each b′i ∈ Fq.

We now generalize the 1-out-of-q OT combiner presented previously to the
case where Σ is not ideal. The obtained OT combiner is still black-box and n-
server, but it is no longer single-use, because we assume that each of the n OT
candidate servers Si are called a total of `i times. To this end, for i ∈ Pn, denote

by Ii =
{∑i−1

j=1 `j + 1, . . . ,
∑i
j=1 `j

}
the set of indices of P` whose shares are

associated to i. We describe our multi-use OT combiner in Figure 6.

Theorem 7.2. Let Σ be an Fq-LSSS on the set Pn with adversary structure
A ⊆ 2Pn . The OT combiner πOT defined in Figure 6 is perfectly secure against
active (A,A∗)-adversaries.

Proof. Let Σ′ be the ideal Fq-linear secret sharing scheme on P` determined
by Σ, as described above, and let (I1, . . . , In) be the associated partition of P`.
Let A′ be the adversary structure of Σ′. Then, the 1-out-of-q OT combiner πOT
in Figure 3 for Σ′ is perfectly secure against active (A′,A′∗)-adversaries. By
applying the transformation in Figure 5 and Lemma 7.1, we obtain a protocol
that is perfectly secure against (A′′,A′′∗) adversaries, where

A′′ = {A ⊆ Pn : ∪i∈AIi ∈ A′}

Notice that A′′ is equal to A. ut

Remark 7.3. The protocol in Figure 6 coincides with the protocol in Figure 3
when Σ is ideal. If the normalized total share size of Σ is ` > n, then Bob
sends a total of ` log q bits to servers in the Choice phase. In the Sending phase,
Alice sends a total of q2` log q bits to the servers. In the Transfer phase, servers
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Our Generalized 1-out-of-q OT Combiner Protocol πOT

– Let Σ′ be the ideal Fq-linear secret sharing scheme on P` determined by Σ, as
described above, and let (I1, . . . , In) be the associated partition of P`.

– Let π′ be the single-use `-server 1-out-of-q OT combiner protocol defined in
Figure 3 for the secret sharing scheme Σ′.

– The protocol πOT is defined as the output of the transformation in Figure 5
applied to the protocol π′ with the partition (I1, . . . , In).

Fig. 6. Our multi-use 1-out-of-q OT combiner πOT for a general Fq-linear secret sharing
scheme Σ on Pn.

send a total of q` log q bits to Bob. Hence, the communication complexity is
(q2 + q + 1)` log q. As in the ideal case, this protocol can be adapted as an 1-
out-of-q′ OT combiner for q′ < q, in which case the communication complexity
is (qq′ + q′ + 1)` log q.

Proposition 7.4 ([16]). If (A,B) is not an R2 pair of adversary structures,
then perfectly secure 1-out-of-2 OT combiners against active (A,B)-adversaries
cannot exist.

Corollary 7.5. Let (A,B) be a pair adversary structures. There exist perfectly
secure 1-out-of-q OT combiners against active (A,B)-adversaries if and only if
(A,B) is R2.

Proof. Suppose that (A,B) is R2. By [30], A admits an Fq-LSSS Σ. By The-
orem 7.2, Σ provides a secure OT combiner for (A,B). Now suppose, for the
sake of contradiction, that (A,B) is not R2. If there exists a secure 1-out-of-q
combiner for (A,B), then there exists a secure 1-out-of-2 combiner for (A,B),
which contradicts Proposition 7.4. ut

8 One-out-of-q OT-combiners from 1-out-of-2
OT-combiners

We dedicate this section to construct 1-out-of-q OT combiners from 1-out-of-2
OT combiners. For this purpose, we adapt a technique to construct a 1-out-of-q
OT instance from 1-out-of-2 OT instances that presented by Crépeau, Brassard
and Robert [19]. As far as we know, this approach has not been studied in any
previous works. As we will see, for certain adversary structures, it is possible to
get better communication complexity than using the protocols described above.
Moreover, the construction does not restrict the number of messages q to a
prime power, and it allows for arbitrary q ≥ 2. However, the construction is
inherently multi-use, as it requires multiple calls to 1-out-of-2 OT instances.
The suitability of this construction with respect the ones presented above will
depend on the efficiency of F2-linear secret sharing schemes for the adversary
structure with respect Fq-linear secret sharing schemes, the efficiency of the OT
instances involved, and the length of the messages.
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1-out-of-q OT Combiner πOT from a 1-out-of-2 OT Combiner π′

πOT .Choose(b): Given b ∈ {0, 1, . . . , q − 1}, let (b0, . . . , bq−2) so that

bk =

{
1, if k < b
0, otherwise.

For k = 0, . . . , q − 2, let

(b
(k)
1 , . . . , b(k)

n ) = π′.Choose(bk)).

Output
(

(b
(0)
i , . . . , b

(q−2)
i )

)
i∈Pn

.

πOT .Send(m0, . . . ,mq−1): Sample q − 2 bits r1, . . . , rq−2 uniformly at random.
Then, compute the values (w0, . . . , wq−2) as

wk =


π′.Send(m0, r1) if k = 0,
π′.Send(mk ⊕ rk, rk+1 ⊕ rk) if 1 ≤ k < q − 2,
π′.Send(mq−2 ⊕ rq−2,mq−1 ⊕ rq−2) if k = q − 2.

Parse wk = (w
j,(k)
i )(i,j)∈Pn,2

.

For every i = 1, . . . , n, let ui = (w
j,(k)
i )(k,j)∈Pq−1,2

.
Output (u1, . . . , un).

πOT .Rec(b, (v1, . . . , vn)): For every i = 1, . . . , n, parse vi = (v0
i , . . . , v

q−2
i ).

For every k < b, let yk = π′.Rec(1, (vk1 , . . . , v
k
n)).

If b < q − 1, let yb = π′.Rec(0, (vb1, . . . , v
b
n)).

If the reconstruction fails at any step, output ⊥.
Otherwise, if b < q − 1, output

⊕b
k=0 yk. Else, if b = q − 1, output

⊕q−2
k=0 yk.

Fig. 7. 1-out-of-q OT combiner πOT from an 1-out-of-2 OT combiner π′.

We describe the 1-out-of-q OT combiner πOT for bit messages in Figure 7.
For messages of larger bitsize s > 1, the naive solution would be to run s times
a 1-out-of-q protocol using Figure 7. This is secure as long as Bob acts honestly
and chooses the same index b across the s OT executions. Otherwise, Bob could
act maliciously, and choose different indexes in different executions, thus learning
bits from more than one message when he should not. To prevent this, Crépeau
et al. [19] propose zigzag functions. These functions extend the length of binary
messages from s to 3dlog se, so that independent bit-OT executions do not reveal
information on more than one message.

Extending the construction of Figure 7 for s-bit messages using zigzag func-
tions [19] requires 3dlog se executions of this bit-OT protocol. In the figure, we
call πOT the 1-out-of-2 n-server bit-OT combiner. For this construction, we can
instantiate πOT with the general 1-out-of-q OT combiner presented in Figure 6
for the case q = 2, which is equivalent to the one presented in [15] for non-ideal
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schemes. We can also use the combiner in [16] to reduce the size of messages
taken as input by OT candidates.

One advantage of this construction is that it only uses 1-out-of-2 OT proto-
cols. As mentioned above, it results in a highly multi-use solution, as in general
it requires a multi-use combiner for each of the 1-out-of-2 OT combiners, and
the multiple calls to it required by the 1-out-of-q combiner technique of [19].

Next, we evaluate the communication cost of this protocol for messages of
one bit and general adversary structures. We instantiate it with the 1-out-of-2
OT combiner from Figure 6. Suppose that the pair (A,B) requires an F2-LSSS Σ
with normalized share size `. In the Choice phase, the output of each πOT .Choose
has ` bits, and the total is (q−1)` bits. In the Sending phase, the output of each
πOT .Send is 4` bits, so it outputs 4(q − 1)` bits in total. In the Transfer phase,
servers send 2` bits, in total. Therefore, the communication cost is (5q−3)` bits.
If the 1-out-of-2 combiner in [16] is used instead of [15], this communication
complexity can be reduced to (3q − 2)`.

In order to compare it with the other construction of this work, we consider
the threshold t adversary structure A, for 1 < t < n, and the pair (A,A∗).
This adversary pair requires a scheme with normalized share size ` = n log n.
The resulting protocol exchanges (3q − 2)n log n bits, and it uses each of the n
1-out-of-2 bit-OT candidates (q − 1) log n times. For messages in Fq, the use of
zigzag functions implies increasing the communication cost and the OT calls by
a factor of the order of log q.

In this 1-out-of-q OT combiner, information is only exchanged through a 1-
out-of-2 combiner, and its security properties rest exclusively on this 1-out-of-2
combiner. The corresponding result is summarized in Theorem 1.3 for the case
of threshold adversary structures.
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A Lower bounds on the share size for linear multisecret
secret sharing schemes

In our definition of πOT .Send, we treat each message separately. However, we
could consider a multisecret scheme (as discussed in Remark 4.6) and not process
messages separately, as done in [16]. With this generalization in mind, a natural
question is what is the smallest size of the output of uji , which leads to bounds
on the communication complexity of the scheme. Next we show that the result
in [16] cannot be generalized keeping uji in Fq.

Claim. Let q > 2 be a prime number. Consider the protocol in Figure 3. There is
no compiler that, given an ideal Fq-linear secret sharing scheme Σ with adversary
structure A, creates a randomized Fq-linear mapping πOT .Send(m0, . . . ,mq−1)

so that uji ∈ Fq and the resulting protocol is an OT combiner πOT that is
perfectly secure against active (A,A∗)-adversaries.

Proof. We prove that this compiler does not exist for n = 3 and q = 3. Take Σ
the threshold secret sharing scheme over Fq defined as follows:

(b1, b2, b3)← ShareΣ(b): Let a
$← F3, and let f(x) = a + bx ∈ F3[x]. Return

(f(0), f(1), f(2)).

s← ReconstructΣ((i, xi)i∈A): From shares (i, f(i)), (j, f(j)) return b = f(i)−f(j)
i−j .

This scheme is a variant of the Shamir secret sharing scheme. We have A =
A∗ = {{1}, {2}, {3}, ∅}, W0 = [0]Σ = 〈(1, 1, 1)〉, W1 = (0, 1, 2) + W0 and W2 =
(0, 2, 1) +W0.

When choosing a message index b ∈ F3 and executing π.Choose(b), Bob
creates (b1, b2, b3)← ShareΣ(b) and sends bi ∈ F3 to server i.

When sharing messages m0,m1,m2 ∈ F3 across servers, Alice uses the ran-
domized linear function πOT .Send. We can assume that it is computed by means
of mapping Π : F3

3 × F`3 → F9
3 for some ` ≥ 0 with

Π(m0,m1,m2, r) = (u0
1, u

1
1, u

2
1, u

0
2, u

1
2, u

2
2, u

0
3, u

1
3, u

2
3)

for some randomly chosen r ∈ F`3. Hence, Π is determined by some vectors
vji ∈ F3+`

3 satisfying that uji = (m0,m1,m2, r) · vji . For every A ⊆ Pn,q, define

VA = 〈vji 〉(i,j)∈A. Also, let {ei}0≤i≤`+2 be the canonical basis of the vector space

V = F3
3 × F`3. By the theory of linear secret sharing schemes, a subset A ⊆ Pn,q

can recover mi if and only if ei ∈ VA (see [42] , for example). Now, analyzing
the properties of these vectors vji , we will reach a contradiction.

In order to simplify the discussion, we take V ′ = V/VP1 and from now on ei
and vji refer to their classes in V ′. Moreover, borrowing notation from matroid
theory, we say a set of indices is a circuit if the corresponding vectors determine
a minimally dependent set (for an introduction to matroid theory, see [41], for
example). A set A = A′ ∪ A′′ with A′ ⊆ Pn,q and A′′ ⊆ {0, 1, 2} is a circuit if

{vji : (i, j) ∈ A′}∪{ei : i ∈ A′′} is a minimal dependent set in V ′. By properties
of linear dependence,

31



(C) if C1 and C2 are two different circuits and p ∈ C1 ∩ C2, then there is a
circuit C3 such that C3 ⊆ (C1 ∪ C2) \ {p}

First, we prove that subsets of Pn,q ∪{0, 1, 2} of size one or two are not circuits.

If {(i, j)} is a circuit, then uji can be computed from the shares of P1. If {i} is a
circuit, then mi can be computed with the shares of P1. Both situations are not
possible. Let A = {0, 1}. If A is a circuit, then an adversary controlling Bob and
Server 1 querying (0, 0, 0) can reconstruct m0 and also m1, which is not possible.
The proof is analogous for the set {1, (2, 0)}. If {(2, 0), (2, 1)} is a circuit, then
an adversary controlling Bob and Server 1 querying (0, 0, 0) can also compute
u1

2 and reconstruct m0 and m2, which is not possible. Finally, if {(2, 0), (3, 1)} is
a circuit, an adversary controlling Bob and Server 1 querying (0, 0, 0) can also
reconstruct m0 and also m1, can also compute u1

3 and so reconstruct m0 and
m1, which is not possible. The rest of cases of sets of size one or two can be
proved analogously. Therefore, dependent sets are of size greater than two. Now
we claim that the following sets are circuits:

– A1 = {0, (2, 0), (3, 0)}
– A2 = {0, (2, 1), (3, 1)}
– A3 = {1, (2, 0), (3, 1)}
– A4 = {2, (2, 0), (3, 0)}

Now we prove that A1 is a circuit. It is a dependent set because m1 can be
recovered from {uji : (i, j) ∈ P1 ∪ {(2, 0), (3, 1)}} and so e1 ∈ 〈v0

2,v
1
3〉 in V ′.

It is minimal because dependent subsets are of size greater than two. Anal-
ogously, we can prove that A2, A3 and A4 are circuits. Now we claim that
A5 = {1, 0, (2, 0), (2, 1)} and A6 = {0, 2, (2, 0), (2, 1)} are also circuits.

Since A2 and A3 are circuits and (3, 1) ∈ A2 ∩A3, then there exists a circuit
contained in A5 by property (C). Now we see that A5 is a circuit. It is enough
to prove that proper subsets of A5 of size 3 are not circuits. If {1, 0, (2, 0)} is
a circuit, then an adversary controlling Bob and Server 1 querying (0, 0, 0) can
also reconstruct m0 and also m1, which is not possible. Analogously, we can
prove that {1, 0, (2, 1)} is not a circuit. If A = {1, (2, 0), (2, 1)} is a circuit, then
an adversary controlling Bob and Server 1 querying (0, 1, 2) can reconstruct m1

and obtain u1
2 because A is a circuit. Therefore, it is also possible to obtain m2,

a contradiction. Analogously, we can prove that {0, (2, 0), (2, 1)} is not a circuit.
Therefore, A5 is a circuit. We can prove that A6 is a circuit analogously.

Since A5 and A6 are circuits and (2, 1) ∈ A5 ∩A6, then there exists a circuit
contained in A7 = {0, 1, 2, (2, 0)} by property (C), but now we will see that
we reach a contradiction. An adversary controlling Bob and Server 1 querying
(0, 0, 0) can reconstruct m0 and, if A7 is a circuit, can get partial information
about m1 and m2, which is not possible. Hence, A7 is not a circuit. Using the
same argument, we can see that {0, 1, 2} is not a circuit as well. We can prove
that the other proper subsets of A7 are not circuits following arguments used
above to prove that proper subsets of A5 are not circuits.

Notice that in this proof we only assumed that uji ∈ F3 for (i, j) ∈ {(2, 0), (2, 1),
(3, 0), (3, 1)}. For any other set of four indices with two from P2 and two from
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P3, we get the same contradiction. Hence, we have that uji ∈ F2
3 for at least two

indices (i, j). This proof can be adapted to other access structures.

B An Example of Σ and S0 for q = n = 3

Consider the case q = n = 3 and let A and B be adversary structures of threshold
t = 1. LetΣ be a Shamir secret sharing over F3 with n participants and adversary
structure of threshold 1. The secret is b ∈ F3. Bob chooses r at random, and the
shares are b+ r, b+ 2r and r, corresponding to the points 1, 2, and the point at
infinity. The sharings of b = 0 are the following ones:

W0 = V = {(0, 0, 0), (1, 2, 1), (2, 1, 2)}

Hence, we have that

minΓW0 = {{(1, 0), (2, 0), (3, 0)}, {(1, 1), (2, 2), (3, 1)}{(1, 2), (2, 1), (3, 2)}}

Now we analyze the scheme S0, used by Alice and described in 4, which is
run by Bob to share m0. The share of the server (i, j) for i ∈ P3 and j ∈ F3

is ri + jhi, where ri are additive shares of the secret m0, and (h1, h2, h3) is an
element of V ⊥ chosen at random. Note that V ⊥ = 〈(1, 1, 0), (0, 1, 1)〉.

Let Γ be the access structure of S0. Observe that subsets of minΓW0
are

in Γ , because the sum of the shares corresponding to these subsets equals the
secret. Hence, ΓW0 ⊆ Γ . Indeed, Γ is strictly greater than ΓW0 : For example,
the subset

{(1, 0), (2, 0), (3, 1), (3, 2)}

is in Γ because the sum of the shares corresponding to (1, 0) and (2, 0), plus the
double of the shares corresponding to (3, 1) and (3, 2), equals the secret, and this
subset it is not in ΓW0

. We will see now that Γ is W0-OT compatible.
It can be seen to check that the minimal sets of Γ are

{(1, c1), (2, c2), (3, c3)}, {(i1, ci1), (i2, ci2)} ∪ Pi3 \ {(i3, ci3)}, and

{(i1, ci1)} ∪ Pi2 ∪ Pi3 \ {(i2, ci2), (i3, ci3)}

for every (c1, c2, c3) ∈W0 and every permutation (i1, i2, i3) of (1, 2, 3). It can be
checked that Γ ∩∆ are the subsets

{(1, c1), (2, c2), (3, c3)}, {(1, c1), (2, c2), (3, c3)} ∪ Pi for i ∈ {1, 2, 3},
{(1, c1), (2, c2), (3, c3)} ∪ Pi ∪ Pj for i, j ∈ {1, 2, 3}, and P1 ∪ P2 ∪ P3

for every (c1, c2, c3) ∈W0. Since Γ ∩∆ = ΓW0 ∩∆, Γ is W0-OT compatible.
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